xref: /linux-6.15/include/linux/skbuff.h (revision 2ff9f317)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41 
42 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
43 				 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X)	\
45 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
50 
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) +						\
53 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
54 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55 
56 /* A. Checksumming of received packets by device.
57  *
58  *	NONE: device failed to checksum this packet.
59  *		skb->csum is undefined.
60  *
61  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
62  *		skb->csum is undefined.
63  *	      It is bad option, but, unfortunately, many of vendors do this.
64  *	      Apparently with secret goal to sell you new device, when you
65  *	      will add new protocol to your host. F.e. IPv6. 8)
66  *
67  *	COMPLETE: the most generic way. Device supplied checksum of _all_
68  *	    the packet as seen by netif_rx in skb->csum.
69  *	    NOTE: Even if device supports only some protocols, but
70  *	    is able to produce some skb->csum, it MUST use COMPLETE,
71  *	    not UNNECESSARY.
72  *
73  *	PARTIAL: identical to the case for output below.  This may occur
74  *	    on a packet received directly from another Linux OS, e.g.,
75  *	    a virtualised Linux kernel on the same host.  The packet can
76  *	    be treated in the same way as UNNECESSARY except that on
77  *	    output (i.e., forwarding) the checksum must be filled in
78  *	    by the OS or the hardware.
79  *
80  * B. Checksumming on output.
81  *
82  *	NONE: skb is checksummed by protocol or csum is not required.
83  *
84  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
85  *	from skb->csum_start to the end and to record the checksum
86  *	at skb->csum_start + skb->csum_offset.
87  *
88  *	Device must show its capabilities in dev->features, set
89  *	at device setup time.
90  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
91  *			  everything.
92  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93  *			  TCP/UDP over IPv4. Sigh. Vendors like this
94  *			  way by an unknown reason. Though, see comment above
95  *			  about CHECKSUM_UNNECESSARY. 8)
96  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97  *
98  *	UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99  *	that do not want net to perform the checksum calculation should use
100  *	this flag in their outgoing skbs.
101  *	NETIF_F_FCOE_CRC  this indicates the device can do FCoE FC CRC
102  *			  offload. Correspondingly, the FCoE protocol driver
103  *			  stack should use CHECKSUM_UNNECESSARY.
104  *
105  *	Any questions? No questions, good. 		--ANK
106  */
107 
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111 
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 	atomic_t use;
115 };
116 #endif
117 
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 	atomic_t use;
121 	struct net_device *physindev;
122 	struct net_device *physoutdev;
123 	unsigned int mask;
124 	unsigned long data[32 / sizeof(unsigned long)];
125 };
126 #endif
127 
128 struct sk_buff_head {
129 	/* These two members must be first. */
130 	struct sk_buff	*next;
131 	struct sk_buff	*prev;
132 
133 	__u32		qlen;
134 	spinlock_t	lock;
135 };
136 
137 struct sk_buff;
138 
139 /* To allow 64K frame to be packed as single skb without frag_list we
140  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141  * buffers which do not start on a page boundary.
142  *
143  * Since GRO uses frags we allocate at least 16 regardless of page
144  * size.
145  */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151 
152 typedef struct skb_frag_struct skb_frag_t;
153 
154 struct skb_frag_struct {
155 	struct {
156 		struct page *p;
157 	} page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 	__u32 page_offset;
160 	__u32 size;
161 #else
162 	__u16 page_offset;
163 	__u16 size;
164 #endif
165 };
166 
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 	return frag->size;
170 }
171 
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 	frag->size = size;
175 }
176 
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 	frag->size += delta;
180 }
181 
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 	frag->size -= delta;
185 }
186 
187 #define HAVE_HW_TIME_STAMP
188 
189 /**
190  * struct skb_shared_hwtstamps - hardware time stamps
191  * @hwtstamp:	hardware time stamp transformed into duration
192  *		since arbitrary point in time
193  * @syststamp:	hwtstamp transformed to system time base
194  *
195  * Software time stamps generated by ktime_get_real() are stored in
196  * skb->tstamp. The relation between the different kinds of time
197  * stamps is as follows:
198  *
199  * syststamp and tstamp can be compared against each other in
200  * arbitrary combinations.  The accuracy of a
201  * syststamp/tstamp/"syststamp from other device" comparison is
202  * limited by the accuracy of the transformation into system time
203  * base. This depends on the device driver and its underlying
204  * hardware.
205  *
206  * hwtstamps can only be compared against other hwtstamps from
207  * the same device.
208  *
209  * This structure is attached to packets as part of the
210  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211  */
212 struct skb_shared_hwtstamps {
213 	ktime_t	hwtstamp;
214 	ktime_t	syststamp;
215 };
216 
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 	/* generate hardware time stamp */
220 	SKBTX_HW_TSTAMP = 1 << 0,
221 
222 	/* generate software time stamp */
223 	SKBTX_SW_TSTAMP = 1 << 1,
224 
225 	/* device driver is going to provide hardware time stamp */
226 	SKBTX_IN_PROGRESS = 1 << 2,
227 
228 	/* ensure the originating sk reference is available on driver level */
229 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
230 
231 	/* device driver supports TX zero-copy buffers */
232 	SKBTX_DEV_ZEROCOPY = 1 << 4,
233 
234 	/* generate wifi status information (where possible) */
235 	SKBTX_WIFI_STATUS = 1 << 5,
236 };
237 
238 /*
239  * The callback notifies userspace to release buffers when skb DMA is done in
240  * lower device, the skb last reference should be 0 when calling this.
241  * The ctx field is used to track device context.
242  * The desc field is used to track userspace buffer index.
243  */
244 struct ubuf_info {
245 	void (*callback)(struct ubuf_info *);
246 	void *ctx;
247 	unsigned long desc;
248 };
249 
250 /* This data is invariant across clones and lives at
251  * the end of the header data, ie. at skb->end.
252  */
253 struct skb_shared_info {
254 	unsigned char	nr_frags;
255 	__u8		tx_flags;
256 	unsigned short	gso_size;
257 	/* Warning: this field is not always filled in (UFO)! */
258 	unsigned short	gso_segs;
259 	unsigned short  gso_type;
260 	struct sk_buff	*frag_list;
261 	struct skb_shared_hwtstamps hwtstamps;
262 	__be32          ip6_frag_id;
263 
264 	/*
265 	 * Warning : all fields before dataref are cleared in __alloc_skb()
266 	 */
267 	atomic_t	dataref;
268 
269 	/* Intermediate layers must ensure that destructor_arg
270 	 * remains valid until skb destructor */
271 	void *		destructor_arg;
272 
273 	/* must be last field, see pskb_expand_head() */
274 	skb_frag_t	frags[MAX_SKB_FRAGS];
275 };
276 
277 /* We divide dataref into two halves.  The higher 16 bits hold references
278  * to the payload part of skb->data.  The lower 16 bits hold references to
279  * the entire skb->data.  A clone of a headerless skb holds the length of
280  * the header in skb->hdr_len.
281  *
282  * All users must obey the rule that the skb->data reference count must be
283  * greater than or equal to the payload reference count.
284  *
285  * Holding a reference to the payload part means that the user does not
286  * care about modifications to the header part of skb->data.
287  */
288 #define SKB_DATAREF_SHIFT 16
289 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
290 
291 
292 enum {
293 	SKB_FCLONE_UNAVAILABLE,
294 	SKB_FCLONE_ORIG,
295 	SKB_FCLONE_CLONE,
296 };
297 
298 enum {
299 	SKB_GSO_TCPV4 = 1 << 0,
300 	SKB_GSO_UDP = 1 << 1,
301 
302 	/* This indicates the skb is from an untrusted source. */
303 	SKB_GSO_DODGY = 1 << 2,
304 
305 	/* This indicates the tcp segment has CWR set. */
306 	SKB_GSO_TCP_ECN = 1 << 3,
307 
308 	SKB_GSO_TCPV6 = 1 << 4,
309 
310 	SKB_GSO_FCOE = 1 << 5,
311 };
312 
313 #if BITS_PER_LONG > 32
314 #define NET_SKBUFF_DATA_USES_OFFSET 1
315 #endif
316 
317 #ifdef NET_SKBUFF_DATA_USES_OFFSET
318 typedef unsigned int sk_buff_data_t;
319 #else
320 typedef unsigned char *sk_buff_data_t;
321 #endif
322 
323 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
324     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
325 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
326 #endif
327 
328 /**
329  *	struct sk_buff - socket buffer
330  *	@next: Next buffer in list
331  *	@prev: Previous buffer in list
332  *	@tstamp: Time we arrived
333  *	@sk: Socket we are owned by
334  *	@dev: Device we arrived on/are leaving by
335  *	@cb: Control buffer. Free for use by every layer. Put private vars here
336  *	@_skb_refdst: destination entry (with norefcount bit)
337  *	@sp: the security path, used for xfrm
338  *	@len: Length of actual data
339  *	@data_len: Data length
340  *	@mac_len: Length of link layer header
341  *	@hdr_len: writable header length of cloned skb
342  *	@csum: Checksum (must include start/offset pair)
343  *	@csum_start: Offset from skb->head where checksumming should start
344  *	@csum_offset: Offset from csum_start where checksum should be stored
345  *	@priority: Packet queueing priority
346  *	@local_df: allow local fragmentation
347  *	@cloned: Head may be cloned (check refcnt to be sure)
348  *	@ip_summed: Driver fed us an IP checksum
349  *	@nohdr: Payload reference only, must not modify header
350  *	@nfctinfo: Relationship of this skb to the connection
351  *	@pkt_type: Packet class
352  *	@fclone: skbuff clone status
353  *	@ipvs_property: skbuff is owned by ipvs
354  *	@peeked: this packet has been seen already, so stats have been
355  *		done for it, don't do them again
356  *	@nf_trace: netfilter packet trace flag
357  *	@protocol: Packet protocol from driver
358  *	@destructor: Destruct function
359  *	@nfct: Associated connection, if any
360  *	@nfct_reasm: netfilter conntrack re-assembly pointer
361  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
362  *	@skb_iif: ifindex of device we arrived on
363  *	@tc_index: Traffic control index
364  *	@tc_verd: traffic control verdict
365  *	@rxhash: the packet hash computed on receive
366  *	@queue_mapping: Queue mapping for multiqueue devices
367  *	@ndisc_nodetype: router type (from link layer)
368  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
369  *	@l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
370  *		ports.
371  *	@wifi_acked_valid: wifi_acked was set
372  *	@wifi_acked: whether frame was acked on wifi or not
373  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
374  *	@dma_cookie: a cookie to one of several possible DMA operations
375  *		done by skb DMA functions
376  *	@secmark: security marking
377  *	@mark: Generic packet mark
378  *	@dropcount: total number of sk_receive_queue overflows
379  *	@vlan_tci: vlan tag control information
380  *	@transport_header: Transport layer header
381  *	@network_header: Network layer header
382  *	@mac_header: Link layer header
383  *	@tail: Tail pointer
384  *	@end: End pointer
385  *	@head: Head of buffer
386  *	@data: Data head pointer
387  *	@truesize: Buffer size
388  *	@users: User count - see {datagram,tcp}.c
389  */
390 
391 struct sk_buff {
392 	/* These two members must be first. */
393 	struct sk_buff		*next;
394 	struct sk_buff		*prev;
395 
396 	ktime_t			tstamp;
397 
398 	struct sock		*sk;
399 	struct net_device	*dev;
400 
401 	/*
402 	 * This is the control buffer. It is free to use for every
403 	 * layer. Please put your private variables there. If you
404 	 * want to keep them across layers you have to do a skb_clone()
405 	 * first. This is owned by whoever has the skb queued ATM.
406 	 */
407 	char			cb[48] __aligned(8);
408 
409 	unsigned long		_skb_refdst;
410 #ifdef CONFIG_XFRM
411 	struct	sec_path	*sp;
412 #endif
413 	unsigned int		len,
414 				data_len;
415 	__u16			mac_len,
416 				hdr_len;
417 	union {
418 		__wsum		csum;
419 		struct {
420 			__u16	csum_start;
421 			__u16	csum_offset;
422 		};
423 	};
424 	__u32			priority;
425 	kmemcheck_bitfield_begin(flags1);
426 	__u8			local_df:1,
427 				cloned:1,
428 				ip_summed:2,
429 				nohdr:1,
430 				nfctinfo:3;
431 	__u8			pkt_type:3,
432 				fclone:2,
433 				ipvs_property:1,
434 				peeked:1,
435 				nf_trace:1;
436 	kmemcheck_bitfield_end(flags1);
437 	__be16			protocol;
438 
439 	void			(*destructor)(struct sk_buff *skb);
440 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
441 	struct nf_conntrack	*nfct;
442 #endif
443 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
444 	struct sk_buff		*nfct_reasm;
445 #endif
446 #ifdef CONFIG_BRIDGE_NETFILTER
447 	struct nf_bridge_info	*nf_bridge;
448 #endif
449 
450 	int			skb_iif;
451 
452 	__u32			rxhash;
453 
454 	__u16			vlan_tci;
455 
456 #ifdef CONFIG_NET_SCHED
457 	__u16			tc_index;	/* traffic control index */
458 #ifdef CONFIG_NET_CLS_ACT
459 	__u16			tc_verd;	/* traffic control verdict */
460 #endif
461 #endif
462 
463 	__u16			queue_mapping;
464 	kmemcheck_bitfield_begin(flags2);
465 #ifdef CONFIG_IPV6_NDISC_NODETYPE
466 	__u8			ndisc_nodetype:2;
467 #endif
468 	__u8			ooo_okay:1;
469 	__u8			l4_rxhash:1;
470 	__u8			wifi_acked_valid:1;
471 	__u8			wifi_acked:1;
472 	__u8			no_fcs:1;
473 	/* 9/11 bit hole (depending on ndisc_nodetype presence) */
474 	kmemcheck_bitfield_end(flags2);
475 
476 #ifdef CONFIG_NET_DMA
477 	dma_cookie_t		dma_cookie;
478 #endif
479 #ifdef CONFIG_NETWORK_SECMARK
480 	__u32			secmark;
481 #endif
482 	union {
483 		__u32		mark;
484 		__u32		dropcount;
485 		__u32		avail_size;
486 	};
487 
488 	sk_buff_data_t		transport_header;
489 	sk_buff_data_t		network_header;
490 	sk_buff_data_t		mac_header;
491 	/* These elements must be at the end, see alloc_skb() for details.  */
492 	sk_buff_data_t		tail;
493 	sk_buff_data_t		end;
494 	unsigned char		*head,
495 				*data;
496 	unsigned int		truesize;
497 	atomic_t		users;
498 };
499 
500 #ifdef __KERNEL__
501 /*
502  *	Handling routines are only of interest to the kernel
503  */
504 #include <linux/slab.h>
505 
506 
507 /*
508  * skb might have a dst pointer attached, refcounted or not.
509  * _skb_refdst low order bit is set if refcount was _not_ taken
510  */
511 #define SKB_DST_NOREF	1UL
512 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
513 
514 /**
515  * skb_dst - returns skb dst_entry
516  * @skb: buffer
517  *
518  * Returns skb dst_entry, regardless of reference taken or not.
519  */
520 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
521 {
522 	/* If refdst was not refcounted, check we still are in a
523 	 * rcu_read_lock section
524 	 */
525 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
526 		!rcu_read_lock_held() &&
527 		!rcu_read_lock_bh_held());
528 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
529 }
530 
531 /**
532  * skb_dst_set - sets skb dst
533  * @skb: buffer
534  * @dst: dst entry
535  *
536  * Sets skb dst, assuming a reference was taken on dst and should
537  * be released by skb_dst_drop()
538  */
539 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
540 {
541 	skb->_skb_refdst = (unsigned long)dst;
542 }
543 
544 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
545 
546 /**
547  * skb_dst_is_noref - Test if skb dst isn't refcounted
548  * @skb: buffer
549  */
550 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
551 {
552 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
553 }
554 
555 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
556 {
557 	return (struct rtable *)skb_dst(skb);
558 }
559 
560 extern void kfree_skb(struct sk_buff *skb);
561 extern void consume_skb(struct sk_buff *skb);
562 extern void	       __kfree_skb(struct sk_buff *skb);
563 extern struct sk_buff *__alloc_skb(unsigned int size,
564 				   gfp_t priority, int fclone, int node);
565 extern struct sk_buff *build_skb(void *data);
566 static inline struct sk_buff *alloc_skb(unsigned int size,
567 					gfp_t priority)
568 {
569 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
570 }
571 
572 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
573 					       gfp_t priority)
574 {
575 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
576 }
577 
578 extern void skb_recycle(struct sk_buff *skb);
579 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
580 
581 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
582 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
583 extern struct sk_buff *skb_clone(struct sk_buff *skb,
584 				 gfp_t priority);
585 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
586 				gfp_t priority);
587 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
588 				 int headroom, gfp_t gfp_mask);
589 
590 extern int	       pskb_expand_head(struct sk_buff *skb,
591 					int nhead, int ntail,
592 					gfp_t gfp_mask);
593 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
594 					    unsigned int headroom);
595 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
596 				       int newheadroom, int newtailroom,
597 				       gfp_t priority);
598 extern int	       skb_to_sgvec(struct sk_buff *skb,
599 				    struct scatterlist *sg, int offset,
600 				    int len);
601 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
602 				    struct sk_buff **trailer);
603 extern int	       skb_pad(struct sk_buff *skb, int pad);
604 #define dev_kfree_skb(a)	consume_skb(a)
605 
606 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
607 			int getfrag(void *from, char *to, int offset,
608 			int len,int odd, struct sk_buff *skb),
609 			void *from, int length);
610 
611 struct skb_seq_state {
612 	__u32		lower_offset;
613 	__u32		upper_offset;
614 	__u32		frag_idx;
615 	__u32		stepped_offset;
616 	struct sk_buff	*root_skb;
617 	struct sk_buff	*cur_skb;
618 	__u8		*frag_data;
619 };
620 
621 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
622 					   unsigned int from, unsigned int to,
623 					   struct skb_seq_state *st);
624 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
625 				   struct skb_seq_state *st);
626 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
627 
628 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
629 				    unsigned int to, struct ts_config *config,
630 				    struct ts_state *state);
631 
632 extern void __skb_get_rxhash(struct sk_buff *skb);
633 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
634 {
635 	if (!skb->rxhash)
636 		__skb_get_rxhash(skb);
637 
638 	return skb->rxhash;
639 }
640 
641 #ifdef NET_SKBUFF_DATA_USES_OFFSET
642 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
643 {
644 	return skb->head + skb->end;
645 }
646 #else
647 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
648 {
649 	return skb->end;
650 }
651 #endif
652 
653 /* Internal */
654 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
655 
656 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
657 {
658 	return &skb_shinfo(skb)->hwtstamps;
659 }
660 
661 /**
662  *	skb_queue_empty - check if a queue is empty
663  *	@list: queue head
664  *
665  *	Returns true if the queue is empty, false otherwise.
666  */
667 static inline int skb_queue_empty(const struct sk_buff_head *list)
668 {
669 	return list->next == (struct sk_buff *)list;
670 }
671 
672 /**
673  *	skb_queue_is_last - check if skb is the last entry in the queue
674  *	@list: queue head
675  *	@skb: buffer
676  *
677  *	Returns true if @skb is the last buffer on the list.
678  */
679 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
680 				     const struct sk_buff *skb)
681 {
682 	return skb->next == (struct sk_buff *)list;
683 }
684 
685 /**
686  *	skb_queue_is_first - check if skb is the first entry in the queue
687  *	@list: queue head
688  *	@skb: buffer
689  *
690  *	Returns true if @skb is the first buffer on the list.
691  */
692 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
693 				      const struct sk_buff *skb)
694 {
695 	return skb->prev == (struct sk_buff *)list;
696 }
697 
698 /**
699  *	skb_queue_next - return the next packet in the queue
700  *	@list: queue head
701  *	@skb: current buffer
702  *
703  *	Return the next packet in @list after @skb.  It is only valid to
704  *	call this if skb_queue_is_last() evaluates to false.
705  */
706 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
707 					     const struct sk_buff *skb)
708 {
709 	/* This BUG_ON may seem severe, but if we just return then we
710 	 * are going to dereference garbage.
711 	 */
712 	BUG_ON(skb_queue_is_last(list, skb));
713 	return skb->next;
714 }
715 
716 /**
717  *	skb_queue_prev - return the prev packet in the queue
718  *	@list: queue head
719  *	@skb: current buffer
720  *
721  *	Return the prev packet in @list before @skb.  It is only valid to
722  *	call this if skb_queue_is_first() evaluates to false.
723  */
724 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
725 					     const struct sk_buff *skb)
726 {
727 	/* This BUG_ON may seem severe, but if we just return then we
728 	 * are going to dereference garbage.
729 	 */
730 	BUG_ON(skb_queue_is_first(list, skb));
731 	return skb->prev;
732 }
733 
734 /**
735  *	skb_get - reference buffer
736  *	@skb: buffer to reference
737  *
738  *	Makes another reference to a socket buffer and returns a pointer
739  *	to the buffer.
740  */
741 static inline struct sk_buff *skb_get(struct sk_buff *skb)
742 {
743 	atomic_inc(&skb->users);
744 	return skb;
745 }
746 
747 /*
748  * If users == 1, we are the only owner and are can avoid redundant
749  * atomic change.
750  */
751 
752 /**
753  *	skb_cloned - is the buffer a clone
754  *	@skb: buffer to check
755  *
756  *	Returns true if the buffer was generated with skb_clone() and is
757  *	one of multiple shared copies of the buffer. Cloned buffers are
758  *	shared data so must not be written to under normal circumstances.
759  */
760 static inline int skb_cloned(const struct sk_buff *skb)
761 {
762 	return skb->cloned &&
763 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
764 }
765 
766 /**
767  *	skb_header_cloned - is the header a clone
768  *	@skb: buffer to check
769  *
770  *	Returns true if modifying the header part of the buffer requires
771  *	the data to be copied.
772  */
773 static inline int skb_header_cloned(const struct sk_buff *skb)
774 {
775 	int dataref;
776 
777 	if (!skb->cloned)
778 		return 0;
779 
780 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
781 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
782 	return dataref != 1;
783 }
784 
785 /**
786  *	skb_header_release - release reference to header
787  *	@skb: buffer to operate on
788  *
789  *	Drop a reference to the header part of the buffer.  This is done
790  *	by acquiring a payload reference.  You must not read from the header
791  *	part of skb->data after this.
792  */
793 static inline void skb_header_release(struct sk_buff *skb)
794 {
795 	BUG_ON(skb->nohdr);
796 	skb->nohdr = 1;
797 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
798 }
799 
800 /**
801  *	skb_shared - is the buffer shared
802  *	@skb: buffer to check
803  *
804  *	Returns true if more than one person has a reference to this
805  *	buffer.
806  */
807 static inline int skb_shared(const struct sk_buff *skb)
808 {
809 	return atomic_read(&skb->users) != 1;
810 }
811 
812 /**
813  *	skb_share_check - check if buffer is shared and if so clone it
814  *	@skb: buffer to check
815  *	@pri: priority for memory allocation
816  *
817  *	If the buffer is shared the buffer is cloned and the old copy
818  *	drops a reference. A new clone with a single reference is returned.
819  *	If the buffer is not shared the original buffer is returned. When
820  *	being called from interrupt status or with spinlocks held pri must
821  *	be GFP_ATOMIC.
822  *
823  *	NULL is returned on a memory allocation failure.
824  */
825 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
826 					      gfp_t pri)
827 {
828 	might_sleep_if(pri & __GFP_WAIT);
829 	if (skb_shared(skb)) {
830 		struct sk_buff *nskb = skb_clone(skb, pri);
831 		kfree_skb(skb);
832 		skb = nskb;
833 	}
834 	return skb;
835 }
836 
837 /*
838  *	Copy shared buffers into a new sk_buff. We effectively do COW on
839  *	packets to handle cases where we have a local reader and forward
840  *	and a couple of other messy ones. The normal one is tcpdumping
841  *	a packet thats being forwarded.
842  */
843 
844 /**
845  *	skb_unshare - make a copy of a shared buffer
846  *	@skb: buffer to check
847  *	@pri: priority for memory allocation
848  *
849  *	If the socket buffer is a clone then this function creates a new
850  *	copy of the data, drops a reference count on the old copy and returns
851  *	the new copy with the reference count at 1. If the buffer is not a clone
852  *	the original buffer is returned. When called with a spinlock held or
853  *	from interrupt state @pri must be %GFP_ATOMIC
854  *
855  *	%NULL is returned on a memory allocation failure.
856  */
857 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
858 					  gfp_t pri)
859 {
860 	might_sleep_if(pri & __GFP_WAIT);
861 	if (skb_cloned(skb)) {
862 		struct sk_buff *nskb = skb_copy(skb, pri);
863 		kfree_skb(skb);	/* Free our shared copy */
864 		skb = nskb;
865 	}
866 	return skb;
867 }
868 
869 /**
870  *	skb_peek - peek at the head of an &sk_buff_head
871  *	@list_: list to peek at
872  *
873  *	Peek an &sk_buff. Unlike most other operations you _MUST_
874  *	be careful with this one. A peek leaves the buffer on the
875  *	list and someone else may run off with it. You must hold
876  *	the appropriate locks or have a private queue to do this.
877  *
878  *	Returns %NULL for an empty list or a pointer to the head element.
879  *	The reference count is not incremented and the reference is therefore
880  *	volatile. Use with caution.
881  */
882 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
883 {
884 	struct sk_buff *list = ((const struct sk_buff *)list_)->next;
885 	if (list == (struct sk_buff *)list_)
886 		list = NULL;
887 	return list;
888 }
889 
890 /**
891  *	skb_peek_next - peek skb following the given one from a queue
892  *	@skb: skb to start from
893  *	@list_: list to peek at
894  *
895  *	Returns %NULL when the end of the list is met or a pointer to the
896  *	next element. The reference count is not incremented and the
897  *	reference is therefore volatile. Use with caution.
898  */
899 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
900 		const struct sk_buff_head *list_)
901 {
902 	struct sk_buff *next = skb->next;
903 	if (next == (struct sk_buff *)list_)
904 		next = NULL;
905 	return next;
906 }
907 
908 /**
909  *	skb_peek_tail - peek at the tail of an &sk_buff_head
910  *	@list_: list to peek at
911  *
912  *	Peek an &sk_buff. Unlike most other operations you _MUST_
913  *	be careful with this one. A peek leaves the buffer on the
914  *	list and someone else may run off with it. You must hold
915  *	the appropriate locks or have a private queue to do this.
916  *
917  *	Returns %NULL for an empty list or a pointer to the tail element.
918  *	The reference count is not incremented and the reference is therefore
919  *	volatile. Use with caution.
920  */
921 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
922 {
923 	struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
924 	if (list == (struct sk_buff *)list_)
925 		list = NULL;
926 	return list;
927 }
928 
929 /**
930  *	skb_queue_len	- get queue length
931  *	@list_: list to measure
932  *
933  *	Return the length of an &sk_buff queue.
934  */
935 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
936 {
937 	return list_->qlen;
938 }
939 
940 /**
941  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
942  *	@list: queue to initialize
943  *
944  *	This initializes only the list and queue length aspects of
945  *	an sk_buff_head object.  This allows to initialize the list
946  *	aspects of an sk_buff_head without reinitializing things like
947  *	the spinlock.  It can also be used for on-stack sk_buff_head
948  *	objects where the spinlock is known to not be used.
949  */
950 static inline void __skb_queue_head_init(struct sk_buff_head *list)
951 {
952 	list->prev = list->next = (struct sk_buff *)list;
953 	list->qlen = 0;
954 }
955 
956 /*
957  * This function creates a split out lock class for each invocation;
958  * this is needed for now since a whole lot of users of the skb-queue
959  * infrastructure in drivers have different locking usage (in hardirq)
960  * than the networking core (in softirq only). In the long run either the
961  * network layer or drivers should need annotation to consolidate the
962  * main types of usage into 3 classes.
963  */
964 static inline void skb_queue_head_init(struct sk_buff_head *list)
965 {
966 	spin_lock_init(&list->lock);
967 	__skb_queue_head_init(list);
968 }
969 
970 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
971 		struct lock_class_key *class)
972 {
973 	skb_queue_head_init(list);
974 	lockdep_set_class(&list->lock, class);
975 }
976 
977 /*
978  *	Insert an sk_buff on a list.
979  *
980  *	The "__skb_xxxx()" functions are the non-atomic ones that
981  *	can only be called with interrupts disabled.
982  */
983 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
984 static inline void __skb_insert(struct sk_buff *newsk,
985 				struct sk_buff *prev, struct sk_buff *next,
986 				struct sk_buff_head *list)
987 {
988 	newsk->next = next;
989 	newsk->prev = prev;
990 	next->prev  = prev->next = newsk;
991 	list->qlen++;
992 }
993 
994 static inline void __skb_queue_splice(const struct sk_buff_head *list,
995 				      struct sk_buff *prev,
996 				      struct sk_buff *next)
997 {
998 	struct sk_buff *first = list->next;
999 	struct sk_buff *last = list->prev;
1000 
1001 	first->prev = prev;
1002 	prev->next = first;
1003 
1004 	last->next = next;
1005 	next->prev = last;
1006 }
1007 
1008 /**
1009  *	skb_queue_splice - join two skb lists, this is designed for stacks
1010  *	@list: the new list to add
1011  *	@head: the place to add it in the first list
1012  */
1013 static inline void skb_queue_splice(const struct sk_buff_head *list,
1014 				    struct sk_buff_head *head)
1015 {
1016 	if (!skb_queue_empty(list)) {
1017 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1018 		head->qlen += list->qlen;
1019 	}
1020 }
1021 
1022 /**
1023  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1024  *	@list: the new list to add
1025  *	@head: the place to add it in the first list
1026  *
1027  *	The list at @list is reinitialised
1028  */
1029 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1030 					 struct sk_buff_head *head)
1031 {
1032 	if (!skb_queue_empty(list)) {
1033 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1034 		head->qlen += list->qlen;
1035 		__skb_queue_head_init(list);
1036 	}
1037 }
1038 
1039 /**
1040  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1041  *	@list: the new list to add
1042  *	@head: the place to add it in the first list
1043  */
1044 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1045 					 struct sk_buff_head *head)
1046 {
1047 	if (!skb_queue_empty(list)) {
1048 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1049 		head->qlen += list->qlen;
1050 	}
1051 }
1052 
1053 /**
1054  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1055  *	@list: the new list to add
1056  *	@head: the place to add it in the first list
1057  *
1058  *	Each of the lists is a queue.
1059  *	The list at @list is reinitialised
1060  */
1061 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1062 					      struct sk_buff_head *head)
1063 {
1064 	if (!skb_queue_empty(list)) {
1065 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1066 		head->qlen += list->qlen;
1067 		__skb_queue_head_init(list);
1068 	}
1069 }
1070 
1071 /**
1072  *	__skb_queue_after - queue a buffer at the list head
1073  *	@list: list to use
1074  *	@prev: place after this buffer
1075  *	@newsk: buffer to queue
1076  *
1077  *	Queue a buffer int the middle of a list. This function takes no locks
1078  *	and you must therefore hold required locks before calling it.
1079  *
1080  *	A buffer cannot be placed on two lists at the same time.
1081  */
1082 static inline void __skb_queue_after(struct sk_buff_head *list,
1083 				     struct sk_buff *prev,
1084 				     struct sk_buff *newsk)
1085 {
1086 	__skb_insert(newsk, prev, prev->next, list);
1087 }
1088 
1089 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1090 		       struct sk_buff_head *list);
1091 
1092 static inline void __skb_queue_before(struct sk_buff_head *list,
1093 				      struct sk_buff *next,
1094 				      struct sk_buff *newsk)
1095 {
1096 	__skb_insert(newsk, next->prev, next, list);
1097 }
1098 
1099 /**
1100  *	__skb_queue_head - queue a buffer at the list head
1101  *	@list: list to use
1102  *	@newsk: buffer to queue
1103  *
1104  *	Queue a buffer at the start of a list. This function takes no locks
1105  *	and you must therefore hold required locks before calling it.
1106  *
1107  *	A buffer cannot be placed on two lists at the same time.
1108  */
1109 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1110 static inline void __skb_queue_head(struct sk_buff_head *list,
1111 				    struct sk_buff *newsk)
1112 {
1113 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1114 }
1115 
1116 /**
1117  *	__skb_queue_tail - queue a buffer at the list tail
1118  *	@list: list to use
1119  *	@newsk: buffer to queue
1120  *
1121  *	Queue a buffer at the end of a list. This function takes no locks
1122  *	and you must therefore hold required locks before calling it.
1123  *
1124  *	A buffer cannot be placed on two lists at the same time.
1125  */
1126 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1127 static inline void __skb_queue_tail(struct sk_buff_head *list,
1128 				   struct sk_buff *newsk)
1129 {
1130 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1131 }
1132 
1133 /*
1134  * remove sk_buff from list. _Must_ be called atomically, and with
1135  * the list known..
1136  */
1137 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1138 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1139 {
1140 	struct sk_buff *next, *prev;
1141 
1142 	list->qlen--;
1143 	next	   = skb->next;
1144 	prev	   = skb->prev;
1145 	skb->next  = skb->prev = NULL;
1146 	next->prev = prev;
1147 	prev->next = next;
1148 }
1149 
1150 /**
1151  *	__skb_dequeue - remove from the head of the queue
1152  *	@list: list to dequeue from
1153  *
1154  *	Remove the head of the list. This function does not take any locks
1155  *	so must be used with appropriate locks held only. The head item is
1156  *	returned or %NULL if the list is empty.
1157  */
1158 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1159 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1160 {
1161 	struct sk_buff *skb = skb_peek(list);
1162 	if (skb)
1163 		__skb_unlink(skb, list);
1164 	return skb;
1165 }
1166 
1167 /**
1168  *	__skb_dequeue_tail - remove from the tail of the queue
1169  *	@list: list to dequeue from
1170  *
1171  *	Remove the tail of the list. This function does not take any locks
1172  *	so must be used with appropriate locks held only. The tail item is
1173  *	returned or %NULL if the list is empty.
1174  */
1175 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1176 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1177 {
1178 	struct sk_buff *skb = skb_peek_tail(list);
1179 	if (skb)
1180 		__skb_unlink(skb, list);
1181 	return skb;
1182 }
1183 
1184 
1185 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1186 {
1187 	return skb->data_len;
1188 }
1189 
1190 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1191 {
1192 	return skb->len - skb->data_len;
1193 }
1194 
1195 static inline int skb_pagelen(const struct sk_buff *skb)
1196 {
1197 	int i, len = 0;
1198 
1199 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1200 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1201 	return len + skb_headlen(skb);
1202 }
1203 
1204 /**
1205  * __skb_fill_page_desc - initialise a paged fragment in an skb
1206  * @skb: buffer containing fragment to be initialised
1207  * @i: paged fragment index to initialise
1208  * @page: the page to use for this fragment
1209  * @off: the offset to the data with @page
1210  * @size: the length of the data
1211  *
1212  * Initialises the @i'th fragment of @skb to point to &size bytes at
1213  * offset @off within @page.
1214  *
1215  * Does not take any additional reference on the fragment.
1216  */
1217 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1218 					struct page *page, int off, int size)
1219 {
1220 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1221 
1222 	frag->page.p		  = page;
1223 	frag->page_offset	  = off;
1224 	skb_frag_size_set(frag, size);
1225 }
1226 
1227 /**
1228  * skb_fill_page_desc - initialise a paged fragment in an skb
1229  * @skb: buffer containing fragment to be initialised
1230  * @i: paged fragment index to initialise
1231  * @page: the page to use for this fragment
1232  * @off: the offset to the data with @page
1233  * @size: the length of the data
1234  *
1235  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1236  * @skb to point to &size bytes at offset @off within @page. In
1237  * addition updates @skb such that @i is the last fragment.
1238  *
1239  * Does not take any additional reference on the fragment.
1240  */
1241 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1242 				      struct page *page, int off, int size)
1243 {
1244 	__skb_fill_page_desc(skb, i, page, off, size);
1245 	skb_shinfo(skb)->nr_frags = i + 1;
1246 }
1247 
1248 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1249 			    int off, int size, unsigned int truesize);
1250 
1251 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1252 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1253 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1254 
1255 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1256 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1257 {
1258 	return skb->head + skb->tail;
1259 }
1260 
1261 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1262 {
1263 	skb->tail = skb->data - skb->head;
1264 }
1265 
1266 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1267 {
1268 	skb_reset_tail_pointer(skb);
1269 	skb->tail += offset;
1270 }
1271 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1272 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1273 {
1274 	return skb->tail;
1275 }
1276 
1277 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1278 {
1279 	skb->tail = skb->data;
1280 }
1281 
1282 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1283 {
1284 	skb->tail = skb->data + offset;
1285 }
1286 
1287 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1288 
1289 /*
1290  *	Add data to an sk_buff
1291  */
1292 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1293 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1294 {
1295 	unsigned char *tmp = skb_tail_pointer(skb);
1296 	SKB_LINEAR_ASSERT(skb);
1297 	skb->tail += len;
1298 	skb->len  += len;
1299 	return tmp;
1300 }
1301 
1302 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1303 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1304 {
1305 	skb->data -= len;
1306 	skb->len  += len;
1307 	return skb->data;
1308 }
1309 
1310 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1311 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1312 {
1313 	skb->len -= len;
1314 	BUG_ON(skb->len < skb->data_len);
1315 	return skb->data += len;
1316 }
1317 
1318 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1319 {
1320 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1321 }
1322 
1323 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1324 
1325 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1326 {
1327 	if (len > skb_headlen(skb) &&
1328 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1329 		return NULL;
1330 	skb->len -= len;
1331 	return skb->data += len;
1332 }
1333 
1334 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1335 {
1336 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1337 }
1338 
1339 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1340 {
1341 	if (likely(len <= skb_headlen(skb)))
1342 		return 1;
1343 	if (unlikely(len > skb->len))
1344 		return 0;
1345 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1346 }
1347 
1348 /**
1349  *	skb_headroom - bytes at buffer head
1350  *	@skb: buffer to check
1351  *
1352  *	Return the number of bytes of free space at the head of an &sk_buff.
1353  */
1354 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1355 {
1356 	return skb->data - skb->head;
1357 }
1358 
1359 /**
1360  *	skb_tailroom - bytes at buffer end
1361  *	@skb: buffer to check
1362  *
1363  *	Return the number of bytes of free space at the tail of an sk_buff
1364  */
1365 static inline int skb_tailroom(const struct sk_buff *skb)
1366 {
1367 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1368 }
1369 
1370 /**
1371  *	skb_availroom - bytes at buffer end
1372  *	@skb: buffer to check
1373  *
1374  *	Return the number of bytes of free space at the tail of an sk_buff
1375  *	allocated by sk_stream_alloc()
1376  */
1377 static inline int skb_availroom(const struct sk_buff *skb)
1378 {
1379 	return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
1380 }
1381 
1382 /**
1383  *	skb_reserve - adjust headroom
1384  *	@skb: buffer to alter
1385  *	@len: bytes to move
1386  *
1387  *	Increase the headroom of an empty &sk_buff by reducing the tail
1388  *	room. This is only allowed for an empty buffer.
1389  */
1390 static inline void skb_reserve(struct sk_buff *skb, int len)
1391 {
1392 	skb->data += len;
1393 	skb->tail += len;
1394 }
1395 
1396 static inline void skb_reset_mac_len(struct sk_buff *skb)
1397 {
1398 	skb->mac_len = skb->network_header - skb->mac_header;
1399 }
1400 
1401 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1402 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1403 {
1404 	return skb->head + skb->transport_header;
1405 }
1406 
1407 static inline void skb_reset_transport_header(struct sk_buff *skb)
1408 {
1409 	skb->transport_header = skb->data - skb->head;
1410 }
1411 
1412 static inline void skb_set_transport_header(struct sk_buff *skb,
1413 					    const int offset)
1414 {
1415 	skb_reset_transport_header(skb);
1416 	skb->transport_header += offset;
1417 }
1418 
1419 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1420 {
1421 	return skb->head + skb->network_header;
1422 }
1423 
1424 static inline void skb_reset_network_header(struct sk_buff *skb)
1425 {
1426 	skb->network_header = skb->data - skb->head;
1427 }
1428 
1429 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1430 {
1431 	skb_reset_network_header(skb);
1432 	skb->network_header += offset;
1433 }
1434 
1435 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1436 {
1437 	return skb->head + skb->mac_header;
1438 }
1439 
1440 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1441 {
1442 	return skb->mac_header != ~0U;
1443 }
1444 
1445 static inline void skb_reset_mac_header(struct sk_buff *skb)
1446 {
1447 	skb->mac_header = skb->data - skb->head;
1448 }
1449 
1450 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1451 {
1452 	skb_reset_mac_header(skb);
1453 	skb->mac_header += offset;
1454 }
1455 
1456 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1457 
1458 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1459 {
1460 	return skb->transport_header;
1461 }
1462 
1463 static inline void skb_reset_transport_header(struct sk_buff *skb)
1464 {
1465 	skb->transport_header = skb->data;
1466 }
1467 
1468 static inline void skb_set_transport_header(struct sk_buff *skb,
1469 					    const int offset)
1470 {
1471 	skb->transport_header = skb->data + offset;
1472 }
1473 
1474 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1475 {
1476 	return skb->network_header;
1477 }
1478 
1479 static inline void skb_reset_network_header(struct sk_buff *skb)
1480 {
1481 	skb->network_header = skb->data;
1482 }
1483 
1484 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1485 {
1486 	skb->network_header = skb->data + offset;
1487 }
1488 
1489 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1490 {
1491 	return skb->mac_header;
1492 }
1493 
1494 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1495 {
1496 	return skb->mac_header != NULL;
1497 }
1498 
1499 static inline void skb_reset_mac_header(struct sk_buff *skb)
1500 {
1501 	skb->mac_header = skb->data;
1502 }
1503 
1504 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1505 {
1506 	skb->mac_header = skb->data + offset;
1507 }
1508 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1509 
1510 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1511 {
1512 	if (skb_mac_header_was_set(skb)) {
1513 		const unsigned char *old_mac = skb_mac_header(skb);
1514 
1515 		skb_set_mac_header(skb, -skb->mac_len);
1516 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1517 	}
1518 }
1519 
1520 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1521 {
1522 	return skb->csum_start - skb_headroom(skb);
1523 }
1524 
1525 static inline int skb_transport_offset(const struct sk_buff *skb)
1526 {
1527 	return skb_transport_header(skb) - skb->data;
1528 }
1529 
1530 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1531 {
1532 	return skb->transport_header - skb->network_header;
1533 }
1534 
1535 static inline int skb_network_offset(const struct sk_buff *skb)
1536 {
1537 	return skb_network_header(skb) - skb->data;
1538 }
1539 
1540 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1541 {
1542 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1543 }
1544 
1545 /*
1546  * CPUs often take a performance hit when accessing unaligned memory
1547  * locations. The actual performance hit varies, it can be small if the
1548  * hardware handles it or large if we have to take an exception and fix it
1549  * in software.
1550  *
1551  * Since an ethernet header is 14 bytes network drivers often end up with
1552  * the IP header at an unaligned offset. The IP header can be aligned by
1553  * shifting the start of the packet by 2 bytes. Drivers should do this
1554  * with:
1555  *
1556  * skb_reserve(skb, NET_IP_ALIGN);
1557  *
1558  * The downside to this alignment of the IP header is that the DMA is now
1559  * unaligned. On some architectures the cost of an unaligned DMA is high
1560  * and this cost outweighs the gains made by aligning the IP header.
1561  *
1562  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1563  * to be overridden.
1564  */
1565 #ifndef NET_IP_ALIGN
1566 #define NET_IP_ALIGN	2
1567 #endif
1568 
1569 /*
1570  * The networking layer reserves some headroom in skb data (via
1571  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1572  * the header has to grow. In the default case, if the header has to grow
1573  * 32 bytes or less we avoid the reallocation.
1574  *
1575  * Unfortunately this headroom changes the DMA alignment of the resulting
1576  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1577  * on some architectures. An architecture can override this value,
1578  * perhaps setting it to a cacheline in size (since that will maintain
1579  * cacheline alignment of the DMA). It must be a power of 2.
1580  *
1581  * Various parts of the networking layer expect at least 32 bytes of
1582  * headroom, you should not reduce this.
1583  *
1584  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1585  * to reduce average number of cache lines per packet.
1586  * get_rps_cpus() for example only access one 64 bytes aligned block :
1587  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1588  */
1589 #ifndef NET_SKB_PAD
1590 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1591 #endif
1592 
1593 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1594 
1595 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1596 {
1597 	if (unlikely(skb_is_nonlinear(skb))) {
1598 		WARN_ON(1);
1599 		return;
1600 	}
1601 	skb->len = len;
1602 	skb_set_tail_pointer(skb, len);
1603 }
1604 
1605 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1606 
1607 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1608 {
1609 	if (skb->data_len)
1610 		return ___pskb_trim(skb, len);
1611 	__skb_trim(skb, len);
1612 	return 0;
1613 }
1614 
1615 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1616 {
1617 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1618 }
1619 
1620 /**
1621  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1622  *	@skb: buffer to alter
1623  *	@len: new length
1624  *
1625  *	This is identical to pskb_trim except that the caller knows that
1626  *	the skb is not cloned so we should never get an error due to out-
1627  *	of-memory.
1628  */
1629 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1630 {
1631 	int err = pskb_trim(skb, len);
1632 	BUG_ON(err);
1633 }
1634 
1635 /**
1636  *	skb_orphan - orphan a buffer
1637  *	@skb: buffer to orphan
1638  *
1639  *	If a buffer currently has an owner then we call the owner's
1640  *	destructor function and make the @skb unowned. The buffer continues
1641  *	to exist but is no longer charged to its former owner.
1642  */
1643 static inline void skb_orphan(struct sk_buff *skb)
1644 {
1645 	if (skb->destructor)
1646 		skb->destructor(skb);
1647 	skb->destructor = NULL;
1648 	skb->sk		= NULL;
1649 }
1650 
1651 /**
1652  *	__skb_queue_purge - empty a list
1653  *	@list: list to empty
1654  *
1655  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1656  *	the list and one reference dropped. This function does not take the
1657  *	list lock and the caller must hold the relevant locks to use it.
1658  */
1659 extern void skb_queue_purge(struct sk_buff_head *list);
1660 static inline void __skb_queue_purge(struct sk_buff_head *list)
1661 {
1662 	struct sk_buff *skb;
1663 	while ((skb = __skb_dequeue(list)) != NULL)
1664 		kfree_skb(skb);
1665 }
1666 
1667 /**
1668  *	__dev_alloc_skb - allocate an skbuff for receiving
1669  *	@length: length to allocate
1670  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1671  *
1672  *	Allocate a new &sk_buff and assign it a usage count of one. The
1673  *	buffer has unspecified headroom built in. Users should allocate
1674  *	the headroom they think they need without accounting for the
1675  *	built in space. The built in space is used for optimisations.
1676  *
1677  *	%NULL is returned if there is no free memory.
1678  */
1679 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1680 					      gfp_t gfp_mask)
1681 {
1682 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1683 	if (likely(skb))
1684 		skb_reserve(skb, NET_SKB_PAD);
1685 	return skb;
1686 }
1687 
1688 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1689 
1690 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1691 		unsigned int length, gfp_t gfp_mask);
1692 
1693 /**
1694  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1695  *	@dev: network device to receive on
1696  *	@length: length to allocate
1697  *
1698  *	Allocate a new &sk_buff and assign it a usage count of one. The
1699  *	buffer has unspecified headroom built in. Users should allocate
1700  *	the headroom they think they need without accounting for the
1701  *	built in space. The built in space is used for optimisations.
1702  *
1703  *	%NULL is returned if there is no free memory. Although this function
1704  *	allocates memory it can be called from an interrupt.
1705  */
1706 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1707 		unsigned int length)
1708 {
1709 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1710 }
1711 
1712 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1713 		unsigned int length, gfp_t gfp)
1714 {
1715 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1716 
1717 	if (NET_IP_ALIGN && skb)
1718 		skb_reserve(skb, NET_IP_ALIGN);
1719 	return skb;
1720 }
1721 
1722 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1723 		unsigned int length)
1724 {
1725 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1726 }
1727 
1728 /**
1729  * skb_frag_page - retrieve the page refered to by a paged fragment
1730  * @frag: the paged fragment
1731  *
1732  * Returns the &struct page associated with @frag.
1733  */
1734 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1735 {
1736 	return frag->page.p;
1737 }
1738 
1739 /**
1740  * __skb_frag_ref - take an addition reference on a paged fragment.
1741  * @frag: the paged fragment
1742  *
1743  * Takes an additional reference on the paged fragment @frag.
1744  */
1745 static inline void __skb_frag_ref(skb_frag_t *frag)
1746 {
1747 	get_page(skb_frag_page(frag));
1748 }
1749 
1750 /**
1751  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1752  * @skb: the buffer
1753  * @f: the fragment offset.
1754  *
1755  * Takes an additional reference on the @f'th paged fragment of @skb.
1756  */
1757 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1758 {
1759 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1760 }
1761 
1762 /**
1763  * __skb_frag_unref - release a reference on a paged fragment.
1764  * @frag: the paged fragment
1765  *
1766  * Releases a reference on the paged fragment @frag.
1767  */
1768 static inline void __skb_frag_unref(skb_frag_t *frag)
1769 {
1770 	put_page(skb_frag_page(frag));
1771 }
1772 
1773 /**
1774  * skb_frag_unref - release a reference on a paged fragment of an skb.
1775  * @skb: the buffer
1776  * @f: the fragment offset
1777  *
1778  * Releases a reference on the @f'th paged fragment of @skb.
1779  */
1780 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1781 {
1782 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1783 }
1784 
1785 /**
1786  * skb_frag_address - gets the address of the data contained in a paged fragment
1787  * @frag: the paged fragment buffer
1788  *
1789  * Returns the address of the data within @frag. The page must already
1790  * be mapped.
1791  */
1792 static inline void *skb_frag_address(const skb_frag_t *frag)
1793 {
1794 	return page_address(skb_frag_page(frag)) + frag->page_offset;
1795 }
1796 
1797 /**
1798  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1799  * @frag: the paged fragment buffer
1800  *
1801  * Returns the address of the data within @frag. Checks that the page
1802  * is mapped and returns %NULL otherwise.
1803  */
1804 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1805 {
1806 	void *ptr = page_address(skb_frag_page(frag));
1807 	if (unlikely(!ptr))
1808 		return NULL;
1809 
1810 	return ptr + frag->page_offset;
1811 }
1812 
1813 /**
1814  * __skb_frag_set_page - sets the page contained in a paged fragment
1815  * @frag: the paged fragment
1816  * @page: the page to set
1817  *
1818  * Sets the fragment @frag to contain @page.
1819  */
1820 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1821 {
1822 	frag->page.p = page;
1823 }
1824 
1825 /**
1826  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1827  * @skb: the buffer
1828  * @f: the fragment offset
1829  * @page: the page to set
1830  *
1831  * Sets the @f'th fragment of @skb to contain @page.
1832  */
1833 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1834 				     struct page *page)
1835 {
1836 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1837 }
1838 
1839 /**
1840  * skb_frag_dma_map - maps a paged fragment via the DMA API
1841  * @dev: the device to map the fragment to
1842  * @frag: the paged fragment to map
1843  * @offset: the offset within the fragment (starting at the
1844  *          fragment's own offset)
1845  * @size: the number of bytes to map
1846  * @dir: the direction of the mapping (%PCI_DMA_*)
1847  *
1848  * Maps the page associated with @frag to @device.
1849  */
1850 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1851 					  const skb_frag_t *frag,
1852 					  size_t offset, size_t size,
1853 					  enum dma_data_direction dir)
1854 {
1855 	return dma_map_page(dev, skb_frag_page(frag),
1856 			    frag->page_offset + offset, size, dir);
1857 }
1858 
1859 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1860 					gfp_t gfp_mask)
1861 {
1862 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1863 }
1864 
1865 /**
1866  *	skb_clone_writable - is the header of a clone writable
1867  *	@skb: buffer to check
1868  *	@len: length up to which to write
1869  *
1870  *	Returns true if modifying the header part of the cloned buffer
1871  *	does not requires the data to be copied.
1872  */
1873 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1874 {
1875 	return !skb_header_cloned(skb) &&
1876 	       skb_headroom(skb) + len <= skb->hdr_len;
1877 }
1878 
1879 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1880 			    int cloned)
1881 {
1882 	int delta = 0;
1883 
1884 	if (headroom < NET_SKB_PAD)
1885 		headroom = NET_SKB_PAD;
1886 	if (headroom > skb_headroom(skb))
1887 		delta = headroom - skb_headroom(skb);
1888 
1889 	if (delta || cloned)
1890 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1891 					GFP_ATOMIC);
1892 	return 0;
1893 }
1894 
1895 /**
1896  *	skb_cow - copy header of skb when it is required
1897  *	@skb: buffer to cow
1898  *	@headroom: needed headroom
1899  *
1900  *	If the skb passed lacks sufficient headroom or its data part
1901  *	is shared, data is reallocated. If reallocation fails, an error
1902  *	is returned and original skb is not changed.
1903  *
1904  *	The result is skb with writable area skb->head...skb->tail
1905  *	and at least @headroom of space at head.
1906  */
1907 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1908 {
1909 	return __skb_cow(skb, headroom, skb_cloned(skb));
1910 }
1911 
1912 /**
1913  *	skb_cow_head - skb_cow but only making the head writable
1914  *	@skb: buffer to cow
1915  *	@headroom: needed headroom
1916  *
1917  *	This function is identical to skb_cow except that we replace the
1918  *	skb_cloned check by skb_header_cloned.  It should be used when
1919  *	you only need to push on some header and do not need to modify
1920  *	the data.
1921  */
1922 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1923 {
1924 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1925 }
1926 
1927 /**
1928  *	skb_padto	- pad an skbuff up to a minimal size
1929  *	@skb: buffer to pad
1930  *	@len: minimal length
1931  *
1932  *	Pads up a buffer to ensure the trailing bytes exist and are
1933  *	blanked. If the buffer already contains sufficient data it
1934  *	is untouched. Otherwise it is extended. Returns zero on
1935  *	success. The skb is freed on error.
1936  */
1937 
1938 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1939 {
1940 	unsigned int size = skb->len;
1941 	if (likely(size >= len))
1942 		return 0;
1943 	return skb_pad(skb, len - size);
1944 }
1945 
1946 static inline int skb_add_data(struct sk_buff *skb,
1947 			       char __user *from, int copy)
1948 {
1949 	const int off = skb->len;
1950 
1951 	if (skb->ip_summed == CHECKSUM_NONE) {
1952 		int err = 0;
1953 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1954 							    copy, 0, &err);
1955 		if (!err) {
1956 			skb->csum = csum_block_add(skb->csum, csum, off);
1957 			return 0;
1958 		}
1959 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1960 		return 0;
1961 
1962 	__skb_trim(skb, off);
1963 	return -EFAULT;
1964 }
1965 
1966 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1967 				   const struct page *page, int off)
1968 {
1969 	if (i) {
1970 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1971 
1972 		return page == skb_frag_page(frag) &&
1973 		       off == frag->page_offset + skb_frag_size(frag);
1974 	}
1975 	return 0;
1976 }
1977 
1978 static inline int __skb_linearize(struct sk_buff *skb)
1979 {
1980 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1981 }
1982 
1983 /**
1984  *	skb_linearize - convert paged skb to linear one
1985  *	@skb: buffer to linarize
1986  *
1987  *	If there is no free memory -ENOMEM is returned, otherwise zero
1988  *	is returned and the old skb data released.
1989  */
1990 static inline int skb_linearize(struct sk_buff *skb)
1991 {
1992 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1993 }
1994 
1995 /**
1996  *	skb_linearize_cow - make sure skb is linear and writable
1997  *	@skb: buffer to process
1998  *
1999  *	If there is no free memory -ENOMEM is returned, otherwise zero
2000  *	is returned and the old skb data released.
2001  */
2002 static inline int skb_linearize_cow(struct sk_buff *skb)
2003 {
2004 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2005 	       __skb_linearize(skb) : 0;
2006 }
2007 
2008 /**
2009  *	skb_postpull_rcsum - update checksum for received skb after pull
2010  *	@skb: buffer to update
2011  *	@start: start of data before pull
2012  *	@len: length of data pulled
2013  *
2014  *	After doing a pull on a received packet, you need to call this to
2015  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2016  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2017  */
2018 
2019 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2020 				      const void *start, unsigned int len)
2021 {
2022 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2023 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2024 }
2025 
2026 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2027 
2028 /**
2029  *	pskb_trim_rcsum - trim received skb and update checksum
2030  *	@skb: buffer to trim
2031  *	@len: new length
2032  *
2033  *	This is exactly the same as pskb_trim except that it ensures the
2034  *	checksum of received packets are still valid after the operation.
2035  */
2036 
2037 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2038 {
2039 	if (likely(len >= skb->len))
2040 		return 0;
2041 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2042 		skb->ip_summed = CHECKSUM_NONE;
2043 	return __pskb_trim(skb, len);
2044 }
2045 
2046 #define skb_queue_walk(queue, skb) \
2047 		for (skb = (queue)->next;					\
2048 		     skb != (struct sk_buff *)(queue);				\
2049 		     skb = skb->next)
2050 
2051 #define skb_queue_walk_safe(queue, skb, tmp)					\
2052 		for (skb = (queue)->next, tmp = skb->next;			\
2053 		     skb != (struct sk_buff *)(queue);				\
2054 		     skb = tmp, tmp = skb->next)
2055 
2056 #define skb_queue_walk_from(queue, skb)						\
2057 		for (; skb != (struct sk_buff *)(queue);			\
2058 		     skb = skb->next)
2059 
2060 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2061 		for (tmp = skb->next;						\
2062 		     skb != (struct sk_buff *)(queue);				\
2063 		     skb = tmp, tmp = skb->next)
2064 
2065 #define skb_queue_reverse_walk(queue, skb) \
2066 		for (skb = (queue)->prev;					\
2067 		     skb != (struct sk_buff *)(queue);				\
2068 		     skb = skb->prev)
2069 
2070 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2071 		for (skb = (queue)->prev, tmp = skb->prev;			\
2072 		     skb != (struct sk_buff *)(queue);				\
2073 		     skb = tmp, tmp = skb->prev)
2074 
2075 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2076 		for (tmp = skb->prev;						\
2077 		     skb != (struct sk_buff *)(queue);				\
2078 		     skb = tmp, tmp = skb->prev)
2079 
2080 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2081 {
2082 	return skb_shinfo(skb)->frag_list != NULL;
2083 }
2084 
2085 static inline void skb_frag_list_init(struct sk_buff *skb)
2086 {
2087 	skb_shinfo(skb)->frag_list = NULL;
2088 }
2089 
2090 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2091 {
2092 	frag->next = skb_shinfo(skb)->frag_list;
2093 	skb_shinfo(skb)->frag_list = frag;
2094 }
2095 
2096 #define skb_walk_frags(skb, iter)	\
2097 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2098 
2099 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2100 					   int *peeked, int *off, int *err);
2101 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2102 					 int noblock, int *err);
2103 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2104 				     struct poll_table_struct *wait);
2105 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
2106 					       int offset, struct iovec *to,
2107 					       int size);
2108 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2109 							int hlen,
2110 							struct iovec *iov);
2111 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
2112 						    int offset,
2113 						    const struct iovec *from,
2114 						    int from_offset,
2115 						    int len);
2116 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
2117 						     int offset,
2118 						     const struct iovec *to,
2119 						     int to_offset,
2120 						     int size);
2121 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2122 extern void	       skb_free_datagram_locked(struct sock *sk,
2123 						struct sk_buff *skb);
2124 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2125 					 unsigned int flags);
2126 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
2127 				    int len, __wsum csum);
2128 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
2129 				     void *to, int len);
2130 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
2131 				      const void *from, int len);
2132 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
2133 					      int offset, u8 *to, int len,
2134 					      __wsum csum);
2135 extern int             skb_splice_bits(struct sk_buff *skb,
2136 						unsigned int offset,
2137 						struct pipe_inode_info *pipe,
2138 						unsigned int len,
2139 						unsigned int flags);
2140 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2141 extern void	       skb_split(struct sk_buff *skb,
2142 				 struct sk_buff *skb1, const u32 len);
2143 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2144 				 int shiftlen);
2145 
2146 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2147 				   netdev_features_t features);
2148 
2149 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2150 				       int len, void *buffer)
2151 {
2152 	int hlen = skb_headlen(skb);
2153 
2154 	if (hlen - offset >= len)
2155 		return skb->data + offset;
2156 
2157 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
2158 		return NULL;
2159 
2160 	return buffer;
2161 }
2162 
2163 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2164 					     void *to,
2165 					     const unsigned int len)
2166 {
2167 	memcpy(to, skb->data, len);
2168 }
2169 
2170 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2171 						    const int offset, void *to,
2172 						    const unsigned int len)
2173 {
2174 	memcpy(to, skb->data + offset, len);
2175 }
2176 
2177 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2178 					   const void *from,
2179 					   const unsigned int len)
2180 {
2181 	memcpy(skb->data, from, len);
2182 }
2183 
2184 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2185 						  const int offset,
2186 						  const void *from,
2187 						  const unsigned int len)
2188 {
2189 	memcpy(skb->data + offset, from, len);
2190 }
2191 
2192 extern void skb_init(void);
2193 
2194 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2195 {
2196 	return skb->tstamp;
2197 }
2198 
2199 /**
2200  *	skb_get_timestamp - get timestamp from a skb
2201  *	@skb: skb to get stamp from
2202  *	@stamp: pointer to struct timeval to store stamp in
2203  *
2204  *	Timestamps are stored in the skb as offsets to a base timestamp.
2205  *	This function converts the offset back to a struct timeval and stores
2206  *	it in stamp.
2207  */
2208 static inline void skb_get_timestamp(const struct sk_buff *skb,
2209 				     struct timeval *stamp)
2210 {
2211 	*stamp = ktime_to_timeval(skb->tstamp);
2212 }
2213 
2214 static inline void skb_get_timestampns(const struct sk_buff *skb,
2215 				       struct timespec *stamp)
2216 {
2217 	*stamp = ktime_to_timespec(skb->tstamp);
2218 }
2219 
2220 static inline void __net_timestamp(struct sk_buff *skb)
2221 {
2222 	skb->tstamp = ktime_get_real();
2223 }
2224 
2225 static inline ktime_t net_timedelta(ktime_t t)
2226 {
2227 	return ktime_sub(ktime_get_real(), t);
2228 }
2229 
2230 static inline ktime_t net_invalid_timestamp(void)
2231 {
2232 	return ktime_set(0, 0);
2233 }
2234 
2235 extern void skb_timestamping_init(void);
2236 
2237 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2238 
2239 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2240 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2241 
2242 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2243 
2244 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2245 {
2246 }
2247 
2248 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2249 {
2250 	return false;
2251 }
2252 
2253 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2254 
2255 /**
2256  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2257  *
2258  * PHY drivers may accept clones of transmitted packets for
2259  * timestamping via their phy_driver.txtstamp method. These drivers
2260  * must call this function to return the skb back to the stack, with
2261  * or without a timestamp.
2262  *
2263  * @skb: clone of the the original outgoing packet
2264  * @hwtstamps: hardware time stamps, may be NULL if not available
2265  *
2266  */
2267 void skb_complete_tx_timestamp(struct sk_buff *skb,
2268 			       struct skb_shared_hwtstamps *hwtstamps);
2269 
2270 /**
2271  * skb_tstamp_tx - queue clone of skb with send time stamps
2272  * @orig_skb:	the original outgoing packet
2273  * @hwtstamps:	hardware time stamps, may be NULL if not available
2274  *
2275  * If the skb has a socket associated, then this function clones the
2276  * skb (thus sharing the actual data and optional structures), stores
2277  * the optional hardware time stamping information (if non NULL) or
2278  * generates a software time stamp (otherwise), then queues the clone
2279  * to the error queue of the socket.  Errors are silently ignored.
2280  */
2281 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2282 			struct skb_shared_hwtstamps *hwtstamps);
2283 
2284 static inline void sw_tx_timestamp(struct sk_buff *skb)
2285 {
2286 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2287 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2288 		skb_tstamp_tx(skb, NULL);
2289 }
2290 
2291 /**
2292  * skb_tx_timestamp() - Driver hook for transmit timestamping
2293  *
2294  * Ethernet MAC Drivers should call this function in their hard_xmit()
2295  * function immediately before giving the sk_buff to the MAC hardware.
2296  *
2297  * @skb: A socket buffer.
2298  */
2299 static inline void skb_tx_timestamp(struct sk_buff *skb)
2300 {
2301 	skb_clone_tx_timestamp(skb);
2302 	sw_tx_timestamp(skb);
2303 }
2304 
2305 /**
2306  * skb_complete_wifi_ack - deliver skb with wifi status
2307  *
2308  * @skb: the original outgoing packet
2309  * @acked: ack status
2310  *
2311  */
2312 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2313 
2314 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2315 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2316 
2317 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2318 {
2319 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2320 }
2321 
2322 /**
2323  *	skb_checksum_complete - Calculate checksum of an entire packet
2324  *	@skb: packet to process
2325  *
2326  *	This function calculates the checksum over the entire packet plus
2327  *	the value of skb->csum.  The latter can be used to supply the
2328  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2329  *	checksum.
2330  *
2331  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2332  *	this function can be used to verify that checksum on received
2333  *	packets.  In that case the function should return zero if the
2334  *	checksum is correct.  In particular, this function will return zero
2335  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2336  *	hardware has already verified the correctness of the checksum.
2337  */
2338 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2339 {
2340 	return skb_csum_unnecessary(skb) ?
2341 	       0 : __skb_checksum_complete(skb);
2342 }
2343 
2344 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2345 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2346 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2347 {
2348 	if (nfct && atomic_dec_and_test(&nfct->use))
2349 		nf_conntrack_destroy(nfct);
2350 }
2351 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2352 {
2353 	if (nfct)
2354 		atomic_inc(&nfct->use);
2355 }
2356 #endif
2357 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2358 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2359 {
2360 	if (skb)
2361 		atomic_inc(&skb->users);
2362 }
2363 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2364 {
2365 	if (skb)
2366 		kfree_skb(skb);
2367 }
2368 #endif
2369 #ifdef CONFIG_BRIDGE_NETFILTER
2370 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2371 {
2372 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2373 		kfree(nf_bridge);
2374 }
2375 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2376 {
2377 	if (nf_bridge)
2378 		atomic_inc(&nf_bridge->use);
2379 }
2380 #endif /* CONFIG_BRIDGE_NETFILTER */
2381 static inline void nf_reset(struct sk_buff *skb)
2382 {
2383 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2384 	nf_conntrack_put(skb->nfct);
2385 	skb->nfct = NULL;
2386 #endif
2387 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2388 	nf_conntrack_put_reasm(skb->nfct_reasm);
2389 	skb->nfct_reasm = NULL;
2390 #endif
2391 #ifdef CONFIG_BRIDGE_NETFILTER
2392 	nf_bridge_put(skb->nf_bridge);
2393 	skb->nf_bridge = NULL;
2394 #endif
2395 }
2396 
2397 /* Note: This doesn't put any conntrack and bridge info in dst. */
2398 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2399 {
2400 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2401 	dst->nfct = src->nfct;
2402 	nf_conntrack_get(src->nfct);
2403 	dst->nfctinfo = src->nfctinfo;
2404 #endif
2405 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2406 	dst->nfct_reasm = src->nfct_reasm;
2407 	nf_conntrack_get_reasm(src->nfct_reasm);
2408 #endif
2409 #ifdef CONFIG_BRIDGE_NETFILTER
2410 	dst->nf_bridge  = src->nf_bridge;
2411 	nf_bridge_get(src->nf_bridge);
2412 #endif
2413 }
2414 
2415 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2416 {
2417 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2418 	nf_conntrack_put(dst->nfct);
2419 #endif
2420 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2421 	nf_conntrack_put_reasm(dst->nfct_reasm);
2422 #endif
2423 #ifdef CONFIG_BRIDGE_NETFILTER
2424 	nf_bridge_put(dst->nf_bridge);
2425 #endif
2426 	__nf_copy(dst, src);
2427 }
2428 
2429 #ifdef CONFIG_NETWORK_SECMARK
2430 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2431 {
2432 	to->secmark = from->secmark;
2433 }
2434 
2435 static inline void skb_init_secmark(struct sk_buff *skb)
2436 {
2437 	skb->secmark = 0;
2438 }
2439 #else
2440 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2441 { }
2442 
2443 static inline void skb_init_secmark(struct sk_buff *skb)
2444 { }
2445 #endif
2446 
2447 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2448 {
2449 	skb->queue_mapping = queue_mapping;
2450 }
2451 
2452 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2453 {
2454 	return skb->queue_mapping;
2455 }
2456 
2457 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2458 {
2459 	to->queue_mapping = from->queue_mapping;
2460 }
2461 
2462 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2463 {
2464 	skb->queue_mapping = rx_queue + 1;
2465 }
2466 
2467 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2468 {
2469 	return skb->queue_mapping - 1;
2470 }
2471 
2472 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2473 {
2474 	return skb->queue_mapping != 0;
2475 }
2476 
2477 extern u16 __skb_tx_hash(const struct net_device *dev,
2478 			 const struct sk_buff *skb,
2479 			 unsigned int num_tx_queues);
2480 
2481 #ifdef CONFIG_XFRM
2482 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2483 {
2484 	return skb->sp;
2485 }
2486 #else
2487 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2488 {
2489 	return NULL;
2490 }
2491 #endif
2492 
2493 static inline bool skb_is_gso(const struct sk_buff *skb)
2494 {
2495 	return skb_shinfo(skb)->gso_size;
2496 }
2497 
2498 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2499 {
2500 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2501 }
2502 
2503 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2504 
2505 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2506 {
2507 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2508 	 * wanted then gso_type will be set. */
2509 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2510 
2511 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2512 	    unlikely(shinfo->gso_type == 0)) {
2513 		__skb_warn_lro_forwarding(skb);
2514 		return true;
2515 	}
2516 	return false;
2517 }
2518 
2519 static inline void skb_forward_csum(struct sk_buff *skb)
2520 {
2521 	/* Unfortunately we don't support this one.  Any brave souls? */
2522 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2523 		skb->ip_summed = CHECKSUM_NONE;
2524 }
2525 
2526 /**
2527  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2528  * @skb: skb to check
2529  *
2530  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2531  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2532  * use this helper, to document places where we make this assertion.
2533  */
2534 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2535 {
2536 #ifdef DEBUG
2537 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2538 #endif
2539 }
2540 
2541 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2542 
2543 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2544 {
2545 	if (irqs_disabled())
2546 		return false;
2547 
2548 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2549 		return false;
2550 
2551 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2552 		return false;
2553 
2554 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2555 	if (skb_end_pointer(skb) - skb->head < skb_size)
2556 		return false;
2557 
2558 	if (skb_shared(skb) || skb_cloned(skb))
2559 		return false;
2560 
2561 	return true;
2562 }
2563 #endif	/* __KERNEL__ */
2564 #endif	/* _LINUX_SKBUFF_H */
2565