xref: /linux-6.15/include/linux/skbuff.h (revision 2e4c77be)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21 
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31 
32 #define HAVE_ALLOC_SKB		/* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
34 
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40 
41 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
42 				 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X)	\
44 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
49 
50 /* A. Checksumming of received packets by device.
51  *
52  *	NONE: device failed to checksum this packet.
53  *		skb->csum is undefined.
54  *
55  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
56  *		skb->csum is undefined.
57  *	      It is bad option, but, unfortunately, many of vendors do this.
58  *	      Apparently with secret goal to sell you new device, when you
59  *	      will add new protocol to your host. F.e. IPv6. 8)
60  *
61  *	COMPLETE: the most generic way. Device supplied checksum of _all_
62  *	    the packet as seen by netif_rx in skb->csum.
63  *	    NOTE: Even if device supports only some protocols, but
64  *	    is able to produce some skb->csum, it MUST use COMPLETE,
65  *	    not UNNECESSARY.
66  *
67  *	PARTIAL: identical to the case for output below.  This may occur
68  *	    on a packet received directly from another Linux OS, e.g.,
69  *	    a virtualised Linux kernel on the same host.  The packet can
70  *	    be treated in the same way as UNNECESSARY except that on
71  *	    output (i.e., forwarding) the checksum must be filled in
72  *	    by the OS or the hardware.
73  *
74  * B. Checksumming on output.
75  *
76  *	NONE: skb is checksummed by protocol or csum is not required.
77  *
78  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
79  *	from skb->csum_start to the end and to record the checksum
80  *	at skb->csum_start + skb->csum_offset.
81  *
82  *	Device must show its capabilities in dev->features, set
83  *	at device setup time.
84  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
85  *			  everything.
86  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
87  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88  *			  TCP/UDP over IPv4. Sigh. Vendors like this
89  *			  way by an unknown reason. Though, see comment above
90  *			  about CHECKSUM_UNNECESSARY. 8)
91  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92  *
93  *	Any questions? No questions, good. 		--ANK
94  */
95 
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99 
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 	atomic_t use;
103 };
104 #endif
105 
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 	atomic_t use;
109 	struct net_device *physindev;
110 	struct net_device *physoutdev;
111 	unsigned int mask;
112 	unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115 
116 struct sk_buff_head {
117 	/* These two members must be first. */
118 	struct sk_buff	*next;
119 	struct sk_buff	*prev;
120 
121 	__u32		qlen;
122 	spinlock_t	lock;
123 };
124 
125 struct sk_buff;
126 
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129 
130 typedef struct skb_frag_struct skb_frag_t;
131 
132 struct skb_frag_struct {
133 	struct page *page;
134 	__u32 page_offset;
135 	__u32 size;
136 };
137 
138 /* This data is invariant across clones and lives at
139  * the end of the header data, ie. at skb->end.
140  */
141 struct skb_shared_info {
142 	atomic_t	dataref;
143 	unsigned short	nr_frags;
144 	unsigned short	gso_size;
145 	/* Warning: this field is not always filled in (UFO)! */
146 	unsigned short	gso_segs;
147 	unsigned short  gso_type;
148 	__be32          ip6_frag_id;
149 #ifdef CONFIG_HAS_DMA
150 	unsigned int	num_dma_maps;
151 #endif
152 	struct sk_buff	*frag_list;
153 	skb_frag_t	frags[MAX_SKB_FRAGS];
154 #ifdef CONFIG_HAS_DMA
155 	dma_addr_t	dma_maps[MAX_SKB_FRAGS + 1];
156 #endif
157 };
158 
159 /* We divide dataref into two halves.  The higher 16 bits hold references
160  * to the payload part of skb->data.  The lower 16 bits hold references to
161  * the entire skb->data.  A clone of a headerless skb holds the length of
162  * the header in skb->hdr_len.
163  *
164  * All users must obey the rule that the skb->data reference count must be
165  * greater than or equal to the payload reference count.
166  *
167  * Holding a reference to the payload part means that the user does not
168  * care about modifications to the header part of skb->data.
169  */
170 #define SKB_DATAREF_SHIFT 16
171 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
172 
173 
174 enum {
175 	SKB_FCLONE_UNAVAILABLE,
176 	SKB_FCLONE_ORIG,
177 	SKB_FCLONE_CLONE,
178 };
179 
180 enum {
181 	SKB_GSO_TCPV4 = 1 << 0,
182 	SKB_GSO_UDP = 1 << 1,
183 
184 	/* This indicates the skb is from an untrusted source. */
185 	SKB_GSO_DODGY = 1 << 2,
186 
187 	/* This indicates the tcp segment has CWR set. */
188 	SKB_GSO_TCP_ECN = 1 << 3,
189 
190 	SKB_GSO_TCPV6 = 1 << 4,
191 };
192 
193 #if BITS_PER_LONG > 32
194 #define NET_SKBUFF_DATA_USES_OFFSET 1
195 #endif
196 
197 #ifdef NET_SKBUFF_DATA_USES_OFFSET
198 typedef unsigned int sk_buff_data_t;
199 #else
200 typedef unsigned char *sk_buff_data_t;
201 #endif
202 
203 /**
204  *	struct sk_buff - socket buffer
205  *	@next: Next buffer in list
206  *	@prev: Previous buffer in list
207  *	@sk: Socket we are owned by
208  *	@tstamp: Time we arrived
209  *	@dev: Device we arrived on/are leaving by
210  *	@transport_header: Transport layer header
211  *	@network_header: Network layer header
212  *	@mac_header: Link layer header
213  *	@dst: destination entry
214  *	@sp: the security path, used for xfrm
215  *	@cb: Control buffer. Free for use by every layer. Put private vars here
216  *	@len: Length of actual data
217  *	@data_len: Data length
218  *	@mac_len: Length of link layer header
219  *	@hdr_len: writable header length of cloned skb
220  *	@csum: Checksum (must include start/offset pair)
221  *	@csum_start: Offset from skb->head where checksumming should start
222  *	@csum_offset: Offset from csum_start where checksum should be stored
223  *	@local_df: allow local fragmentation
224  *	@cloned: Head may be cloned (check refcnt to be sure)
225  *	@nohdr: Payload reference only, must not modify header
226  *	@pkt_type: Packet class
227  *	@fclone: skbuff clone status
228  *	@ip_summed: Driver fed us an IP checksum
229  *	@priority: Packet queueing priority
230  *	@users: User count - see {datagram,tcp}.c
231  *	@protocol: Packet protocol from driver
232  *	@truesize: Buffer size
233  *	@head: Head of buffer
234  *	@data: Data head pointer
235  *	@tail: Tail pointer
236  *	@end: End pointer
237  *	@destructor: Destruct function
238  *	@mark: Generic packet mark
239  *	@nfct: Associated connection, if any
240  *	@ipvs_property: skbuff is owned by ipvs
241  *	@peeked: this packet has been seen already, so stats have been
242  *		done for it, don't do them again
243  *	@nf_trace: netfilter packet trace flag
244  *	@nfctinfo: Relationship of this skb to the connection
245  *	@nfct_reasm: netfilter conntrack re-assembly pointer
246  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
247  *	@iif: ifindex of device we arrived on
248  *	@queue_mapping: Queue mapping for multiqueue devices
249  *	@tc_index: Traffic control index
250  *	@tc_verd: traffic control verdict
251  *	@ndisc_nodetype: router type (from link layer)
252  *	@do_not_encrypt: set to prevent encryption of this frame
253  *	@requeue: set to indicate that the wireless core should attempt
254  *		a software retry on this frame if we failed to
255  *		receive an ACK for it
256  *	@dma_cookie: a cookie to one of several possible DMA operations
257  *		done by skb DMA functions
258  *	@secmark: security marking
259  *	@vlan_tci: vlan tag control information
260  */
261 
262 struct sk_buff {
263 	/* These two members must be first. */
264 	struct sk_buff		*next;
265 	struct sk_buff		*prev;
266 
267 	struct sock		*sk;
268 	ktime_t			tstamp;
269 	struct net_device	*dev;
270 
271 	union {
272 		struct  dst_entry	*dst;
273 		struct  rtable		*rtable;
274 	};
275 #ifdef CONFIG_XFRM
276 	struct	sec_path	*sp;
277 #endif
278 	/*
279 	 * This is the control buffer. It is free to use for every
280 	 * layer. Please put your private variables there. If you
281 	 * want to keep them across layers you have to do a skb_clone()
282 	 * first. This is owned by whoever has the skb queued ATM.
283 	 */
284 	char			cb[48];
285 
286 	unsigned int		len,
287 				data_len;
288 	__u16			mac_len,
289 				hdr_len;
290 	union {
291 		__wsum		csum;
292 		struct {
293 			__u16	csum_start;
294 			__u16	csum_offset;
295 		};
296 	};
297 	__u32			priority;
298 	__u8			local_df:1,
299 				cloned:1,
300 				ip_summed:2,
301 				nohdr:1,
302 				nfctinfo:3;
303 	__u8			pkt_type:3,
304 				fclone:2,
305 				ipvs_property:1,
306 				peeked:1,
307 				nf_trace:1;
308 	__be16			protocol;
309 
310 	void			(*destructor)(struct sk_buff *skb);
311 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
312 	struct nf_conntrack	*nfct;
313 	struct sk_buff		*nfct_reasm;
314 #endif
315 #ifdef CONFIG_BRIDGE_NETFILTER
316 	struct nf_bridge_info	*nf_bridge;
317 #endif
318 
319 	int			iif;
320 	__u16			queue_mapping;
321 #ifdef CONFIG_NET_SCHED
322 	__u16			tc_index;	/* traffic control index */
323 #ifdef CONFIG_NET_CLS_ACT
324 	__u16			tc_verd;	/* traffic control verdict */
325 #endif
326 #endif
327 #ifdef CONFIG_IPV6_NDISC_NODETYPE
328 	__u8			ndisc_nodetype:2;
329 #endif
330 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
331 	__u8			do_not_encrypt:1;
332 	__u8			requeue:1;
333 #endif
334 	/* 0/13/14 bit hole */
335 
336 #ifdef CONFIG_NET_DMA
337 	dma_cookie_t		dma_cookie;
338 #endif
339 #ifdef CONFIG_NETWORK_SECMARK
340 	__u32			secmark;
341 #endif
342 
343 	__u32			mark;
344 
345 	__u16			vlan_tci;
346 
347 	sk_buff_data_t		transport_header;
348 	sk_buff_data_t		network_header;
349 	sk_buff_data_t		mac_header;
350 	/* These elements must be at the end, see alloc_skb() for details.  */
351 	sk_buff_data_t		tail;
352 	sk_buff_data_t		end;
353 	unsigned char		*head,
354 				*data;
355 	unsigned int		truesize;
356 	atomic_t		users;
357 };
358 
359 #ifdef __KERNEL__
360 /*
361  *	Handling routines are only of interest to the kernel
362  */
363 #include <linux/slab.h>
364 
365 #include <asm/system.h>
366 
367 #ifdef CONFIG_HAS_DMA
368 #include <linux/dma-mapping.h>
369 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
370 		       enum dma_data_direction dir);
371 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
372 			  enum dma_data_direction dir);
373 #endif
374 
375 extern void kfree_skb(struct sk_buff *skb);
376 extern void	       __kfree_skb(struct sk_buff *skb);
377 extern struct sk_buff *__alloc_skb(unsigned int size,
378 				   gfp_t priority, int fclone, int node);
379 static inline struct sk_buff *alloc_skb(unsigned int size,
380 					gfp_t priority)
381 {
382 	return __alloc_skb(size, priority, 0, -1);
383 }
384 
385 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
386 					       gfp_t priority)
387 {
388 	return __alloc_skb(size, priority, 1, -1);
389 }
390 
391 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
392 
393 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
394 extern struct sk_buff *skb_clone(struct sk_buff *skb,
395 				 gfp_t priority);
396 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
397 				gfp_t priority);
398 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
399 				 gfp_t gfp_mask);
400 extern int	       pskb_expand_head(struct sk_buff *skb,
401 					int nhead, int ntail,
402 					gfp_t gfp_mask);
403 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
404 					    unsigned int headroom);
405 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
406 				       int newheadroom, int newtailroom,
407 				       gfp_t priority);
408 extern int	       skb_to_sgvec(struct sk_buff *skb,
409 				    struct scatterlist *sg, int offset,
410 				    int len);
411 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
412 				    struct sk_buff **trailer);
413 extern int	       skb_pad(struct sk_buff *skb, int pad);
414 #define dev_kfree_skb(a)	kfree_skb(a)
415 extern void	      skb_over_panic(struct sk_buff *skb, int len,
416 				     void *here);
417 extern void	      skb_under_panic(struct sk_buff *skb, int len,
418 				      void *here);
419 extern void	      skb_truesize_bug(struct sk_buff *skb);
420 
421 static inline void skb_truesize_check(struct sk_buff *skb)
422 {
423 	int len = sizeof(struct sk_buff) + skb->len;
424 
425 	if (unlikely((int)skb->truesize < len))
426 		skb_truesize_bug(skb);
427 }
428 
429 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
430 			int getfrag(void *from, char *to, int offset,
431 			int len,int odd, struct sk_buff *skb),
432 			void *from, int length);
433 
434 struct skb_seq_state
435 {
436 	__u32		lower_offset;
437 	__u32		upper_offset;
438 	__u32		frag_idx;
439 	__u32		stepped_offset;
440 	struct sk_buff	*root_skb;
441 	struct sk_buff	*cur_skb;
442 	__u8		*frag_data;
443 };
444 
445 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
446 					   unsigned int from, unsigned int to,
447 					   struct skb_seq_state *st);
448 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
449 				   struct skb_seq_state *st);
450 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
451 
452 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
453 				    unsigned int to, struct ts_config *config,
454 				    struct ts_state *state);
455 
456 #ifdef NET_SKBUFF_DATA_USES_OFFSET
457 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
458 {
459 	return skb->head + skb->end;
460 }
461 #else
462 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
463 {
464 	return skb->end;
465 }
466 #endif
467 
468 /* Internal */
469 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
470 
471 /**
472  *	skb_queue_empty - check if a queue is empty
473  *	@list: queue head
474  *
475  *	Returns true if the queue is empty, false otherwise.
476  */
477 static inline int skb_queue_empty(const struct sk_buff_head *list)
478 {
479 	return list->next == (struct sk_buff *)list;
480 }
481 
482 /**
483  *	skb_queue_is_last - check if skb is the last entry in the queue
484  *	@list: queue head
485  *	@skb: buffer
486  *
487  *	Returns true if @skb is the last buffer on the list.
488  */
489 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
490 				     const struct sk_buff *skb)
491 {
492 	return (skb->next == (struct sk_buff *) list);
493 }
494 
495 /**
496  *	skb_queue_is_first - check if skb is the first entry in the queue
497  *	@list: queue head
498  *	@skb: buffer
499  *
500  *	Returns true if @skb is the first buffer on the list.
501  */
502 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
503 				      const struct sk_buff *skb)
504 {
505 	return (skb->prev == (struct sk_buff *) list);
506 }
507 
508 /**
509  *	skb_queue_next - return the next packet in the queue
510  *	@list: queue head
511  *	@skb: current buffer
512  *
513  *	Return the next packet in @list after @skb.  It is only valid to
514  *	call this if skb_queue_is_last() evaluates to false.
515  */
516 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
517 					     const struct sk_buff *skb)
518 {
519 	/* This BUG_ON may seem severe, but if we just return then we
520 	 * are going to dereference garbage.
521 	 */
522 	BUG_ON(skb_queue_is_last(list, skb));
523 	return skb->next;
524 }
525 
526 /**
527  *	skb_queue_prev - return the prev packet in the queue
528  *	@list: queue head
529  *	@skb: current buffer
530  *
531  *	Return the prev packet in @list before @skb.  It is only valid to
532  *	call this if skb_queue_is_first() evaluates to false.
533  */
534 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
535 					     const struct sk_buff *skb)
536 {
537 	/* This BUG_ON may seem severe, but if we just return then we
538 	 * are going to dereference garbage.
539 	 */
540 	BUG_ON(skb_queue_is_first(list, skb));
541 	return skb->prev;
542 }
543 
544 /**
545  *	skb_get - reference buffer
546  *	@skb: buffer to reference
547  *
548  *	Makes another reference to a socket buffer and returns a pointer
549  *	to the buffer.
550  */
551 static inline struct sk_buff *skb_get(struct sk_buff *skb)
552 {
553 	atomic_inc(&skb->users);
554 	return skb;
555 }
556 
557 /*
558  * If users == 1, we are the only owner and are can avoid redundant
559  * atomic change.
560  */
561 
562 /**
563  *	skb_cloned - is the buffer a clone
564  *	@skb: buffer to check
565  *
566  *	Returns true if the buffer was generated with skb_clone() and is
567  *	one of multiple shared copies of the buffer. Cloned buffers are
568  *	shared data so must not be written to under normal circumstances.
569  */
570 static inline int skb_cloned(const struct sk_buff *skb)
571 {
572 	return skb->cloned &&
573 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
574 }
575 
576 /**
577  *	skb_header_cloned - is the header a clone
578  *	@skb: buffer to check
579  *
580  *	Returns true if modifying the header part of the buffer requires
581  *	the data to be copied.
582  */
583 static inline int skb_header_cloned(const struct sk_buff *skb)
584 {
585 	int dataref;
586 
587 	if (!skb->cloned)
588 		return 0;
589 
590 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
591 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
592 	return dataref != 1;
593 }
594 
595 /**
596  *	skb_header_release - release reference to header
597  *	@skb: buffer to operate on
598  *
599  *	Drop a reference to the header part of the buffer.  This is done
600  *	by acquiring a payload reference.  You must not read from the header
601  *	part of skb->data after this.
602  */
603 static inline void skb_header_release(struct sk_buff *skb)
604 {
605 	BUG_ON(skb->nohdr);
606 	skb->nohdr = 1;
607 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
608 }
609 
610 /**
611  *	skb_shared - is the buffer shared
612  *	@skb: buffer to check
613  *
614  *	Returns true if more than one person has a reference to this
615  *	buffer.
616  */
617 static inline int skb_shared(const struct sk_buff *skb)
618 {
619 	return atomic_read(&skb->users) != 1;
620 }
621 
622 /**
623  *	skb_share_check - check if buffer is shared and if so clone it
624  *	@skb: buffer to check
625  *	@pri: priority for memory allocation
626  *
627  *	If the buffer is shared the buffer is cloned and the old copy
628  *	drops a reference. A new clone with a single reference is returned.
629  *	If the buffer is not shared the original buffer is returned. When
630  *	being called from interrupt status or with spinlocks held pri must
631  *	be GFP_ATOMIC.
632  *
633  *	NULL is returned on a memory allocation failure.
634  */
635 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
636 					      gfp_t pri)
637 {
638 	might_sleep_if(pri & __GFP_WAIT);
639 	if (skb_shared(skb)) {
640 		struct sk_buff *nskb = skb_clone(skb, pri);
641 		kfree_skb(skb);
642 		skb = nskb;
643 	}
644 	return skb;
645 }
646 
647 /*
648  *	Copy shared buffers into a new sk_buff. We effectively do COW on
649  *	packets to handle cases where we have a local reader and forward
650  *	and a couple of other messy ones. The normal one is tcpdumping
651  *	a packet thats being forwarded.
652  */
653 
654 /**
655  *	skb_unshare - make a copy of a shared buffer
656  *	@skb: buffer to check
657  *	@pri: priority for memory allocation
658  *
659  *	If the socket buffer is a clone then this function creates a new
660  *	copy of the data, drops a reference count on the old copy and returns
661  *	the new copy with the reference count at 1. If the buffer is not a clone
662  *	the original buffer is returned. When called with a spinlock held or
663  *	from interrupt state @pri must be %GFP_ATOMIC
664  *
665  *	%NULL is returned on a memory allocation failure.
666  */
667 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
668 					  gfp_t pri)
669 {
670 	might_sleep_if(pri & __GFP_WAIT);
671 	if (skb_cloned(skb)) {
672 		struct sk_buff *nskb = skb_copy(skb, pri);
673 		kfree_skb(skb);	/* Free our shared copy */
674 		skb = nskb;
675 	}
676 	return skb;
677 }
678 
679 /**
680  *	skb_peek
681  *	@list_: list to peek at
682  *
683  *	Peek an &sk_buff. Unlike most other operations you _MUST_
684  *	be careful with this one. A peek leaves the buffer on the
685  *	list and someone else may run off with it. You must hold
686  *	the appropriate locks or have a private queue to do this.
687  *
688  *	Returns %NULL for an empty list or a pointer to the head element.
689  *	The reference count is not incremented and the reference is therefore
690  *	volatile. Use with caution.
691  */
692 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
693 {
694 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
695 	if (list == (struct sk_buff *)list_)
696 		list = NULL;
697 	return list;
698 }
699 
700 /**
701  *	skb_peek_tail
702  *	@list_: list to peek at
703  *
704  *	Peek an &sk_buff. Unlike most other operations you _MUST_
705  *	be careful with this one. A peek leaves the buffer on the
706  *	list and someone else may run off with it. You must hold
707  *	the appropriate locks or have a private queue to do this.
708  *
709  *	Returns %NULL for an empty list or a pointer to the tail element.
710  *	The reference count is not incremented and the reference is therefore
711  *	volatile. Use with caution.
712  */
713 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
714 {
715 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
716 	if (list == (struct sk_buff *)list_)
717 		list = NULL;
718 	return list;
719 }
720 
721 /**
722  *	skb_queue_len	- get queue length
723  *	@list_: list to measure
724  *
725  *	Return the length of an &sk_buff queue.
726  */
727 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
728 {
729 	return list_->qlen;
730 }
731 
732 /**
733  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
734  *	@list: queue to initialize
735  *
736  *	This initializes only the list and queue length aspects of
737  *	an sk_buff_head object.  This allows to initialize the list
738  *	aspects of an sk_buff_head without reinitializing things like
739  *	the spinlock.  It can also be used for on-stack sk_buff_head
740  *	objects where the spinlock is known to not be used.
741  */
742 static inline void __skb_queue_head_init(struct sk_buff_head *list)
743 {
744 	list->prev = list->next = (struct sk_buff *)list;
745 	list->qlen = 0;
746 }
747 
748 /*
749  * This function creates a split out lock class for each invocation;
750  * this is needed for now since a whole lot of users of the skb-queue
751  * infrastructure in drivers have different locking usage (in hardirq)
752  * than the networking core (in softirq only). In the long run either the
753  * network layer or drivers should need annotation to consolidate the
754  * main types of usage into 3 classes.
755  */
756 static inline void skb_queue_head_init(struct sk_buff_head *list)
757 {
758 	spin_lock_init(&list->lock);
759 	__skb_queue_head_init(list);
760 }
761 
762 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
763 		struct lock_class_key *class)
764 {
765 	skb_queue_head_init(list);
766 	lockdep_set_class(&list->lock, class);
767 }
768 
769 /*
770  *	Insert an sk_buff on a list.
771  *
772  *	The "__skb_xxxx()" functions are the non-atomic ones that
773  *	can only be called with interrupts disabled.
774  */
775 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
776 static inline void __skb_insert(struct sk_buff *newsk,
777 				struct sk_buff *prev, struct sk_buff *next,
778 				struct sk_buff_head *list)
779 {
780 	newsk->next = next;
781 	newsk->prev = prev;
782 	next->prev  = prev->next = newsk;
783 	list->qlen++;
784 }
785 
786 static inline void __skb_queue_splice(const struct sk_buff_head *list,
787 				      struct sk_buff *prev,
788 				      struct sk_buff *next)
789 {
790 	struct sk_buff *first = list->next;
791 	struct sk_buff *last = list->prev;
792 
793 	first->prev = prev;
794 	prev->next = first;
795 
796 	last->next = next;
797 	next->prev = last;
798 }
799 
800 /**
801  *	skb_queue_splice - join two skb lists, this is designed for stacks
802  *	@list: the new list to add
803  *	@head: the place to add it in the first list
804  */
805 static inline void skb_queue_splice(const struct sk_buff_head *list,
806 				    struct sk_buff_head *head)
807 {
808 	if (!skb_queue_empty(list)) {
809 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
810 		head->qlen += list->qlen;
811 	}
812 }
813 
814 /**
815  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
816  *	@list: the new list to add
817  *	@head: the place to add it in the first list
818  *
819  *	The list at @list is reinitialised
820  */
821 static inline void skb_queue_splice_init(struct sk_buff_head *list,
822 					 struct sk_buff_head *head)
823 {
824 	if (!skb_queue_empty(list)) {
825 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
826 		head->qlen += list->qlen;
827 		__skb_queue_head_init(list);
828 	}
829 }
830 
831 /**
832  *	skb_queue_splice_tail - join two skb lists, each list being a queue
833  *	@list: the new list to add
834  *	@head: the place to add it in the first list
835  */
836 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
837 					 struct sk_buff_head *head)
838 {
839 	if (!skb_queue_empty(list)) {
840 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
841 		head->qlen += list->qlen;
842 	}
843 }
844 
845 /**
846  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
847  *	@list: the new list to add
848  *	@head: the place to add it in the first list
849  *
850  *	Each of the lists is a queue.
851  *	The list at @list is reinitialised
852  */
853 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
854 					      struct sk_buff_head *head)
855 {
856 	if (!skb_queue_empty(list)) {
857 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
858 		head->qlen += list->qlen;
859 		__skb_queue_head_init(list);
860 	}
861 }
862 
863 /**
864  *	__skb_queue_after - queue a buffer at the list head
865  *	@list: list to use
866  *	@prev: place after this buffer
867  *	@newsk: buffer to queue
868  *
869  *	Queue a buffer int the middle of a list. This function takes no locks
870  *	and you must therefore hold required locks before calling it.
871  *
872  *	A buffer cannot be placed on two lists at the same time.
873  */
874 static inline void __skb_queue_after(struct sk_buff_head *list,
875 				     struct sk_buff *prev,
876 				     struct sk_buff *newsk)
877 {
878 	__skb_insert(newsk, prev, prev->next, list);
879 }
880 
881 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
882 		       struct sk_buff_head *list);
883 
884 static inline void __skb_queue_before(struct sk_buff_head *list,
885 				      struct sk_buff *next,
886 				      struct sk_buff *newsk)
887 {
888 	__skb_insert(newsk, next->prev, next, list);
889 }
890 
891 /**
892  *	__skb_queue_head - queue a buffer at the list head
893  *	@list: list to use
894  *	@newsk: buffer to queue
895  *
896  *	Queue a buffer at the start of a list. This function takes no locks
897  *	and you must therefore hold required locks before calling it.
898  *
899  *	A buffer cannot be placed on two lists at the same time.
900  */
901 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
902 static inline void __skb_queue_head(struct sk_buff_head *list,
903 				    struct sk_buff *newsk)
904 {
905 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
906 }
907 
908 /**
909  *	__skb_queue_tail - queue a buffer at the list tail
910  *	@list: list to use
911  *	@newsk: buffer to queue
912  *
913  *	Queue a buffer at the end of a list. This function takes no locks
914  *	and you must therefore hold required locks before calling it.
915  *
916  *	A buffer cannot be placed on two lists at the same time.
917  */
918 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
919 static inline void __skb_queue_tail(struct sk_buff_head *list,
920 				   struct sk_buff *newsk)
921 {
922 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
923 }
924 
925 /*
926  * remove sk_buff from list. _Must_ be called atomically, and with
927  * the list known..
928  */
929 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
930 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
931 {
932 	struct sk_buff *next, *prev;
933 
934 	list->qlen--;
935 	next	   = skb->next;
936 	prev	   = skb->prev;
937 	skb->next  = skb->prev = NULL;
938 	next->prev = prev;
939 	prev->next = next;
940 }
941 
942 /**
943  *	__skb_dequeue - remove from the head of the queue
944  *	@list: list to dequeue from
945  *
946  *	Remove the head of the list. This function does not take any locks
947  *	so must be used with appropriate locks held only. The head item is
948  *	returned or %NULL if the list is empty.
949  */
950 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
951 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
952 {
953 	struct sk_buff *skb = skb_peek(list);
954 	if (skb)
955 		__skb_unlink(skb, list);
956 	return skb;
957 }
958 
959 /**
960  *	__skb_dequeue_tail - remove from the tail of the queue
961  *	@list: list to dequeue from
962  *
963  *	Remove the tail of the list. This function does not take any locks
964  *	so must be used with appropriate locks held only. The tail item is
965  *	returned or %NULL if the list is empty.
966  */
967 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
968 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
969 {
970 	struct sk_buff *skb = skb_peek_tail(list);
971 	if (skb)
972 		__skb_unlink(skb, list);
973 	return skb;
974 }
975 
976 
977 static inline int skb_is_nonlinear(const struct sk_buff *skb)
978 {
979 	return skb->data_len;
980 }
981 
982 static inline unsigned int skb_headlen(const struct sk_buff *skb)
983 {
984 	return skb->len - skb->data_len;
985 }
986 
987 static inline int skb_pagelen(const struct sk_buff *skb)
988 {
989 	int i, len = 0;
990 
991 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
992 		len += skb_shinfo(skb)->frags[i].size;
993 	return len + skb_headlen(skb);
994 }
995 
996 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
997 				      struct page *page, int off, int size)
998 {
999 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1000 
1001 	frag->page		  = page;
1002 	frag->page_offset	  = off;
1003 	frag->size		  = size;
1004 	skb_shinfo(skb)->nr_frags = i + 1;
1005 }
1006 
1007 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1008 			    int off, int size);
1009 
1010 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1011 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
1012 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1013 
1014 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1015 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1016 {
1017 	return skb->head + skb->tail;
1018 }
1019 
1020 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1021 {
1022 	skb->tail = skb->data - skb->head;
1023 }
1024 
1025 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1026 {
1027 	skb_reset_tail_pointer(skb);
1028 	skb->tail += offset;
1029 }
1030 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1031 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1032 {
1033 	return skb->tail;
1034 }
1035 
1036 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1037 {
1038 	skb->tail = skb->data;
1039 }
1040 
1041 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1042 {
1043 	skb->tail = skb->data + offset;
1044 }
1045 
1046 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1047 
1048 /*
1049  *	Add data to an sk_buff
1050  */
1051 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1052 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1053 {
1054 	unsigned char *tmp = skb_tail_pointer(skb);
1055 	SKB_LINEAR_ASSERT(skb);
1056 	skb->tail += len;
1057 	skb->len  += len;
1058 	return tmp;
1059 }
1060 
1061 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1062 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1063 {
1064 	skb->data -= len;
1065 	skb->len  += len;
1066 	return skb->data;
1067 }
1068 
1069 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1070 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1071 {
1072 	skb->len -= len;
1073 	BUG_ON(skb->len < skb->data_len);
1074 	return skb->data += len;
1075 }
1076 
1077 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1078 
1079 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1080 {
1081 	if (len > skb_headlen(skb) &&
1082 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1083 		return NULL;
1084 	skb->len -= len;
1085 	return skb->data += len;
1086 }
1087 
1088 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1089 {
1090 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1091 }
1092 
1093 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1094 {
1095 	if (likely(len <= skb_headlen(skb)))
1096 		return 1;
1097 	if (unlikely(len > skb->len))
1098 		return 0;
1099 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1100 }
1101 
1102 /**
1103  *	skb_headroom - bytes at buffer head
1104  *	@skb: buffer to check
1105  *
1106  *	Return the number of bytes of free space at the head of an &sk_buff.
1107  */
1108 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1109 {
1110 	return skb->data - skb->head;
1111 }
1112 
1113 /**
1114  *	skb_tailroom - bytes at buffer end
1115  *	@skb: buffer to check
1116  *
1117  *	Return the number of bytes of free space at the tail of an sk_buff
1118  */
1119 static inline int skb_tailroom(const struct sk_buff *skb)
1120 {
1121 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1122 }
1123 
1124 /**
1125  *	skb_reserve - adjust headroom
1126  *	@skb: buffer to alter
1127  *	@len: bytes to move
1128  *
1129  *	Increase the headroom of an empty &sk_buff by reducing the tail
1130  *	room. This is only allowed for an empty buffer.
1131  */
1132 static inline void skb_reserve(struct sk_buff *skb, int len)
1133 {
1134 	skb->data += len;
1135 	skb->tail += len;
1136 }
1137 
1138 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1139 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1140 {
1141 	return skb->head + skb->transport_header;
1142 }
1143 
1144 static inline void skb_reset_transport_header(struct sk_buff *skb)
1145 {
1146 	skb->transport_header = skb->data - skb->head;
1147 }
1148 
1149 static inline void skb_set_transport_header(struct sk_buff *skb,
1150 					    const int offset)
1151 {
1152 	skb_reset_transport_header(skb);
1153 	skb->transport_header += offset;
1154 }
1155 
1156 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1157 {
1158 	return skb->head + skb->network_header;
1159 }
1160 
1161 static inline void skb_reset_network_header(struct sk_buff *skb)
1162 {
1163 	skb->network_header = skb->data - skb->head;
1164 }
1165 
1166 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1167 {
1168 	skb_reset_network_header(skb);
1169 	skb->network_header += offset;
1170 }
1171 
1172 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1173 {
1174 	return skb->head + skb->mac_header;
1175 }
1176 
1177 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1178 {
1179 	return skb->mac_header != ~0U;
1180 }
1181 
1182 static inline void skb_reset_mac_header(struct sk_buff *skb)
1183 {
1184 	skb->mac_header = skb->data - skb->head;
1185 }
1186 
1187 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1188 {
1189 	skb_reset_mac_header(skb);
1190 	skb->mac_header += offset;
1191 }
1192 
1193 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1194 
1195 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1196 {
1197 	return skb->transport_header;
1198 }
1199 
1200 static inline void skb_reset_transport_header(struct sk_buff *skb)
1201 {
1202 	skb->transport_header = skb->data;
1203 }
1204 
1205 static inline void skb_set_transport_header(struct sk_buff *skb,
1206 					    const int offset)
1207 {
1208 	skb->transport_header = skb->data + offset;
1209 }
1210 
1211 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1212 {
1213 	return skb->network_header;
1214 }
1215 
1216 static inline void skb_reset_network_header(struct sk_buff *skb)
1217 {
1218 	skb->network_header = skb->data;
1219 }
1220 
1221 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1222 {
1223 	skb->network_header = skb->data + offset;
1224 }
1225 
1226 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1227 {
1228 	return skb->mac_header;
1229 }
1230 
1231 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1232 {
1233 	return skb->mac_header != NULL;
1234 }
1235 
1236 static inline void skb_reset_mac_header(struct sk_buff *skb)
1237 {
1238 	skb->mac_header = skb->data;
1239 }
1240 
1241 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1242 {
1243 	skb->mac_header = skb->data + offset;
1244 }
1245 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1246 
1247 static inline int skb_transport_offset(const struct sk_buff *skb)
1248 {
1249 	return skb_transport_header(skb) - skb->data;
1250 }
1251 
1252 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1253 {
1254 	return skb->transport_header - skb->network_header;
1255 }
1256 
1257 static inline int skb_network_offset(const struct sk_buff *skb)
1258 {
1259 	return skb_network_header(skb) - skb->data;
1260 }
1261 
1262 /*
1263  * CPUs often take a performance hit when accessing unaligned memory
1264  * locations. The actual performance hit varies, it can be small if the
1265  * hardware handles it or large if we have to take an exception and fix it
1266  * in software.
1267  *
1268  * Since an ethernet header is 14 bytes network drivers often end up with
1269  * the IP header at an unaligned offset. The IP header can be aligned by
1270  * shifting the start of the packet by 2 bytes. Drivers should do this
1271  * with:
1272  *
1273  * skb_reserve(NET_IP_ALIGN);
1274  *
1275  * The downside to this alignment of the IP header is that the DMA is now
1276  * unaligned. On some architectures the cost of an unaligned DMA is high
1277  * and this cost outweighs the gains made by aligning the IP header.
1278  *
1279  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1280  * to be overridden.
1281  */
1282 #ifndef NET_IP_ALIGN
1283 #define NET_IP_ALIGN	2
1284 #endif
1285 
1286 /*
1287  * The networking layer reserves some headroom in skb data (via
1288  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1289  * the header has to grow. In the default case, if the header has to grow
1290  * 16 bytes or less we avoid the reallocation.
1291  *
1292  * Unfortunately this headroom changes the DMA alignment of the resulting
1293  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1294  * on some architectures. An architecture can override this value,
1295  * perhaps setting it to a cacheline in size (since that will maintain
1296  * cacheline alignment of the DMA). It must be a power of 2.
1297  *
1298  * Various parts of the networking layer expect at least 16 bytes of
1299  * headroom, you should not reduce this.
1300  */
1301 #ifndef NET_SKB_PAD
1302 #define NET_SKB_PAD	16
1303 #endif
1304 
1305 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1306 
1307 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1308 {
1309 	if (unlikely(skb->data_len)) {
1310 		WARN_ON(1);
1311 		return;
1312 	}
1313 	skb->len = len;
1314 	skb_set_tail_pointer(skb, len);
1315 }
1316 
1317 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1318 
1319 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1320 {
1321 	if (skb->data_len)
1322 		return ___pskb_trim(skb, len);
1323 	__skb_trim(skb, len);
1324 	return 0;
1325 }
1326 
1327 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1328 {
1329 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1330 }
1331 
1332 /**
1333  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1334  *	@skb: buffer to alter
1335  *	@len: new length
1336  *
1337  *	This is identical to pskb_trim except that the caller knows that
1338  *	the skb is not cloned so we should never get an error due to out-
1339  *	of-memory.
1340  */
1341 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1342 {
1343 	int err = pskb_trim(skb, len);
1344 	BUG_ON(err);
1345 }
1346 
1347 /**
1348  *	skb_orphan - orphan a buffer
1349  *	@skb: buffer to orphan
1350  *
1351  *	If a buffer currently has an owner then we call the owner's
1352  *	destructor function and make the @skb unowned. The buffer continues
1353  *	to exist but is no longer charged to its former owner.
1354  */
1355 static inline void skb_orphan(struct sk_buff *skb)
1356 {
1357 	if (skb->destructor)
1358 		skb->destructor(skb);
1359 	skb->destructor = NULL;
1360 	skb->sk		= NULL;
1361 }
1362 
1363 /**
1364  *	__skb_queue_purge - empty a list
1365  *	@list: list to empty
1366  *
1367  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1368  *	the list and one reference dropped. This function does not take the
1369  *	list lock and the caller must hold the relevant locks to use it.
1370  */
1371 extern void skb_queue_purge(struct sk_buff_head *list);
1372 static inline void __skb_queue_purge(struct sk_buff_head *list)
1373 {
1374 	struct sk_buff *skb;
1375 	while ((skb = __skb_dequeue(list)) != NULL)
1376 		kfree_skb(skb);
1377 }
1378 
1379 /**
1380  *	__dev_alloc_skb - allocate an skbuff for receiving
1381  *	@length: length to allocate
1382  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1383  *
1384  *	Allocate a new &sk_buff and assign it a usage count of one. The
1385  *	buffer has unspecified headroom built in. Users should allocate
1386  *	the headroom they think they need without accounting for the
1387  *	built in space. The built in space is used for optimisations.
1388  *
1389  *	%NULL is returned if there is no free memory.
1390  */
1391 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1392 					      gfp_t gfp_mask)
1393 {
1394 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1395 	if (likely(skb))
1396 		skb_reserve(skb, NET_SKB_PAD);
1397 	return skb;
1398 }
1399 
1400 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1401 
1402 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1403 		unsigned int length, gfp_t gfp_mask);
1404 
1405 /**
1406  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1407  *	@dev: network device to receive on
1408  *	@length: length to allocate
1409  *
1410  *	Allocate a new &sk_buff and assign it a usage count of one. The
1411  *	buffer has unspecified headroom built in. Users should allocate
1412  *	the headroom they think they need without accounting for the
1413  *	built in space. The built in space is used for optimisations.
1414  *
1415  *	%NULL is returned if there is no free memory. Although this function
1416  *	allocates memory it can be called from an interrupt.
1417  */
1418 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1419 		unsigned int length)
1420 {
1421 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1422 }
1423 
1424 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1425 
1426 /**
1427  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1428  *	@dev: network device to receive on
1429  *
1430  * 	Allocate a new page node local to the specified device.
1431  *
1432  * 	%NULL is returned if there is no free memory.
1433  */
1434 static inline struct page *netdev_alloc_page(struct net_device *dev)
1435 {
1436 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1437 }
1438 
1439 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1440 {
1441 	__free_page(page);
1442 }
1443 
1444 /**
1445  *	skb_clone_writable - is the header of a clone writable
1446  *	@skb: buffer to check
1447  *	@len: length up to which to write
1448  *
1449  *	Returns true if modifying the header part of the cloned buffer
1450  *	does not requires the data to be copied.
1451  */
1452 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1453 {
1454 	return !skb_header_cloned(skb) &&
1455 	       skb_headroom(skb) + len <= skb->hdr_len;
1456 }
1457 
1458 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1459 			    int cloned)
1460 {
1461 	int delta = 0;
1462 
1463 	if (headroom < NET_SKB_PAD)
1464 		headroom = NET_SKB_PAD;
1465 	if (headroom > skb_headroom(skb))
1466 		delta = headroom - skb_headroom(skb);
1467 
1468 	if (delta || cloned)
1469 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1470 					GFP_ATOMIC);
1471 	return 0;
1472 }
1473 
1474 /**
1475  *	skb_cow - copy header of skb when it is required
1476  *	@skb: buffer to cow
1477  *	@headroom: needed headroom
1478  *
1479  *	If the skb passed lacks sufficient headroom or its data part
1480  *	is shared, data is reallocated. If reallocation fails, an error
1481  *	is returned and original skb is not changed.
1482  *
1483  *	The result is skb with writable area skb->head...skb->tail
1484  *	and at least @headroom of space at head.
1485  */
1486 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1487 {
1488 	return __skb_cow(skb, headroom, skb_cloned(skb));
1489 }
1490 
1491 /**
1492  *	skb_cow_head - skb_cow but only making the head writable
1493  *	@skb: buffer to cow
1494  *	@headroom: needed headroom
1495  *
1496  *	This function is identical to skb_cow except that we replace the
1497  *	skb_cloned check by skb_header_cloned.  It should be used when
1498  *	you only need to push on some header and do not need to modify
1499  *	the data.
1500  */
1501 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1502 {
1503 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1504 }
1505 
1506 /**
1507  *	skb_padto	- pad an skbuff up to a minimal size
1508  *	@skb: buffer to pad
1509  *	@len: minimal length
1510  *
1511  *	Pads up a buffer to ensure the trailing bytes exist and are
1512  *	blanked. If the buffer already contains sufficient data it
1513  *	is untouched. Otherwise it is extended. Returns zero on
1514  *	success. The skb is freed on error.
1515  */
1516 
1517 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1518 {
1519 	unsigned int size = skb->len;
1520 	if (likely(size >= len))
1521 		return 0;
1522 	return skb_pad(skb, len - size);
1523 }
1524 
1525 static inline int skb_add_data(struct sk_buff *skb,
1526 			       char __user *from, int copy)
1527 {
1528 	const int off = skb->len;
1529 
1530 	if (skb->ip_summed == CHECKSUM_NONE) {
1531 		int err = 0;
1532 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1533 							    copy, 0, &err);
1534 		if (!err) {
1535 			skb->csum = csum_block_add(skb->csum, csum, off);
1536 			return 0;
1537 		}
1538 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1539 		return 0;
1540 
1541 	__skb_trim(skb, off);
1542 	return -EFAULT;
1543 }
1544 
1545 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1546 				   struct page *page, int off)
1547 {
1548 	if (i) {
1549 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1550 
1551 		return page == frag->page &&
1552 		       off == frag->page_offset + frag->size;
1553 	}
1554 	return 0;
1555 }
1556 
1557 static inline int __skb_linearize(struct sk_buff *skb)
1558 {
1559 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1560 }
1561 
1562 /**
1563  *	skb_linearize - convert paged skb to linear one
1564  *	@skb: buffer to linarize
1565  *
1566  *	If there is no free memory -ENOMEM is returned, otherwise zero
1567  *	is returned and the old skb data released.
1568  */
1569 static inline int skb_linearize(struct sk_buff *skb)
1570 {
1571 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1572 }
1573 
1574 /**
1575  *	skb_linearize_cow - make sure skb is linear and writable
1576  *	@skb: buffer to process
1577  *
1578  *	If there is no free memory -ENOMEM is returned, otherwise zero
1579  *	is returned and the old skb data released.
1580  */
1581 static inline int skb_linearize_cow(struct sk_buff *skb)
1582 {
1583 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1584 	       __skb_linearize(skb) : 0;
1585 }
1586 
1587 /**
1588  *	skb_postpull_rcsum - update checksum for received skb after pull
1589  *	@skb: buffer to update
1590  *	@start: start of data before pull
1591  *	@len: length of data pulled
1592  *
1593  *	After doing a pull on a received packet, you need to call this to
1594  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1595  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1596  */
1597 
1598 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1599 				      const void *start, unsigned int len)
1600 {
1601 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1602 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1603 }
1604 
1605 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1606 
1607 /**
1608  *	pskb_trim_rcsum - trim received skb and update checksum
1609  *	@skb: buffer to trim
1610  *	@len: new length
1611  *
1612  *	This is exactly the same as pskb_trim except that it ensures the
1613  *	checksum of received packets are still valid after the operation.
1614  */
1615 
1616 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1617 {
1618 	if (likely(len >= skb->len))
1619 		return 0;
1620 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1621 		skb->ip_summed = CHECKSUM_NONE;
1622 	return __pskb_trim(skb, len);
1623 }
1624 
1625 #define skb_queue_walk(queue, skb) \
1626 		for (skb = (queue)->next;					\
1627 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1628 		     skb = skb->next)
1629 
1630 #define skb_queue_walk_safe(queue, skb, tmp)					\
1631 		for (skb = (queue)->next, tmp = skb->next;			\
1632 		     skb != (struct sk_buff *)(queue);				\
1633 		     skb = tmp, tmp = skb->next)
1634 
1635 #define skb_queue_walk_from(queue, skb)						\
1636 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1637 		     skb = skb->next)
1638 
1639 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1640 		for (tmp = skb->next;						\
1641 		     skb != (struct sk_buff *)(queue);				\
1642 		     skb = tmp, tmp = skb->next)
1643 
1644 #define skb_queue_reverse_walk(queue, skb) \
1645 		for (skb = (queue)->prev;					\
1646 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1647 		     skb = skb->prev)
1648 
1649 
1650 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1651 					   int *peeked, int *err);
1652 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1653 					 int noblock, int *err);
1654 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1655 				     struct poll_table_struct *wait);
1656 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1657 					       int offset, struct iovec *to,
1658 					       int size);
1659 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1660 							int hlen,
1661 							struct iovec *iov);
1662 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1663 						    int offset,
1664 						    struct iovec *from,
1665 						    int len);
1666 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1667 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1668 					 unsigned int flags);
1669 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1670 				    int len, __wsum csum);
1671 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1672 				     void *to, int len);
1673 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1674 				      const void *from, int len);
1675 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1676 					      int offset, u8 *to, int len,
1677 					      __wsum csum);
1678 extern int             skb_splice_bits(struct sk_buff *skb,
1679 						unsigned int offset,
1680 						struct pipe_inode_info *pipe,
1681 						unsigned int len,
1682 						unsigned int flags);
1683 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1684 extern void	       skb_split(struct sk_buff *skb,
1685 				 struct sk_buff *skb1, const u32 len);
1686 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1687 				 int shiftlen);
1688 
1689 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1690 extern int	       skb_gro_receive(struct sk_buff **head,
1691 				       struct sk_buff *skb);
1692 
1693 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1694 				       int len, void *buffer)
1695 {
1696 	int hlen = skb_headlen(skb);
1697 
1698 	if (hlen - offset >= len)
1699 		return skb->data + offset;
1700 
1701 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1702 		return NULL;
1703 
1704 	return buffer;
1705 }
1706 
1707 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1708 					     void *to,
1709 					     const unsigned int len)
1710 {
1711 	memcpy(to, skb->data, len);
1712 }
1713 
1714 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1715 						    const int offset, void *to,
1716 						    const unsigned int len)
1717 {
1718 	memcpy(to, skb->data + offset, len);
1719 }
1720 
1721 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1722 					   const void *from,
1723 					   const unsigned int len)
1724 {
1725 	memcpy(skb->data, from, len);
1726 }
1727 
1728 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1729 						  const int offset,
1730 						  const void *from,
1731 						  const unsigned int len)
1732 {
1733 	memcpy(skb->data + offset, from, len);
1734 }
1735 
1736 extern void skb_init(void);
1737 
1738 /**
1739  *	skb_get_timestamp - get timestamp from a skb
1740  *	@skb: skb to get stamp from
1741  *	@stamp: pointer to struct timeval to store stamp in
1742  *
1743  *	Timestamps are stored in the skb as offsets to a base timestamp.
1744  *	This function converts the offset back to a struct timeval and stores
1745  *	it in stamp.
1746  */
1747 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1748 {
1749 	*stamp = ktime_to_timeval(skb->tstamp);
1750 }
1751 
1752 static inline void __net_timestamp(struct sk_buff *skb)
1753 {
1754 	skb->tstamp = ktime_get_real();
1755 }
1756 
1757 static inline ktime_t net_timedelta(ktime_t t)
1758 {
1759 	return ktime_sub(ktime_get_real(), t);
1760 }
1761 
1762 static inline ktime_t net_invalid_timestamp(void)
1763 {
1764 	return ktime_set(0, 0);
1765 }
1766 
1767 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1768 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1769 
1770 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1771 {
1772 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1773 }
1774 
1775 /**
1776  *	skb_checksum_complete - Calculate checksum of an entire packet
1777  *	@skb: packet to process
1778  *
1779  *	This function calculates the checksum over the entire packet plus
1780  *	the value of skb->csum.  The latter can be used to supply the
1781  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1782  *	checksum.
1783  *
1784  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1785  *	this function can be used to verify that checksum on received
1786  *	packets.  In that case the function should return zero if the
1787  *	checksum is correct.  In particular, this function will return zero
1788  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1789  *	hardware has already verified the correctness of the checksum.
1790  */
1791 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1792 {
1793 	return skb_csum_unnecessary(skb) ?
1794 	       0 : __skb_checksum_complete(skb);
1795 }
1796 
1797 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1798 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1799 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1800 {
1801 	if (nfct && atomic_dec_and_test(&nfct->use))
1802 		nf_conntrack_destroy(nfct);
1803 }
1804 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1805 {
1806 	if (nfct)
1807 		atomic_inc(&nfct->use);
1808 }
1809 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1810 {
1811 	if (skb)
1812 		atomic_inc(&skb->users);
1813 }
1814 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1815 {
1816 	if (skb)
1817 		kfree_skb(skb);
1818 }
1819 #endif
1820 #ifdef CONFIG_BRIDGE_NETFILTER
1821 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1822 {
1823 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1824 		kfree(nf_bridge);
1825 }
1826 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1827 {
1828 	if (nf_bridge)
1829 		atomic_inc(&nf_bridge->use);
1830 }
1831 #endif /* CONFIG_BRIDGE_NETFILTER */
1832 static inline void nf_reset(struct sk_buff *skb)
1833 {
1834 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1835 	nf_conntrack_put(skb->nfct);
1836 	skb->nfct = NULL;
1837 	nf_conntrack_put_reasm(skb->nfct_reasm);
1838 	skb->nfct_reasm = NULL;
1839 #endif
1840 #ifdef CONFIG_BRIDGE_NETFILTER
1841 	nf_bridge_put(skb->nf_bridge);
1842 	skb->nf_bridge = NULL;
1843 #endif
1844 }
1845 
1846 /* Note: This doesn't put any conntrack and bridge info in dst. */
1847 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1848 {
1849 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1850 	dst->nfct = src->nfct;
1851 	nf_conntrack_get(src->nfct);
1852 	dst->nfctinfo = src->nfctinfo;
1853 	dst->nfct_reasm = src->nfct_reasm;
1854 	nf_conntrack_get_reasm(src->nfct_reasm);
1855 #endif
1856 #ifdef CONFIG_BRIDGE_NETFILTER
1857 	dst->nf_bridge  = src->nf_bridge;
1858 	nf_bridge_get(src->nf_bridge);
1859 #endif
1860 }
1861 
1862 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1863 {
1864 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1865 	nf_conntrack_put(dst->nfct);
1866 	nf_conntrack_put_reasm(dst->nfct_reasm);
1867 #endif
1868 #ifdef CONFIG_BRIDGE_NETFILTER
1869 	nf_bridge_put(dst->nf_bridge);
1870 #endif
1871 	__nf_copy(dst, src);
1872 }
1873 
1874 #ifdef CONFIG_NETWORK_SECMARK
1875 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1876 {
1877 	to->secmark = from->secmark;
1878 }
1879 
1880 static inline void skb_init_secmark(struct sk_buff *skb)
1881 {
1882 	skb->secmark = 0;
1883 }
1884 #else
1885 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1886 { }
1887 
1888 static inline void skb_init_secmark(struct sk_buff *skb)
1889 { }
1890 #endif
1891 
1892 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1893 {
1894 	skb->queue_mapping = queue_mapping;
1895 }
1896 
1897 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1898 {
1899 	return skb->queue_mapping;
1900 }
1901 
1902 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1903 {
1904 	to->queue_mapping = from->queue_mapping;
1905 }
1906 
1907 #ifdef CONFIG_XFRM
1908 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
1909 {
1910 	return skb->sp;
1911 }
1912 #else
1913 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
1914 {
1915 	return NULL;
1916 }
1917 #endif
1918 
1919 static inline int skb_is_gso(const struct sk_buff *skb)
1920 {
1921 	return skb_shinfo(skb)->gso_size;
1922 }
1923 
1924 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1925 {
1926 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1927 }
1928 
1929 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1930 
1931 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1932 {
1933 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
1934 	 * wanted then gso_type will be set. */
1935 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1936 	if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1937 		__skb_warn_lro_forwarding(skb);
1938 		return true;
1939 	}
1940 	return false;
1941 }
1942 
1943 static inline void skb_forward_csum(struct sk_buff *skb)
1944 {
1945 	/* Unfortunately we don't support this one.  Any brave souls? */
1946 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1947 		skb->ip_summed = CHECKSUM_NONE;
1948 }
1949 
1950 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1951 #endif	/* __KERNEL__ */
1952 #endif	/* _LINUX_SKBUFF_H */
1953