xref: /linux-6.15/include/linux/skbuff.h (revision 2deaf7f4)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <linux/page_frag_cache.h>
35 #include <net/flow.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason-core.h>
41 #include <net/netmem.h>
42 
43 /**
44  * DOC: skb checksums
45  *
46  * The interface for checksum offload between the stack and networking drivers
47  * is as follows...
48  *
49  * IP checksum related features
50  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
51  *
52  * Drivers advertise checksum offload capabilities in the features of a device.
53  * From the stack's point of view these are capabilities offered by the driver.
54  * A driver typically only advertises features that it is capable of offloading
55  * to its device.
56  *
57  * .. flat-table:: Checksum related device features
58  *   :widths: 1 10
59  *
60  *   * - %NETIF_F_HW_CSUM
61  *     - The driver (or its device) is able to compute one
62  *	 IP (one's complement) checksum for any combination
63  *	 of protocols or protocol layering. The checksum is
64  *	 computed and set in a packet per the CHECKSUM_PARTIAL
65  *	 interface (see below).
66  *
67  *   * - %NETIF_F_IP_CSUM
68  *     - Driver (device) is only able to checksum plain
69  *	 TCP or UDP packets over IPv4. These are specifically
70  *	 unencapsulated packets of the form IPv4|TCP or
71  *	 IPv4|UDP where the Protocol field in the IPv4 header
72  *	 is TCP or UDP. The IPv4 header may contain IP options.
73  *	 This feature cannot be set in features for a device
74  *	 with NETIF_F_HW_CSUM also set. This feature is being
75  *	 DEPRECATED (see below).
76  *
77  *   * - %NETIF_F_IPV6_CSUM
78  *     - Driver (device) is only able to checksum plain
79  *	 TCP or UDP packets over IPv6. These are specifically
80  *	 unencapsulated packets of the form IPv6|TCP or
81  *	 IPv6|UDP where the Next Header field in the IPv6
82  *	 header is either TCP or UDP. IPv6 extension headers
83  *	 are not supported with this feature. This feature
84  *	 cannot be set in features for a device with
85  *	 NETIF_F_HW_CSUM also set. This feature is being
86  *	 DEPRECATED (see below).
87  *
88  *   * - %NETIF_F_RXCSUM
89  *     - Driver (device) performs receive checksum offload.
90  *	 This flag is only used to disable the RX checksum
91  *	 feature for a device. The stack will accept receive
92  *	 checksum indication in packets received on a device
93  *	 regardless of whether NETIF_F_RXCSUM is set.
94  *
95  * Checksumming of received packets by device
96  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
97  *
98  * Indication of checksum verification is set in &sk_buff.ip_summed.
99  * Possible values are:
100  *
101  * - %CHECKSUM_NONE
102  *
103  *   Device did not checksum this packet e.g. due to lack of capabilities.
104  *   The packet contains full (though not verified) checksum in packet but
105  *   not in skb->csum. Thus, skb->csum is undefined in this case.
106  *
107  * - %CHECKSUM_UNNECESSARY
108  *
109  *   The hardware you're dealing with doesn't calculate the full checksum
110  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
111  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
112  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
113  *   though. A driver or device must never modify the checksum field in the
114  *   packet even if checksum is verified.
115  *
116  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
117  *
118  *     - TCP: IPv6 and IPv4.
119  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
120  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
121  *       may perform further validation in this case.
122  *     - GRE: only if the checksum is present in the header.
123  *     - SCTP: indicates the CRC in SCTP header has been validated.
124  *     - FCOE: indicates the CRC in FC frame has been validated.
125  *
126  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
127  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
128  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
129  *   and a device is able to verify the checksums for UDP (possibly zero),
130  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
131  *   two. If the device were only able to verify the UDP checksum and not
132  *   GRE, either because it doesn't support GRE checksum or because GRE
133  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
134  *   not considered in this case).
135  *
136  * - %CHECKSUM_COMPLETE
137  *
138  *   This is the most generic way. The device supplied checksum of the _whole_
139  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
140  *   hardware doesn't need to parse L3/L4 headers to implement this.
141  *
142  *   Notes:
143  *
144  *   - Even if device supports only some protocols, but is able to produce
145  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
146  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
147  *
148  * - %CHECKSUM_PARTIAL
149  *
150  *   A checksum is set up to be offloaded to a device as described in the
151  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
152  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
153  *   on the same host, or it may be set in the input path in GRO or remote
154  *   checksum offload. For the purposes of checksum verification, the checksum
155  *   referred to by skb->csum_start + skb->csum_offset and any preceding
156  *   checksums in the packet are considered verified. Any checksums in the
157  *   packet that are after the checksum being offloaded are not considered to
158  *   be verified.
159  *
160  * Checksumming on transmit for non-GSO
161  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162  *
163  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
164  * Values are:
165  *
166  * - %CHECKSUM_PARTIAL
167  *
168  *   The driver is required to checksum the packet as seen by hard_start_xmit()
169  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
170  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
171  *   A driver may verify that the
172  *   csum_start and csum_offset values are valid values given the length and
173  *   offset of the packet, but it should not attempt to validate that the
174  *   checksum refers to a legitimate transport layer checksum -- it is the
175  *   purview of the stack to validate that csum_start and csum_offset are set
176  *   correctly.
177  *
178  *   When the stack requests checksum offload for a packet, the driver MUST
179  *   ensure that the checksum is set correctly. A driver can either offload the
180  *   checksum calculation to the device, or call skb_checksum_help (in the case
181  *   that the device does not support offload for a particular checksum).
182  *
183  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
184  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
185  *   checksum offload capability.
186  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
187  *   on network device checksumming capabilities: if a packet does not match
188  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
189  *   &sk_buff.csum_not_inet, see :ref:`crc`)
190  *   is called to resolve the checksum.
191  *
192  * - %CHECKSUM_NONE
193  *
194  *   The skb was already checksummed by the protocol, or a checksum is not
195  *   required.
196  *
197  * - %CHECKSUM_UNNECESSARY
198  *
199  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
200  *   output.
201  *
202  * - %CHECKSUM_COMPLETE
203  *
204  *   Not used in checksum output. If a driver observes a packet with this value
205  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
206  *
207  * .. _crc:
208  *
209  * Non-IP checksum (CRC) offloads
210  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211  *
212  * .. flat-table::
213  *   :widths: 1 10
214  *
215  *   * - %NETIF_F_SCTP_CRC
216  *     - This feature indicates that a device is capable of
217  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
218  *	 will set csum_start and csum_offset accordingly, set ip_summed to
219  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
220  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
221  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
222  *	 must verify which offload is configured for a packet by testing the
223  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
224  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
225  *
226  *   * - %NETIF_F_FCOE_CRC
227  *     - This feature indicates that a device is capable of offloading the FCOE
228  *	 CRC in a packet. To perform this offload the stack will set ip_summed
229  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
230  *	 accordingly. Note that there is no indication in the skbuff that the
231  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
232  *	 both IP checksum offload and FCOE CRC offload must verify which offload
233  *	 is configured for a packet, presumably by inspecting packet headers.
234  *
235  * Checksumming on output with GSO
236  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
237  *
238  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
239  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
240  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
241  * part of the GSO operation is implied. If a checksum is being offloaded
242  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
243  * csum_offset are set to refer to the outermost checksum being offloaded
244  * (two offloaded checksums are possible with UDP encapsulation).
245  */
246 
247 /* Don't change this without changing skb_csum_unnecessary! */
248 #define CHECKSUM_NONE		0
249 #define CHECKSUM_UNNECESSARY	1
250 #define CHECKSUM_COMPLETE	2
251 #define CHECKSUM_PARTIAL	3
252 
253 /* Maximum value in skb->csum_level */
254 #define SKB_MAX_CSUM_LEVEL	3
255 
256 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
257 #define SKB_WITH_OVERHEAD(X)	\
258 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
259 
260 /* For X bytes available in skb->head, what is the minimal
261  * allocation needed, knowing struct skb_shared_info needs
262  * to be aligned.
263  */
264 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
265 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
266 
267 #define SKB_MAX_ORDER(X, ORDER) \
268 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
269 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
270 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
271 
272 /* return minimum truesize of one skb containing X bytes of data */
273 #define SKB_TRUESIZE(X) ((X) +						\
274 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
275 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
276 
277 struct ahash_request;
278 struct net_device;
279 struct scatterlist;
280 struct pipe_inode_info;
281 struct iov_iter;
282 struct napi_struct;
283 struct bpf_prog;
284 union bpf_attr;
285 struct skb_ext;
286 struct ts_config;
287 
288 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
289 struct nf_bridge_info {
290 	enum {
291 		BRNF_PROTO_UNCHANGED,
292 		BRNF_PROTO_8021Q,
293 		BRNF_PROTO_PPPOE
294 	} orig_proto:8;
295 	u8			pkt_otherhost:1;
296 	u8			in_prerouting:1;
297 	u8			bridged_dnat:1;
298 	u8			sabotage_in_done:1;
299 	__u16			frag_max_size;
300 	int			physinif;
301 
302 	/* always valid & non-NULL from FORWARD on, for physdev match */
303 	struct net_device	*physoutdev;
304 	union {
305 		/* prerouting: detect dnat in orig/reply direction */
306 		__be32          ipv4_daddr;
307 		struct in6_addr ipv6_daddr;
308 
309 		/* after prerouting + nat detected: store original source
310 		 * mac since neigh resolution overwrites it, only used while
311 		 * skb is out in neigh layer.
312 		 */
313 		char neigh_header[8];
314 	};
315 };
316 #endif
317 
318 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
319 /* Chain in tc_skb_ext will be used to share the tc chain with
320  * ovs recirc_id. It will be set to the current chain by tc
321  * and read by ovs to recirc_id.
322  */
323 struct tc_skb_ext {
324 	union {
325 		u64 act_miss_cookie;
326 		__u32 chain;
327 	};
328 	__u16 mru;
329 	__u16 zone;
330 	u8 post_ct:1;
331 	u8 post_ct_snat:1;
332 	u8 post_ct_dnat:1;
333 	u8 act_miss:1; /* Set if act_miss_cookie is used */
334 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
335 };
336 #endif
337 
338 struct sk_buff_head {
339 	/* These two members must be first to match sk_buff. */
340 	struct_group_tagged(sk_buff_list, list,
341 		struct sk_buff	*next;
342 		struct sk_buff	*prev;
343 	);
344 
345 	__u32		qlen;
346 	spinlock_t	lock;
347 };
348 
349 struct sk_buff;
350 
351 #ifndef CONFIG_MAX_SKB_FRAGS
352 # define CONFIG_MAX_SKB_FRAGS 17
353 #endif
354 
355 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
356 
357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358  * segment using its current segmentation instead.
359  */
360 #define GSO_BY_FRAGS	0xFFFF
361 
362 typedef struct skb_frag {
363 	netmem_ref netmem;
364 	unsigned int len;
365 	unsigned int offset;
366 } skb_frag_t;
367 
368 /**
369  * skb_frag_size() - Returns the size of a skb fragment
370  * @frag: skb fragment
371  */
372 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
373 {
374 	return frag->len;
375 }
376 
377 /**
378  * skb_frag_size_set() - Sets the size of a skb fragment
379  * @frag: skb fragment
380  * @size: size of fragment
381  */
382 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
383 {
384 	frag->len = size;
385 }
386 
387 /**
388  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
389  * @frag: skb fragment
390  * @delta: value to add
391  */
392 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
393 {
394 	frag->len += delta;
395 }
396 
397 /**
398  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
399  * @frag: skb fragment
400  * @delta: value to subtract
401  */
402 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
403 {
404 	frag->len -= delta;
405 }
406 
407 /**
408  * skb_frag_must_loop - Test if %p is a high memory page
409  * @p: fragment's page
410  */
411 static inline bool skb_frag_must_loop(struct page *p)
412 {
413 #if defined(CONFIG_HIGHMEM)
414 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
415 		return true;
416 #endif
417 	return false;
418 }
419 
420 /**
421  *	skb_frag_foreach_page - loop over pages in a fragment
422  *
423  *	@f:		skb frag to operate on
424  *	@f_off:		offset from start of f->netmem
425  *	@f_len:		length from f_off to loop over
426  *	@p:		(temp var) current page
427  *	@p_off:		(temp var) offset from start of current page,
428  *	                           non-zero only on first page.
429  *	@p_len:		(temp var) length in current page,
430  *				   < PAGE_SIZE only on first and last page.
431  *	@copied:	(temp var) length so far, excluding current p_len.
432  *
433  *	A fragment can hold a compound page, in which case per-page
434  *	operations, notably kmap_atomic, must be called for each
435  *	regular page.
436  */
437 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
438 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
439 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
440 	     p_len = skb_frag_must_loop(p) ?				\
441 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
442 	     copied = 0;						\
443 	     copied < f_len;						\
444 	     copied += p_len, p++, p_off = 0,				\
445 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
446 
447 /**
448  * struct skb_shared_hwtstamps - hardware time stamps
449  * @hwtstamp:		hardware time stamp transformed into duration
450  *			since arbitrary point in time
451  * @netdev_data:	address/cookie of network device driver used as
452  *			reference to actual hardware time stamp
453  *
454  * Software time stamps generated by ktime_get_real() are stored in
455  * skb->tstamp.
456  *
457  * hwtstamps can only be compared against other hwtstamps from
458  * the same device.
459  *
460  * This structure is attached to packets as part of the
461  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
462  */
463 struct skb_shared_hwtstamps {
464 	union {
465 		ktime_t	hwtstamp;
466 		void *netdev_data;
467 	};
468 };
469 
470 /* Definitions for tx_flags in struct skb_shared_info */
471 enum {
472 	/* generate hardware time stamp */
473 	SKBTX_HW_TSTAMP_NOBPF = 1 << 0,
474 
475 	/* generate software time stamp when queueing packet to NIC */
476 	SKBTX_SW_TSTAMP = 1 << 1,
477 
478 	/* device driver is going to provide hardware time stamp */
479 	SKBTX_IN_PROGRESS = 1 << 2,
480 
481 	/* generate hardware time stamp based on cycles if supported */
482 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
483 
484 	/* generate wifi status information (where possible) */
485 	SKBTX_WIFI_STATUS = 1 << 4,
486 
487 	/* determine hardware time stamp based on time or cycles */
488 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
489 
490 	/* generate software time stamp when entering packet scheduling */
491 	SKBTX_SCHED_TSTAMP = 1 << 6,
492 
493 	/* used for bpf extension when a bpf program is loaded */
494 	SKBTX_BPF = 1 << 7,
495 };
496 
497 #define SKBTX_HW_TSTAMP		(SKBTX_HW_TSTAMP_NOBPF | SKBTX_BPF)
498 
499 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
500 				 SKBTX_SCHED_TSTAMP | \
501 				 SKBTX_BPF)
502 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
503 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
504 				 SKBTX_ANY_SW_TSTAMP)
505 
506 /* Definitions for flags in struct skb_shared_info */
507 enum {
508 	/* use zcopy routines */
509 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
510 
511 	/* This indicates at least one fragment might be overwritten
512 	 * (as in vmsplice(), sendfile() ...)
513 	 * If we need to compute a TX checksum, we'll need to copy
514 	 * all frags to avoid possible bad checksum
515 	 */
516 	SKBFL_SHARED_FRAG = BIT(1),
517 
518 	/* segment contains only zerocopy data and should not be
519 	 * charged to the kernel memory.
520 	 */
521 	SKBFL_PURE_ZEROCOPY = BIT(2),
522 
523 	SKBFL_DONT_ORPHAN = BIT(3),
524 
525 	/* page references are managed by the ubuf_info, so it's safe to
526 	 * use frags only up until ubuf_info is released
527 	 */
528 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
529 };
530 
531 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
532 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
533 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
534 
535 struct ubuf_info_ops {
536 	void (*complete)(struct sk_buff *, struct ubuf_info *,
537 			 bool zerocopy_success);
538 	/* has to be compatible with skb_zcopy_set() */
539 	int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
540 };
541 
542 /*
543  * The callback notifies userspace to release buffers when skb DMA is done in
544  * lower device, the skb last reference should be 0 when calling this.
545  * The zerocopy_success argument is true if zero copy transmit occurred,
546  * false on data copy or out of memory error caused by data copy attempt.
547  * The ctx field is used to track device context.
548  * The desc field is used to track userspace buffer index.
549  */
550 struct ubuf_info {
551 	const struct ubuf_info_ops *ops;
552 	refcount_t refcnt;
553 	u8 flags;
554 };
555 
556 struct ubuf_info_msgzc {
557 	struct ubuf_info ubuf;
558 
559 	union {
560 		struct {
561 			unsigned long desc;
562 			void *ctx;
563 		};
564 		struct {
565 			u32 id;
566 			u16 len;
567 			u16 zerocopy:1;
568 			u32 bytelen;
569 		};
570 	};
571 
572 	struct mmpin {
573 		struct user_struct *user;
574 		unsigned int num_pg;
575 	} mmp;
576 };
577 
578 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
579 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
580 					     ubuf)
581 
582 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
583 void mm_unaccount_pinned_pages(struct mmpin *mmp);
584 
585 /* Preserve some data across TX submission and completion.
586  *
587  * Note, this state is stored in the driver. Extending the layout
588  * might need some special care.
589  */
590 struct xsk_tx_metadata_compl {
591 	__u64 *tx_timestamp;
592 };
593 
594 /* This data is invariant across clones and lives at
595  * the end of the header data, ie. at skb->end.
596  */
597 struct skb_shared_info {
598 	__u8		flags;
599 	__u8		meta_len;
600 	__u8		nr_frags;
601 	__u8		tx_flags;
602 	unsigned short	gso_size;
603 	/* Warning: this field is not always filled in (UFO)! */
604 	unsigned short	gso_segs;
605 	struct sk_buff	*frag_list;
606 	union {
607 		struct skb_shared_hwtstamps hwtstamps;
608 		struct xsk_tx_metadata_compl xsk_meta;
609 	};
610 	unsigned int	gso_type;
611 	u32		tskey;
612 
613 	/*
614 	 * Warning : all fields before dataref are cleared in __alloc_skb()
615 	 */
616 	atomic_t	dataref;
617 
618 	union {
619 		struct {
620 			u32		xdp_frags_size;
621 			u32		xdp_frags_truesize;
622 		};
623 
624 		/*
625 		 * Intermediate layers must ensure that destructor_arg
626 		 * remains valid until skb destructor.
627 		 */
628 		void		*destructor_arg;
629 	};
630 
631 	/* must be last field, see pskb_expand_head() */
632 	skb_frag_t	frags[MAX_SKB_FRAGS];
633 };
634 
635 /**
636  * DOC: dataref and headerless skbs
637  *
638  * Transport layers send out clones of payload skbs they hold for
639  * retransmissions. To allow lower layers of the stack to prepend their headers
640  * we split &skb_shared_info.dataref into two halves.
641  * The lower 16 bits count the overall number of references.
642  * The higher 16 bits indicate how many of the references are payload-only.
643  * skb_header_cloned() checks if skb is allowed to add / write the headers.
644  *
645  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
646  * (via __skb_header_release()). Any clone created from marked skb will get
647  * &sk_buff.hdr_len populated with the available headroom.
648  * If there's the only clone in existence it's able to modify the headroom
649  * at will. The sequence of calls inside the transport layer is::
650  *
651  *  <alloc skb>
652  *  skb_reserve()
653  *  __skb_header_release()
654  *  skb_clone()
655  *  // send the clone down the stack
656  *
657  * This is not a very generic construct and it depends on the transport layers
658  * doing the right thing. In practice there's usually only one payload-only skb.
659  * Having multiple payload-only skbs with different lengths of hdr_len is not
660  * possible. The payload-only skbs should never leave their owner.
661  */
662 #define SKB_DATAREF_SHIFT 16
663 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
664 
665 
666 enum {
667 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
668 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
669 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
670 };
671 
672 enum {
673 	SKB_GSO_TCPV4 = 1 << 0,
674 
675 	/* This indicates the skb is from an untrusted source. */
676 	SKB_GSO_DODGY = 1 << 1,
677 
678 	/* This indicates the tcp segment has CWR set. */
679 	SKB_GSO_TCP_ECN = 1 << 2,
680 
681 	SKB_GSO_TCP_FIXEDID = 1 << 3,
682 
683 	SKB_GSO_TCPV6 = 1 << 4,
684 
685 	SKB_GSO_FCOE = 1 << 5,
686 
687 	SKB_GSO_GRE = 1 << 6,
688 
689 	SKB_GSO_GRE_CSUM = 1 << 7,
690 
691 	SKB_GSO_IPXIP4 = 1 << 8,
692 
693 	SKB_GSO_IPXIP6 = 1 << 9,
694 
695 	SKB_GSO_UDP_TUNNEL = 1 << 10,
696 
697 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
698 
699 	SKB_GSO_PARTIAL = 1 << 12,
700 
701 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
702 
703 	SKB_GSO_SCTP = 1 << 14,
704 
705 	SKB_GSO_ESP = 1 << 15,
706 
707 	SKB_GSO_UDP = 1 << 16,
708 
709 	SKB_GSO_UDP_L4 = 1 << 17,
710 
711 	SKB_GSO_FRAGLIST = 1 << 18,
712 };
713 
714 #if BITS_PER_LONG > 32
715 #define NET_SKBUFF_DATA_USES_OFFSET 1
716 #endif
717 
718 #ifdef NET_SKBUFF_DATA_USES_OFFSET
719 typedef unsigned int sk_buff_data_t;
720 #else
721 typedef unsigned char *sk_buff_data_t;
722 #endif
723 
724 enum skb_tstamp_type {
725 	SKB_CLOCK_REALTIME,
726 	SKB_CLOCK_MONOTONIC,
727 	SKB_CLOCK_TAI,
728 	__SKB_CLOCK_MAX = SKB_CLOCK_TAI,
729 };
730 
731 /**
732  * DOC: Basic sk_buff geometry
733  *
734  * struct sk_buff itself is a metadata structure and does not hold any packet
735  * data. All the data is held in associated buffers.
736  *
737  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
738  * into two parts:
739  *
740  *  - data buffer, containing headers and sometimes payload;
741  *    this is the part of the skb operated on by the common helpers
742  *    such as skb_put() or skb_pull();
743  *  - shared info (struct skb_shared_info) which holds an array of pointers
744  *    to read-only data in the (page, offset, length) format.
745  *
746  * Optionally &skb_shared_info.frag_list may point to another skb.
747  *
748  * Basic diagram may look like this::
749  *
750  *                                  ---------------
751  *                                 | sk_buff       |
752  *                                  ---------------
753  *     ,---------------------------  + head
754  *    /          ,-----------------  + data
755  *   /          /      ,-----------  + tail
756  *  |          |      |            , + end
757  *  |          |      |           |
758  *  v          v      v           v
759  *   -----------------------------------------------
760  *  | headroom | data |  tailroom | skb_shared_info |
761  *   -----------------------------------------------
762  *                                 + [page frag]
763  *                                 + [page frag]
764  *                                 + [page frag]
765  *                                 + [page frag]       ---------
766  *                                 + frag_list    --> | sk_buff |
767  *                                                     ---------
768  *
769  */
770 
771 /**
772  *	struct sk_buff - socket buffer
773  *	@next: Next buffer in list
774  *	@prev: Previous buffer in list
775  *	@tstamp: Time we arrived/left
776  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
777  *		for retransmit timer
778  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
779  *	@list: queue head
780  *	@ll_node: anchor in an llist (eg socket defer_list)
781  *	@sk: Socket we are owned by
782  *	@dev: Device we arrived on/are leaving by
783  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
784  *	@cb: Control buffer. Free for use by every layer. Put private vars here
785  *	@_skb_refdst: destination entry (with norefcount bit)
786  *	@len: Length of actual data
787  *	@data_len: Data length
788  *	@mac_len: Length of link layer header
789  *	@hdr_len: writable header length of cloned skb
790  *	@csum: Checksum (must include start/offset pair)
791  *	@csum_start: Offset from skb->head where checksumming should start
792  *	@csum_offset: Offset from csum_start where checksum should be stored
793  *	@priority: Packet queueing priority
794  *	@ignore_df: allow local fragmentation
795  *	@cloned: Head may be cloned (check refcnt to be sure)
796  *	@ip_summed: Driver fed us an IP checksum
797  *	@nohdr: Payload reference only, must not modify header
798  *	@pkt_type: Packet class
799  *	@fclone: skbuff clone status
800  *	@ipvs_property: skbuff is owned by ipvs
801  *	@inner_protocol_type: whether the inner protocol is
802  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
803  *	@remcsum_offload: remote checksum offload is enabled
804  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
805  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
806  *	@tc_skip_classify: do not classify packet. set by IFB device
807  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
808  *	@redirected: packet was redirected by packet classifier
809  *	@from_ingress: packet was redirected from the ingress path
810  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
811  *	@peeked: this packet has been seen already, so stats have been
812  *		done for it, don't do them again
813  *	@nf_trace: netfilter packet trace flag
814  *	@protocol: Packet protocol from driver
815  *	@destructor: Destruct function
816  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
817  *	@_sk_redir: socket redirection information for skmsg
818  *	@_nfct: Associated connection, if any (with nfctinfo bits)
819  *	@skb_iif: ifindex of device we arrived on
820  *	@tc_index: Traffic control index
821  *	@hash: the packet hash
822  *	@queue_mapping: Queue mapping for multiqueue devices
823  *	@head_frag: skb was allocated from page fragments,
824  *		not allocated by kmalloc() or vmalloc().
825  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
826  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
827  *		page_pool support on driver)
828  *	@active_extensions: active extensions (skb_ext_id types)
829  *	@ndisc_nodetype: router type (from link layer)
830  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
831  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
832  *		ports.
833  *	@sw_hash: indicates hash was computed in software stack
834  *	@wifi_acked_valid: wifi_acked was set
835  *	@wifi_acked: whether frame was acked on wifi or not
836  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
837  *	@encapsulation: indicates the inner headers in the skbuff are valid
838  *	@encap_hdr_csum: software checksum is needed
839  *	@csum_valid: checksum is already valid
840  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
841  *	@csum_complete_sw: checksum was completed by software
842  *	@csum_level: indicates the number of consecutive checksums found in
843  *		the packet minus one that have been verified as
844  *		CHECKSUM_UNNECESSARY (max 3)
845  *	@unreadable: indicates that at least 1 of the fragments in this skb is
846  *		unreadable.
847  *	@dst_pending_confirm: need to confirm neighbour
848  *	@decrypted: Decrypted SKB
849  *	@slow_gro: state present at GRO time, slower prepare step required
850  *	@tstamp_type: When set, skb->tstamp has the
851  *		delivery_time clock base of skb->tstamp.
852  *	@napi_id: id of the NAPI struct this skb came from
853  *	@sender_cpu: (aka @napi_id) source CPU in XPS
854  *	@alloc_cpu: CPU which did the skb allocation.
855  *	@secmark: security marking
856  *	@mark: Generic packet mark
857  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
858  *		at the tail of an sk_buff
859  *	@vlan_all: vlan fields (proto & tci)
860  *	@vlan_proto: vlan encapsulation protocol
861  *	@vlan_tci: vlan tag control information
862  *	@inner_protocol: Protocol (encapsulation)
863  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
864  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
865  *	@inner_transport_header: Inner transport layer header (encapsulation)
866  *	@inner_network_header: Network layer header (encapsulation)
867  *	@inner_mac_header: Link layer header (encapsulation)
868  *	@transport_header: Transport layer header
869  *	@network_header: Network layer header
870  *	@mac_header: Link layer header
871  *	@kcov_handle: KCOV remote handle for remote coverage collection
872  *	@tail: Tail pointer
873  *	@end: End pointer
874  *	@head: Head of buffer
875  *	@data: Data head pointer
876  *	@truesize: Buffer size
877  *	@users: User count - see {datagram,tcp}.c
878  *	@extensions: allocated extensions, valid if active_extensions is nonzero
879  */
880 
881 struct sk_buff {
882 	union {
883 		struct {
884 			/* These two members must be first to match sk_buff_head. */
885 			struct sk_buff		*next;
886 			struct sk_buff		*prev;
887 
888 			union {
889 				struct net_device	*dev;
890 				/* Some protocols might use this space to store information,
891 				 * while device pointer would be NULL.
892 				 * UDP receive path is one user.
893 				 */
894 				unsigned long		dev_scratch;
895 			};
896 		};
897 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
898 		struct list_head	list;
899 		struct llist_node	ll_node;
900 	};
901 
902 	struct sock		*sk;
903 
904 	union {
905 		ktime_t		tstamp;
906 		u64		skb_mstamp_ns; /* earliest departure time */
907 	};
908 	/*
909 	 * This is the control buffer. It is free to use for every
910 	 * layer. Please put your private variables there. If you
911 	 * want to keep them across layers you have to do a skb_clone()
912 	 * first. This is owned by whoever has the skb queued ATM.
913 	 */
914 	char			cb[48] __aligned(8);
915 
916 	union {
917 		struct {
918 			unsigned long	_skb_refdst;
919 			void		(*destructor)(struct sk_buff *skb);
920 		};
921 		struct list_head	tcp_tsorted_anchor;
922 #ifdef CONFIG_NET_SOCK_MSG
923 		unsigned long		_sk_redir;
924 #endif
925 	};
926 
927 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
928 	unsigned long		 _nfct;
929 #endif
930 	unsigned int		len,
931 				data_len;
932 	__u16			mac_len,
933 				hdr_len;
934 
935 	/* Following fields are _not_ copied in __copy_skb_header()
936 	 * Note that queue_mapping is here mostly to fill a hole.
937 	 */
938 	__u16			queue_mapping;
939 
940 /* if you move cloned around you also must adapt those constants */
941 #ifdef __BIG_ENDIAN_BITFIELD
942 #define CLONED_MASK	(1 << 7)
943 #else
944 #define CLONED_MASK	1
945 #endif
946 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
947 
948 	/* private: */
949 	__u8			__cloned_offset[0];
950 	/* public: */
951 	__u8			cloned:1,
952 				nohdr:1,
953 				fclone:2,
954 				peeked:1,
955 				head_frag:1,
956 				pfmemalloc:1,
957 				pp_recycle:1; /* page_pool recycle indicator */
958 #ifdef CONFIG_SKB_EXTENSIONS
959 	__u8			active_extensions;
960 #endif
961 
962 	/* Fields enclosed in headers group are copied
963 	 * using a single memcpy() in __copy_skb_header()
964 	 */
965 	struct_group(headers,
966 
967 	/* private: */
968 	__u8			__pkt_type_offset[0];
969 	/* public: */
970 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
971 	__u8			ignore_df:1;
972 	__u8			dst_pending_confirm:1;
973 	__u8			ip_summed:2;
974 	__u8			ooo_okay:1;
975 
976 	/* private: */
977 	__u8			__mono_tc_offset[0];
978 	/* public: */
979 	__u8			tstamp_type:2;	/* See skb_tstamp_type */
980 #ifdef CONFIG_NET_XGRESS
981 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
982 	__u8			tc_skip_classify:1;
983 #endif
984 	__u8			remcsum_offload:1;
985 	__u8			csum_complete_sw:1;
986 	__u8			csum_level:2;
987 	__u8			inner_protocol_type:1;
988 
989 	__u8			l4_hash:1;
990 	__u8			sw_hash:1;
991 #ifdef CONFIG_WIRELESS
992 	__u8			wifi_acked_valid:1;
993 	__u8			wifi_acked:1;
994 #endif
995 	__u8			no_fcs:1;
996 	/* Indicates the inner headers are valid in the skbuff. */
997 	__u8			encapsulation:1;
998 	__u8			encap_hdr_csum:1;
999 	__u8			csum_valid:1;
1000 #ifdef CONFIG_IPV6_NDISC_NODETYPE
1001 	__u8			ndisc_nodetype:2;
1002 #endif
1003 
1004 #if IS_ENABLED(CONFIG_IP_VS)
1005 	__u8			ipvs_property:1;
1006 #endif
1007 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
1008 	__u8			nf_trace:1;
1009 #endif
1010 #ifdef CONFIG_NET_SWITCHDEV
1011 	__u8			offload_fwd_mark:1;
1012 	__u8			offload_l3_fwd_mark:1;
1013 #endif
1014 	__u8			redirected:1;
1015 #ifdef CONFIG_NET_REDIRECT
1016 	__u8			from_ingress:1;
1017 #endif
1018 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1019 	__u8			nf_skip_egress:1;
1020 #endif
1021 #ifdef CONFIG_SKB_DECRYPTED
1022 	__u8			decrypted:1;
1023 #endif
1024 	__u8			slow_gro:1;
1025 #if IS_ENABLED(CONFIG_IP_SCTP)
1026 	__u8			csum_not_inet:1;
1027 #endif
1028 	__u8			unreadable:1;
1029 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1030 	__u16			tc_index;	/* traffic control index */
1031 #endif
1032 
1033 	u16			alloc_cpu;
1034 
1035 	union {
1036 		__wsum		csum;
1037 		struct {
1038 			__u16	csum_start;
1039 			__u16	csum_offset;
1040 		};
1041 	};
1042 	__u32			priority;
1043 	int			skb_iif;
1044 	__u32			hash;
1045 	union {
1046 		u32		vlan_all;
1047 		struct {
1048 			__be16	vlan_proto;
1049 			__u16	vlan_tci;
1050 		};
1051 	};
1052 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1053 	union {
1054 		unsigned int	napi_id;
1055 		unsigned int	sender_cpu;
1056 	};
1057 #endif
1058 #ifdef CONFIG_NETWORK_SECMARK
1059 	__u32		secmark;
1060 #endif
1061 
1062 	union {
1063 		__u32		mark;
1064 		__u32		reserved_tailroom;
1065 	};
1066 
1067 	union {
1068 		__be16		inner_protocol;
1069 		__u8		inner_ipproto;
1070 	};
1071 
1072 	__u16			inner_transport_header;
1073 	__u16			inner_network_header;
1074 	__u16			inner_mac_header;
1075 
1076 	__be16			protocol;
1077 	__u16			transport_header;
1078 	__u16			network_header;
1079 	__u16			mac_header;
1080 
1081 #ifdef CONFIG_KCOV
1082 	u64			kcov_handle;
1083 #endif
1084 
1085 	); /* end headers group */
1086 
1087 	/* These elements must be at the end, see alloc_skb() for details.  */
1088 	sk_buff_data_t		tail;
1089 	sk_buff_data_t		end;
1090 	unsigned char		*head,
1091 				*data;
1092 	unsigned int		truesize;
1093 	refcount_t		users;
1094 
1095 #ifdef CONFIG_SKB_EXTENSIONS
1096 	/* only usable after checking ->active_extensions != 0 */
1097 	struct skb_ext		*extensions;
1098 #endif
1099 };
1100 
1101 /* if you move pkt_type around you also must adapt those constants */
1102 #ifdef __BIG_ENDIAN_BITFIELD
1103 #define PKT_TYPE_MAX	(7 << 5)
1104 #else
1105 #define PKT_TYPE_MAX	7
1106 #endif
1107 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1108 
1109 /* if you move tc_at_ingress or tstamp_type
1110  * around, you also must adapt these constants.
1111  */
1112 #ifdef __BIG_ENDIAN_BITFIELD
1113 #define SKB_TSTAMP_TYPE_MASK		(3 << 6)
1114 #define SKB_TSTAMP_TYPE_RSHIFT		(6)
1115 #define TC_AT_INGRESS_MASK		(1 << 5)
1116 #else
1117 #define SKB_TSTAMP_TYPE_MASK		(3)
1118 #define TC_AT_INGRESS_MASK		(1 << 2)
1119 #endif
1120 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1121 
1122 #ifdef __KERNEL__
1123 /*
1124  *	Handling routines are only of interest to the kernel
1125  */
1126 
1127 #define SKB_ALLOC_FCLONE	0x01
1128 #define SKB_ALLOC_RX		0x02
1129 #define SKB_ALLOC_NAPI		0x04
1130 
1131 /**
1132  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1133  * @skb: buffer
1134  */
1135 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1136 {
1137 	return unlikely(skb->pfmemalloc);
1138 }
1139 
1140 /*
1141  * skb might have a dst pointer attached, refcounted or not.
1142  * _skb_refdst low order bit is set if refcount was _not_ taken
1143  */
1144 #define SKB_DST_NOREF	1UL
1145 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1146 
1147 /**
1148  * skb_dst - returns skb dst_entry
1149  * @skb: buffer
1150  *
1151  * Returns: skb dst_entry, regardless of reference taken or not.
1152  */
1153 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1154 {
1155 	/* If refdst was not refcounted, check we still are in a
1156 	 * rcu_read_lock section
1157 	 */
1158 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1159 		!rcu_read_lock_held() &&
1160 		!rcu_read_lock_bh_held());
1161 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1162 }
1163 
1164 /**
1165  * skb_dst_set - sets skb dst
1166  * @skb: buffer
1167  * @dst: dst entry
1168  *
1169  * Sets skb dst, assuming a reference was taken on dst and should
1170  * be released by skb_dst_drop()
1171  */
1172 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1173 {
1174 	skb->slow_gro |= !!dst;
1175 	skb->_skb_refdst = (unsigned long)dst;
1176 }
1177 
1178 /**
1179  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1180  * @skb: buffer
1181  * @dst: dst entry
1182  *
1183  * Sets skb dst, assuming a reference was not taken on dst.
1184  * If dst entry is cached, we do not take reference and dst_release
1185  * will be avoided by refdst_drop. If dst entry is not cached, we take
1186  * reference, so that last dst_release can destroy the dst immediately.
1187  */
1188 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1189 {
1190 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1191 	skb->slow_gro |= !!dst;
1192 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1193 }
1194 
1195 /**
1196  * skb_dst_is_noref - Test if skb dst isn't refcounted
1197  * @skb: buffer
1198  */
1199 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1200 {
1201 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1202 }
1203 
1204 /* For mangling skb->pkt_type from user space side from applications
1205  * such as nft, tc, etc, we only allow a conservative subset of
1206  * possible pkt_types to be set.
1207 */
1208 static inline bool skb_pkt_type_ok(u32 ptype)
1209 {
1210 	return ptype <= PACKET_OTHERHOST;
1211 }
1212 
1213 /**
1214  * skb_napi_id - Returns the skb's NAPI id
1215  * @skb: buffer
1216  */
1217 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1218 {
1219 #ifdef CONFIG_NET_RX_BUSY_POLL
1220 	return skb->napi_id;
1221 #else
1222 	return 0;
1223 #endif
1224 }
1225 
1226 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1227 {
1228 #ifdef CONFIG_WIRELESS
1229 	return skb->wifi_acked_valid;
1230 #else
1231 	return 0;
1232 #endif
1233 }
1234 
1235 /**
1236  * skb_unref - decrement the skb's reference count
1237  * @skb: buffer
1238  *
1239  * Returns: true if we can free the skb.
1240  */
1241 static inline bool skb_unref(struct sk_buff *skb)
1242 {
1243 	if (unlikely(!skb))
1244 		return false;
1245 	if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1))
1246 		smp_rmb();
1247 	else if (likely(!refcount_dec_and_test(&skb->users)))
1248 		return false;
1249 
1250 	return true;
1251 }
1252 
1253 static inline bool skb_data_unref(const struct sk_buff *skb,
1254 				  struct skb_shared_info *shinfo)
1255 {
1256 	int bias;
1257 
1258 	if (!skb->cloned)
1259 		return true;
1260 
1261 	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1262 
1263 	if (atomic_read(&shinfo->dataref) == bias)
1264 		smp_rmb();
1265 	else if (atomic_sub_return(bias, &shinfo->dataref))
1266 		return false;
1267 
1268 	return true;
1269 }
1270 
1271 void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1272 				      enum skb_drop_reason reason);
1273 
1274 static inline void
1275 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1276 {
1277 	sk_skb_reason_drop(NULL, skb, reason);
1278 }
1279 
1280 /**
1281  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1282  *	@skb: buffer to free
1283  */
1284 static inline void kfree_skb(struct sk_buff *skb)
1285 {
1286 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1287 }
1288 
1289 void skb_release_head_state(struct sk_buff *skb);
1290 void kfree_skb_list_reason(struct sk_buff *segs,
1291 			   enum skb_drop_reason reason);
1292 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1293 void skb_tx_error(struct sk_buff *skb);
1294 
1295 static inline void kfree_skb_list(struct sk_buff *segs)
1296 {
1297 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1298 }
1299 
1300 #ifdef CONFIG_TRACEPOINTS
1301 void consume_skb(struct sk_buff *skb);
1302 #else
1303 static inline void consume_skb(struct sk_buff *skb)
1304 {
1305 	return kfree_skb(skb);
1306 }
1307 #endif
1308 
1309 void __consume_stateless_skb(struct sk_buff *skb);
1310 void  __kfree_skb(struct sk_buff *skb);
1311 
1312 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1313 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1314 		      bool *fragstolen, int *delta_truesize);
1315 
1316 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1317 			    int node);
1318 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1319 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1320 struct sk_buff *build_skb_around(struct sk_buff *skb,
1321 				 void *data, unsigned int frag_size);
1322 void skb_attempt_defer_free(struct sk_buff *skb);
1323 
1324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1325 struct sk_buff *slab_build_skb(void *data);
1326 
1327 /**
1328  * alloc_skb - allocate a network buffer
1329  * @size: size to allocate
1330  * @priority: allocation mask
1331  *
1332  * This function is a convenient wrapper around __alloc_skb().
1333  */
1334 static inline struct sk_buff *alloc_skb(unsigned int size,
1335 					gfp_t priority)
1336 {
1337 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1338 }
1339 
1340 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1341 				     unsigned long data_len,
1342 				     int max_page_order,
1343 				     int *errcode,
1344 				     gfp_t gfp_mask);
1345 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1346 
1347 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1348 struct sk_buff_fclones {
1349 	struct sk_buff	skb1;
1350 
1351 	struct sk_buff	skb2;
1352 
1353 	refcount_t	fclone_ref;
1354 };
1355 
1356 /**
1357  *	skb_fclone_busy - check if fclone is busy
1358  *	@sk: socket
1359  *	@skb: buffer
1360  *
1361  * Returns: true if skb is a fast clone, and its clone is not freed.
1362  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1363  * so we also check that didn't happen.
1364  */
1365 static inline bool skb_fclone_busy(const struct sock *sk,
1366 				   const struct sk_buff *skb)
1367 {
1368 	const struct sk_buff_fclones *fclones;
1369 
1370 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1371 
1372 	return skb->fclone == SKB_FCLONE_ORIG &&
1373 	       refcount_read(&fclones->fclone_ref) > 1 &&
1374 	       READ_ONCE(fclones->skb2.sk) == sk;
1375 }
1376 
1377 /**
1378  * alloc_skb_fclone - allocate a network buffer from fclone cache
1379  * @size: size to allocate
1380  * @priority: allocation mask
1381  *
1382  * This function is a convenient wrapper around __alloc_skb().
1383  */
1384 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1385 					       gfp_t priority)
1386 {
1387 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1388 }
1389 
1390 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1391 void skb_headers_offset_update(struct sk_buff *skb, int off);
1392 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1393 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1394 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1395 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1396 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1397 				   gfp_t gfp_mask, bool fclone);
1398 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1399 					  gfp_t gfp_mask)
1400 {
1401 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1402 }
1403 
1404 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1405 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1406 				     unsigned int headroom);
1407 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1408 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1409 				int newtailroom, gfp_t priority);
1410 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1411 				     int offset, int len);
1412 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1413 			      int offset, int len);
1414 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1415 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1416 
1417 /**
1418  *	skb_pad			-	zero pad the tail of an skb
1419  *	@skb: buffer to pad
1420  *	@pad: space to pad
1421  *
1422  *	Ensure that a buffer is followed by a padding area that is zero
1423  *	filled. Used by network drivers which may DMA or transfer data
1424  *	beyond the buffer end onto the wire.
1425  *
1426  *	May return error in out of memory cases. The skb is freed on error.
1427  */
1428 static inline int skb_pad(struct sk_buff *skb, int pad)
1429 {
1430 	return __skb_pad(skb, pad, true);
1431 }
1432 #define dev_kfree_skb(a)	consume_skb(a)
1433 
1434 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1435 			 int offset, size_t size, size_t max_frags);
1436 
1437 struct skb_seq_state {
1438 	__u32		lower_offset;
1439 	__u32		upper_offset;
1440 	__u32		frag_idx;
1441 	__u32		stepped_offset;
1442 	struct sk_buff	*root_skb;
1443 	struct sk_buff	*cur_skb;
1444 	__u8		*frag_data;
1445 	__u32		frag_off;
1446 };
1447 
1448 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1449 			  unsigned int to, struct skb_seq_state *st);
1450 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1451 			  struct skb_seq_state *st);
1452 void skb_abort_seq_read(struct skb_seq_state *st);
1453 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len);
1454 
1455 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1456 			   unsigned int to, struct ts_config *config);
1457 
1458 /*
1459  * Packet hash types specify the type of hash in skb_set_hash.
1460  *
1461  * Hash types refer to the protocol layer addresses which are used to
1462  * construct a packet's hash. The hashes are used to differentiate or identify
1463  * flows of the protocol layer for the hash type. Hash types are either
1464  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1465  *
1466  * Properties of hashes:
1467  *
1468  * 1) Two packets in different flows have different hash values
1469  * 2) Two packets in the same flow should have the same hash value
1470  *
1471  * A hash at a higher layer is considered to be more specific. A driver should
1472  * set the most specific hash possible.
1473  *
1474  * A driver cannot indicate a more specific hash than the layer at which a hash
1475  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1476  *
1477  * A driver may indicate a hash level which is less specific than the
1478  * actual layer the hash was computed on. For instance, a hash computed
1479  * at L4 may be considered an L3 hash. This should only be done if the
1480  * driver can't unambiguously determine that the HW computed the hash at
1481  * the higher layer. Note that the "should" in the second property above
1482  * permits this.
1483  */
1484 enum pkt_hash_types {
1485 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1486 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1487 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1488 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1489 };
1490 
1491 static inline void skb_clear_hash(struct sk_buff *skb)
1492 {
1493 	skb->hash = 0;
1494 	skb->sw_hash = 0;
1495 	skb->l4_hash = 0;
1496 }
1497 
1498 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1499 {
1500 	if (!skb->l4_hash)
1501 		skb_clear_hash(skb);
1502 }
1503 
1504 static inline void
1505 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1506 {
1507 	skb->l4_hash = is_l4;
1508 	skb->sw_hash = is_sw;
1509 	skb->hash = hash;
1510 }
1511 
1512 static inline void
1513 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1514 {
1515 	/* Used by drivers to set hash from HW */
1516 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1517 }
1518 
1519 static inline void
1520 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1521 {
1522 	__skb_set_hash(skb, hash, true, is_l4);
1523 }
1524 
1525 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb);
1526 
1527 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1528 {
1529 	return __skb_get_hash_symmetric_net(NULL, skb);
1530 }
1531 
1532 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb);
1533 u32 skb_get_poff(const struct sk_buff *skb);
1534 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1535 		   const struct flow_keys_basic *keys, int hlen);
1536 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1537 			    const void *data, int hlen_proto);
1538 
1539 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1540 					int thoff, u8 ip_proto)
1541 {
1542 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1543 }
1544 
1545 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1546 			     const struct flow_dissector_key *key,
1547 			     unsigned int key_count);
1548 
1549 struct bpf_flow_dissector;
1550 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1551 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1552 
1553 bool __skb_flow_dissect(const struct net *net,
1554 			const struct sk_buff *skb,
1555 			struct flow_dissector *flow_dissector,
1556 			void *target_container, const void *data,
1557 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1558 
1559 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1560 				    struct flow_dissector *flow_dissector,
1561 				    void *target_container, unsigned int flags)
1562 {
1563 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1564 				  target_container, NULL, 0, 0, 0, flags);
1565 }
1566 
1567 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1568 					      struct flow_keys *flow,
1569 					      unsigned int flags)
1570 {
1571 	memset(flow, 0, sizeof(*flow));
1572 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1573 				  flow, NULL, 0, 0, 0, flags);
1574 }
1575 
1576 static inline bool
1577 skb_flow_dissect_flow_keys_basic(const struct net *net,
1578 				 const struct sk_buff *skb,
1579 				 struct flow_keys_basic *flow,
1580 				 const void *data, __be16 proto,
1581 				 int nhoff, int hlen, unsigned int flags)
1582 {
1583 	memset(flow, 0, sizeof(*flow));
1584 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1585 				  data, proto, nhoff, hlen, flags);
1586 }
1587 
1588 void skb_flow_dissect_meta(const struct sk_buff *skb,
1589 			   struct flow_dissector *flow_dissector,
1590 			   void *target_container);
1591 
1592 /* Gets a skb connection tracking info, ctinfo map should be a
1593  * map of mapsize to translate enum ip_conntrack_info states
1594  * to user states.
1595  */
1596 void
1597 skb_flow_dissect_ct(const struct sk_buff *skb,
1598 		    struct flow_dissector *flow_dissector,
1599 		    void *target_container,
1600 		    u16 *ctinfo_map, size_t mapsize,
1601 		    bool post_ct, u16 zone);
1602 void
1603 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1604 			     struct flow_dissector *flow_dissector,
1605 			     void *target_container);
1606 
1607 void skb_flow_dissect_hash(const struct sk_buff *skb,
1608 			   struct flow_dissector *flow_dissector,
1609 			   void *target_container);
1610 
1611 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb)
1612 {
1613 	if (!skb->l4_hash && !skb->sw_hash)
1614 		__skb_get_hash_net(net, skb);
1615 
1616 	return skb->hash;
1617 }
1618 
1619 static inline __u32 skb_get_hash(struct sk_buff *skb)
1620 {
1621 	if (!skb->l4_hash && !skb->sw_hash)
1622 		__skb_get_hash_net(NULL, skb);
1623 
1624 	return skb->hash;
1625 }
1626 
1627 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1628 {
1629 	if (!skb->l4_hash && !skb->sw_hash) {
1630 		struct flow_keys keys;
1631 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1632 
1633 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1634 	}
1635 
1636 	return skb->hash;
1637 }
1638 
1639 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1640 			   const siphash_key_t *perturb);
1641 
1642 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1643 {
1644 	return skb->hash;
1645 }
1646 
1647 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1648 {
1649 	to->hash = from->hash;
1650 	to->sw_hash = from->sw_hash;
1651 	to->l4_hash = from->l4_hash;
1652 };
1653 
1654 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1655 				    const struct sk_buff *skb2)
1656 {
1657 #ifdef CONFIG_SKB_DECRYPTED
1658 	return skb2->decrypted - skb1->decrypted;
1659 #else
1660 	return 0;
1661 #endif
1662 }
1663 
1664 static inline bool skb_is_decrypted(const struct sk_buff *skb)
1665 {
1666 #ifdef CONFIG_SKB_DECRYPTED
1667 	return skb->decrypted;
1668 #else
1669 	return false;
1670 #endif
1671 }
1672 
1673 static inline void skb_copy_decrypted(struct sk_buff *to,
1674 				      const struct sk_buff *from)
1675 {
1676 #ifdef CONFIG_SKB_DECRYPTED
1677 	to->decrypted = from->decrypted;
1678 #endif
1679 }
1680 
1681 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1682 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1683 {
1684 	return skb->head + skb->end;
1685 }
1686 
1687 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1688 {
1689 	return skb->end;
1690 }
1691 
1692 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1693 {
1694 	skb->end = offset;
1695 }
1696 #else
1697 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1698 {
1699 	return skb->end;
1700 }
1701 
1702 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1703 {
1704 	return skb->end - skb->head;
1705 }
1706 
1707 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1708 {
1709 	skb->end = skb->head + offset;
1710 }
1711 #endif
1712 
1713 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1714 
1715 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1716 				       struct ubuf_info *uarg);
1717 
1718 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1719 
1720 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1721 			    struct sk_buff *skb, struct iov_iter *from,
1722 			    size_t length);
1723 
1724 int zerocopy_fill_skb_from_iter(struct sk_buff *skb,
1725 				struct iov_iter *from, size_t length);
1726 
1727 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1728 					  struct msghdr *msg, int len)
1729 {
1730 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1731 }
1732 
1733 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1734 			     struct msghdr *msg, int len,
1735 			     struct ubuf_info *uarg);
1736 
1737 /* Internal */
1738 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1739 
1740 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1741 {
1742 	return &skb_shinfo(skb)->hwtstamps;
1743 }
1744 
1745 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1746 {
1747 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1748 
1749 	return is_zcopy ? skb_uarg(skb) : NULL;
1750 }
1751 
1752 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1753 {
1754 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1755 }
1756 
1757 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1758 {
1759 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1760 }
1761 
1762 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1763 				       const struct sk_buff *skb2)
1764 {
1765 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1766 }
1767 
1768 static inline void net_zcopy_get(struct ubuf_info *uarg)
1769 {
1770 	refcount_inc(&uarg->refcnt);
1771 }
1772 
1773 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1774 {
1775 	skb_shinfo(skb)->destructor_arg = uarg;
1776 	skb_shinfo(skb)->flags |= uarg->flags;
1777 }
1778 
1779 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1780 				 bool *have_ref)
1781 {
1782 	if (skb && uarg && !skb_zcopy(skb)) {
1783 		if (unlikely(have_ref && *have_ref))
1784 			*have_ref = false;
1785 		else
1786 			net_zcopy_get(uarg);
1787 		skb_zcopy_init(skb, uarg);
1788 	}
1789 }
1790 
1791 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1792 {
1793 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1794 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1795 }
1796 
1797 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1798 {
1799 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1800 }
1801 
1802 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1803 {
1804 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1805 }
1806 
1807 static inline void net_zcopy_put(struct ubuf_info *uarg)
1808 {
1809 	if (uarg)
1810 		uarg->ops->complete(NULL, uarg, true);
1811 }
1812 
1813 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1814 {
1815 	if (uarg) {
1816 		if (uarg->ops == &msg_zerocopy_ubuf_ops)
1817 			msg_zerocopy_put_abort(uarg, have_uref);
1818 		else if (have_uref)
1819 			net_zcopy_put(uarg);
1820 	}
1821 }
1822 
1823 /* Release a reference on a zerocopy structure */
1824 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1825 {
1826 	struct ubuf_info *uarg = skb_zcopy(skb);
1827 
1828 	if (uarg) {
1829 		if (!skb_zcopy_is_nouarg(skb))
1830 			uarg->ops->complete(skb, uarg, zerocopy_success);
1831 
1832 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1833 	}
1834 }
1835 
1836 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1837 
1838 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1839 {
1840 	if (unlikely(skb_zcopy_managed(skb)))
1841 		__skb_zcopy_downgrade_managed(skb);
1842 }
1843 
1844 /* Return true if frags in this skb are readable by the host. */
1845 static inline bool skb_frags_readable(const struct sk_buff *skb)
1846 {
1847 	return !skb->unreadable;
1848 }
1849 
1850 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1851 {
1852 	skb->next = NULL;
1853 }
1854 
1855 static inline void skb_poison_list(struct sk_buff *skb)
1856 {
1857 #ifdef CONFIG_DEBUG_NET
1858 	skb->next = SKB_LIST_POISON_NEXT;
1859 #endif
1860 }
1861 
1862 /* Iterate through singly-linked GSO fragments of an skb. */
1863 #define skb_list_walk_safe(first, skb, next_skb)                               \
1864 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1865 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1866 
1867 static inline void skb_list_del_init(struct sk_buff *skb)
1868 {
1869 	__list_del_entry(&skb->list);
1870 	skb_mark_not_on_list(skb);
1871 }
1872 
1873 /**
1874  *	skb_queue_empty - check if a queue is empty
1875  *	@list: queue head
1876  *
1877  *	Returns true if the queue is empty, false otherwise.
1878  */
1879 static inline int skb_queue_empty(const struct sk_buff_head *list)
1880 {
1881 	return list->next == (const struct sk_buff *) list;
1882 }
1883 
1884 /**
1885  *	skb_queue_empty_lockless - check if a queue is empty
1886  *	@list: queue head
1887  *
1888  *	Returns true if the queue is empty, false otherwise.
1889  *	This variant can be used in lockless contexts.
1890  */
1891 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1892 {
1893 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1894 }
1895 
1896 
1897 /**
1898  *	skb_queue_is_last - check if skb is the last entry in the queue
1899  *	@list: queue head
1900  *	@skb: buffer
1901  *
1902  *	Returns true if @skb is the last buffer on the list.
1903  */
1904 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1905 				     const struct sk_buff *skb)
1906 {
1907 	return skb->next == (const struct sk_buff *) list;
1908 }
1909 
1910 /**
1911  *	skb_queue_is_first - check if skb is the first entry in the queue
1912  *	@list: queue head
1913  *	@skb: buffer
1914  *
1915  *	Returns true if @skb is the first buffer on the list.
1916  */
1917 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1918 				      const struct sk_buff *skb)
1919 {
1920 	return skb->prev == (const struct sk_buff *) list;
1921 }
1922 
1923 /**
1924  *	skb_queue_next - return the next packet in the queue
1925  *	@list: queue head
1926  *	@skb: current buffer
1927  *
1928  *	Return the next packet in @list after @skb.  It is only valid to
1929  *	call this if skb_queue_is_last() evaluates to false.
1930  */
1931 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1932 					     const struct sk_buff *skb)
1933 {
1934 	/* This BUG_ON may seem severe, but if we just return then we
1935 	 * are going to dereference garbage.
1936 	 */
1937 	BUG_ON(skb_queue_is_last(list, skb));
1938 	return skb->next;
1939 }
1940 
1941 /**
1942  *	skb_queue_prev - return the prev packet in the queue
1943  *	@list: queue head
1944  *	@skb: current buffer
1945  *
1946  *	Return the prev packet in @list before @skb.  It is only valid to
1947  *	call this if skb_queue_is_first() evaluates to false.
1948  */
1949 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1950 					     const struct sk_buff *skb)
1951 {
1952 	/* This BUG_ON may seem severe, but if we just return then we
1953 	 * are going to dereference garbage.
1954 	 */
1955 	BUG_ON(skb_queue_is_first(list, skb));
1956 	return skb->prev;
1957 }
1958 
1959 /**
1960  *	skb_get - reference buffer
1961  *	@skb: buffer to reference
1962  *
1963  *	Makes another reference to a socket buffer and returns a pointer
1964  *	to the buffer.
1965  */
1966 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1967 {
1968 	refcount_inc(&skb->users);
1969 	return skb;
1970 }
1971 
1972 /*
1973  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1974  */
1975 
1976 /**
1977  *	skb_cloned - is the buffer a clone
1978  *	@skb: buffer to check
1979  *
1980  *	Returns true if the buffer was generated with skb_clone() and is
1981  *	one of multiple shared copies of the buffer. Cloned buffers are
1982  *	shared data so must not be written to under normal circumstances.
1983  */
1984 static inline int skb_cloned(const struct sk_buff *skb)
1985 {
1986 	return skb->cloned &&
1987 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1988 }
1989 
1990 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1991 {
1992 	might_sleep_if(gfpflags_allow_blocking(pri));
1993 
1994 	if (skb_cloned(skb))
1995 		return pskb_expand_head(skb, 0, 0, pri);
1996 
1997 	return 0;
1998 }
1999 
2000 /* This variant of skb_unclone() makes sure skb->truesize
2001  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
2002  *
2003  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
2004  * when various debugging features are in place.
2005  */
2006 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
2007 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2008 {
2009 	might_sleep_if(gfpflags_allow_blocking(pri));
2010 
2011 	if (skb_cloned(skb))
2012 		return __skb_unclone_keeptruesize(skb, pri);
2013 	return 0;
2014 }
2015 
2016 /**
2017  *	skb_header_cloned - is the header a clone
2018  *	@skb: buffer to check
2019  *
2020  *	Returns true if modifying the header part of the buffer requires
2021  *	the data to be copied.
2022  */
2023 static inline int skb_header_cloned(const struct sk_buff *skb)
2024 {
2025 	int dataref;
2026 
2027 	if (!skb->cloned)
2028 		return 0;
2029 
2030 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
2031 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2032 	return dataref != 1;
2033 }
2034 
2035 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2036 {
2037 	might_sleep_if(gfpflags_allow_blocking(pri));
2038 
2039 	if (skb_header_cloned(skb))
2040 		return pskb_expand_head(skb, 0, 0, pri);
2041 
2042 	return 0;
2043 }
2044 
2045 /**
2046  * __skb_header_release() - allow clones to use the headroom
2047  * @skb: buffer to operate on
2048  *
2049  * See "DOC: dataref and headerless skbs".
2050  */
2051 static inline void __skb_header_release(struct sk_buff *skb)
2052 {
2053 	skb->nohdr = 1;
2054 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2055 }
2056 
2057 
2058 /**
2059  *	skb_shared - is the buffer shared
2060  *	@skb: buffer to check
2061  *
2062  *	Returns true if more than one person has a reference to this
2063  *	buffer.
2064  */
2065 static inline int skb_shared(const struct sk_buff *skb)
2066 {
2067 	return refcount_read(&skb->users) != 1;
2068 }
2069 
2070 /**
2071  *	skb_share_check - check if buffer is shared and if so clone it
2072  *	@skb: buffer to check
2073  *	@pri: priority for memory allocation
2074  *
2075  *	If the buffer is shared the buffer is cloned and the old copy
2076  *	drops a reference. A new clone with a single reference is returned.
2077  *	If the buffer is not shared the original buffer is returned. When
2078  *	being called from interrupt status or with spinlocks held pri must
2079  *	be GFP_ATOMIC.
2080  *
2081  *	NULL is returned on a memory allocation failure.
2082  */
2083 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2084 {
2085 	might_sleep_if(gfpflags_allow_blocking(pri));
2086 	if (skb_shared(skb)) {
2087 		struct sk_buff *nskb = skb_clone(skb, pri);
2088 
2089 		if (likely(nskb))
2090 			consume_skb(skb);
2091 		else
2092 			kfree_skb(skb);
2093 		skb = nskb;
2094 	}
2095 	return skb;
2096 }
2097 
2098 /*
2099  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2100  *	packets to handle cases where we have a local reader and forward
2101  *	and a couple of other messy ones. The normal one is tcpdumping
2102  *	a packet that's being forwarded.
2103  */
2104 
2105 /**
2106  *	skb_unshare - make a copy of a shared buffer
2107  *	@skb: buffer to check
2108  *	@pri: priority for memory allocation
2109  *
2110  *	If the socket buffer is a clone then this function creates a new
2111  *	copy of the data, drops a reference count on the old copy and returns
2112  *	the new copy with the reference count at 1. If the buffer is not a clone
2113  *	the original buffer is returned. When called with a spinlock held or
2114  *	from interrupt state @pri must be %GFP_ATOMIC
2115  *
2116  *	%NULL is returned on a memory allocation failure.
2117  */
2118 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2119 					  gfp_t pri)
2120 {
2121 	might_sleep_if(gfpflags_allow_blocking(pri));
2122 	if (skb_cloned(skb)) {
2123 		struct sk_buff *nskb = skb_copy(skb, pri);
2124 
2125 		/* Free our shared copy */
2126 		if (likely(nskb))
2127 			consume_skb(skb);
2128 		else
2129 			kfree_skb(skb);
2130 		skb = nskb;
2131 	}
2132 	return skb;
2133 }
2134 
2135 /**
2136  *	skb_peek - peek at the head of an &sk_buff_head
2137  *	@list_: list to peek at
2138  *
2139  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2140  *	be careful with this one. A peek leaves the buffer on the
2141  *	list and someone else may run off with it. You must hold
2142  *	the appropriate locks or have a private queue to do this.
2143  *
2144  *	Returns %NULL for an empty list or a pointer to the head element.
2145  *	The reference count is not incremented and the reference is therefore
2146  *	volatile. Use with caution.
2147  */
2148 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2149 {
2150 	struct sk_buff *skb = list_->next;
2151 
2152 	if (skb == (struct sk_buff *)list_)
2153 		skb = NULL;
2154 	return skb;
2155 }
2156 
2157 /**
2158  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2159  *	@list_: list to peek at
2160  *
2161  *	Like skb_peek(), but the caller knows that the list is not empty.
2162  */
2163 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2164 {
2165 	return list_->next;
2166 }
2167 
2168 /**
2169  *	skb_peek_next - peek skb following the given one from a queue
2170  *	@skb: skb to start from
2171  *	@list_: list to peek at
2172  *
2173  *	Returns %NULL when the end of the list is met or a pointer to the
2174  *	next element. The reference count is not incremented and the
2175  *	reference is therefore volatile. Use with caution.
2176  */
2177 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2178 		const struct sk_buff_head *list_)
2179 {
2180 	struct sk_buff *next = skb->next;
2181 
2182 	if (next == (struct sk_buff *)list_)
2183 		next = NULL;
2184 	return next;
2185 }
2186 
2187 /**
2188  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2189  *	@list_: list to peek at
2190  *
2191  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2192  *	be careful with this one. A peek leaves the buffer on the
2193  *	list and someone else may run off with it. You must hold
2194  *	the appropriate locks or have a private queue to do this.
2195  *
2196  *	Returns %NULL for an empty list or a pointer to the tail element.
2197  *	The reference count is not incremented and the reference is therefore
2198  *	volatile. Use with caution.
2199  */
2200 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2201 {
2202 	struct sk_buff *skb = READ_ONCE(list_->prev);
2203 
2204 	if (skb == (struct sk_buff *)list_)
2205 		skb = NULL;
2206 	return skb;
2207 
2208 }
2209 
2210 /**
2211  *	skb_queue_len	- get queue length
2212  *	@list_: list to measure
2213  *
2214  *	Return the length of an &sk_buff queue.
2215  */
2216 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2217 {
2218 	return list_->qlen;
2219 }
2220 
2221 /**
2222  *	skb_queue_len_lockless	- get queue length
2223  *	@list_: list to measure
2224  *
2225  *	Return the length of an &sk_buff queue.
2226  *	This variant can be used in lockless contexts.
2227  */
2228 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2229 {
2230 	return READ_ONCE(list_->qlen);
2231 }
2232 
2233 /**
2234  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2235  *	@list: queue to initialize
2236  *
2237  *	This initializes only the list and queue length aspects of
2238  *	an sk_buff_head object.  This allows to initialize the list
2239  *	aspects of an sk_buff_head without reinitializing things like
2240  *	the spinlock.  It can also be used for on-stack sk_buff_head
2241  *	objects where the spinlock is known to not be used.
2242  */
2243 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2244 {
2245 	list->prev = list->next = (struct sk_buff *)list;
2246 	list->qlen = 0;
2247 }
2248 
2249 /*
2250  * This function creates a split out lock class for each invocation;
2251  * this is needed for now since a whole lot of users of the skb-queue
2252  * infrastructure in drivers have different locking usage (in hardirq)
2253  * than the networking core (in softirq only). In the long run either the
2254  * network layer or drivers should need annotation to consolidate the
2255  * main types of usage into 3 classes.
2256  */
2257 static inline void skb_queue_head_init(struct sk_buff_head *list)
2258 {
2259 	spin_lock_init(&list->lock);
2260 	__skb_queue_head_init(list);
2261 }
2262 
2263 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2264 		struct lock_class_key *class)
2265 {
2266 	skb_queue_head_init(list);
2267 	lockdep_set_class(&list->lock, class);
2268 }
2269 
2270 /*
2271  *	Insert an sk_buff on a list.
2272  *
2273  *	The "__skb_xxxx()" functions are the non-atomic ones that
2274  *	can only be called with interrupts disabled.
2275  */
2276 static inline void __skb_insert(struct sk_buff *newsk,
2277 				struct sk_buff *prev, struct sk_buff *next,
2278 				struct sk_buff_head *list)
2279 {
2280 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2281 	 * for the opposite READ_ONCE()
2282 	 */
2283 	WRITE_ONCE(newsk->next, next);
2284 	WRITE_ONCE(newsk->prev, prev);
2285 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2286 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2287 	WRITE_ONCE(list->qlen, list->qlen + 1);
2288 }
2289 
2290 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2291 				      struct sk_buff *prev,
2292 				      struct sk_buff *next)
2293 {
2294 	struct sk_buff *first = list->next;
2295 	struct sk_buff *last = list->prev;
2296 
2297 	WRITE_ONCE(first->prev, prev);
2298 	WRITE_ONCE(prev->next, first);
2299 
2300 	WRITE_ONCE(last->next, next);
2301 	WRITE_ONCE(next->prev, last);
2302 }
2303 
2304 /**
2305  *	skb_queue_splice - join two skb lists, this is designed for stacks
2306  *	@list: the new list to add
2307  *	@head: the place to add it in the first list
2308  */
2309 static inline void skb_queue_splice(const struct sk_buff_head *list,
2310 				    struct sk_buff_head *head)
2311 {
2312 	if (!skb_queue_empty(list)) {
2313 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2314 		head->qlen += list->qlen;
2315 	}
2316 }
2317 
2318 /**
2319  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2320  *	@list: the new list to add
2321  *	@head: the place to add it in the first list
2322  *
2323  *	The list at @list is reinitialised
2324  */
2325 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2326 					 struct sk_buff_head *head)
2327 {
2328 	if (!skb_queue_empty(list)) {
2329 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2330 		head->qlen += list->qlen;
2331 		__skb_queue_head_init(list);
2332 	}
2333 }
2334 
2335 /**
2336  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2337  *	@list: the new list to add
2338  *	@head: the place to add it in the first list
2339  */
2340 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2341 					 struct sk_buff_head *head)
2342 {
2343 	if (!skb_queue_empty(list)) {
2344 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2345 		head->qlen += list->qlen;
2346 	}
2347 }
2348 
2349 /**
2350  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2351  *	@list: the new list to add
2352  *	@head: the place to add it in the first list
2353  *
2354  *	Each of the lists is a queue.
2355  *	The list at @list is reinitialised
2356  */
2357 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2358 					      struct sk_buff_head *head)
2359 {
2360 	if (!skb_queue_empty(list)) {
2361 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2362 		head->qlen += list->qlen;
2363 		__skb_queue_head_init(list);
2364 	}
2365 }
2366 
2367 /**
2368  *	__skb_queue_after - queue a buffer at the list head
2369  *	@list: list to use
2370  *	@prev: place after this buffer
2371  *	@newsk: buffer to queue
2372  *
2373  *	Queue a buffer int the middle of a list. This function takes no locks
2374  *	and you must therefore hold required locks before calling it.
2375  *
2376  *	A buffer cannot be placed on two lists at the same time.
2377  */
2378 static inline void __skb_queue_after(struct sk_buff_head *list,
2379 				     struct sk_buff *prev,
2380 				     struct sk_buff *newsk)
2381 {
2382 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2383 }
2384 
2385 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2386 		struct sk_buff_head *list);
2387 
2388 static inline void __skb_queue_before(struct sk_buff_head *list,
2389 				      struct sk_buff *next,
2390 				      struct sk_buff *newsk)
2391 {
2392 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2393 }
2394 
2395 /**
2396  *	__skb_queue_head - queue a buffer at the list head
2397  *	@list: list to use
2398  *	@newsk: buffer to queue
2399  *
2400  *	Queue a buffer at the start of a list. This function takes no locks
2401  *	and you must therefore hold required locks before calling it.
2402  *
2403  *	A buffer cannot be placed on two lists at the same time.
2404  */
2405 static inline void __skb_queue_head(struct sk_buff_head *list,
2406 				    struct sk_buff *newsk)
2407 {
2408 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2409 }
2410 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2411 
2412 /**
2413  *	__skb_queue_tail - queue a buffer at the list tail
2414  *	@list: list to use
2415  *	@newsk: buffer to queue
2416  *
2417  *	Queue a buffer at the end of a list. This function takes no locks
2418  *	and you must therefore hold required locks before calling it.
2419  *
2420  *	A buffer cannot be placed on two lists at the same time.
2421  */
2422 static inline void __skb_queue_tail(struct sk_buff_head *list,
2423 				   struct sk_buff *newsk)
2424 {
2425 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2426 }
2427 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2428 
2429 /*
2430  * remove sk_buff from list. _Must_ be called atomically, and with
2431  * the list known..
2432  */
2433 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2434 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2435 {
2436 	struct sk_buff *next, *prev;
2437 
2438 	WRITE_ONCE(list->qlen, list->qlen - 1);
2439 	next	   = skb->next;
2440 	prev	   = skb->prev;
2441 	skb->next  = skb->prev = NULL;
2442 	WRITE_ONCE(next->prev, prev);
2443 	WRITE_ONCE(prev->next, next);
2444 }
2445 
2446 /**
2447  *	__skb_dequeue - remove from the head of the queue
2448  *	@list: list to dequeue from
2449  *
2450  *	Remove the head of the list. This function does not take any locks
2451  *	so must be used with appropriate locks held only. The head item is
2452  *	returned or %NULL if the list is empty.
2453  */
2454 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2455 {
2456 	struct sk_buff *skb = skb_peek(list);
2457 	if (skb)
2458 		__skb_unlink(skb, list);
2459 	return skb;
2460 }
2461 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2462 
2463 /**
2464  *	__skb_dequeue_tail - remove from the tail of the queue
2465  *	@list: list to dequeue from
2466  *
2467  *	Remove the tail of the list. This function does not take any locks
2468  *	so must be used with appropriate locks held only. The tail item is
2469  *	returned or %NULL if the list is empty.
2470  */
2471 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2472 {
2473 	struct sk_buff *skb = skb_peek_tail(list);
2474 	if (skb)
2475 		__skb_unlink(skb, list);
2476 	return skb;
2477 }
2478 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2479 
2480 
2481 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2482 {
2483 	return skb->data_len;
2484 }
2485 
2486 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2487 {
2488 	return skb->len - skb->data_len;
2489 }
2490 
2491 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2492 {
2493 	unsigned int i, len = 0;
2494 
2495 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2496 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2497 	return len;
2498 }
2499 
2500 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2501 {
2502 	return skb_headlen(skb) + __skb_pagelen(skb);
2503 }
2504 
2505 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2506 					     netmem_ref netmem, int off,
2507 					     int size)
2508 {
2509 	frag->netmem = netmem;
2510 	frag->offset = off;
2511 	skb_frag_size_set(frag, size);
2512 }
2513 
2514 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2515 					   struct page *page,
2516 					   int off, int size)
2517 {
2518 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2519 }
2520 
2521 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2522 						int i, netmem_ref netmem,
2523 						int off, int size)
2524 {
2525 	skb_frag_t *frag = &shinfo->frags[i];
2526 
2527 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2528 }
2529 
2530 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2531 					      int i, struct page *page,
2532 					      int off, int size)
2533 {
2534 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2535 				     size);
2536 }
2537 
2538 /**
2539  * skb_len_add - adds a number to len fields of skb
2540  * @skb: buffer to add len to
2541  * @delta: number of bytes to add
2542  */
2543 static inline void skb_len_add(struct sk_buff *skb, int delta)
2544 {
2545 	skb->len += delta;
2546 	skb->data_len += delta;
2547 	skb->truesize += delta;
2548 }
2549 
2550 /**
2551  * __skb_fill_netmem_desc - initialise a fragment in an skb
2552  * @skb: buffer containing fragment to be initialised
2553  * @i: fragment index to initialise
2554  * @netmem: the netmem to use for this fragment
2555  * @off: the offset to the data with @page
2556  * @size: the length of the data
2557  *
2558  * Initialises the @i'th fragment of @skb to point to &size bytes at
2559  * offset @off within @page.
2560  *
2561  * Does not take any additional reference on the fragment.
2562  */
2563 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2564 					  netmem_ref netmem, int off, int size)
2565 {
2566 	struct page *page;
2567 
2568 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2569 
2570 	if (netmem_is_net_iov(netmem)) {
2571 		skb->unreadable = true;
2572 		return;
2573 	}
2574 
2575 	page = netmem_to_page(netmem);
2576 
2577 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2578 	 * that not all callers have unique ownership of the page but rely
2579 	 * on page_is_pfmemalloc doing the right thing(tm).
2580 	 */
2581 	page = compound_head(page);
2582 	if (page_is_pfmemalloc(page))
2583 		skb->pfmemalloc = true;
2584 }
2585 
2586 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2587 					struct page *page, int off, int size)
2588 {
2589 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2590 }
2591 
2592 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2593 					netmem_ref netmem, int off, int size)
2594 {
2595 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2596 	skb_shinfo(skb)->nr_frags = i + 1;
2597 }
2598 
2599 /**
2600  * skb_fill_page_desc - initialise a paged fragment in an skb
2601  * @skb: buffer containing fragment to be initialised
2602  * @i: paged fragment index to initialise
2603  * @page: the page to use for this fragment
2604  * @off: the offset to the data with @page
2605  * @size: the length of the data
2606  *
2607  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2608  * @skb to point to @size bytes at offset @off within @page. In
2609  * addition updates @skb such that @i is the last fragment.
2610  *
2611  * Does not take any additional reference on the fragment.
2612  */
2613 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2614 				      struct page *page, int off, int size)
2615 {
2616 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2617 }
2618 
2619 /**
2620  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2621  * @skb: buffer containing fragment to be initialised
2622  * @i: paged fragment index to initialise
2623  * @page: the page to use for this fragment
2624  * @off: the offset to the data with @page
2625  * @size: the length of the data
2626  *
2627  * Variant of skb_fill_page_desc() which does not deal with
2628  * pfmemalloc, if page is not owned by us.
2629  */
2630 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2631 					    struct page *page, int off,
2632 					    int size)
2633 {
2634 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2635 
2636 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2637 	shinfo->nr_frags = i + 1;
2638 }
2639 
2640 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2641 			    int off, int size, unsigned int truesize);
2642 
2643 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2644 				   struct page *page, int off, int size,
2645 				   unsigned int truesize)
2646 {
2647 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2648 			       truesize);
2649 }
2650 
2651 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2652 			  unsigned int truesize);
2653 
2654 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2655 
2656 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2657 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2658 {
2659 	return skb->head + skb->tail;
2660 }
2661 
2662 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2663 {
2664 	skb->tail = skb->data - skb->head;
2665 }
2666 
2667 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2668 {
2669 	skb_reset_tail_pointer(skb);
2670 	skb->tail += offset;
2671 }
2672 
2673 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2674 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2675 {
2676 	return skb->tail;
2677 }
2678 
2679 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2680 {
2681 	skb->tail = skb->data;
2682 }
2683 
2684 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2685 {
2686 	skb->tail = skb->data + offset;
2687 }
2688 
2689 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2690 
2691 static inline void skb_assert_len(struct sk_buff *skb)
2692 {
2693 #ifdef CONFIG_DEBUG_NET
2694 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2695 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2696 #endif /* CONFIG_DEBUG_NET */
2697 }
2698 
2699 #if defined(CONFIG_FAIL_SKB_REALLOC)
2700 void skb_might_realloc(struct sk_buff *skb);
2701 #else
2702 static inline void skb_might_realloc(struct sk_buff *skb) {}
2703 #endif
2704 
2705 /*
2706  *	Add data to an sk_buff
2707  */
2708 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2709 void *skb_put(struct sk_buff *skb, unsigned int len);
2710 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2711 {
2712 	void *tmp = skb_tail_pointer(skb);
2713 	SKB_LINEAR_ASSERT(skb);
2714 	skb->tail += len;
2715 	skb->len  += len;
2716 	return tmp;
2717 }
2718 
2719 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2720 {
2721 	void *tmp = __skb_put(skb, len);
2722 
2723 	memset(tmp, 0, len);
2724 	return tmp;
2725 }
2726 
2727 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2728 				   unsigned int len)
2729 {
2730 	void *tmp = __skb_put(skb, len);
2731 
2732 	memcpy(tmp, data, len);
2733 	return tmp;
2734 }
2735 
2736 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2737 {
2738 	*(u8 *)__skb_put(skb, 1) = val;
2739 }
2740 
2741 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2742 {
2743 	void *tmp = skb_put(skb, len);
2744 
2745 	memset(tmp, 0, len);
2746 
2747 	return tmp;
2748 }
2749 
2750 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2751 				 unsigned int len)
2752 {
2753 	void *tmp = skb_put(skb, len);
2754 
2755 	memcpy(tmp, data, len);
2756 
2757 	return tmp;
2758 }
2759 
2760 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2761 {
2762 	*(u8 *)skb_put(skb, 1) = val;
2763 }
2764 
2765 void *skb_push(struct sk_buff *skb, unsigned int len);
2766 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2767 {
2768 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2769 
2770 	skb->data -= len;
2771 	skb->len  += len;
2772 	return skb->data;
2773 }
2774 
2775 void *skb_pull(struct sk_buff *skb, unsigned int len);
2776 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2777 {
2778 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2779 
2780 	skb->len -= len;
2781 	if (unlikely(skb->len < skb->data_len)) {
2782 #if defined(CONFIG_DEBUG_NET)
2783 		skb->len += len;
2784 		pr_err("__skb_pull(len=%u)\n", len);
2785 		skb_dump(KERN_ERR, skb, false);
2786 #endif
2787 		BUG();
2788 	}
2789 	return skb->data += len;
2790 }
2791 
2792 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2793 {
2794 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2795 }
2796 
2797 void *skb_pull_data(struct sk_buff *skb, size_t len);
2798 
2799 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2800 
2801 static inline enum skb_drop_reason
2802 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2803 {
2804 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2805 	skb_might_realloc(skb);
2806 
2807 	if (likely(len <= skb_headlen(skb)))
2808 		return SKB_NOT_DROPPED_YET;
2809 
2810 	if (unlikely(len > skb->len))
2811 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2812 
2813 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2814 		return SKB_DROP_REASON_NOMEM;
2815 
2816 	return SKB_NOT_DROPPED_YET;
2817 }
2818 
2819 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2820 {
2821 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2822 }
2823 
2824 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2825 {
2826 	if (!pskb_may_pull(skb, len))
2827 		return NULL;
2828 
2829 	skb->len -= len;
2830 	return skb->data += len;
2831 }
2832 
2833 void skb_condense(struct sk_buff *skb);
2834 
2835 /**
2836  *	skb_headroom - bytes at buffer head
2837  *	@skb: buffer to check
2838  *
2839  *	Return the number of bytes of free space at the head of an &sk_buff.
2840  */
2841 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2842 {
2843 	return skb->data - skb->head;
2844 }
2845 
2846 /**
2847  *	skb_tailroom - bytes at buffer end
2848  *	@skb: buffer to check
2849  *
2850  *	Return the number of bytes of free space at the tail of an sk_buff
2851  */
2852 static inline int skb_tailroom(const struct sk_buff *skb)
2853 {
2854 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2855 }
2856 
2857 /**
2858  *	skb_availroom - bytes at buffer end
2859  *	@skb: buffer to check
2860  *
2861  *	Return the number of bytes of free space at the tail of an sk_buff
2862  *	allocated by sk_stream_alloc()
2863  */
2864 static inline int skb_availroom(const struct sk_buff *skb)
2865 {
2866 	if (skb_is_nonlinear(skb))
2867 		return 0;
2868 
2869 	return skb->end - skb->tail - skb->reserved_tailroom;
2870 }
2871 
2872 /**
2873  *	skb_reserve - adjust headroom
2874  *	@skb: buffer to alter
2875  *	@len: bytes to move
2876  *
2877  *	Increase the headroom of an empty &sk_buff by reducing the tail
2878  *	room. This is only allowed for an empty buffer.
2879  */
2880 static inline void skb_reserve(struct sk_buff *skb, int len)
2881 {
2882 	skb->data += len;
2883 	skb->tail += len;
2884 }
2885 
2886 /**
2887  *	skb_tailroom_reserve - adjust reserved_tailroom
2888  *	@skb: buffer to alter
2889  *	@mtu: maximum amount of headlen permitted
2890  *	@needed_tailroom: minimum amount of reserved_tailroom
2891  *
2892  *	Set reserved_tailroom so that headlen can be as large as possible but
2893  *	not larger than mtu and tailroom cannot be smaller than
2894  *	needed_tailroom.
2895  *	The required headroom should already have been reserved before using
2896  *	this function.
2897  */
2898 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2899 					unsigned int needed_tailroom)
2900 {
2901 	SKB_LINEAR_ASSERT(skb);
2902 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2903 		/* use at most mtu */
2904 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2905 	else
2906 		/* use up to all available space */
2907 		skb->reserved_tailroom = needed_tailroom;
2908 }
2909 
2910 #define ENCAP_TYPE_ETHER	0
2911 #define ENCAP_TYPE_IPPROTO	1
2912 
2913 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2914 					  __be16 protocol)
2915 {
2916 	skb->inner_protocol = protocol;
2917 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2918 }
2919 
2920 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2921 					 __u8 ipproto)
2922 {
2923 	skb->inner_ipproto = ipproto;
2924 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2925 }
2926 
2927 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2928 {
2929 	skb->inner_mac_header = skb->mac_header;
2930 	skb->inner_network_header = skb->network_header;
2931 	skb->inner_transport_header = skb->transport_header;
2932 }
2933 
2934 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2935 {
2936 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2937 }
2938 
2939 static inline void skb_reset_mac_len(struct sk_buff *skb)
2940 {
2941 	if (!skb_mac_header_was_set(skb)) {
2942 		DEBUG_NET_WARN_ON_ONCE(1);
2943 		skb->mac_len = 0;
2944 	} else {
2945 		skb->mac_len = skb->network_header - skb->mac_header;
2946 	}
2947 }
2948 
2949 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2950 							*skb)
2951 {
2952 	return skb->head + skb->inner_transport_header;
2953 }
2954 
2955 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2956 {
2957 	return skb_inner_transport_header(skb) - skb->data;
2958 }
2959 
2960 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2961 {
2962 	long offset = skb->data - skb->head;
2963 
2964 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset);
2965 	skb->inner_transport_header = offset;
2966 }
2967 
2968 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2969 						   const int offset)
2970 {
2971 	skb_reset_inner_transport_header(skb);
2972 	skb->inner_transport_header += offset;
2973 }
2974 
2975 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2976 {
2977 	return skb->head + skb->inner_network_header;
2978 }
2979 
2980 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2981 {
2982 	long offset = skb->data - skb->head;
2983 
2984 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset);
2985 	skb->inner_network_header = offset;
2986 }
2987 
2988 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2989 						const int offset)
2990 {
2991 	skb_reset_inner_network_header(skb);
2992 	skb->inner_network_header += offset;
2993 }
2994 
2995 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2996 {
2997 	return skb->inner_network_header > 0;
2998 }
2999 
3000 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
3001 {
3002 	return skb->head + skb->inner_mac_header;
3003 }
3004 
3005 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
3006 {
3007 	long offset = skb->data - skb->head;
3008 
3009 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset);
3010 	skb->inner_mac_header = offset;
3011 }
3012 
3013 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
3014 					    const int offset)
3015 {
3016 	skb_reset_inner_mac_header(skb);
3017 	skb->inner_mac_header += offset;
3018 }
3019 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
3020 {
3021 	return skb->transport_header != (typeof(skb->transport_header))~0U;
3022 }
3023 
3024 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
3025 {
3026 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3027 	return skb->head + skb->transport_header;
3028 }
3029 
3030 static inline void skb_reset_transport_header(struct sk_buff *skb)
3031 {
3032 	long offset = skb->data - skb->head;
3033 
3034 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset);
3035 	skb->transport_header = offset;
3036 }
3037 
3038 static inline void skb_set_transport_header(struct sk_buff *skb,
3039 					    const int offset)
3040 {
3041 	skb_reset_transport_header(skb);
3042 	skb->transport_header += offset;
3043 }
3044 
3045 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
3046 {
3047 	return skb->head + skb->network_header;
3048 }
3049 
3050 static inline void skb_reset_network_header(struct sk_buff *skb)
3051 {
3052 	long offset = skb->data - skb->head;
3053 
3054 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset);
3055 	skb->network_header = offset;
3056 }
3057 
3058 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
3059 {
3060 	skb_reset_network_header(skb);
3061 	skb->network_header += offset;
3062 }
3063 
3064 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
3065 {
3066 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3067 	return skb->head + skb->mac_header;
3068 }
3069 
3070 static inline int skb_mac_offset(const struct sk_buff *skb)
3071 {
3072 	return skb_mac_header(skb) - skb->data;
3073 }
3074 
3075 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
3076 {
3077 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3078 	return skb->network_header - skb->mac_header;
3079 }
3080 
3081 static inline void skb_unset_mac_header(struct sk_buff *skb)
3082 {
3083 	skb->mac_header = (typeof(skb->mac_header))~0U;
3084 }
3085 
3086 static inline void skb_reset_mac_header(struct sk_buff *skb)
3087 {
3088 	long offset = skb->data - skb->head;
3089 
3090 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset);
3091 	skb->mac_header = offset;
3092 }
3093 
3094 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3095 {
3096 	skb_reset_mac_header(skb);
3097 	skb->mac_header += offset;
3098 }
3099 
3100 static inline void skb_pop_mac_header(struct sk_buff *skb)
3101 {
3102 	skb->mac_header = skb->network_header;
3103 }
3104 
3105 static inline void skb_probe_transport_header(struct sk_buff *skb)
3106 {
3107 	struct flow_keys_basic keys;
3108 
3109 	if (skb_transport_header_was_set(skb))
3110 		return;
3111 
3112 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3113 					     NULL, 0, 0, 0, 0))
3114 		skb_set_transport_header(skb, keys.control.thoff);
3115 }
3116 
3117 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3118 {
3119 	if (skb_mac_header_was_set(skb)) {
3120 		const unsigned char *old_mac = skb_mac_header(skb);
3121 
3122 		skb_set_mac_header(skb, -skb->mac_len);
3123 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3124 	}
3125 }
3126 
3127 /* Move the full mac header up to current network_header.
3128  * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3129  * Must be provided the complete mac header length.
3130  */
3131 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3132 {
3133 	if (skb_mac_header_was_set(skb)) {
3134 		const unsigned char *old_mac = skb_mac_header(skb);
3135 
3136 		skb_set_mac_header(skb, -full_mac_len);
3137 		memmove(skb_mac_header(skb), old_mac, full_mac_len);
3138 		__skb_push(skb, full_mac_len - skb->mac_len);
3139 	}
3140 }
3141 
3142 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3143 {
3144 	return skb->csum_start - skb_headroom(skb);
3145 }
3146 
3147 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3148 {
3149 	return skb->head + skb->csum_start;
3150 }
3151 
3152 static inline int skb_transport_offset(const struct sk_buff *skb)
3153 {
3154 	return skb_transport_header(skb) - skb->data;
3155 }
3156 
3157 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3158 {
3159 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3160 	return skb->transport_header - skb->network_header;
3161 }
3162 
3163 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3164 {
3165 	return skb->inner_transport_header - skb->inner_network_header;
3166 }
3167 
3168 static inline int skb_network_offset(const struct sk_buff *skb)
3169 {
3170 	return skb_network_header(skb) - skb->data;
3171 }
3172 
3173 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3174 {
3175 	return skb_inner_network_header(skb) - skb->data;
3176 }
3177 
3178 static inline enum skb_drop_reason
3179 pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len)
3180 {
3181 	return pskb_may_pull_reason(skb, skb_network_offset(skb) + len);
3182 }
3183 
3184 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3185 {
3186 	return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
3187 }
3188 
3189 /*
3190  * CPUs often take a performance hit when accessing unaligned memory
3191  * locations. The actual performance hit varies, it can be small if the
3192  * hardware handles it or large if we have to take an exception and fix it
3193  * in software.
3194  *
3195  * Since an ethernet header is 14 bytes network drivers often end up with
3196  * the IP header at an unaligned offset. The IP header can be aligned by
3197  * shifting the start of the packet by 2 bytes. Drivers should do this
3198  * with:
3199  *
3200  * skb_reserve(skb, NET_IP_ALIGN);
3201  *
3202  * The downside to this alignment of the IP header is that the DMA is now
3203  * unaligned. On some architectures the cost of an unaligned DMA is high
3204  * and this cost outweighs the gains made by aligning the IP header.
3205  *
3206  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3207  * to be overridden.
3208  */
3209 #ifndef NET_IP_ALIGN
3210 #define NET_IP_ALIGN	2
3211 #endif
3212 
3213 /*
3214  * The networking layer reserves some headroom in skb data (via
3215  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3216  * the header has to grow. In the default case, if the header has to grow
3217  * 32 bytes or less we avoid the reallocation.
3218  *
3219  * Unfortunately this headroom changes the DMA alignment of the resulting
3220  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3221  * on some architectures. An architecture can override this value,
3222  * perhaps setting it to a cacheline in size (since that will maintain
3223  * cacheline alignment of the DMA). It must be a power of 2.
3224  *
3225  * Various parts of the networking layer expect at least 32 bytes of
3226  * headroom, you should not reduce this.
3227  *
3228  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3229  * to reduce average number of cache lines per packet.
3230  * get_rps_cpu() for example only access one 64 bytes aligned block :
3231  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3232  */
3233 #ifndef NET_SKB_PAD
3234 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3235 #endif
3236 
3237 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3238 
3239 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3240 {
3241 	if (WARN_ON(skb_is_nonlinear(skb)))
3242 		return;
3243 	skb->len = len;
3244 	skb_set_tail_pointer(skb, len);
3245 }
3246 
3247 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3248 {
3249 	__skb_set_length(skb, len);
3250 }
3251 
3252 void skb_trim(struct sk_buff *skb, unsigned int len);
3253 
3254 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3255 {
3256 	if (skb->data_len)
3257 		return ___pskb_trim(skb, len);
3258 	__skb_trim(skb, len);
3259 	return 0;
3260 }
3261 
3262 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3263 {
3264 	skb_might_realloc(skb);
3265 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3266 }
3267 
3268 /**
3269  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3270  *	@skb: buffer to alter
3271  *	@len: new length
3272  *
3273  *	This is identical to pskb_trim except that the caller knows that
3274  *	the skb is not cloned so we should never get an error due to out-
3275  *	of-memory.
3276  */
3277 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3278 {
3279 	int err = pskb_trim(skb, len);
3280 	BUG_ON(err);
3281 }
3282 
3283 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3284 {
3285 	unsigned int diff = len - skb->len;
3286 
3287 	if (skb_tailroom(skb) < diff) {
3288 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3289 					   GFP_ATOMIC);
3290 		if (ret)
3291 			return ret;
3292 	}
3293 	__skb_set_length(skb, len);
3294 	return 0;
3295 }
3296 
3297 /**
3298  *	skb_orphan - orphan a buffer
3299  *	@skb: buffer to orphan
3300  *
3301  *	If a buffer currently has an owner then we call the owner's
3302  *	destructor function and make the @skb unowned. The buffer continues
3303  *	to exist but is no longer charged to its former owner.
3304  */
3305 static inline void skb_orphan(struct sk_buff *skb)
3306 {
3307 	if (skb->destructor) {
3308 		skb->destructor(skb);
3309 		skb->destructor = NULL;
3310 		skb->sk		= NULL;
3311 	} else {
3312 		BUG_ON(skb->sk);
3313 	}
3314 }
3315 
3316 /**
3317  *	skb_orphan_frags - orphan the frags contained in a buffer
3318  *	@skb: buffer to orphan frags from
3319  *	@gfp_mask: allocation mask for replacement pages
3320  *
3321  *	For each frag in the SKB which needs a destructor (i.e. has an
3322  *	owner) create a copy of that frag and release the original
3323  *	page by calling the destructor.
3324  */
3325 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3326 {
3327 	if (likely(!skb_zcopy(skb)))
3328 		return 0;
3329 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3330 		return 0;
3331 	return skb_copy_ubufs(skb, gfp_mask);
3332 }
3333 
3334 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3335 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3336 {
3337 	if (likely(!skb_zcopy(skb)))
3338 		return 0;
3339 	return skb_copy_ubufs(skb, gfp_mask);
3340 }
3341 
3342 /**
3343  *	__skb_queue_purge_reason - empty a list
3344  *	@list: list to empty
3345  *	@reason: drop reason
3346  *
3347  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3348  *	the list and one reference dropped. This function does not take the
3349  *	list lock and the caller must hold the relevant locks to use it.
3350  */
3351 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3352 					    enum skb_drop_reason reason)
3353 {
3354 	struct sk_buff *skb;
3355 
3356 	while ((skb = __skb_dequeue(list)) != NULL)
3357 		kfree_skb_reason(skb, reason);
3358 }
3359 
3360 static inline void __skb_queue_purge(struct sk_buff_head *list)
3361 {
3362 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3363 }
3364 
3365 void skb_queue_purge_reason(struct sk_buff_head *list,
3366 			    enum skb_drop_reason reason);
3367 
3368 static inline void skb_queue_purge(struct sk_buff_head *list)
3369 {
3370 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3371 }
3372 
3373 unsigned int skb_rbtree_purge(struct rb_root *root);
3374 void skb_errqueue_purge(struct sk_buff_head *list);
3375 
3376 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3377 
3378 /**
3379  * netdev_alloc_frag - allocate a page fragment
3380  * @fragsz: fragment size
3381  *
3382  * Allocates a frag from a page for receive buffer.
3383  * Uses GFP_ATOMIC allocations.
3384  */
3385 static inline void *netdev_alloc_frag(unsigned int fragsz)
3386 {
3387 	return __netdev_alloc_frag_align(fragsz, ~0u);
3388 }
3389 
3390 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3391 					    unsigned int align)
3392 {
3393 	WARN_ON_ONCE(!is_power_of_2(align));
3394 	return __netdev_alloc_frag_align(fragsz, -align);
3395 }
3396 
3397 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3398 				   gfp_t gfp_mask);
3399 
3400 /**
3401  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3402  *	@dev: network device to receive on
3403  *	@length: length to allocate
3404  *
3405  *	Allocate a new &sk_buff and assign it a usage count of one. The
3406  *	buffer has unspecified headroom built in. Users should allocate
3407  *	the headroom they think they need without accounting for the
3408  *	built in space. The built in space is used for optimisations.
3409  *
3410  *	%NULL is returned if there is no free memory. Although this function
3411  *	allocates memory it can be called from an interrupt.
3412  */
3413 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3414 					       unsigned int length)
3415 {
3416 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3417 }
3418 
3419 /* legacy helper around __netdev_alloc_skb() */
3420 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3421 					      gfp_t gfp_mask)
3422 {
3423 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3424 }
3425 
3426 /* legacy helper around netdev_alloc_skb() */
3427 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3428 {
3429 	return netdev_alloc_skb(NULL, length);
3430 }
3431 
3432 
3433 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3434 		unsigned int length, gfp_t gfp)
3435 {
3436 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3437 
3438 	if (NET_IP_ALIGN && skb)
3439 		skb_reserve(skb, NET_IP_ALIGN);
3440 	return skb;
3441 }
3442 
3443 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3444 		unsigned int length)
3445 {
3446 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3447 }
3448 
3449 static inline void skb_free_frag(void *addr)
3450 {
3451 	page_frag_free(addr);
3452 }
3453 
3454 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3455 
3456 static inline void *napi_alloc_frag(unsigned int fragsz)
3457 {
3458 	return __napi_alloc_frag_align(fragsz, ~0u);
3459 }
3460 
3461 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3462 					  unsigned int align)
3463 {
3464 	WARN_ON_ONCE(!is_power_of_2(align));
3465 	return __napi_alloc_frag_align(fragsz, -align);
3466 }
3467 
3468 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3469 void napi_consume_skb(struct sk_buff *skb, int budget);
3470 
3471 void napi_skb_free_stolen_head(struct sk_buff *skb);
3472 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3473 
3474 /**
3475  * __dev_alloc_pages - allocate page for network Rx
3476  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3477  * @order: size of the allocation
3478  *
3479  * Allocate a new page.
3480  *
3481  * %NULL is returned if there is no free memory.
3482 */
3483 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
3484 					     unsigned int order)
3485 {
3486 	/* This piece of code contains several assumptions.
3487 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3488 	 * 2.  The expectation is the user wants a compound page.
3489 	 * 3.  If requesting a order 0 page it will not be compound
3490 	 *     due to the check to see if order has a value in prep_new_page
3491 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3492 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3493 	 */
3494 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3495 
3496 	return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
3497 }
3498 #define __dev_alloc_pages(...)	alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
3499 
3500 /*
3501  * This specialized allocator has to be a macro for its allocations to be
3502  * accounted separately (to have a separate alloc_tag).
3503  */
3504 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
3505 
3506 /**
3507  * __dev_alloc_page - allocate a page for network Rx
3508  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3509  *
3510  * Allocate a new page.
3511  *
3512  * %NULL is returned if there is no free memory.
3513  */
3514 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
3515 {
3516 	return __dev_alloc_pages_noprof(gfp_mask, 0);
3517 }
3518 #define __dev_alloc_page(...)	alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
3519 
3520 /*
3521  * This specialized allocator has to be a macro for its allocations to be
3522  * accounted separately (to have a separate alloc_tag).
3523  */
3524 #define dev_alloc_page()	dev_alloc_pages(0)
3525 
3526 /**
3527  * dev_page_is_reusable - check whether a page can be reused for network Rx
3528  * @page: the page to test
3529  *
3530  * A page shouldn't be considered for reusing/recycling if it was allocated
3531  * under memory pressure or at a distant memory node.
3532  *
3533  * Returns: false if this page should be returned to page allocator, true
3534  * otherwise.
3535  */
3536 static inline bool dev_page_is_reusable(const struct page *page)
3537 {
3538 	return likely(page_to_nid(page) == numa_mem_id() &&
3539 		      !page_is_pfmemalloc(page));
3540 }
3541 
3542 /**
3543  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3544  *	@page: The page that was allocated from skb_alloc_page
3545  *	@skb: The skb that may need pfmemalloc set
3546  */
3547 static inline void skb_propagate_pfmemalloc(const struct page *page,
3548 					    struct sk_buff *skb)
3549 {
3550 	if (page_is_pfmemalloc(page))
3551 		skb->pfmemalloc = true;
3552 }
3553 
3554 /**
3555  * skb_frag_off() - Returns the offset of a skb fragment
3556  * @frag: the paged fragment
3557  */
3558 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3559 {
3560 	return frag->offset;
3561 }
3562 
3563 /**
3564  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3565  * @frag: skb fragment
3566  * @delta: value to add
3567  */
3568 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3569 {
3570 	frag->offset += delta;
3571 }
3572 
3573 /**
3574  * skb_frag_off_set() - Sets the offset of a skb fragment
3575  * @frag: skb fragment
3576  * @offset: offset of fragment
3577  */
3578 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3579 {
3580 	frag->offset = offset;
3581 }
3582 
3583 /**
3584  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3585  * @fragto: skb fragment where offset is set
3586  * @fragfrom: skb fragment offset is copied from
3587  */
3588 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3589 				     const skb_frag_t *fragfrom)
3590 {
3591 	fragto->offset = fragfrom->offset;
3592 }
3593 
3594 /* Return: true if the skb_frag contains a net_iov. */
3595 static inline bool skb_frag_is_net_iov(const skb_frag_t *frag)
3596 {
3597 	return netmem_is_net_iov(frag->netmem);
3598 }
3599 
3600 /**
3601  * skb_frag_net_iov - retrieve the net_iov referred to by fragment
3602  * @frag: the fragment
3603  *
3604  * Return: the &struct net_iov associated with @frag. Returns NULL if this
3605  * frag has no associated net_iov.
3606  */
3607 static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag)
3608 {
3609 	if (!skb_frag_is_net_iov(frag))
3610 		return NULL;
3611 
3612 	return netmem_to_net_iov(frag->netmem);
3613 }
3614 
3615 /**
3616  * skb_frag_page - retrieve the page referred to by a paged fragment
3617  * @frag: the paged fragment
3618  *
3619  * Return: the &struct page associated with @frag. Returns NULL if this frag
3620  * has no associated page.
3621  */
3622 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3623 {
3624 	if (skb_frag_is_net_iov(frag))
3625 		return NULL;
3626 
3627 	return netmem_to_page(frag->netmem);
3628 }
3629 
3630 /**
3631  * skb_frag_netmem - retrieve the netmem referred to by a fragment
3632  * @frag: the fragment
3633  *
3634  * Return: the &netmem_ref associated with @frag.
3635  */
3636 static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag)
3637 {
3638 	return frag->netmem;
3639 }
3640 
3641 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3642 		    unsigned int headroom);
3643 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3644 			 const struct bpf_prog *prog);
3645 
3646 /**
3647  * skb_frag_address - gets the address of the data contained in a paged fragment
3648  * @frag: the paged fragment buffer
3649  *
3650  * Returns: the address of the data within @frag. The page must already
3651  * be mapped.
3652  */
3653 static inline void *skb_frag_address(const skb_frag_t *frag)
3654 {
3655 	if (!skb_frag_page(frag))
3656 		return NULL;
3657 
3658 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3659 }
3660 
3661 /**
3662  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3663  * @frag: the paged fragment buffer
3664  *
3665  * Returns: the address of the data within @frag. Checks that the page
3666  * is mapped and returns %NULL otherwise.
3667  */
3668 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3669 {
3670 	void *ptr = page_address(skb_frag_page(frag));
3671 	if (unlikely(!ptr))
3672 		return NULL;
3673 
3674 	return ptr + skb_frag_off(frag);
3675 }
3676 
3677 /**
3678  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3679  * @fragto: skb fragment where page is set
3680  * @fragfrom: skb fragment page is copied from
3681  */
3682 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3683 				      const skb_frag_t *fragfrom)
3684 {
3685 	fragto->netmem = fragfrom->netmem;
3686 }
3687 
3688 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3689 
3690 /**
3691  * __skb_frag_dma_map - maps a paged fragment via the DMA API
3692  * @dev: the device to map the fragment to
3693  * @frag: the paged fragment to map
3694  * @offset: the offset within the fragment (starting at the
3695  *          fragment's own offset)
3696  * @size: the number of bytes to map
3697  * @dir: the direction of the mapping (``PCI_DMA_*``)
3698  *
3699  * Maps the page associated with @frag to @device.
3700  */
3701 static inline dma_addr_t __skb_frag_dma_map(struct device *dev,
3702 					    const skb_frag_t *frag,
3703 					    size_t offset, size_t size,
3704 					    enum dma_data_direction dir)
3705 {
3706 	return dma_map_page(dev, skb_frag_page(frag),
3707 			    skb_frag_off(frag) + offset, size, dir);
3708 }
3709 
3710 #define skb_frag_dma_map(dev, frag, ...)				\
3711 	CONCATENATE(_skb_frag_dma_map,					\
3712 		    COUNT_ARGS(__VA_ARGS__))(dev, frag, ##__VA_ARGS__)
3713 
3714 #define __skb_frag_dma_map1(dev, frag, offset, uf, uo) ({		\
3715 	const skb_frag_t *uf = (frag);					\
3716 	size_t uo = (offset);						\
3717 									\
3718 	__skb_frag_dma_map(dev, uf, uo, skb_frag_size(uf) - uo,		\
3719 			   DMA_TO_DEVICE);				\
3720 })
3721 #define _skb_frag_dma_map1(dev, frag, offset)				\
3722 	__skb_frag_dma_map1(dev, frag, offset, __UNIQUE_ID(frag_),	\
3723 			    __UNIQUE_ID(offset_))
3724 #define _skb_frag_dma_map0(dev, frag)					\
3725 	_skb_frag_dma_map1(dev, frag, 0)
3726 #define _skb_frag_dma_map2(dev, frag, offset, size)			\
3727 	__skb_frag_dma_map(dev, frag, offset, size, DMA_TO_DEVICE)
3728 #define _skb_frag_dma_map3(dev, frag, offset, size, dir)		\
3729 	__skb_frag_dma_map(dev, frag, offset, size, dir)
3730 
3731 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3732 					gfp_t gfp_mask)
3733 {
3734 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3735 }
3736 
3737 
3738 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3739 						  gfp_t gfp_mask)
3740 {
3741 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3742 }
3743 
3744 
3745 /**
3746  *	skb_clone_writable - is the header of a clone writable
3747  *	@skb: buffer to check
3748  *	@len: length up to which to write
3749  *
3750  *	Returns true if modifying the header part of the cloned buffer
3751  *	does not requires the data to be copied.
3752  */
3753 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3754 {
3755 	return !skb_header_cloned(skb) &&
3756 	       skb_headroom(skb) + len <= skb->hdr_len;
3757 }
3758 
3759 static inline int skb_try_make_writable(struct sk_buff *skb,
3760 					unsigned int write_len)
3761 {
3762 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3763 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3764 }
3765 
3766 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3767 			    int cloned)
3768 {
3769 	int delta = 0;
3770 
3771 	if (headroom > skb_headroom(skb))
3772 		delta = headroom - skb_headroom(skb);
3773 
3774 	if (delta || cloned)
3775 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3776 					GFP_ATOMIC);
3777 	return 0;
3778 }
3779 
3780 /**
3781  *	skb_cow - copy header of skb when it is required
3782  *	@skb: buffer to cow
3783  *	@headroom: needed headroom
3784  *
3785  *	If the skb passed lacks sufficient headroom or its data part
3786  *	is shared, data is reallocated. If reallocation fails, an error
3787  *	is returned and original skb is not changed.
3788  *
3789  *	The result is skb with writable area skb->head...skb->tail
3790  *	and at least @headroom of space at head.
3791  */
3792 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3793 {
3794 	return __skb_cow(skb, headroom, skb_cloned(skb));
3795 }
3796 
3797 /**
3798  *	skb_cow_head - skb_cow but only making the head writable
3799  *	@skb: buffer to cow
3800  *	@headroom: needed headroom
3801  *
3802  *	This function is identical to skb_cow except that we replace the
3803  *	skb_cloned check by skb_header_cloned.  It should be used when
3804  *	you only need to push on some header and do not need to modify
3805  *	the data.
3806  */
3807 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3808 {
3809 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3810 }
3811 
3812 /**
3813  *	skb_padto	- pad an skbuff up to a minimal size
3814  *	@skb: buffer to pad
3815  *	@len: minimal length
3816  *
3817  *	Pads up a buffer to ensure the trailing bytes exist and are
3818  *	blanked. If the buffer already contains sufficient data it
3819  *	is untouched. Otherwise it is extended. Returns zero on
3820  *	success. The skb is freed on error.
3821  */
3822 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3823 {
3824 	unsigned int size = skb->len;
3825 	if (likely(size >= len))
3826 		return 0;
3827 	return skb_pad(skb, len - size);
3828 }
3829 
3830 /**
3831  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3832  *	@skb: buffer to pad
3833  *	@len: minimal length
3834  *	@free_on_error: free buffer on error
3835  *
3836  *	Pads up a buffer to ensure the trailing bytes exist and are
3837  *	blanked. If the buffer already contains sufficient data it
3838  *	is untouched. Otherwise it is extended. Returns zero on
3839  *	success. The skb is freed on error if @free_on_error is true.
3840  */
3841 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3842 					       unsigned int len,
3843 					       bool free_on_error)
3844 {
3845 	unsigned int size = skb->len;
3846 
3847 	if (unlikely(size < len)) {
3848 		len -= size;
3849 		if (__skb_pad(skb, len, free_on_error))
3850 			return -ENOMEM;
3851 		__skb_put(skb, len);
3852 	}
3853 	return 0;
3854 }
3855 
3856 /**
3857  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3858  *	@skb: buffer to pad
3859  *	@len: minimal length
3860  *
3861  *	Pads up a buffer to ensure the trailing bytes exist and are
3862  *	blanked. If the buffer already contains sufficient data it
3863  *	is untouched. Otherwise it is extended. Returns zero on
3864  *	success. The skb is freed on error.
3865  */
3866 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3867 {
3868 	return __skb_put_padto(skb, len, true);
3869 }
3870 
3871 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3872 	__must_check;
3873 
3874 static inline int skb_add_data(struct sk_buff *skb,
3875 			       struct iov_iter *from, int copy)
3876 {
3877 	const int off = skb->len;
3878 
3879 	if (skb->ip_summed == CHECKSUM_NONE) {
3880 		__wsum csum = 0;
3881 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3882 					         &csum, from)) {
3883 			skb->csum = csum_block_add(skb->csum, csum, off);
3884 			return 0;
3885 		}
3886 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3887 		return 0;
3888 
3889 	__skb_trim(skb, off);
3890 	return -EFAULT;
3891 }
3892 
3893 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3894 				    const struct page *page, int off)
3895 {
3896 	if (skb_zcopy(skb))
3897 		return false;
3898 	if (i) {
3899 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3900 
3901 		return page == skb_frag_page(frag) &&
3902 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3903 	}
3904 	return false;
3905 }
3906 
3907 static inline int __skb_linearize(struct sk_buff *skb)
3908 {
3909 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3910 }
3911 
3912 /**
3913  *	skb_linearize - convert paged skb to linear one
3914  *	@skb: buffer to linarize
3915  *
3916  *	If there is no free memory -ENOMEM is returned, otherwise zero
3917  *	is returned and the old skb data released.
3918  */
3919 static inline int skb_linearize(struct sk_buff *skb)
3920 {
3921 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3922 }
3923 
3924 /**
3925  * skb_has_shared_frag - can any frag be overwritten
3926  * @skb: buffer to test
3927  *
3928  * Return: true if the skb has at least one frag that might be modified
3929  * by an external entity (as in vmsplice()/sendfile())
3930  */
3931 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3932 {
3933 	return skb_is_nonlinear(skb) &&
3934 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3935 }
3936 
3937 /**
3938  *	skb_linearize_cow - make sure skb is linear and writable
3939  *	@skb: buffer to process
3940  *
3941  *	If there is no free memory -ENOMEM is returned, otherwise zero
3942  *	is returned and the old skb data released.
3943  */
3944 static inline int skb_linearize_cow(struct sk_buff *skb)
3945 {
3946 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3947 	       __skb_linearize(skb) : 0;
3948 }
3949 
3950 static __always_inline void
3951 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3952 		     unsigned int off)
3953 {
3954 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3955 		skb->csum = csum_block_sub(skb->csum,
3956 					   csum_partial(start, len, 0), off);
3957 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3958 		 skb_checksum_start_offset(skb) < 0)
3959 		skb->ip_summed = CHECKSUM_NONE;
3960 }
3961 
3962 /**
3963  *	skb_postpull_rcsum - update checksum for received skb after pull
3964  *	@skb: buffer to update
3965  *	@start: start of data before pull
3966  *	@len: length of data pulled
3967  *
3968  *	After doing a pull on a received packet, you need to call this to
3969  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3970  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3971  */
3972 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3973 				      const void *start, unsigned int len)
3974 {
3975 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3976 		skb->csum = wsum_negate(csum_partial(start, len,
3977 						     wsum_negate(skb->csum)));
3978 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3979 		 skb_checksum_start_offset(skb) < 0)
3980 		skb->ip_summed = CHECKSUM_NONE;
3981 }
3982 
3983 static __always_inline void
3984 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3985 		     unsigned int off)
3986 {
3987 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3988 		skb->csum = csum_block_add(skb->csum,
3989 					   csum_partial(start, len, 0), off);
3990 }
3991 
3992 /**
3993  *	skb_postpush_rcsum - update checksum for received skb after push
3994  *	@skb: buffer to update
3995  *	@start: start of data after push
3996  *	@len: length of data pushed
3997  *
3998  *	After doing a push on a received packet, you need to call this to
3999  *	update the CHECKSUM_COMPLETE checksum.
4000  */
4001 static inline void skb_postpush_rcsum(struct sk_buff *skb,
4002 				      const void *start, unsigned int len)
4003 {
4004 	__skb_postpush_rcsum(skb, start, len, 0);
4005 }
4006 
4007 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
4008 
4009 /**
4010  *	skb_push_rcsum - push skb and update receive checksum
4011  *	@skb: buffer to update
4012  *	@len: length of data pulled
4013  *
4014  *	This function performs an skb_push on the packet and updates
4015  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4016  *	receive path processing instead of skb_push unless you know
4017  *	that the checksum difference is zero (e.g., a valid IP header)
4018  *	or you are setting ip_summed to CHECKSUM_NONE.
4019  */
4020 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
4021 {
4022 	skb_push(skb, len);
4023 	skb_postpush_rcsum(skb, skb->data, len);
4024 	return skb->data;
4025 }
4026 
4027 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
4028 /**
4029  *	pskb_trim_rcsum - trim received skb and update checksum
4030  *	@skb: buffer to trim
4031  *	@len: new length
4032  *
4033  *	This is exactly the same as pskb_trim except that it ensures the
4034  *	checksum of received packets are still valid after the operation.
4035  *	It can change skb pointers.
4036  */
4037 
4038 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4039 {
4040 	skb_might_realloc(skb);
4041 	if (likely(len >= skb->len))
4042 		return 0;
4043 	return pskb_trim_rcsum_slow(skb, len);
4044 }
4045 
4046 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4047 {
4048 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4049 		skb->ip_summed = CHECKSUM_NONE;
4050 	__skb_trim(skb, len);
4051 	return 0;
4052 }
4053 
4054 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
4055 {
4056 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4057 		skb->ip_summed = CHECKSUM_NONE;
4058 	return __skb_grow(skb, len);
4059 }
4060 
4061 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
4062 #define skb_rb_first(root) rb_to_skb(rb_first(root))
4063 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
4064 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
4065 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
4066 
4067 #define skb_queue_walk(queue, skb) \
4068 		for (skb = (queue)->next;					\
4069 		     skb != (struct sk_buff *)(queue);				\
4070 		     skb = skb->next)
4071 
4072 #define skb_queue_walk_safe(queue, skb, tmp)					\
4073 		for (skb = (queue)->next, tmp = skb->next;			\
4074 		     skb != (struct sk_buff *)(queue);				\
4075 		     skb = tmp, tmp = skb->next)
4076 
4077 #define skb_queue_walk_from(queue, skb)						\
4078 		for (; skb != (struct sk_buff *)(queue);			\
4079 		     skb = skb->next)
4080 
4081 #define skb_rbtree_walk(skb, root)						\
4082 		for (skb = skb_rb_first(root); skb != NULL;			\
4083 		     skb = skb_rb_next(skb))
4084 
4085 #define skb_rbtree_walk_from(skb)						\
4086 		for (; skb != NULL;						\
4087 		     skb = skb_rb_next(skb))
4088 
4089 #define skb_rbtree_walk_from_safe(skb, tmp)					\
4090 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
4091 		     skb = tmp)
4092 
4093 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
4094 		for (tmp = skb->next;						\
4095 		     skb != (struct sk_buff *)(queue);				\
4096 		     skb = tmp, tmp = skb->next)
4097 
4098 #define skb_queue_reverse_walk(queue, skb) \
4099 		for (skb = (queue)->prev;					\
4100 		     skb != (struct sk_buff *)(queue);				\
4101 		     skb = skb->prev)
4102 
4103 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
4104 		for (skb = (queue)->prev, tmp = skb->prev;			\
4105 		     skb != (struct sk_buff *)(queue);				\
4106 		     skb = tmp, tmp = skb->prev)
4107 
4108 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
4109 		for (tmp = skb->prev;						\
4110 		     skb != (struct sk_buff *)(queue);				\
4111 		     skb = tmp, tmp = skb->prev)
4112 
4113 static inline bool skb_has_frag_list(const struct sk_buff *skb)
4114 {
4115 	return skb_shinfo(skb)->frag_list != NULL;
4116 }
4117 
4118 static inline void skb_frag_list_init(struct sk_buff *skb)
4119 {
4120 	skb_shinfo(skb)->frag_list = NULL;
4121 }
4122 
4123 #define skb_walk_frags(skb, iter)	\
4124 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4125 
4126 
4127 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4128 				int *err, long *timeo_p,
4129 				const struct sk_buff *skb);
4130 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4131 					  struct sk_buff_head *queue,
4132 					  unsigned int flags,
4133 					  int *off, int *err,
4134 					  struct sk_buff **last);
4135 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4136 					struct sk_buff_head *queue,
4137 					unsigned int flags, int *off, int *err,
4138 					struct sk_buff **last);
4139 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4140 				    struct sk_buff_head *sk_queue,
4141 				    unsigned int flags, int *off, int *err);
4142 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4143 __poll_t datagram_poll(struct file *file, struct socket *sock,
4144 			   struct poll_table_struct *wait);
4145 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4146 			   struct iov_iter *to, int size);
4147 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4148 					struct msghdr *msg, int size)
4149 {
4150 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4151 }
4152 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4153 				   struct msghdr *msg);
4154 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4155 			   struct iov_iter *to, int len,
4156 			   struct ahash_request *hash);
4157 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4158 				 struct iov_iter *from, int len);
4159 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4160 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4161 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4162 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4163 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4164 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4165 			      int len);
4166 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4167 		    struct pipe_inode_info *pipe, unsigned int len,
4168 		    unsigned int flags);
4169 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4170 			 int len);
4171 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4172 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4173 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4174 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4175 		 int len, int hlen);
4176 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4177 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4178 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4179 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4180 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4181 				 unsigned int offset);
4182 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4183 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4184 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4185 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4186 int skb_vlan_pop(struct sk_buff *skb);
4187 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4188 int skb_eth_pop(struct sk_buff *skb);
4189 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4190 		 const unsigned char *src);
4191 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4192 		  int mac_len, bool ethernet);
4193 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4194 		 bool ethernet);
4195 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4196 int skb_mpls_dec_ttl(struct sk_buff *skb);
4197 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4198 			     gfp_t gfp);
4199 
4200 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4201 {
4202 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4203 }
4204 
4205 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4206 {
4207 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4208 }
4209 
4210 struct skb_checksum_ops {
4211 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4212 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4213 };
4214 
4215 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4216 
4217 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4218 		      __wsum csum, const struct skb_checksum_ops *ops);
4219 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4220 		    __wsum csum);
4221 
4222 static inline void * __must_check
4223 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4224 		     const void *data, int hlen, void *buffer)
4225 {
4226 	if (likely(hlen - offset >= len))
4227 		return (void *)data + offset;
4228 
4229 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4230 		return NULL;
4231 
4232 	return buffer;
4233 }
4234 
4235 static inline void * __must_check
4236 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4237 {
4238 	return __skb_header_pointer(skb, offset, len, skb->data,
4239 				    skb_headlen(skb), buffer);
4240 }
4241 
4242 static inline void * __must_check
4243 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4244 {
4245 	if (likely(skb_headlen(skb) - offset >= len))
4246 		return skb->data + offset;
4247 	return NULL;
4248 }
4249 
4250 /**
4251  *	skb_needs_linearize - check if we need to linearize a given skb
4252  *			      depending on the given device features.
4253  *	@skb: socket buffer to check
4254  *	@features: net device features
4255  *
4256  *	Returns true if either:
4257  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4258  *	2. skb is fragmented and the device does not support SG.
4259  */
4260 static inline bool skb_needs_linearize(struct sk_buff *skb,
4261 				       netdev_features_t features)
4262 {
4263 	return skb_is_nonlinear(skb) &&
4264 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4265 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4266 }
4267 
4268 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4269 					     void *to,
4270 					     const unsigned int len)
4271 {
4272 	memcpy(to, skb->data, len);
4273 }
4274 
4275 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4276 						    const int offset, void *to,
4277 						    const unsigned int len)
4278 {
4279 	memcpy(to, skb->data + offset, len);
4280 }
4281 
4282 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4283 					   const void *from,
4284 					   const unsigned int len)
4285 {
4286 	memcpy(skb->data, from, len);
4287 }
4288 
4289 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4290 						  const int offset,
4291 						  const void *from,
4292 						  const unsigned int len)
4293 {
4294 	memcpy(skb->data + offset, from, len);
4295 }
4296 
4297 void skb_init(void);
4298 
4299 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4300 {
4301 	return skb->tstamp;
4302 }
4303 
4304 /**
4305  *	skb_get_timestamp - get timestamp from a skb
4306  *	@skb: skb to get stamp from
4307  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4308  *
4309  *	Timestamps are stored in the skb as offsets to a base timestamp.
4310  *	This function converts the offset back to a struct timeval and stores
4311  *	it in stamp.
4312  */
4313 static inline void skb_get_timestamp(const struct sk_buff *skb,
4314 				     struct __kernel_old_timeval *stamp)
4315 {
4316 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4317 }
4318 
4319 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4320 					 struct __kernel_sock_timeval *stamp)
4321 {
4322 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4323 
4324 	stamp->tv_sec = ts.tv_sec;
4325 	stamp->tv_usec = ts.tv_nsec / 1000;
4326 }
4327 
4328 static inline void skb_get_timestampns(const struct sk_buff *skb,
4329 				       struct __kernel_old_timespec *stamp)
4330 {
4331 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4332 
4333 	stamp->tv_sec = ts.tv_sec;
4334 	stamp->tv_nsec = ts.tv_nsec;
4335 }
4336 
4337 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4338 					   struct __kernel_timespec *stamp)
4339 {
4340 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4341 
4342 	stamp->tv_sec = ts.tv_sec;
4343 	stamp->tv_nsec = ts.tv_nsec;
4344 }
4345 
4346 static inline void __net_timestamp(struct sk_buff *skb)
4347 {
4348 	skb->tstamp = ktime_get_real();
4349 	skb->tstamp_type = SKB_CLOCK_REALTIME;
4350 }
4351 
4352 static inline ktime_t net_timedelta(ktime_t t)
4353 {
4354 	return ktime_sub(ktime_get_real(), t);
4355 }
4356 
4357 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4358 					 u8 tstamp_type)
4359 {
4360 	skb->tstamp = kt;
4361 
4362 	if (kt)
4363 		skb->tstamp_type = tstamp_type;
4364 	else
4365 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4366 }
4367 
4368 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4369 						    ktime_t kt, clockid_t clockid)
4370 {
4371 	u8 tstamp_type = SKB_CLOCK_REALTIME;
4372 
4373 	switch (clockid) {
4374 	case CLOCK_REALTIME:
4375 		break;
4376 	case CLOCK_MONOTONIC:
4377 		tstamp_type = SKB_CLOCK_MONOTONIC;
4378 		break;
4379 	case CLOCK_TAI:
4380 		tstamp_type = SKB_CLOCK_TAI;
4381 		break;
4382 	default:
4383 		WARN_ON_ONCE(1);
4384 		kt = 0;
4385 	}
4386 
4387 	skb_set_delivery_time(skb, kt, tstamp_type);
4388 }
4389 
4390 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4391 
4392 /* It is used in the ingress path to clear the delivery_time.
4393  * If needed, set the skb->tstamp to the (rcv) timestamp.
4394  */
4395 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4396 {
4397 	if (skb->tstamp_type) {
4398 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4399 		if (static_branch_unlikely(&netstamp_needed_key))
4400 			skb->tstamp = ktime_get_real();
4401 		else
4402 			skb->tstamp = 0;
4403 	}
4404 }
4405 
4406 static inline void skb_clear_tstamp(struct sk_buff *skb)
4407 {
4408 	if (skb->tstamp_type)
4409 		return;
4410 
4411 	skb->tstamp = 0;
4412 }
4413 
4414 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4415 {
4416 	if (skb->tstamp_type)
4417 		return 0;
4418 
4419 	return skb->tstamp;
4420 }
4421 
4422 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4423 {
4424 	if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4425 		return skb->tstamp;
4426 
4427 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4428 		return ktime_get_real();
4429 
4430 	return 0;
4431 }
4432 
4433 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4434 {
4435 	return skb_shinfo(skb)->meta_len;
4436 }
4437 
4438 static inline void *skb_metadata_end(const struct sk_buff *skb)
4439 {
4440 	return skb_mac_header(skb);
4441 }
4442 
4443 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4444 					  const struct sk_buff *skb_b,
4445 					  u8 meta_len)
4446 {
4447 	const void *a = skb_metadata_end(skb_a);
4448 	const void *b = skb_metadata_end(skb_b);
4449 	u64 diffs = 0;
4450 
4451 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4452 	    BITS_PER_LONG != 64)
4453 		goto slow;
4454 
4455 	/* Using more efficient variant than plain call to memcmp(). */
4456 	switch (meta_len) {
4457 #define __it(x, op) (x -= sizeof(u##op))
4458 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4459 	case 32: diffs |= __it_diff(a, b, 64);
4460 		fallthrough;
4461 	case 24: diffs |= __it_diff(a, b, 64);
4462 		fallthrough;
4463 	case 16: diffs |= __it_diff(a, b, 64);
4464 		fallthrough;
4465 	case  8: diffs |= __it_diff(a, b, 64);
4466 		break;
4467 	case 28: diffs |= __it_diff(a, b, 64);
4468 		fallthrough;
4469 	case 20: diffs |= __it_diff(a, b, 64);
4470 		fallthrough;
4471 	case 12: diffs |= __it_diff(a, b, 64);
4472 		fallthrough;
4473 	case  4: diffs |= __it_diff(a, b, 32);
4474 		break;
4475 	default:
4476 slow:
4477 		return memcmp(a - meta_len, b - meta_len, meta_len);
4478 	}
4479 	return diffs;
4480 }
4481 
4482 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4483 					const struct sk_buff *skb_b)
4484 {
4485 	u8 len_a = skb_metadata_len(skb_a);
4486 	u8 len_b = skb_metadata_len(skb_b);
4487 
4488 	if (!(len_a | len_b))
4489 		return false;
4490 
4491 	return len_a != len_b ?
4492 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4493 }
4494 
4495 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4496 {
4497 	skb_shinfo(skb)->meta_len = meta_len;
4498 }
4499 
4500 static inline void skb_metadata_clear(struct sk_buff *skb)
4501 {
4502 	skb_metadata_set(skb, 0);
4503 }
4504 
4505 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4506 
4507 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4508 
4509 void skb_clone_tx_timestamp(struct sk_buff *skb);
4510 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4511 
4512 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4513 
4514 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4515 {
4516 }
4517 
4518 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4519 {
4520 	return false;
4521 }
4522 
4523 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4524 
4525 /**
4526  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4527  *
4528  * PHY drivers may accept clones of transmitted packets for
4529  * timestamping via their phy_driver.txtstamp method. These drivers
4530  * must call this function to return the skb back to the stack with a
4531  * timestamp.
4532  *
4533  * @skb: clone of the original outgoing packet
4534  * @hwtstamps: hardware time stamps
4535  *
4536  */
4537 void skb_complete_tx_timestamp(struct sk_buff *skb,
4538 			       struct skb_shared_hwtstamps *hwtstamps);
4539 
4540 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4541 		     struct skb_shared_hwtstamps *hwtstamps,
4542 		     struct sock *sk, int tstype);
4543 
4544 /**
4545  * skb_tstamp_tx - queue clone of skb with send time stamps
4546  * @orig_skb:	the original outgoing packet
4547  * @hwtstamps:	hardware time stamps, may be NULL if not available
4548  *
4549  * If the skb has a socket associated, then this function clones the
4550  * skb (thus sharing the actual data and optional structures), stores
4551  * the optional hardware time stamping information (if non NULL) or
4552  * generates a software time stamp (otherwise), then queues the clone
4553  * to the error queue of the socket.  Errors are silently ignored.
4554  */
4555 void skb_tstamp_tx(struct sk_buff *orig_skb,
4556 		   struct skb_shared_hwtstamps *hwtstamps);
4557 
4558 /**
4559  * skb_tx_timestamp() - Driver hook for transmit timestamping
4560  *
4561  * Ethernet MAC Drivers should call this function in their hard_xmit()
4562  * function immediately before giving the sk_buff to the MAC hardware.
4563  *
4564  * Specifically, one should make absolutely sure that this function is
4565  * called before TX completion of this packet can trigger.  Otherwise
4566  * the packet could potentially already be freed.
4567  *
4568  * @skb: A socket buffer.
4569  */
4570 static inline void skb_tx_timestamp(struct sk_buff *skb)
4571 {
4572 	skb_clone_tx_timestamp(skb);
4573 	if (skb_shinfo(skb)->tx_flags & (SKBTX_SW_TSTAMP | SKBTX_BPF))
4574 		skb_tstamp_tx(skb, NULL);
4575 }
4576 
4577 /**
4578  * skb_complete_wifi_ack - deliver skb with wifi status
4579  *
4580  * @skb: the original outgoing packet
4581  * @acked: ack status
4582  *
4583  */
4584 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4585 
4586 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4587 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4588 
4589 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4590 {
4591 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4592 		skb->csum_valid ||
4593 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4594 		 skb_checksum_start_offset(skb) >= 0));
4595 }
4596 
4597 /**
4598  *	skb_checksum_complete - Calculate checksum of an entire packet
4599  *	@skb: packet to process
4600  *
4601  *	This function calculates the checksum over the entire packet plus
4602  *	the value of skb->csum.  The latter can be used to supply the
4603  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4604  *	checksum.
4605  *
4606  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4607  *	this function can be used to verify that checksum on received
4608  *	packets.  In that case the function should return zero if the
4609  *	checksum is correct.  In particular, this function will return zero
4610  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4611  *	hardware has already verified the correctness of the checksum.
4612  */
4613 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4614 {
4615 	return skb_csum_unnecessary(skb) ?
4616 	       0 : __skb_checksum_complete(skb);
4617 }
4618 
4619 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4620 {
4621 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4622 		if (skb->csum_level == 0)
4623 			skb->ip_summed = CHECKSUM_NONE;
4624 		else
4625 			skb->csum_level--;
4626 	}
4627 }
4628 
4629 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4630 {
4631 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4632 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4633 			skb->csum_level++;
4634 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4635 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4636 		skb->csum_level = 0;
4637 	}
4638 }
4639 
4640 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4641 {
4642 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4643 		skb->ip_summed = CHECKSUM_NONE;
4644 		skb->csum_level = 0;
4645 	}
4646 }
4647 
4648 /* Check if we need to perform checksum complete validation.
4649  *
4650  * Returns: true if checksum complete is needed, false otherwise
4651  * (either checksum is unnecessary or zero checksum is allowed).
4652  */
4653 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4654 						  bool zero_okay,
4655 						  __sum16 check)
4656 {
4657 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4658 		skb->csum_valid = 1;
4659 		__skb_decr_checksum_unnecessary(skb);
4660 		return false;
4661 	}
4662 
4663 	return true;
4664 }
4665 
4666 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4667  * in checksum_init.
4668  */
4669 #define CHECKSUM_BREAK 76
4670 
4671 /* Unset checksum-complete
4672  *
4673  * Unset checksum complete can be done when packet is being modified
4674  * (uncompressed for instance) and checksum-complete value is
4675  * invalidated.
4676  */
4677 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4678 {
4679 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4680 		skb->ip_summed = CHECKSUM_NONE;
4681 }
4682 
4683 /* Validate (init) checksum based on checksum complete.
4684  *
4685  * Return values:
4686  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4687  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4688  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4689  *   non-zero: value of invalid checksum
4690  *
4691  */
4692 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4693 						       bool complete,
4694 						       __wsum psum)
4695 {
4696 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4697 		if (!csum_fold(csum_add(psum, skb->csum))) {
4698 			skb->csum_valid = 1;
4699 			return 0;
4700 		}
4701 	}
4702 
4703 	skb->csum = psum;
4704 
4705 	if (complete || skb->len <= CHECKSUM_BREAK) {
4706 		__sum16 csum;
4707 
4708 		csum = __skb_checksum_complete(skb);
4709 		skb->csum_valid = !csum;
4710 		return csum;
4711 	}
4712 
4713 	return 0;
4714 }
4715 
4716 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4717 {
4718 	return 0;
4719 }
4720 
4721 /* Perform checksum validate (init). Note that this is a macro since we only
4722  * want to calculate the pseudo header which is an input function if necessary.
4723  * First we try to validate without any computation (checksum unnecessary) and
4724  * then calculate based on checksum complete calling the function to compute
4725  * pseudo header.
4726  *
4727  * Return values:
4728  *   0: checksum is validated or try to in skb_checksum_complete
4729  *   non-zero: value of invalid checksum
4730  */
4731 #define __skb_checksum_validate(skb, proto, complete,			\
4732 				zero_okay, check, compute_pseudo)	\
4733 ({									\
4734 	__sum16 __ret = 0;						\
4735 	skb->csum_valid = 0;						\
4736 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4737 		__ret = __skb_checksum_validate_complete(skb,		\
4738 				complete, compute_pseudo(skb, proto));	\
4739 	__ret;								\
4740 })
4741 
4742 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4743 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4744 
4745 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4746 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4747 
4748 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4749 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4750 
4751 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4752 					 compute_pseudo)		\
4753 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4754 
4755 #define skb_checksum_simple_validate(skb)				\
4756 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4757 
4758 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4759 {
4760 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4761 }
4762 
4763 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4764 {
4765 	skb->csum = ~pseudo;
4766 	skb->ip_summed = CHECKSUM_COMPLETE;
4767 }
4768 
4769 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4770 do {									\
4771 	if (__skb_checksum_convert_check(skb))				\
4772 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4773 } while (0)
4774 
4775 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4776 					      u16 start, u16 offset)
4777 {
4778 	skb->ip_summed = CHECKSUM_PARTIAL;
4779 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4780 	skb->csum_offset = offset - start;
4781 }
4782 
4783 /* Update skbuf and packet to reflect the remote checksum offload operation.
4784  * When called, ptr indicates the starting point for skb->csum when
4785  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4786  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4787  */
4788 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4789 				       int start, int offset, bool nopartial)
4790 {
4791 	__wsum delta;
4792 
4793 	if (!nopartial) {
4794 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4795 		return;
4796 	}
4797 
4798 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4799 		__skb_checksum_complete(skb);
4800 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4801 	}
4802 
4803 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4804 
4805 	/* Adjust skb->csum since we changed the packet */
4806 	skb->csum = csum_add(skb->csum, delta);
4807 }
4808 
4809 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4810 {
4811 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4812 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4813 #else
4814 	return NULL;
4815 #endif
4816 }
4817 
4818 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4819 {
4820 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4821 	return skb->_nfct;
4822 #else
4823 	return 0UL;
4824 #endif
4825 }
4826 
4827 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4828 {
4829 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4830 	skb->slow_gro |= !!nfct;
4831 	skb->_nfct = nfct;
4832 #endif
4833 }
4834 
4835 #ifdef CONFIG_SKB_EXTENSIONS
4836 enum skb_ext_id {
4837 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4838 	SKB_EXT_BRIDGE_NF,
4839 #endif
4840 #ifdef CONFIG_XFRM
4841 	SKB_EXT_SEC_PATH,
4842 #endif
4843 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4844 	TC_SKB_EXT,
4845 #endif
4846 #if IS_ENABLED(CONFIG_MPTCP)
4847 	SKB_EXT_MPTCP,
4848 #endif
4849 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4850 	SKB_EXT_MCTP,
4851 #endif
4852 	SKB_EXT_NUM, /* must be last */
4853 };
4854 
4855 /**
4856  *	struct skb_ext - sk_buff extensions
4857  *	@refcnt: 1 on allocation, deallocated on 0
4858  *	@offset: offset to add to @data to obtain extension address
4859  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4860  *	@data: start of extension data, variable sized
4861  *
4862  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4863  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4864  */
4865 struct skb_ext {
4866 	refcount_t refcnt;
4867 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4868 	u8 chunks;		/* same */
4869 	char data[] __aligned(8);
4870 };
4871 
4872 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4873 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4874 		    struct skb_ext *ext);
4875 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4876 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4877 void __skb_ext_put(struct skb_ext *ext);
4878 
4879 static inline void skb_ext_put(struct sk_buff *skb)
4880 {
4881 	if (skb->active_extensions)
4882 		__skb_ext_put(skb->extensions);
4883 }
4884 
4885 static inline void __skb_ext_copy(struct sk_buff *dst,
4886 				  const struct sk_buff *src)
4887 {
4888 	dst->active_extensions = src->active_extensions;
4889 
4890 	if (src->active_extensions) {
4891 		struct skb_ext *ext = src->extensions;
4892 
4893 		refcount_inc(&ext->refcnt);
4894 		dst->extensions = ext;
4895 	}
4896 }
4897 
4898 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4899 {
4900 	skb_ext_put(dst);
4901 	__skb_ext_copy(dst, src);
4902 }
4903 
4904 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4905 {
4906 	return !!ext->offset[i];
4907 }
4908 
4909 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4910 {
4911 	return skb->active_extensions & (1 << id);
4912 }
4913 
4914 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4915 {
4916 	if (skb_ext_exist(skb, id))
4917 		__skb_ext_del(skb, id);
4918 }
4919 
4920 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4921 {
4922 	if (skb_ext_exist(skb, id)) {
4923 		struct skb_ext *ext = skb->extensions;
4924 
4925 		return (void *)ext + (ext->offset[id] << 3);
4926 	}
4927 
4928 	return NULL;
4929 }
4930 
4931 static inline void skb_ext_reset(struct sk_buff *skb)
4932 {
4933 	if (unlikely(skb->active_extensions)) {
4934 		__skb_ext_put(skb->extensions);
4935 		skb->active_extensions = 0;
4936 	}
4937 }
4938 
4939 static inline bool skb_has_extensions(struct sk_buff *skb)
4940 {
4941 	return unlikely(skb->active_extensions);
4942 }
4943 #else
4944 static inline void skb_ext_put(struct sk_buff *skb) {}
4945 static inline void skb_ext_reset(struct sk_buff *skb) {}
4946 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4947 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4948 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4949 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4950 #endif /* CONFIG_SKB_EXTENSIONS */
4951 
4952 static inline void nf_reset_ct(struct sk_buff *skb)
4953 {
4954 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4955 	nf_conntrack_put(skb_nfct(skb));
4956 	skb->_nfct = 0;
4957 #endif
4958 }
4959 
4960 static inline void nf_reset_trace(struct sk_buff *skb)
4961 {
4962 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4963 	skb->nf_trace = 0;
4964 #endif
4965 }
4966 
4967 static inline void ipvs_reset(struct sk_buff *skb)
4968 {
4969 #if IS_ENABLED(CONFIG_IP_VS)
4970 	skb->ipvs_property = 0;
4971 #endif
4972 }
4973 
4974 /* Note: This doesn't put any conntrack info in dst. */
4975 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4976 			     bool copy)
4977 {
4978 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4979 	dst->_nfct = src->_nfct;
4980 	nf_conntrack_get(skb_nfct(src));
4981 #endif
4982 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4983 	if (copy)
4984 		dst->nf_trace = src->nf_trace;
4985 #endif
4986 }
4987 
4988 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4989 {
4990 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4991 	nf_conntrack_put(skb_nfct(dst));
4992 #endif
4993 	dst->slow_gro = src->slow_gro;
4994 	__nf_copy(dst, src, true);
4995 }
4996 
4997 #ifdef CONFIG_NETWORK_SECMARK
4998 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4999 {
5000 	to->secmark = from->secmark;
5001 }
5002 
5003 static inline void skb_init_secmark(struct sk_buff *skb)
5004 {
5005 	skb->secmark = 0;
5006 }
5007 #else
5008 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
5009 { }
5010 
5011 static inline void skb_init_secmark(struct sk_buff *skb)
5012 { }
5013 #endif
5014 
5015 static inline int secpath_exists(const struct sk_buff *skb)
5016 {
5017 #ifdef CONFIG_XFRM
5018 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
5019 #else
5020 	return 0;
5021 #endif
5022 }
5023 
5024 static inline bool skb_irq_freeable(const struct sk_buff *skb)
5025 {
5026 	return !skb->destructor &&
5027 		!secpath_exists(skb) &&
5028 		!skb_nfct(skb) &&
5029 		!skb->_skb_refdst &&
5030 		!skb_has_frag_list(skb);
5031 }
5032 
5033 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
5034 {
5035 	skb->queue_mapping = queue_mapping;
5036 }
5037 
5038 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
5039 {
5040 	return skb->queue_mapping;
5041 }
5042 
5043 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
5044 {
5045 	to->queue_mapping = from->queue_mapping;
5046 }
5047 
5048 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
5049 {
5050 	skb->queue_mapping = rx_queue + 1;
5051 }
5052 
5053 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
5054 {
5055 	return skb->queue_mapping - 1;
5056 }
5057 
5058 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
5059 {
5060 	return skb->queue_mapping != 0;
5061 }
5062 
5063 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
5064 {
5065 	skb->dst_pending_confirm = val;
5066 }
5067 
5068 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
5069 {
5070 	return skb->dst_pending_confirm != 0;
5071 }
5072 
5073 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
5074 {
5075 #ifdef CONFIG_XFRM
5076 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
5077 #else
5078 	return NULL;
5079 #endif
5080 }
5081 
5082 static inline bool skb_is_gso(const struct sk_buff *skb)
5083 {
5084 	return skb_shinfo(skb)->gso_size;
5085 }
5086 
5087 /* Note: Should be called only if skb_is_gso(skb) is true */
5088 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
5089 {
5090 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
5091 }
5092 
5093 /* Note: Should be called only if skb_is_gso(skb) is true */
5094 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
5095 {
5096 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
5097 }
5098 
5099 /* Note: Should be called only if skb_is_gso(skb) is true */
5100 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
5101 {
5102 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
5103 }
5104 
5105 static inline void skb_gso_reset(struct sk_buff *skb)
5106 {
5107 	skb_shinfo(skb)->gso_size = 0;
5108 	skb_shinfo(skb)->gso_segs = 0;
5109 	skb_shinfo(skb)->gso_type = 0;
5110 }
5111 
5112 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
5113 					 u16 increment)
5114 {
5115 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5116 		return;
5117 	shinfo->gso_size += increment;
5118 }
5119 
5120 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5121 					 u16 decrement)
5122 {
5123 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5124 		return;
5125 	shinfo->gso_size -= decrement;
5126 }
5127 
5128 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5129 
5130 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5131 {
5132 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5133 	 * wanted then gso_type will be set. */
5134 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5135 
5136 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5137 	    unlikely(shinfo->gso_type == 0)) {
5138 		__skb_warn_lro_forwarding(skb);
5139 		return true;
5140 	}
5141 	return false;
5142 }
5143 
5144 static inline void skb_forward_csum(struct sk_buff *skb)
5145 {
5146 	/* Unfortunately we don't support this one.  Any brave souls? */
5147 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5148 		skb->ip_summed = CHECKSUM_NONE;
5149 }
5150 
5151 /**
5152  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5153  * @skb: skb to check
5154  *
5155  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5156  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5157  * use this helper, to document places where we make this assertion.
5158  */
5159 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5160 {
5161 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5162 }
5163 
5164 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5165 
5166 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5167 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5168 				     unsigned int transport_len,
5169 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5170 
5171 /**
5172  * skb_head_is_locked - Determine if the skb->head is locked down
5173  * @skb: skb to check
5174  *
5175  * The head on skbs build around a head frag can be removed if they are
5176  * not cloned.  This function returns true if the skb head is locked down
5177  * due to either being allocated via kmalloc, or by being a clone with
5178  * multiple references to the head.
5179  */
5180 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5181 {
5182 	return !skb->head_frag || skb_cloned(skb);
5183 }
5184 
5185 /* Local Checksum Offload.
5186  * Compute outer checksum based on the assumption that the
5187  * inner checksum will be offloaded later.
5188  * See Documentation/networking/checksum-offloads.rst for
5189  * explanation of how this works.
5190  * Fill in outer checksum adjustment (e.g. with sum of outer
5191  * pseudo-header) before calling.
5192  * Also ensure that inner checksum is in linear data area.
5193  */
5194 static inline __wsum lco_csum(struct sk_buff *skb)
5195 {
5196 	unsigned char *csum_start = skb_checksum_start(skb);
5197 	unsigned char *l4_hdr = skb_transport_header(skb);
5198 	__wsum partial;
5199 
5200 	/* Start with complement of inner checksum adjustment */
5201 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5202 						    skb->csum_offset));
5203 
5204 	/* Add in checksum of our headers (incl. outer checksum
5205 	 * adjustment filled in by caller) and return result.
5206 	 */
5207 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5208 }
5209 
5210 static inline bool skb_is_redirected(const struct sk_buff *skb)
5211 {
5212 	return skb->redirected;
5213 }
5214 
5215 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5216 {
5217 	skb->redirected = 1;
5218 #ifdef CONFIG_NET_REDIRECT
5219 	skb->from_ingress = from_ingress;
5220 	if (skb->from_ingress)
5221 		skb_clear_tstamp(skb);
5222 #endif
5223 }
5224 
5225 static inline void skb_reset_redirect(struct sk_buff *skb)
5226 {
5227 	skb->redirected = 0;
5228 }
5229 
5230 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5231 					      bool from_ingress)
5232 {
5233 	skb->redirected = 1;
5234 #ifdef CONFIG_NET_REDIRECT
5235 	skb->from_ingress = from_ingress;
5236 #endif
5237 }
5238 
5239 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5240 {
5241 #if IS_ENABLED(CONFIG_IP_SCTP)
5242 	return skb->csum_not_inet;
5243 #else
5244 	return 0;
5245 #endif
5246 }
5247 
5248 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5249 {
5250 	skb->ip_summed = CHECKSUM_NONE;
5251 #if IS_ENABLED(CONFIG_IP_SCTP)
5252 	skb->csum_not_inet = 0;
5253 #endif
5254 }
5255 
5256 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5257 				       const u64 kcov_handle)
5258 {
5259 #ifdef CONFIG_KCOV
5260 	skb->kcov_handle = kcov_handle;
5261 #endif
5262 }
5263 
5264 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5265 {
5266 #ifdef CONFIG_KCOV
5267 	return skb->kcov_handle;
5268 #else
5269 	return 0;
5270 #endif
5271 }
5272 
5273 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5274 {
5275 #ifdef CONFIG_PAGE_POOL
5276 	skb->pp_recycle = 1;
5277 #endif
5278 }
5279 
5280 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5281 			     ssize_t maxsize, gfp_t gfp);
5282 
5283 #endif	/* __KERNEL__ */
5284 #endif	/* _LINUX_SKBUFF_H */
5285