xref: /linux-6.15/include/linux/skbuff.h (revision 2d91ecac)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46 #include <net/dropreason.h>
47 
48 /**
49  * DOC: skb checksums
50  *
51  * The interface for checksum offload between the stack and networking drivers
52  * is as follows...
53  *
54  * IP checksum related features
55  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56  *
57  * Drivers advertise checksum offload capabilities in the features of a device.
58  * From the stack's point of view these are capabilities offered by the driver.
59  * A driver typically only advertises features that it is capable of offloading
60  * to its device.
61  *
62  * .. flat-table:: Checksum related device features
63  *   :widths: 1 10
64  *
65  *   * - %NETIF_F_HW_CSUM
66  *     - The driver (or its device) is able to compute one
67  *	 IP (one's complement) checksum for any combination
68  *	 of protocols or protocol layering. The checksum is
69  *	 computed and set in a packet per the CHECKSUM_PARTIAL
70  *	 interface (see below).
71  *
72  *   * - %NETIF_F_IP_CSUM
73  *     - Driver (device) is only able to checksum plain
74  *	 TCP or UDP packets over IPv4. These are specifically
75  *	 unencapsulated packets of the form IPv4|TCP or
76  *	 IPv4|UDP where the Protocol field in the IPv4 header
77  *	 is TCP or UDP. The IPv4 header may contain IP options.
78  *	 This feature cannot be set in features for a device
79  *	 with NETIF_F_HW_CSUM also set. This feature is being
80  *	 DEPRECATED (see below).
81  *
82  *   * - %NETIF_F_IPV6_CSUM
83  *     - Driver (device) is only able to checksum plain
84  *	 TCP or UDP packets over IPv6. These are specifically
85  *	 unencapsulated packets of the form IPv6|TCP or
86  *	 IPv6|UDP where the Next Header field in the IPv6
87  *	 header is either TCP or UDP. IPv6 extension headers
88  *	 are not supported with this feature. This feature
89  *	 cannot be set in features for a device with
90  *	 NETIF_F_HW_CSUM also set. This feature is being
91  *	 DEPRECATED (see below).
92  *
93  *   * - %NETIF_F_RXCSUM
94  *     - Driver (device) performs receive checksum offload.
95  *	 This flag is only used to disable the RX checksum
96  *	 feature for a device. The stack will accept receive
97  *	 checksum indication in packets received on a device
98  *	 regardless of whether NETIF_F_RXCSUM is set.
99  *
100  * Checksumming of received packets by device
101  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
102  *
103  * Indication of checksum verification is set in &sk_buff.ip_summed.
104  * Possible values are:
105  *
106  * - %CHECKSUM_NONE
107  *
108  *   Device did not checksum this packet e.g. due to lack of capabilities.
109  *   The packet contains full (though not verified) checksum in packet but
110  *   not in skb->csum. Thus, skb->csum is undefined in this case.
111  *
112  * - %CHECKSUM_UNNECESSARY
113  *
114  *   The hardware you're dealing with doesn't calculate the full checksum
115  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
116  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
117  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
118  *   though. A driver or device must never modify the checksum field in the
119  *   packet even if checksum is verified.
120  *
121  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
122  *
123  *     - TCP: IPv6 and IPv4.
124  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
125  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
126  *       may perform further validation in this case.
127  *     - GRE: only if the checksum is present in the header.
128  *     - SCTP: indicates the CRC in SCTP header has been validated.
129  *     - FCOE: indicates the CRC in FC frame has been validated.
130  *
131  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
132  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
133  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
134  *   and a device is able to verify the checksums for UDP (possibly zero),
135  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
136  *   two. If the device were only able to verify the UDP checksum and not
137  *   GRE, either because it doesn't support GRE checksum or because GRE
138  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
139  *   not considered in this case).
140  *
141  * - %CHECKSUM_COMPLETE
142  *
143  *   This is the most generic way. The device supplied checksum of the _whole_
144  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
145  *   hardware doesn't need to parse L3/L4 headers to implement this.
146  *
147  *   Notes:
148  *
149  *   - Even if device supports only some protocols, but is able to produce
150  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
151  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
152  *
153  * - %CHECKSUM_PARTIAL
154  *
155  *   A checksum is set up to be offloaded to a device as described in the
156  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
157  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
158  *   on the same host, or it may be set in the input path in GRO or remote
159  *   checksum offload. For the purposes of checksum verification, the checksum
160  *   referred to by skb->csum_start + skb->csum_offset and any preceding
161  *   checksums in the packet are considered verified. Any checksums in the
162  *   packet that are after the checksum being offloaded are not considered to
163  *   be verified.
164  *
165  * Checksumming on transmit for non-GSO
166  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
167  *
168  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
169  * Values are:
170  *
171  * - %CHECKSUM_PARTIAL
172  *
173  *   The driver is required to checksum the packet as seen by hard_start_xmit()
174  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
175  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
176  *   A driver may verify that the
177  *   csum_start and csum_offset values are valid values given the length and
178  *   offset of the packet, but it should not attempt to validate that the
179  *   checksum refers to a legitimate transport layer checksum -- it is the
180  *   purview of the stack to validate that csum_start and csum_offset are set
181  *   correctly.
182  *
183  *   When the stack requests checksum offload for a packet, the driver MUST
184  *   ensure that the checksum is set correctly. A driver can either offload the
185  *   checksum calculation to the device, or call skb_checksum_help (in the case
186  *   that the device does not support offload for a particular checksum).
187  *
188  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
189  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
190  *   checksum offload capability.
191  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
192  *   on network device checksumming capabilities: if a packet does not match
193  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
194  *   &sk_buff.csum_not_inet, see :ref:`crc`)
195  *   is called to resolve the checksum.
196  *
197  * - %CHECKSUM_NONE
198  *
199  *   The skb was already checksummed by the protocol, or a checksum is not
200  *   required.
201  *
202  * - %CHECKSUM_UNNECESSARY
203  *
204  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
205  *   output.
206  *
207  * - %CHECKSUM_COMPLETE
208  *
209  *   Not used in checksum output. If a driver observes a packet with this value
210  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
211  *
212  * .. _crc:
213  *
214  * Non-IP checksum (CRC) offloads
215  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
216  *
217  * .. flat-table::
218  *   :widths: 1 10
219  *
220  *   * - %NETIF_F_SCTP_CRC
221  *     - This feature indicates that a device is capable of
222  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
223  *	 will set csum_start and csum_offset accordingly, set ip_summed to
224  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
225  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
226  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
227  *	 must verify which offload is configured for a packet by testing the
228  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
229  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
230  *
231  *   * - %NETIF_F_FCOE_CRC
232  *     - This feature indicates that a device is capable of offloading the FCOE
233  *	 CRC in a packet. To perform this offload the stack will set ip_summed
234  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
235  *	 accordingly. Note that there is no indication in the skbuff that the
236  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
237  *	 both IP checksum offload and FCOE CRC offload must verify which offload
238  *	 is configured for a packet, presumably by inspecting packet headers.
239  *
240  * Checksumming on output with GSO
241  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
242  *
243  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
244  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
245  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
246  * part of the GSO operation is implied. If a checksum is being offloaded
247  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
248  * csum_offset are set to refer to the outermost checksum being offloaded
249  * (two offloaded checksums are possible with UDP encapsulation).
250  */
251 
252 /* Don't change this without changing skb_csum_unnecessary! */
253 #define CHECKSUM_NONE		0
254 #define CHECKSUM_UNNECESSARY	1
255 #define CHECKSUM_COMPLETE	2
256 #define CHECKSUM_PARTIAL	3
257 
258 /* Maximum value in skb->csum_level */
259 #define SKB_MAX_CSUM_LEVEL	3
260 
261 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
262 #define SKB_WITH_OVERHEAD(X)	\
263 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264 #define SKB_MAX_ORDER(X, ORDER) \
265 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
266 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
267 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
268 
269 /* return minimum truesize of one skb containing X bytes of data */
270 #define SKB_TRUESIZE(X) ((X) +						\
271 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
272 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
273 
274 struct ahash_request;
275 struct net_device;
276 struct scatterlist;
277 struct pipe_inode_info;
278 struct iov_iter;
279 struct napi_struct;
280 struct bpf_prog;
281 union bpf_attr;
282 struct skb_ext;
283 
284 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
285 struct nf_bridge_info {
286 	enum {
287 		BRNF_PROTO_UNCHANGED,
288 		BRNF_PROTO_8021Q,
289 		BRNF_PROTO_PPPOE
290 	} orig_proto:8;
291 	u8			pkt_otherhost:1;
292 	u8			in_prerouting:1;
293 	u8			bridged_dnat:1;
294 	__u16			frag_max_size;
295 	struct net_device	*physindev;
296 
297 	/* always valid & non-NULL from FORWARD on, for physdev match */
298 	struct net_device	*physoutdev;
299 	union {
300 		/* prerouting: detect dnat in orig/reply direction */
301 		__be32          ipv4_daddr;
302 		struct in6_addr ipv6_daddr;
303 
304 		/* after prerouting + nat detected: store original source
305 		 * mac since neigh resolution overwrites it, only used while
306 		 * skb is out in neigh layer.
307 		 */
308 		char neigh_header[8];
309 	};
310 };
311 #endif
312 
313 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
314 /* Chain in tc_skb_ext will be used to share the tc chain with
315  * ovs recirc_id. It will be set to the current chain by tc
316  * and read by ovs to recirc_id.
317  */
318 struct tc_skb_ext {
319 	__u32 chain;
320 	__u16 mru;
321 	__u16 zone;
322 	u8 post_ct:1;
323 	u8 post_ct_snat:1;
324 	u8 post_ct_dnat:1;
325 };
326 #endif
327 
328 struct sk_buff_head {
329 	/* These two members must be first to match sk_buff. */
330 	struct_group_tagged(sk_buff_list, list,
331 		struct sk_buff	*next;
332 		struct sk_buff	*prev;
333 	);
334 
335 	__u32		qlen;
336 	spinlock_t	lock;
337 };
338 
339 struct sk_buff;
340 
341 /* To allow 64K frame to be packed as single skb without frag_list we
342  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
343  * buffers which do not start on a page boundary.
344  *
345  * Since GRO uses frags we allocate at least 16 regardless of page
346  * size.
347  */
348 #if (65536/PAGE_SIZE + 1) < 16
349 #define MAX_SKB_FRAGS 16UL
350 #else
351 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
352 #endif
353 extern int sysctl_max_skb_frags;
354 
355 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
356  * segment using its current segmentation instead.
357  */
358 #define GSO_BY_FRAGS	0xFFFF
359 
360 typedef struct bio_vec skb_frag_t;
361 
362 /**
363  * skb_frag_size() - Returns the size of a skb fragment
364  * @frag: skb fragment
365  */
366 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
367 {
368 	return frag->bv_len;
369 }
370 
371 /**
372  * skb_frag_size_set() - Sets the size of a skb fragment
373  * @frag: skb fragment
374  * @size: size of fragment
375  */
376 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
377 {
378 	frag->bv_len = size;
379 }
380 
381 /**
382  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
383  * @frag: skb fragment
384  * @delta: value to add
385  */
386 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
387 {
388 	frag->bv_len += delta;
389 }
390 
391 /**
392  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
393  * @frag: skb fragment
394  * @delta: value to subtract
395  */
396 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
397 {
398 	frag->bv_len -= delta;
399 }
400 
401 /**
402  * skb_frag_must_loop - Test if %p is a high memory page
403  * @p: fragment's page
404  */
405 static inline bool skb_frag_must_loop(struct page *p)
406 {
407 #if defined(CONFIG_HIGHMEM)
408 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
409 		return true;
410 #endif
411 	return false;
412 }
413 
414 /**
415  *	skb_frag_foreach_page - loop over pages in a fragment
416  *
417  *	@f:		skb frag to operate on
418  *	@f_off:		offset from start of f->bv_page
419  *	@f_len:		length from f_off to loop over
420  *	@p:		(temp var) current page
421  *	@p_off:		(temp var) offset from start of current page,
422  *	                           non-zero only on first page.
423  *	@p_len:		(temp var) length in current page,
424  *				   < PAGE_SIZE only on first and last page.
425  *	@copied:	(temp var) length so far, excluding current p_len.
426  *
427  *	A fragment can hold a compound page, in which case per-page
428  *	operations, notably kmap_atomic, must be called for each
429  *	regular page.
430  */
431 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
432 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
433 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
434 	     p_len = skb_frag_must_loop(p) ?				\
435 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
436 	     copied = 0;						\
437 	     copied < f_len;						\
438 	     copied += p_len, p++, p_off = 0,				\
439 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
440 
441 #define HAVE_HW_TIME_STAMP
442 
443 /**
444  * struct skb_shared_hwtstamps - hardware time stamps
445  * @hwtstamp:		hardware time stamp transformed into duration
446  *			since arbitrary point in time
447  * @netdev_data:	address/cookie of network device driver used as
448  *			reference to actual hardware time stamp
449  *
450  * Software time stamps generated by ktime_get_real() are stored in
451  * skb->tstamp.
452  *
453  * hwtstamps can only be compared against other hwtstamps from
454  * the same device.
455  *
456  * This structure is attached to packets as part of the
457  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458  */
459 struct skb_shared_hwtstamps {
460 	union {
461 		ktime_t	hwtstamp;
462 		void *netdev_data;
463 	};
464 };
465 
466 /* Definitions for tx_flags in struct skb_shared_info */
467 enum {
468 	/* generate hardware time stamp */
469 	SKBTX_HW_TSTAMP = 1 << 0,
470 
471 	/* generate software time stamp when queueing packet to NIC */
472 	SKBTX_SW_TSTAMP = 1 << 1,
473 
474 	/* device driver is going to provide hardware time stamp */
475 	SKBTX_IN_PROGRESS = 1 << 2,
476 
477 	/* generate hardware time stamp based on cycles if supported */
478 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479 
480 	/* generate wifi status information (where possible) */
481 	SKBTX_WIFI_STATUS = 1 << 4,
482 
483 	/* determine hardware time stamp based on time or cycles */
484 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485 
486 	/* generate software time stamp when entering packet scheduling */
487 	SKBTX_SCHED_TSTAMP = 1 << 6,
488 };
489 
490 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
491 				 SKBTX_SCHED_TSTAMP)
492 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
493 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
494 				 SKBTX_ANY_SW_TSTAMP)
495 
496 /* Definitions for flags in struct skb_shared_info */
497 enum {
498 	/* use zcopy routines */
499 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
500 
501 	/* This indicates at least one fragment might be overwritten
502 	 * (as in vmsplice(), sendfile() ...)
503 	 * If we need to compute a TX checksum, we'll need to copy
504 	 * all frags to avoid possible bad checksum
505 	 */
506 	SKBFL_SHARED_FRAG = BIT(1),
507 
508 	/* segment contains only zerocopy data and should not be
509 	 * charged to the kernel memory.
510 	 */
511 	SKBFL_PURE_ZEROCOPY = BIT(2),
512 };
513 
514 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
515 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
516 
517 /*
518  * The callback notifies userspace to release buffers when skb DMA is done in
519  * lower device, the skb last reference should be 0 when calling this.
520  * The zerocopy_success argument is true if zero copy transmit occurred,
521  * false on data copy or out of memory error caused by data copy attempt.
522  * The ctx field is used to track device context.
523  * The desc field is used to track userspace buffer index.
524  */
525 struct ubuf_info {
526 	void (*callback)(struct sk_buff *, struct ubuf_info *,
527 			 bool zerocopy_success);
528 	union {
529 		struct {
530 			unsigned long desc;
531 			void *ctx;
532 		};
533 		struct {
534 			u32 id;
535 			u16 len;
536 			u16 zerocopy:1;
537 			u32 bytelen;
538 		};
539 	};
540 	refcount_t refcnt;
541 	u8 flags;
542 
543 	struct mmpin {
544 		struct user_struct *user;
545 		unsigned int num_pg;
546 	} mmp;
547 };
548 
549 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
550 
551 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
552 void mm_unaccount_pinned_pages(struct mmpin *mmp);
553 
554 /* This data is invariant across clones and lives at
555  * the end of the header data, ie. at skb->end.
556  */
557 struct skb_shared_info {
558 	__u8		flags;
559 	__u8		meta_len;
560 	__u8		nr_frags;
561 	__u8		tx_flags;
562 	unsigned short	gso_size;
563 	/* Warning: this field is not always filled in (UFO)! */
564 	unsigned short	gso_segs;
565 	struct sk_buff	*frag_list;
566 	struct skb_shared_hwtstamps hwtstamps;
567 	unsigned int	gso_type;
568 	u32		tskey;
569 
570 	/*
571 	 * Warning : all fields before dataref are cleared in __alloc_skb()
572 	 */
573 	atomic_t	dataref;
574 	unsigned int	xdp_frags_size;
575 
576 	/* Intermediate layers must ensure that destructor_arg
577 	 * remains valid until skb destructor */
578 	void *		destructor_arg;
579 
580 	/* must be last field, see pskb_expand_head() */
581 	skb_frag_t	frags[MAX_SKB_FRAGS];
582 };
583 
584 /**
585  * DOC: dataref and headerless skbs
586  *
587  * Transport layers send out clones of payload skbs they hold for
588  * retransmissions. To allow lower layers of the stack to prepend their headers
589  * we split &skb_shared_info.dataref into two halves.
590  * The lower 16 bits count the overall number of references.
591  * The higher 16 bits indicate how many of the references are payload-only.
592  * skb_header_cloned() checks if skb is allowed to add / write the headers.
593  *
594  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
595  * (via __skb_header_release()). Any clone created from marked skb will get
596  * &sk_buff.hdr_len populated with the available headroom.
597  * If there's the only clone in existence it's able to modify the headroom
598  * at will. The sequence of calls inside the transport layer is::
599  *
600  *  <alloc skb>
601  *  skb_reserve()
602  *  __skb_header_release()
603  *  skb_clone()
604  *  // send the clone down the stack
605  *
606  * This is not a very generic construct and it depends on the transport layers
607  * doing the right thing. In practice there's usually only one payload-only skb.
608  * Having multiple payload-only skbs with different lengths of hdr_len is not
609  * possible. The payload-only skbs should never leave their owner.
610  */
611 #define SKB_DATAREF_SHIFT 16
612 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
613 
614 
615 enum {
616 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
617 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
618 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
619 };
620 
621 enum {
622 	SKB_GSO_TCPV4 = 1 << 0,
623 
624 	/* This indicates the skb is from an untrusted source. */
625 	SKB_GSO_DODGY = 1 << 1,
626 
627 	/* This indicates the tcp segment has CWR set. */
628 	SKB_GSO_TCP_ECN = 1 << 2,
629 
630 	SKB_GSO_TCP_FIXEDID = 1 << 3,
631 
632 	SKB_GSO_TCPV6 = 1 << 4,
633 
634 	SKB_GSO_FCOE = 1 << 5,
635 
636 	SKB_GSO_GRE = 1 << 6,
637 
638 	SKB_GSO_GRE_CSUM = 1 << 7,
639 
640 	SKB_GSO_IPXIP4 = 1 << 8,
641 
642 	SKB_GSO_IPXIP6 = 1 << 9,
643 
644 	SKB_GSO_UDP_TUNNEL = 1 << 10,
645 
646 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
647 
648 	SKB_GSO_PARTIAL = 1 << 12,
649 
650 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
651 
652 	SKB_GSO_SCTP = 1 << 14,
653 
654 	SKB_GSO_ESP = 1 << 15,
655 
656 	SKB_GSO_UDP = 1 << 16,
657 
658 	SKB_GSO_UDP_L4 = 1 << 17,
659 
660 	SKB_GSO_FRAGLIST = 1 << 18,
661 };
662 
663 #if BITS_PER_LONG > 32
664 #define NET_SKBUFF_DATA_USES_OFFSET 1
665 #endif
666 
667 #ifdef NET_SKBUFF_DATA_USES_OFFSET
668 typedef unsigned int sk_buff_data_t;
669 #else
670 typedef unsigned char *sk_buff_data_t;
671 #endif
672 
673 /**
674  * DOC: Basic sk_buff geometry
675  *
676  * struct sk_buff itself is a metadata structure and does not hold any packet
677  * data. All the data is held in associated buffers.
678  *
679  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
680  * into two parts:
681  *
682  *  - data buffer, containing headers and sometimes payload;
683  *    this is the part of the skb operated on by the common helpers
684  *    such as skb_put() or skb_pull();
685  *  - shared info (struct skb_shared_info) which holds an array of pointers
686  *    to read-only data in the (page, offset, length) format.
687  *
688  * Optionally &skb_shared_info.frag_list may point to another skb.
689  *
690  * Basic diagram may look like this::
691  *
692  *                                  ---------------
693  *                                 | sk_buff       |
694  *                                  ---------------
695  *     ,---------------------------  + head
696  *    /          ,-----------------  + data
697  *   /          /      ,-----------  + tail
698  *  |          |      |            , + end
699  *  |          |      |           |
700  *  v          v      v           v
701  *   -----------------------------------------------
702  *  | headroom | data |  tailroom | skb_shared_info |
703  *   -----------------------------------------------
704  *                                 + [page frag]
705  *                                 + [page frag]
706  *                                 + [page frag]
707  *                                 + [page frag]       ---------
708  *                                 + frag_list    --> | sk_buff |
709  *                                                     ---------
710  *
711  */
712 
713 /**
714  *	struct sk_buff - socket buffer
715  *	@next: Next buffer in list
716  *	@prev: Previous buffer in list
717  *	@tstamp: Time we arrived/left
718  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
719  *		for retransmit timer
720  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
721  *	@list: queue head
722  *	@ll_node: anchor in an llist (eg socket defer_list)
723  *	@sk: Socket we are owned by
724  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
725  *		fragmentation management
726  *	@dev: Device we arrived on/are leaving by
727  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
728  *	@cb: Control buffer. Free for use by every layer. Put private vars here
729  *	@_skb_refdst: destination entry (with norefcount bit)
730  *	@sp: the security path, used for xfrm
731  *	@len: Length of actual data
732  *	@data_len: Data length
733  *	@mac_len: Length of link layer header
734  *	@hdr_len: writable header length of cloned skb
735  *	@csum: Checksum (must include start/offset pair)
736  *	@csum_start: Offset from skb->head where checksumming should start
737  *	@csum_offset: Offset from csum_start where checksum should be stored
738  *	@priority: Packet queueing priority
739  *	@ignore_df: allow local fragmentation
740  *	@cloned: Head may be cloned (check refcnt to be sure)
741  *	@ip_summed: Driver fed us an IP checksum
742  *	@nohdr: Payload reference only, must not modify header
743  *	@pkt_type: Packet class
744  *	@fclone: skbuff clone status
745  *	@ipvs_property: skbuff is owned by ipvs
746  *	@inner_protocol_type: whether the inner protocol is
747  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
748  *	@remcsum_offload: remote checksum offload is enabled
749  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
750  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
751  *	@tc_skip_classify: do not classify packet. set by IFB device
752  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
753  *	@redirected: packet was redirected by packet classifier
754  *	@from_ingress: packet was redirected from the ingress path
755  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
756  *	@peeked: this packet has been seen already, so stats have been
757  *		done for it, don't do them again
758  *	@nf_trace: netfilter packet trace flag
759  *	@protocol: Packet protocol from driver
760  *	@destructor: Destruct function
761  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
762  *	@_sk_redir: socket redirection information for skmsg
763  *	@_nfct: Associated connection, if any (with nfctinfo bits)
764  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
765  *	@skb_iif: ifindex of device we arrived on
766  *	@tc_index: Traffic control index
767  *	@hash: the packet hash
768  *	@queue_mapping: Queue mapping for multiqueue devices
769  *	@head_frag: skb was allocated from page fragments,
770  *		not allocated by kmalloc() or vmalloc().
771  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
772  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
773  *		page_pool support on driver)
774  *	@active_extensions: active extensions (skb_ext_id types)
775  *	@ndisc_nodetype: router type (from link layer)
776  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
777  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
778  *		ports.
779  *	@sw_hash: indicates hash was computed in software stack
780  *	@wifi_acked_valid: wifi_acked was set
781  *	@wifi_acked: whether frame was acked on wifi or not
782  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
783  *	@encapsulation: indicates the inner headers in the skbuff are valid
784  *	@encap_hdr_csum: software checksum is needed
785  *	@csum_valid: checksum is already valid
786  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
787  *	@csum_complete_sw: checksum was completed by software
788  *	@csum_level: indicates the number of consecutive checksums found in
789  *		the packet minus one that have been verified as
790  *		CHECKSUM_UNNECESSARY (max 3)
791  *	@dst_pending_confirm: need to confirm neighbour
792  *	@decrypted: Decrypted SKB
793  *	@slow_gro: state present at GRO time, slower prepare step required
794  *	@mono_delivery_time: When set, skb->tstamp has the
795  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
796  *		skb->tstamp has the (rcv) timestamp at ingress and
797  *		delivery_time at egress.
798  *	@napi_id: id of the NAPI struct this skb came from
799  *	@sender_cpu: (aka @napi_id) source CPU in XPS
800  *	@alloc_cpu: CPU which did the skb allocation.
801  *	@secmark: security marking
802  *	@mark: Generic packet mark
803  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
804  *		at the tail of an sk_buff
805  *	@vlan_present: VLAN tag is present
806  *	@vlan_proto: vlan encapsulation protocol
807  *	@vlan_tci: vlan tag control information
808  *	@inner_protocol: Protocol (encapsulation)
809  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
810  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
811  *	@inner_transport_header: Inner transport layer header (encapsulation)
812  *	@inner_network_header: Network layer header (encapsulation)
813  *	@inner_mac_header: Link layer header (encapsulation)
814  *	@transport_header: Transport layer header
815  *	@network_header: Network layer header
816  *	@mac_header: Link layer header
817  *	@kcov_handle: KCOV remote handle for remote coverage collection
818  *	@tail: Tail pointer
819  *	@end: End pointer
820  *	@head: Head of buffer
821  *	@data: Data head pointer
822  *	@truesize: Buffer size
823  *	@users: User count - see {datagram,tcp}.c
824  *	@extensions: allocated extensions, valid if active_extensions is nonzero
825  */
826 
827 struct sk_buff {
828 	union {
829 		struct {
830 			/* These two members must be first to match sk_buff_head. */
831 			struct sk_buff		*next;
832 			struct sk_buff		*prev;
833 
834 			union {
835 				struct net_device	*dev;
836 				/* Some protocols might use this space to store information,
837 				 * while device pointer would be NULL.
838 				 * UDP receive path is one user.
839 				 */
840 				unsigned long		dev_scratch;
841 			};
842 		};
843 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
844 		struct list_head	list;
845 		struct llist_node	ll_node;
846 	};
847 
848 	union {
849 		struct sock		*sk;
850 		int			ip_defrag_offset;
851 	};
852 
853 	union {
854 		ktime_t		tstamp;
855 		u64		skb_mstamp_ns; /* earliest departure time */
856 	};
857 	/*
858 	 * This is the control buffer. It is free to use for every
859 	 * layer. Please put your private variables there. If you
860 	 * want to keep them across layers you have to do a skb_clone()
861 	 * first. This is owned by whoever has the skb queued ATM.
862 	 */
863 	char			cb[48] __aligned(8);
864 
865 	union {
866 		struct {
867 			unsigned long	_skb_refdst;
868 			void		(*destructor)(struct sk_buff *skb);
869 		};
870 		struct list_head	tcp_tsorted_anchor;
871 #ifdef CONFIG_NET_SOCK_MSG
872 		unsigned long		_sk_redir;
873 #endif
874 	};
875 
876 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
877 	unsigned long		 _nfct;
878 #endif
879 	unsigned int		len,
880 				data_len;
881 	__u16			mac_len,
882 				hdr_len;
883 
884 	/* Following fields are _not_ copied in __copy_skb_header()
885 	 * Note that queue_mapping is here mostly to fill a hole.
886 	 */
887 	__u16			queue_mapping;
888 
889 /* if you move cloned around you also must adapt those constants */
890 #ifdef __BIG_ENDIAN_BITFIELD
891 #define CLONED_MASK	(1 << 7)
892 #else
893 #define CLONED_MASK	1
894 #endif
895 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
896 
897 	/* private: */
898 	__u8			__cloned_offset[0];
899 	/* public: */
900 	__u8			cloned:1,
901 				nohdr:1,
902 				fclone:2,
903 				peeked:1,
904 				head_frag:1,
905 				pfmemalloc:1,
906 				pp_recycle:1; /* page_pool recycle indicator */
907 #ifdef CONFIG_SKB_EXTENSIONS
908 	__u8			active_extensions;
909 #endif
910 
911 	/* Fields enclosed in headers group are copied
912 	 * using a single memcpy() in __copy_skb_header()
913 	 */
914 	struct_group(headers,
915 
916 	/* private: */
917 	__u8			__pkt_type_offset[0];
918 	/* public: */
919 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
920 	__u8			ignore_df:1;
921 	__u8			nf_trace:1;
922 	__u8			ip_summed:2;
923 	__u8			ooo_okay:1;
924 
925 	__u8			l4_hash:1;
926 	__u8			sw_hash:1;
927 	__u8			wifi_acked_valid:1;
928 	__u8			wifi_acked:1;
929 	__u8			no_fcs:1;
930 	/* Indicates the inner headers are valid in the skbuff. */
931 	__u8			encapsulation:1;
932 	__u8			encap_hdr_csum:1;
933 	__u8			csum_valid:1;
934 
935 	/* private: */
936 	__u8			__pkt_vlan_present_offset[0];
937 	/* public: */
938 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
939 	__u8			csum_complete_sw:1;
940 	__u8			csum_level:2;
941 	__u8			dst_pending_confirm:1;
942 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
943 #ifdef CONFIG_NET_CLS_ACT
944 	__u8			tc_skip_classify:1;
945 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
946 #endif
947 #ifdef CONFIG_IPV6_NDISC_NODETYPE
948 	__u8			ndisc_nodetype:2;
949 #endif
950 
951 	__u8			ipvs_property:1;
952 	__u8			inner_protocol_type:1;
953 	__u8			remcsum_offload:1;
954 #ifdef CONFIG_NET_SWITCHDEV
955 	__u8			offload_fwd_mark:1;
956 	__u8			offload_l3_fwd_mark:1;
957 #endif
958 	__u8			redirected:1;
959 #ifdef CONFIG_NET_REDIRECT
960 	__u8			from_ingress:1;
961 #endif
962 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
963 	__u8			nf_skip_egress:1;
964 #endif
965 #ifdef CONFIG_TLS_DEVICE
966 	__u8			decrypted:1;
967 #endif
968 	__u8			slow_gro:1;
969 	__u8			csum_not_inet:1;
970 
971 #ifdef CONFIG_NET_SCHED
972 	__u16			tc_index;	/* traffic control index */
973 #endif
974 
975 	union {
976 		__wsum		csum;
977 		struct {
978 			__u16	csum_start;
979 			__u16	csum_offset;
980 		};
981 	};
982 	__u32			priority;
983 	int			skb_iif;
984 	__u32			hash;
985 	__be16			vlan_proto;
986 	__u16			vlan_tci;
987 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
988 	union {
989 		unsigned int	napi_id;
990 		unsigned int	sender_cpu;
991 	};
992 #endif
993 	u16			alloc_cpu;
994 #ifdef CONFIG_NETWORK_SECMARK
995 	__u32		secmark;
996 #endif
997 
998 	union {
999 		__u32		mark;
1000 		__u32		reserved_tailroom;
1001 	};
1002 
1003 	union {
1004 		__be16		inner_protocol;
1005 		__u8		inner_ipproto;
1006 	};
1007 
1008 	__u16			inner_transport_header;
1009 	__u16			inner_network_header;
1010 	__u16			inner_mac_header;
1011 
1012 	__be16			protocol;
1013 	__u16			transport_header;
1014 	__u16			network_header;
1015 	__u16			mac_header;
1016 
1017 #ifdef CONFIG_KCOV
1018 	u64			kcov_handle;
1019 #endif
1020 
1021 	); /* end headers group */
1022 
1023 	/* These elements must be at the end, see alloc_skb() for details.  */
1024 	sk_buff_data_t		tail;
1025 	sk_buff_data_t		end;
1026 	unsigned char		*head,
1027 				*data;
1028 	unsigned int		truesize;
1029 	refcount_t		users;
1030 
1031 #ifdef CONFIG_SKB_EXTENSIONS
1032 	/* only useable after checking ->active_extensions != 0 */
1033 	struct skb_ext		*extensions;
1034 #endif
1035 };
1036 
1037 /* if you move pkt_type around you also must adapt those constants */
1038 #ifdef __BIG_ENDIAN_BITFIELD
1039 #define PKT_TYPE_MAX	(7 << 5)
1040 #else
1041 #define PKT_TYPE_MAX	7
1042 #endif
1043 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1044 
1045 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1046  * around, you also must adapt these constants.
1047  */
1048 #ifdef __BIG_ENDIAN_BITFIELD
1049 #define PKT_VLAN_PRESENT_BIT	7
1050 #define TC_AT_INGRESS_MASK		(1 << 0)
1051 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1052 #else
1053 #define PKT_VLAN_PRESENT_BIT	0
1054 #define TC_AT_INGRESS_MASK		(1 << 7)
1055 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1056 #endif
1057 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1058 
1059 #ifdef __KERNEL__
1060 /*
1061  *	Handling routines are only of interest to the kernel
1062  */
1063 
1064 #define SKB_ALLOC_FCLONE	0x01
1065 #define SKB_ALLOC_RX		0x02
1066 #define SKB_ALLOC_NAPI		0x04
1067 
1068 /**
1069  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1070  * @skb: buffer
1071  */
1072 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1073 {
1074 	return unlikely(skb->pfmemalloc);
1075 }
1076 
1077 /*
1078  * skb might have a dst pointer attached, refcounted or not.
1079  * _skb_refdst low order bit is set if refcount was _not_ taken
1080  */
1081 #define SKB_DST_NOREF	1UL
1082 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1083 
1084 /**
1085  * skb_dst - returns skb dst_entry
1086  * @skb: buffer
1087  *
1088  * Returns skb dst_entry, regardless of reference taken or not.
1089  */
1090 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1091 {
1092 	/* If refdst was not refcounted, check we still are in a
1093 	 * rcu_read_lock section
1094 	 */
1095 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1096 		!rcu_read_lock_held() &&
1097 		!rcu_read_lock_bh_held());
1098 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1099 }
1100 
1101 /**
1102  * skb_dst_set - sets skb dst
1103  * @skb: buffer
1104  * @dst: dst entry
1105  *
1106  * Sets skb dst, assuming a reference was taken on dst and should
1107  * be released by skb_dst_drop()
1108  */
1109 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1110 {
1111 	skb->slow_gro |= !!dst;
1112 	skb->_skb_refdst = (unsigned long)dst;
1113 }
1114 
1115 /**
1116  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1117  * @skb: buffer
1118  * @dst: dst entry
1119  *
1120  * Sets skb dst, assuming a reference was not taken on dst.
1121  * If dst entry is cached, we do not take reference and dst_release
1122  * will be avoided by refdst_drop. If dst entry is not cached, we take
1123  * reference, so that last dst_release can destroy the dst immediately.
1124  */
1125 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1126 {
1127 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1128 	skb->slow_gro |= !!dst;
1129 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1130 }
1131 
1132 /**
1133  * skb_dst_is_noref - Test if skb dst isn't refcounted
1134  * @skb: buffer
1135  */
1136 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1137 {
1138 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1139 }
1140 
1141 /**
1142  * skb_rtable - Returns the skb &rtable
1143  * @skb: buffer
1144  */
1145 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1146 {
1147 	return (struct rtable *)skb_dst(skb);
1148 }
1149 
1150 /* For mangling skb->pkt_type from user space side from applications
1151  * such as nft, tc, etc, we only allow a conservative subset of
1152  * possible pkt_types to be set.
1153 */
1154 static inline bool skb_pkt_type_ok(u32 ptype)
1155 {
1156 	return ptype <= PACKET_OTHERHOST;
1157 }
1158 
1159 /**
1160  * skb_napi_id - Returns the skb's NAPI id
1161  * @skb: buffer
1162  */
1163 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1164 {
1165 #ifdef CONFIG_NET_RX_BUSY_POLL
1166 	return skb->napi_id;
1167 #else
1168 	return 0;
1169 #endif
1170 }
1171 
1172 /**
1173  * skb_unref - decrement the skb's reference count
1174  * @skb: buffer
1175  *
1176  * Returns true if we can free the skb.
1177  */
1178 static inline bool skb_unref(struct sk_buff *skb)
1179 {
1180 	if (unlikely(!skb))
1181 		return false;
1182 	if (likely(refcount_read(&skb->users) == 1))
1183 		smp_rmb();
1184 	else if (likely(!refcount_dec_and_test(&skb->users)))
1185 		return false;
1186 
1187 	return true;
1188 }
1189 
1190 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1191 
1192 /**
1193  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1194  *	@skb: buffer to free
1195  */
1196 static inline void kfree_skb(struct sk_buff *skb)
1197 {
1198 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1199 }
1200 
1201 void skb_release_head_state(struct sk_buff *skb);
1202 void kfree_skb_list_reason(struct sk_buff *segs,
1203 			   enum skb_drop_reason reason);
1204 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1205 void skb_tx_error(struct sk_buff *skb);
1206 
1207 static inline void kfree_skb_list(struct sk_buff *segs)
1208 {
1209 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1210 }
1211 
1212 #ifdef CONFIG_TRACEPOINTS
1213 void consume_skb(struct sk_buff *skb);
1214 #else
1215 static inline void consume_skb(struct sk_buff *skb)
1216 {
1217 	return kfree_skb(skb);
1218 }
1219 #endif
1220 
1221 void __consume_stateless_skb(struct sk_buff *skb);
1222 void  __kfree_skb(struct sk_buff *skb);
1223 extern struct kmem_cache *skbuff_head_cache;
1224 
1225 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1226 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1227 		      bool *fragstolen, int *delta_truesize);
1228 
1229 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1230 			    int node);
1231 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1232 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1233 struct sk_buff *build_skb_around(struct sk_buff *skb,
1234 				 void *data, unsigned int frag_size);
1235 void skb_attempt_defer_free(struct sk_buff *skb);
1236 
1237 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1238 
1239 /**
1240  * alloc_skb - allocate a network buffer
1241  * @size: size to allocate
1242  * @priority: allocation mask
1243  *
1244  * This function is a convenient wrapper around __alloc_skb().
1245  */
1246 static inline struct sk_buff *alloc_skb(unsigned int size,
1247 					gfp_t priority)
1248 {
1249 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1250 }
1251 
1252 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1253 				     unsigned long data_len,
1254 				     int max_page_order,
1255 				     int *errcode,
1256 				     gfp_t gfp_mask);
1257 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1258 
1259 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1260 struct sk_buff_fclones {
1261 	struct sk_buff	skb1;
1262 
1263 	struct sk_buff	skb2;
1264 
1265 	refcount_t	fclone_ref;
1266 };
1267 
1268 /**
1269  *	skb_fclone_busy - check if fclone is busy
1270  *	@sk: socket
1271  *	@skb: buffer
1272  *
1273  * Returns true if skb is a fast clone, and its clone is not freed.
1274  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1275  * so we also check that this didnt happen.
1276  */
1277 static inline bool skb_fclone_busy(const struct sock *sk,
1278 				   const struct sk_buff *skb)
1279 {
1280 	const struct sk_buff_fclones *fclones;
1281 
1282 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1283 
1284 	return skb->fclone == SKB_FCLONE_ORIG &&
1285 	       refcount_read(&fclones->fclone_ref) > 1 &&
1286 	       READ_ONCE(fclones->skb2.sk) == sk;
1287 }
1288 
1289 /**
1290  * alloc_skb_fclone - allocate a network buffer from fclone cache
1291  * @size: size to allocate
1292  * @priority: allocation mask
1293  *
1294  * This function is a convenient wrapper around __alloc_skb().
1295  */
1296 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1297 					       gfp_t priority)
1298 {
1299 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1300 }
1301 
1302 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1303 void skb_headers_offset_update(struct sk_buff *skb, int off);
1304 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1305 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1306 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1307 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1308 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1309 				   gfp_t gfp_mask, bool fclone);
1310 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1311 					  gfp_t gfp_mask)
1312 {
1313 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1314 }
1315 
1316 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1317 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1318 				     unsigned int headroom);
1319 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1320 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1321 				int newtailroom, gfp_t priority);
1322 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1323 				     int offset, int len);
1324 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1325 			      int offset, int len);
1326 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1327 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1328 
1329 /**
1330  *	skb_pad			-	zero pad the tail of an skb
1331  *	@skb: buffer to pad
1332  *	@pad: space to pad
1333  *
1334  *	Ensure that a buffer is followed by a padding area that is zero
1335  *	filled. Used by network drivers which may DMA or transfer data
1336  *	beyond the buffer end onto the wire.
1337  *
1338  *	May return error in out of memory cases. The skb is freed on error.
1339  */
1340 static inline int skb_pad(struct sk_buff *skb, int pad)
1341 {
1342 	return __skb_pad(skb, pad, true);
1343 }
1344 #define dev_kfree_skb(a)	consume_skb(a)
1345 
1346 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1347 			 int offset, size_t size);
1348 
1349 struct skb_seq_state {
1350 	__u32		lower_offset;
1351 	__u32		upper_offset;
1352 	__u32		frag_idx;
1353 	__u32		stepped_offset;
1354 	struct sk_buff	*root_skb;
1355 	struct sk_buff	*cur_skb;
1356 	__u8		*frag_data;
1357 	__u32		frag_off;
1358 };
1359 
1360 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1361 			  unsigned int to, struct skb_seq_state *st);
1362 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1363 			  struct skb_seq_state *st);
1364 void skb_abort_seq_read(struct skb_seq_state *st);
1365 
1366 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1367 			   unsigned int to, struct ts_config *config);
1368 
1369 /*
1370  * Packet hash types specify the type of hash in skb_set_hash.
1371  *
1372  * Hash types refer to the protocol layer addresses which are used to
1373  * construct a packet's hash. The hashes are used to differentiate or identify
1374  * flows of the protocol layer for the hash type. Hash types are either
1375  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1376  *
1377  * Properties of hashes:
1378  *
1379  * 1) Two packets in different flows have different hash values
1380  * 2) Two packets in the same flow should have the same hash value
1381  *
1382  * A hash at a higher layer is considered to be more specific. A driver should
1383  * set the most specific hash possible.
1384  *
1385  * A driver cannot indicate a more specific hash than the layer at which a hash
1386  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1387  *
1388  * A driver may indicate a hash level which is less specific than the
1389  * actual layer the hash was computed on. For instance, a hash computed
1390  * at L4 may be considered an L3 hash. This should only be done if the
1391  * driver can't unambiguously determine that the HW computed the hash at
1392  * the higher layer. Note that the "should" in the second property above
1393  * permits this.
1394  */
1395 enum pkt_hash_types {
1396 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1397 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1398 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1399 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1400 };
1401 
1402 static inline void skb_clear_hash(struct sk_buff *skb)
1403 {
1404 	skb->hash = 0;
1405 	skb->sw_hash = 0;
1406 	skb->l4_hash = 0;
1407 }
1408 
1409 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1410 {
1411 	if (!skb->l4_hash)
1412 		skb_clear_hash(skb);
1413 }
1414 
1415 static inline void
1416 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1417 {
1418 	skb->l4_hash = is_l4;
1419 	skb->sw_hash = is_sw;
1420 	skb->hash = hash;
1421 }
1422 
1423 static inline void
1424 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1425 {
1426 	/* Used by drivers to set hash from HW */
1427 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1428 }
1429 
1430 static inline void
1431 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1432 {
1433 	__skb_set_hash(skb, hash, true, is_l4);
1434 }
1435 
1436 void __skb_get_hash(struct sk_buff *skb);
1437 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1438 u32 skb_get_poff(const struct sk_buff *skb);
1439 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1440 		   const struct flow_keys_basic *keys, int hlen);
1441 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1442 			    const void *data, int hlen_proto);
1443 
1444 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1445 					int thoff, u8 ip_proto)
1446 {
1447 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1448 }
1449 
1450 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1451 			     const struct flow_dissector_key *key,
1452 			     unsigned int key_count);
1453 
1454 struct bpf_flow_dissector;
1455 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1456 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1457 
1458 bool __skb_flow_dissect(const struct net *net,
1459 			const struct sk_buff *skb,
1460 			struct flow_dissector *flow_dissector,
1461 			void *target_container, const void *data,
1462 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1463 
1464 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1465 				    struct flow_dissector *flow_dissector,
1466 				    void *target_container, unsigned int flags)
1467 {
1468 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1469 				  target_container, NULL, 0, 0, 0, flags);
1470 }
1471 
1472 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1473 					      struct flow_keys *flow,
1474 					      unsigned int flags)
1475 {
1476 	memset(flow, 0, sizeof(*flow));
1477 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1478 				  flow, NULL, 0, 0, 0, flags);
1479 }
1480 
1481 static inline bool
1482 skb_flow_dissect_flow_keys_basic(const struct net *net,
1483 				 const struct sk_buff *skb,
1484 				 struct flow_keys_basic *flow,
1485 				 const void *data, __be16 proto,
1486 				 int nhoff, int hlen, unsigned int flags)
1487 {
1488 	memset(flow, 0, sizeof(*flow));
1489 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1490 				  data, proto, nhoff, hlen, flags);
1491 }
1492 
1493 void skb_flow_dissect_meta(const struct sk_buff *skb,
1494 			   struct flow_dissector *flow_dissector,
1495 			   void *target_container);
1496 
1497 /* Gets a skb connection tracking info, ctinfo map should be a
1498  * map of mapsize to translate enum ip_conntrack_info states
1499  * to user states.
1500  */
1501 void
1502 skb_flow_dissect_ct(const struct sk_buff *skb,
1503 		    struct flow_dissector *flow_dissector,
1504 		    void *target_container,
1505 		    u16 *ctinfo_map, size_t mapsize,
1506 		    bool post_ct, u16 zone);
1507 void
1508 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1509 			     struct flow_dissector *flow_dissector,
1510 			     void *target_container);
1511 
1512 void skb_flow_dissect_hash(const struct sk_buff *skb,
1513 			   struct flow_dissector *flow_dissector,
1514 			   void *target_container);
1515 
1516 static inline __u32 skb_get_hash(struct sk_buff *skb)
1517 {
1518 	if (!skb->l4_hash && !skb->sw_hash)
1519 		__skb_get_hash(skb);
1520 
1521 	return skb->hash;
1522 }
1523 
1524 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1525 {
1526 	if (!skb->l4_hash && !skb->sw_hash) {
1527 		struct flow_keys keys;
1528 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1529 
1530 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1531 	}
1532 
1533 	return skb->hash;
1534 }
1535 
1536 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1537 			   const siphash_key_t *perturb);
1538 
1539 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1540 {
1541 	return skb->hash;
1542 }
1543 
1544 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1545 {
1546 	to->hash = from->hash;
1547 	to->sw_hash = from->sw_hash;
1548 	to->l4_hash = from->l4_hash;
1549 };
1550 
1551 static inline void skb_copy_decrypted(struct sk_buff *to,
1552 				      const struct sk_buff *from)
1553 {
1554 #ifdef CONFIG_TLS_DEVICE
1555 	to->decrypted = from->decrypted;
1556 #endif
1557 }
1558 
1559 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1560 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1561 {
1562 	return skb->head + skb->end;
1563 }
1564 
1565 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1566 {
1567 	return skb->end;
1568 }
1569 
1570 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1571 {
1572 	skb->end = offset;
1573 }
1574 #else
1575 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1576 {
1577 	return skb->end;
1578 }
1579 
1580 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1581 {
1582 	return skb->end - skb->head;
1583 }
1584 
1585 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1586 {
1587 	skb->end = skb->head + offset;
1588 }
1589 #endif
1590 
1591 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1592 				       struct ubuf_info *uarg);
1593 
1594 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1595 
1596 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1597 			   bool success);
1598 
1599 int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1600 			    struct iov_iter *from, size_t length);
1601 
1602 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1603 					  struct msghdr *msg, int len)
1604 {
1605 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1606 }
1607 
1608 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1609 			     struct msghdr *msg, int len,
1610 			     struct ubuf_info *uarg);
1611 
1612 /* Internal */
1613 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1614 
1615 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1616 {
1617 	return &skb_shinfo(skb)->hwtstamps;
1618 }
1619 
1620 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1621 {
1622 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1623 
1624 	return is_zcopy ? skb_uarg(skb) : NULL;
1625 }
1626 
1627 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1628 {
1629 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1630 }
1631 
1632 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1633 				       const struct sk_buff *skb2)
1634 {
1635 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1636 }
1637 
1638 static inline void net_zcopy_get(struct ubuf_info *uarg)
1639 {
1640 	refcount_inc(&uarg->refcnt);
1641 }
1642 
1643 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1644 {
1645 	skb_shinfo(skb)->destructor_arg = uarg;
1646 	skb_shinfo(skb)->flags |= uarg->flags;
1647 }
1648 
1649 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1650 				 bool *have_ref)
1651 {
1652 	if (skb && uarg && !skb_zcopy(skb)) {
1653 		if (unlikely(have_ref && *have_ref))
1654 			*have_ref = false;
1655 		else
1656 			net_zcopy_get(uarg);
1657 		skb_zcopy_init(skb, uarg);
1658 	}
1659 }
1660 
1661 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1662 {
1663 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1664 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1665 }
1666 
1667 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1668 {
1669 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1670 }
1671 
1672 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1673 {
1674 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1675 }
1676 
1677 static inline void net_zcopy_put(struct ubuf_info *uarg)
1678 {
1679 	if (uarg)
1680 		uarg->callback(NULL, uarg, true);
1681 }
1682 
1683 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1684 {
1685 	if (uarg) {
1686 		if (uarg->callback == msg_zerocopy_callback)
1687 			msg_zerocopy_put_abort(uarg, have_uref);
1688 		else if (have_uref)
1689 			net_zcopy_put(uarg);
1690 	}
1691 }
1692 
1693 /* Release a reference on a zerocopy structure */
1694 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1695 {
1696 	struct ubuf_info *uarg = skb_zcopy(skb);
1697 
1698 	if (uarg) {
1699 		if (!skb_zcopy_is_nouarg(skb))
1700 			uarg->callback(skb, uarg, zerocopy_success);
1701 
1702 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1703 	}
1704 }
1705 
1706 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1707 {
1708 	skb->next = NULL;
1709 }
1710 
1711 /* Iterate through singly-linked GSO fragments of an skb. */
1712 #define skb_list_walk_safe(first, skb, next_skb)                               \
1713 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1714 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1715 
1716 static inline void skb_list_del_init(struct sk_buff *skb)
1717 {
1718 	__list_del_entry(&skb->list);
1719 	skb_mark_not_on_list(skb);
1720 }
1721 
1722 /**
1723  *	skb_queue_empty - check if a queue is empty
1724  *	@list: queue head
1725  *
1726  *	Returns true if the queue is empty, false otherwise.
1727  */
1728 static inline int skb_queue_empty(const struct sk_buff_head *list)
1729 {
1730 	return list->next == (const struct sk_buff *) list;
1731 }
1732 
1733 /**
1734  *	skb_queue_empty_lockless - check if a queue is empty
1735  *	@list: queue head
1736  *
1737  *	Returns true if the queue is empty, false otherwise.
1738  *	This variant can be used in lockless contexts.
1739  */
1740 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1741 {
1742 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1743 }
1744 
1745 
1746 /**
1747  *	skb_queue_is_last - check if skb is the last entry in the queue
1748  *	@list: queue head
1749  *	@skb: buffer
1750  *
1751  *	Returns true if @skb is the last buffer on the list.
1752  */
1753 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1754 				     const struct sk_buff *skb)
1755 {
1756 	return skb->next == (const struct sk_buff *) list;
1757 }
1758 
1759 /**
1760  *	skb_queue_is_first - check if skb is the first entry in the queue
1761  *	@list: queue head
1762  *	@skb: buffer
1763  *
1764  *	Returns true if @skb is the first buffer on the list.
1765  */
1766 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1767 				      const struct sk_buff *skb)
1768 {
1769 	return skb->prev == (const struct sk_buff *) list;
1770 }
1771 
1772 /**
1773  *	skb_queue_next - return the next packet in the queue
1774  *	@list: queue head
1775  *	@skb: current buffer
1776  *
1777  *	Return the next packet in @list after @skb.  It is only valid to
1778  *	call this if skb_queue_is_last() evaluates to false.
1779  */
1780 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1781 					     const struct sk_buff *skb)
1782 {
1783 	/* This BUG_ON may seem severe, but if we just return then we
1784 	 * are going to dereference garbage.
1785 	 */
1786 	BUG_ON(skb_queue_is_last(list, skb));
1787 	return skb->next;
1788 }
1789 
1790 /**
1791  *	skb_queue_prev - return the prev packet in the queue
1792  *	@list: queue head
1793  *	@skb: current buffer
1794  *
1795  *	Return the prev packet in @list before @skb.  It is only valid to
1796  *	call this if skb_queue_is_first() evaluates to false.
1797  */
1798 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1799 					     const struct sk_buff *skb)
1800 {
1801 	/* This BUG_ON may seem severe, but if we just return then we
1802 	 * are going to dereference garbage.
1803 	 */
1804 	BUG_ON(skb_queue_is_first(list, skb));
1805 	return skb->prev;
1806 }
1807 
1808 /**
1809  *	skb_get - reference buffer
1810  *	@skb: buffer to reference
1811  *
1812  *	Makes another reference to a socket buffer and returns a pointer
1813  *	to the buffer.
1814  */
1815 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1816 {
1817 	refcount_inc(&skb->users);
1818 	return skb;
1819 }
1820 
1821 /*
1822  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1823  */
1824 
1825 /**
1826  *	skb_cloned - is the buffer a clone
1827  *	@skb: buffer to check
1828  *
1829  *	Returns true if the buffer was generated with skb_clone() and is
1830  *	one of multiple shared copies of the buffer. Cloned buffers are
1831  *	shared data so must not be written to under normal circumstances.
1832  */
1833 static inline int skb_cloned(const struct sk_buff *skb)
1834 {
1835 	return skb->cloned &&
1836 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1837 }
1838 
1839 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1840 {
1841 	might_sleep_if(gfpflags_allow_blocking(pri));
1842 
1843 	if (skb_cloned(skb))
1844 		return pskb_expand_head(skb, 0, 0, pri);
1845 
1846 	return 0;
1847 }
1848 
1849 /* This variant of skb_unclone() makes sure skb->truesize
1850  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1851  *
1852  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1853  * when various debugging features are in place.
1854  */
1855 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1856 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1857 {
1858 	might_sleep_if(gfpflags_allow_blocking(pri));
1859 
1860 	if (skb_cloned(skb))
1861 		return __skb_unclone_keeptruesize(skb, pri);
1862 	return 0;
1863 }
1864 
1865 /**
1866  *	skb_header_cloned - is the header a clone
1867  *	@skb: buffer to check
1868  *
1869  *	Returns true if modifying the header part of the buffer requires
1870  *	the data to be copied.
1871  */
1872 static inline int skb_header_cloned(const struct sk_buff *skb)
1873 {
1874 	int dataref;
1875 
1876 	if (!skb->cloned)
1877 		return 0;
1878 
1879 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1880 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1881 	return dataref != 1;
1882 }
1883 
1884 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1885 {
1886 	might_sleep_if(gfpflags_allow_blocking(pri));
1887 
1888 	if (skb_header_cloned(skb))
1889 		return pskb_expand_head(skb, 0, 0, pri);
1890 
1891 	return 0;
1892 }
1893 
1894 /**
1895  * __skb_header_release() - allow clones to use the headroom
1896  * @skb: buffer to operate on
1897  *
1898  * See "DOC: dataref and headerless skbs".
1899  */
1900 static inline void __skb_header_release(struct sk_buff *skb)
1901 {
1902 	skb->nohdr = 1;
1903 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1904 }
1905 
1906 
1907 /**
1908  *	skb_shared - is the buffer shared
1909  *	@skb: buffer to check
1910  *
1911  *	Returns true if more than one person has a reference to this
1912  *	buffer.
1913  */
1914 static inline int skb_shared(const struct sk_buff *skb)
1915 {
1916 	return refcount_read(&skb->users) != 1;
1917 }
1918 
1919 /**
1920  *	skb_share_check - check if buffer is shared and if so clone it
1921  *	@skb: buffer to check
1922  *	@pri: priority for memory allocation
1923  *
1924  *	If the buffer is shared the buffer is cloned and the old copy
1925  *	drops a reference. A new clone with a single reference is returned.
1926  *	If the buffer is not shared the original buffer is returned. When
1927  *	being called from interrupt status or with spinlocks held pri must
1928  *	be GFP_ATOMIC.
1929  *
1930  *	NULL is returned on a memory allocation failure.
1931  */
1932 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1933 {
1934 	might_sleep_if(gfpflags_allow_blocking(pri));
1935 	if (skb_shared(skb)) {
1936 		struct sk_buff *nskb = skb_clone(skb, pri);
1937 
1938 		if (likely(nskb))
1939 			consume_skb(skb);
1940 		else
1941 			kfree_skb(skb);
1942 		skb = nskb;
1943 	}
1944 	return skb;
1945 }
1946 
1947 /*
1948  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1949  *	packets to handle cases where we have a local reader and forward
1950  *	and a couple of other messy ones. The normal one is tcpdumping
1951  *	a packet thats being forwarded.
1952  */
1953 
1954 /**
1955  *	skb_unshare - make a copy of a shared buffer
1956  *	@skb: buffer to check
1957  *	@pri: priority for memory allocation
1958  *
1959  *	If the socket buffer is a clone then this function creates a new
1960  *	copy of the data, drops a reference count on the old copy and returns
1961  *	the new copy with the reference count at 1. If the buffer is not a clone
1962  *	the original buffer is returned. When called with a spinlock held or
1963  *	from interrupt state @pri must be %GFP_ATOMIC
1964  *
1965  *	%NULL is returned on a memory allocation failure.
1966  */
1967 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1968 					  gfp_t pri)
1969 {
1970 	might_sleep_if(gfpflags_allow_blocking(pri));
1971 	if (skb_cloned(skb)) {
1972 		struct sk_buff *nskb = skb_copy(skb, pri);
1973 
1974 		/* Free our shared copy */
1975 		if (likely(nskb))
1976 			consume_skb(skb);
1977 		else
1978 			kfree_skb(skb);
1979 		skb = nskb;
1980 	}
1981 	return skb;
1982 }
1983 
1984 /**
1985  *	skb_peek - peek at the head of an &sk_buff_head
1986  *	@list_: list to peek at
1987  *
1988  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1989  *	be careful with this one. A peek leaves the buffer on the
1990  *	list and someone else may run off with it. You must hold
1991  *	the appropriate locks or have a private queue to do this.
1992  *
1993  *	Returns %NULL for an empty list or a pointer to the head element.
1994  *	The reference count is not incremented and the reference is therefore
1995  *	volatile. Use with caution.
1996  */
1997 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1998 {
1999 	struct sk_buff *skb = list_->next;
2000 
2001 	if (skb == (struct sk_buff *)list_)
2002 		skb = NULL;
2003 	return skb;
2004 }
2005 
2006 /**
2007  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2008  *	@list_: list to peek at
2009  *
2010  *	Like skb_peek(), but the caller knows that the list is not empty.
2011  */
2012 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2013 {
2014 	return list_->next;
2015 }
2016 
2017 /**
2018  *	skb_peek_next - peek skb following the given one from a queue
2019  *	@skb: skb to start from
2020  *	@list_: list to peek at
2021  *
2022  *	Returns %NULL when the end of the list is met or a pointer to the
2023  *	next element. The reference count is not incremented and the
2024  *	reference is therefore volatile. Use with caution.
2025  */
2026 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2027 		const struct sk_buff_head *list_)
2028 {
2029 	struct sk_buff *next = skb->next;
2030 
2031 	if (next == (struct sk_buff *)list_)
2032 		next = NULL;
2033 	return next;
2034 }
2035 
2036 /**
2037  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2038  *	@list_: list to peek at
2039  *
2040  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2041  *	be careful with this one. A peek leaves the buffer on the
2042  *	list and someone else may run off with it. You must hold
2043  *	the appropriate locks or have a private queue to do this.
2044  *
2045  *	Returns %NULL for an empty list or a pointer to the tail element.
2046  *	The reference count is not incremented and the reference is therefore
2047  *	volatile. Use with caution.
2048  */
2049 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2050 {
2051 	struct sk_buff *skb = READ_ONCE(list_->prev);
2052 
2053 	if (skb == (struct sk_buff *)list_)
2054 		skb = NULL;
2055 	return skb;
2056 
2057 }
2058 
2059 /**
2060  *	skb_queue_len	- get queue length
2061  *	@list_: list to measure
2062  *
2063  *	Return the length of an &sk_buff queue.
2064  */
2065 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2066 {
2067 	return list_->qlen;
2068 }
2069 
2070 /**
2071  *	skb_queue_len_lockless	- get queue length
2072  *	@list_: list to measure
2073  *
2074  *	Return the length of an &sk_buff queue.
2075  *	This variant can be used in lockless contexts.
2076  */
2077 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2078 {
2079 	return READ_ONCE(list_->qlen);
2080 }
2081 
2082 /**
2083  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2084  *	@list: queue to initialize
2085  *
2086  *	This initializes only the list and queue length aspects of
2087  *	an sk_buff_head object.  This allows to initialize the list
2088  *	aspects of an sk_buff_head without reinitializing things like
2089  *	the spinlock.  It can also be used for on-stack sk_buff_head
2090  *	objects where the spinlock is known to not be used.
2091  */
2092 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2093 {
2094 	list->prev = list->next = (struct sk_buff *)list;
2095 	list->qlen = 0;
2096 }
2097 
2098 /*
2099  * This function creates a split out lock class for each invocation;
2100  * this is needed for now since a whole lot of users of the skb-queue
2101  * infrastructure in drivers have different locking usage (in hardirq)
2102  * than the networking core (in softirq only). In the long run either the
2103  * network layer or drivers should need annotation to consolidate the
2104  * main types of usage into 3 classes.
2105  */
2106 static inline void skb_queue_head_init(struct sk_buff_head *list)
2107 {
2108 	spin_lock_init(&list->lock);
2109 	__skb_queue_head_init(list);
2110 }
2111 
2112 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2113 		struct lock_class_key *class)
2114 {
2115 	skb_queue_head_init(list);
2116 	lockdep_set_class(&list->lock, class);
2117 }
2118 
2119 /*
2120  *	Insert an sk_buff on a list.
2121  *
2122  *	The "__skb_xxxx()" functions are the non-atomic ones that
2123  *	can only be called with interrupts disabled.
2124  */
2125 static inline void __skb_insert(struct sk_buff *newsk,
2126 				struct sk_buff *prev, struct sk_buff *next,
2127 				struct sk_buff_head *list)
2128 {
2129 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2130 	 * for the opposite READ_ONCE()
2131 	 */
2132 	WRITE_ONCE(newsk->next, next);
2133 	WRITE_ONCE(newsk->prev, prev);
2134 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2135 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2136 	WRITE_ONCE(list->qlen, list->qlen + 1);
2137 }
2138 
2139 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2140 				      struct sk_buff *prev,
2141 				      struct sk_buff *next)
2142 {
2143 	struct sk_buff *first = list->next;
2144 	struct sk_buff *last = list->prev;
2145 
2146 	WRITE_ONCE(first->prev, prev);
2147 	WRITE_ONCE(prev->next, first);
2148 
2149 	WRITE_ONCE(last->next, next);
2150 	WRITE_ONCE(next->prev, last);
2151 }
2152 
2153 /**
2154  *	skb_queue_splice - join two skb lists, this is designed for stacks
2155  *	@list: the new list to add
2156  *	@head: the place to add it in the first list
2157  */
2158 static inline void skb_queue_splice(const struct sk_buff_head *list,
2159 				    struct sk_buff_head *head)
2160 {
2161 	if (!skb_queue_empty(list)) {
2162 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2163 		head->qlen += list->qlen;
2164 	}
2165 }
2166 
2167 /**
2168  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2169  *	@list: the new list to add
2170  *	@head: the place to add it in the first list
2171  *
2172  *	The list at @list is reinitialised
2173  */
2174 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2175 					 struct sk_buff_head *head)
2176 {
2177 	if (!skb_queue_empty(list)) {
2178 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2179 		head->qlen += list->qlen;
2180 		__skb_queue_head_init(list);
2181 	}
2182 }
2183 
2184 /**
2185  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2186  *	@list: the new list to add
2187  *	@head: the place to add it in the first list
2188  */
2189 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2190 					 struct sk_buff_head *head)
2191 {
2192 	if (!skb_queue_empty(list)) {
2193 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2194 		head->qlen += list->qlen;
2195 	}
2196 }
2197 
2198 /**
2199  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2200  *	@list: the new list to add
2201  *	@head: the place to add it in the first list
2202  *
2203  *	Each of the lists is a queue.
2204  *	The list at @list is reinitialised
2205  */
2206 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2207 					      struct sk_buff_head *head)
2208 {
2209 	if (!skb_queue_empty(list)) {
2210 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2211 		head->qlen += list->qlen;
2212 		__skb_queue_head_init(list);
2213 	}
2214 }
2215 
2216 /**
2217  *	__skb_queue_after - queue a buffer at the list head
2218  *	@list: list to use
2219  *	@prev: place after this buffer
2220  *	@newsk: buffer to queue
2221  *
2222  *	Queue a buffer int the middle of a list. This function takes no locks
2223  *	and you must therefore hold required locks before calling it.
2224  *
2225  *	A buffer cannot be placed on two lists at the same time.
2226  */
2227 static inline void __skb_queue_after(struct sk_buff_head *list,
2228 				     struct sk_buff *prev,
2229 				     struct sk_buff *newsk)
2230 {
2231 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2232 }
2233 
2234 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2235 		struct sk_buff_head *list);
2236 
2237 static inline void __skb_queue_before(struct sk_buff_head *list,
2238 				      struct sk_buff *next,
2239 				      struct sk_buff *newsk)
2240 {
2241 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2242 }
2243 
2244 /**
2245  *	__skb_queue_head - queue a buffer at the list head
2246  *	@list: list to use
2247  *	@newsk: buffer to queue
2248  *
2249  *	Queue a buffer at the start of a list. This function takes no locks
2250  *	and you must therefore hold required locks before calling it.
2251  *
2252  *	A buffer cannot be placed on two lists at the same time.
2253  */
2254 static inline void __skb_queue_head(struct sk_buff_head *list,
2255 				    struct sk_buff *newsk)
2256 {
2257 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2258 }
2259 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2260 
2261 /**
2262  *	__skb_queue_tail - queue a buffer at the list tail
2263  *	@list: list to use
2264  *	@newsk: buffer to queue
2265  *
2266  *	Queue a buffer at the end of a list. This function takes no locks
2267  *	and you must therefore hold required locks before calling it.
2268  *
2269  *	A buffer cannot be placed on two lists at the same time.
2270  */
2271 static inline void __skb_queue_tail(struct sk_buff_head *list,
2272 				   struct sk_buff *newsk)
2273 {
2274 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2275 }
2276 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2277 
2278 /*
2279  * remove sk_buff from list. _Must_ be called atomically, and with
2280  * the list known..
2281  */
2282 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2283 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2284 {
2285 	struct sk_buff *next, *prev;
2286 
2287 	WRITE_ONCE(list->qlen, list->qlen - 1);
2288 	next	   = skb->next;
2289 	prev	   = skb->prev;
2290 	skb->next  = skb->prev = NULL;
2291 	WRITE_ONCE(next->prev, prev);
2292 	WRITE_ONCE(prev->next, next);
2293 }
2294 
2295 /**
2296  *	__skb_dequeue - remove from the head of the queue
2297  *	@list: list to dequeue from
2298  *
2299  *	Remove the head of the list. This function does not take any locks
2300  *	so must be used with appropriate locks held only. The head item is
2301  *	returned or %NULL if the list is empty.
2302  */
2303 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2304 {
2305 	struct sk_buff *skb = skb_peek(list);
2306 	if (skb)
2307 		__skb_unlink(skb, list);
2308 	return skb;
2309 }
2310 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2311 
2312 /**
2313  *	__skb_dequeue_tail - remove from the tail of the queue
2314  *	@list: list to dequeue from
2315  *
2316  *	Remove the tail of the list. This function does not take any locks
2317  *	so must be used with appropriate locks held only. The tail item is
2318  *	returned or %NULL if the list is empty.
2319  */
2320 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2321 {
2322 	struct sk_buff *skb = skb_peek_tail(list);
2323 	if (skb)
2324 		__skb_unlink(skb, list);
2325 	return skb;
2326 }
2327 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2328 
2329 
2330 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2331 {
2332 	return skb->data_len;
2333 }
2334 
2335 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2336 {
2337 	return skb->len - skb->data_len;
2338 }
2339 
2340 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2341 {
2342 	unsigned int i, len = 0;
2343 
2344 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2345 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2346 	return len;
2347 }
2348 
2349 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2350 {
2351 	return skb_headlen(skb) + __skb_pagelen(skb);
2352 }
2353 
2354 /**
2355  * skb_len_add - adds a number to len fields of skb
2356  * @skb: buffer to add len to
2357  * @delta: number of bytes to add
2358  */
2359 static inline void skb_len_add(struct sk_buff *skb, int delta)
2360 {
2361 	skb->len += delta;
2362 	skb->data_len += delta;
2363 	skb->truesize += delta;
2364 }
2365 
2366 /**
2367  * __skb_fill_page_desc - initialise a paged fragment in an skb
2368  * @skb: buffer containing fragment to be initialised
2369  * @i: paged fragment index to initialise
2370  * @page: the page to use for this fragment
2371  * @off: the offset to the data with @page
2372  * @size: the length of the data
2373  *
2374  * Initialises the @i'th fragment of @skb to point to &size bytes at
2375  * offset @off within @page.
2376  *
2377  * Does not take any additional reference on the fragment.
2378  */
2379 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2380 					struct page *page, int off, int size)
2381 {
2382 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2383 
2384 	/*
2385 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2386 	 * that not all callers have unique ownership of the page but rely
2387 	 * on page_is_pfmemalloc doing the right thing(tm).
2388 	 */
2389 	frag->bv_page		  = page;
2390 	frag->bv_offset		  = off;
2391 	skb_frag_size_set(frag, size);
2392 
2393 	page = compound_head(page);
2394 	if (page_is_pfmemalloc(page))
2395 		skb->pfmemalloc	= true;
2396 }
2397 
2398 /**
2399  * skb_fill_page_desc - initialise a paged fragment in an skb
2400  * @skb: buffer containing fragment to be initialised
2401  * @i: paged fragment index to initialise
2402  * @page: the page to use for this fragment
2403  * @off: the offset to the data with @page
2404  * @size: the length of the data
2405  *
2406  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2407  * @skb to point to @size bytes at offset @off within @page. In
2408  * addition updates @skb such that @i is the last fragment.
2409  *
2410  * Does not take any additional reference on the fragment.
2411  */
2412 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2413 				      struct page *page, int off, int size)
2414 {
2415 	__skb_fill_page_desc(skb, i, page, off, size);
2416 	skb_shinfo(skb)->nr_frags = i + 1;
2417 }
2418 
2419 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2420 		     int size, unsigned int truesize);
2421 
2422 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2423 			  unsigned int truesize);
2424 
2425 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2426 
2427 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2428 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2429 {
2430 	return skb->head + skb->tail;
2431 }
2432 
2433 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2434 {
2435 	skb->tail = skb->data - skb->head;
2436 }
2437 
2438 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2439 {
2440 	skb_reset_tail_pointer(skb);
2441 	skb->tail += offset;
2442 }
2443 
2444 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2445 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2446 {
2447 	return skb->tail;
2448 }
2449 
2450 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2451 {
2452 	skb->tail = skb->data;
2453 }
2454 
2455 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2456 {
2457 	skb->tail = skb->data + offset;
2458 }
2459 
2460 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2461 
2462 /*
2463  *	Add data to an sk_buff
2464  */
2465 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2466 void *skb_put(struct sk_buff *skb, unsigned int len);
2467 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2468 {
2469 	void *tmp = skb_tail_pointer(skb);
2470 	SKB_LINEAR_ASSERT(skb);
2471 	skb->tail += len;
2472 	skb->len  += len;
2473 	return tmp;
2474 }
2475 
2476 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2477 {
2478 	void *tmp = __skb_put(skb, len);
2479 
2480 	memset(tmp, 0, len);
2481 	return tmp;
2482 }
2483 
2484 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2485 				   unsigned int len)
2486 {
2487 	void *tmp = __skb_put(skb, len);
2488 
2489 	memcpy(tmp, data, len);
2490 	return tmp;
2491 }
2492 
2493 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2494 {
2495 	*(u8 *)__skb_put(skb, 1) = val;
2496 }
2497 
2498 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2499 {
2500 	void *tmp = skb_put(skb, len);
2501 
2502 	memset(tmp, 0, len);
2503 
2504 	return tmp;
2505 }
2506 
2507 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2508 				 unsigned int len)
2509 {
2510 	void *tmp = skb_put(skb, len);
2511 
2512 	memcpy(tmp, data, len);
2513 
2514 	return tmp;
2515 }
2516 
2517 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2518 {
2519 	*(u8 *)skb_put(skb, 1) = val;
2520 }
2521 
2522 void *skb_push(struct sk_buff *skb, unsigned int len);
2523 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2524 {
2525 	skb->data -= len;
2526 	skb->len  += len;
2527 	return skb->data;
2528 }
2529 
2530 void *skb_pull(struct sk_buff *skb, unsigned int len);
2531 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2532 {
2533 	skb->len -= len;
2534 	if (unlikely(skb->len < skb->data_len)) {
2535 #if defined(CONFIG_DEBUG_NET)
2536 		skb->len += len;
2537 		pr_err("__skb_pull(len=%u)\n", len);
2538 		skb_dump(KERN_ERR, skb, false);
2539 #endif
2540 		BUG();
2541 	}
2542 	return skb->data += len;
2543 }
2544 
2545 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2546 {
2547 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2548 }
2549 
2550 void *skb_pull_data(struct sk_buff *skb, size_t len);
2551 
2552 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2553 
2554 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2555 {
2556 	if (len > skb_headlen(skb) &&
2557 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2558 		return NULL;
2559 	skb->len -= len;
2560 	return skb->data += len;
2561 }
2562 
2563 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2564 {
2565 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2566 }
2567 
2568 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2569 {
2570 	if (likely(len <= skb_headlen(skb)))
2571 		return true;
2572 	if (unlikely(len > skb->len))
2573 		return false;
2574 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2575 }
2576 
2577 void skb_condense(struct sk_buff *skb);
2578 
2579 /**
2580  *	skb_headroom - bytes at buffer head
2581  *	@skb: buffer to check
2582  *
2583  *	Return the number of bytes of free space at the head of an &sk_buff.
2584  */
2585 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2586 {
2587 	return skb->data - skb->head;
2588 }
2589 
2590 /**
2591  *	skb_tailroom - bytes at buffer end
2592  *	@skb: buffer to check
2593  *
2594  *	Return the number of bytes of free space at the tail of an sk_buff
2595  */
2596 static inline int skb_tailroom(const struct sk_buff *skb)
2597 {
2598 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2599 }
2600 
2601 /**
2602  *	skb_availroom - bytes at buffer end
2603  *	@skb: buffer to check
2604  *
2605  *	Return the number of bytes of free space at the tail of an sk_buff
2606  *	allocated by sk_stream_alloc()
2607  */
2608 static inline int skb_availroom(const struct sk_buff *skb)
2609 {
2610 	if (skb_is_nonlinear(skb))
2611 		return 0;
2612 
2613 	return skb->end - skb->tail - skb->reserved_tailroom;
2614 }
2615 
2616 /**
2617  *	skb_reserve - adjust headroom
2618  *	@skb: buffer to alter
2619  *	@len: bytes to move
2620  *
2621  *	Increase the headroom of an empty &sk_buff by reducing the tail
2622  *	room. This is only allowed for an empty buffer.
2623  */
2624 static inline void skb_reserve(struct sk_buff *skb, int len)
2625 {
2626 	skb->data += len;
2627 	skb->tail += len;
2628 }
2629 
2630 /**
2631  *	skb_tailroom_reserve - adjust reserved_tailroom
2632  *	@skb: buffer to alter
2633  *	@mtu: maximum amount of headlen permitted
2634  *	@needed_tailroom: minimum amount of reserved_tailroom
2635  *
2636  *	Set reserved_tailroom so that headlen can be as large as possible but
2637  *	not larger than mtu and tailroom cannot be smaller than
2638  *	needed_tailroom.
2639  *	The required headroom should already have been reserved before using
2640  *	this function.
2641  */
2642 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2643 					unsigned int needed_tailroom)
2644 {
2645 	SKB_LINEAR_ASSERT(skb);
2646 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2647 		/* use at most mtu */
2648 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2649 	else
2650 		/* use up to all available space */
2651 		skb->reserved_tailroom = needed_tailroom;
2652 }
2653 
2654 #define ENCAP_TYPE_ETHER	0
2655 #define ENCAP_TYPE_IPPROTO	1
2656 
2657 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2658 					  __be16 protocol)
2659 {
2660 	skb->inner_protocol = protocol;
2661 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2662 }
2663 
2664 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2665 					 __u8 ipproto)
2666 {
2667 	skb->inner_ipproto = ipproto;
2668 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2669 }
2670 
2671 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2672 {
2673 	skb->inner_mac_header = skb->mac_header;
2674 	skb->inner_network_header = skb->network_header;
2675 	skb->inner_transport_header = skb->transport_header;
2676 }
2677 
2678 static inline void skb_reset_mac_len(struct sk_buff *skb)
2679 {
2680 	skb->mac_len = skb->network_header - skb->mac_header;
2681 }
2682 
2683 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2684 							*skb)
2685 {
2686 	return skb->head + skb->inner_transport_header;
2687 }
2688 
2689 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2690 {
2691 	return skb_inner_transport_header(skb) - skb->data;
2692 }
2693 
2694 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2695 {
2696 	skb->inner_transport_header = skb->data - skb->head;
2697 }
2698 
2699 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2700 						   const int offset)
2701 {
2702 	skb_reset_inner_transport_header(skb);
2703 	skb->inner_transport_header += offset;
2704 }
2705 
2706 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2707 {
2708 	return skb->head + skb->inner_network_header;
2709 }
2710 
2711 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2712 {
2713 	skb->inner_network_header = skb->data - skb->head;
2714 }
2715 
2716 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2717 						const int offset)
2718 {
2719 	skb_reset_inner_network_header(skb);
2720 	skb->inner_network_header += offset;
2721 }
2722 
2723 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2724 {
2725 	return skb->head + skb->inner_mac_header;
2726 }
2727 
2728 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2729 {
2730 	skb->inner_mac_header = skb->data - skb->head;
2731 }
2732 
2733 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2734 					    const int offset)
2735 {
2736 	skb_reset_inner_mac_header(skb);
2737 	skb->inner_mac_header += offset;
2738 }
2739 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2740 {
2741 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2742 }
2743 
2744 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2745 {
2746 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2747 	return skb->head + skb->transport_header;
2748 }
2749 
2750 static inline void skb_reset_transport_header(struct sk_buff *skb)
2751 {
2752 	skb->transport_header = skb->data - skb->head;
2753 }
2754 
2755 static inline void skb_set_transport_header(struct sk_buff *skb,
2756 					    const int offset)
2757 {
2758 	skb_reset_transport_header(skb);
2759 	skb->transport_header += offset;
2760 }
2761 
2762 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2763 {
2764 	return skb->head + skb->network_header;
2765 }
2766 
2767 static inline void skb_reset_network_header(struct sk_buff *skb)
2768 {
2769 	skb->network_header = skb->data - skb->head;
2770 }
2771 
2772 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2773 {
2774 	skb_reset_network_header(skb);
2775 	skb->network_header += offset;
2776 }
2777 
2778 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2779 {
2780 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2781 }
2782 
2783 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2784 {
2785 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2786 	return skb->head + skb->mac_header;
2787 }
2788 
2789 static inline int skb_mac_offset(const struct sk_buff *skb)
2790 {
2791 	return skb_mac_header(skb) - skb->data;
2792 }
2793 
2794 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2795 {
2796 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2797 	return skb->network_header - skb->mac_header;
2798 }
2799 
2800 static inline void skb_unset_mac_header(struct sk_buff *skb)
2801 {
2802 	skb->mac_header = (typeof(skb->mac_header))~0U;
2803 }
2804 
2805 static inline void skb_reset_mac_header(struct sk_buff *skb)
2806 {
2807 	skb->mac_header = skb->data - skb->head;
2808 }
2809 
2810 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2811 {
2812 	skb_reset_mac_header(skb);
2813 	skb->mac_header += offset;
2814 }
2815 
2816 static inline void skb_pop_mac_header(struct sk_buff *skb)
2817 {
2818 	skb->mac_header = skb->network_header;
2819 }
2820 
2821 static inline void skb_probe_transport_header(struct sk_buff *skb)
2822 {
2823 	struct flow_keys_basic keys;
2824 
2825 	if (skb_transport_header_was_set(skb))
2826 		return;
2827 
2828 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2829 					     NULL, 0, 0, 0, 0))
2830 		skb_set_transport_header(skb, keys.control.thoff);
2831 }
2832 
2833 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2834 {
2835 	if (skb_mac_header_was_set(skb)) {
2836 		const unsigned char *old_mac = skb_mac_header(skb);
2837 
2838 		skb_set_mac_header(skb, -skb->mac_len);
2839 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2840 	}
2841 }
2842 
2843 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2844 {
2845 	return skb->csum_start - skb_headroom(skb);
2846 }
2847 
2848 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2849 {
2850 	return skb->head + skb->csum_start;
2851 }
2852 
2853 static inline int skb_transport_offset(const struct sk_buff *skb)
2854 {
2855 	return skb_transport_header(skb) - skb->data;
2856 }
2857 
2858 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2859 {
2860 	return skb->transport_header - skb->network_header;
2861 }
2862 
2863 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2864 {
2865 	return skb->inner_transport_header - skb->inner_network_header;
2866 }
2867 
2868 static inline int skb_network_offset(const struct sk_buff *skb)
2869 {
2870 	return skb_network_header(skb) - skb->data;
2871 }
2872 
2873 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2874 {
2875 	return skb_inner_network_header(skb) - skb->data;
2876 }
2877 
2878 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2879 {
2880 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2881 }
2882 
2883 /*
2884  * CPUs often take a performance hit when accessing unaligned memory
2885  * locations. The actual performance hit varies, it can be small if the
2886  * hardware handles it or large if we have to take an exception and fix it
2887  * in software.
2888  *
2889  * Since an ethernet header is 14 bytes network drivers often end up with
2890  * the IP header at an unaligned offset. The IP header can be aligned by
2891  * shifting the start of the packet by 2 bytes. Drivers should do this
2892  * with:
2893  *
2894  * skb_reserve(skb, NET_IP_ALIGN);
2895  *
2896  * The downside to this alignment of the IP header is that the DMA is now
2897  * unaligned. On some architectures the cost of an unaligned DMA is high
2898  * and this cost outweighs the gains made by aligning the IP header.
2899  *
2900  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2901  * to be overridden.
2902  */
2903 #ifndef NET_IP_ALIGN
2904 #define NET_IP_ALIGN	2
2905 #endif
2906 
2907 /*
2908  * The networking layer reserves some headroom in skb data (via
2909  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2910  * the header has to grow. In the default case, if the header has to grow
2911  * 32 bytes or less we avoid the reallocation.
2912  *
2913  * Unfortunately this headroom changes the DMA alignment of the resulting
2914  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2915  * on some architectures. An architecture can override this value,
2916  * perhaps setting it to a cacheline in size (since that will maintain
2917  * cacheline alignment of the DMA). It must be a power of 2.
2918  *
2919  * Various parts of the networking layer expect at least 32 bytes of
2920  * headroom, you should not reduce this.
2921  *
2922  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2923  * to reduce average number of cache lines per packet.
2924  * get_rps_cpu() for example only access one 64 bytes aligned block :
2925  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2926  */
2927 #ifndef NET_SKB_PAD
2928 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2929 #endif
2930 
2931 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2932 
2933 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2934 {
2935 	if (WARN_ON(skb_is_nonlinear(skb)))
2936 		return;
2937 	skb->len = len;
2938 	skb_set_tail_pointer(skb, len);
2939 }
2940 
2941 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2942 {
2943 	__skb_set_length(skb, len);
2944 }
2945 
2946 void skb_trim(struct sk_buff *skb, unsigned int len);
2947 
2948 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2949 {
2950 	if (skb->data_len)
2951 		return ___pskb_trim(skb, len);
2952 	__skb_trim(skb, len);
2953 	return 0;
2954 }
2955 
2956 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2957 {
2958 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2959 }
2960 
2961 /**
2962  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2963  *	@skb: buffer to alter
2964  *	@len: new length
2965  *
2966  *	This is identical to pskb_trim except that the caller knows that
2967  *	the skb is not cloned so we should never get an error due to out-
2968  *	of-memory.
2969  */
2970 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2971 {
2972 	int err = pskb_trim(skb, len);
2973 	BUG_ON(err);
2974 }
2975 
2976 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2977 {
2978 	unsigned int diff = len - skb->len;
2979 
2980 	if (skb_tailroom(skb) < diff) {
2981 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2982 					   GFP_ATOMIC);
2983 		if (ret)
2984 			return ret;
2985 	}
2986 	__skb_set_length(skb, len);
2987 	return 0;
2988 }
2989 
2990 /**
2991  *	skb_orphan - orphan a buffer
2992  *	@skb: buffer to orphan
2993  *
2994  *	If a buffer currently has an owner then we call the owner's
2995  *	destructor function and make the @skb unowned. The buffer continues
2996  *	to exist but is no longer charged to its former owner.
2997  */
2998 static inline void skb_orphan(struct sk_buff *skb)
2999 {
3000 	if (skb->destructor) {
3001 		skb->destructor(skb);
3002 		skb->destructor = NULL;
3003 		skb->sk		= NULL;
3004 	} else {
3005 		BUG_ON(skb->sk);
3006 	}
3007 }
3008 
3009 /**
3010  *	skb_orphan_frags - orphan the frags contained in a buffer
3011  *	@skb: buffer to orphan frags from
3012  *	@gfp_mask: allocation mask for replacement pages
3013  *
3014  *	For each frag in the SKB which needs a destructor (i.e. has an
3015  *	owner) create a copy of that frag and release the original
3016  *	page by calling the destructor.
3017  */
3018 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3019 {
3020 	if (likely(!skb_zcopy(skb)))
3021 		return 0;
3022 	if (!skb_zcopy_is_nouarg(skb) &&
3023 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
3024 		return 0;
3025 	return skb_copy_ubufs(skb, gfp_mask);
3026 }
3027 
3028 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3029 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3030 {
3031 	if (likely(!skb_zcopy(skb)))
3032 		return 0;
3033 	return skb_copy_ubufs(skb, gfp_mask);
3034 }
3035 
3036 /**
3037  *	__skb_queue_purge - empty a list
3038  *	@list: list to empty
3039  *
3040  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3041  *	the list and one reference dropped. This function does not take the
3042  *	list lock and the caller must hold the relevant locks to use it.
3043  */
3044 static inline void __skb_queue_purge(struct sk_buff_head *list)
3045 {
3046 	struct sk_buff *skb;
3047 	while ((skb = __skb_dequeue(list)) != NULL)
3048 		kfree_skb(skb);
3049 }
3050 void skb_queue_purge(struct sk_buff_head *list);
3051 
3052 unsigned int skb_rbtree_purge(struct rb_root *root);
3053 
3054 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3055 
3056 /**
3057  * netdev_alloc_frag - allocate a page fragment
3058  * @fragsz: fragment size
3059  *
3060  * Allocates a frag from a page for receive buffer.
3061  * Uses GFP_ATOMIC allocations.
3062  */
3063 static inline void *netdev_alloc_frag(unsigned int fragsz)
3064 {
3065 	return __netdev_alloc_frag_align(fragsz, ~0u);
3066 }
3067 
3068 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3069 					    unsigned int align)
3070 {
3071 	WARN_ON_ONCE(!is_power_of_2(align));
3072 	return __netdev_alloc_frag_align(fragsz, -align);
3073 }
3074 
3075 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3076 				   gfp_t gfp_mask);
3077 
3078 /**
3079  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3080  *	@dev: network device to receive on
3081  *	@length: length to allocate
3082  *
3083  *	Allocate a new &sk_buff and assign it a usage count of one. The
3084  *	buffer has unspecified headroom built in. Users should allocate
3085  *	the headroom they think they need without accounting for the
3086  *	built in space. The built in space is used for optimisations.
3087  *
3088  *	%NULL is returned if there is no free memory. Although this function
3089  *	allocates memory it can be called from an interrupt.
3090  */
3091 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3092 					       unsigned int length)
3093 {
3094 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3095 }
3096 
3097 /* legacy helper around __netdev_alloc_skb() */
3098 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3099 					      gfp_t gfp_mask)
3100 {
3101 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3102 }
3103 
3104 /* legacy helper around netdev_alloc_skb() */
3105 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3106 {
3107 	return netdev_alloc_skb(NULL, length);
3108 }
3109 
3110 
3111 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3112 		unsigned int length, gfp_t gfp)
3113 {
3114 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3115 
3116 	if (NET_IP_ALIGN && skb)
3117 		skb_reserve(skb, NET_IP_ALIGN);
3118 	return skb;
3119 }
3120 
3121 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3122 		unsigned int length)
3123 {
3124 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3125 }
3126 
3127 static inline void skb_free_frag(void *addr)
3128 {
3129 	page_frag_free(addr);
3130 }
3131 
3132 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3133 
3134 static inline void *napi_alloc_frag(unsigned int fragsz)
3135 {
3136 	return __napi_alloc_frag_align(fragsz, ~0u);
3137 }
3138 
3139 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3140 					  unsigned int align)
3141 {
3142 	WARN_ON_ONCE(!is_power_of_2(align));
3143 	return __napi_alloc_frag_align(fragsz, -align);
3144 }
3145 
3146 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3147 				 unsigned int length, gfp_t gfp_mask);
3148 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3149 					     unsigned int length)
3150 {
3151 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3152 }
3153 void napi_consume_skb(struct sk_buff *skb, int budget);
3154 
3155 void napi_skb_free_stolen_head(struct sk_buff *skb);
3156 void __kfree_skb_defer(struct sk_buff *skb);
3157 
3158 /**
3159  * __dev_alloc_pages - allocate page for network Rx
3160  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3161  * @order: size of the allocation
3162  *
3163  * Allocate a new page.
3164  *
3165  * %NULL is returned if there is no free memory.
3166 */
3167 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3168 					     unsigned int order)
3169 {
3170 	/* This piece of code contains several assumptions.
3171 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3172 	 * 2.  The expectation is the user wants a compound page.
3173 	 * 3.  If requesting a order 0 page it will not be compound
3174 	 *     due to the check to see if order has a value in prep_new_page
3175 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3176 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3177 	 */
3178 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3179 
3180 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3181 }
3182 
3183 static inline struct page *dev_alloc_pages(unsigned int order)
3184 {
3185 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3186 }
3187 
3188 /**
3189  * __dev_alloc_page - allocate a page for network Rx
3190  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3191  *
3192  * Allocate a new page.
3193  *
3194  * %NULL is returned if there is no free memory.
3195  */
3196 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3197 {
3198 	return __dev_alloc_pages(gfp_mask, 0);
3199 }
3200 
3201 static inline struct page *dev_alloc_page(void)
3202 {
3203 	return dev_alloc_pages(0);
3204 }
3205 
3206 /**
3207  * dev_page_is_reusable - check whether a page can be reused for network Rx
3208  * @page: the page to test
3209  *
3210  * A page shouldn't be considered for reusing/recycling if it was allocated
3211  * under memory pressure or at a distant memory node.
3212  *
3213  * Returns false if this page should be returned to page allocator, true
3214  * otherwise.
3215  */
3216 static inline bool dev_page_is_reusable(const struct page *page)
3217 {
3218 	return likely(page_to_nid(page) == numa_mem_id() &&
3219 		      !page_is_pfmemalloc(page));
3220 }
3221 
3222 /**
3223  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3224  *	@page: The page that was allocated from skb_alloc_page
3225  *	@skb: The skb that may need pfmemalloc set
3226  */
3227 static inline void skb_propagate_pfmemalloc(const struct page *page,
3228 					    struct sk_buff *skb)
3229 {
3230 	if (page_is_pfmemalloc(page))
3231 		skb->pfmemalloc = true;
3232 }
3233 
3234 /**
3235  * skb_frag_off() - Returns the offset of a skb fragment
3236  * @frag: the paged fragment
3237  */
3238 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3239 {
3240 	return frag->bv_offset;
3241 }
3242 
3243 /**
3244  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3245  * @frag: skb fragment
3246  * @delta: value to add
3247  */
3248 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3249 {
3250 	frag->bv_offset += delta;
3251 }
3252 
3253 /**
3254  * skb_frag_off_set() - Sets the offset of a skb fragment
3255  * @frag: skb fragment
3256  * @offset: offset of fragment
3257  */
3258 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3259 {
3260 	frag->bv_offset = offset;
3261 }
3262 
3263 /**
3264  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3265  * @fragto: skb fragment where offset is set
3266  * @fragfrom: skb fragment offset is copied from
3267  */
3268 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3269 				     const skb_frag_t *fragfrom)
3270 {
3271 	fragto->bv_offset = fragfrom->bv_offset;
3272 }
3273 
3274 /**
3275  * skb_frag_page - retrieve the page referred to by a paged fragment
3276  * @frag: the paged fragment
3277  *
3278  * Returns the &struct page associated with @frag.
3279  */
3280 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3281 {
3282 	return frag->bv_page;
3283 }
3284 
3285 /**
3286  * __skb_frag_ref - take an addition reference on a paged fragment.
3287  * @frag: the paged fragment
3288  *
3289  * Takes an additional reference on the paged fragment @frag.
3290  */
3291 static inline void __skb_frag_ref(skb_frag_t *frag)
3292 {
3293 	get_page(skb_frag_page(frag));
3294 }
3295 
3296 /**
3297  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3298  * @skb: the buffer
3299  * @f: the fragment offset.
3300  *
3301  * Takes an additional reference on the @f'th paged fragment of @skb.
3302  */
3303 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3304 {
3305 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3306 }
3307 
3308 /**
3309  * __skb_frag_unref - release a reference on a paged fragment.
3310  * @frag: the paged fragment
3311  * @recycle: recycle the page if allocated via page_pool
3312  *
3313  * Releases a reference on the paged fragment @frag
3314  * or recycles the page via the page_pool API.
3315  */
3316 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3317 {
3318 	struct page *page = skb_frag_page(frag);
3319 
3320 #ifdef CONFIG_PAGE_POOL
3321 	if (recycle && page_pool_return_skb_page(page))
3322 		return;
3323 #endif
3324 	put_page(page);
3325 }
3326 
3327 /**
3328  * skb_frag_unref - release a reference on a paged fragment of an skb.
3329  * @skb: the buffer
3330  * @f: the fragment offset
3331  *
3332  * Releases a reference on the @f'th paged fragment of @skb.
3333  */
3334 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3335 {
3336 	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3337 }
3338 
3339 /**
3340  * skb_frag_address - gets the address of the data contained in a paged fragment
3341  * @frag: the paged fragment buffer
3342  *
3343  * Returns the address of the data within @frag. The page must already
3344  * be mapped.
3345  */
3346 static inline void *skb_frag_address(const skb_frag_t *frag)
3347 {
3348 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3349 }
3350 
3351 /**
3352  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3353  * @frag: the paged fragment buffer
3354  *
3355  * Returns the address of the data within @frag. Checks that the page
3356  * is mapped and returns %NULL otherwise.
3357  */
3358 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3359 {
3360 	void *ptr = page_address(skb_frag_page(frag));
3361 	if (unlikely(!ptr))
3362 		return NULL;
3363 
3364 	return ptr + skb_frag_off(frag);
3365 }
3366 
3367 /**
3368  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3369  * @fragto: skb fragment where page is set
3370  * @fragfrom: skb fragment page is copied from
3371  */
3372 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3373 				      const skb_frag_t *fragfrom)
3374 {
3375 	fragto->bv_page = fragfrom->bv_page;
3376 }
3377 
3378 /**
3379  * __skb_frag_set_page - sets the page contained in a paged fragment
3380  * @frag: the paged fragment
3381  * @page: the page to set
3382  *
3383  * Sets the fragment @frag to contain @page.
3384  */
3385 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3386 {
3387 	frag->bv_page = page;
3388 }
3389 
3390 /**
3391  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3392  * @skb: the buffer
3393  * @f: the fragment offset
3394  * @page: the page to set
3395  *
3396  * Sets the @f'th fragment of @skb to contain @page.
3397  */
3398 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3399 				     struct page *page)
3400 {
3401 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3402 }
3403 
3404 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3405 
3406 /**
3407  * skb_frag_dma_map - maps a paged fragment via the DMA API
3408  * @dev: the device to map the fragment to
3409  * @frag: the paged fragment to map
3410  * @offset: the offset within the fragment (starting at the
3411  *          fragment's own offset)
3412  * @size: the number of bytes to map
3413  * @dir: the direction of the mapping (``PCI_DMA_*``)
3414  *
3415  * Maps the page associated with @frag to @device.
3416  */
3417 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3418 					  const skb_frag_t *frag,
3419 					  size_t offset, size_t size,
3420 					  enum dma_data_direction dir)
3421 {
3422 	return dma_map_page(dev, skb_frag_page(frag),
3423 			    skb_frag_off(frag) + offset, size, dir);
3424 }
3425 
3426 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3427 					gfp_t gfp_mask)
3428 {
3429 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3430 }
3431 
3432 
3433 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3434 						  gfp_t gfp_mask)
3435 {
3436 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3437 }
3438 
3439 
3440 /**
3441  *	skb_clone_writable - is the header of a clone writable
3442  *	@skb: buffer to check
3443  *	@len: length up to which to write
3444  *
3445  *	Returns true if modifying the header part of the cloned buffer
3446  *	does not requires the data to be copied.
3447  */
3448 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3449 {
3450 	return !skb_header_cloned(skb) &&
3451 	       skb_headroom(skb) + len <= skb->hdr_len;
3452 }
3453 
3454 static inline int skb_try_make_writable(struct sk_buff *skb,
3455 					unsigned int write_len)
3456 {
3457 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3458 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3459 }
3460 
3461 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3462 			    int cloned)
3463 {
3464 	int delta = 0;
3465 
3466 	if (headroom > skb_headroom(skb))
3467 		delta = headroom - skb_headroom(skb);
3468 
3469 	if (delta || cloned)
3470 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3471 					GFP_ATOMIC);
3472 	return 0;
3473 }
3474 
3475 /**
3476  *	skb_cow - copy header of skb when it is required
3477  *	@skb: buffer to cow
3478  *	@headroom: needed headroom
3479  *
3480  *	If the skb passed lacks sufficient headroom or its data part
3481  *	is shared, data is reallocated. If reallocation fails, an error
3482  *	is returned and original skb is not changed.
3483  *
3484  *	The result is skb with writable area skb->head...skb->tail
3485  *	and at least @headroom of space at head.
3486  */
3487 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3488 {
3489 	return __skb_cow(skb, headroom, skb_cloned(skb));
3490 }
3491 
3492 /**
3493  *	skb_cow_head - skb_cow but only making the head writable
3494  *	@skb: buffer to cow
3495  *	@headroom: needed headroom
3496  *
3497  *	This function is identical to skb_cow except that we replace the
3498  *	skb_cloned check by skb_header_cloned.  It should be used when
3499  *	you only need to push on some header and do not need to modify
3500  *	the data.
3501  */
3502 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3503 {
3504 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3505 }
3506 
3507 /**
3508  *	skb_padto	- pad an skbuff up to a minimal size
3509  *	@skb: buffer to pad
3510  *	@len: minimal length
3511  *
3512  *	Pads up a buffer to ensure the trailing bytes exist and are
3513  *	blanked. If the buffer already contains sufficient data it
3514  *	is untouched. Otherwise it is extended. Returns zero on
3515  *	success. The skb is freed on error.
3516  */
3517 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3518 {
3519 	unsigned int size = skb->len;
3520 	if (likely(size >= len))
3521 		return 0;
3522 	return skb_pad(skb, len - size);
3523 }
3524 
3525 /**
3526  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3527  *	@skb: buffer to pad
3528  *	@len: minimal length
3529  *	@free_on_error: free buffer on error
3530  *
3531  *	Pads up a buffer to ensure the trailing bytes exist and are
3532  *	blanked. If the buffer already contains sufficient data it
3533  *	is untouched. Otherwise it is extended. Returns zero on
3534  *	success. The skb is freed on error if @free_on_error is true.
3535  */
3536 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3537 					       unsigned int len,
3538 					       bool free_on_error)
3539 {
3540 	unsigned int size = skb->len;
3541 
3542 	if (unlikely(size < len)) {
3543 		len -= size;
3544 		if (__skb_pad(skb, len, free_on_error))
3545 			return -ENOMEM;
3546 		__skb_put(skb, len);
3547 	}
3548 	return 0;
3549 }
3550 
3551 /**
3552  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3553  *	@skb: buffer to pad
3554  *	@len: minimal length
3555  *
3556  *	Pads up a buffer to ensure the trailing bytes exist and are
3557  *	blanked. If the buffer already contains sufficient data it
3558  *	is untouched. Otherwise it is extended. Returns zero on
3559  *	success. The skb is freed on error.
3560  */
3561 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3562 {
3563 	return __skb_put_padto(skb, len, true);
3564 }
3565 
3566 static inline int skb_add_data(struct sk_buff *skb,
3567 			       struct iov_iter *from, int copy)
3568 {
3569 	const int off = skb->len;
3570 
3571 	if (skb->ip_summed == CHECKSUM_NONE) {
3572 		__wsum csum = 0;
3573 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3574 					         &csum, from)) {
3575 			skb->csum = csum_block_add(skb->csum, csum, off);
3576 			return 0;
3577 		}
3578 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3579 		return 0;
3580 
3581 	__skb_trim(skb, off);
3582 	return -EFAULT;
3583 }
3584 
3585 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3586 				    const struct page *page, int off)
3587 {
3588 	if (skb_zcopy(skb))
3589 		return false;
3590 	if (i) {
3591 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3592 
3593 		return page == skb_frag_page(frag) &&
3594 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3595 	}
3596 	return false;
3597 }
3598 
3599 static inline int __skb_linearize(struct sk_buff *skb)
3600 {
3601 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3602 }
3603 
3604 /**
3605  *	skb_linearize - convert paged skb to linear one
3606  *	@skb: buffer to linarize
3607  *
3608  *	If there is no free memory -ENOMEM is returned, otherwise zero
3609  *	is returned and the old skb data released.
3610  */
3611 static inline int skb_linearize(struct sk_buff *skb)
3612 {
3613 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3614 }
3615 
3616 /**
3617  * skb_has_shared_frag - can any frag be overwritten
3618  * @skb: buffer to test
3619  *
3620  * Return true if the skb has at least one frag that might be modified
3621  * by an external entity (as in vmsplice()/sendfile())
3622  */
3623 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3624 {
3625 	return skb_is_nonlinear(skb) &&
3626 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3627 }
3628 
3629 /**
3630  *	skb_linearize_cow - make sure skb is linear and writable
3631  *	@skb: buffer to process
3632  *
3633  *	If there is no free memory -ENOMEM is returned, otherwise zero
3634  *	is returned and the old skb data released.
3635  */
3636 static inline int skb_linearize_cow(struct sk_buff *skb)
3637 {
3638 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3639 	       __skb_linearize(skb) : 0;
3640 }
3641 
3642 static __always_inline void
3643 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3644 		     unsigned int off)
3645 {
3646 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3647 		skb->csum = csum_block_sub(skb->csum,
3648 					   csum_partial(start, len, 0), off);
3649 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3650 		 skb_checksum_start_offset(skb) < 0)
3651 		skb->ip_summed = CHECKSUM_NONE;
3652 }
3653 
3654 /**
3655  *	skb_postpull_rcsum - update checksum for received skb after pull
3656  *	@skb: buffer to update
3657  *	@start: start of data before pull
3658  *	@len: length of data pulled
3659  *
3660  *	After doing a pull on a received packet, you need to call this to
3661  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3662  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3663  */
3664 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3665 				      const void *start, unsigned int len)
3666 {
3667 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3668 		skb->csum = wsum_negate(csum_partial(start, len,
3669 						     wsum_negate(skb->csum)));
3670 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3671 		 skb_checksum_start_offset(skb) < 0)
3672 		skb->ip_summed = CHECKSUM_NONE;
3673 }
3674 
3675 static __always_inline void
3676 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3677 		     unsigned int off)
3678 {
3679 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3680 		skb->csum = csum_block_add(skb->csum,
3681 					   csum_partial(start, len, 0), off);
3682 }
3683 
3684 /**
3685  *	skb_postpush_rcsum - update checksum for received skb after push
3686  *	@skb: buffer to update
3687  *	@start: start of data after push
3688  *	@len: length of data pushed
3689  *
3690  *	After doing a push on a received packet, you need to call this to
3691  *	update the CHECKSUM_COMPLETE checksum.
3692  */
3693 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3694 				      const void *start, unsigned int len)
3695 {
3696 	__skb_postpush_rcsum(skb, start, len, 0);
3697 }
3698 
3699 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3700 
3701 /**
3702  *	skb_push_rcsum - push skb and update receive checksum
3703  *	@skb: buffer to update
3704  *	@len: length of data pulled
3705  *
3706  *	This function performs an skb_push on the packet and updates
3707  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3708  *	receive path processing instead of skb_push unless you know
3709  *	that the checksum difference is zero (e.g., a valid IP header)
3710  *	or you are setting ip_summed to CHECKSUM_NONE.
3711  */
3712 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3713 {
3714 	skb_push(skb, len);
3715 	skb_postpush_rcsum(skb, skb->data, len);
3716 	return skb->data;
3717 }
3718 
3719 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3720 /**
3721  *	pskb_trim_rcsum - trim received skb and update checksum
3722  *	@skb: buffer to trim
3723  *	@len: new length
3724  *
3725  *	This is exactly the same as pskb_trim except that it ensures the
3726  *	checksum of received packets are still valid after the operation.
3727  *	It can change skb pointers.
3728  */
3729 
3730 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3731 {
3732 	if (likely(len >= skb->len))
3733 		return 0;
3734 	return pskb_trim_rcsum_slow(skb, len);
3735 }
3736 
3737 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3738 {
3739 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3740 		skb->ip_summed = CHECKSUM_NONE;
3741 	__skb_trim(skb, len);
3742 	return 0;
3743 }
3744 
3745 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3746 {
3747 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3748 		skb->ip_summed = CHECKSUM_NONE;
3749 	return __skb_grow(skb, len);
3750 }
3751 
3752 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3753 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3754 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3755 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3756 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3757 
3758 #define skb_queue_walk(queue, skb) \
3759 		for (skb = (queue)->next;					\
3760 		     skb != (struct sk_buff *)(queue);				\
3761 		     skb = skb->next)
3762 
3763 #define skb_queue_walk_safe(queue, skb, tmp)					\
3764 		for (skb = (queue)->next, tmp = skb->next;			\
3765 		     skb != (struct sk_buff *)(queue);				\
3766 		     skb = tmp, tmp = skb->next)
3767 
3768 #define skb_queue_walk_from(queue, skb)						\
3769 		for (; skb != (struct sk_buff *)(queue);			\
3770 		     skb = skb->next)
3771 
3772 #define skb_rbtree_walk(skb, root)						\
3773 		for (skb = skb_rb_first(root); skb != NULL;			\
3774 		     skb = skb_rb_next(skb))
3775 
3776 #define skb_rbtree_walk_from(skb)						\
3777 		for (; skb != NULL;						\
3778 		     skb = skb_rb_next(skb))
3779 
3780 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3781 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3782 		     skb = tmp)
3783 
3784 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3785 		for (tmp = skb->next;						\
3786 		     skb != (struct sk_buff *)(queue);				\
3787 		     skb = tmp, tmp = skb->next)
3788 
3789 #define skb_queue_reverse_walk(queue, skb) \
3790 		for (skb = (queue)->prev;					\
3791 		     skb != (struct sk_buff *)(queue);				\
3792 		     skb = skb->prev)
3793 
3794 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3795 		for (skb = (queue)->prev, tmp = skb->prev;			\
3796 		     skb != (struct sk_buff *)(queue);				\
3797 		     skb = tmp, tmp = skb->prev)
3798 
3799 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3800 		for (tmp = skb->prev;						\
3801 		     skb != (struct sk_buff *)(queue);				\
3802 		     skb = tmp, tmp = skb->prev)
3803 
3804 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3805 {
3806 	return skb_shinfo(skb)->frag_list != NULL;
3807 }
3808 
3809 static inline void skb_frag_list_init(struct sk_buff *skb)
3810 {
3811 	skb_shinfo(skb)->frag_list = NULL;
3812 }
3813 
3814 #define skb_walk_frags(skb, iter)	\
3815 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3816 
3817 
3818 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3819 				int *err, long *timeo_p,
3820 				const struct sk_buff *skb);
3821 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3822 					  struct sk_buff_head *queue,
3823 					  unsigned int flags,
3824 					  int *off, int *err,
3825 					  struct sk_buff **last);
3826 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3827 					struct sk_buff_head *queue,
3828 					unsigned int flags, int *off, int *err,
3829 					struct sk_buff **last);
3830 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3831 				    struct sk_buff_head *sk_queue,
3832 				    unsigned int flags, int *off, int *err);
3833 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3834 __poll_t datagram_poll(struct file *file, struct socket *sock,
3835 			   struct poll_table_struct *wait);
3836 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3837 			   struct iov_iter *to, int size);
3838 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3839 					struct msghdr *msg, int size)
3840 {
3841 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3842 }
3843 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3844 				   struct msghdr *msg);
3845 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3846 			   struct iov_iter *to, int len,
3847 			   struct ahash_request *hash);
3848 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3849 				 struct iov_iter *from, int len);
3850 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3851 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3852 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3853 static inline void skb_free_datagram_locked(struct sock *sk,
3854 					    struct sk_buff *skb)
3855 {
3856 	__skb_free_datagram_locked(sk, skb, 0);
3857 }
3858 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3859 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3860 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3861 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3862 			      int len);
3863 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3864 		    struct pipe_inode_info *pipe, unsigned int len,
3865 		    unsigned int flags);
3866 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3867 			 int len);
3868 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3869 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3870 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3871 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3872 		 int len, int hlen);
3873 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3874 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3875 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3876 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3877 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3878 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3879 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3880 				 unsigned int offset);
3881 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3882 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3883 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3884 int skb_vlan_pop(struct sk_buff *skb);
3885 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3886 int skb_eth_pop(struct sk_buff *skb);
3887 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3888 		 const unsigned char *src);
3889 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3890 		  int mac_len, bool ethernet);
3891 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3892 		 bool ethernet);
3893 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3894 int skb_mpls_dec_ttl(struct sk_buff *skb);
3895 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3896 			     gfp_t gfp);
3897 
3898 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3899 {
3900 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3901 }
3902 
3903 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3904 {
3905 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3906 }
3907 
3908 struct skb_checksum_ops {
3909 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3910 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3911 };
3912 
3913 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3914 
3915 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3916 		      __wsum csum, const struct skb_checksum_ops *ops);
3917 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3918 		    __wsum csum);
3919 
3920 static inline void * __must_check
3921 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3922 		     const void *data, int hlen, void *buffer)
3923 {
3924 	if (likely(hlen - offset >= len))
3925 		return (void *)data + offset;
3926 
3927 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3928 		return NULL;
3929 
3930 	return buffer;
3931 }
3932 
3933 static inline void * __must_check
3934 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3935 {
3936 	return __skb_header_pointer(skb, offset, len, skb->data,
3937 				    skb_headlen(skb), buffer);
3938 }
3939 
3940 /**
3941  *	skb_needs_linearize - check if we need to linearize a given skb
3942  *			      depending on the given device features.
3943  *	@skb: socket buffer to check
3944  *	@features: net device features
3945  *
3946  *	Returns true if either:
3947  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3948  *	2. skb is fragmented and the device does not support SG.
3949  */
3950 static inline bool skb_needs_linearize(struct sk_buff *skb,
3951 				       netdev_features_t features)
3952 {
3953 	return skb_is_nonlinear(skb) &&
3954 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3955 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3956 }
3957 
3958 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3959 					     void *to,
3960 					     const unsigned int len)
3961 {
3962 	memcpy(to, skb->data, len);
3963 }
3964 
3965 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3966 						    const int offset, void *to,
3967 						    const unsigned int len)
3968 {
3969 	memcpy(to, skb->data + offset, len);
3970 }
3971 
3972 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3973 					   const void *from,
3974 					   const unsigned int len)
3975 {
3976 	memcpy(skb->data, from, len);
3977 }
3978 
3979 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3980 						  const int offset,
3981 						  const void *from,
3982 						  const unsigned int len)
3983 {
3984 	memcpy(skb->data + offset, from, len);
3985 }
3986 
3987 void skb_init(void);
3988 
3989 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3990 {
3991 	return skb->tstamp;
3992 }
3993 
3994 /**
3995  *	skb_get_timestamp - get timestamp from a skb
3996  *	@skb: skb to get stamp from
3997  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3998  *
3999  *	Timestamps are stored in the skb as offsets to a base timestamp.
4000  *	This function converts the offset back to a struct timeval and stores
4001  *	it in stamp.
4002  */
4003 static inline void skb_get_timestamp(const struct sk_buff *skb,
4004 				     struct __kernel_old_timeval *stamp)
4005 {
4006 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4007 }
4008 
4009 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4010 					 struct __kernel_sock_timeval *stamp)
4011 {
4012 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4013 
4014 	stamp->tv_sec = ts.tv_sec;
4015 	stamp->tv_usec = ts.tv_nsec / 1000;
4016 }
4017 
4018 static inline void skb_get_timestampns(const struct sk_buff *skb,
4019 				       struct __kernel_old_timespec *stamp)
4020 {
4021 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4022 
4023 	stamp->tv_sec = ts.tv_sec;
4024 	stamp->tv_nsec = ts.tv_nsec;
4025 }
4026 
4027 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4028 					   struct __kernel_timespec *stamp)
4029 {
4030 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4031 
4032 	stamp->tv_sec = ts.tv_sec;
4033 	stamp->tv_nsec = ts.tv_nsec;
4034 }
4035 
4036 static inline void __net_timestamp(struct sk_buff *skb)
4037 {
4038 	skb->tstamp = ktime_get_real();
4039 	skb->mono_delivery_time = 0;
4040 }
4041 
4042 static inline ktime_t net_timedelta(ktime_t t)
4043 {
4044 	return ktime_sub(ktime_get_real(), t);
4045 }
4046 
4047 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4048 					 bool mono)
4049 {
4050 	skb->tstamp = kt;
4051 	skb->mono_delivery_time = kt && mono;
4052 }
4053 
4054 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4055 
4056 /* It is used in the ingress path to clear the delivery_time.
4057  * If needed, set the skb->tstamp to the (rcv) timestamp.
4058  */
4059 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4060 {
4061 	if (skb->mono_delivery_time) {
4062 		skb->mono_delivery_time = 0;
4063 		if (static_branch_unlikely(&netstamp_needed_key))
4064 			skb->tstamp = ktime_get_real();
4065 		else
4066 			skb->tstamp = 0;
4067 	}
4068 }
4069 
4070 static inline void skb_clear_tstamp(struct sk_buff *skb)
4071 {
4072 	if (skb->mono_delivery_time)
4073 		return;
4074 
4075 	skb->tstamp = 0;
4076 }
4077 
4078 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4079 {
4080 	if (skb->mono_delivery_time)
4081 		return 0;
4082 
4083 	return skb->tstamp;
4084 }
4085 
4086 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4087 {
4088 	if (!skb->mono_delivery_time && skb->tstamp)
4089 		return skb->tstamp;
4090 
4091 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4092 		return ktime_get_real();
4093 
4094 	return 0;
4095 }
4096 
4097 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4098 {
4099 	return skb_shinfo(skb)->meta_len;
4100 }
4101 
4102 static inline void *skb_metadata_end(const struct sk_buff *skb)
4103 {
4104 	return skb_mac_header(skb);
4105 }
4106 
4107 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4108 					  const struct sk_buff *skb_b,
4109 					  u8 meta_len)
4110 {
4111 	const void *a = skb_metadata_end(skb_a);
4112 	const void *b = skb_metadata_end(skb_b);
4113 	/* Using more efficient varaiant than plain call to memcmp(). */
4114 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4115 	u64 diffs = 0;
4116 
4117 	switch (meta_len) {
4118 #define __it(x, op) (x -= sizeof(u##op))
4119 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4120 	case 32: diffs |= __it_diff(a, b, 64);
4121 		fallthrough;
4122 	case 24: diffs |= __it_diff(a, b, 64);
4123 		fallthrough;
4124 	case 16: diffs |= __it_diff(a, b, 64);
4125 		fallthrough;
4126 	case  8: diffs |= __it_diff(a, b, 64);
4127 		break;
4128 	case 28: diffs |= __it_diff(a, b, 64);
4129 		fallthrough;
4130 	case 20: diffs |= __it_diff(a, b, 64);
4131 		fallthrough;
4132 	case 12: diffs |= __it_diff(a, b, 64);
4133 		fallthrough;
4134 	case  4: diffs |= __it_diff(a, b, 32);
4135 		break;
4136 	}
4137 	return diffs;
4138 #else
4139 	return memcmp(a - meta_len, b - meta_len, meta_len);
4140 #endif
4141 }
4142 
4143 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4144 					const struct sk_buff *skb_b)
4145 {
4146 	u8 len_a = skb_metadata_len(skb_a);
4147 	u8 len_b = skb_metadata_len(skb_b);
4148 
4149 	if (!(len_a | len_b))
4150 		return false;
4151 
4152 	return len_a != len_b ?
4153 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4154 }
4155 
4156 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4157 {
4158 	skb_shinfo(skb)->meta_len = meta_len;
4159 }
4160 
4161 static inline void skb_metadata_clear(struct sk_buff *skb)
4162 {
4163 	skb_metadata_set(skb, 0);
4164 }
4165 
4166 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4167 
4168 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4169 
4170 void skb_clone_tx_timestamp(struct sk_buff *skb);
4171 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4172 
4173 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4174 
4175 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4176 {
4177 }
4178 
4179 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4180 {
4181 	return false;
4182 }
4183 
4184 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4185 
4186 /**
4187  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4188  *
4189  * PHY drivers may accept clones of transmitted packets for
4190  * timestamping via their phy_driver.txtstamp method. These drivers
4191  * must call this function to return the skb back to the stack with a
4192  * timestamp.
4193  *
4194  * @skb: clone of the original outgoing packet
4195  * @hwtstamps: hardware time stamps
4196  *
4197  */
4198 void skb_complete_tx_timestamp(struct sk_buff *skb,
4199 			       struct skb_shared_hwtstamps *hwtstamps);
4200 
4201 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4202 		     struct skb_shared_hwtstamps *hwtstamps,
4203 		     struct sock *sk, int tstype);
4204 
4205 /**
4206  * skb_tstamp_tx - queue clone of skb with send time stamps
4207  * @orig_skb:	the original outgoing packet
4208  * @hwtstamps:	hardware time stamps, may be NULL if not available
4209  *
4210  * If the skb has a socket associated, then this function clones the
4211  * skb (thus sharing the actual data and optional structures), stores
4212  * the optional hardware time stamping information (if non NULL) or
4213  * generates a software time stamp (otherwise), then queues the clone
4214  * to the error queue of the socket.  Errors are silently ignored.
4215  */
4216 void skb_tstamp_tx(struct sk_buff *orig_skb,
4217 		   struct skb_shared_hwtstamps *hwtstamps);
4218 
4219 /**
4220  * skb_tx_timestamp() - Driver hook for transmit timestamping
4221  *
4222  * Ethernet MAC Drivers should call this function in their hard_xmit()
4223  * function immediately before giving the sk_buff to the MAC hardware.
4224  *
4225  * Specifically, one should make absolutely sure that this function is
4226  * called before TX completion of this packet can trigger.  Otherwise
4227  * the packet could potentially already be freed.
4228  *
4229  * @skb: A socket buffer.
4230  */
4231 static inline void skb_tx_timestamp(struct sk_buff *skb)
4232 {
4233 	skb_clone_tx_timestamp(skb);
4234 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4235 		skb_tstamp_tx(skb, NULL);
4236 }
4237 
4238 /**
4239  * skb_complete_wifi_ack - deliver skb with wifi status
4240  *
4241  * @skb: the original outgoing packet
4242  * @acked: ack status
4243  *
4244  */
4245 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4246 
4247 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4248 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4249 
4250 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4251 {
4252 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4253 		skb->csum_valid ||
4254 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4255 		 skb_checksum_start_offset(skb) >= 0));
4256 }
4257 
4258 /**
4259  *	skb_checksum_complete - Calculate checksum of an entire packet
4260  *	@skb: packet to process
4261  *
4262  *	This function calculates the checksum over the entire packet plus
4263  *	the value of skb->csum.  The latter can be used to supply the
4264  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4265  *	checksum.
4266  *
4267  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4268  *	this function can be used to verify that checksum on received
4269  *	packets.  In that case the function should return zero if the
4270  *	checksum is correct.  In particular, this function will return zero
4271  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4272  *	hardware has already verified the correctness of the checksum.
4273  */
4274 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4275 {
4276 	return skb_csum_unnecessary(skb) ?
4277 	       0 : __skb_checksum_complete(skb);
4278 }
4279 
4280 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4281 {
4282 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4283 		if (skb->csum_level == 0)
4284 			skb->ip_summed = CHECKSUM_NONE;
4285 		else
4286 			skb->csum_level--;
4287 	}
4288 }
4289 
4290 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4291 {
4292 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4293 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4294 			skb->csum_level++;
4295 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4296 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4297 		skb->csum_level = 0;
4298 	}
4299 }
4300 
4301 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4302 {
4303 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4304 		skb->ip_summed = CHECKSUM_NONE;
4305 		skb->csum_level = 0;
4306 	}
4307 }
4308 
4309 /* Check if we need to perform checksum complete validation.
4310  *
4311  * Returns true if checksum complete is needed, false otherwise
4312  * (either checksum is unnecessary or zero checksum is allowed).
4313  */
4314 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4315 						  bool zero_okay,
4316 						  __sum16 check)
4317 {
4318 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4319 		skb->csum_valid = 1;
4320 		__skb_decr_checksum_unnecessary(skb);
4321 		return false;
4322 	}
4323 
4324 	return true;
4325 }
4326 
4327 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4328  * in checksum_init.
4329  */
4330 #define CHECKSUM_BREAK 76
4331 
4332 /* Unset checksum-complete
4333  *
4334  * Unset checksum complete can be done when packet is being modified
4335  * (uncompressed for instance) and checksum-complete value is
4336  * invalidated.
4337  */
4338 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4339 {
4340 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4341 		skb->ip_summed = CHECKSUM_NONE;
4342 }
4343 
4344 /* Validate (init) checksum based on checksum complete.
4345  *
4346  * Return values:
4347  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4348  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4349  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4350  *   non-zero: value of invalid checksum
4351  *
4352  */
4353 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4354 						       bool complete,
4355 						       __wsum psum)
4356 {
4357 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4358 		if (!csum_fold(csum_add(psum, skb->csum))) {
4359 			skb->csum_valid = 1;
4360 			return 0;
4361 		}
4362 	}
4363 
4364 	skb->csum = psum;
4365 
4366 	if (complete || skb->len <= CHECKSUM_BREAK) {
4367 		__sum16 csum;
4368 
4369 		csum = __skb_checksum_complete(skb);
4370 		skb->csum_valid = !csum;
4371 		return csum;
4372 	}
4373 
4374 	return 0;
4375 }
4376 
4377 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4378 {
4379 	return 0;
4380 }
4381 
4382 /* Perform checksum validate (init). Note that this is a macro since we only
4383  * want to calculate the pseudo header which is an input function if necessary.
4384  * First we try to validate without any computation (checksum unnecessary) and
4385  * then calculate based on checksum complete calling the function to compute
4386  * pseudo header.
4387  *
4388  * Return values:
4389  *   0: checksum is validated or try to in skb_checksum_complete
4390  *   non-zero: value of invalid checksum
4391  */
4392 #define __skb_checksum_validate(skb, proto, complete,			\
4393 				zero_okay, check, compute_pseudo)	\
4394 ({									\
4395 	__sum16 __ret = 0;						\
4396 	skb->csum_valid = 0;						\
4397 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4398 		__ret = __skb_checksum_validate_complete(skb,		\
4399 				complete, compute_pseudo(skb, proto));	\
4400 	__ret;								\
4401 })
4402 
4403 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4404 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4405 
4406 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4407 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4408 
4409 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4410 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4411 
4412 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4413 					 compute_pseudo)		\
4414 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4415 
4416 #define skb_checksum_simple_validate(skb)				\
4417 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4418 
4419 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4420 {
4421 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4422 }
4423 
4424 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4425 {
4426 	skb->csum = ~pseudo;
4427 	skb->ip_summed = CHECKSUM_COMPLETE;
4428 }
4429 
4430 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4431 do {									\
4432 	if (__skb_checksum_convert_check(skb))				\
4433 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4434 } while (0)
4435 
4436 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4437 					      u16 start, u16 offset)
4438 {
4439 	skb->ip_summed = CHECKSUM_PARTIAL;
4440 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4441 	skb->csum_offset = offset - start;
4442 }
4443 
4444 /* Update skbuf and packet to reflect the remote checksum offload operation.
4445  * When called, ptr indicates the starting point for skb->csum when
4446  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4447  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4448  */
4449 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4450 				       int start, int offset, bool nopartial)
4451 {
4452 	__wsum delta;
4453 
4454 	if (!nopartial) {
4455 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4456 		return;
4457 	}
4458 
4459 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4460 		__skb_checksum_complete(skb);
4461 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4462 	}
4463 
4464 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4465 
4466 	/* Adjust skb->csum since we changed the packet */
4467 	skb->csum = csum_add(skb->csum, delta);
4468 }
4469 
4470 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4471 {
4472 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4473 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4474 #else
4475 	return NULL;
4476 #endif
4477 }
4478 
4479 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4480 {
4481 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4482 	return skb->_nfct;
4483 #else
4484 	return 0UL;
4485 #endif
4486 }
4487 
4488 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4489 {
4490 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4491 	skb->slow_gro |= !!nfct;
4492 	skb->_nfct = nfct;
4493 #endif
4494 }
4495 
4496 #ifdef CONFIG_SKB_EXTENSIONS
4497 enum skb_ext_id {
4498 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4499 	SKB_EXT_BRIDGE_NF,
4500 #endif
4501 #ifdef CONFIG_XFRM
4502 	SKB_EXT_SEC_PATH,
4503 #endif
4504 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4505 	TC_SKB_EXT,
4506 #endif
4507 #if IS_ENABLED(CONFIG_MPTCP)
4508 	SKB_EXT_MPTCP,
4509 #endif
4510 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4511 	SKB_EXT_MCTP,
4512 #endif
4513 	SKB_EXT_NUM, /* must be last */
4514 };
4515 
4516 /**
4517  *	struct skb_ext - sk_buff extensions
4518  *	@refcnt: 1 on allocation, deallocated on 0
4519  *	@offset: offset to add to @data to obtain extension address
4520  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4521  *	@data: start of extension data, variable sized
4522  *
4523  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4524  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4525  */
4526 struct skb_ext {
4527 	refcount_t refcnt;
4528 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4529 	u8 chunks;		/* same */
4530 	char data[] __aligned(8);
4531 };
4532 
4533 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4534 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4535 		    struct skb_ext *ext);
4536 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4537 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4538 void __skb_ext_put(struct skb_ext *ext);
4539 
4540 static inline void skb_ext_put(struct sk_buff *skb)
4541 {
4542 	if (skb->active_extensions)
4543 		__skb_ext_put(skb->extensions);
4544 }
4545 
4546 static inline void __skb_ext_copy(struct sk_buff *dst,
4547 				  const struct sk_buff *src)
4548 {
4549 	dst->active_extensions = src->active_extensions;
4550 
4551 	if (src->active_extensions) {
4552 		struct skb_ext *ext = src->extensions;
4553 
4554 		refcount_inc(&ext->refcnt);
4555 		dst->extensions = ext;
4556 	}
4557 }
4558 
4559 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4560 {
4561 	skb_ext_put(dst);
4562 	__skb_ext_copy(dst, src);
4563 }
4564 
4565 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4566 {
4567 	return !!ext->offset[i];
4568 }
4569 
4570 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4571 {
4572 	return skb->active_extensions & (1 << id);
4573 }
4574 
4575 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4576 {
4577 	if (skb_ext_exist(skb, id))
4578 		__skb_ext_del(skb, id);
4579 }
4580 
4581 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4582 {
4583 	if (skb_ext_exist(skb, id)) {
4584 		struct skb_ext *ext = skb->extensions;
4585 
4586 		return (void *)ext + (ext->offset[id] << 3);
4587 	}
4588 
4589 	return NULL;
4590 }
4591 
4592 static inline void skb_ext_reset(struct sk_buff *skb)
4593 {
4594 	if (unlikely(skb->active_extensions)) {
4595 		__skb_ext_put(skb->extensions);
4596 		skb->active_extensions = 0;
4597 	}
4598 }
4599 
4600 static inline bool skb_has_extensions(struct sk_buff *skb)
4601 {
4602 	return unlikely(skb->active_extensions);
4603 }
4604 #else
4605 static inline void skb_ext_put(struct sk_buff *skb) {}
4606 static inline void skb_ext_reset(struct sk_buff *skb) {}
4607 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4608 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4609 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4610 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4611 #endif /* CONFIG_SKB_EXTENSIONS */
4612 
4613 static inline void nf_reset_ct(struct sk_buff *skb)
4614 {
4615 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4616 	nf_conntrack_put(skb_nfct(skb));
4617 	skb->_nfct = 0;
4618 #endif
4619 }
4620 
4621 static inline void nf_reset_trace(struct sk_buff *skb)
4622 {
4623 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4624 	skb->nf_trace = 0;
4625 #endif
4626 }
4627 
4628 static inline void ipvs_reset(struct sk_buff *skb)
4629 {
4630 #if IS_ENABLED(CONFIG_IP_VS)
4631 	skb->ipvs_property = 0;
4632 #endif
4633 }
4634 
4635 /* Note: This doesn't put any conntrack info in dst. */
4636 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4637 			     bool copy)
4638 {
4639 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4640 	dst->_nfct = src->_nfct;
4641 	nf_conntrack_get(skb_nfct(src));
4642 #endif
4643 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4644 	if (copy)
4645 		dst->nf_trace = src->nf_trace;
4646 #endif
4647 }
4648 
4649 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4650 {
4651 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4652 	nf_conntrack_put(skb_nfct(dst));
4653 #endif
4654 	dst->slow_gro = src->slow_gro;
4655 	__nf_copy(dst, src, true);
4656 }
4657 
4658 #ifdef CONFIG_NETWORK_SECMARK
4659 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4660 {
4661 	to->secmark = from->secmark;
4662 }
4663 
4664 static inline void skb_init_secmark(struct sk_buff *skb)
4665 {
4666 	skb->secmark = 0;
4667 }
4668 #else
4669 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4670 { }
4671 
4672 static inline void skb_init_secmark(struct sk_buff *skb)
4673 { }
4674 #endif
4675 
4676 static inline int secpath_exists(const struct sk_buff *skb)
4677 {
4678 #ifdef CONFIG_XFRM
4679 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4680 #else
4681 	return 0;
4682 #endif
4683 }
4684 
4685 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4686 {
4687 	return !skb->destructor &&
4688 		!secpath_exists(skb) &&
4689 		!skb_nfct(skb) &&
4690 		!skb->_skb_refdst &&
4691 		!skb_has_frag_list(skb);
4692 }
4693 
4694 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4695 {
4696 	skb->queue_mapping = queue_mapping;
4697 }
4698 
4699 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4700 {
4701 	return skb->queue_mapping;
4702 }
4703 
4704 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4705 {
4706 	to->queue_mapping = from->queue_mapping;
4707 }
4708 
4709 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4710 {
4711 	skb->queue_mapping = rx_queue + 1;
4712 }
4713 
4714 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4715 {
4716 	return skb->queue_mapping - 1;
4717 }
4718 
4719 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4720 {
4721 	return skb->queue_mapping != 0;
4722 }
4723 
4724 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4725 {
4726 	skb->dst_pending_confirm = val;
4727 }
4728 
4729 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4730 {
4731 	return skb->dst_pending_confirm != 0;
4732 }
4733 
4734 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4735 {
4736 #ifdef CONFIG_XFRM
4737 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4738 #else
4739 	return NULL;
4740 #endif
4741 }
4742 
4743 /* Keeps track of mac header offset relative to skb->head.
4744  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4745  * For non-tunnel skb it points to skb_mac_header() and for
4746  * tunnel skb it points to outer mac header.
4747  * Keeps track of level of encapsulation of network headers.
4748  */
4749 struct skb_gso_cb {
4750 	union {
4751 		int	mac_offset;
4752 		int	data_offset;
4753 	};
4754 	int	encap_level;
4755 	__wsum	csum;
4756 	__u16	csum_start;
4757 };
4758 #define SKB_GSO_CB_OFFSET	32
4759 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4760 
4761 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4762 {
4763 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4764 		SKB_GSO_CB(inner_skb)->mac_offset;
4765 }
4766 
4767 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4768 {
4769 	int new_headroom, headroom;
4770 	int ret;
4771 
4772 	headroom = skb_headroom(skb);
4773 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4774 	if (ret)
4775 		return ret;
4776 
4777 	new_headroom = skb_headroom(skb);
4778 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4779 	return 0;
4780 }
4781 
4782 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4783 {
4784 	/* Do not update partial checksums if remote checksum is enabled. */
4785 	if (skb->remcsum_offload)
4786 		return;
4787 
4788 	SKB_GSO_CB(skb)->csum = res;
4789 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4790 }
4791 
4792 /* Compute the checksum for a gso segment. First compute the checksum value
4793  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4794  * then add in skb->csum (checksum from csum_start to end of packet).
4795  * skb->csum and csum_start are then updated to reflect the checksum of the
4796  * resultant packet starting from the transport header-- the resultant checksum
4797  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4798  * header.
4799  */
4800 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4801 {
4802 	unsigned char *csum_start = skb_transport_header(skb);
4803 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4804 	__wsum partial = SKB_GSO_CB(skb)->csum;
4805 
4806 	SKB_GSO_CB(skb)->csum = res;
4807 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4808 
4809 	return csum_fold(csum_partial(csum_start, plen, partial));
4810 }
4811 
4812 static inline bool skb_is_gso(const struct sk_buff *skb)
4813 {
4814 	return skb_shinfo(skb)->gso_size;
4815 }
4816 
4817 /* Note: Should be called only if skb_is_gso(skb) is true */
4818 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4819 {
4820 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4821 }
4822 
4823 /* Note: Should be called only if skb_is_gso(skb) is true */
4824 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4825 {
4826 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4827 }
4828 
4829 /* Note: Should be called only if skb_is_gso(skb) is true */
4830 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4831 {
4832 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4833 }
4834 
4835 static inline void skb_gso_reset(struct sk_buff *skb)
4836 {
4837 	skb_shinfo(skb)->gso_size = 0;
4838 	skb_shinfo(skb)->gso_segs = 0;
4839 	skb_shinfo(skb)->gso_type = 0;
4840 }
4841 
4842 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4843 					 u16 increment)
4844 {
4845 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4846 		return;
4847 	shinfo->gso_size += increment;
4848 }
4849 
4850 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4851 					 u16 decrement)
4852 {
4853 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4854 		return;
4855 	shinfo->gso_size -= decrement;
4856 }
4857 
4858 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4859 
4860 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4861 {
4862 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4863 	 * wanted then gso_type will be set. */
4864 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4865 
4866 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4867 	    unlikely(shinfo->gso_type == 0)) {
4868 		__skb_warn_lro_forwarding(skb);
4869 		return true;
4870 	}
4871 	return false;
4872 }
4873 
4874 static inline void skb_forward_csum(struct sk_buff *skb)
4875 {
4876 	/* Unfortunately we don't support this one.  Any brave souls? */
4877 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4878 		skb->ip_summed = CHECKSUM_NONE;
4879 }
4880 
4881 /**
4882  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4883  * @skb: skb to check
4884  *
4885  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4886  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4887  * use this helper, to document places where we make this assertion.
4888  */
4889 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4890 {
4891 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4892 }
4893 
4894 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4895 
4896 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4897 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4898 				     unsigned int transport_len,
4899 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4900 
4901 /**
4902  * skb_head_is_locked - Determine if the skb->head is locked down
4903  * @skb: skb to check
4904  *
4905  * The head on skbs build around a head frag can be removed if they are
4906  * not cloned.  This function returns true if the skb head is locked down
4907  * due to either being allocated via kmalloc, or by being a clone with
4908  * multiple references to the head.
4909  */
4910 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4911 {
4912 	return !skb->head_frag || skb_cloned(skb);
4913 }
4914 
4915 /* Local Checksum Offload.
4916  * Compute outer checksum based on the assumption that the
4917  * inner checksum will be offloaded later.
4918  * See Documentation/networking/checksum-offloads.rst for
4919  * explanation of how this works.
4920  * Fill in outer checksum adjustment (e.g. with sum of outer
4921  * pseudo-header) before calling.
4922  * Also ensure that inner checksum is in linear data area.
4923  */
4924 static inline __wsum lco_csum(struct sk_buff *skb)
4925 {
4926 	unsigned char *csum_start = skb_checksum_start(skb);
4927 	unsigned char *l4_hdr = skb_transport_header(skb);
4928 	__wsum partial;
4929 
4930 	/* Start with complement of inner checksum adjustment */
4931 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4932 						    skb->csum_offset));
4933 
4934 	/* Add in checksum of our headers (incl. outer checksum
4935 	 * adjustment filled in by caller) and return result.
4936 	 */
4937 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4938 }
4939 
4940 static inline bool skb_is_redirected(const struct sk_buff *skb)
4941 {
4942 	return skb->redirected;
4943 }
4944 
4945 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4946 {
4947 	skb->redirected = 1;
4948 #ifdef CONFIG_NET_REDIRECT
4949 	skb->from_ingress = from_ingress;
4950 	if (skb->from_ingress)
4951 		skb_clear_tstamp(skb);
4952 #endif
4953 }
4954 
4955 static inline void skb_reset_redirect(struct sk_buff *skb)
4956 {
4957 	skb->redirected = 0;
4958 }
4959 
4960 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4961 {
4962 	return skb->csum_not_inet;
4963 }
4964 
4965 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4966 				       const u64 kcov_handle)
4967 {
4968 #ifdef CONFIG_KCOV
4969 	skb->kcov_handle = kcov_handle;
4970 #endif
4971 }
4972 
4973 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4974 {
4975 #ifdef CONFIG_KCOV
4976 	return skb->kcov_handle;
4977 #else
4978 	return 0;
4979 #endif
4980 }
4981 
4982 #ifdef CONFIG_PAGE_POOL
4983 static inline void skb_mark_for_recycle(struct sk_buff *skb)
4984 {
4985 	skb->pp_recycle = 1;
4986 }
4987 #endif
4988 
4989 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4990 {
4991 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4992 		return false;
4993 	return page_pool_return_skb_page(virt_to_page(data));
4994 }
4995 
4996 #endif	/* __KERNEL__ */
4997 #endif	/* _LINUX_SKBUFF_H */
4998