xref: /linux-6.15/include/linux/skbuff.h (revision 2d6ffcca)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21 
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31 
32 #define HAVE_ALLOC_SKB		/* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
34 
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40 
41 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
42 				 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X)	\
44 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
49 
50 /* A. Checksumming of received packets by device.
51  *
52  *	NONE: device failed to checksum this packet.
53  *		skb->csum is undefined.
54  *
55  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
56  *		skb->csum is undefined.
57  *	      It is bad option, but, unfortunately, many of vendors do this.
58  *	      Apparently with secret goal to sell you new device, when you
59  *	      will add new protocol to your host. F.e. IPv6. 8)
60  *
61  *	COMPLETE: the most generic way. Device supplied checksum of _all_
62  *	    the packet as seen by netif_rx in skb->csum.
63  *	    NOTE: Even if device supports only some protocols, but
64  *	    is able to produce some skb->csum, it MUST use COMPLETE,
65  *	    not UNNECESSARY.
66  *
67  *	PARTIAL: identical to the case for output below.  This may occur
68  *	    on a packet received directly from another Linux OS, e.g.,
69  *	    a virtualised Linux kernel on the same host.  The packet can
70  *	    be treated in the same way as UNNECESSARY except that on
71  *	    output (i.e., forwarding) the checksum must be filled in
72  *	    by the OS or the hardware.
73  *
74  * B. Checksumming on output.
75  *
76  *	NONE: skb is checksummed by protocol or csum is not required.
77  *
78  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
79  *	from skb->csum_start to the end and to record the checksum
80  *	at skb->csum_start + skb->csum_offset.
81  *
82  *	Device must show its capabilities in dev->features, set
83  *	at device setup time.
84  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
85  *			  everything.
86  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
87  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88  *			  TCP/UDP over IPv4. Sigh. Vendors like this
89  *			  way by an unknown reason. Though, see comment above
90  *			  about CHECKSUM_UNNECESSARY. 8)
91  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92  *
93  *	Any questions? No questions, good. 		--ANK
94  */
95 
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99 
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 	atomic_t use;
103 };
104 #endif
105 
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 	atomic_t use;
109 	struct net_device *physindev;
110 	struct net_device *physoutdev;
111 	unsigned int mask;
112 	unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115 
116 struct sk_buff_head {
117 	/* These two members must be first. */
118 	struct sk_buff	*next;
119 	struct sk_buff	*prev;
120 
121 	__u32		qlen;
122 	spinlock_t	lock;
123 };
124 
125 struct sk_buff;
126 
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129 
130 typedef struct skb_frag_struct skb_frag_t;
131 
132 struct skb_frag_struct {
133 	struct page *page;
134 	__u32 page_offset;
135 	__u32 size;
136 };
137 
138 /* This data is invariant across clones and lives at
139  * the end of the header data, ie. at skb->end.
140  */
141 struct skb_shared_info {
142 	atomic_t	dataref;
143 	unsigned short	nr_frags;
144 	unsigned short	gso_size;
145 	/* Warning: this field is not always filled in (UFO)! */
146 	unsigned short	gso_segs;
147 	unsigned short  gso_type;
148 	__be32          ip6_frag_id;
149 	struct sk_buff	*frag_list;
150 	skb_frag_t	frags[MAX_SKB_FRAGS];
151 };
152 
153 /* We divide dataref into two halves.  The higher 16 bits hold references
154  * to the payload part of skb->data.  The lower 16 bits hold references to
155  * the entire skb->data.  A clone of a headerless skb holds the length of
156  * the header in skb->hdr_len.
157  *
158  * All users must obey the rule that the skb->data reference count must be
159  * greater than or equal to the payload reference count.
160  *
161  * Holding a reference to the payload part means that the user does not
162  * care about modifications to the header part of skb->data.
163  */
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
166 
167 
168 enum {
169 	SKB_FCLONE_UNAVAILABLE,
170 	SKB_FCLONE_ORIG,
171 	SKB_FCLONE_CLONE,
172 };
173 
174 enum {
175 	SKB_GSO_TCPV4 = 1 << 0,
176 	SKB_GSO_UDP = 1 << 1,
177 
178 	/* This indicates the skb is from an untrusted source. */
179 	SKB_GSO_DODGY = 1 << 2,
180 
181 	/* This indicates the tcp segment has CWR set. */
182 	SKB_GSO_TCP_ECN = 1 << 3,
183 
184 	SKB_GSO_TCPV6 = 1 << 4,
185 };
186 
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
190 
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
196 
197 /**
198  *	struct sk_buff - socket buffer
199  *	@next: Next buffer in list
200  *	@prev: Previous buffer in list
201  *	@sk: Socket we are owned by
202  *	@tstamp: Time we arrived
203  *	@dev: Device we arrived on/are leaving by
204  *	@transport_header: Transport layer header
205  *	@network_header: Network layer header
206  *	@mac_header: Link layer header
207  *	@dst: destination entry
208  *	@sp: the security path, used for xfrm
209  *	@cb: Control buffer. Free for use by every layer. Put private vars here
210  *	@len: Length of actual data
211  *	@data_len: Data length
212  *	@mac_len: Length of link layer header
213  *	@hdr_len: writable header length of cloned skb
214  *	@csum: Checksum (must include start/offset pair)
215  *	@csum_start: Offset from skb->head where checksumming should start
216  *	@csum_offset: Offset from csum_start where checksum should be stored
217  *	@local_df: allow local fragmentation
218  *	@cloned: Head may be cloned (check refcnt to be sure)
219  *	@nohdr: Payload reference only, must not modify header
220  *	@pkt_type: Packet class
221  *	@fclone: skbuff clone status
222  *	@ip_summed: Driver fed us an IP checksum
223  *	@priority: Packet queueing priority
224  *	@users: User count - see {datagram,tcp}.c
225  *	@protocol: Packet protocol from driver
226  *	@truesize: Buffer size
227  *	@head: Head of buffer
228  *	@data: Data head pointer
229  *	@tail: Tail pointer
230  *	@end: End pointer
231  *	@destructor: Destruct function
232  *	@mark: Generic packet mark
233  *	@nfct: Associated connection, if any
234  *	@ipvs_property: skbuff is owned by ipvs
235  *	@peeked: this packet has been seen already, so stats have been
236  *		done for it, don't do them again
237  *	@nf_trace: netfilter packet trace flag
238  *	@nfctinfo: Relationship of this skb to the connection
239  *	@nfct_reasm: netfilter conntrack re-assembly pointer
240  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241  *	@iif: ifindex of device we arrived on
242  *	@queue_mapping: Queue mapping for multiqueue devices
243  *	@tc_index: Traffic control index
244  *	@tc_verd: traffic control verdict
245  *	@ndisc_nodetype: router type (from link layer)
246  *	@dma_cookie: a cookie to one of several possible DMA operations
247  *		done by skb DMA functions
248  *	@secmark: security marking
249  *	@vlan_tci: vlan tag control information
250  */
251 
252 struct sk_buff {
253 	/* These two members must be first. */
254 	struct sk_buff		*next;
255 	struct sk_buff		*prev;
256 
257 	struct sock		*sk;
258 	ktime_t			tstamp;
259 	struct net_device	*dev;
260 
261 	union {
262 		struct  dst_entry	*dst;
263 		struct  rtable		*rtable;
264 	};
265 	struct	sec_path	*sp;
266 
267 	/*
268 	 * This is the control buffer. It is free to use for every
269 	 * layer. Please put your private variables there. If you
270 	 * want to keep them across layers you have to do a skb_clone()
271 	 * first. This is owned by whoever has the skb queued ATM.
272 	 */
273 	char			cb[48];
274 
275 	unsigned int		len,
276 				data_len;
277 	__u16			mac_len,
278 				hdr_len;
279 	union {
280 		__wsum		csum;
281 		struct {
282 			__u16	csum_start;
283 			__u16	csum_offset;
284 		};
285 	};
286 	__u32			priority;
287 	__u8			local_df:1,
288 				cloned:1,
289 				ip_summed:2,
290 				nohdr:1,
291 				nfctinfo:3;
292 	__u8			pkt_type:3,
293 				fclone:2,
294 				ipvs_property:1,
295 				peeked:1,
296 				nf_trace:1;
297 	__be16			protocol;
298 
299 	void			(*destructor)(struct sk_buff *skb);
300 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
301 	struct nf_conntrack	*nfct;
302 	struct sk_buff		*nfct_reasm;
303 #endif
304 #ifdef CONFIG_BRIDGE_NETFILTER
305 	struct nf_bridge_info	*nf_bridge;
306 #endif
307 
308 	int			iif;
309 	__u16			queue_mapping;
310 #ifdef CONFIG_NET_SCHED
311 	__u16			tc_index;	/* traffic control index */
312 #ifdef CONFIG_NET_CLS_ACT
313 	__u16			tc_verd;	/* traffic control verdict */
314 #endif
315 #endif
316 #ifdef CONFIG_IPV6_NDISC_NODETYPE
317 	__u8			ndisc_nodetype:2;
318 #endif
319 	/* 14 bit hole */
320 
321 #ifdef CONFIG_NET_DMA
322 	dma_cookie_t		dma_cookie;
323 #endif
324 #ifdef CONFIG_NETWORK_SECMARK
325 	__u32			secmark;
326 #endif
327 
328 	__u32			mark;
329 
330 	__u16			vlan_tci;
331 
332 	sk_buff_data_t		transport_header;
333 	sk_buff_data_t		network_header;
334 	sk_buff_data_t		mac_header;
335 	/* These elements must be at the end, see alloc_skb() for details.  */
336 	sk_buff_data_t		tail;
337 	sk_buff_data_t		end;
338 	unsigned char		*head,
339 				*data;
340 	unsigned int		truesize;
341 	atomic_t		users;
342 };
343 
344 #ifdef __KERNEL__
345 /*
346  *	Handling routines are only of interest to the kernel
347  */
348 #include <linux/slab.h>
349 
350 #include <asm/system.h>
351 
352 extern void kfree_skb(struct sk_buff *skb);
353 extern void	       __kfree_skb(struct sk_buff *skb);
354 extern struct sk_buff *__alloc_skb(unsigned int size,
355 				   gfp_t priority, int fclone, int node);
356 static inline struct sk_buff *alloc_skb(unsigned int size,
357 					gfp_t priority)
358 {
359 	return __alloc_skb(size, priority, 0, -1);
360 }
361 
362 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
363 					       gfp_t priority)
364 {
365 	return __alloc_skb(size, priority, 1, -1);
366 }
367 
368 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
369 extern struct sk_buff *skb_clone(struct sk_buff *skb,
370 				 gfp_t priority);
371 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
372 				gfp_t priority);
373 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
374 				 gfp_t gfp_mask);
375 extern int	       pskb_expand_head(struct sk_buff *skb,
376 					int nhead, int ntail,
377 					gfp_t gfp_mask);
378 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
379 					    unsigned int headroom);
380 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
381 				       int newheadroom, int newtailroom,
382 				       gfp_t priority);
383 extern int	       skb_to_sgvec(struct sk_buff *skb,
384 				    struct scatterlist *sg, int offset,
385 				    int len);
386 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
387 				    struct sk_buff **trailer);
388 extern int	       skb_pad(struct sk_buff *skb, int pad);
389 #define dev_kfree_skb(a)	kfree_skb(a)
390 extern void	      skb_over_panic(struct sk_buff *skb, int len,
391 				     void *here);
392 extern void	      skb_under_panic(struct sk_buff *skb, int len,
393 				      void *here);
394 extern void	      skb_truesize_bug(struct sk_buff *skb);
395 
396 static inline void skb_truesize_check(struct sk_buff *skb)
397 {
398 	int len = sizeof(struct sk_buff) + skb->len;
399 
400 	if (unlikely((int)skb->truesize < len))
401 		skb_truesize_bug(skb);
402 }
403 
404 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
405 			int getfrag(void *from, char *to, int offset,
406 			int len,int odd, struct sk_buff *skb),
407 			void *from, int length);
408 
409 struct skb_seq_state
410 {
411 	__u32		lower_offset;
412 	__u32		upper_offset;
413 	__u32		frag_idx;
414 	__u32		stepped_offset;
415 	struct sk_buff	*root_skb;
416 	struct sk_buff	*cur_skb;
417 	__u8		*frag_data;
418 };
419 
420 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
421 					   unsigned int from, unsigned int to,
422 					   struct skb_seq_state *st);
423 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
424 				   struct skb_seq_state *st);
425 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
426 
427 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
428 				    unsigned int to, struct ts_config *config,
429 				    struct ts_state *state);
430 
431 #ifdef NET_SKBUFF_DATA_USES_OFFSET
432 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
433 {
434 	return skb->head + skb->end;
435 }
436 #else
437 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
438 {
439 	return skb->end;
440 }
441 #endif
442 
443 /* Internal */
444 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
445 
446 /**
447  *	skb_queue_empty - check if a queue is empty
448  *	@list: queue head
449  *
450  *	Returns true if the queue is empty, false otherwise.
451  */
452 static inline int skb_queue_empty(const struct sk_buff_head *list)
453 {
454 	return list->next == (struct sk_buff *)list;
455 }
456 
457 /**
458  *	skb_get - reference buffer
459  *	@skb: buffer to reference
460  *
461  *	Makes another reference to a socket buffer and returns a pointer
462  *	to the buffer.
463  */
464 static inline struct sk_buff *skb_get(struct sk_buff *skb)
465 {
466 	atomic_inc(&skb->users);
467 	return skb;
468 }
469 
470 /*
471  * If users == 1, we are the only owner and are can avoid redundant
472  * atomic change.
473  */
474 
475 /**
476  *	skb_cloned - is the buffer a clone
477  *	@skb: buffer to check
478  *
479  *	Returns true if the buffer was generated with skb_clone() and is
480  *	one of multiple shared copies of the buffer. Cloned buffers are
481  *	shared data so must not be written to under normal circumstances.
482  */
483 static inline int skb_cloned(const struct sk_buff *skb)
484 {
485 	return skb->cloned &&
486 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
487 }
488 
489 /**
490  *	skb_header_cloned - is the header a clone
491  *	@skb: buffer to check
492  *
493  *	Returns true if modifying the header part of the buffer requires
494  *	the data to be copied.
495  */
496 static inline int skb_header_cloned(const struct sk_buff *skb)
497 {
498 	int dataref;
499 
500 	if (!skb->cloned)
501 		return 0;
502 
503 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
504 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
505 	return dataref != 1;
506 }
507 
508 /**
509  *	skb_header_release - release reference to header
510  *	@skb: buffer to operate on
511  *
512  *	Drop a reference to the header part of the buffer.  This is done
513  *	by acquiring a payload reference.  You must not read from the header
514  *	part of skb->data after this.
515  */
516 static inline void skb_header_release(struct sk_buff *skb)
517 {
518 	BUG_ON(skb->nohdr);
519 	skb->nohdr = 1;
520 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
521 }
522 
523 /**
524  *	skb_shared - is the buffer shared
525  *	@skb: buffer to check
526  *
527  *	Returns true if more than one person has a reference to this
528  *	buffer.
529  */
530 static inline int skb_shared(const struct sk_buff *skb)
531 {
532 	return atomic_read(&skb->users) != 1;
533 }
534 
535 /**
536  *	skb_share_check - check if buffer is shared and if so clone it
537  *	@skb: buffer to check
538  *	@pri: priority for memory allocation
539  *
540  *	If the buffer is shared the buffer is cloned and the old copy
541  *	drops a reference. A new clone with a single reference is returned.
542  *	If the buffer is not shared the original buffer is returned. When
543  *	being called from interrupt status or with spinlocks held pri must
544  *	be GFP_ATOMIC.
545  *
546  *	NULL is returned on a memory allocation failure.
547  */
548 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
549 					      gfp_t pri)
550 {
551 	might_sleep_if(pri & __GFP_WAIT);
552 	if (skb_shared(skb)) {
553 		struct sk_buff *nskb = skb_clone(skb, pri);
554 		kfree_skb(skb);
555 		skb = nskb;
556 	}
557 	return skb;
558 }
559 
560 /*
561  *	Copy shared buffers into a new sk_buff. We effectively do COW on
562  *	packets to handle cases where we have a local reader and forward
563  *	and a couple of other messy ones. The normal one is tcpdumping
564  *	a packet thats being forwarded.
565  */
566 
567 /**
568  *	skb_unshare - make a copy of a shared buffer
569  *	@skb: buffer to check
570  *	@pri: priority for memory allocation
571  *
572  *	If the socket buffer is a clone then this function creates a new
573  *	copy of the data, drops a reference count on the old copy and returns
574  *	the new copy with the reference count at 1. If the buffer is not a clone
575  *	the original buffer is returned. When called with a spinlock held or
576  *	from interrupt state @pri must be %GFP_ATOMIC
577  *
578  *	%NULL is returned on a memory allocation failure.
579  */
580 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
581 					  gfp_t pri)
582 {
583 	might_sleep_if(pri & __GFP_WAIT);
584 	if (skb_cloned(skb)) {
585 		struct sk_buff *nskb = skb_copy(skb, pri);
586 		kfree_skb(skb);	/* Free our shared copy */
587 		skb = nskb;
588 	}
589 	return skb;
590 }
591 
592 /**
593  *	skb_peek
594  *	@list_: list to peek at
595  *
596  *	Peek an &sk_buff. Unlike most other operations you _MUST_
597  *	be careful with this one. A peek leaves the buffer on the
598  *	list and someone else may run off with it. You must hold
599  *	the appropriate locks or have a private queue to do this.
600  *
601  *	Returns %NULL for an empty list or a pointer to the head element.
602  *	The reference count is not incremented and the reference is therefore
603  *	volatile. Use with caution.
604  */
605 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
606 {
607 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
608 	if (list == (struct sk_buff *)list_)
609 		list = NULL;
610 	return list;
611 }
612 
613 /**
614  *	skb_peek_tail
615  *	@list_: list to peek at
616  *
617  *	Peek an &sk_buff. Unlike most other operations you _MUST_
618  *	be careful with this one. A peek leaves the buffer on the
619  *	list and someone else may run off with it. You must hold
620  *	the appropriate locks or have a private queue to do this.
621  *
622  *	Returns %NULL for an empty list or a pointer to the tail element.
623  *	The reference count is not incremented and the reference is therefore
624  *	volatile. Use with caution.
625  */
626 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
627 {
628 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
629 	if (list == (struct sk_buff *)list_)
630 		list = NULL;
631 	return list;
632 }
633 
634 /**
635  *	skb_queue_len	- get queue length
636  *	@list_: list to measure
637  *
638  *	Return the length of an &sk_buff queue.
639  */
640 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
641 {
642 	return list_->qlen;
643 }
644 
645 /*
646  * This function creates a split out lock class for each invocation;
647  * this is needed for now since a whole lot of users of the skb-queue
648  * infrastructure in drivers have different locking usage (in hardirq)
649  * than the networking core (in softirq only). In the long run either the
650  * network layer or drivers should need annotation to consolidate the
651  * main types of usage into 3 classes.
652  */
653 static inline void skb_queue_head_init(struct sk_buff_head *list)
654 {
655 	spin_lock_init(&list->lock);
656 	list->prev = list->next = (struct sk_buff *)list;
657 	list->qlen = 0;
658 }
659 
660 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
661 		struct lock_class_key *class)
662 {
663 	skb_queue_head_init(list);
664 	lockdep_set_class(&list->lock, class);
665 }
666 
667 /*
668  *	Insert an sk_buff on a list.
669  *
670  *	The "__skb_xxxx()" functions are the non-atomic ones that
671  *	can only be called with interrupts disabled.
672  */
673 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
674 static inline void __skb_insert(struct sk_buff *newsk,
675 				struct sk_buff *prev, struct sk_buff *next,
676 				struct sk_buff_head *list)
677 {
678 	newsk->next = next;
679 	newsk->prev = prev;
680 	next->prev  = prev->next = newsk;
681 	list->qlen++;
682 }
683 
684 /**
685  *	__skb_queue_after - queue a buffer at the list head
686  *	@list: list to use
687  *	@prev: place after this buffer
688  *	@newsk: buffer to queue
689  *
690  *	Queue a buffer int the middle of a list. This function takes no locks
691  *	and you must therefore hold required locks before calling it.
692  *
693  *	A buffer cannot be placed on two lists at the same time.
694  */
695 static inline void __skb_queue_after(struct sk_buff_head *list,
696 				     struct sk_buff *prev,
697 				     struct sk_buff *newsk)
698 {
699 	__skb_insert(newsk, prev, prev->next, list);
700 }
701 
702 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
703 		       struct sk_buff_head *list);
704 
705 static inline void __skb_queue_before(struct sk_buff_head *list,
706 				      struct sk_buff *next,
707 				      struct sk_buff *newsk)
708 {
709 	__skb_insert(newsk, next->prev, next, list);
710 }
711 
712 /**
713  *	__skb_queue_head - queue a buffer at the list head
714  *	@list: list to use
715  *	@newsk: buffer to queue
716  *
717  *	Queue a buffer at the start of a list. This function takes no locks
718  *	and you must therefore hold required locks before calling it.
719  *
720  *	A buffer cannot be placed on two lists at the same time.
721  */
722 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
723 static inline void __skb_queue_head(struct sk_buff_head *list,
724 				    struct sk_buff *newsk)
725 {
726 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
727 }
728 
729 /**
730  *	__skb_queue_tail - queue a buffer at the list tail
731  *	@list: list to use
732  *	@newsk: buffer to queue
733  *
734  *	Queue a buffer at the end of a list. This function takes no locks
735  *	and you must therefore hold required locks before calling it.
736  *
737  *	A buffer cannot be placed on two lists at the same time.
738  */
739 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
740 static inline void __skb_queue_tail(struct sk_buff_head *list,
741 				   struct sk_buff *newsk)
742 {
743 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
744 }
745 
746 /*
747  * remove sk_buff from list. _Must_ be called atomically, and with
748  * the list known..
749  */
750 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
751 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
752 {
753 	struct sk_buff *next, *prev;
754 
755 	list->qlen--;
756 	next	   = skb->next;
757 	prev	   = skb->prev;
758 	skb->next  = skb->prev = NULL;
759 	next->prev = prev;
760 	prev->next = next;
761 }
762 
763 /**
764  *	__skb_dequeue - remove from the head of the queue
765  *	@list: list to dequeue from
766  *
767  *	Remove the head of the list. This function does not take any locks
768  *	so must be used with appropriate locks held only. The head item is
769  *	returned or %NULL if the list is empty.
770  */
771 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
772 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
773 {
774 	struct sk_buff *skb = skb_peek(list);
775 	if (skb)
776 		__skb_unlink(skb, list);
777 	return skb;
778 }
779 
780 /**
781  *	__skb_dequeue_tail - remove from the tail of the queue
782  *	@list: list to dequeue from
783  *
784  *	Remove the tail of the list. This function does not take any locks
785  *	so must be used with appropriate locks held only. The tail item is
786  *	returned or %NULL if the list is empty.
787  */
788 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
789 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
790 {
791 	struct sk_buff *skb = skb_peek_tail(list);
792 	if (skb)
793 		__skb_unlink(skb, list);
794 	return skb;
795 }
796 
797 
798 static inline int skb_is_nonlinear(const struct sk_buff *skb)
799 {
800 	return skb->data_len;
801 }
802 
803 static inline unsigned int skb_headlen(const struct sk_buff *skb)
804 {
805 	return skb->len - skb->data_len;
806 }
807 
808 static inline int skb_pagelen(const struct sk_buff *skb)
809 {
810 	int i, len = 0;
811 
812 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
813 		len += skb_shinfo(skb)->frags[i].size;
814 	return len + skb_headlen(skb);
815 }
816 
817 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
818 				      struct page *page, int off, int size)
819 {
820 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
821 
822 	frag->page		  = page;
823 	frag->page_offset	  = off;
824 	frag->size		  = size;
825 	skb_shinfo(skb)->nr_frags = i + 1;
826 }
827 
828 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
829 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
830 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
831 
832 #ifdef NET_SKBUFF_DATA_USES_OFFSET
833 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
834 {
835 	return skb->head + skb->tail;
836 }
837 
838 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
839 {
840 	skb->tail = skb->data - skb->head;
841 }
842 
843 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
844 {
845 	skb_reset_tail_pointer(skb);
846 	skb->tail += offset;
847 }
848 #else /* NET_SKBUFF_DATA_USES_OFFSET */
849 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
850 {
851 	return skb->tail;
852 }
853 
854 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
855 {
856 	skb->tail = skb->data;
857 }
858 
859 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
860 {
861 	skb->tail = skb->data + offset;
862 }
863 
864 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
865 
866 /*
867  *	Add data to an sk_buff
868  */
869 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
870 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
871 {
872 	unsigned char *tmp = skb_tail_pointer(skb);
873 	SKB_LINEAR_ASSERT(skb);
874 	skb->tail += len;
875 	skb->len  += len;
876 	return tmp;
877 }
878 
879 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
880 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
881 {
882 	skb->data -= len;
883 	skb->len  += len;
884 	return skb->data;
885 }
886 
887 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
888 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
889 {
890 	skb->len -= len;
891 	BUG_ON(skb->len < skb->data_len);
892 	return skb->data += len;
893 }
894 
895 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
896 
897 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
898 {
899 	if (len > skb_headlen(skb) &&
900 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
901 		return NULL;
902 	skb->len -= len;
903 	return skb->data += len;
904 }
905 
906 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
907 {
908 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
909 }
910 
911 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
912 {
913 	if (likely(len <= skb_headlen(skb)))
914 		return 1;
915 	if (unlikely(len > skb->len))
916 		return 0;
917 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
918 }
919 
920 /**
921  *	skb_headroom - bytes at buffer head
922  *	@skb: buffer to check
923  *
924  *	Return the number of bytes of free space at the head of an &sk_buff.
925  */
926 static inline unsigned int skb_headroom(const struct sk_buff *skb)
927 {
928 	return skb->data - skb->head;
929 }
930 
931 /**
932  *	skb_tailroom - bytes at buffer end
933  *	@skb: buffer to check
934  *
935  *	Return the number of bytes of free space at the tail of an sk_buff
936  */
937 static inline int skb_tailroom(const struct sk_buff *skb)
938 {
939 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
940 }
941 
942 /**
943  *	skb_reserve - adjust headroom
944  *	@skb: buffer to alter
945  *	@len: bytes to move
946  *
947  *	Increase the headroom of an empty &sk_buff by reducing the tail
948  *	room. This is only allowed for an empty buffer.
949  */
950 static inline void skb_reserve(struct sk_buff *skb, int len)
951 {
952 	skb->data += len;
953 	skb->tail += len;
954 }
955 
956 #ifdef NET_SKBUFF_DATA_USES_OFFSET
957 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
958 {
959 	return skb->head + skb->transport_header;
960 }
961 
962 static inline void skb_reset_transport_header(struct sk_buff *skb)
963 {
964 	skb->transport_header = skb->data - skb->head;
965 }
966 
967 static inline void skb_set_transport_header(struct sk_buff *skb,
968 					    const int offset)
969 {
970 	skb_reset_transport_header(skb);
971 	skb->transport_header += offset;
972 }
973 
974 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
975 {
976 	return skb->head + skb->network_header;
977 }
978 
979 static inline void skb_reset_network_header(struct sk_buff *skb)
980 {
981 	skb->network_header = skb->data - skb->head;
982 }
983 
984 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
985 {
986 	skb_reset_network_header(skb);
987 	skb->network_header += offset;
988 }
989 
990 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
991 {
992 	return skb->head + skb->mac_header;
993 }
994 
995 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
996 {
997 	return skb->mac_header != ~0U;
998 }
999 
1000 static inline void skb_reset_mac_header(struct sk_buff *skb)
1001 {
1002 	skb->mac_header = skb->data - skb->head;
1003 }
1004 
1005 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1006 {
1007 	skb_reset_mac_header(skb);
1008 	skb->mac_header += offset;
1009 }
1010 
1011 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1012 
1013 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1014 {
1015 	return skb->transport_header;
1016 }
1017 
1018 static inline void skb_reset_transport_header(struct sk_buff *skb)
1019 {
1020 	skb->transport_header = skb->data;
1021 }
1022 
1023 static inline void skb_set_transport_header(struct sk_buff *skb,
1024 					    const int offset)
1025 {
1026 	skb->transport_header = skb->data + offset;
1027 }
1028 
1029 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1030 {
1031 	return skb->network_header;
1032 }
1033 
1034 static inline void skb_reset_network_header(struct sk_buff *skb)
1035 {
1036 	skb->network_header = skb->data;
1037 }
1038 
1039 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1040 {
1041 	skb->network_header = skb->data + offset;
1042 }
1043 
1044 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1045 {
1046 	return skb->mac_header;
1047 }
1048 
1049 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1050 {
1051 	return skb->mac_header != NULL;
1052 }
1053 
1054 static inline void skb_reset_mac_header(struct sk_buff *skb)
1055 {
1056 	skb->mac_header = skb->data;
1057 }
1058 
1059 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1060 {
1061 	skb->mac_header = skb->data + offset;
1062 }
1063 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1064 
1065 static inline int skb_transport_offset(const struct sk_buff *skb)
1066 {
1067 	return skb_transport_header(skb) - skb->data;
1068 }
1069 
1070 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1071 {
1072 	return skb->transport_header - skb->network_header;
1073 }
1074 
1075 static inline int skb_network_offset(const struct sk_buff *skb)
1076 {
1077 	return skb_network_header(skb) - skb->data;
1078 }
1079 
1080 /*
1081  * CPUs often take a performance hit when accessing unaligned memory
1082  * locations. The actual performance hit varies, it can be small if the
1083  * hardware handles it or large if we have to take an exception and fix it
1084  * in software.
1085  *
1086  * Since an ethernet header is 14 bytes network drivers often end up with
1087  * the IP header at an unaligned offset. The IP header can be aligned by
1088  * shifting the start of the packet by 2 bytes. Drivers should do this
1089  * with:
1090  *
1091  * skb_reserve(NET_IP_ALIGN);
1092  *
1093  * The downside to this alignment of the IP header is that the DMA is now
1094  * unaligned. On some architectures the cost of an unaligned DMA is high
1095  * and this cost outweighs the gains made by aligning the IP header.
1096  *
1097  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1098  * to be overridden.
1099  */
1100 #ifndef NET_IP_ALIGN
1101 #define NET_IP_ALIGN	2
1102 #endif
1103 
1104 /*
1105  * The networking layer reserves some headroom in skb data (via
1106  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1107  * the header has to grow. In the default case, if the header has to grow
1108  * 16 bytes or less we avoid the reallocation.
1109  *
1110  * Unfortunately this headroom changes the DMA alignment of the resulting
1111  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1112  * on some architectures. An architecture can override this value,
1113  * perhaps setting it to a cacheline in size (since that will maintain
1114  * cacheline alignment of the DMA). It must be a power of 2.
1115  *
1116  * Various parts of the networking layer expect at least 16 bytes of
1117  * headroom, you should not reduce this.
1118  */
1119 #ifndef NET_SKB_PAD
1120 #define NET_SKB_PAD	16
1121 #endif
1122 
1123 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1124 
1125 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1126 {
1127 	if (unlikely(skb->data_len)) {
1128 		WARN_ON(1);
1129 		return;
1130 	}
1131 	skb->len = len;
1132 	skb_set_tail_pointer(skb, len);
1133 }
1134 
1135 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1136 
1137 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1138 {
1139 	if (skb->data_len)
1140 		return ___pskb_trim(skb, len);
1141 	__skb_trim(skb, len);
1142 	return 0;
1143 }
1144 
1145 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1146 {
1147 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1148 }
1149 
1150 /**
1151  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1152  *	@skb: buffer to alter
1153  *	@len: new length
1154  *
1155  *	This is identical to pskb_trim except that the caller knows that
1156  *	the skb is not cloned so we should never get an error due to out-
1157  *	of-memory.
1158  */
1159 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1160 {
1161 	int err = pskb_trim(skb, len);
1162 	BUG_ON(err);
1163 }
1164 
1165 /**
1166  *	skb_orphan - orphan a buffer
1167  *	@skb: buffer to orphan
1168  *
1169  *	If a buffer currently has an owner then we call the owner's
1170  *	destructor function and make the @skb unowned. The buffer continues
1171  *	to exist but is no longer charged to its former owner.
1172  */
1173 static inline void skb_orphan(struct sk_buff *skb)
1174 {
1175 	if (skb->destructor)
1176 		skb->destructor(skb);
1177 	skb->destructor = NULL;
1178 	skb->sk		= NULL;
1179 }
1180 
1181 /**
1182  *	__skb_queue_purge - empty a list
1183  *	@list: list to empty
1184  *
1185  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1186  *	the list and one reference dropped. This function does not take the
1187  *	list lock and the caller must hold the relevant locks to use it.
1188  */
1189 extern void skb_queue_purge(struct sk_buff_head *list);
1190 static inline void __skb_queue_purge(struct sk_buff_head *list)
1191 {
1192 	struct sk_buff *skb;
1193 	while ((skb = __skb_dequeue(list)) != NULL)
1194 		kfree_skb(skb);
1195 }
1196 
1197 /**
1198  *	__dev_alloc_skb - allocate an skbuff for receiving
1199  *	@length: length to allocate
1200  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1201  *
1202  *	Allocate a new &sk_buff and assign it a usage count of one. The
1203  *	buffer has unspecified headroom built in. Users should allocate
1204  *	the headroom they think they need without accounting for the
1205  *	built in space. The built in space is used for optimisations.
1206  *
1207  *	%NULL is returned if there is no free memory.
1208  */
1209 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1210 					      gfp_t gfp_mask)
1211 {
1212 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1213 	if (likely(skb))
1214 		skb_reserve(skb, NET_SKB_PAD);
1215 	return skb;
1216 }
1217 
1218 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1219 
1220 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1221 		unsigned int length, gfp_t gfp_mask);
1222 
1223 /**
1224  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1225  *	@dev: network device to receive on
1226  *	@length: length to allocate
1227  *
1228  *	Allocate a new &sk_buff and assign it a usage count of one. The
1229  *	buffer has unspecified headroom built in. Users should allocate
1230  *	the headroom they think they need without accounting for the
1231  *	built in space. The built in space is used for optimisations.
1232  *
1233  *	%NULL is returned if there is no free memory. Although this function
1234  *	allocates memory it can be called from an interrupt.
1235  */
1236 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1237 		unsigned int length)
1238 {
1239 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1240 }
1241 
1242 /**
1243  *	skb_clone_writable - is the header of a clone writable
1244  *	@skb: buffer to check
1245  *	@len: length up to which to write
1246  *
1247  *	Returns true if modifying the header part of the cloned buffer
1248  *	does not requires the data to be copied.
1249  */
1250 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1251 {
1252 	return !skb_header_cloned(skb) &&
1253 	       skb_headroom(skb) + len <= skb->hdr_len;
1254 }
1255 
1256 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1257 			    int cloned)
1258 {
1259 	int delta = 0;
1260 
1261 	if (headroom < NET_SKB_PAD)
1262 		headroom = NET_SKB_PAD;
1263 	if (headroom > skb_headroom(skb))
1264 		delta = headroom - skb_headroom(skb);
1265 
1266 	if (delta || cloned)
1267 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1268 					GFP_ATOMIC);
1269 	return 0;
1270 }
1271 
1272 /**
1273  *	skb_cow - copy header of skb when it is required
1274  *	@skb: buffer to cow
1275  *	@headroom: needed headroom
1276  *
1277  *	If the skb passed lacks sufficient headroom or its data part
1278  *	is shared, data is reallocated. If reallocation fails, an error
1279  *	is returned and original skb is not changed.
1280  *
1281  *	The result is skb with writable area skb->head...skb->tail
1282  *	and at least @headroom of space at head.
1283  */
1284 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1285 {
1286 	return __skb_cow(skb, headroom, skb_cloned(skb));
1287 }
1288 
1289 /**
1290  *	skb_cow_head - skb_cow but only making the head writable
1291  *	@skb: buffer to cow
1292  *	@headroom: needed headroom
1293  *
1294  *	This function is identical to skb_cow except that we replace the
1295  *	skb_cloned check by skb_header_cloned.  It should be used when
1296  *	you only need to push on some header and do not need to modify
1297  *	the data.
1298  */
1299 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1300 {
1301 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1302 }
1303 
1304 /**
1305  *	skb_padto	- pad an skbuff up to a minimal size
1306  *	@skb: buffer to pad
1307  *	@len: minimal length
1308  *
1309  *	Pads up a buffer to ensure the trailing bytes exist and are
1310  *	blanked. If the buffer already contains sufficient data it
1311  *	is untouched. Otherwise it is extended. Returns zero on
1312  *	success. The skb is freed on error.
1313  */
1314 
1315 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1316 {
1317 	unsigned int size = skb->len;
1318 	if (likely(size >= len))
1319 		return 0;
1320 	return skb_pad(skb, len-size);
1321 }
1322 
1323 static inline int skb_add_data(struct sk_buff *skb,
1324 			       char __user *from, int copy)
1325 {
1326 	const int off = skb->len;
1327 
1328 	if (skb->ip_summed == CHECKSUM_NONE) {
1329 		int err = 0;
1330 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1331 							    copy, 0, &err);
1332 		if (!err) {
1333 			skb->csum = csum_block_add(skb->csum, csum, off);
1334 			return 0;
1335 		}
1336 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1337 		return 0;
1338 
1339 	__skb_trim(skb, off);
1340 	return -EFAULT;
1341 }
1342 
1343 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1344 				   struct page *page, int off)
1345 {
1346 	if (i) {
1347 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1348 
1349 		return page == frag->page &&
1350 		       off == frag->page_offset + frag->size;
1351 	}
1352 	return 0;
1353 }
1354 
1355 static inline int __skb_linearize(struct sk_buff *skb)
1356 {
1357 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1358 }
1359 
1360 /**
1361  *	skb_linearize - convert paged skb to linear one
1362  *	@skb: buffer to linarize
1363  *
1364  *	If there is no free memory -ENOMEM is returned, otherwise zero
1365  *	is returned and the old skb data released.
1366  */
1367 static inline int skb_linearize(struct sk_buff *skb)
1368 {
1369 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1370 }
1371 
1372 /**
1373  *	skb_linearize_cow - make sure skb is linear and writable
1374  *	@skb: buffer to process
1375  *
1376  *	If there is no free memory -ENOMEM is returned, otherwise zero
1377  *	is returned and the old skb data released.
1378  */
1379 static inline int skb_linearize_cow(struct sk_buff *skb)
1380 {
1381 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1382 	       __skb_linearize(skb) : 0;
1383 }
1384 
1385 /**
1386  *	skb_postpull_rcsum - update checksum for received skb after pull
1387  *	@skb: buffer to update
1388  *	@start: start of data before pull
1389  *	@len: length of data pulled
1390  *
1391  *	After doing a pull on a received packet, you need to call this to
1392  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1393  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1394  */
1395 
1396 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1397 				      const void *start, unsigned int len)
1398 {
1399 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1400 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1401 }
1402 
1403 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1404 
1405 /**
1406  *	pskb_trim_rcsum - trim received skb and update checksum
1407  *	@skb: buffer to trim
1408  *	@len: new length
1409  *
1410  *	This is exactly the same as pskb_trim except that it ensures the
1411  *	checksum of received packets are still valid after the operation.
1412  */
1413 
1414 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1415 {
1416 	if (likely(len >= skb->len))
1417 		return 0;
1418 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1419 		skb->ip_summed = CHECKSUM_NONE;
1420 	return __pskb_trim(skb, len);
1421 }
1422 
1423 #define skb_queue_walk(queue, skb) \
1424 		for (skb = (queue)->next;					\
1425 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1426 		     skb = skb->next)
1427 
1428 #define skb_queue_walk_safe(queue, skb, tmp)					\
1429 		for (skb = (queue)->next, tmp = skb->next;			\
1430 		     skb != (struct sk_buff *)(queue);				\
1431 		     skb = tmp, tmp = skb->next)
1432 
1433 #define skb_queue_reverse_walk(queue, skb) \
1434 		for (skb = (queue)->prev;					\
1435 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1436 		     skb = skb->prev)
1437 
1438 
1439 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1440 					   int *peeked, int *err);
1441 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1442 					 int noblock, int *err);
1443 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1444 				     struct poll_table_struct *wait);
1445 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1446 					       int offset, struct iovec *to,
1447 					       int size);
1448 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1449 							int hlen,
1450 							struct iovec *iov);
1451 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1452 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1453 					 unsigned int flags);
1454 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1455 				    int len, __wsum csum);
1456 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1457 				     void *to, int len);
1458 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1459 				      const void *from, int len);
1460 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1461 					      int offset, u8 *to, int len,
1462 					      __wsum csum);
1463 extern int             skb_splice_bits(struct sk_buff *skb,
1464 						unsigned int offset,
1465 						struct pipe_inode_info *pipe,
1466 						unsigned int len,
1467 						unsigned int flags);
1468 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1469 extern void	       skb_split(struct sk_buff *skb,
1470 				 struct sk_buff *skb1, const u32 len);
1471 
1472 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1473 
1474 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1475 				       int len, void *buffer)
1476 {
1477 	int hlen = skb_headlen(skb);
1478 
1479 	if (hlen - offset >= len)
1480 		return skb->data + offset;
1481 
1482 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1483 		return NULL;
1484 
1485 	return buffer;
1486 }
1487 
1488 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1489 					     void *to,
1490 					     const unsigned int len)
1491 {
1492 	memcpy(to, skb->data, len);
1493 }
1494 
1495 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1496 						    const int offset, void *to,
1497 						    const unsigned int len)
1498 {
1499 	memcpy(to, skb->data + offset, len);
1500 }
1501 
1502 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1503 					   const void *from,
1504 					   const unsigned int len)
1505 {
1506 	memcpy(skb->data, from, len);
1507 }
1508 
1509 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1510 						  const int offset,
1511 						  const void *from,
1512 						  const unsigned int len)
1513 {
1514 	memcpy(skb->data + offset, from, len);
1515 }
1516 
1517 extern void skb_init(void);
1518 
1519 /**
1520  *	skb_get_timestamp - get timestamp from a skb
1521  *	@skb: skb to get stamp from
1522  *	@stamp: pointer to struct timeval to store stamp in
1523  *
1524  *	Timestamps are stored in the skb as offsets to a base timestamp.
1525  *	This function converts the offset back to a struct timeval and stores
1526  *	it in stamp.
1527  */
1528 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1529 {
1530 	*stamp = ktime_to_timeval(skb->tstamp);
1531 }
1532 
1533 static inline void __net_timestamp(struct sk_buff *skb)
1534 {
1535 	skb->tstamp = ktime_get_real();
1536 }
1537 
1538 static inline ktime_t net_timedelta(ktime_t t)
1539 {
1540 	return ktime_sub(ktime_get_real(), t);
1541 }
1542 
1543 static inline ktime_t net_invalid_timestamp(void)
1544 {
1545 	return ktime_set(0, 0);
1546 }
1547 
1548 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1549 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1550 
1551 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1552 {
1553 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1554 }
1555 
1556 /**
1557  *	skb_checksum_complete - Calculate checksum of an entire packet
1558  *	@skb: packet to process
1559  *
1560  *	This function calculates the checksum over the entire packet plus
1561  *	the value of skb->csum.  The latter can be used to supply the
1562  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1563  *	checksum.
1564  *
1565  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1566  *	this function can be used to verify that checksum on received
1567  *	packets.  In that case the function should return zero if the
1568  *	checksum is correct.  In particular, this function will return zero
1569  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1570  *	hardware has already verified the correctness of the checksum.
1571  */
1572 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1573 {
1574 	return skb_csum_unnecessary(skb) ?
1575 	       0 : __skb_checksum_complete(skb);
1576 }
1577 
1578 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1579 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1580 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1581 {
1582 	if (nfct && atomic_dec_and_test(&nfct->use))
1583 		nf_conntrack_destroy(nfct);
1584 }
1585 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1586 {
1587 	if (nfct)
1588 		atomic_inc(&nfct->use);
1589 }
1590 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1591 {
1592 	if (skb)
1593 		atomic_inc(&skb->users);
1594 }
1595 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1596 {
1597 	if (skb)
1598 		kfree_skb(skb);
1599 }
1600 #endif
1601 #ifdef CONFIG_BRIDGE_NETFILTER
1602 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1603 {
1604 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1605 		kfree(nf_bridge);
1606 }
1607 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1608 {
1609 	if (nf_bridge)
1610 		atomic_inc(&nf_bridge->use);
1611 }
1612 #endif /* CONFIG_BRIDGE_NETFILTER */
1613 static inline void nf_reset(struct sk_buff *skb)
1614 {
1615 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1616 	nf_conntrack_put(skb->nfct);
1617 	skb->nfct = NULL;
1618 	nf_conntrack_put_reasm(skb->nfct_reasm);
1619 	skb->nfct_reasm = NULL;
1620 #endif
1621 #ifdef CONFIG_BRIDGE_NETFILTER
1622 	nf_bridge_put(skb->nf_bridge);
1623 	skb->nf_bridge = NULL;
1624 #endif
1625 }
1626 
1627 /* Note: This doesn't put any conntrack and bridge info in dst. */
1628 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1629 {
1630 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1631 	dst->nfct = src->nfct;
1632 	nf_conntrack_get(src->nfct);
1633 	dst->nfctinfo = src->nfctinfo;
1634 	dst->nfct_reasm = src->nfct_reasm;
1635 	nf_conntrack_get_reasm(src->nfct_reasm);
1636 #endif
1637 #ifdef CONFIG_BRIDGE_NETFILTER
1638 	dst->nf_bridge  = src->nf_bridge;
1639 	nf_bridge_get(src->nf_bridge);
1640 #endif
1641 }
1642 
1643 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1644 {
1645 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1646 	nf_conntrack_put(dst->nfct);
1647 	nf_conntrack_put_reasm(dst->nfct_reasm);
1648 #endif
1649 #ifdef CONFIG_BRIDGE_NETFILTER
1650 	nf_bridge_put(dst->nf_bridge);
1651 #endif
1652 	__nf_copy(dst, src);
1653 }
1654 
1655 #ifdef CONFIG_NETWORK_SECMARK
1656 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1657 {
1658 	to->secmark = from->secmark;
1659 }
1660 
1661 static inline void skb_init_secmark(struct sk_buff *skb)
1662 {
1663 	skb->secmark = 0;
1664 }
1665 #else
1666 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1667 { }
1668 
1669 static inline void skb_init_secmark(struct sk_buff *skb)
1670 { }
1671 #endif
1672 
1673 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1674 {
1675 	skb->queue_mapping = queue_mapping;
1676 }
1677 
1678 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1679 {
1680 	return skb->queue_mapping;
1681 }
1682 
1683 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1684 {
1685 	to->queue_mapping = from->queue_mapping;
1686 }
1687 
1688 static inline int skb_is_gso(const struct sk_buff *skb)
1689 {
1690 	return skb_shinfo(skb)->gso_size;
1691 }
1692 
1693 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1694 {
1695 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1696 }
1697 
1698 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1699 
1700 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1701 {
1702 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
1703 	 * wanted then gso_type will be set. */
1704 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1705 	if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1706 		__skb_warn_lro_forwarding(skb);
1707 		return true;
1708 	}
1709 	return false;
1710 }
1711 
1712 static inline void skb_forward_csum(struct sk_buff *skb)
1713 {
1714 	/* Unfortunately we don't support this one.  Any brave souls? */
1715 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1716 		skb->ip_summed = CHECKSUM_NONE;
1717 }
1718 
1719 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1720 #endif	/* __KERNEL__ */
1721 #endif	/* _LINUX_SKBUFF_H */
1722