1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 24 #include <linux/atomic.h> 25 #include <asm/types.h> 26 #include <linux/spinlock.h> 27 #include <linux/net.h> 28 #include <linux/textsearch.h> 29 #include <net/checksum.h> 30 #include <linux/rcupdate.h> 31 #include <linux/dmaengine.h> 32 #include <linux/hrtimer.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/netdev_features.h> 35 36 /* Don't change this without changing skb_csum_unnecessary! */ 37 #define CHECKSUM_NONE 0 38 #define CHECKSUM_UNNECESSARY 1 39 #define CHECKSUM_COMPLETE 2 40 #define CHECKSUM_PARTIAL 3 41 42 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 43 ~(SMP_CACHE_BYTES - 1)) 44 #define SKB_WITH_OVERHEAD(X) \ 45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 46 #define SKB_MAX_ORDER(X, ORDER) \ 47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 50 51 /* return minimum truesize of one skb containing X bytes of data */ 52 #define SKB_TRUESIZE(X) ((X) + \ 53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 55 56 /* A. Checksumming of received packets by device. 57 * 58 * NONE: device failed to checksum this packet. 59 * skb->csum is undefined. 60 * 61 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 62 * skb->csum is undefined. 63 * It is bad option, but, unfortunately, many of vendors do this. 64 * Apparently with secret goal to sell you new device, when you 65 * will add new protocol to your host. F.e. IPv6. 8) 66 * 67 * COMPLETE: the most generic way. Device supplied checksum of _all_ 68 * the packet as seen by netif_rx in skb->csum. 69 * NOTE: Even if device supports only some protocols, but 70 * is able to produce some skb->csum, it MUST use COMPLETE, 71 * not UNNECESSARY. 72 * 73 * PARTIAL: identical to the case for output below. This may occur 74 * on a packet received directly from another Linux OS, e.g., 75 * a virtualised Linux kernel on the same host. The packet can 76 * be treated in the same way as UNNECESSARY except that on 77 * output (i.e., forwarding) the checksum must be filled in 78 * by the OS or the hardware. 79 * 80 * B. Checksumming on output. 81 * 82 * NONE: skb is checksummed by protocol or csum is not required. 83 * 84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 85 * from skb->csum_start to the end and to record the checksum 86 * at skb->csum_start + skb->csum_offset. 87 * 88 * Device must show its capabilities in dev->features, set 89 * at device setup time. 90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 91 * everything. 92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 93 * TCP/UDP over IPv4. Sigh. Vendors like this 94 * way by an unknown reason. Though, see comment above 95 * about CHECKSUM_UNNECESSARY. 8) 96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 97 * 98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers 99 * that do not want net to perform the checksum calculation should use 100 * this flag in their outgoing skbs. 101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC 102 * offload. Correspondingly, the FCoE protocol driver 103 * stack should use CHECKSUM_UNNECESSARY. 104 * 105 * Any questions? No questions, good. --ANK 106 */ 107 108 struct net_device; 109 struct scatterlist; 110 struct pipe_inode_info; 111 112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 113 struct nf_conntrack { 114 atomic_t use; 115 }; 116 #endif 117 118 #ifdef CONFIG_BRIDGE_NETFILTER 119 struct nf_bridge_info { 120 atomic_t use; 121 struct net_device *physindev; 122 struct net_device *physoutdev; 123 unsigned int mask; 124 unsigned long data[32 / sizeof(unsigned long)]; 125 }; 126 #endif 127 128 struct sk_buff_head { 129 /* These two members must be first. */ 130 struct sk_buff *next; 131 struct sk_buff *prev; 132 133 __u32 qlen; 134 spinlock_t lock; 135 }; 136 137 struct sk_buff; 138 139 /* To allow 64K frame to be packed as single skb without frag_list we 140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 141 * buffers which do not start on a page boundary. 142 * 143 * Since GRO uses frags we allocate at least 16 regardless of page 144 * size. 145 */ 146 #if (65536/PAGE_SIZE + 1) < 16 147 #define MAX_SKB_FRAGS 16UL 148 #else 149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 150 #endif 151 152 typedef struct skb_frag_struct skb_frag_t; 153 154 struct skb_frag_struct { 155 struct { 156 struct page *p; 157 } page; 158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 159 __u32 page_offset; 160 __u32 size; 161 #else 162 __u16 page_offset; 163 __u16 size; 164 #endif 165 }; 166 167 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 168 { 169 return frag->size; 170 } 171 172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 173 { 174 frag->size = size; 175 } 176 177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 178 { 179 frag->size += delta; 180 } 181 182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 183 { 184 frag->size -= delta; 185 } 186 187 #define HAVE_HW_TIME_STAMP 188 189 /** 190 * struct skb_shared_hwtstamps - hardware time stamps 191 * @hwtstamp: hardware time stamp transformed into duration 192 * since arbitrary point in time 193 * @syststamp: hwtstamp transformed to system time base 194 * 195 * Software time stamps generated by ktime_get_real() are stored in 196 * skb->tstamp. The relation between the different kinds of time 197 * stamps is as follows: 198 * 199 * syststamp and tstamp can be compared against each other in 200 * arbitrary combinations. The accuracy of a 201 * syststamp/tstamp/"syststamp from other device" comparison is 202 * limited by the accuracy of the transformation into system time 203 * base. This depends on the device driver and its underlying 204 * hardware. 205 * 206 * hwtstamps can only be compared against other hwtstamps from 207 * the same device. 208 * 209 * This structure is attached to packets as part of the 210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 211 */ 212 struct skb_shared_hwtstamps { 213 ktime_t hwtstamp; 214 ktime_t syststamp; 215 }; 216 217 /* Definitions for tx_flags in struct skb_shared_info */ 218 enum { 219 /* generate hardware time stamp */ 220 SKBTX_HW_TSTAMP = 1 << 0, 221 222 /* generate software time stamp */ 223 SKBTX_SW_TSTAMP = 1 << 1, 224 225 /* device driver is going to provide hardware time stamp */ 226 SKBTX_IN_PROGRESS = 1 << 2, 227 228 /* ensure the originating sk reference is available on driver level */ 229 SKBTX_DRV_NEEDS_SK_REF = 1 << 3, 230 231 /* device driver supports TX zero-copy buffers */ 232 SKBTX_DEV_ZEROCOPY = 1 << 4, 233 234 /* generate wifi status information (where possible) */ 235 SKBTX_WIFI_STATUS = 1 << 5, 236 }; 237 238 /* 239 * The callback notifies userspace to release buffers when skb DMA is done in 240 * lower device, the skb last reference should be 0 when calling this. 241 * The ctx field is used to track device context. 242 * The desc field is used to track userspace buffer index. 243 */ 244 struct ubuf_info { 245 void (*callback)(struct ubuf_info *); 246 void *ctx; 247 unsigned long desc; 248 }; 249 250 /* This data is invariant across clones and lives at 251 * the end of the header data, ie. at skb->end. 252 */ 253 struct skb_shared_info { 254 unsigned char nr_frags; 255 __u8 tx_flags; 256 unsigned short gso_size; 257 /* Warning: this field is not always filled in (UFO)! */ 258 unsigned short gso_segs; 259 unsigned short gso_type; 260 struct sk_buff *frag_list; 261 struct skb_shared_hwtstamps hwtstamps; 262 __be32 ip6_frag_id; 263 264 /* 265 * Warning : all fields before dataref are cleared in __alloc_skb() 266 */ 267 atomic_t dataref; 268 269 /* Intermediate layers must ensure that destructor_arg 270 * remains valid until skb destructor */ 271 void * destructor_arg; 272 273 /* must be last field, see pskb_expand_head() */ 274 skb_frag_t frags[MAX_SKB_FRAGS]; 275 }; 276 277 /* We divide dataref into two halves. The higher 16 bits hold references 278 * to the payload part of skb->data. The lower 16 bits hold references to 279 * the entire skb->data. A clone of a headerless skb holds the length of 280 * the header in skb->hdr_len. 281 * 282 * All users must obey the rule that the skb->data reference count must be 283 * greater than or equal to the payload reference count. 284 * 285 * Holding a reference to the payload part means that the user does not 286 * care about modifications to the header part of skb->data. 287 */ 288 #define SKB_DATAREF_SHIFT 16 289 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 290 291 292 enum { 293 SKB_FCLONE_UNAVAILABLE, 294 SKB_FCLONE_ORIG, 295 SKB_FCLONE_CLONE, 296 }; 297 298 enum { 299 SKB_GSO_TCPV4 = 1 << 0, 300 SKB_GSO_UDP = 1 << 1, 301 302 /* This indicates the skb is from an untrusted source. */ 303 SKB_GSO_DODGY = 1 << 2, 304 305 /* This indicates the tcp segment has CWR set. */ 306 SKB_GSO_TCP_ECN = 1 << 3, 307 308 SKB_GSO_TCPV6 = 1 << 4, 309 310 SKB_GSO_FCOE = 1 << 5, 311 }; 312 313 #if BITS_PER_LONG > 32 314 #define NET_SKBUFF_DATA_USES_OFFSET 1 315 #endif 316 317 #ifdef NET_SKBUFF_DATA_USES_OFFSET 318 typedef unsigned int sk_buff_data_t; 319 #else 320 typedef unsigned char *sk_buff_data_t; 321 #endif 322 323 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 324 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 325 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1 326 #endif 327 328 /** 329 * struct sk_buff - socket buffer 330 * @next: Next buffer in list 331 * @prev: Previous buffer in list 332 * @tstamp: Time we arrived 333 * @sk: Socket we are owned by 334 * @dev: Device we arrived on/are leaving by 335 * @cb: Control buffer. Free for use by every layer. Put private vars here 336 * @_skb_refdst: destination entry (with norefcount bit) 337 * @sp: the security path, used for xfrm 338 * @len: Length of actual data 339 * @data_len: Data length 340 * @mac_len: Length of link layer header 341 * @hdr_len: writable header length of cloned skb 342 * @csum: Checksum (must include start/offset pair) 343 * @csum_start: Offset from skb->head where checksumming should start 344 * @csum_offset: Offset from csum_start where checksum should be stored 345 * @priority: Packet queueing priority 346 * @local_df: allow local fragmentation 347 * @cloned: Head may be cloned (check refcnt to be sure) 348 * @ip_summed: Driver fed us an IP checksum 349 * @nohdr: Payload reference only, must not modify header 350 * @nfctinfo: Relationship of this skb to the connection 351 * @pkt_type: Packet class 352 * @fclone: skbuff clone status 353 * @ipvs_property: skbuff is owned by ipvs 354 * @peeked: this packet has been seen already, so stats have been 355 * done for it, don't do them again 356 * @nf_trace: netfilter packet trace flag 357 * @protocol: Packet protocol from driver 358 * @destructor: Destruct function 359 * @nfct: Associated connection, if any 360 * @nfct_reasm: netfilter conntrack re-assembly pointer 361 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 362 * @skb_iif: ifindex of device we arrived on 363 * @tc_index: Traffic control index 364 * @tc_verd: traffic control verdict 365 * @rxhash: the packet hash computed on receive 366 * @queue_mapping: Queue mapping for multiqueue devices 367 * @ndisc_nodetype: router type (from link layer) 368 * @ooo_okay: allow the mapping of a socket to a queue to be changed 369 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport 370 * ports. 371 * @wifi_acked_valid: wifi_acked was set 372 * @wifi_acked: whether frame was acked on wifi or not 373 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 374 * @dma_cookie: a cookie to one of several possible DMA operations 375 * done by skb DMA functions 376 * @secmark: security marking 377 * @mark: Generic packet mark 378 * @dropcount: total number of sk_receive_queue overflows 379 * @vlan_tci: vlan tag control information 380 * @transport_header: Transport layer header 381 * @network_header: Network layer header 382 * @mac_header: Link layer header 383 * @tail: Tail pointer 384 * @end: End pointer 385 * @head: Head of buffer 386 * @data: Data head pointer 387 * @truesize: Buffer size 388 * @users: User count - see {datagram,tcp}.c 389 */ 390 391 struct sk_buff { 392 /* These two members must be first. */ 393 struct sk_buff *next; 394 struct sk_buff *prev; 395 396 ktime_t tstamp; 397 398 struct sock *sk; 399 struct net_device *dev; 400 401 /* 402 * This is the control buffer. It is free to use for every 403 * layer. Please put your private variables there. If you 404 * want to keep them across layers you have to do a skb_clone() 405 * first. This is owned by whoever has the skb queued ATM. 406 */ 407 char cb[48] __aligned(8); 408 409 unsigned long _skb_refdst; 410 #ifdef CONFIG_XFRM 411 struct sec_path *sp; 412 #endif 413 unsigned int len, 414 data_len; 415 __u16 mac_len, 416 hdr_len; 417 union { 418 __wsum csum; 419 struct { 420 __u16 csum_start; 421 __u16 csum_offset; 422 }; 423 }; 424 __u32 priority; 425 kmemcheck_bitfield_begin(flags1); 426 __u8 local_df:1, 427 cloned:1, 428 ip_summed:2, 429 nohdr:1, 430 nfctinfo:3; 431 __u8 pkt_type:3, 432 fclone:2, 433 ipvs_property:1, 434 peeked:1, 435 nf_trace:1; 436 kmemcheck_bitfield_end(flags1); 437 __be16 protocol; 438 439 void (*destructor)(struct sk_buff *skb); 440 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 441 struct nf_conntrack *nfct; 442 #endif 443 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 444 struct sk_buff *nfct_reasm; 445 #endif 446 #ifdef CONFIG_BRIDGE_NETFILTER 447 struct nf_bridge_info *nf_bridge; 448 #endif 449 450 int skb_iif; 451 452 __u32 rxhash; 453 454 __u16 vlan_tci; 455 456 #ifdef CONFIG_NET_SCHED 457 __u16 tc_index; /* traffic control index */ 458 #ifdef CONFIG_NET_CLS_ACT 459 __u16 tc_verd; /* traffic control verdict */ 460 #endif 461 #endif 462 463 __u16 queue_mapping; 464 kmemcheck_bitfield_begin(flags2); 465 #ifdef CONFIG_IPV6_NDISC_NODETYPE 466 __u8 ndisc_nodetype:2; 467 #endif 468 __u8 ooo_okay:1; 469 __u8 l4_rxhash:1; 470 __u8 wifi_acked_valid:1; 471 __u8 wifi_acked:1; 472 __u8 no_fcs:1; 473 /* 9/11 bit hole (depending on ndisc_nodetype presence) */ 474 kmemcheck_bitfield_end(flags2); 475 476 #ifdef CONFIG_NET_DMA 477 dma_cookie_t dma_cookie; 478 #endif 479 #ifdef CONFIG_NETWORK_SECMARK 480 __u32 secmark; 481 #endif 482 union { 483 __u32 mark; 484 __u32 dropcount; 485 __u32 avail_size; 486 }; 487 488 sk_buff_data_t transport_header; 489 sk_buff_data_t network_header; 490 sk_buff_data_t mac_header; 491 /* These elements must be at the end, see alloc_skb() for details. */ 492 sk_buff_data_t tail; 493 sk_buff_data_t end; 494 unsigned char *head, 495 *data; 496 unsigned int truesize; 497 atomic_t users; 498 }; 499 500 #ifdef __KERNEL__ 501 /* 502 * Handling routines are only of interest to the kernel 503 */ 504 #include <linux/slab.h> 505 506 507 /* 508 * skb might have a dst pointer attached, refcounted or not. 509 * _skb_refdst low order bit is set if refcount was _not_ taken 510 */ 511 #define SKB_DST_NOREF 1UL 512 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 513 514 /** 515 * skb_dst - returns skb dst_entry 516 * @skb: buffer 517 * 518 * Returns skb dst_entry, regardless of reference taken or not. 519 */ 520 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 521 { 522 /* If refdst was not refcounted, check we still are in a 523 * rcu_read_lock section 524 */ 525 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 526 !rcu_read_lock_held() && 527 !rcu_read_lock_bh_held()); 528 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 529 } 530 531 /** 532 * skb_dst_set - sets skb dst 533 * @skb: buffer 534 * @dst: dst entry 535 * 536 * Sets skb dst, assuming a reference was taken on dst and should 537 * be released by skb_dst_drop() 538 */ 539 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 540 { 541 skb->_skb_refdst = (unsigned long)dst; 542 } 543 544 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 545 546 /** 547 * skb_dst_is_noref - Test if skb dst isn't refcounted 548 * @skb: buffer 549 */ 550 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 551 { 552 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 553 } 554 555 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 556 { 557 return (struct rtable *)skb_dst(skb); 558 } 559 560 extern void kfree_skb(struct sk_buff *skb); 561 extern void consume_skb(struct sk_buff *skb); 562 extern void __kfree_skb(struct sk_buff *skb); 563 extern struct sk_buff *__alloc_skb(unsigned int size, 564 gfp_t priority, int fclone, int node); 565 extern struct sk_buff *build_skb(void *data); 566 static inline struct sk_buff *alloc_skb(unsigned int size, 567 gfp_t priority) 568 { 569 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 570 } 571 572 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 573 gfp_t priority) 574 { 575 return __alloc_skb(size, priority, 1, NUMA_NO_NODE); 576 } 577 578 extern void skb_recycle(struct sk_buff *skb); 579 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 580 581 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 582 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 583 extern struct sk_buff *skb_clone(struct sk_buff *skb, 584 gfp_t priority); 585 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 586 gfp_t priority); 587 extern struct sk_buff *__pskb_copy(struct sk_buff *skb, 588 int headroom, gfp_t gfp_mask); 589 590 extern int pskb_expand_head(struct sk_buff *skb, 591 int nhead, int ntail, 592 gfp_t gfp_mask); 593 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 594 unsigned int headroom); 595 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 596 int newheadroom, int newtailroom, 597 gfp_t priority); 598 extern int skb_to_sgvec(struct sk_buff *skb, 599 struct scatterlist *sg, int offset, 600 int len); 601 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 602 struct sk_buff **trailer); 603 extern int skb_pad(struct sk_buff *skb, int pad); 604 #define dev_kfree_skb(a) consume_skb(a) 605 606 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 607 int getfrag(void *from, char *to, int offset, 608 int len,int odd, struct sk_buff *skb), 609 void *from, int length); 610 611 struct skb_seq_state { 612 __u32 lower_offset; 613 __u32 upper_offset; 614 __u32 frag_idx; 615 __u32 stepped_offset; 616 struct sk_buff *root_skb; 617 struct sk_buff *cur_skb; 618 __u8 *frag_data; 619 }; 620 621 extern void skb_prepare_seq_read(struct sk_buff *skb, 622 unsigned int from, unsigned int to, 623 struct skb_seq_state *st); 624 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 625 struct skb_seq_state *st); 626 extern void skb_abort_seq_read(struct skb_seq_state *st); 627 628 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 629 unsigned int to, struct ts_config *config, 630 struct ts_state *state); 631 632 extern void __skb_get_rxhash(struct sk_buff *skb); 633 static inline __u32 skb_get_rxhash(struct sk_buff *skb) 634 { 635 if (!skb->rxhash) 636 __skb_get_rxhash(skb); 637 638 return skb->rxhash; 639 } 640 641 #ifdef NET_SKBUFF_DATA_USES_OFFSET 642 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 643 { 644 return skb->head + skb->end; 645 } 646 #else 647 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 648 { 649 return skb->end; 650 } 651 #endif 652 653 /* Internal */ 654 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 655 656 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 657 { 658 return &skb_shinfo(skb)->hwtstamps; 659 } 660 661 /** 662 * skb_queue_empty - check if a queue is empty 663 * @list: queue head 664 * 665 * Returns true if the queue is empty, false otherwise. 666 */ 667 static inline int skb_queue_empty(const struct sk_buff_head *list) 668 { 669 return list->next == (struct sk_buff *)list; 670 } 671 672 /** 673 * skb_queue_is_last - check if skb is the last entry in the queue 674 * @list: queue head 675 * @skb: buffer 676 * 677 * Returns true if @skb is the last buffer on the list. 678 */ 679 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 680 const struct sk_buff *skb) 681 { 682 return skb->next == (struct sk_buff *)list; 683 } 684 685 /** 686 * skb_queue_is_first - check if skb is the first entry in the queue 687 * @list: queue head 688 * @skb: buffer 689 * 690 * Returns true if @skb is the first buffer on the list. 691 */ 692 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 693 const struct sk_buff *skb) 694 { 695 return skb->prev == (struct sk_buff *)list; 696 } 697 698 /** 699 * skb_queue_next - return the next packet in the queue 700 * @list: queue head 701 * @skb: current buffer 702 * 703 * Return the next packet in @list after @skb. It is only valid to 704 * call this if skb_queue_is_last() evaluates to false. 705 */ 706 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 707 const struct sk_buff *skb) 708 { 709 /* This BUG_ON may seem severe, but if we just return then we 710 * are going to dereference garbage. 711 */ 712 BUG_ON(skb_queue_is_last(list, skb)); 713 return skb->next; 714 } 715 716 /** 717 * skb_queue_prev - return the prev packet in the queue 718 * @list: queue head 719 * @skb: current buffer 720 * 721 * Return the prev packet in @list before @skb. It is only valid to 722 * call this if skb_queue_is_first() evaluates to false. 723 */ 724 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 725 const struct sk_buff *skb) 726 { 727 /* This BUG_ON may seem severe, but if we just return then we 728 * are going to dereference garbage. 729 */ 730 BUG_ON(skb_queue_is_first(list, skb)); 731 return skb->prev; 732 } 733 734 /** 735 * skb_get - reference buffer 736 * @skb: buffer to reference 737 * 738 * Makes another reference to a socket buffer and returns a pointer 739 * to the buffer. 740 */ 741 static inline struct sk_buff *skb_get(struct sk_buff *skb) 742 { 743 atomic_inc(&skb->users); 744 return skb; 745 } 746 747 /* 748 * If users == 1, we are the only owner and are can avoid redundant 749 * atomic change. 750 */ 751 752 /** 753 * skb_cloned - is the buffer a clone 754 * @skb: buffer to check 755 * 756 * Returns true if the buffer was generated with skb_clone() and is 757 * one of multiple shared copies of the buffer. Cloned buffers are 758 * shared data so must not be written to under normal circumstances. 759 */ 760 static inline int skb_cloned(const struct sk_buff *skb) 761 { 762 return skb->cloned && 763 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 764 } 765 766 /** 767 * skb_header_cloned - is the header a clone 768 * @skb: buffer to check 769 * 770 * Returns true if modifying the header part of the buffer requires 771 * the data to be copied. 772 */ 773 static inline int skb_header_cloned(const struct sk_buff *skb) 774 { 775 int dataref; 776 777 if (!skb->cloned) 778 return 0; 779 780 dataref = atomic_read(&skb_shinfo(skb)->dataref); 781 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 782 return dataref != 1; 783 } 784 785 /** 786 * skb_header_release - release reference to header 787 * @skb: buffer to operate on 788 * 789 * Drop a reference to the header part of the buffer. This is done 790 * by acquiring a payload reference. You must not read from the header 791 * part of skb->data after this. 792 */ 793 static inline void skb_header_release(struct sk_buff *skb) 794 { 795 BUG_ON(skb->nohdr); 796 skb->nohdr = 1; 797 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 798 } 799 800 /** 801 * skb_shared - is the buffer shared 802 * @skb: buffer to check 803 * 804 * Returns true if more than one person has a reference to this 805 * buffer. 806 */ 807 static inline int skb_shared(const struct sk_buff *skb) 808 { 809 return atomic_read(&skb->users) != 1; 810 } 811 812 /** 813 * skb_share_check - check if buffer is shared and if so clone it 814 * @skb: buffer to check 815 * @pri: priority for memory allocation 816 * 817 * If the buffer is shared the buffer is cloned and the old copy 818 * drops a reference. A new clone with a single reference is returned. 819 * If the buffer is not shared the original buffer is returned. When 820 * being called from interrupt status or with spinlocks held pri must 821 * be GFP_ATOMIC. 822 * 823 * NULL is returned on a memory allocation failure. 824 */ 825 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 826 gfp_t pri) 827 { 828 might_sleep_if(pri & __GFP_WAIT); 829 if (skb_shared(skb)) { 830 struct sk_buff *nskb = skb_clone(skb, pri); 831 kfree_skb(skb); 832 skb = nskb; 833 } 834 return skb; 835 } 836 837 /* 838 * Copy shared buffers into a new sk_buff. We effectively do COW on 839 * packets to handle cases where we have a local reader and forward 840 * and a couple of other messy ones. The normal one is tcpdumping 841 * a packet thats being forwarded. 842 */ 843 844 /** 845 * skb_unshare - make a copy of a shared buffer 846 * @skb: buffer to check 847 * @pri: priority for memory allocation 848 * 849 * If the socket buffer is a clone then this function creates a new 850 * copy of the data, drops a reference count on the old copy and returns 851 * the new copy with the reference count at 1. If the buffer is not a clone 852 * the original buffer is returned. When called with a spinlock held or 853 * from interrupt state @pri must be %GFP_ATOMIC 854 * 855 * %NULL is returned on a memory allocation failure. 856 */ 857 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 858 gfp_t pri) 859 { 860 might_sleep_if(pri & __GFP_WAIT); 861 if (skb_cloned(skb)) { 862 struct sk_buff *nskb = skb_copy(skb, pri); 863 kfree_skb(skb); /* Free our shared copy */ 864 skb = nskb; 865 } 866 return skb; 867 } 868 869 /** 870 * skb_peek - peek at the head of an &sk_buff_head 871 * @list_: list to peek at 872 * 873 * Peek an &sk_buff. Unlike most other operations you _MUST_ 874 * be careful with this one. A peek leaves the buffer on the 875 * list and someone else may run off with it. You must hold 876 * the appropriate locks or have a private queue to do this. 877 * 878 * Returns %NULL for an empty list or a pointer to the head element. 879 * The reference count is not incremented and the reference is therefore 880 * volatile. Use with caution. 881 */ 882 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 883 { 884 struct sk_buff *list = ((const struct sk_buff *)list_)->next; 885 if (list == (struct sk_buff *)list_) 886 list = NULL; 887 return list; 888 } 889 890 /** 891 * skb_peek_next - peek skb following the given one from a queue 892 * @skb: skb to start from 893 * @list_: list to peek at 894 * 895 * Returns %NULL when the end of the list is met or a pointer to the 896 * next element. The reference count is not incremented and the 897 * reference is therefore volatile. Use with caution. 898 */ 899 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 900 const struct sk_buff_head *list_) 901 { 902 struct sk_buff *next = skb->next; 903 if (next == (struct sk_buff *)list_) 904 next = NULL; 905 return next; 906 } 907 908 /** 909 * skb_peek_tail - peek at the tail of an &sk_buff_head 910 * @list_: list to peek at 911 * 912 * Peek an &sk_buff. Unlike most other operations you _MUST_ 913 * be careful with this one. A peek leaves the buffer on the 914 * list and someone else may run off with it. You must hold 915 * the appropriate locks or have a private queue to do this. 916 * 917 * Returns %NULL for an empty list or a pointer to the tail element. 918 * The reference count is not incremented and the reference is therefore 919 * volatile. Use with caution. 920 */ 921 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 922 { 923 struct sk_buff *list = ((const struct sk_buff *)list_)->prev; 924 if (list == (struct sk_buff *)list_) 925 list = NULL; 926 return list; 927 } 928 929 /** 930 * skb_queue_len - get queue length 931 * @list_: list to measure 932 * 933 * Return the length of an &sk_buff queue. 934 */ 935 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 936 { 937 return list_->qlen; 938 } 939 940 /** 941 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 942 * @list: queue to initialize 943 * 944 * This initializes only the list and queue length aspects of 945 * an sk_buff_head object. This allows to initialize the list 946 * aspects of an sk_buff_head without reinitializing things like 947 * the spinlock. It can also be used for on-stack sk_buff_head 948 * objects where the spinlock is known to not be used. 949 */ 950 static inline void __skb_queue_head_init(struct sk_buff_head *list) 951 { 952 list->prev = list->next = (struct sk_buff *)list; 953 list->qlen = 0; 954 } 955 956 /* 957 * This function creates a split out lock class for each invocation; 958 * this is needed for now since a whole lot of users of the skb-queue 959 * infrastructure in drivers have different locking usage (in hardirq) 960 * than the networking core (in softirq only). In the long run either the 961 * network layer or drivers should need annotation to consolidate the 962 * main types of usage into 3 classes. 963 */ 964 static inline void skb_queue_head_init(struct sk_buff_head *list) 965 { 966 spin_lock_init(&list->lock); 967 __skb_queue_head_init(list); 968 } 969 970 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 971 struct lock_class_key *class) 972 { 973 skb_queue_head_init(list); 974 lockdep_set_class(&list->lock, class); 975 } 976 977 /* 978 * Insert an sk_buff on a list. 979 * 980 * The "__skb_xxxx()" functions are the non-atomic ones that 981 * can only be called with interrupts disabled. 982 */ 983 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 984 static inline void __skb_insert(struct sk_buff *newsk, 985 struct sk_buff *prev, struct sk_buff *next, 986 struct sk_buff_head *list) 987 { 988 newsk->next = next; 989 newsk->prev = prev; 990 next->prev = prev->next = newsk; 991 list->qlen++; 992 } 993 994 static inline void __skb_queue_splice(const struct sk_buff_head *list, 995 struct sk_buff *prev, 996 struct sk_buff *next) 997 { 998 struct sk_buff *first = list->next; 999 struct sk_buff *last = list->prev; 1000 1001 first->prev = prev; 1002 prev->next = first; 1003 1004 last->next = next; 1005 next->prev = last; 1006 } 1007 1008 /** 1009 * skb_queue_splice - join two skb lists, this is designed for stacks 1010 * @list: the new list to add 1011 * @head: the place to add it in the first list 1012 */ 1013 static inline void skb_queue_splice(const struct sk_buff_head *list, 1014 struct sk_buff_head *head) 1015 { 1016 if (!skb_queue_empty(list)) { 1017 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1018 head->qlen += list->qlen; 1019 } 1020 } 1021 1022 /** 1023 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1024 * @list: the new list to add 1025 * @head: the place to add it in the first list 1026 * 1027 * The list at @list is reinitialised 1028 */ 1029 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1030 struct sk_buff_head *head) 1031 { 1032 if (!skb_queue_empty(list)) { 1033 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1034 head->qlen += list->qlen; 1035 __skb_queue_head_init(list); 1036 } 1037 } 1038 1039 /** 1040 * skb_queue_splice_tail - join two skb lists, each list being a queue 1041 * @list: the new list to add 1042 * @head: the place to add it in the first list 1043 */ 1044 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1045 struct sk_buff_head *head) 1046 { 1047 if (!skb_queue_empty(list)) { 1048 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1049 head->qlen += list->qlen; 1050 } 1051 } 1052 1053 /** 1054 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1055 * @list: the new list to add 1056 * @head: the place to add it in the first list 1057 * 1058 * Each of the lists is a queue. 1059 * The list at @list is reinitialised 1060 */ 1061 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1062 struct sk_buff_head *head) 1063 { 1064 if (!skb_queue_empty(list)) { 1065 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1066 head->qlen += list->qlen; 1067 __skb_queue_head_init(list); 1068 } 1069 } 1070 1071 /** 1072 * __skb_queue_after - queue a buffer at the list head 1073 * @list: list to use 1074 * @prev: place after this buffer 1075 * @newsk: buffer to queue 1076 * 1077 * Queue a buffer int the middle of a list. This function takes no locks 1078 * and you must therefore hold required locks before calling it. 1079 * 1080 * A buffer cannot be placed on two lists at the same time. 1081 */ 1082 static inline void __skb_queue_after(struct sk_buff_head *list, 1083 struct sk_buff *prev, 1084 struct sk_buff *newsk) 1085 { 1086 __skb_insert(newsk, prev, prev->next, list); 1087 } 1088 1089 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1090 struct sk_buff_head *list); 1091 1092 static inline void __skb_queue_before(struct sk_buff_head *list, 1093 struct sk_buff *next, 1094 struct sk_buff *newsk) 1095 { 1096 __skb_insert(newsk, next->prev, next, list); 1097 } 1098 1099 /** 1100 * __skb_queue_head - queue a buffer at the list head 1101 * @list: list to use 1102 * @newsk: buffer to queue 1103 * 1104 * Queue a buffer at the start of a list. This function takes no locks 1105 * and you must therefore hold required locks before calling it. 1106 * 1107 * A buffer cannot be placed on two lists at the same time. 1108 */ 1109 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1110 static inline void __skb_queue_head(struct sk_buff_head *list, 1111 struct sk_buff *newsk) 1112 { 1113 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1114 } 1115 1116 /** 1117 * __skb_queue_tail - queue a buffer at the list tail 1118 * @list: list to use 1119 * @newsk: buffer to queue 1120 * 1121 * Queue a buffer at the end of a list. This function takes no locks 1122 * and you must therefore hold required locks before calling it. 1123 * 1124 * A buffer cannot be placed on two lists at the same time. 1125 */ 1126 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1127 static inline void __skb_queue_tail(struct sk_buff_head *list, 1128 struct sk_buff *newsk) 1129 { 1130 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1131 } 1132 1133 /* 1134 * remove sk_buff from list. _Must_ be called atomically, and with 1135 * the list known.. 1136 */ 1137 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1138 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1139 { 1140 struct sk_buff *next, *prev; 1141 1142 list->qlen--; 1143 next = skb->next; 1144 prev = skb->prev; 1145 skb->next = skb->prev = NULL; 1146 next->prev = prev; 1147 prev->next = next; 1148 } 1149 1150 /** 1151 * __skb_dequeue - remove from the head of the queue 1152 * @list: list to dequeue from 1153 * 1154 * Remove the head of the list. This function does not take any locks 1155 * so must be used with appropriate locks held only. The head item is 1156 * returned or %NULL if the list is empty. 1157 */ 1158 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1159 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1160 { 1161 struct sk_buff *skb = skb_peek(list); 1162 if (skb) 1163 __skb_unlink(skb, list); 1164 return skb; 1165 } 1166 1167 /** 1168 * __skb_dequeue_tail - remove from the tail of the queue 1169 * @list: list to dequeue from 1170 * 1171 * Remove the tail of the list. This function does not take any locks 1172 * so must be used with appropriate locks held only. The tail item is 1173 * returned or %NULL if the list is empty. 1174 */ 1175 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1176 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1177 { 1178 struct sk_buff *skb = skb_peek_tail(list); 1179 if (skb) 1180 __skb_unlink(skb, list); 1181 return skb; 1182 } 1183 1184 1185 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1186 { 1187 return skb->data_len; 1188 } 1189 1190 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1191 { 1192 return skb->len - skb->data_len; 1193 } 1194 1195 static inline int skb_pagelen(const struct sk_buff *skb) 1196 { 1197 int i, len = 0; 1198 1199 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1200 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1201 return len + skb_headlen(skb); 1202 } 1203 1204 /** 1205 * __skb_fill_page_desc - initialise a paged fragment in an skb 1206 * @skb: buffer containing fragment to be initialised 1207 * @i: paged fragment index to initialise 1208 * @page: the page to use for this fragment 1209 * @off: the offset to the data with @page 1210 * @size: the length of the data 1211 * 1212 * Initialises the @i'th fragment of @skb to point to &size bytes at 1213 * offset @off within @page. 1214 * 1215 * Does not take any additional reference on the fragment. 1216 */ 1217 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1218 struct page *page, int off, int size) 1219 { 1220 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1221 1222 frag->page.p = page; 1223 frag->page_offset = off; 1224 skb_frag_size_set(frag, size); 1225 } 1226 1227 /** 1228 * skb_fill_page_desc - initialise a paged fragment in an skb 1229 * @skb: buffer containing fragment to be initialised 1230 * @i: paged fragment index to initialise 1231 * @page: the page to use for this fragment 1232 * @off: the offset to the data with @page 1233 * @size: the length of the data 1234 * 1235 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1236 * @skb to point to &size bytes at offset @off within @page. In 1237 * addition updates @skb such that @i is the last fragment. 1238 * 1239 * Does not take any additional reference on the fragment. 1240 */ 1241 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1242 struct page *page, int off, int size) 1243 { 1244 __skb_fill_page_desc(skb, i, page, off, size); 1245 skb_shinfo(skb)->nr_frags = i + 1; 1246 } 1247 1248 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1249 int off, int size, unsigned int truesize); 1250 1251 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1252 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1253 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1254 1255 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1256 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1257 { 1258 return skb->head + skb->tail; 1259 } 1260 1261 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1262 { 1263 skb->tail = skb->data - skb->head; 1264 } 1265 1266 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1267 { 1268 skb_reset_tail_pointer(skb); 1269 skb->tail += offset; 1270 } 1271 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1272 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1273 { 1274 return skb->tail; 1275 } 1276 1277 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1278 { 1279 skb->tail = skb->data; 1280 } 1281 1282 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1283 { 1284 skb->tail = skb->data + offset; 1285 } 1286 1287 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1288 1289 /* 1290 * Add data to an sk_buff 1291 */ 1292 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1293 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1294 { 1295 unsigned char *tmp = skb_tail_pointer(skb); 1296 SKB_LINEAR_ASSERT(skb); 1297 skb->tail += len; 1298 skb->len += len; 1299 return tmp; 1300 } 1301 1302 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1303 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1304 { 1305 skb->data -= len; 1306 skb->len += len; 1307 return skb->data; 1308 } 1309 1310 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1311 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1312 { 1313 skb->len -= len; 1314 BUG_ON(skb->len < skb->data_len); 1315 return skb->data += len; 1316 } 1317 1318 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1319 { 1320 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1321 } 1322 1323 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1324 1325 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1326 { 1327 if (len > skb_headlen(skb) && 1328 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1329 return NULL; 1330 skb->len -= len; 1331 return skb->data += len; 1332 } 1333 1334 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1335 { 1336 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1337 } 1338 1339 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1340 { 1341 if (likely(len <= skb_headlen(skb))) 1342 return 1; 1343 if (unlikely(len > skb->len)) 1344 return 0; 1345 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1346 } 1347 1348 /** 1349 * skb_headroom - bytes at buffer head 1350 * @skb: buffer to check 1351 * 1352 * Return the number of bytes of free space at the head of an &sk_buff. 1353 */ 1354 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1355 { 1356 return skb->data - skb->head; 1357 } 1358 1359 /** 1360 * skb_tailroom - bytes at buffer end 1361 * @skb: buffer to check 1362 * 1363 * Return the number of bytes of free space at the tail of an sk_buff 1364 */ 1365 static inline int skb_tailroom(const struct sk_buff *skb) 1366 { 1367 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1368 } 1369 1370 /** 1371 * skb_availroom - bytes at buffer end 1372 * @skb: buffer to check 1373 * 1374 * Return the number of bytes of free space at the tail of an sk_buff 1375 * allocated by sk_stream_alloc() 1376 */ 1377 static inline int skb_availroom(const struct sk_buff *skb) 1378 { 1379 return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len; 1380 } 1381 1382 /** 1383 * skb_reserve - adjust headroom 1384 * @skb: buffer to alter 1385 * @len: bytes to move 1386 * 1387 * Increase the headroom of an empty &sk_buff by reducing the tail 1388 * room. This is only allowed for an empty buffer. 1389 */ 1390 static inline void skb_reserve(struct sk_buff *skb, int len) 1391 { 1392 skb->data += len; 1393 skb->tail += len; 1394 } 1395 1396 static inline void skb_reset_mac_len(struct sk_buff *skb) 1397 { 1398 skb->mac_len = skb->network_header - skb->mac_header; 1399 } 1400 1401 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1402 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1403 { 1404 return skb->head + skb->transport_header; 1405 } 1406 1407 static inline void skb_reset_transport_header(struct sk_buff *skb) 1408 { 1409 skb->transport_header = skb->data - skb->head; 1410 } 1411 1412 static inline void skb_set_transport_header(struct sk_buff *skb, 1413 const int offset) 1414 { 1415 skb_reset_transport_header(skb); 1416 skb->transport_header += offset; 1417 } 1418 1419 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1420 { 1421 return skb->head + skb->network_header; 1422 } 1423 1424 static inline void skb_reset_network_header(struct sk_buff *skb) 1425 { 1426 skb->network_header = skb->data - skb->head; 1427 } 1428 1429 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1430 { 1431 skb_reset_network_header(skb); 1432 skb->network_header += offset; 1433 } 1434 1435 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1436 { 1437 return skb->head + skb->mac_header; 1438 } 1439 1440 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1441 { 1442 return skb->mac_header != ~0U; 1443 } 1444 1445 static inline void skb_reset_mac_header(struct sk_buff *skb) 1446 { 1447 skb->mac_header = skb->data - skb->head; 1448 } 1449 1450 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1451 { 1452 skb_reset_mac_header(skb); 1453 skb->mac_header += offset; 1454 } 1455 1456 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1457 1458 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1459 { 1460 return skb->transport_header; 1461 } 1462 1463 static inline void skb_reset_transport_header(struct sk_buff *skb) 1464 { 1465 skb->transport_header = skb->data; 1466 } 1467 1468 static inline void skb_set_transport_header(struct sk_buff *skb, 1469 const int offset) 1470 { 1471 skb->transport_header = skb->data + offset; 1472 } 1473 1474 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1475 { 1476 return skb->network_header; 1477 } 1478 1479 static inline void skb_reset_network_header(struct sk_buff *skb) 1480 { 1481 skb->network_header = skb->data; 1482 } 1483 1484 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1485 { 1486 skb->network_header = skb->data + offset; 1487 } 1488 1489 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1490 { 1491 return skb->mac_header; 1492 } 1493 1494 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1495 { 1496 return skb->mac_header != NULL; 1497 } 1498 1499 static inline void skb_reset_mac_header(struct sk_buff *skb) 1500 { 1501 skb->mac_header = skb->data; 1502 } 1503 1504 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1505 { 1506 skb->mac_header = skb->data + offset; 1507 } 1508 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1509 1510 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1511 { 1512 if (skb_mac_header_was_set(skb)) { 1513 const unsigned char *old_mac = skb_mac_header(skb); 1514 1515 skb_set_mac_header(skb, -skb->mac_len); 1516 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1517 } 1518 } 1519 1520 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1521 { 1522 return skb->csum_start - skb_headroom(skb); 1523 } 1524 1525 static inline int skb_transport_offset(const struct sk_buff *skb) 1526 { 1527 return skb_transport_header(skb) - skb->data; 1528 } 1529 1530 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1531 { 1532 return skb->transport_header - skb->network_header; 1533 } 1534 1535 static inline int skb_network_offset(const struct sk_buff *skb) 1536 { 1537 return skb_network_header(skb) - skb->data; 1538 } 1539 1540 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1541 { 1542 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1543 } 1544 1545 /* 1546 * CPUs often take a performance hit when accessing unaligned memory 1547 * locations. The actual performance hit varies, it can be small if the 1548 * hardware handles it or large if we have to take an exception and fix it 1549 * in software. 1550 * 1551 * Since an ethernet header is 14 bytes network drivers often end up with 1552 * the IP header at an unaligned offset. The IP header can be aligned by 1553 * shifting the start of the packet by 2 bytes. Drivers should do this 1554 * with: 1555 * 1556 * skb_reserve(skb, NET_IP_ALIGN); 1557 * 1558 * The downside to this alignment of the IP header is that the DMA is now 1559 * unaligned. On some architectures the cost of an unaligned DMA is high 1560 * and this cost outweighs the gains made by aligning the IP header. 1561 * 1562 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1563 * to be overridden. 1564 */ 1565 #ifndef NET_IP_ALIGN 1566 #define NET_IP_ALIGN 2 1567 #endif 1568 1569 /* 1570 * The networking layer reserves some headroom in skb data (via 1571 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1572 * the header has to grow. In the default case, if the header has to grow 1573 * 32 bytes or less we avoid the reallocation. 1574 * 1575 * Unfortunately this headroom changes the DMA alignment of the resulting 1576 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1577 * on some architectures. An architecture can override this value, 1578 * perhaps setting it to a cacheline in size (since that will maintain 1579 * cacheline alignment of the DMA). It must be a power of 2. 1580 * 1581 * Various parts of the networking layer expect at least 32 bytes of 1582 * headroom, you should not reduce this. 1583 * 1584 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1585 * to reduce average number of cache lines per packet. 1586 * get_rps_cpus() for example only access one 64 bytes aligned block : 1587 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1588 */ 1589 #ifndef NET_SKB_PAD 1590 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1591 #endif 1592 1593 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1594 1595 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1596 { 1597 if (unlikely(skb_is_nonlinear(skb))) { 1598 WARN_ON(1); 1599 return; 1600 } 1601 skb->len = len; 1602 skb_set_tail_pointer(skb, len); 1603 } 1604 1605 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1606 1607 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1608 { 1609 if (skb->data_len) 1610 return ___pskb_trim(skb, len); 1611 __skb_trim(skb, len); 1612 return 0; 1613 } 1614 1615 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1616 { 1617 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1618 } 1619 1620 /** 1621 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1622 * @skb: buffer to alter 1623 * @len: new length 1624 * 1625 * This is identical to pskb_trim except that the caller knows that 1626 * the skb is not cloned so we should never get an error due to out- 1627 * of-memory. 1628 */ 1629 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1630 { 1631 int err = pskb_trim(skb, len); 1632 BUG_ON(err); 1633 } 1634 1635 /** 1636 * skb_orphan - orphan a buffer 1637 * @skb: buffer to orphan 1638 * 1639 * If a buffer currently has an owner then we call the owner's 1640 * destructor function and make the @skb unowned. The buffer continues 1641 * to exist but is no longer charged to its former owner. 1642 */ 1643 static inline void skb_orphan(struct sk_buff *skb) 1644 { 1645 if (skb->destructor) 1646 skb->destructor(skb); 1647 skb->destructor = NULL; 1648 skb->sk = NULL; 1649 } 1650 1651 /** 1652 * __skb_queue_purge - empty a list 1653 * @list: list to empty 1654 * 1655 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1656 * the list and one reference dropped. This function does not take the 1657 * list lock and the caller must hold the relevant locks to use it. 1658 */ 1659 extern void skb_queue_purge(struct sk_buff_head *list); 1660 static inline void __skb_queue_purge(struct sk_buff_head *list) 1661 { 1662 struct sk_buff *skb; 1663 while ((skb = __skb_dequeue(list)) != NULL) 1664 kfree_skb(skb); 1665 } 1666 1667 /** 1668 * __dev_alloc_skb - allocate an skbuff for receiving 1669 * @length: length to allocate 1670 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1671 * 1672 * Allocate a new &sk_buff and assign it a usage count of one. The 1673 * buffer has unspecified headroom built in. Users should allocate 1674 * the headroom they think they need without accounting for the 1675 * built in space. The built in space is used for optimisations. 1676 * 1677 * %NULL is returned if there is no free memory. 1678 */ 1679 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1680 gfp_t gfp_mask) 1681 { 1682 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1683 if (likely(skb)) 1684 skb_reserve(skb, NET_SKB_PAD); 1685 return skb; 1686 } 1687 1688 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1689 1690 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1691 unsigned int length, gfp_t gfp_mask); 1692 1693 /** 1694 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1695 * @dev: network device to receive on 1696 * @length: length to allocate 1697 * 1698 * Allocate a new &sk_buff and assign it a usage count of one. The 1699 * buffer has unspecified headroom built in. Users should allocate 1700 * the headroom they think they need without accounting for the 1701 * built in space. The built in space is used for optimisations. 1702 * 1703 * %NULL is returned if there is no free memory. Although this function 1704 * allocates memory it can be called from an interrupt. 1705 */ 1706 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1707 unsigned int length) 1708 { 1709 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1710 } 1711 1712 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 1713 unsigned int length, gfp_t gfp) 1714 { 1715 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 1716 1717 if (NET_IP_ALIGN && skb) 1718 skb_reserve(skb, NET_IP_ALIGN); 1719 return skb; 1720 } 1721 1722 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1723 unsigned int length) 1724 { 1725 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 1726 } 1727 1728 /** 1729 * skb_frag_page - retrieve the page refered to by a paged fragment 1730 * @frag: the paged fragment 1731 * 1732 * Returns the &struct page associated with @frag. 1733 */ 1734 static inline struct page *skb_frag_page(const skb_frag_t *frag) 1735 { 1736 return frag->page.p; 1737 } 1738 1739 /** 1740 * __skb_frag_ref - take an addition reference on a paged fragment. 1741 * @frag: the paged fragment 1742 * 1743 * Takes an additional reference on the paged fragment @frag. 1744 */ 1745 static inline void __skb_frag_ref(skb_frag_t *frag) 1746 { 1747 get_page(skb_frag_page(frag)); 1748 } 1749 1750 /** 1751 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 1752 * @skb: the buffer 1753 * @f: the fragment offset. 1754 * 1755 * Takes an additional reference on the @f'th paged fragment of @skb. 1756 */ 1757 static inline void skb_frag_ref(struct sk_buff *skb, int f) 1758 { 1759 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 1760 } 1761 1762 /** 1763 * __skb_frag_unref - release a reference on a paged fragment. 1764 * @frag: the paged fragment 1765 * 1766 * Releases a reference on the paged fragment @frag. 1767 */ 1768 static inline void __skb_frag_unref(skb_frag_t *frag) 1769 { 1770 put_page(skb_frag_page(frag)); 1771 } 1772 1773 /** 1774 * skb_frag_unref - release a reference on a paged fragment of an skb. 1775 * @skb: the buffer 1776 * @f: the fragment offset 1777 * 1778 * Releases a reference on the @f'th paged fragment of @skb. 1779 */ 1780 static inline void skb_frag_unref(struct sk_buff *skb, int f) 1781 { 1782 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 1783 } 1784 1785 /** 1786 * skb_frag_address - gets the address of the data contained in a paged fragment 1787 * @frag: the paged fragment buffer 1788 * 1789 * Returns the address of the data within @frag. The page must already 1790 * be mapped. 1791 */ 1792 static inline void *skb_frag_address(const skb_frag_t *frag) 1793 { 1794 return page_address(skb_frag_page(frag)) + frag->page_offset; 1795 } 1796 1797 /** 1798 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 1799 * @frag: the paged fragment buffer 1800 * 1801 * Returns the address of the data within @frag. Checks that the page 1802 * is mapped and returns %NULL otherwise. 1803 */ 1804 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 1805 { 1806 void *ptr = page_address(skb_frag_page(frag)); 1807 if (unlikely(!ptr)) 1808 return NULL; 1809 1810 return ptr + frag->page_offset; 1811 } 1812 1813 /** 1814 * __skb_frag_set_page - sets the page contained in a paged fragment 1815 * @frag: the paged fragment 1816 * @page: the page to set 1817 * 1818 * Sets the fragment @frag to contain @page. 1819 */ 1820 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 1821 { 1822 frag->page.p = page; 1823 } 1824 1825 /** 1826 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 1827 * @skb: the buffer 1828 * @f: the fragment offset 1829 * @page: the page to set 1830 * 1831 * Sets the @f'th fragment of @skb to contain @page. 1832 */ 1833 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 1834 struct page *page) 1835 { 1836 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 1837 } 1838 1839 /** 1840 * skb_frag_dma_map - maps a paged fragment via the DMA API 1841 * @dev: the device to map the fragment to 1842 * @frag: the paged fragment to map 1843 * @offset: the offset within the fragment (starting at the 1844 * fragment's own offset) 1845 * @size: the number of bytes to map 1846 * @dir: the direction of the mapping (%PCI_DMA_*) 1847 * 1848 * Maps the page associated with @frag to @device. 1849 */ 1850 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 1851 const skb_frag_t *frag, 1852 size_t offset, size_t size, 1853 enum dma_data_direction dir) 1854 { 1855 return dma_map_page(dev, skb_frag_page(frag), 1856 frag->page_offset + offset, size, dir); 1857 } 1858 1859 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 1860 gfp_t gfp_mask) 1861 { 1862 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 1863 } 1864 1865 /** 1866 * skb_clone_writable - is the header of a clone writable 1867 * @skb: buffer to check 1868 * @len: length up to which to write 1869 * 1870 * Returns true if modifying the header part of the cloned buffer 1871 * does not requires the data to be copied. 1872 */ 1873 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 1874 { 1875 return !skb_header_cloned(skb) && 1876 skb_headroom(skb) + len <= skb->hdr_len; 1877 } 1878 1879 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1880 int cloned) 1881 { 1882 int delta = 0; 1883 1884 if (headroom < NET_SKB_PAD) 1885 headroom = NET_SKB_PAD; 1886 if (headroom > skb_headroom(skb)) 1887 delta = headroom - skb_headroom(skb); 1888 1889 if (delta || cloned) 1890 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1891 GFP_ATOMIC); 1892 return 0; 1893 } 1894 1895 /** 1896 * skb_cow - copy header of skb when it is required 1897 * @skb: buffer to cow 1898 * @headroom: needed headroom 1899 * 1900 * If the skb passed lacks sufficient headroom or its data part 1901 * is shared, data is reallocated. If reallocation fails, an error 1902 * is returned and original skb is not changed. 1903 * 1904 * The result is skb with writable area skb->head...skb->tail 1905 * and at least @headroom of space at head. 1906 */ 1907 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1908 { 1909 return __skb_cow(skb, headroom, skb_cloned(skb)); 1910 } 1911 1912 /** 1913 * skb_cow_head - skb_cow but only making the head writable 1914 * @skb: buffer to cow 1915 * @headroom: needed headroom 1916 * 1917 * This function is identical to skb_cow except that we replace the 1918 * skb_cloned check by skb_header_cloned. It should be used when 1919 * you only need to push on some header and do not need to modify 1920 * the data. 1921 */ 1922 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1923 { 1924 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1925 } 1926 1927 /** 1928 * skb_padto - pad an skbuff up to a minimal size 1929 * @skb: buffer to pad 1930 * @len: minimal length 1931 * 1932 * Pads up a buffer to ensure the trailing bytes exist and are 1933 * blanked. If the buffer already contains sufficient data it 1934 * is untouched. Otherwise it is extended. Returns zero on 1935 * success. The skb is freed on error. 1936 */ 1937 1938 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1939 { 1940 unsigned int size = skb->len; 1941 if (likely(size >= len)) 1942 return 0; 1943 return skb_pad(skb, len - size); 1944 } 1945 1946 static inline int skb_add_data(struct sk_buff *skb, 1947 char __user *from, int copy) 1948 { 1949 const int off = skb->len; 1950 1951 if (skb->ip_summed == CHECKSUM_NONE) { 1952 int err = 0; 1953 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1954 copy, 0, &err); 1955 if (!err) { 1956 skb->csum = csum_block_add(skb->csum, csum, off); 1957 return 0; 1958 } 1959 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1960 return 0; 1961 1962 __skb_trim(skb, off); 1963 return -EFAULT; 1964 } 1965 1966 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1967 const struct page *page, int off) 1968 { 1969 if (i) { 1970 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1971 1972 return page == skb_frag_page(frag) && 1973 off == frag->page_offset + skb_frag_size(frag); 1974 } 1975 return 0; 1976 } 1977 1978 static inline int __skb_linearize(struct sk_buff *skb) 1979 { 1980 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1981 } 1982 1983 /** 1984 * skb_linearize - convert paged skb to linear one 1985 * @skb: buffer to linarize 1986 * 1987 * If there is no free memory -ENOMEM is returned, otherwise zero 1988 * is returned and the old skb data released. 1989 */ 1990 static inline int skb_linearize(struct sk_buff *skb) 1991 { 1992 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1993 } 1994 1995 /** 1996 * skb_linearize_cow - make sure skb is linear and writable 1997 * @skb: buffer to process 1998 * 1999 * If there is no free memory -ENOMEM is returned, otherwise zero 2000 * is returned and the old skb data released. 2001 */ 2002 static inline int skb_linearize_cow(struct sk_buff *skb) 2003 { 2004 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2005 __skb_linearize(skb) : 0; 2006 } 2007 2008 /** 2009 * skb_postpull_rcsum - update checksum for received skb after pull 2010 * @skb: buffer to update 2011 * @start: start of data before pull 2012 * @len: length of data pulled 2013 * 2014 * After doing a pull on a received packet, you need to call this to 2015 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2016 * CHECKSUM_NONE so that it can be recomputed from scratch. 2017 */ 2018 2019 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2020 const void *start, unsigned int len) 2021 { 2022 if (skb->ip_summed == CHECKSUM_COMPLETE) 2023 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2024 } 2025 2026 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2027 2028 /** 2029 * pskb_trim_rcsum - trim received skb and update checksum 2030 * @skb: buffer to trim 2031 * @len: new length 2032 * 2033 * This is exactly the same as pskb_trim except that it ensures the 2034 * checksum of received packets are still valid after the operation. 2035 */ 2036 2037 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2038 { 2039 if (likely(len >= skb->len)) 2040 return 0; 2041 if (skb->ip_summed == CHECKSUM_COMPLETE) 2042 skb->ip_summed = CHECKSUM_NONE; 2043 return __pskb_trim(skb, len); 2044 } 2045 2046 #define skb_queue_walk(queue, skb) \ 2047 for (skb = (queue)->next; \ 2048 skb != (struct sk_buff *)(queue); \ 2049 skb = skb->next) 2050 2051 #define skb_queue_walk_safe(queue, skb, tmp) \ 2052 for (skb = (queue)->next, tmp = skb->next; \ 2053 skb != (struct sk_buff *)(queue); \ 2054 skb = tmp, tmp = skb->next) 2055 2056 #define skb_queue_walk_from(queue, skb) \ 2057 for (; skb != (struct sk_buff *)(queue); \ 2058 skb = skb->next) 2059 2060 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 2061 for (tmp = skb->next; \ 2062 skb != (struct sk_buff *)(queue); \ 2063 skb = tmp, tmp = skb->next) 2064 2065 #define skb_queue_reverse_walk(queue, skb) \ 2066 for (skb = (queue)->prev; \ 2067 skb != (struct sk_buff *)(queue); \ 2068 skb = skb->prev) 2069 2070 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2071 for (skb = (queue)->prev, tmp = skb->prev; \ 2072 skb != (struct sk_buff *)(queue); \ 2073 skb = tmp, tmp = skb->prev) 2074 2075 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2076 for (tmp = skb->prev; \ 2077 skb != (struct sk_buff *)(queue); \ 2078 skb = tmp, tmp = skb->prev) 2079 2080 static inline bool skb_has_frag_list(const struct sk_buff *skb) 2081 { 2082 return skb_shinfo(skb)->frag_list != NULL; 2083 } 2084 2085 static inline void skb_frag_list_init(struct sk_buff *skb) 2086 { 2087 skb_shinfo(skb)->frag_list = NULL; 2088 } 2089 2090 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2091 { 2092 frag->next = skb_shinfo(skb)->frag_list; 2093 skb_shinfo(skb)->frag_list = frag; 2094 } 2095 2096 #define skb_walk_frags(skb, iter) \ 2097 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2098 2099 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2100 int *peeked, int *off, int *err); 2101 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 2102 int noblock, int *err); 2103 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 2104 struct poll_table_struct *wait); 2105 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 2106 int offset, struct iovec *to, 2107 int size); 2108 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 2109 int hlen, 2110 struct iovec *iov); 2111 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 2112 int offset, 2113 const struct iovec *from, 2114 int from_offset, 2115 int len); 2116 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 2117 int offset, 2118 const struct iovec *to, 2119 int to_offset, 2120 int size); 2121 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2122 extern void skb_free_datagram_locked(struct sock *sk, 2123 struct sk_buff *skb); 2124 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 2125 unsigned int flags); 2126 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 2127 int len, __wsum csum); 2128 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 2129 void *to, int len); 2130 extern int skb_store_bits(struct sk_buff *skb, int offset, 2131 const void *from, int len); 2132 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 2133 int offset, u8 *to, int len, 2134 __wsum csum); 2135 extern int skb_splice_bits(struct sk_buff *skb, 2136 unsigned int offset, 2137 struct pipe_inode_info *pipe, 2138 unsigned int len, 2139 unsigned int flags); 2140 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2141 extern void skb_split(struct sk_buff *skb, 2142 struct sk_buff *skb1, const u32 len); 2143 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 2144 int shiftlen); 2145 2146 extern struct sk_buff *skb_segment(struct sk_buff *skb, 2147 netdev_features_t features); 2148 2149 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2150 int len, void *buffer) 2151 { 2152 int hlen = skb_headlen(skb); 2153 2154 if (hlen - offset >= len) 2155 return skb->data + offset; 2156 2157 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2158 return NULL; 2159 2160 return buffer; 2161 } 2162 2163 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2164 void *to, 2165 const unsigned int len) 2166 { 2167 memcpy(to, skb->data, len); 2168 } 2169 2170 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2171 const int offset, void *to, 2172 const unsigned int len) 2173 { 2174 memcpy(to, skb->data + offset, len); 2175 } 2176 2177 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2178 const void *from, 2179 const unsigned int len) 2180 { 2181 memcpy(skb->data, from, len); 2182 } 2183 2184 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2185 const int offset, 2186 const void *from, 2187 const unsigned int len) 2188 { 2189 memcpy(skb->data + offset, from, len); 2190 } 2191 2192 extern void skb_init(void); 2193 2194 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2195 { 2196 return skb->tstamp; 2197 } 2198 2199 /** 2200 * skb_get_timestamp - get timestamp from a skb 2201 * @skb: skb to get stamp from 2202 * @stamp: pointer to struct timeval to store stamp in 2203 * 2204 * Timestamps are stored in the skb as offsets to a base timestamp. 2205 * This function converts the offset back to a struct timeval and stores 2206 * it in stamp. 2207 */ 2208 static inline void skb_get_timestamp(const struct sk_buff *skb, 2209 struct timeval *stamp) 2210 { 2211 *stamp = ktime_to_timeval(skb->tstamp); 2212 } 2213 2214 static inline void skb_get_timestampns(const struct sk_buff *skb, 2215 struct timespec *stamp) 2216 { 2217 *stamp = ktime_to_timespec(skb->tstamp); 2218 } 2219 2220 static inline void __net_timestamp(struct sk_buff *skb) 2221 { 2222 skb->tstamp = ktime_get_real(); 2223 } 2224 2225 static inline ktime_t net_timedelta(ktime_t t) 2226 { 2227 return ktime_sub(ktime_get_real(), t); 2228 } 2229 2230 static inline ktime_t net_invalid_timestamp(void) 2231 { 2232 return ktime_set(0, 0); 2233 } 2234 2235 extern void skb_timestamping_init(void); 2236 2237 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2238 2239 extern void skb_clone_tx_timestamp(struct sk_buff *skb); 2240 extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 2241 2242 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2243 2244 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2245 { 2246 } 2247 2248 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2249 { 2250 return false; 2251 } 2252 2253 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2254 2255 /** 2256 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2257 * 2258 * PHY drivers may accept clones of transmitted packets for 2259 * timestamping via their phy_driver.txtstamp method. These drivers 2260 * must call this function to return the skb back to the stack, with 2261 * or without a timestamp. 2262 * 2263 * @skb: clone of the the original outgoing packet 2264 * @hwtstamps: hardware time stamps, may be NULL if not available 2265 * 2266 */ 2267 void skb_complete_tx_timestamp(struct sk_buff *skb, 2268 struct skb_shared_hwtstamps *hwtstamps); 2269 2270 /** 2271 * skb_tstamp_tx - queue clone of skb with send time stamps 2272 * @orig_skb: the original outgoing packet 2273 * @hwtstamps: hardware time stamps, may be NULL if not available 2274 * 2275 * If the skb has a socket associated, then this function clones the 2276 * skb (thus sharing the actual data and optional structures), stores 2277 * the optional hardware time stamping information (if non NULL) or 2278 * generates a software time stamp (otherwise), then queues the clone 2279 * to the error queue of the socket. Errors are silently ignored. 2280 */ 2281 extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2282 struct skb_shared_hwtstamps *hwtstamps); 2283 2284 static inline void sw_tx_timestamp(struct sk_buff *skb) 2285 { 2286 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2287 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2288 skb_tstamp_tx(skb, NULL); 2289 } 2290 2291 /** 2292 * skb_tx_timestamp() - Driver hook for transmit timestamping 2293 * 2294 * Ethernet MAC Drivers should call this function in their hard_xmit() 2295 * function immediately before giving the sk_buff to the MAC hardware. 2296 * 2297 * @skb: A socket buffer. 2298 */ 2299 static inline void skb_tx_timestamp(struct sk_buff *skb) 2300 { 2301 skb_clone_tx_timestamp(skb); 2302 sw_tx_timestamp(skb); 2303 } 2304 2305 /** 2306 * skb_complete_wifi_ack - deliver skb with wifi status 2307 * 2308 * @skb: the original outgoing packet 2309 * @acked: ack status 2310 * 2311 */ 2312 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2313 2314 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2315 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2316 2317 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2318 { 2319 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2320 } 2321 2322 /** 2323 * skb_checksum_complete - Calculate checksum of an entire packet 2324 * @skb: packet to process 2325 * 2326 * This function calculates the checksum over the entire packet plus 2327 * the value of skb->csum. The latter can be used to supply the 2328 * checksum of a pseudo header as used by TCP/UDP. It returns the 2329 * checksum. 2330 * 2331 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2332 * this function can be used to verify that checksum on received 2333 * packets. In that case the function should return zero if the 2334 * checksum is correct. In particular, this function will return zero 2335 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2336 * hardware has already verified the correctness of the checksum. 2337 */ 2338 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2339 { 2340 return skb_csum_unnecessary(skb) ? 2341 0 : __skb_checksum_complete(skb); 2342 } 2343 2344 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2345 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2346 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2347 { 2348 if (nfct && atomic_dec_and_test(&nfct->use)) 2349 nf_conntrack_destroy(nfct); 2350 } 2351 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2352 { 2353 if (nfct) 2354 atomic_inc(&nfct->use); 2355 } 2356 #endif 2357 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2358 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2359 { 2360 if (skb) 2361 atomic_inc(&skb->users); 2362 } 2363 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2364 { 2365 if (skb) 2366 kfree_skb(skb); 2367 } 2368 #endif 2369 #ifdef CONFIG_BRIDGE_NETFILTER 2370 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2371 { 2372 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2373 kfree(nf_bridge); 2374 } 2375 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2376 { 2377 if (nf_bridge) 2378 atomic_inc(&nf_bridge->use); 2379 } 2380 #endif /* CONFIG_BRIDGE_NETFILTER */ 2381 static inline void nf_reset(struct sk_buff *skb) 2382 { 2383 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2384 nf_conntrack_put(skb->nfct); 2385 skb->nfct = NULL; 2386 #endif 2387 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2388 nf_conntrack_put_reasm(skb->nfct_reasm); 2389 skb->nfct_reasm = NULL; 2390 #endif 2391 #ifdef CONFIG_BRIDGE_NETFILTER 2392 nf_bridge_put(skb->nf_bridge); 2393 skb->nf_bridge = NULL; 2394 #endif 2395 } 2396 2397 /* Note: This doesn't put any conntrack and bridge info in dst. */ 2398 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2399 { 2400 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2401 dst->nfct = src->nfct; 2402 nf_conntrack_get(src->nfct); 2403 dst->nfctinfo = src->nfctinfo; 2404 #endif 2405 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2406 dst->nfct_reasm = src->nfct_reasm; 2407 nf_conntrack_get_reasm(src->nfct_reasm); 2408 #endif 2409 #ifdef CONFIG_BRIDGE_NETFILTER 2410 dst->nf_bridge = src->nf_bridge; 2411 nf_bridge_get(src->nf_bridge); 2412 #endif 2413 } 2414 2415 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2416 { 2417 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2418 nf_conntrack_put(dst->nfct); 2419 #endif 2420 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2421 nf_conntrack_put_reasm(dst->nfct_reasm); 2422 #endif 2423 #ifdef CONFIG_BRIDGE_NETFILTER 2424 nf_bridge_put(dst->nf_bridge); 2425 #endif 2426 __nf_copy(dst, src); 2427 } 2428 2429 #ifdef CONFIG_NETWORK_SECMARK 2430 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2431 { 2432 to->secmark = from->secmark; 2433 } 2434 2435 static inline void skb_init_secmark(struct sk_buff *skb) 2436 { 2437 skb->secmark = 0; 2438 } 2439 #else 2440 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2441 { } 2442 2443 static inline void skb_init_secmark(struct sk_buff *skb) 2444 { } 2445 #endif 2446 2447 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2448 { 2449 skb->queue_mapping = queue_mapping; 2450 } 2451 2452 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2453 { 2454 return skb->queue_mapping; 2455 } 2456 2457 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2458 { 2459 to->queue_mapping = from->queue_mapping; 2460 } 2461 2462 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2463 { 2464 skb->queue_mapping = rx_queue + 1; 2465 } 2466 2467 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2468 { 2469 return skb->queue_mapping - 1; 2470 } 2471 2472 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2473 { 2474 return skb->queue_mapping != 0; 2475 } 2476 2477 extern u16 __skb_tx_hash(const struct net_device *dev, 2478 const struct sk_buff *skb, 2479 unsigned int num_tx_queues); 2480 2481 #ifdef CONFIG_XFRM 2482 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2483 { 2484 return skb->sp; 2485 } 2486 #else 2487 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2488 { 2489 return NULL; 2490 } 2491 #endif 2492 2493 static inline bool skb_is_gso(const struct sk_buff *skb) 2494 { 2495 return skb_shinfo(skb)->gso_size; 2496 } 2497 2498 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 2499 { 2500 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2501 } 2502 2503 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2504 2505 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2506 { 2507 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2508 * wanted then gso_type will be set. */ 2509 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2510 2511 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2512 unlikely(shinfo->gso_type == 0)) { 2513 __skb_warn_lro_forwarding(skb); 2514 return true; 2515 } 2516 return false; 2517 } 2518 2519 static inline void skb_forward_csum(struct sk_buff *skb) 2520 { 2521 /* Unfortunately we don't support this one. Any brave souls? */ 2522 if (skb->ip_summed == CHECKSUM_COMPLETE) 2523 skb->ip_summed = CHECKSUM_NONE; 2524 } 2525 2526 /** 2527 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2528 * @skb: skb to check 2529 * 2530 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2531 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2532 * use this helper, to document places where we make this assertion. 2533 */ 2534 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 2535 { 2536 #ifdef DEBUG 2537 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2538 #endif 2539 } 2540 2541 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2542 2543 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size) 2544 { 2545 if (irqs_disabled()) 2546 return false; 2547 2548 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) 2549 return false; 2550 2551 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE) 2552 return false; 2553 2554 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD); 2555 if (skb_end_pointer(skb) - skb->head < skb_size) 2556 return false; 2557 2558 if (skb_shared(skb) || skb_cloned(skb)) 2559 return false; 2560 2561 return true; 2562 } 2563 #endif /* __KERNEL__ */ 2564 #endif /* _LINUX_SKBUFF_H */ 2565