1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 24 #include <linux/atomic.h> 25 #include <asm/types.h> 26 #include <linux/spinlock.h> 27 #include <linux/net.h> 28 #include <linux/textsearch.h> 29 #include <net/checksum.h> 30 #include <linux/rcupdate.h> 31 #include <linux/hrtimer.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/netdev_features.h> 34 #include <linux/sched.h> 35 #include <net/flow_keys.h> 36 37 /* A. Checksumming of received packets by device. 38 * 39 * CHECKSUM_NONE: 40 * 41 * Device failed to checksum this packet e.g. due to lack of capabilities. 42 * The packet contains full (though not verified) checksum in packet but 43 * not in skb->csum. Thus, skb->csum is undefined in this case. 44 * 45 * CHECKSUM_UNNECESSARY: 46 * 47 * The hardware you're dealing with doesn't calculate the full checksum 48 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 49 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 50 * if their checksums are okay. skb->csum is still undefined in this case 51 * though. It is a bad option, but, unfortunately, nowadays most vendors do 52 * this. Apparently with the secret goal to sell you new devices, when you 53 * will add new protocol to your host, f.e. IPv6 8) 54 * 55 * CHECKSUM_UNNECESSARY is applicable to following protocols: 56 * TCP: IPv6 and IPv4. 57 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 58 * zero UDP checksum for either IPv4 or IPv6, the networking stack 59 * may perform further validation in this case. 60 * GRE: only if the checksum is present in the header. 61 * SCTP: indicates the CRC in SCTP header has been validated. 62 * 63 * skb->csum_level indicates the number of consecutive checksums found in 64 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 65 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 66 * and a device is able to verify the checksums for UDP (possibly zero), 67 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 68 * two. If the device were only able to verify the UDP checksum and not 69 * GRE, either because it doesn't support GRE checksum of because GRE 70 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 71 * not considered in this case). 72 * 73 * CHECKSUM_COMPLETE: 74 * 75 * This is the most generic way. The device supplied checksum of the _whole_ 76 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 77 * hardware doesn't need to parse L3/L4 headers to implement this. 78 * 79 * Note: Even if device supports only some protocols, but is able to produce 80 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 81 * 82 * CHECKSUM_PARTIAL: 83 * 84 * This is identical to the case for output below. This may occur on a packet 85 * received directly from another Linux OS, e.g., a virtualized Linux kernel 86 * on the same host. The packet can be treated in the same way as 87 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the 88 * checksum must be filled in by the OS or the hardware. 89 * 90 * B. Checksumming on output. 91 * 92 * CHECKSUM_NONE: 93 * 94 * The skb was already checksummed by the protocol, or a checksum is not 95 * required. 96 * 97 * CHECKSUM_PARTIAL: 98 * 99 * The device is required to checksum the packet as seen by hard_start_xmit() 100 * from skb->csum_start up to the end, and to record/write the checksum at 101 * offset skb->csum_start + skb->csum_offset. 102 * 103 * The device must show its capabilities in dev->features, set up at device 104 * setup time, e.g. netdev_features.h: 105 * 106 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything. 107 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over 108 * IPv4. Sigh. Vendors like this way for an unknown reason. 109 * Though, see comment above about CHECKSUM_UNNECESSARY. 8) 110 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead. 111 * NETIF_F_... - Well, you get the picture. 112 * 113 * CHECKSUM_UNNECESSARY: 114 * 115 * Normally, the device will do per protocol specific checksumming. Protocol 116 * implementations that do not want the NIC to perform the checksum 117 * calculation should use this flag in their outgoing skbs. 118 * 119 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC 120 * offload. Correspondingly, the FCoE protocol driver 121 * stack should use CHECKSUM_UNNECESSARY. 122 * 123 * Any questions? No questions, good. --ANK 124 */ 125 126 /* Don't change this without changing skb_csum_unnecessary! */ 127 #define CHECKSUM_NONE 0 128 #define CHECKSUM_UNNECESSARY 1 129 #define CHECKSUM_COMPLETE 2 130 #define CHECKSUM_PARTIAL 3 131 132 /* Maximum value in skb->csum_level */ 133 #define SKB_MAX_CSUM_LEVEL 3 134 135 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 136 #define SKB_WITH_OVERHEAD(X) \ 137 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 138 #define SKB_MAX_ORDER(X, ORDER) \ 139 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 140 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 141 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 142 143 /* return minimum truesize of one skb containing X bytes of data */ 144 #define SKB_TRUESIZE(X) ((X) + \ 145 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 146 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 147 148 struct net_device; 149 struct scatterlist; 150 struct pipe_inode_info; 151 152 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 153 struct nf_conntrack { 154 atomic_t use; 155 }; 156 #endif 157 158 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 159 struct nf_bridge_info { 160 atomic_t use; 161 unsigned int mask; 162 struct net_device *physindev; 163 struct net_device *physoutdev; 164 unsigned long data[32 / sizeof(unsigned long)]; 165 }; 166 #endif 167 168 struct sk_buff_head { 169 /* These two members must be first. */ 170 struct sk_buff *next; 171 struct sk_buff *prev; 172 173 __u32 qlen; 174 spinlock_t lock; 175 }; 176 177 struct sk_buff; 178 179 /* To allow 64K frame to be packed as single skb without frag_list we 180 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 181 * buffers which do not start on a page boundary. 182 * 183 * Since GRO uses frags we allocate at least 16 regardless of page 184 * size. 185 */ 186 #if (65536/PAGE_SIZE + 1) < 16 187 #define MAX_SKB_FRAGS 16UL 188 #else 189 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 190 #endif 191 192 typedef struct skb_frag_struct skb_frag_t; 193 194 struct skb_frag_struct { 195 struct { 196 struct page *p; 197 } page; 198 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 199 __u32 page_offset; 200 __u32 size; 201 #else 202 __u16 page_offset; 203 __u16 size; 204 #endif 205 }; 206 207 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 208 { 209 return frag->size; 210 } 211 212 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 213 { 214 frag->size = size; 215 } 216 217 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 218 { 219 frag->size += delta; 220 } 221 222 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 223 { 224 frag->size -= delta; 225 } 226 227 #define HAVE_HW_TIME_STAMP 228 229 /** 230 * struct skb_shared_hwtstamps - hardware time stamps 231 * @hwtstamp: hardware time stamp transformed into duration 232 * since arbitrary point in time 233 * 234 * Software time stamps generated by ktime_get_real() are stored in 235 * skb->tstamp. 236 * 237 * hwtstamps can only be compared against other hwtstamps from 238 * the same device. 239 * 240 * This structure is attached to packets as part of the 241 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 242 */ 243 struct skb_shared_hwtstamps { 244 ktime_t hwtstamp; 245 }; 246 247 /* Definitions for tx_flags in struct skb_shared_info */ 248 enum { 249 /* generate hardware time stamp */ 250 SKBTX_HW_TSTAMP = 1 << 0, 251 252 /* generate software time stamp when queueing packet to NIC */ 253 SKBTX_SW_TSTAMP = 1 << 1, 254 255 /* device driver is going to provide hardware time stamp */ 256 SKBTX_IN_PROGRESS = 1 << 2, 257 258 /* device driver supports TX zero-copy buffers */ 259 SKBTX_DEV_ZEROCOPY = 1 << 3, 260 261 /* generate wifi status information (where possible) */ 262 SKBTX_WIFI_STATUS = 1 << 4, 263 264 /* This indicates at least one fragment might be overwritten 265 * (as in vmsplice(), sendfile() ...) 266 * If we need to compute a TX checksum, we'll need to copy 267 * all frags to avoid possible bad checksum 268 */ 269 SKBTX_SHARED_FRAG = 1 << 5, 270 271 /* generate software time stamp when entering packet scheduling */ 272 SKBTX_SCHED_TSTAMP = 1 << 6, 273 274 /* generate software timestamp on peer data acknowledgment */ 275 SKBTX_ACK_TSTAMP = 1 << 7, 276 }; 277 278 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 279 SKBTX_SCHED_TSTAMP | \ 280 SKBTX_ACK_TSTAMP) 281 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 282 283 /* 284 * The callback notifies userspace to release buffers when skb DMA is done in 285 * lower device, the skb last reference should be 0 when calling this. 286 * The zerocopy_success argument is true if zero copy transmit occurred, 287 * false on data copy or out of memory error caused by data copy attempt. 288 * The ctx field is used to track device context. 289 * The desc field is used to track userspace buffer index. 290 */ 291 struct ubuf_info { 292 void (*callback)(struct ubuf_info *, bool zerocopy_success); 293 void *ctx; 294 unsigned long desc; 295 }; 296 297 /* This data is invariant across clones and lives at 298 * the end of the header data, ie. at skb->end. 299 */ 300 struct skb_shared_info { 301 unsigned char nr_frags; 302 __u8 tx_flags; 303 unsigned short gso_size; 304 /* Warning: this field is not always filled in (UFO)! */ 305 unsigned short gso_segs; 306 unsigned short gso_type; 307 struct sk_buff *frag_list; 308 struct skb_shared_hwtstamps hwtstamps; 309 u32 tskey; 310 __be32 ip6_frag_id; 311 312 /* 313 * Warning : all fields before dataref are cleared in __alloc_skb() 314 */ 315 atomic_t dataref; 316 317 /* Intermediate layers must ensure that destructor_arg 318 * remains valid until skb destructor */ 319 void * destructor_arg; 320 321 /* must be last field, see pskb_expand_head() */ 322 skb_frag_t frags[MAX_SKB_FRAGS]; 323 }; 324 325 /* We divide dataref into two halves. The higher 16 bits hold references 326 * to the payload part of skb->data. The lower 16 bits hold references to 327 * the entire skb->data. A clone of a headerless skb holds the length of 328 * the header in skb->hdr_len. 329 * 330 * All users must obey the rule that the skb->data reference count must be 331 * greater than or equal to the payload reference count. 332 * 333 * Holding a reference to the payload part means that the user does not 334 * care about modifications to the header part of skb->data. 335 */ 336 #define SKB_DATAREF_SHIFT 16 337 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 338 339 340 enum { 341 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 342 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 343 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 344 SKB_FCLONE_FREE, /* this companion fclone skb is available */ 345 }; 346 347 enum { 348 SKB_GSO_TCPV4 = 1 << 0, 349 SKB_GSO_UDP = 1 << 1, 350 351 /* This indicates the skb is from an untrusted source. */ 352 SKB_GSO_DODGY = 1 << 2, 353 354 /* This indicates the tcp segment has CWR set. */ 355 SKB_GSO_TCP_ECN = 1 << 3, 356 357 SKB_GSO_TCPV6 = 1 << 4, 358 359 SKB_GSO_FCOE = 1 << 5, 360 361 SKB_GSO_GRE = 1 << 6, 362 363 SKB_GSO_GRE_CSUM = 1 << 7, 364 365 SKB_GSO_IPIP = 1 << 8, 366 367 SKB_GSO_SIT = 1 << 9, 368 369 SKB_GSO_UDP_TUNNEL = 1 << 10, 370 371 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 372 373 SKB_GSO_MPLS = 1 << 12, 374 375 }; 376 377 #if BITS_PER_LONG > 32 378 #define NET_SKBUFF_DATA_USES_OFFSET 1 379 #endif 380 381 #ifdef NET_SKBUFF_DATA_USES_OFFSET 382 typedef unsigned int sk_buff_data_t; 383 #else 384 typedef unsigned char *sk_buff_data_t; 385 #endif 386 387 /** 388 * struct skb_mstamp - multi resolution time stamps 389 * @stamp_us: timestamp in us resolution 390 * @stamp_jiffies: timestamp in jiffies 391 */ 392 struct skb_mstamp { 393 union { 394 u64 v64; 395 struct { 396 u32 stamp_us; 397 u32 stamp_jiffies; 398 }; 399 }; 400 }; 401 402 /** 403 * skb_mstamp_get - get current timestamp 404 * @cl: place to store timestamps 405 */ 406 static inline void skb_mstamp_get(struct skb_mstamp *cl) 407 { 408 u64 val = local_clock(); 409 410 do_div(val, NSEC_PER_USEC); 411 cl->stamp_us = (u32)val; 412 cl->stamp_jiffies = (u32)jiffies; 413 } 414 415 /** 416 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 417 * @t1: pointer to newest sample 418 * @t0: pointer to oldest sample 419 */ 420 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 421 const struct skb_mstamp *t0) 422 { 423 s32 delta_us = t1->stamp_us - t0->stamp_us; 424 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 425 426 /* If delta_us is negative, this might be because interval is too big, 427 * or local_clock() drift is too big : fallback using jiffies. 428 */ 429 if (delta_us <= 0 || 430 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 431 432 delta_us = jiffies_to_usecs(delta_jiffies); 433 434 return delta_us; 435 } 436 437 438 /** 439 * struct sk_buff - socket buffer 440 * @next: Next buffer in list 441 * @prev: Previous buffer in list 442 * @tstamp: Time we arrived/left 443 * @sk: Socket we are owned by 444 * @dev: Device we arrived on/are leaving by 445 * @cb: Control buffer. Free for use by every layer. Put private vars here 446 * @_skb_refdst: destination entry (with norefcount bit) 447 * @sp: the security path, used for xfrm 448 * @len: Length of actual data 449 * @data_len: Data length 450 * @mac_len: Length of link layer header 451 * @hdr_len: writable header length of cloned skb 452 * @csum: Checksum (must include start/offset pair) 453 * @csum_start: Offset from skb->head where checksumming should start 454 * @csum_offset: Offset from csum_start where checksum should be stored 455 * @priority: Packet queueing priority 456 * @ignore_df: allow local fragmentation 457 * @cloned: Head may be cloned (check refcnt to be sure) 458 * @ip_summed: Driver fed us an IP checksum 459 * @nohdr: Payload reference only, must not modify header 460 * @nfctinfo: Relationship of this skb to the connection 461 * @pkt_type: Packet class 462 * @fclone: skbuff clone status 463 * @ipvs_property: skbuff is owned by ipvs 464 * @peeked: this packet has been seen already, so stats have been 465 * done for it, don't do them again 466 * @nf_trace: netfilter packet trace flag 467 * @protocol: Packet protocol from driver 468 * @destructor: Destruct function 469 * @nfct: Associated connection, if any 470 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 471 * @skb_iif: ifindex of device we arrived on 472 * @tc_index: Traffic control index 473 * @tc_verd: traffic control verdict 474 * @hash: the packet hash 475 * @queue_mapping: Queue mapping for multiqueue devices 476 * @xmit_more: More SKBs are pending for this queue 477 * @ndisc_nodetype: router type (from link layer) 478 * @ooo_okay: allow the mapping of a socket to a queue to be changed 479 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 480 * ports. 481 * @sw_hash: indicates hash was computed in software stack 482 * @wifi_acked_valid: wifi_acked was set 483 * @wifi_acked: whether frame was acked on wifi or not 484 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 485 * @napi_id: id of the NAPI struct this skb came from 486 * @secmark: security marking 487 * @mark: Generic packet mark 488 * @dropcount: total number of sk_receive_queue overflows 489 * @vlan_proto: vlan encapsulation protocol 490 * @vlan_tci: vlan tag control information 491 * @inner_protocol: Protocol (encapsulation) 492 * @inner_transport_header: Inner transport layer header (encapsulation) 493 * @inner_network_header: Network layer header (encapsulation) 494 * @inner_mac_header: Link layer header (encapsulation) 495 * @transport_header: Transport layer header 496 * @network_header: Network layer header 497 * @mac_header: Link layer header 498 * @tail: Tail pointer 499 * @end: End pointer 500 * @head: Head of buffer 501 * @data: Data head pointer 502 * @truesize: Buffer size 503 * @users: User count - see {datagram,tcp}.c 504 */ 505 506 struct sk_buff { 507 /* These two members must be first. */ 508 struct sk_buff *next; 509 struct sk_buff *prev; 510 511 union { 512 ktime_t tstamp; 513 struct skb_mstamp skb_mstamp; 514 }; 515 516 struct sock *sk; 517 struct net_device *dev; 518 519 /* 520 * This is the control buffer. It is free to use for every 521 * layer. Please put your private variables there. If you 522 * want to keep them across layers you have to do a skb_clone() 523 * first. This is owned by whoever has the skb queued ATM. 524 */ 525 char cb[48] __aligned(8); 526 527 unsigned long _skb_refdst; 528 void (*destructor)(struct sk_buff *skb); 529 #ifdef CONFIG_XFRM 530 struct sec_path *sp; 531 #endif 532 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 533 struct nf_conntrack *nfct; 534 #endif 535 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 536 struct nf_bridge_info *nf_bridge; 537 #endif 538 unsigned int len, 539 data_len; 540 __u16 mac_len, 541 hdr_len; 542 543 /* Following fields are _not_ copied in __copy_skb_header() 544 * Note that queue_mapping is here mostly to fill a hole. 545 */ 546 kmemcheck_bitfield_begin(flags1); 547 __u16 queue_mapping; 548 __u8 cloned:1, 549 nohdr:1, 550 fclone:2, 551 peeked:1, 552 head_frag:1, 553 xmit_more:1; 554 /* one bit hole */ 555 kmemcheck_bitfield_end(flags1); 556 557 /* fields enclosed in headers_start/headers_end are copied 558 * using a single memcpy() in __copy_skb_header() 559 */ 560 /* private: */ 561 __u32 headers_start[0]; 562 /* public: */ 563 564 /* if you move pkt_type around you also must adapt those constants */ 565 #ifdef __BIG_ENDIAN_BITFIELD 566 #define PKT_TYPE_MAX (7 << 5) 567 #else 568 #define PKT_TYPE_MAX 7 569 #endif 570 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 571 572 __u8 __pkt_type_offset[0]; 573 __u8 pkt_type:3; 574 __u8 pfmemalloc:1; 575 __u8 ignore_df:1; 576 __u8 nfctinfo:3; 577 578 __u8 nf_trace:1; 579 __u8 ip_summed:2; 580 __u8 ooo_okay:1; 581 __u8 l4_hash:1; 582 __u8 sw_hash:1; 583 __u8 wifi_acked_valid:1; 584 __u8 wifi_acked:1; 585 586 __u8 no_fcs:1; 587 /* Indicates the inner headers are valid in the skbuff. */ 588 __u8 encapsulation:1; 589 __u8 encap_hdr_csum:1; 590 __u8 csum_valid:1; 591 __u8 csum_complete_sw:1; 592 __u8 csum_level:2; 593 __u8 csum_bad:1; 594 595 #ifdef CONFIG_IPV6_NDISC_NODETYPE 596 __u8 ndisc_nodetype:2; 597 #endif 598 __u8 ipvs_property:1; 599 __u8 inner_protocol_type:1; 600 /* 4 or 6 bit hole */ 601 602 #ifdef CONFIG_NET_SCHED 603 __u16 tc_index; /* traffic control index */ 604 #ifdef CONFIG_NET_CLS_ACT 605 __u16 tc_verd; /* traffic control verdict */ 606 #endif 607 #endif 608 609 union { 610 __wsum csum; 611 struct { 612 __u16 csum_start; 613 __u16 csum_offset; 614 }; 615 }; 616 __u32 priority; 617 int skb_iif; 618 __u32 hash; 619 __be16 vlan_proto; 620 __u16 vlan_tci; 621 #ifdef CONFIG_NET_RX_BUSY_POLL 622 unsigned int napi_id; 623 #endif 624 #ifdef CONFIG_NETWORK_SECMARK 625 __u32 secmark; 626 #endif 627 union { 628 __u32 mark; 629 __u32 dropcount; 630 __u32 reserved_tailroom; 631 }; 632 633 union { 634 __be16 inner_protocol; 635 __u8 inner_ipproto; 636 }; 637 638 __u16 inner_transport_header; 639 __u16 inner_network_header; 640 __u16 inner_mac_header; 641 642 __be16 protocol; 643 __u16 transport_header; 644 __u16 network_header; 645 __u16 mac_header; 646 647 /* private: */ 648 __u32 headers_end[0]; 649 /* public: */ 650 651 /* These elements must be at the end, see alloc_skb() for details. */ 652 sk_buff_data_t tail; 653 sk_buff_data_t end; 654 unsigned char *head, 655 *data; 656 unsigned int truesize; 657 atomic_t users; 658 }; 659 660 #ifdef __KERNEL__ 661 /* 662 * Handling routines are only of interest to the kernel 663 */ 664 #include <linux/slab.h> 665 666 667 #define SKB_ALLOC_FCLONE 0x01 668 #define SKB_ALLOC_RX 0x02 669 670 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 671 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 672 { 673 return unlikely(skb->pfmemalloc); 674 } 675 676 /* 677 * skb might have a dst pointer attached, refcounted or not. 678 * _skb_refdst low order bit is set if refcount was _not_ taken 679 */ 680 #define SKB_DST_NOREF 1UL 681 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 682 683 /** 684 * skb_dst - returns skb dst_entry 685 * @skb: buffer 686 * 687 * Returns skb dst_entry, regardless of reference taken or not. 688 */ 689 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 690 { 691 /* If refdst was not refcounted, check we still are in a 692 * rcu_read_lock section 693 */ 694 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 695 !rcu_read_lock_held() && 696 !rcu_read_lock_bh_held()); 697 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 698 } 699 700 /** 701 * skb_dst_set - sets skb dst 702 * @skb: buffer 703 * @dst: dst entry 704 * 705 * Sets skb dst, assuming a reference was taken on dst and should 706 * be released by skb_dst_drop() 707 */ 708 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 709 { 710 skb->_skb_refdst = (unsigned long)dst; 711 } 712 713 void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst, 714 bool force); 715 716 /** 717 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 718 * @skb: buffer 719 * @dst: dst entry 720 * 721 * Sets skb dst, assuming a reference was not taken on dst. 722 * If dst entry is cached, we do not take reference and dst_release 723 * will be avoided by refdst_drop. If dst entry is not cached, we take 724 * reference, so that last dst_release can destroy the dst immediately. 725 */ 726 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 727 { 728 __skb_dst_set_noref(skb, dst, false); 729 } 730 731 /** 732 * skb_dst_set_noref_force - sets skb dst, without taking reference 733 * @skb: buffer 734 * @dst: dst entry 735 * 736 * Sets skb dst, assuming a reference was not taken on dst. 737 * No reference is taken and no dst_release will be called. While for 738 * cached dsts deferred reclaim is a basic feature, for entries that are 739 * not cached it is caller's job to guarantee that last dst_release for 740 * provided dst happens when nobody uses it, eg. after a RCU grace period. 741 */ 742 static inline void skb_dst_set_noref_force(struct sk_buff *skb, 743 struct dst_entry *dst) 744 { 745 __skb_dst_set_noref(skb, dst, true); 746 } 747 748 /** 749 * skb_dst_is_noref - Test if skb dst isn't refcounted 750 * @skb: buffer 751 */ 752 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 753 { 754 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 755 } 756 757 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 758 { 759 return (struct rtable *)skb_dst(skb); 760 } 761 762 void kfree_skb(struct sk_buff *skb); 763 void kfree_skb_list(struct sk_buff *segs); 764 void skb_tx_error(struct sk_buff *skb); 765 void consume_skb(struct sk_buff *skb); 766 void __kfree_skb(struct sk_buff *skb); 767 extern struct kmem_cache *skbuff_head_cache; 768 769 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 770 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 771 bool *fragstolen, int *delta_truesize); 772 773 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 774 int node); 775 struct sk_buff *build_skb(void *data, unsigned int frag_size); 776 static inline struct sk_buff *alloc_skb(unsigned int size, 777 gfp_t priority) 778 { 779 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 780 } 781 782 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 783 unsigned long data_len, 784 int max_page_order, 785 int *errcode, 786 gfp_t gfp_mask); 787 788 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 789 struct sk_buff_fclones { 790 struct sk_buff skb1; 791 792 struct sk_buff skb2; 793 794 atomic_t fclone_ref; 795 }; 796 797 /** 798 * skb_fclone_busy - check if fclone is busy 799 * @skb: buffer 800 * 801 * Returns true is skb is a fast clone, and its clone is not freed. 802 * Some drivers call skb_orphan() in their ndo_start_xmit(), 803 * so we also check that this didnt happen. 804 */ 805 static inline bool skb_fclone_busy(const struct sock *sk, 806 const struct sk_buff *skb) 807 { 808 const struct sk_buff_fclones *fclones; 809 810 fclones = container_of(skb, struct sk_buff_fclones, skb1); 811 812 return skb->fclone == SKB_FCLONE_ORIG && 813 fclones->skb2.fclone == SKB_FCLONE_CLONE && 814 fclones->skb2.sk == sk; 815 } 816 817 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 818 gfp_t priority) 819 { 820 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 821 } 822 823 struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 824 static inline struct sk_buff *alloc_skb_head(gfp_t priority) 825 { 826 return __alloc_skb_head(priority, -1); 827 } 828 829 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 830 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 831 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 832 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 833 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 834 gfp_t gfp_mask, bool fclone); 835 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 836 gfp_t gfp_mask) 837 { 838 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 839 } 840 841 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 842 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 843 unsigned int headroom); 844 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 845 int newtailroom, gfp_t priority); 846 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 847 int offset, int len); 848 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 849 int len); 850 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 851 int skb_pad(struct sk_buff *skb, int pad); 852 #define dev_kfree_skb(a) consume_skb(a) 853 854 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 855 int getfrag(void *from, char *to, int offset, 856 int len, int odd, struct sk_buff *skb), 857 void *from, int length); 858 859 struct skb_seq_state { 860 __u32 lower_offset; 861 __u32 upper_offset; 862 __u32 frag_idx; 863 __u32 stepped_offset; 864 struct sk_buff *root_skb; 865 struct sk_buff *cur_skb; 866 __u8 *frag_data; 867 }; 868 869 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 870 unsigned int to, struct skb_seq_state *st); 871 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 872 struct skb_seq_state *st); 873 void skb_abort_seq_read(struct skb_seq_state *st); 874 875 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 876 unsigned int to, struct ts_config *config, 877 struct ts_state *state); 878 879 /* 880 * Packet hash types specify the type of hash in skb_set_hash. 881 * 882 * Hash types refer to the protocol layer addresses which are used to 883 * construct a packet's hash. The hashes are used to differentiate or identify 884 * flows of the protocol layer for the hash type. Hash types are either 885 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 886 * 887 * Properties of hashes: 888 * 889 * 1) Two packets in different flows have different hash values 890 * 2) Two packets in the same flow should have the same hash value 891 * 892 * A hash at a higher layer is considered to be more specific. A driver should 893 * set the most specific hash possible. 894 * 895 * A driver cannot indicate a more specific hash than the layer at which a hash 896 * was computed. For instance an L3 hash cannot be set as an L4 hash. 897 * 898 * A driver may indicate a hash level which is less specific than the 899 * actual layer the hash was computed on. For instance, a hash computed 900 * at L4 may be considered an L3 hash. This should only be done if the 901 * driver can't unambiguously determine that the HW computed the hash at 902 * the higher layer. Note that the "should" in the second property above 903 * permits this. 904 */ 905 enum pkt_hash_types { 906 PKT_HASH_TYPE_NONE, /* Undefined type */ 907 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 908 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 909 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 910 }; 911 912 static inline void 913 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 914 { 915 skb->l4_hash = (type == PKT_HASH_TYPE_L4); 916 skb->sw_hash = 0; 917 skb->hash = hash; 918 } 919 920 void __skb_get_hash(struct sk_buff *skb); 921 static inline __u32 skb_get_hash(struct sk_buff *skb) 922 { 923 if (!skb->l4_hash && !skb->sw_hash) 924 __skb_get_hash(skb); 925 926 return skb->hash; 927 } 928 929 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 930 { 931 return skb->hash; 932 } 933 934 static inline void skb_clear_hash(struct sk_buff *skb) 935 { 936 skb->hash = 0; 937 skb->sw_hash = 0; 938 skb->l4_hash = 0; 939 } 940 941 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 942 { 943 if (!skb->l4_hash) 944 skb_clear_hash(skb); 945 } 946 947 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 948 { 949 to->hash = from->hash; 950 to->sw_hash = from->sw_hash; 951 to->l4_hash = from->l4_hash; 952 }; 953 954 #ifdef NET_SKBUFF_DATA_USES_OFFSET 955 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 956 { 957 return skb->head + skb->end; 958 } 959 960 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 961 { 962 return skb->end; 963 } 964 #else 965 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 966 { 967 return skb->end; 968 } 969 970 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 971 { 972 return skb->end - skb->head; 973 } 974 #endif 975 976 /* Internal */ 977 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 978 979 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 980 { 981 return &skb_shinfo(skb)->hwtstamps; 982 } 983 984 /** 985 * skb_queue_empty - check if a queue is empty 986 * @list: queue head 987 * 988 * Returns true if the queue is empty, false otherwise. 989 */ 990 static inline int skb_queue_empty(const struct sk_buff_head *list) 991 { 992 return list->next == (const struct sk_buff *) list; 993 } 994 995 /** 996 * skb_queue_is_last - check if skb is the last entry in the queue 997 * @list: queue head 998 * @skb: buffer 999 * 1000 * Returns true if @skb is the last buffer on the list. 1001 */ 1002 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1003 const struct sk_buff *skb) 1004 { 1005 return skb->next == (const struct sk_buff *) list; 1006 } 1007 1008 /** 1009 * skb_queue_is_first - check if skb is the first entry in the queue 1010 * @list: queue head 1011 * @skb: buffer 1012 * 1013 * Returns true if @skb is the first buffer on the list. 1014 */ 1015 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1016 const struct sk_buff *skb) 1017 { 1018 return skb->prev == (const struct sk_buff *) list; 1019 } 1020 1021 /** 1022 * skb_queue_next - return the next packet in the queue 1023 * @list: queue head 1024 * @skb: current buffer 1025 * 1026 * Return the next packet in @list after @skb. It is only valid to 1027 * call this if skb_queue_is_last() evaluates to false. 1028 */ 1029 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1030 const struct sk_buff *skb) 1031 { 1032 /* This BUG_ON may seem severe, but if we just return then we 1033 * are going to dereference garbage. 1034 */ 1035 BUG_ON(skb_queue_is_last(list, skb)); 1036 return skb->next; 1037 } 1038 1039 /** 1040 * skb_queue_prev - return the prev packet in the queue 1041 * @list: queue head 1042 * @skb: current buffer 1043 * 1044 * Return the prev packet in @list before @skb. It is only valid to 1045 * call this if skb_queue_is_first() evaluates to false. 1046 */ 1047 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1048 const struct sk_buff *skb) 1049 { 1050 /* This BUG_ON may seem severe, but if we just return then we 1051 * are going to dereference garbage. 1052 */ 1053 BUG_ON(skb_queue_is_first(list, skb)); 1054 return skb->prev; 1055 } 1056 1057 /** 1058 * skb_get - reference buffer 1059 * @skb: buffer to reference 1060 * 1061 * Makes another reference to a socket buffer and returns a pointer 1062 * to the buffer. 1063 */ 1064 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1065 { 1066 atomic_inc(&skb->users); 1067 return skb; 1068 } 1069 1070 /* 1071 * If users == 1, we are the only owner and are can avoid redundant 1072 * atomic change. 1073 */ 1074 1075 /** 1076 * skb_cloned - is the buffer a clone 1077 * @skb: buffer to check 1078 * 1079 * Returns true if the buffer was generated with skb_clone() and is 1080 * one of multiple shared copies of the buffer. Cloned buffers are 1081 * shared data so must not be written to under normal circumstances. 1082 */ 1083 static inline int skb_cloned(const struct sk_buff *skb) 1084 { 1085 return skb->cloned && 1086 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1087 } 1088 1089 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1090 { 1091 might_sleep_if(pri & __GFP_WAIT); 1092 1093 if (skb_cloned(skb)) 1094 return pskb_expand_head(skb, 0, 0, pri); 1095 1096 return 0; 1097 } 1098 1099 /** 1100 * skb_header_cloned - is the header a clone 1101 * @skb: buffer to check 1102 * 1103 * Returns true if modifying the header part of the buffer requires 1104 * the data to be copied. 1105 */ 1106 static inline int skb_header_cloned(const struct sk_buff *skb) 1107 { 1108 int dataref; 1109 1110 if (!skb->cloned) 1111 return 0; 1112 1113 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1114 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1115 return dataref != 1; 1116 } 1117 1118 /** 1119 * skb_header_release - release reference to header 1120 * @skb: buffer to operate on 1121 * 1122 * Drop a reference to the header part of the buffer. This is done 1123 * by acquiring a payload reference. You must not read from the header 1124 * part of skb->data after this. 1125 * Note : Check if you can use __skb_header_release() instead. 1126 */ 1127 static inline void skb_header_release(struct sk_buff *skb) 1128 { 1129 BUG_ON(skb->nohdr); 1130 skb->nohdr = 1; 1131 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1132 } 1133 1134 /** 1135 * __skb_header_release - release reference to header 1136 * @skb: buffer to operate on 1137 * 1138 * Variant of skb_header_release() assuming skb is private to caller. 1139 * We can avoid one atomic operation. 1140 */ 1141 static inline void __skb_header_release(struct sk_buff *skb) 1142 { 1143 skb->nohdr = 1; 1144 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1145 } 1146 1147 1148 /** 1149 * skb_shared - is the buffer shared 1150 * @skb: buffer to check 1151 * 1152 * Returns true if more than one person has a reference to this 1153 * buffer. 1154 */ 1155 static inline int skb_shared(const struct sk_buff *skb) 1156 { 1157 return atomic_read(&skb->users) != 1; 1158 } 1159 1160 /** 1161 * skb_share_check - check if buffer is shared and if so clone it 1162 * @skb: buffer to check 1163 * @pri: priority for memory allocation 1164 * 1165 * If the buffer is shared the buffer is cloned and the old copy 1166 * drops a reference. A new clone with a single reference is returned. 1167 * If the buffer is not shared the original buffer is returned. When 1168 * being called from interrupt status or with spinlocks held pri must 1169 * be GFP_ATOMIC. 1170 * 1171 * NULL is returned on a memory allocation failure. 1172 */ 1173 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1174 { 1175 might_sleep_if(pri & __GFP_WAIT); 1176 if (skb_shared(skb)) { 1177 struct sk_buff *nskb = skb_clone(skb, pri); 1178 1179 if (likely(nskb)) 1180 consume_skb(skb); 1181 else 1182 kfree_skb(skb); 1183 skb = nskb; 1184 } 1185 return skb; 1186 } 1187 1188 /* 1189 * Copy shared buffers into a new sk_buff. We effectively do COW on 1190 * packets to handle cases where we have a local reader and forward 1191 * and a couple of other messy ones. The normal one is tcpdumping 1192 * a packet thats being forwarded. 1193 */ 1194 1195 /** 1196 * skb_unshare - make a copy of a shared buffer 1197 * @skb: buffer to check 1198 * @pri: priority for memory allocation 1199 * 1200 * If the socket buffer is a clone then this function creates a new 1201 * copy of the data, drops a reference count on the old copy and returns 1202 * the new copy with the reference count at 1. If the buffer is not a clone 1203 * the original buffer is returned. When called with a spinlock held or 1204 * from interrupt state @pri must be %GFP_ATOMIC 1205 * 1206 * %NULL is returned on a memory allocation failure. 1207 */ 1208 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1209 gfp_t pri) 1210 { 1211 might_sleep_if(pri & __GFP_WAIT); 1212 if (skb_cloned(skb)) { 1213 struct sk_buff *nskb = skb_copy(skb, pri); 1214 1215 /* Free our shared copy */ 1216 if (likely(nskb)) 1217 consume_skb(skb); 1218 else 1219 kfree_skb(skb); 1220 skb = nskb; 1221 } 1222 return skb; 1223 } 1224 1225 /** 1226 * skb_peek - peek at the head of an &sk_buff_head 1227 * @list_: list to peek at 1228 * 1229 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1230 * be careful with this one. A peek leaves the buffer on the 1231 * list and someone else may run off with it. You must hold 1232 * the appropriate locks or have a private queue to do this. 1233 * 1234 * Returns %NULL for an empty list or a pointer to the head element. 1235 * The reference count is not incremented and the reference is therefore 1236 * volatile. Use with caution. 1237 */ 1238 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1239 { 1240 struct sk_buff *skb = list_->next; 1241 1242 if (skb == (struct sk_buff *)list_) 1243 skb = NULL; 1244 return skb; 1245 } 1246 1247 /** 1248 * skb_peek_next - peek skb following the given one from a queue 1249 * @skb: skb to start from 1250 * @list_: list to peek at 1251 * 1252 * Returns %NULL when the end of the list is met or a pointer to the 1253 * next element. The reference count is not incremented and the 1254 * reference is therefore volatile. Use with caution. 1255 */ 1256 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1257 const struct sk_buff_head *list_) 1258 { 1259 struct sk_buff *next = skb->next; 1260 1261 if (next == (struct sk_buff *)list_) 1262 next = NULL; 1263 return next; 1264 } 1265 1266 /** 1267 * skb_peek_tail - peek at the tail of an &sk_buff_head 1268 * @list_: list to peek at 1269 * 1270 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1271 * be careful with this one. A peek leaves the buffer on the 1272 * list and someone else may run off with it. You must hold 1273 * the appropriate locks or have a private queue to do this. 1274 * 1275 * Returns %NULL for an empty list or a pointer to the tail element. 1276 * The reference count is not incremented and the reference is therefore 1277 * volatile. Use with caution. 1278 */ 1279 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1280 { 1281 struct sk_buff *skb = list_->prev; 1282 1283 if (skb == (struct sk_buff *)list_) 1284 skb = NULL; 1285 return skb; 1286 1287 } 1288 1289 /** 1290 * skb_queue_len - get queue length 1291 * @list_: list to measure 1292 * 1293 * Return the length of an &sk_buff queue. 1294 */ 1295 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1296 { 1297 return list_->qlen; 1298 } 1299 1300 /** 1301 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1302 * @list: queue to initialize 1303 * 1304 * This initializes only the list and queue length aspects of 1305 * an sk_buff_head object. This allows to initialize the list 1306 * aspects of an sk_buff_head without reinitializing things like 1307 * the spinlock. It can also be used for on-stack sk_buff_head 1308 * objects where the spinlock is known to not be used. 1309 */ 1310 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1311 { 1312 list->prev = list->next = (struct sk_buff *)list; 1313 list->qlen = 0; 1314 } 1315 1316 /* 1317 * This function creates a split out lock class for each invocation; 1318 * this is needed for now since a whole lot of users of the skb-queue 1319 * infrastructure in drivers have different locking usage (in hardirq) 1320 * than the networking core (in softirq only). In the long run either the 1321 * network layer or drivers should need annotation to consolidate the 1322 * main types of usage into 3 classes. 1323 */ 1324 static inline void skb_queue_head_init(struct sk_buff_head *list) 1325 { 1326 spin_lock_init(&list->lock); 1327 __skb_queue_head_init(list); 1328 } 1329 1330 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1331 struct lock_class_key *class) 1332 { 1333 skb_queue_head_init(list); 1334 lockdep_set_class(&list->lock, class); 1335 } 1336 1337 /* 1338 * Insert an sk_buff on a list. 1339 * 1340 * The "__skb_xxxx()" functions are the non-atomic ones that 1341 * can only be called with interrupts disabled. 1342 */ 1343 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1344 struct sk_buff_head *list); 1345 static inline void __skb_insert(struct sk_buff *newsk, 1346 struct sk_buff *prev, struct sk_buff *next, 1347 struct sk_buff_head *list) 1348 { 1349 newsk->next = next; 1350 newsk->prev = prev; 1351 next->prev = prev->next = newsk; 1352 list->qlen++; 1353 } 1354 1355 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1356 struct sk_buff *prev, 1357 struct sk_buff *next) 1358 { 1359 struct sk_buff *first = list->next; 1360 struct sk_buff *last = list->prev; 1361 1362 first->prev = prev; 1363 prev->next = first; 1364 1365 last->next = next; 1366 next->prev = last; 1367 } 1368 1369 /** 1370 * skb_queue_splice - join two skb lists, this is designed for stacks 1371 * @list: the new list to add 1372 * @head: the place to add it in the first list 1373 */ 1374 static inline void skb_queue_splice(const struct sk_buff_head *list, 1375 struct sk_buff_head *head) 1376 { 1377 if (!skb_queue_empty(list)) { 1378 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1379 head->qlen += list->qlen; 1380 } 1381 } 1382 1383 /** 1384 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1385 * @list: the new list to add 1386 * @head: the place to add it in the first list 1387 * 1388 * The list at @list is reinitialised 1389 */ 1390 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1391 struct sk_buff_head *head) 1392 { 1393 if (!skb_queue_empty(list)) { 1394 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1395 head->qlen += list->qlen; 1396 __skb_queue_head_init(list); 1397 } 1398 } 1399 1400 /** 1401 * skb_queue_splice_tail - join two skb lists, each list being a queue 1402 * @list: the new list to add 1403 * @head: the place to add it in the first list 1404 */ 1405 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1406 struct sk_buff_head *head) 1407 { 1408 if (!skb_queue_empty(list)) { 1409 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1410 head->qlen += list->qlen; 1411 } 1412 } 1413 1414 /** 1415 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1416 * @list: the new list to add 1417 * @head: the place to add it in the first list 1418 * 1419 * Each of the lists is a queue. 1420 * The list at @list is reinitialised 1421 */ 1422 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1423 struct sk_buff_head *head) 1424 { 1425 if (!skb_queue_empty(list)) { 1426 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1427 head->qlen += list->qlen; 1428 __skb_queue_head_init(list); 1429 } 1430 } 1431 1432 /** 1433 * __skb_queue_after - queue a buffer at the list head 1434 * @list: list to use 1435 * @prev: place after this buffer 1436 * @newsk: buffer to queue 1437 * 1438 * Queue a buffer int the middle of a list. This function takes no locks 1439 * and you must therefore hold required locks before calling it. 1440 * 1441 * A buffer cannot be placed on two lists at the same time. 1442 */ 1443 static inline void __skb_queue_after(struct sk_buff_head *list, 1444 struct sk_buff *prev, 1445 struct sk_buff *newsk) 1446 { 1447 __skb_insert(newsk, prev, prev->next, list); 1448 } 1449 1450 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1451 struct sk_buff_head *list); 1452 1453 static inline void __skb_queue_before(struct sk_buff_head *list, 1454 struct sk_buff *next, 1455 struct sk_buff *newsk) 1456 { 1457 __skb_insert(newsk, next->prev, next, list); 1458 } 1459 1460 /** 1461 * __skb_queue_head - queue a buffer at the list head 1462 * @list: list to use 1463 * @newsk: buffer to queue 1464 * 1465 * Queue a buffer at the start of a list. This function takes no locks 1466 * and you must therefore hold required locks before calling it. 1467 * 1468 * A buffer cannot be placed on two lists at the same time. 1469 */ 1470 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1471 static inline void __skb_queue_head(struct sk_buff_head *list, 1472 struct sk_buff *newsk) 1473 { 1474 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1475 } 1476 1477 /** 1478 * __skb_queue_tail - queue a buffer at the list tail 1479 * @list: list to use 1480 * @newsk: buffer to queue 1481 * 1482 * Queue a buffer at the end of a list. This function takes no locks 1483 * and you must therefore hold required locks before calling it. 1484 * 1485 * A buffer cannot be placed on two lists at the same time. 1486 */ 1487 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1488 static inline void __skb_queue_tail(struct sk_buff_head *list, 1489 struct sk_buff *newsk) 1490 { 1491 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1492 } 1493 1494 /* 1495 * remove sk_buff from list. _Must_ be called atomically, and with 1496 * the list known.. 1497 */ 1498 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1499 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1500 { 1501 struct sk_buff *next, *prev; 1502 1503 list->qlen--; 1504 next = skb->next; 1505 prev = skb->prev; 1506 skb->next = skb->prev = NULL; 1507 next->prev = prev; 1508 prev->next = next; 1509 } 1510 1511 /** 1512 * __skb_dequeue - remove from the head of the queue 1513 * @list: list to dequeue from 1514 * 1515 * Remove the head of the list. This function does not take any locks 1516 * so must be used with appropriate locks held only. The head item is 1517 * returned or %NULL if the list is empty. 1518 */ 1519 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1520 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1521 { 1522 struct sk_buff *skb = skb_peek(list); 1523 if (skb) 1524 __skb_unlink(skb, list); 1525 return skb; 1526 } 1527 1528 /** 1529 * __skb_dequeue_tail - remove from the tail of the queue 1530 * @list: list to dequeue from 1531 * 1532 * Remove the tail of the list. This function does not take any locks 1533 * so must be used with appropriate locks held only. The tail item is 1534 * returned or %NULL if the list is empty. 1535 */ 1536 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1537 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1538 { 1539 struct sk_buff *skb = skb_peek_tail(list); 1540 if (skb) 1541 __skb_unlink(skb, list); 1542 return skb; 1543 } 1544 1545 1546 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1547 { 1548 return skb->data_len; 1549 } 1550 1551 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1552 { 1553 return skb->len - skb->data_len; 1554 } 1555 1556 static inline int skb_pagelen(const struct sk_buff *skb) 1557 { 1558 int i, len = 0; 1559 1560 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1561 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1562 return len + skb_headlen(skb); 1563 } 1564 1565 /** 1566 * __skb_fill_page_desc - initialise a paged fragment in an skb 1567 * @skb: buffer containing fragment to be initialised 1568 * @i: paged fragment index to initialise 1569 * @page: the page to use for this fragment 1570 * @off: the offset to the data with @page 1571 * @size: the length of the data 1572 * 1573 * Initialises the @i'th fragment of @skb to point to &size bytes at 1574 * offset @off within @page. 1575 * 1576 * Does not take any additional reference on the fragment. 1577 */ 1578 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1579 struct page *page, int off, int size) 1580 { 1581 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1582 1583 /* 1584 * Propagate page->pfmemalloc to the skb if we can. The problem is 1585 * that not all callers have unique ownership of the page. If 1586 * pfmemalloc is set, we check the mapping as a mapping implies 1587 * page->index is set (index and pfmemalloc share space). 1588 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1589 * do not lose pfmemalloc information as the pages would not be 1590 * allocated using __GFP_MEMALLOC. 1591 */ 1592 frag->page.p = page; 1593 frag->page_offset = off; 1594 skb_frag_size_set(frag, size); 1595 1596 page = compound_head(page); 1597 if (page->pfmemalloc && !page->mapping) 1598 skb->pfmemalloc = true; 1599 } 1600 1601 /** 1602 * skb_fill_page_desc - initialise a paged fragment in an skb 1603 * @skb: buffer containing fragment to be initialised 1604 * @i: paged fragment index to initialise 1605 * @page: the page to use for this fragment 1606 * @off: the offset to the data with @page 1607 * @size: the length of the data 1608 * 1609 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1610 * @skb to point to @size bytes at offset @off within @page. In 1611 * addition updates @skb such that @i is the last fragment. 1612 * 1613 * Does not take any additional reference on the fragment. 1614 */ 1615 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1616 struct page *page, int off, int size) 1617 { 1618 __skb_fill_page_desc(skb, i, page, off, size); 1619 skb_shinfo(skb)->nr_frags = i + 1; 1620 } 1621 1622 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1623 int size, unsigned int truesize); 1624 1625 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1626 unsigned int truesize); 1627 1628 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1629 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1630 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1631 1632 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1633 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1634 { 1635 return skb->head + skb->tail; 1636 } 1637 1638 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1639 { 1640 skb->tail = skb->data - skb->head; 1641 } 1642 1643 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1644 { 1645 skb_reset_tail_pointer(skb); 1646 skb->tail += offset; 1647 } 1648 1649 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1650 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1651 { 1652 return skb->tail; 1653 } 1654 1655 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1656 { 1657 skb->tail = skb->data; 1658 } 1659 1660 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1661 { 1662 skb->tail = skb->data + offset; 1663 } 1664 1665 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1666 1667 /* 1668 * Add data to an sk_buff 1669 */ 1670 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1671 unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1672 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1673 { 1674 unsigned char *tmp = skb_tail_pointer(skb); 1675 SKB_LINEAR_ASSERT(skb); 1676 skb->tail += len; 1677 skb->len += len; 1678 return tmp; 1679 } 1680 1681 unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1682 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1683 { 1684 skb->data -= len; 1685 skb->len += len; 1686 return skb->data; 1687 } 1688 1689 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1690 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1691 { 1692 skb->len -= len; 1693 BUG_ON(skb->len < skb->data_len); 1694 return skb->data += len; 1695 } 1696 1697 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1698 { 1699 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1700 } 1701 1702 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1703 1704 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1705 { 1706 if (len > skb_headlen(skb) && 1707 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1708 return NULL; 1709 skb->len -= len; 1710 return skb->data += len; 1711 } 1712 1713 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1714 { 1715 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1716 } 1717 1718 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1719 { 1720 if (likely(len <= skb_headlen(skb))) 1721 return 1; 1722 if (unlikely(len > skb->len)) 1723 return 0; 1724 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1725 } 1726 1727 /** 1728 * skb_headroom - bytes at buffer head 1729 * @skb: buffer to check 1730 * 1731 * Return the number of bytes of free space at the head of an &sk_buff. 1732 */ 1733 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1734 { 1735 return skb->data - skb->head; 1736 } 1737 1738 /** 1739 * skb_tailroom - bytes at buffer end 1740 * @skb: buffer to check 1741 * 1742 * Return the number of bytes of free space at the tail of an sk_buff 1743 */ 1744 static inline int skb_tailroom(const struct sk_buff *skb) 1745 { 1746 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1747 } 1748 1749 /** 1750 * skb_availroom - bytes at buffer end 1751 * @skb: buffer to check 1752 * 1753 * Return the number of bytes of free space at the tail of an sk_buff 1754 * allocated by sk_stream_alloc() 1755 */ 1756 static inline int skb_availroom(const struct sk_buff *skb) 1757 { 1758 if (skb_is_nonlinear(skb)) 1759 return 0; 1760 1761 return skb->end - skb->tail - skb->reserved_tailroom; 1762 } 1763 1764 /** 1765 * skb_reserve - adjust headroom 1766 * @skb: buffer to alter 1767 * @len: bytes to move 1768 * 1769 * Increase the headroom of an empty &sk_buff by reducing the tail 1770 * room. This is only allowed for an empty buffer. 1771 */ 1772 static inline void skb_reserve(struct sk_buff *skb, int len) 1773 { 1774 skb->data += len; 1775 skb->tail += len; 1776 } 1777 1778 #define ENCAP_TYPE_ETHER 0 1779 #define ENCAP_TYPE_IPPROTO 1 1780 1781 static inline void skb_set_inner_protocol(struct sk_buff *skb, 1782 __be16 protocol) 1783 { 1784 skb->inner_protocol = protocol; 1785 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 1786 } 1787 1788 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 1789 __u8 ipproto) 1790 { 1791 skb->inner_ipproto = ipproto; 1792 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 1793 } 1794 1795 static inline void skb_reset_inner_headers(struct sk_buff *skb) 1796 { 1797 skb->inner_mac_header = skb->mac_header; 1798 skb->inner_network_header = skb->network_header; 1799 skb->inner_transport_header = skb->transport_header; 1800 } 1801 1802 static inline void skb_reset_mac_len(struct sk_buff *skb) 1803 { 1804 skb->mac_len = skb->network_header - skb->mac_header; 1805 } 1806 1807 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1808 *skb) 1809 { 1810 return skb->head + skb->inner_transport_header; 1811 } 1812 1813 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1814 { 1815 skb->inner_transport_header = skb->data - skb->head; 1816 } 1817 1818 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1819 const int offset) 1820 { 1821 skb_reset_inner_transport_header(skb); 1822 skb->inner_transport_header += offset; 1823 } 1824 1825 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1826 { 1827 return skb->head + skb->inner_network_header; 1828 } 1829 1830 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1831 { 1832 skb->inner_network_header = skb->data - skb->head; 1833 } 1834 1835 static inline void skb_set_inner_network_header(struct sk_buff *skb, 1836 const int offset) 1837 { 1838 skb_reset_inner_network_header(skb); 1839 skb->inner_network_header += offset; 1840 } 1841 1842 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1843 { 1844 return skb->head + skb->inner_mac_header; 1845 } 1846 1847 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1848 { 1849 skb->inner_mac_header = skb->data - skb->head; 1850 } 1851 1852 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1853 const int offset) 1854 { 1855 skb_reset_inner_mac_header(skb); 1856 skb->inner_mac_header += offset; 1857 } 1858 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1859 { 1860 return skb->transport_header != (typeof(skb->transport_header))~0U; 1861 } 1862 1863 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1864 { 1865 return skb->head + skb->transport_header; 1866 } 1867 1868 static inline void skb_reset_transport_header(struct sk_buff *skb) 1869 { 1870 skb->transport_header = skb->data - skb->head; 1871 } 1872 1873 static inline void skb_set_transport_header(struct sk_buff *skb, 1874 const int offset) 1875 { 1876 skb_reset_transport_header(skb); 1877 skb->transport_header += offset; 1878 } 1879 1880 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1881 { 1882 return skb->head + skb->network_header; 1883 } 1884 1885 static inline void skb_reset_network_header(struct sk_buff *skb) 1886 { 1887 skb->network_header = skb->data - skb->head; 1888 } 1889 1890 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1891 { 1892 skb_reset_network_header(skb); 1893 skb->network_header += offset; 1894 } 1895 1896 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1897 { 1898 return skb->head + skb->mac_header; 1899 } 1900 1901 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1902 { 1903 return skb->mac_header != (typeof(skb->mac_header))~0U; 1904 } 1905 1906 static inline void skb_reset_mac_header(struct sk_buff *skb) 1907 { 1908 skb->mac_header = skb->data - skb->head; 1909 } 1910 1911 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1912 { 1913 skb_reset_mac_header(skb); 1914 skb->mac_header += offset; 1915 } 1916 1917 static inline void skb_pop_mac_header(struct sk_buff *skb) 1918 { 1919 skb->mac_header = skb->network_header; 1920 } 1921 1922 static inline void skb_probe_transport_header(struct sk_buff *skb, 1923 const int offset_hint) 1924 { 1925 struct flow_keys keys; 1926 1927 if (skb_transport_header_was_set(skb)) 1928 return; 1929 else if (skb_flow_dissect(skb, &keys)) 1930 skb_set_transport_header(skb, keys.thoff); 1931 else 1932 skb_set_transport_header(skb, offset_hint); 1933 } 1934 1935 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1936 { 1937 if (skb_mac_header_was_set(skb)) { 1938 const unsigned char *old_mac = skb_mac_header(skb); 1939 1940 skb_set_mac_header(skb, -skb->mac_len); 1941 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1942 } 1943 } 1944 1945 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1946 { 1947 return skb->csum_start - skb_headroom(skb); 1948 } 1949 1950 static inline int skb_transport_offset(const struct sk_buff *skb) 1951 { 1952 return skb_transport_header(skb) - skb->data; 1953 } 1954 1955 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1956 { 1957 return skb->transport_header - skb->network_header; 1958 } 1959 1960 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1961 { 1962 return skb->inner_transport_header - skb->inner_network_header; 1963 } 1964 1965 static inline int skb_network_offset(const struct sk_buff *skb) 1966 { 1967 return skb_network_header(skb) - skb->data; 1968 } 1969 1970 static inline int skb_inner_network_offset(const struct sk_buff *skb) 1971 { 1972 return skb_inner_network_header(skb) - skb->data; 1973 } 1974 1975 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1976 { 1977 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1978 } 1979 1980 /* 1981 * CPUs often take a performance hit when accessing unaligned memory 1982 * locations. The actual performance hit varies, it can be small if the 1983 * hardware handles it or large if we have to take an exception and fix it 1984 * in software. 1985 * 1986 * Since an ethernet header is 14 bytes network drivers often end up with 1987 * the IP header at an unaligned offset. The IP header can be aligned by 1988 * shifting the start of the packet by 2 bytes. Drivers should do this 1989 * with: 1990 * 1991 * skb_reserve(skb, NET_IP_ALIGN); 1992 * 1993 * The downside to this alignment of the IP header is that the DMA is now 1994 * unaligned. On some architectures the cost of an unaligned DMA is high 1995 * and this cost outweighs the gains made by aligning the IP header. 1996 * 1997 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1998 * to be overridden. 1999 */ 2000 #ifndef NET_IP_ALIGN 2001 #define NET_IP_ALIGN 2 2002 #endif 2003 2004 /* 2005 * The networking layer reserves some headroom in skb data (via 2006 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2007 * the header has to grow. In the default case, if the header has to grow 2008 * 32 bytes or less we avoid the reallocation. 2009 * 2010 * Unfortunately this headroom changes the DMA alignment of the resulting 2011 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2012 * on some architectures. An architecture can override this value, 2013 * perhaps setting it to a cacheline in size (since that will maintain 2014 * cacheline alignment of the DMA). It must be a power of 2. 2015 * 2016 * Various parts of the networking layer expect at least 32 bytes of 2017 * headroom, you should not reduce this. 2018 * 2019 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2020 * to reduce average number of cache lines per packet. 2021 * get_rps_cpus() for example only access one 64 bytes aligned block : 2022 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2023 */ 2024 #ifndef NET_SKB_PAD 2025 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2026 #endif 2027 2028 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2029 2030 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2031 { 2032 if (unlikely(skb_is_nonlinear(skb))) { 2033 WARN_ON(1); 2034 return; 2035 } 2036 skb->len = len; 2037 skb_set_tail_pointer(skb, len); 2038 } 2039 2040 void skb_trim(struct sk_buff *skb, unsigned int len); 2041 2042 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2043 { 2044 if (skb->data_len) 2045 return ___pskb_trim(skb, len); 2046 __skb_trim(skb, len); 2047 return 0; 2048 } 2049 2050 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2051 { 2052 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2053 } 2054 2055 /** 2056 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2057 * @skb: buffer to alter 2058 * @len: new length 2059 * 2060 * This is identical to pskb_trim except that the caller knows that 2061 * the skb is not cloned so we should never get an error due to out- 2062 * of-memory. 2063 */ 2064 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2065 { 2066 int err = pskb_trim(skb, len); 2067 BUG_ON(err); 2068 } 2069 2070 /** 2071 * skb_orphan - orphan a buffer 2072 * @skb: buffer to orphan 2073 * 2074 * If a buffer currently has an owner then we call the owner's 2075 * destructor function and make the @skb unowned. The buffer continues 2076 * to exist but is no longer charged to its former owner. 2077 */ 2078 static inline void skb_orphan(struct sk_buff *skb) 2079 { 2080 if (skb->destructor) { 2081 skb->destructor(skb); 2082 skb->destructor = NULL; 2083 skb->sk = NULL; 2084 } else { 2085 BUG_ON(skb->sk); 2086 } 2087 } 2088 2089 /** 2090 * skb_orphan_frags - orphan the frags contained in a buffer 2091 * @skb: buffer to orphan frags from 2092 * @gfp_mask: allocation mask for replacement pages 2093 * 2094 * For each frag in the SKB which needs a destructor (i.e. has an 2095 * owner) create a copy of that frag and release the original 2096 * page by calling the destructor. 2097 */ 2098 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2099 { 2100 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2101 return 0; 2102 return skb_copy_ubufs(skb, gfp_mask); 2103 } 2104 2105 /** 2106 * __skb_queue_purge - empty a list 2107 * @list: list to empty 2108 * 2109 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2110 * the list and one reference dropped. This function does not take the 2111 * list lock and the caller must hold the relevant locks to use it. 2112 */ 2113 void skb_queue_purge(struct sk_buff_head *list); 2114 static inline void __skb_queue_purge(struct sk_buff_head *list) 2115 { 2116 struct sk_buff *skb; 2117 while ((skb = __skb_dequeue(list)) != NULL) 2118 kfree_skb(skb); 2119 } 2120 2121 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 2122 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 2123 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 2124 2125 void *netdev_alloc_frag(unsigned int fragsz); 2126 2127 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2128 gfp_t gfp_mask); 2129 2130 /** 2131 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2132 * @dev: network device to receive on 2133 * @length: length to allocate 2134 * 2135 * Allocate a new &sk_buff and assign it a usage count of one. The 2136 * buffer has unspecified headroom built in. Users should allocate 2137 * the headroom they think they need without accounting for the 2138 * built in space. The built in space is used for optimisations. 2139 * 2140 * %NULL is returned if there is no free memory. Although this function 2141 * allocates memory it can be called from an interrupt. 2142 */ 2143 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2144 unsigned int length) 2145 { 2146 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2147 } 2148 2149 /* legacy helper around __netdev_alloc_skb() */ 2150 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2151 gfp_t gfp_mask) 2152 { 2153 return __netdev_alloc_skb(NULL, length, gfp_mask); 2154 } 2155 2156 /* legacy helper around netdev_alloc_skb() */ 2157 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2158 { 2159 return netdev_alloc_skb(NULL, length); 2160 } 2161 2162 2163 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2164 unsigned int length, gfp_t gfp) 2165 { 2166 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2167 2168 if (NET_IP_ALIGN && skb) 2169 skb_reserve(skb, NET_IP_ALIGN); 2170 return skb; 2171 } 2172 2173 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2174 unsigned int length) 2175 { 2176 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2177 } 2178 2179 /** 2180 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data 2181 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2182 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2183 * @order: size of the allocation 2184 * 2185 * Allocate a new page. 2186 * 2187 * %NULL is returned if there is no free memory. 2188 */ 2189 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 2190 struct sk_buff *skb, 2191 unsigned int order) 2192 { 2193 struct page *page; 2194 2195 gfp_mask |= __GFP_COLD; 2196 2197 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2198 gfp_mask |= __GFP_MEMALLOC; 2199 2200 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2201 if (skb && page && page->pfmemalloc) 2202 skb->pfmemalloc = true; 2203 2204 return page; 2205 } 2206 2207 /** 2208 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 2209 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2210 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2211 * 2212 * Allocate a new page. 2213 * 2214 * %NULL is returned if there is no free memory. 2215 */ 2216 static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 2217 struct sk_buff *skb) 2218 { 2219 return __skb_alloc_pages(gfp_mask, skb, 0); 2220 } 2221 2222 /** 2223 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2224 * @page: The page that was allocated from skb_alloc_page 2225 * @skb: The skb that may need pfmemalloc set 2226 */ 2227 static inline void skb_propagate_pfmemalloc(struct page *page, 2228 struct sk_buff *skb) 2229 { 2230 if (page && page->pfmemalloc) 2231 skb->pfmemalloc = true; 2232 } 2233 2234 /** 2235 * skb_frag_page - retrieve the page referred to by a paged fragment 2236 * @frag: the paged fragment 2237 * 2238 * Returns the &struct page associated with @frag. 2239 */ 2240 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2241 { 2242 return frag->page.p; 2243 } 2244 2245 /** 2246 * __skb_frag_ref - take an addition reference on a paged fragment. 2247 * @frag: the paged fragment 2248 * 2249 * Takes an additional reference on the paged fragment @frag. 2250 */ 2251 static inline void __skb_frag_ref(skb_frag_t *frag) 2252 { 2253 get_page(skb_frag_page(frag)); 2254 } 2255 2256 /** 2257 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2258 * @skb: the buffer 2259 * @f: the fragment offset. 2260 * 2261 * Takes an additional reference on the @f'th paged fragment of @skb. 2262 */ 2263 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2264 { 2265 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2266 } 2267 2268 /** 2269 * __skb_frag_unref - release a reference on a paged fragment. 2270 * @frag: the paged fragment 2271 * 2272 * Releases a reference on the paged fragment @frag. 2273 */ 2274 static inline void __skb_frag_unref(skb_frag_t *frag) 2275 { 2276 put_page(skb_frag_page(frag)); 2277 } 2278 2279 /** 2280 * skb_frag_unref - release a reference on a paged fragment of an skb. 2281 * @skb: the buffer 2282 * @f: the fragment offset 2283 * 2284 * Releases a reference on the @f'th paged fragment of @skb. 2285 */ 2286 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2287 { 2288 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2289 } 2290 2291 /** 2292 * skb_frag_address - gets the address of the data contained in a paged fragment 2293 * @frag: the paged fragment buffer 2294 * 2295 * Returns the address of the data within @frag. The page must already 2296 * be mapped. 2297 */ 2298 static inline void *skb_frag_address(const skb_frag_t *frag) 2299 { 2300 return page_address(skb_frag_page(frag)) + frag->page_offset; 2301 } 2302 2303 /** 2304 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2305 * @frag: the paged fragment buffer 2306 * 2307 * Returns the address of the data within @frag. Checks that the page 2308 * is mapped and returns %NULL otherwise. 2309 */ 2310 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2311 { 2312 void *ptr = page_address(skb_frag_page(frag)); 2313 if (unlikely(!ptr)) 2314 return NULL; 2315 2316 return ptr + frag->page_offset; 2317 } 2318 2319 /** 2320 * __skb_frag_set_page - sets the page contained in a paged fragment 2321 * @frag: the paged fragment 2322 * @page: the page to set 2323 * 2324 * Sets the fragment @frag to contain @page. 2325 */ 2326 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2327 { 2328 frag->page.p = page; 2329 } 2330 2331 /** 2332 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2333 * @skb: the buffer 2334 * @f: the fragment offset 2335 * @page: the page to set 2336 * 2337 * Sets the @f'th fragment of @skb to contain @page. 2338 */ 2339 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2340 struct page *page) 2341 { 2342 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2343 } 2344 2345 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2346 2347 /** 2348 * skb_frag_dma_map - maps a paged fragment via the DMA API 2349 * @dev: the device to map the fragment to 2350 * @frag: the paged fragment to map 2351 * @offset: the offset within the fragment (starting at the 2352 * fragment's own offset) 2353 * @size: the number of bytes to map 2354 * @dir: the direction of the mapping (%PCI_DMA_*) 2355 * 2356 * Maps the page associated with @frag to @device. 2357 */ 2358 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2359 const skb_frag_t *frag, 2360 size_t offset, size_t size, 2361 enum dma_data_direction dir) 2362 { 2363 return dma_map_page(dev, skb_frag_page(frag), 2364 frag->page_offset + offset, size, dir); 2365 } 2366 2367 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2368 gfp_t gfp_mask) 2369 { 2370 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2371 } 2372 2373 2374 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2375 gfp_t gfp_mask) 2376 { 2377 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2378 } 2379 2380 2381 /** 2382 * skb_clone_writable - is the header of a clone writable 2383 * @skb: buffer to check 2384 * @len: length up to which to write 2385 * 2386 * Returns true if modifying the header part of the cloned buffer 2387 * does not requires the data to be copied. 2388 */ 2389 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2390 { 2391 return !skb_header_cloned(skb) && 2392 skb_headroom(skb) + len <= skb->hdr_len; 2393 } 2394 2395 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2396 int cloned) 2397 { 2398 int delta = 0; 2399 2400 if (headroom > skb_headroom(skb)) 2401 delta = headroom - skb_headroom(skb); 2402 2403 if (delta || cloned) 2404 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2405 GFP_ATOMIC); 2406 return 0; 2407 } 2408 2409 /** 2410 * skb_cow - copy header of skb when it is required 2411 * @skb: buffer to cow 2412 * @headroom: needed headroom 2413 * 2414 * If the skb passed lacks sufficient headroom or its data part 2415 * is shared, data is reallocated. If reallocation fails, an error 2416 * is returned and original skb is not changed. 2417 * 2418 * The result is skb with writable area skb->head...skb->tail 2419 * and at least @headroom of space at head. 2420 */ 2421 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2422 { 2423 return __skb_cow(skb, headroom, skb_cloned(skb)); 2424 } 2425 2426 /** 2427 * skb_cow_head - skb_cow but only making the head writable 2428 * @skb: buffer to cow 2429 * @headroom: needed headroom 2430 * 2431 * This function is identical to skb_cow except that we replace the 2432 * skb_cloned check by skb_header_cloned. It should be used when 2433 * you only need to push on some header and do not need to modify 2434 * the data. 2435 */ 2436 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2437 { 2438 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2439 } 2440 2441 /** 2442 * skb_padto - pad an skbuff up to a minimal size 2443 * @skb: buffer to pad 2444 * @len: minimal length 2445 * 2446 * Pads up a buffer to ensure the trailing bytes exist and are 2447 * blanked. If the buffer already contains sufficient data it 2448 * is untouched. Otherwise it is extended. Returns zero on 2449 * success. The skb is freed on error. 2450 */ 2451 2452 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2453 { 2454 unsigned int size = skb->len; 2455 if (likely(size >= len)) 2456 return 0; 2457 return skb_pad(skb, len - size); 2458 } 2459 2460 static inline int skb_add_data(struct sk_buff *skb, 2461 char __user *from, int copy) 2462 { 2463 const int off = skb->len; 2464 2465 if (skb->ip_summed == CHECKSUM_NONE) { 2466 int err = 0; 2467 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2468 copy, 0, &err); 2469 if (!err) { 2470 skb->csum = csum_block_add(skb->csum, csum, off); 2471 return 0; 2472 } 2473 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2474 return 0; 2475 2476 __skb_trim(skb, off); 2477 return -EFAULT; 2478 } 2479 2480 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2481 const struct page *page, int off) 2482 { 2483 if (i) { 2484 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2485 2486 return page == skb_frag_page(frag) && 2487 off == frag->page_offset + skb_frag_size(frag); 2488 } 2489 return false; 2490 } 2491 2492 static inline int __skb_linearize(struct sk_buff *skb) 2493 { 2494 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2495 } 2496 2497 /** 2498 * skb_linearize - convert paged skb to linear one 2499 * @skb: buffer to linarize 2500 * 2501 * If there is no free memory -ENOMEM is returned, otherwise zero 2502 * is returned and the old skb data released. 2503 */ 2504 static inline int skb_linearize(struct sk_buff *skb) 2505 { 2506 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2507 } 2508 2509 /** 2510 * skb_has_shared_frag - can any frag be overwritten 2511 * @skb: buffer to test 2512 * 2513 * Return true if the skb has at least one frag that might be modified 2514 * by an external entity (as in vmsplice()/sendfile()) 2515 */ 2516 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2517 { 2518 return skb_is_nonlinear(skb) && 2519 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2520 } 2521 2522 /** 2523 * skb_linearize_cow - make sure skb is linear and writable 2524 * @skb: buffer to process 2525 * 2526 * If there is no free memory -ENOMEM is returned, otherwise zero 2527 * is returned and the old skb data released. 2528 */ 2529 static inline int skb_linearize_cow(struct sk_buff *skb) 2530 { 2531 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2532 __skb_linearize(skb) : 0; 2533 } 2534 2535 /** 2536 * skb_postpull_rcsum - update checksum for received skb after pull 2537 * @skb: buffer to update 2538 * @start: start of data before pull 2539 * @len: length of data pulled 2540 * 2541 * After doing a pull on a received packet, you need to call this to 2542 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2543 * CHECKSUM_NONE so that it can be recomputed from scratch. 2544 */ 2545 2546 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2547 const void *start, unsigned int len) 2548 { 2549 if (skb->ip_summed == CHECKSUM_COMPLETE) 2550 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2551 } 2552 2553 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2554 2555 /** 2556 * pskb_trim_rcsum - trim received skb and update checksum 2557 * @skb: buffer to trim 2558 * @len: new length 2559 * 2560 * This is exactly the same as pskb_trim except that it ensures the 2561 * checksum of received packets are still valid after the operation. 2562 */ 2563 2564 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2565 { 2566 if (likely(len >= skb->len)) 2567 return 0; 2568 if (skb->ip_summed == CHECKSUM_COMPLETE) 2569 skb->ip_summed = CHECKSUM_NONE; 2570 return __pskb_trim(skb, len); 2571 } 2572 2573 #define skb_queue_walk(queue, skb) \ 2574 for (skb = (queue)->next; \ 2575 skb != (struct sk_buff *)(queue); \ 2576 skb = skb->next) 2577 2578 #define skb_queue_walk_safe(queue, skb, tmp) \ 2579 for (skb = (queue)->next, tmp = skb->next; \ 2580 skb != (struct sk_buff *)(queue); \ 2581 skb = tmp, tmp = skb->next) 2582 2583 #define skb_queue_walk_from(queue, skb) \ 2584 for (; skb != (struct sk_buff *)(queue); \ 2585 skb = skb->next) 2586 2587 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 2588 for (tmp = skb->next; \ 2589 skb != (struct sk_buff *)(queue); \ 2590 skb = tmp, tmp = skb->next) 2591 2592 #define skb_queue_reverse_walk(queue, skb) \ 2593 for (skb = (queue)->prev; \ 2594 skb != (struct sk_buff *)(queue); \ 2595 skb = skb->prev) 2596 2597 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2598 for (skb = (queue)->prev, tmp = skb->prev; \ 2599 skb != (struct sk_buff *)(queue); \ 2600 skb = tmp, tmp = skb->prev) 2601 2602 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2603 for (tmp = skb->prev; \ 2604 skb != (struct sk_buff *)(queue); \ 2605 skb = tmp, tmp = skb->prev) 2606 2607 static inline bool skb_has_frag_list(const struct sk_buff *skb) 2608 { 2609 return skb_shinfo(skb)->frag_list != NULL; 2610 } 2611 2612 static inline void skb_frag_list_init(struct sk_buff *skb) 2613 { 2614 skb_shinfo(skb)->frag_list = NULL; 2615 } 2616 2617 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2618 { 2619 frag->next = skb_shinfo(skb)->frag_list; 2620 skb_shinfo(skb)->frag_list = frag; 2621 } 2622 2623 #define skb_walk_frags(skb, iter) \ 2624 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2625 2626 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2627 int *peeked, int *off, int *err); 2628 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2629 int *err); 2630 unsigned int datagram_poll(struct file *file, struct socket *sock, 2631 struct poll_table_struct *wait); 2632 int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, 2633 struct iovec *to, int size); 2634 int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen, 2635 struct iovec *iov); 2636 int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset, 2637 const struct iovec *from, int from_offset, 2638 int len); 2639 int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm, 2640 int offset, size_t count); 2641 int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset, 2642 const struct iovec *to, int to_offset, 2643 int size); 2644 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2645 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2646 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2647 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2648 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2649 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2650 int len, __wsum csum); 2651 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 2652 struct pipe_inode_info *pipe, unsigned int len, 2653 unsigned int flags); 2654 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2655 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 2656 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 2657 int len, int hlen); 2658 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2659 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2660 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2661 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 2662 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2663 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 2664 2665 struct skb_checksum_ops { 2666 __wsum (*update)(const void *mem, int len, __wsum wsum); 2667 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2668 }; 2669 2670 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2671 __wsum csum, const struct skb_checksum_ops *ops); 2672 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2673 __wsum csum); 2674 2675 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset, 2676 int len, void *data, int hlen, void *buffer) 2677 { 2678 if (hlen - offset >= len) 2679 return data + offset; 2680 2681 if (!skb || 2682 skb_copy_bits(skb, offset, buffer, len) < 0) 2683 return NULL; 2684 2685 return buffer; 2686 } 2687 2688 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2689 int len, void *buffer) 2690 { 2691 return __skb_header_pointer(skb, offset, len, skb->data, 2692 skb_headlen(skb), buffer); 2693 } 2694 2695 /** 2696 * skb_needs_linearize - check if we need to linearize a given skb 2697 * depending on the given device features. 2698 * @skb: socket buffer to check 2699 * @features: net device features 2700 * 2701 * Returns true if either: 2702 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2703 * 2. skb is fragmented and the device does not support SG. 2704 */ 2705 static inline bool skb_needs_linearize(struct sk_buff *skb, 2706 netdev_features_t features) 2707 { 2708 return skb_is_nonlinear(skb) && 2709 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 2710 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 2711 } 2712 2713 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2714 void *to, 2715 const unsigned int len) 2716 { 2717 memcpy(to, skb->data, len); 2718 } 2719 2720 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2721 const int offset, void *to, 2722 const unsigned int len) 2723 { 2724 memcpy(to, skb->data + offset, len); 2725 } 2726 2727 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2728 const void *from, 2729 const unsigned int len) 2730 { 2731 memcpy(skb->data, from, len); 2732 } 2733 2734 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2735 const int offset, 2736 const void *from, 2737 const unsigned int len) 2738 { 2739 memcpy(skb->data + offset, from, len); 2740 } 2741 2742 void skb_init(void); 2743 2744 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2745 { 2746 return skb->tstamp; 2747 } 2748 2749 /** 2750 * skb_get_timestamp - get timestamp from a skb 2751 * @skb: skb to get stamp from 2752 * @stamp: pointer to struct timeval to store stamp in 2753 * 2754 * Timestamps are stored in the skb as offsets to a base timestamp. 2755 * This function converts the offset back to a struct timeval and stores 2756 * it in stamp. 2757 */ 2758 static inline void skb_get_timestamp(const struct sk_buff *skb, 2759 struct timeval *stamp) 2760 { 2761 *stamp = ktime_to_timeval(skb->tstamp); 2762 } 2763 2764 static inline void skb_get_timestampns(const struct sk_buff *skb, 2765 struct timespec *stamp) 2766 { 2767 *stamp = ktime_to_timespec(skb->tstamp); 2768 } 2769 2770 static inline void __net_timestamp(struct sk_buff *skb) 2771 { 2772 skb->tstamp = ktime_get_real(); 2773 } 2774 2775 static inline ktime_t net_timedelta(ktime_t t) 2776 { 2777 return ktime_sub(ktime_get_real(), t); 2778 } 2779 2780 static inline ktime_t net_invalid_timestamp(void) 2781 { 2782 return ktime_set(0, 0); 2783 } 2784 2785 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 2786 2787 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2788 2789 void skb_clone_tx_timestamp(struct sk_buff *skb); 2790 bool skb_defer_rx_timestamp(struct sk_buff *skb); 2791 2792 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2793 2794 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2795 { 2796 } 2797 2798 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2799 { 2800 return false; 2801 } 2802 2803 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2804 2805 /** 2806 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2807 * 2808 * PHY drivers may accept clones of transmitted packets for 2809 * timestamping via their phy_driver.txtstamp method. These drivers 2810 * must call this function to return the skb back to the stack, with 2811 * or without a timestamp. 2812 * 2813 * @skb: clone of the the original outgoing packet 2814 * @hwtstamps: hardware time stamps, may be NULL if not available 2815 * 2816 */ 2817 void skb_complete_tx_timestamp(struct sk_buff *skb, 2818 struct skb_shared_hwtstamps *hwtstamps); 2819 2820 void __skb_tstamp_tx(struct sk_buff *orig_skb, 2821 struct skb_shared_hwtstamps *hwtstamps, 2822 struct sock *sk, int tstype); 2823 2824 /** 2825 * skb_tstamp_tx - queue clone of skb with send time stamps 2826 * @orig_skb: the original outgoing packet 2827 * @hwtstamps: hardware time stamps, may be NULL if not available 2828 * 2829 * If the skb has a socket associated, then this function clones the 2830 * skb (thus sharing the actual data and optional structures), stores 2831 * the optional hardware time stamping information (if non NULL) or 2832 * generates a software time stamp (otherwise), then queues the clone 2833 * to the error queue of the socket. Errors are silently ignored. 2834 */ 2835 void skb_tstamp_tx(struct sk_buff *orig_skb, 2836 struct skb_shared_hwtstamps *hwtstamps); 2837 2838 static inline void sw_tx_timestamp(struct sk_buff *skb) 2839 { 2840 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2841 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2842 skb_tstamp_tx(skb, NULL); 2843 } 2844 2845 /** 2846 * skb_tx_timestamp() - Driver hook for transmit timestamping 2847 * 2848 * Ethernet MAC Drivers should call this function in their hard_xmit() 2849 * function immediately before giving the sk_buff to the MAC hardware. 2850 * 2851 * Specifically, one should make absolutely sure that this function is 2852 * called before TX completion of this packet can trigger. Otherwise 2853 * the packet could potentially already be freed. 2854 * 2855 * @skb: A socket buffer. 2856 */ 2857 static inline void skb_tx_timestamp(struct sk_buff *skb) 2858 { 2859 skb_clone_tx_timestamp(skb); 2860 sw_tx_timestamp(skb); 2861 } 2862 2863 /** 2864 * skb_complete_wifi_ack - deliver skb with wifi status 2865 * 2866 * @skb: the original outgoing packet 2867 * @acked: ack status 2868 * 2869 */ 2870 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2871 2872 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2873 __sum16 __skb_checksum_complete(struct sk_buff *skb); 2874 2875 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2876 { 2877 return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid); 2878 } 2879 2880 /** 2881 * skb_checksum_complete - Calculate checksum of an entire packet 2882 * @skb: packet to process 2883 * 2884 * This function calculates the checksum over the entire packet plus 2885 * the value of skb->csum. The latter can be used to supply the 2886 * checksum of a pseudo header as used by TCP/UDP. It returns the 2887 * checksum. 2888 * 2889 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2890 * this function can be used to verify that checksum on received 2891 * packets. In that case the function should return zero if the 2892 * checksum is correct. In particular, this function will return zero 2893 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2894 * hardware has already verified the correctness of the checksum. 2895 */ 2896 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2897 { 2898 return skb_csum_unnecessary(skb) ? 2899 0 : __skb_checksum_complete(skb); 2900 } 2901 2902 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 2903 { 2904 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2905 if (skb->csum_level == 0) 2906 skb->ip_summed = CHECKSUM_NONE; 2907 else 2908 skb->csum_level--; 2909 } 2910 } 2911 2912 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 2913 { 2914 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2915 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 2916 skb->csum_level++; 2917 } else if (skb->ip_summed == CHECKSUM_NONE) { 2918 skb->ip_summed = CHECKSUM_UNNECESSARY; 2919 skb->csum_level = 0; 2920 } 2921 } 2922 2923 static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 2924 { 2925 /* Mark current checksum as bad (typically called from GRO 2926 * path). In the case that ip_summed is CHECKSUM_NONE 2927 * this must be the first checksum encountered in the packet. 2928 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 2929 * checksum after the last one validated. For UDP, a zero 2930 * checksum can not be marked as bad. 2931 */ 2932 2933 if (skb->ip_summed == CHECKSUM_NONE || 2934 skb->ip_summed == CHECKSUM_UNNECESSARY) 2935 skb->csum_bad = 1; 2936 } 2937 2938 /* Check if we need to perform checksum complete validation. 2939 * 2940 * Returns true if checksum complete is needed, false otherwise 2941 * (either checksum is unnecessary or zero checksum is allowed). 2942 */ 2943 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 2944 bool zero_okay, 2945 __sum16 check) 2946 { 2947 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 2948 skb->csum_valid = 1; 2949 __skb_decr_checksum_unnecessary(skb); 2950 return false; 2951 } 2952 2953 return true; 2954 } 2955 2956 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly 2957 * in checksum_init. 2958 */ 2959 #define CHECKSUM_BREAK 76 2960 2961 /* Validate (init) checksum based on checksum complete. 2962 * 2963 * Return values: 2964 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 2965 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 2966 * checksum is stored in skb->csum for use in __skb_checksum_complete 2967 * non-zero: value of invalid checksum 2968 * 2969 */ 2970 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 2971 bool complete, 2972 __wsum psum) 2973 { 2974 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2975 if (!csum_fold(csum_add(psum, skb->csum))) { 2976 skb->csum_valid = 1; 2977 return 0; 2978 } 2979 } else if (skb->csum_bad) { 2980 /* ip_summed == CHECKSUM_NONE in this case */ 2981 return 1; 2982 } 2983 2984 skb->csum = psum; 2985 2986 if (complete || skb->len <= CHECKSUM_BREAK) { 2987 __sum16 csum; 2988 2989 csum = __skb_checksum_complete(skb); 2990 skb->csum_valid = !csum; 2991 return csum; 2992 } 2993 2994 return 0; 2995 } 2996 2997 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 2998 { 2999 return 0; 3000 } 3001 3002 /* Perform checksum validate (init). Note that this is a macro since we only 3003 * want to calculate the pseudo header which is an input function if necessary. 3004 * First we try to validate without any computation (checksum unnecessary) and 3005 * then calculate based on checksum complete calling the function to compute 3006 * pseudo header. 3007 * 3008 * Return values: 3009 * 0: checksum is validated or try to in skb_checksum_complete 3010 * non-zero: value of invalid checksum 3011 */ 3012 #define __skb_checksum_validate(skb, proto, complete, \ 3013 zero_okay, check, compute_pseudo) \ 3014 ({ \ 3015 __sum16 __ret = 0; \ 3016 skb->csum_valid = 0; \ 3017 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3018 __ret = __skb_checksum_validate_complete(skb, \ 3019 complete, compute_pseudo(skb, proto)); \ 3020 __ret; \ 3021 }) 3022 3023 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3024 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3025 3026 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3027 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3028 3029 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3030 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3031 3032 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3033 compute_pseudo) \ 3034 __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo) 3035 3036 #define skb_checksum_simple_validate(skb) \ 3037 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3038 3039 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3040 { 3041 return (skb->ip_summed == CHECKSUM_NONE && 3042 skb->csum_valid && !skb->csum_bad); 3043 } 3044 3045 static inline void __skb_checksum_convert(struct sk_buff *skb, 3046 __sum16 check, __wsum pseudo) 3047 { 3048 skb->csum = ~pseudo; 3049 skb->ip_summed = CHECKSUM_COMPLETE; 3050 } 3051 3052 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3053 do { \ 3054 if (__skb_checksum_convert_check(skb)) \ 3055 __skb_checksum_convert(skb, check, \ 3056 compute_pseudo(skb, proto)); \ 3057 } while (0) 3058 3059 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3060 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3061 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3062 { 3063 if (nfct && atomic_dec_and_test(&nfct->use)) 3064 nf_conntrack_destroy(nfct); 3065 } 3066 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3067 { 3068 if (nfct) 3069 atomic_inc(&nfct->use); 3070 } 3071 #endif 3072 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3073 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3074 { 3075 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3076 kfree(nf_bridge); 3077 } 3078 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3079 { 3080 if (nf_bridge) 3081 atomic_inc(&nf_bridge->use); 3082 } 3083 #endif /* CONFIG_BRIDGE_NETFILTER */ 3084 static inline void nf_reset(struct sk_buff *skb) 3085 { 3086 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3087 nf_conntrack_put(skb->nfct); 3088 skb->nfct = NULL; 3089 #endif 3090 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3091 nf_bridge_put(skb->nf_bridge); 3092 skb->nf_bridge = NULL; 3093 #endif 3094 } 3095 3096 static inline void nf_reset_trace(struct sk_buff *skb) 3097 { 3098 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3099 skb->nf_trace = 0; 3100 #endif 3101 } 3102 3103 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3104 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3105 bool copy) 3106 { 3107 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3108 dst->nfct = src->nfct; 3109 nf_conntrack_get(src->nfct); 3110 if (copy) 3111 dst->nfctinfo = src->nfctinfo; 3112 #endif 3113 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3114 dst->nf_bridge = src->nf_bridge; 3115 nf_bridge_get(src->nf_bridge); 3116 #endif 3117 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3118 if (copy) 3119 dst->nf_trace = src->nf_trace; 3120 #endif 3121 } 3122 3123 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3124 { 3125 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3126 nf_conntrack_put(dst->nfct); 3127 #endif 3128 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3129 nf_bridge_put(dst->nf_bridge); 3130 #endif 3131 __nf_copy(dst, src, true); 3132 } 3133 3134 #ifdef CONFIG_NETWORK_SECMARK 3135 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3136 { 3137 to->secmark = from->secmark; 3138 } 3139 3140 static inline void skb_init_secmark(struct sk_buff *skb) 3141 { 3142 skb->secmark = 0; 3143 } 3144 #else 3145 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3146 { } 3147 3148 static inline void skb_init_secmark(struct sk_buff *skb) 3149 { } 3150 #endif 3151 3152 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3153 { 3154 return !skb->destructor && 3155 #if IS_ENABLED(CONFIG_XFRM) 3156 !skb->sp && 3157 #endif 3158 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3159 !skb->nfct && 3160 #endif 3161 !skb->_skb_refdst && 3162 !skb_has_frag_list(skb); 3163 } 3164 3165 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3166 { 3167 skb->queue_mapping = queue_mapping; 3168 } 3169 3170 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3171 { 3172 return skb->queue_mapping; 3173 } 3174 3175 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3176 { 3177 to->queue_mapping = from->queue_mapping; 3178 } 3179 3180 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3181 { 3182 skb->queue_mapping = rx_queue + 1; 3183 } 3184 3185 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3186 { 3187 return skb->queue_mapping - 1; 3188 } 3189 3190 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3191 { 3192 return skb->queue_mapping != 0; 3193 } 3194 3195 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3196 unsigned int num_tx_queues); 3197 3198 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3199 { 3200 #ifdef CONFIG_XFRM 3201 return skb->sp; 3202 #else 3203 return NULL; 3204 #endif 3205 } 3206 3207 /* Keeps track of mac header offset relative to skb->head. 3208 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3209 * For non-tunnel skb it points to skb_mac_header() and for 3210 * tunnel skb it points to outer mac header. 3211 * Keeps track of level of encapsulation of network headers. 3212 */ 3213 struct skb_gso_cb { 3214 int mac_offset; 3215 int encap_level; 3216 __u16 csum_start; 3217 }; 3218 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 3219 3220 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3221 { 3222 return (skb_mac_header(inner_skb) - inner_skb->head) - 3223 SKB_GSO_CB(inner_skb)->mac_offset; 3224 } 3225 3226 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3227 { 3228 int new_headroom, headroom; 3229 int ret; 3230 3231 headroom = skb_headroom(skb); 3232 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3233 if (ret) 3234 return ret; 3235 3236 new_headroom = skb_headroom(skb); 3237 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3238 return 0; 3239 } 3240 3241 /* Compute the checksum for a gso segment. First compute the checksum value 3242 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3243 * then add in skb->csum (checksum from csum_start to end of packet). 3244 * skb->csum and csum_start are then updated to reflect the checksum of the 3245 * resultant packet starting from the transport header-- the resultant checksum 3246 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3247 * header. 3248 */ 3249 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3250 { 3251 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) - 3252 skb_transport_offset(skb); 3253 __u16 csum; 3254 3255 csum = csum_fold(csum_partial(skb_transport_header(skb), 3256 plen, skb->csum)); 3257 skb->csum = res; 3258 SKB_GSO_CB(skb)->csum_start -= plen; 3259 3260 return csum; 3261 } 3262 3263 static inline bool skb_is_gso(const struct sk_buff *skb) 3264 { 3265 return skb_shinfo(skb)->gso_size; 3266 } 3267 3268 /* Note: Should be called only if skb_is_gso(skb) is true */ 3269 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3270 { 3271 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3272 } 3273 3274 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3275 3276 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3277 { 3278 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3279 * wanted then gso_type will be set. */ 3280 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3281 3282 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3283 unlikely(shinfo->gso_type == 0)) { 3284 __skb_warn_lro_forwarding(skb); 3285 return true; 3286 } 3287 return false; 3288 } 3289 3290 static inline void skb_forward_csum(struct sk_buff *skb) 3291 { 3292 /* Unfortunately we don't support this one. Any brave souls? */ 3293 if (skb->ip_summed == CHECKSUM_COMPLETE) 3294 skb->ip_summed = CHECKSUM_NONE; 3295 } 3296 3297 /** 3298 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3299 * @skb: skb to check 3300 * 3301 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3302 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3303 * use this helper, to document places where we make this assertion. 3304 */ 3305 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3306 { 3307 #ifdef DEBUG 3308 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3309 #endif 3310 } 3311 3312 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3313 3314 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3315 3316 u32 skb_get_poff(const struct sk_buff *skb); 3317 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 3318 const struct flow_keys *keys, int hlen); 3319 3320 /** 3321 * skb_head_is_locked - Determine if the skb->head is locked down 3322 * @skb: skb to check 3323 * 3324 * The head on skbs build around a head frag can be removed if they are 3325 * not cloned. This function returns true if the skb head is locked down 3326 * due to either being allocated via kmalloc, or by being a clone with 3327 * multiple references to the head. 3328 */ 3329 static inline bool skb_head_is_locked(const struct sk_buff *skb) 3330 { 3331 return !skb->head_frag || skb_cloned(skb); 3332 } 3333 3334 /** 3335 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3336 * 3337 * @skb: GSO skb 3338 * 3339 * skb_gso_network_seglen is used to determine the real size of the 3340 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3341 * 3342 * The MAC/L2 header is not accounted for. 3343 */ 3344 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3345 { 3346 unsigned int hdr_len = skb_transport_header(skb) - 3347 skb_network_header(skb); 3348 return hdr_len + skb_gso_transport_seglen(skb); 3349 } 3350 #endif /* __KERNEL__ */ 3351 #endif /* _LINUX_SKBUFF_H */ 3352