1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/cache.h> 21 22 #include <asm/atomic.h> 23 #include <asm/types.h> 24 #include <linux/spinlock.h> 25 #include <linux/net.h> 26 #include <linux/textsearch.h> 27 #include <net/checksum.h> 28 #include <linux/rcupdate.h> 29 #include <linux/dmaengine.h> 30 #include <linux/hrtimer.h> 31 32 #define HAVE_ALLOC_SKB /* For the drivers to know */ 33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 34 35 /* Don't change this without changing skb_csum_unnecessary! */ 36 #define CHECKSUM_NONE 0 37 #define CHECKSUM_UNNECESSARY 1 38 #define CHECKSUM_COMPLETE 2 39 #define CHECKSUM_PARTIAL 3 40 41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43 #define SKB_WITH_OVERHEAD(X) \ 44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 45 #define SKB_MAX_ORDER(X, ORDER) \ 46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 49 50 /* A. Checksumming of received packets by device. 51 * 52 * NONE: device failed to checksum this packet. 53 * skb->csum is undefined. 54 * 55 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 56 * skb->csum is undefined. 57 * It is bad option, but, unfortunately, many of vendors do this. 58 * Apparently with secret goal to sell you new device, when you 59 * will add new protocol to your host. F.e. IPv6. 8) 60 * 61 * COMPLETE: the most generic way. Device supplied checksum of _all_ 62 * the packet as seen by netif_rx in skb->csum. 63 * NOTE: Even if device supports only some protocols, but 64 * is able to produce some skb->csum, it MUST use COMPLETE, 65 * not UNNECESSARY. 66 * 67 * PARTIAL: identical to the case for output below. This may occur 68 * on a packet received directly from another Linux OS, e.g., 69 * a virtualised Linux kernel on the same host. The packet can 70 * be treated in the same way as UNNECESSARY except that on 71 * output (i.e., forwarding) the checksum must be filled in 72 * by the OS or the hardware. 73 * 74 * B. Checksumming on output. 75 * 76 * NONE: skb is checksummed by protocol or csum is not required. 77 * 78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 79 * from skb->csum_start to the end and to record the checksum 80 * at skb->csum_start + skb->csum_offset. 81 * 82 * Device must show its capabilities in dev->features, set 83 * at device setup time. 84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 85 * everything. 86 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 88 * TCP/UDP over IPv4. Sigh. Vendors like this 89 * way by an unknown reason. Though, see comment above 90 * about CHECKSUM_UNNECESSARY. 8) 91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 92 * 93 * Any questions? No questions, good. --ANK 94 */ 95 96 struct net_device; 97 struct scatterlist; 98 struct pipe_inode_info; 99 100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 101 struct nf_conntrack { 102 atomic_t use; 103 }; 104 #endif 105 106 #ifdef CONFIG_BRIDGE_NETFILTER 107 struct nf_bridge_info { 108 atomic_t use; 109 struct net_device *physindev; 110 struct net_device *physoutdev; 111 unsigned int mask; 112 unsigned long data[32 / sizeof(unsigned long)]; 113 }; 114 #endif 115 116 struct sk_buff_head { 117 /* These two members must be first. */ 118 struct sk_buff *next; 119 struct sk_buff *prev; 120 121 __u32 qlen; 122 spinlock_t lock; 123 }; 124 125 struct sk_buff; 126 127 /* To allow 64K frame to be packed as single skb without frag_list */ 128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 129 130 typedef struct skb_frag_struct skb_frag_t; 131 132 struct skb_frag_struct { 133 struct page *page; 134 __u32 page_offset; 135 __u32 size; 136 }; 137 138 /* This data is invariant across clones and lives at 139 * the end of the header data, ie. at skb->end. 140 */ 141 struct skb_shared_info { 142 atomic_t dataref; 143 unsigned short nr_frags; 144 unsigned short gso_size; 145 /* Warning: this field is not always filled in (UFO)! */ 146 unsigned short gso_segs; 147 unsigned short gso_type; 148 __be32 ip6_frag_id; 149 struct sk_buff *frag_list; 150 skb_frag_t frags[MAX_SKB_FRAGS]; 151 }; 152 153 /* We divide dataref into two halves. The higher 16 bits hold references 154 * to the payload part of skb->data. The lower 16 bits hold references to 155 * the entire skb->data. A clone of a headerless skb holds the length of 156 * the header in skb->hdr_len. 157 * 158 * All users must obey the rule that the skb->data reference count must be 159 * greater than or equal to the payload reference count. 160 * 161 * Holding a reference to the payload part means that the user does not 162 * care about modifications to the header part of skb->data. 163 */ 164 #define SKB_DATAREF_SHIFT 16 165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 166 167 168 enum { 169 SKB_FCLONE_UNAVAILABLE, 170 SKB_FCLONE_ORIG, 171 SKB_FCLONE_CLONE, 172 }; 173 174 enum { 175 SKB_GSO_TCPV4 = 1 << 0, 176 SKB_GSO_UDP = 1 << 1, 177 178 /* This indicates the skb is from an untrusted source. */ 179 SKB_GSO_DODGY = 1 << 2, 180 181 /* This indicates the tcp segment has CWR set. */ 182 SKB_GSO_TCP_ECN = 1 << 3, 183 184 SKB_GSO_TCPV6 = 1 << 4, 185 }; 186 187 #if BITS_PER_LONG > 32 188 #define NET_SKBUFF_DATA_USES_OFFSET 1 189 #endif 190 191 #ifdef NET_SKBUFF_DATA_USES_OFFSET 192 typedef unsigned int sk_buff_data_t; 193 #else 194 typedef unsigned char *sk_buff_data_t; 195 #endif 196 197 /** 198 * struct sk_buff - socket buffer 199 * @next: Next buffer in list 200 * @prev: Previous buffer in list 201 * @sk: Socket we are owned by 202 * @tstamp: Time we arrived 203 * @dev: Device we arrived on/are leaving by 204 * @transport_header: Transport layer header 205 * @network_header: Network layer header 206 * @mac_header: Link layer header 207 * @dst: destination entry 208 * @sp: the security path, used for xfrm 209 * @cb: Control buffer. Free for use by every layer. Put private vars here 210 * @len: Length of actual data 211 * @data_len: Data length 212 * @mac_len: Length of link layer header 213 * @hdr_len: writable header length of cloned skb 214 * @csum: Checksum (must include start/offset pair) 215 * @csum_start: Offset from skb->head where checksumming should start 216 * @csum_offset: Offset from csum_start where checksum should be stored 217 * @local_df: allow local fragmentation 218 * @cloned: Head may be cloned (check refcnt to be sure) 219 * @nohdr: Payload reference only, must not modify header 220 * @pkt_type: Packet class 221 * @fclone: skbuff clone status 222 * @ip_summed: Driver fed us an IP checksum 223 * @priority: Packet queueing priority 224 * @users: User count - see {datagram,tcp}.c 225 * @protocol: Packet protocol from driver 226 * @truesize: Buffer size 227 * @head: Head of buffer 228 * @data: Data head pointer 229 * @tail: Tail pointer 230 * @end: End pointer 231 * @destructor: Destruct function 232 * @mark: Generic packet mark 233 * @nfct: Associated connection, if any 234 * @ipvs_property: skbuff is owned by ipvs 235 * @peeked: this packet has been seen already, so stats have been 236 * done for it, don't do them again 237 * @nf_trace: netfilter packet trace flag 238 * @nfctinfo: Relationship of this skb to the connection 239 * @nfct_reasm: netfilter conntrack re-assembly pointer 240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 241 * @iif: ifindex of device we arrived on 242 * @queue_mapping: Queue mapping for multiqueue devices 243 * @tc_index: Traffic control index 244 * @tc_verd: traffic control verdict 245 * @ndisc_nodetype: router type (from link layer) 246 * @dma_cookie: a cookie to one of several possible DMA operations 247 * done by skb DMA functions 248 * @secmark: security marking 249 * @vlan_tci: vlan tag control information 250 */ 251 252 struct sk_buff { 253 /* These two members must be first. */ 254 struct sk_buff *next; 255 struct sk_buff *prev; 256 257 struct sock *sk; 258 ktime_t tstamp; 259 struct net_device *dev; 260 261 union { 262 struct dst_entry *dst; 263 struct rtable *rtable; 264 }; 265 struct sec_path *sp; 266 267 /* 268 * This is the control buffer. It is free to use for every 269 * layer. Please put your private variables there. If you 270 * want to keep them across layers you have to do a skb_clone() 271 * first. This is owned by whoever has the skb queued ATM. 272 */ 273 char cb[48]; 274 275 unsigned int len, 276 data_len; 277 __u16 mac_len, 278 hdr_len; 279 union { 280 __wsum csum; 281 struct { 282 __u16 csum_start; 283 __u16 csum_offset; 284 }; 285 }; 286 __u32 priority; 287 __u8 local_df:1, 288 cloned:1, 289 ip_summed:2, 290 nohdr:1, 291 nfctinfo:3; 292 __u8 pkt_type:3, 293 fclone:2, 294 ipvs_property:1, 295 peeked:1, 296 nf_trace:1; 297 __be16 protocol; 298 299 void (*destructor)(struct sk_buff *skb); 300 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 301 struct nf_conntrack *nfct; 302 struct sk_buff *nfct_reasm; 303 #endif 304 #ifdef CONFIG_BRIDGE_NETFILTER 305 struct nf_bridge_info *nf_bridge; 306 #endif 307 308 int iif; 309 __u16 queue_mapping; 310 #ifdef CONFIG_NET_SCHED 311 __u16 tc_index; /* traffic control index */ 312 #ifdef CONFIG_NET_CLS_ACT 313 __u16 tc_verd; /* traffic control verdict */ 314 #endif 315 #endif 316 #ifdef CONFIG_IPV6_NDISC_NODETYPE 317 __u8 ndisc_nodetype:2; 318 #endif 319 /* 14 bit hole */ 320 321 #ifdef CONFIG_NET_DMA 322 dma_cookie_t dma_cookie; 323 #endif 324 #ifdef CONFIG_NETWORK_SECMARK 325 __u32 secmark; 326 #endif 327 328 __u32 mark; 329 330 __u16 vlan_tci; 331 332 sk_buff_data_t transport_header; 333 sk_buff_data_t network_header; 334 sk_buff_data_t mac_header; 335 /* These elements must be at the end, see alloc_skb() for details. */ 336 sk_buff_data_t tail; 337 sk_buff_data_t end; 338 unsigned char *head, 339 *data; 340 unsigned int truesize; 341 atomic_t users; 342 }; 343 344 #ifdef __KERNEL__ 345 /* 346 * Handling routines are only of interest to the kernel 347 */ 348 #include <linux/slab.h> 349 350 #include <asm/system.h> 351 352 extern void kfree_skb(struct sk_buff *skb); 353 extern void __kfree_skb(struct sk_buff *skb); 354 extern struct sk_buff *__alloc_skb(unsigned int size, 355 gfp_t priority, int fclone, int node); 356 static inline struct sk_buff *alloc_skb(unsigned int size, 357 gfp_t priority) 358 { 359 return __alloc_skb(size, priority, 0, -1); 360 } 361 362 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 363 gfp_t priority) 364 { 365 return __alloc_skb(size, priority, 1, -1); 366 } 367 368 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 369 extern struct sk_buff *skb_clone(struct sk_buff *skb, 370 gfp_t priority); 371 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 372 gfp_t priority); 373 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 374 gfp_t gfp_mask); 375 extern int pskb_expand_head(struct sk_buff *skb, 376 int nhead, int ntail, 377 gfp_t gfp_mask); 378 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 379 unsigned int headroom); 380 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 381 int newheadroom, int newtailroom, 382 gfp_t priority); 383 extern int skb_to_sgvec(struct sk_buff *skb, 384 struct scatterlist *sg, int offset, 385 int len); 386 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 387 struct sk_buff **trailer); 388 extern int skb_pad(struct sk_buff *skb, int pad); 389 #define dev_kfree_skb(a) kfree_skb(a) 390 extern void skb_over_panic(struct sk_buff *skb, int len, 391 void *here); 392 extern void skb_under_panic(struct sk_buff *skb, int len, 393 void *here); 394 extern void skb_truesize_bug(struct sk_buff *skb); 395 396 static inline void skb_truesize_check(struct sk_buff *skb) 397 { 398 int len = sizeof(struct sk_buff) + skb->len; 399 400 if (unlikely((int)skb->truesize < len)) 401 skb_truesize_bug(skb); 402 } 403 404 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 405 int getfrag(void *from, char *to, int offset, 406 int len,int odd, struct sk_buff *skb), 407 void *from, int length); 408 409 struct skb_seq_state 410 { 411 __u32 lower_offset; 412 __u32 upper_offset; 413 __u32 frag_idx; 414 __u32 stepped_offset; 415 struct sk_buff *root_skb; 416 struct sk_buff *cur_skb; 417 __u8 *frag_data; 418 }; 419 420 extern void skb_prepare_seq_read(struct sk_buff *skb, 421 unsigned int from, unsigned int to, 422 struct skb_seq_state *st); 423 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 424 struct skb_seq_state *st); 425 extern void skb_abort_seq_read(struct skb_seq_state *st); 426 427 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 428 unsigned int to, struct ts_config *config, 429 struct ts_state *state); 430 431 #ifdef NET_SKBUFF_DATA_USES_OFFSET 432 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 433 { 434 return skb->head + skb->end; 435 } 436 #else 437 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 438 { 439 return skb->end; 440 } 441 #endif 442 443 /* Internal */ 444 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 445 446 /** 447 * skb_queue_empty - check if a queue is empty 448 * @list: queue head 449 * 450 * Returns true if the queue is empty, false otherwise. 451 */ 452 static inline int skb_queue_empty(const struct sk_buff_head *list) 453 { 454 return list->next == (struct sk_buff *)list; 455 } 456 457 /** 458 * skb_get - reference buffer 459 * @skb: buffer to reference 460 * 461 * Makes another reference to a socket buffer and returns a pointer 462 * to the buffer. 463 */ 464 static inline struct sk_buff *skb_get(struct sk_buff *skb) 465 { 466 atomic_inc(&skb->users); 467 return skb; 468 } 469 470 /* 471 * If users == 1, we are the only owner and are can avoid redundant 472 * atomic change. 473 */ 474 475 /** 476 * skb_cloned - is the buffer a clone 477 * @skb: buffer to check 478 * 479 * Returns true if the buffer was generated with skb_clone() and is 480 * one of multiple shared copies of the buffer. Cloned buffers are 481 * shared data so must not be written to under normal circumstances. 482 */ 483 static inline int skb_cloned(const struct sk_buff *skb) 484 { 485 return skb->cloned && 486 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 487 } 488 489 /** 490 * skb_header_cloned - is the header a clone 491 * @skb: buffer to check 492 * 493 * Returns true if modifying the header part of the buffer requires 494 * the data to be copied. 495 */ 496 static inline int skb_header_cloned(const struct sk_buff *skb) 497 { 498 int dataref; 499 500 if (!skb->cloned) 501 return 0; 502 503 dataref = atomic_read(&skb_shinfo(skb)->dataref); 504 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 505 return dataref != 1; 506 } 507 508 /** 509 * skb_header_release - release reference to header 510 * @skb: buffer to operate on 511 * 512 * Drop a reference to the header part of the buffer. This is done 513 * by acquiring a payload reference. You must not read from the header 514 * part of skb->data after this. 515 */ 516 static inline void skb_header_release(struct sk_buff *skb) 517 { 518 BUG_ON(skb->nohdr); 519 skb->nohdr = 1; 520 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 521 } 522 523 /** 524 * skb_shared - is the buffer shared 525 * @skb: buffer to check 526 * 527 * Returns true if more than one person has a reference to this 528 * buffer. 529 */ 530 static inline int skb_shared(const struct sk_buff *skb) 531 { 532 return atomic_read(&skb->users) != 1; 533 } 534 535 /** 536 * skb_share_check - check if buffer is shared and if so clone it 537 * @skb: buffer to check 538 * @pri: priority for memory allocation 539 * 540 * If the buffer is shared the buffer is cloned and the old copy 541 * drops a reference. A new clone with a single reference is returned. 542 * If the buffer is not shared the original buffer is returned. When 543 * being called from interrupt status or with spinlocks held pri must 544 * be GFP_ATOMIC. 545 * 546 * NULL is returned on a memory allocation failure. 547 */ 548 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 549 gfp_t pri) 550 { 551 might_sleep_if(pri & __GFP_WAIT); 552 if (skb_shared(skb)) { 553 struct sk_buff *nskb = skb_clone(skb, pri); 554 kfree_skb(skb); 555 skb = nskb; 556 } 557 return skb; 558 } 559 560 /* 561 * Copy shared buffers into a new sk_buff. We effectively do COW on 562 * packets to handle cases where we have a local reader and forward 563 * and a couple of other messy ones. The normal one is tcpdumping 564 * a packet thats being forwarded. 565 */ 566 567 /** 568 * skb_unshare - make a copy of a shared buffer 569 * @skb: buffer to check 570 * @pri: priority for memory allocation 571 * 572 * If the socket buffer is a clone then this function creates a new 573 * copy of the data, drops a reference count on the old copy and returns 574 * the new copy with the reference count at 1. If the buffer is not a clone 575 * the original buffer is returned. When called with a spinlock held or 576 * from interrupt state @pri must be %GFP_ATOMIC 577 * 578 * %NULL is returned on a memory allocation failure. 579 */ 580 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 581 gfp_t pri) 582 { 583 might_sleep_if(pri & __GFP_WAIT); 584 if (skb_cloned(skb)) { 585 struct sk_buff *nskb = skb_copy(skb, pri); 586 kfree_skb(skb); /* Free our shared copy */ 587 skb = nskb; 588 } 589 return skb; 590 } 591 592 /** 593 * skb_peek 594 * @list_: list to peek at 595 * 596 * Peek an &sk_buff. Unlike most other operations you _MUST_ 597 * be careful with this one. A peek leaves the buffer on the 598 * list and someone else may run off with it. You must hold 599 * the appropriate locks or have a private queue to do this. 600 * 601 * Returns %NULL for an empty list or a pointer to the head element. 602 * The reference count is not incremented and the reference is therefore 603 * volatile. Use with caution. 604 */ 605 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 606 { 607 struct sk_buff *list = ((struct sk_buff *)list_)->next; 608 if (list == (struct sk_buff *)list_) 609 list = NULL; 610 return list; 611 } 612 613 /** 614 * skb_peek_tail 615 * @list_: list to peek at 616 * 617 * Peek an &sk_buff. Unlike most other operations you _MUST_ 618 * be careful with this one. A peek leaves the buffer on the 619 * list and someone else may run off with it. You must hold 620 * the appropriate locks or have a private queue to do this. 621 * 622 * Returns %NULL for an empty list or a pointer to the tail element. 623 * The reference count is not incremented and the reference is therefore 624 * volatile. Use with caution. 625 */ 626 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 627 { 628 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 629 if (list == (struct sk_buff *)list_) 630 list = NULL; 631 return list; 632 } 633 634 /** 635 * skb_queue_len - get queue length 636 * @list_: list to measure 637 * 638 * Return the length of an &sk_buff queue. 639 */ 640 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 641 { 642 return list_->qlen; 643 } 644 645 /* 646 * This function creates a split out lock class for each invocation; 647 * this is needed for now since a whole lot of users of the skb-queue 648 * infrastructure in drivers have different locking usage (in hardirq) 649 * than the networking core (in softirq only). In the long run either the 650 * network layer or drivers should need annotation to consolidate the 651 * main types of usage into 3 classes. 652 */ 653 static inline void skb_queue_head_init(struct sk_buff_head *list) 654 { 655 spin_lock_init(&list->lock); 656 list->prev = list->next = (struct sk_buff *)list; 657 list->qlen = 0; 658 } 659 660 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 661 struct lock_class_key *class) 662 { 663 skb_queue_head_init(list); 664 lockdep_set_class(&list->lock, class); 665 } 666 667 /* 668 * Insert an sk_buff on a list. 669 * 670 * The "__skb_xxxx()" functions are the non-atomic ones that 671 * can only be called with interrupts disabled. 672 */ 673 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 674 static inline void __skb_insert(struct sk_buff *newsk, 675 struct sk_buff *prev, struct sk_buff *next, 676 struct sk_buff_head *list) 677 { 678 newsk->next = next; 679 newsk->prev = prev; 680 next->prev = prev->next = newsk; 681 list->qlen++; 682 } 683 684 /** 685 * __skb_queue_after - queue a buffer at the list head 686 * @list: list to use 687 * @prev: place after this buffer 688 * @newsk: buffer to queue 689 * 690 * Queue a buffer int the middle of a list. This function takes no locks 691 * and you must therefore hold required locks before calling it. 692 * 693 * A buffer cannot be placed on two lists at the same time. 694 */ 695 static inline void __skb_queue_after(struct sk_buff_head *list, 696 struct sk_buff *prev, 697 struct sk_buff *newsk) 698 { 699 __skb_insert(newsk, prev, prev->next, list); 700 } 701 702 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 703 struct sk_buff_head *list); 704 705 static inline void __skb_queue_before(struct sk_buff_head *list, 706 struct sk_buff *next, 707 struct sk_buff *newsk) 708 { 709 __skb_insert(newsk, next->prev, next, list); 710 } 711 712 /** 713 * __skb_queue_head - queue a buffer at the list head 714 * @list: list to use 715 * @newsk: buffer to queue 716 * 717 * Queue a buffer at the start of a list. This function takes no locks 718 * and you must therefore hold required locks before calling it. 719 * 720 * A buffer cannot be placed on two lists at the same time. 721 */ 722 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 723 static inline void __skb_queue_head(struct sk_buff_head *list, 724 struct sk_buff *newsk) 725 { 726 __skb_queue_after(list, (struct sk_buff *)list, newsk); 727 } 728 729 /** 730 * __skb_queue_tail - queue a buffer at the list tail 731 * @list: list to use 732 * @newsk: buffer to queue 733 * 734 * Queue a buffer at the end of a list. This function takes no locks 735 * and you must therefore hold required locks before calling it. 736 * 737 * A buffer cannot be placed on two lists at the same time. 738 */ 739 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 740 static inline void __skb_queue_tail(struct sk_buff_head *list, 741 struct sk_buff *newsk) 742 { 743 __skb_queue_before(list, (struct sk_buff *)list, newsk); 744 } 745 746 /* 747 * remove sk_buff from list. _Must_ be called atomically, and with 748 * the list known.. 749 */ 750 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 751 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 752 { 753 struct sk_buff *next, *prev; 754 755 list->qlen--; 756 next = skb->next; 757 prev = skb->prev; 758 skb->next = skb->prev = NULL; 759 next->prev = prev; 760 prev->next = next; 761 } 762 763 /** 764 * __skb_dequeue - remove from the head of the queue 765 * @list: list to dequeue from 766 * 767 * Remove the head of the list. This function does not take any locks 768 * so must be used with appropriate locks held only. The head item is 769 * returned or %NULL if the list is empty. 770 */ 771 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 772 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 773 { 774 struct sk_buff *skb = skb_peek(list); 775 if (skb) 776 __skb_unlink(skb, list); 777 return skb; 778 } 779 780 /** 781 * __skb_dequeue_tail - remove from the tail of the queue 782 * @list: list to dequeue from 783 * 784 * Remove the tail of the list. This function does not take any locks 785 * so must be used with appropriate locks held only. The tail item is 786 * returned or %NULL if the list is empty. 787 */ 788 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 789 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 790 { 791 struct sk_buff *skb = skb_peek_tail(list); 792 if (skb) 793 __skb_unlink(skb, list); 794 return skb; 795 } 796 797 798 static inline int skb_is_nonlinear(const struct sk_buff *skb) 799 { 800 return skb->data_len; 801 } 802 803 static inline unsigned int skb_headlen(const struct sk_buff *skb) 804 { 805 return skb->len - skb->data_len; 806 } 807 808 static inline int skb_pagelen(const struct sk_buff *skb) 809 { 810 int i, len = 0; 811 812 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 813 len += skb_shinfo(skb)->frags[i].size; 814 return len + skb_headlen(skb); 815 } 816 817 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 818 struct page *page, int off, int size) 819 { 820 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 821 822 frag->page = page; 823 frag->page_offset = off; 824 frag->size = size; 825 skb_shinfo(skb)->nr_frags = i + 1; 826 } 827 828 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 829 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 830 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 831 832 #ifdef NET_SKBUFF_DATA_USES_OFFSET 833 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 834 { 835 return skb->head + skb->tail; 836 } 837 838 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 839 { 840 skb->tail = skb->data - skb->head; 841 } 842 843 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 844 { 845 skb_reset_tail_pointer(skb); 846 skb->tail += offset; 847 } 848 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 849 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 850 { 851 return skb->tail; 852 } 853 854 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 855 { 856 skb->tail = skb->data; 857 } 858 859 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 860 { 861 skb->tail = skb->data + offset; 862 } 863 864 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 865 866 /* 867 * Add data to an sk_buff 868 */ 869 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 870 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 871 { 872 unsigned char *tmp = skb_tail_pointer(skb); 873 SKB_LINEAR_ASSERT(skb); 874 skb->tail += len; 875 skb->len += len; 876 return tmp; 877 } 878 879 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 880 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 881 { 882 skb->data -= len; 883 skb->len += len; 884 return skb->data; 885 } 886 887 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 888 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 889 { 890 skb->len -= len; 891 BUG_ON(skb->len < skb->data_len); 892 return skb->data += len; 893 } 894 895 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 896 897 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 898 { 899 if (len > skb_headlen(skb) && 900 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 901 return NULL; 902 skb->len -= len; 903 return skb->data += len; 904 } 905 906 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 907 { 908 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 909 } 910 911 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 912 { 913 if (likely(len <= skb_headlen(skb))) 914 return 1; 915 if (unlikely(len > skb->len)) 916 return 0; 917 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 918 } 919 920 /** 921 * skb_headroom - bytes at buffer head 922 * @skb: buffer to check 923 * 924 * Return the number of bytes of free space at the head of an &sk_buff. 925 */ 926 static inline unsigned int skb_headroom(const struct sk_buff *skb) 927 { 928 return skb->data - skb->head; 929 } 930 931 /** 932 * skb_tailroom - bytes at buffer end 933 * @skb: buffer to check 934 * 935 * Return the number of bytes of free space at the tail of an sk_buff 936 */ 937 static inline int skb_tailroom(const struct sk_buff *skb) 938 { 939 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 940 } 941 942 /** 943 * skb_reserve - adjust headroom 944 * @skb: buffer to alter 945 * @len: bytes to move 946 * 947 * Increase the headroom of an empty &sk_buff by reducing the tail 948 * room. This is only allowed for an empty buffer. 949 */ 950 static inline void skb_reserve(struct sk_buff *skb, int len) 951 { 952 skb->data += len; 953 skb->tail += len; 954 } 955 956 #ifdef NET_SKBUFF_DATA_USES_OFFSET 957 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 958 { 959 return skb->head + skb->transport_header; 960 } 961 962 static inline void skb_reset_transport_header(struct sk_buff *skb) 963 { 964 skb->transport_header = skb->data - skb->head; 965 } 966 967 static inline void skb_set_transport_header(struct sk_buff *skb, 968 const int offset) 969 { 970 skb_reset_transport_header(skb); 971 skb->transport_header += offset; 972 } 973 974 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 975 { 976 return skb->head + skb->network_header; 977 } 978 979 static inline void skb_reset_network_header(struct sk_buff *skb) 980 { 981 skb->network_header = skb->data - skb->head; 982 } 983 984 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 985 { 986 skb_reset_network_header(skb); 987 skb->network_header += offset; 988 } 989 990 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 991 { 992 return skb->head + skb->mac_header; 993 } 994 995 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 996 { 997 return skb->mac_header != ~0U; 998 } 999 1000 static inline void skb_reset_mac_header(struct sk_buff *skb) 1001 { 1002 skb->mac_header = skb->data - skb->head; 1003 } 1004 1005 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1006 { 1007 skb_reset_mac_header(skb); 1008 skb->mac_header += offset; 1009 } 1010 1011 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1012 1013 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1014 { 1015 return skb->transport_header; 1016 } 1017 1018 static inline void skb_reset_transport_header(struct sk_buff *skb) 1019 { 1020 skb->transport_header = skb->data; 1021 } 1022 1023 static inline void skb_set_transport_header(struct sk_buff *skb, 1024 const int offset) 1025 { 1026 skb->transport_header = skb->data + offset; 1027 } 1028 1029 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1030 { 1031 return skb->network_header; 1032 } 1033 1034 static inline void skb_reset_network_header(struct sk_buff *skb) 1035 { 1036 skb->network_header = skb->data; 1037 } 1038 1039 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1040 { 1041 skb->network_header = skb->data + offset; 1042 } 1043 1044 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1045 { 1046 return skb->mac_header; 1047 } 1048 1049 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1050 { 1051 return skb->mac_header != NULL; 1052 } 1053 1054 static inline void skb_reset_mac_header(struct sk_buff *skb) 1055 { 1056 skb->mac_header = skb->data; 1057 } 1058 1059 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1060 { 1061 skb->mac_header = skb->data + offset; 1062 } 1063 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1064 1065 static inline int skb_transport_offset(const struct sk_buff *skb) 1066 { 1067 return skb_transport_header(skb) - skb->data; 1068 } 1069 1070 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1071 { 1072 return skb->transport_header - skb->network_header; 1073 } 1074 1075 static inline int skb_network_offset(const struct sk_buff *skb) 1076 { 1077 return skb_network_header(skb) - skb->data; 1078 } 1079 1080 /* 1081 * CPUs often take a performance hit when accessing unaligned memory 1082 * locations. The actual performance hit varies, it can be small if the 1083 * hardware handles it or large if we have to take an exception and fix it 1084 * in software. 1085 * 1086 * Since an ethernet header is 14 bytes network drivers often end up with 1087 * the IP header at an unaligned offset. The IP header can be aligned by 1088 * shifting the start of the packet by 2 bytes. Drivers should do this 1089 * with: 1090 * 1091 * skb_reserve(NET_IP_ALIGN); 1092 * 1093 * The downside to this alignment of the IP header is that the DMA is now 1094 * unaligned. On some architectures the cost of an unaligned DMA is high 1095 * and this cost outweighs the gains made by aligning the IP header. 1096 * 1097 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1098 * to be overridden. 1099 */ 1100 #ifndef NET_IP_ALIGN 1101 #define NET_IP_ALIGN 2 1102 #endif 1103 1104 /* 1105 * The networking layer reserves some headroom in skb data (via 1106 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1107 * the header has to grow. In the default case, if the header has to grow 1108 * 16 bytes or less we avoid the reallocation. 1109 * 1110 * Unfortunately this headroom changes the DMA alignment of the resulting 1111 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1112 * on some architectures. An architecture can override this value, 1113 * perhaps setting it to a cacheline in size (since that will maintain 1114 * cacheline alignment of the DMA). It must be a power of 2. 1115 * 1116 * Various parts of the networking layer expect at least 16 bytes of 1117 * headroom, you should not reduce this. 1118 */ 1119 #ifndef NET_SKB_PAD 1120 #define NET_SKB_PAD 16 1121 #endif 1122 1123 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1124 1125 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1126 { 1127 if (unlikely(skb->data_len)) { 1128 WARN_ON(1); 1129 return; 1130 } 1131 skb->len = len; 1132 skb_set_tail_pointer(skb, len); 1133 } 1134 1135 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1136 1137 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1138 { 1139 if (skb->data_len) 1140 return ___pskb_trim(skb, len); 1141 __skb_trim(skb, len); 1142 return 0; 1143 } 1144 1145 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1146 { 1147 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1148 } 1149 1150 /** 1151 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1152 * @skb: buffer to alter 1153 * @len: new length 1154 * 1155 * This is identical to pskb_trim except that the caller knows that 1156 * the skb is not cloned so we should never get an error due to out- 1157 * of-memory. 1158 */ 1159 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1160 { 1161 int err = pskb_trim(skb, len); 1162 BUG_ON(err); 1163 } 1164 1165 /** 1166 * skb_orphan - orphan a buffer 1167 * @skb: buffer to orphan 1168 * 1169 * If a buffer currently has an owner then we call the owner's 1170 * destructor function and make the @skb unowned. The buffer continues 1171 * to exist but is no longer charged to its former owner. 1172 */ 1173 static inline void skb_orphan(struct sk_buff *skb) 1174 { 1175 if (skb->destructor) 1176 skb->destructor(skb); 1177 skb->destructor = NULL; 1178 skb->sk = NULL; 1179 } 1180 1181 /** 1182 * __skb_queue_purge - empty a list 1183 * @list: list to empty 1184 * 1185 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1186 * the list and one reference dropped. This function does not take the 1187 * list lock and the caller must hold the relevant locks to use it. 1188 */ 1189 extern void skb_queue_purge(struct sk_buff_head *list); 1190 static inline void __skb_queue_purge(struct sk_buff_head *list) 1191 { 1192 struct sk_buff *skb; 1193 while ((skb = __skb_dequeue(list)) != NULL) 1194 kfree_skb(skb); 1195 } 1196 1197 /** 1198 * __dev_alloc_skb - allocate an skbuff for receiving 1199 * @length: length to allocate 1200 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1201 * 1202 * Allocate a new &sk_buff and assign it a usage count of one. The 1203 * buffer has unspecified headroom built in. Users should allocate 1204 * the headroom they think they need without accounting for the 1205 * built in space. The built in space is used for optimisations. 1206 * 1207 * %NULL is returned if there is no free memory. 1208 */ 1209 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1210 gfp_t gfp_mask) 1211 { 1212 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1213 if (likely(skb)) 1214 skb_reserve(skb, NET_SKB_PAD); 1215 return skb; 1216 } 1217 1218 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1219 1220 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1221 unsigned int length, gfp_t gfp_mask); 1222 1223 /** 1224 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1225 * @dev: network device to receive on 1226 * @length: length to allocate 1227 * 1228 * Allocate a new &sk_buff and assign it a usage count of one. The 1229 * buffer has unspecified headroom built in. Users should allocate 1230 * the headroom they think they need without accounting for the 1231 * built in space. The built in space is used for optimisations. 1232 * 1233 * %NULL is returned if there is no free memory. Although this function 1234 * allocates memory it can be called from an interrupt. 1235 */ 1236 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1237 unsigned int length) 1238 { 1239 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1240 } 1241 1242 /** 1243 * skb_clone_writable - is the header of a clone writable 1244 * @skb: buffer to check 1245 * @len: length up to which to write 1246 * 1247 * Returns true if modifying the header part of the cloned buffer 1248 * does not requires the data to be copied. 1249 */ 1250 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1251 { 1252 return !skb_header_cloned(skb) && 1253 skb_headroom(skb) + len <= skb->hdr_len; 1254 } 1255 1256 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1257 int cloned) 1258 { 1259 int delta = 0; 1260 1261 if (headroom < NET_SKB_PAD) 1262 headroom = NET_SKB_PAD; 1263 if (headroom > skb_headroom(skb)) 1264 delta = headroom - skb_headroom(skb); 1265 1266 if (delta || cloned) 1267 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1268 GFP_ATOMIC); 1269 return 0; 1270 } 1271 1272 /** 1273 * skb_cow - copy header of skb when it is required 1274 * @skb: buffer to cow 1275 * @headroom: needed headroom 1276 * 1277 * If the skb passed lacks sufficient headroom or its data part 1278 * is shared, data is reallocated. If reallocation fails, an error 1279 * is returned and original skb is not changed. 1280 * 1281 * The result is skb with writable area skb->head...skb->tail 1282 * and at least @headroom of space at head. 1283 */ 1284 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1285 { 1286 return __skb_cow(skb, headroom, skb_cloned(skb)); 1287 } 1288 1289 /** 1290 * skb_cow_head - skb_cow but only making the head writable 1291 * @skb: buffer to cow 1292 * @headroom: needed headroom 1293 * 1294 * This function is identical to skb_cow except that we replace the 1295 * skb_cloned check by skb_header_cloned. It should be used when 1296 * you only need to push on some header and do not need to modify 1297 * the data. 1298 */ 1299 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1300 { 1301 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1302 } 1303 1304 /** 1305 * skb_padto - pad an skbuff up to a minimal size 1306 * @skb: buffer to pad 1307 * @len: minimal length 1308 * 1309 * Pads up a buffer to ensure the trailing bytes exist and are 1310 * blanked. If the buffer already contains sufficient data it 1311 * is untouched. Otherwise it is extended. Returns zero on 1312 * success. The skb is freed on error. 1313 */ 1314 1315 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1316 { 1317 unsigned int size = skb->len; 1318 if (likely(size >= len)) 1319 return 0; 1320 return skb_pad(skb, len-size); 1321 } 1322 1323 static inline int skb_add_data(struct sk_buff *skb, 1324 char __user *from, int copy) 1325 { 1326 const int off = skb->len; 1327 1328 if (skb->ip_summed == CHECKSUM_NONE) { 1329 int err = 0; 1330 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1331 copy, 0, &err); 1332 if (!err) { 1333 skb->csum = csum_block_add(skb->csum, csum, off); 1334 return 0; 1335 } 1336 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1337 return 0; 1338 1339 __skb_trim(skb, off); 1340 return -EFAULT; 1341 } 1342 1343 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1344 struct page *page, int off) 1345 { 1346 if (i) { 1347 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1348 1349 return page == frag->page && 1350 off == frag->page_offset + frag->size; 1351 } 1352 return 0; 1353 } 1354 1355 static inline int __skb_linearize(struct sk_buff *skb) 1356 { 1357 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1358 } 1359 1360 /** 1361 * skb_linearize - convert paged skb to linear one 1362 * @skb: buffer to linarize 1363 * 1364 * If there is no free memory -ENOMEM is returned, otherwise zero 1365 * is returned and the old skb data released. 1366 */ 1367 static inline int skb_linearize(struct sk_buff *skb) 1368 { 1369 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1370 } 1371 1372 /** 1373 * skb_linearize_cow - make sure skb is linear and writable 1374 * @skb: buffer to process 1375 * 1376 * If there is no free memory -ENOMEM is returned, otherwise zero 1377 * is returned and the old skb data released. 1378 */ 1379 static inline int skb_linearize_cow(struct sk_buff *skb) 1380 { 1381 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1382 __skb_linearize(skb) : 0; 1383 } 1384 1385 /** 1386 * skb_postpull_rcsum - update checksum for received skb after pull 1387 * @skb: buffer to update 1388 * @start: start of data before pull 1389 * @len: length of data pulled 1390 * 1391 * After doing a pull on a received packet, you need to call this to 1392 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1393 * CHECKSUM_NONE so that it can be recomputed from scratch. 1394 */ 1395 1396 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1397 const void *start, unsigned int len) 1398 { 1399 if (skb->ip_summed == CHECKSUM_COMPLETE) 1400 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1401 } 1402 1403 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1404 1405 /** 1406 * pskb_trim_rcsum - trim received skb and update checksum 1407 * @skb: buffer to trim 1408 * @len: new length 1409 * 1410 * This is exactly the same as pskb_trim except that it ensures the 1411 * checksum of received packets are still valid after the operation. 1412 */ 1413 1414 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1415 { 1416 if (likely(len >= skb->len)) 1417 return 0; 1418 if (skb->ip_summed == CHECKSUM_COMPLETE) 1419 skb->ip_summed = CHECKSUM_NONE; 1420 return __pskb_trim(skb, len); 1421 } 1422 1423 #define skb_queue_walk(queue, skb) \ 1424 for (skb = (queue)->next; \ 1425 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1426 skb = skb->next) 1427 1428 #define skb_queue_walk_safe(queue, skb, tmp) \ 1429 for (skb = (queue)->next, tmp = skb->next; \ 1430 skb != (struct sk_buff *)(queue); \ 1431 skb = tmp, tmp = skb->next) 1432 1433 #define skb_queue_reverse_walk(queue, skb) \ 1434 for (skb = (queue)->prev; \ 1435 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1436 skb = skb->prev) 1437 1438 1439 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1440 int *peeked, int *err); 1441 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1442 int noblock, int *err); 1443 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1444 struct poll_table_struct *wait); 1445 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1446 int offset, struct iovec *to, 1447 int size); 1448 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1449 int hlen, 1450 struct iovec *iov); 1451 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1452 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1453 unsigned int flags); 1454 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1455 int len, __wsum csum); 1456 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1457 void *to, int len); 1458 extern int skb_store_bits(struct sk_buff *skb, int offset, 1459 const void *from, int len); 1460 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1461 int offset, u8 *to, int len, 1462 __wsum csum); 1463 extern int skb_splice_bits(struct sk_buff *skb, 1464 unsigned int offset, 1465 struct pipe_inode_info *pipe, 1466 unsigned int len, 1467 unsigned int flags); 1468 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1469 extern void skb_split(struct sk_buff *skb, 1470 struct sk_buff *skb1, const u32 len); 1471 1472 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1473 1474 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1475 int len, void *buffer) 1476 { 1477 int hlen = skb_headlen(skb); 1478 1479 if (hlen - offset >= len) 1480 return skb->data + offset; 1481 1482 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1483 return NULL; 1484 1485 return buffer; 1486 } 1487 1488 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1489 void *to, 1490 const unsigned int len) 1491 { 1492 memcpy(to, skb->data, len); 1493 } 1494 1495 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1496 const int offset, void *to, 1497 const unsigned int len) 1498 { 1499 memcpy(to, skb->data + offset, len); 1500 } 1501 1502 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1503 const void *from, 1504 const unsigned int len) 1505 { 1506 memcpy(skb->data, from, len); 1507 } 1508 1509 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1510 const int offset, 1511 const void *from, 1512 const unsigned int len) 1513 { 1514 memcpy(skb->data + offset, from, len); 1515 } 1516 1517 extern void skb_init(void); 1518 1519 /** 1520 * skb_get_timestamp - get timestamp from a skb 1521 * @skb: skb to get stamp from 1522 * @stamp: pointer to struct timeval to store stamp in 1523 * 1524 * Timestamps are stored in the skb as offsets to a base timestamp. 1525 * This function converts the offset back to a struct timeval and stores 1526 * it in stamp. 1527 */ 1528 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1529 { 1530 *stamp = ktime_to_timeval(skb->tstamp); 1531 } 1532 1533 static inline void __net_timestamp(struct sk_buff *skb) 1534 { 1535 skb->tstamp = ktime_get_real(); 1536 } 1537 1538 static inline ktime_t net_timedelta(ktime_t t) 1539 { 1540 return ktime_sub(ktime_get_real(), t); 1541 } 1542 1543 static inline ktime_t net_invalid_timestamp(void) 1544 { 1545 return ktime_set(0, 0); 1546 } 1547 1548 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1549 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1550 1551 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1552 { 1553 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1554 } 1555 1556 /** 1557 * skb_checksum_complete - Calculate checksum of an entire packet 1558 * @skb: packet to process 1559 * 1560 * This function calculates the checksum over the entire packet plus 1561 * the value of skb->csum. The latter can be used to supply the 1562 * checksum of a pseudo header as used by TCP/UDP. It returns the 1563 * checksum. 1564 * 1565 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1566 * this function can be used to verify that checksum on received 1567 * packets. In that case the function should return zero if the 1568 * checksum is correct. In particular, this function will return zero 1569 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1570 * hardware has already verified the correctness of the checksum. 1571 */ 1572 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1573 { 1574 return skb_csum_unnecessary(skb) ? 1575 0 : __skb_checksum_complete(skb); 1576 } 1577 1578 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1579 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1580 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1581 { 1582 if (nfct && atomic_dec_and_test(&nfct->use)) 1583 nf_conntrack_destroy(nfct); 1584 } 1585 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1586 { 1587 if (nfct) 1588 atomic_inc(&nfct->use); 1589 } 1590 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1591 { 1592 if (skb) 1593 atomic_inc(&skb->users); 1594 } 1595 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1596 { 1597 if (skb) 1598 kfree_skb(skb); 1599 } 1600 #endif 1601 #ifdef CONFIG_BRIDGE_NETFILTER 1602 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1603 { 1604 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1605 kfree(nf_bridge); 1606 } 1607 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1608 { 1609 if (nf_bridge) 1610 atomic_inc(&nf_bridge->use); 1611 } 1612 #endif /* CONFIG_BRIDGE_NETFILTER */ 1613 static inline void nf_reset(struct sk_buff *skb) 1614 { 1615 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1616 nf_conntrack_put(skb->nfct); 1617 skb->nfct = NULL; 1618 nf_conntrack_put_reasm(skb->nfct_reasm); 1619 skb->nfct_reasm = NULL; 1620 #endif 1621 #ifdef CONFIG_BRIDGE_NETFILTER 1622 nf_bridge_put(skb->nf_bridge); 1623 skb->nf_bridge = NULL; 1624 #endif 1625 } 1626 1627 /* Note: This doesn't put any conntrack and bridge info in dst. */ 1628 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1629 { 1630 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1631 dst->nfct = src->nfct; 1632 nf_conntrack_get(src->nfct); 1633 dst->nfctinfo = src->nfctinfo; 1634 dst->nfct_reasm = src->nfct_reasm; 1635 nf_conntrack_get_reasm(src->nfct_reasm); 1636 #endif 1637 #ifdef CONFIG_BRIDGE_NETFILTER 1638 dst->nf_bridge = src->nf_bridge; 1639 nf_bridge_get(src->nf_bridge); 1640 #endif 1641 } 1642 1643 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1644 { 1645 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1646 nf_conntrack_put(dst->nfct); 1647 nf_conntrack_put_reasm(dst->nfct_reasm); 1648 #endif 1649 #ifdef CONFIG_BRIDGE_NETFILTER 1650 nf_bridge_put(dst->nf_bridge); 1651 #endif 1652 __nf_copy(dst, src); 1653 } 1654 1655 #ifdef CONFIG_NETWORK_SECMARK 1656 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1657 { 1658 to->secmark = from->secmark; 1659 } 1660 1661 static inline void skb_init_secmark(struct sk_buff *skb) 1662 { 1663 skb->secmark = 0; 1664 } 1665 #else 1666 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1667 { } 1668 1669 static inline void skb_init_secmark(struct sk_buff *skb) 1670 { } 1671 #endif 1672 1673 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 1674 { 1675 skb->queue_mapping = queue_mapping; 1676 } 1677 1678 static inline u16 skb_get_queue_mapping(struct sk_buff *skb) 1679 { 1680 return skb->queue_mapping; 1681 } 1682 1683 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 1684 { 1685 to->queue_mapping = from->queue_mapping; 1686 } 1687 1688 static inline int skb_is_gso(const struct sk_buff *skb) 1689 { 1690 return skb_shinfo(skb)->gso_size; 1691 } 1692 1693 static inline int skb_is_gso_v6(const struct sk_buff *skb) 1694 { 1695 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 1696 } 1697 1698 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 1699 1700 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 1701 { 1702 /* LRO sets gso_size but not gso_type, whereas if GSO is really 1703 * wanted then gso_type will be set. */ 1704 struct skb_shared_info *shinfo = skb_shinfo(skb); 1705 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { 1706 __skb_warn_lro_forwarding(skb); 1707 return true; 1708 } 1709 return false; 1710 } 1711 1712 static inline void skb_forward_csum(struct sk_buff *skb) 1713 { 1714 /* Unfortunately we don't support this one. Any brave souls? */ 1715 if (skb->ip_summed == CHECKSUM_COMPLETE) 1716 skb->ip_summed = CHECKSUM_NONE; 1717 } 1718 1719 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 1720 #endif /* __KERNEL__ */ 1721 #endif /* _LINUX_SKBUFF_H */ 1722