1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/cache.h> 21 22 #include <asm/atomic.h> 23 #include <asm/types.h> 24 #include <linux/spinlock.h> 25 #include <linux/net.h> 26 #include <linux/textsearch.h> 27 #include <net/checksum.h> 28 #include <linux/rcupdate.h> 29 #include <linux/dmaengine.h> 30 #include <linux/hrtimer.h> 31 32 #define HAVE_ALLOC_SKB /* For the drivers to know */ 33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 34 35 /* Don't change this without changing skb_csum_unnecessary! */ 36 #define CHECKSUM_NONE 0 37 #define CHECKSUM_UNNECESSARY 1 38 #define CHECKSUM_COMPLETE 2 39 #define CHECKSUM_PARTIAL 3 40 41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43 #define SKB_WITH_OVERHEAD(X) \ 44 (((X) - sizeof(struct skb_shared_info)) & \ 45 ~(SMP_CACHE_BYTES - 1)) 46 #define SKB_MAX_ORDER(X, ORDER) \ 47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 50 51 /* A. Checksumming of received packets by device. 52 * 53 * NONE: device failed to checksum this packet. 54 * skb->csum is undefined. 55 * 56 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 57 * skb->csum is undefined. 58 * It is bad option, but, unfortunately, many of vendors do this. 59 * Apparently with secret goal to sell you new device, when you 60 * will add new protocol to your host. F.e. IPv6. 8) 61 * 62 * COMPLETE: the most generic way. Device supplied checksum of _all_ 63 * the packet as seen by netif_rx in skb->csum. 64 * NOTE: Even if device supports only some protocols, but 65 * is able to produce some skb->csum, it MUST use COMPLETE, 66 * not UNNECESSARY. 67 * 68 * PARTIAL: identical to the case for output below. This may occur 69 * on a packet received directly from another Linux OS, e.g., 70 * a virtualised Linux kernel on the same host. The packet can 71 * be treated in the same way as UNNECESSARY except that on 72 * output (i.e., forwarding) the checksum must be filled in 73 * by the OS or the hardware. 74 * 75 * B. Checksumming on output. 76 * 77 * NONE: skb is checksummed by protocol or csum is not required. 78 * 79 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 80 * from skb->csum_start to the end and to record the checksum 81 * at skb->csum_start + skb->csum_offset. 82 * 83 * Device must show its capabilities in dev->features, set 84 * at device setup time. 85 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 86 * everything. 87 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 88 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 89 * TCP/UDP over IPv4. Sigh. Vendors like this 90 * way by an unknown reason. Though, see comment above 91 * about CHECKSUM_UNNECESSARY. 8) 92 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 93 * 94 * Any questions? No questions, good. --ANK 95 */ 96 97 struct net_device; 98 struct scatterlist; 99 100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 101 struct nf_conntrack { 102 atomic_t use; 103 }; 104 #endif 105 106 #ifdef CONFIG_BRIDGE_NETFILTER 107 struct nf_bridge_info { 108 atomic_t use; 109 struct net_device *physindev; 110 struct net_device *physoutdev; 111 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 112 struct net_device *netoutdev; 113 #endif 114 unsigned int mask; 115 unsigned long data[32 / sizeof(unsigned long)]; 116 }; 117 #endif 118 119 struct sk_buff_head { 120 /* These two members must be first. */ 121 struct sk_buff *next; 122 struct sk_buff *prev; 123 124 __u32 qlen; 125 spinlock_t lock; 126 }; 127 128 struct sk_buff; 129 130 /* To allow 64K frame to be packed as single skb without frag_list */ 131 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 132 133 typedef struct skb_frag_struct skb_frag_t; 134 135 struct skb_frag_struct { 136 struct page *page; 137 __u32 page_offset; 138 __u32 size; 139 }; 140 141 /* This data is invariant across clones and lives at 142 * the end of the header data, ie. at skb->end. 143 */ 144 struct skb_shared_info { 145 atomic_t dataref; 146 unsigned short nr_frags; 147 unsigned short gso_size; 148 /* Warning: this field is not always filled in (UFO)! */ 149 unsigned short gso_segs; 150 unsigned short gso_type; 151 __be32 ip6_frag_id; 152 struct sk_buff *frag_list; 153 skb_frag_t frags[MAX_SKB_FRAGS]; 154 }; 155 156 /* We divide dataref into two halves. The higher 16 bits hold references 157 * to the payload part of skb->data. The lower 16 bits hold references to 158 * the entire skb->data. A clone of a headerless skb holds the length of 159 * the header in skb->hdr_len. 160 * 161 * All users must obey the rule that the skb->data reference count must be 162 * greater than or equal to the payload reference count. 163 * 164 * Holding a reference to the payload part means that the user does not 165 * care about modifications to the header part of skb->data. 166 */ 167 #define SKB_DATAREF_SHIFT 16 168 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 169 170 171 enum { 172 SKB_FCLONE_UNAVAILABLE, 173 SKB_FCLONE_ORIG, 174 SKB_FCLONE_CLONE, 175 }; 176 177 enum { 178 SKB_GSO_TCPV4 = 1 << 0, 179 SKB_GSO_UDP = 1 << 1, 180 181 /* This indicates the skb is from an untrusted source. */ 182 SKB_GSO_DODGY = 1 << 2, 183 184 /* This indicates the tcp segment has CWR set. */ 185 SKB_GSO_TCP_ECN = 1 << 3, 186 187 SKB_GSO_TCPV6 = 1 << 4, 188 }; 189 190 #if BITS_PER_LONG > 32 191 #define NET_SKBUFF_DATA_USES_OFFSET 1 192 #endif 193 194 #ifdef NET_SKBUFF_DATA_USES_OFFSET 195 typedef unsigned int sk_buff_data_t; 196 #else 197 typedef unsigned char *sk_buff_data_t; 198 #endif 199 200 /** 201 * struct sk_buff - socket buffer 202 * @next: Next buffer in list 203 * @prev: Previous buffer in list 204 * @sk: Socket we are owned by 205 * @tstamp: Time we arrived 206 * @dev: Device we arrived on/are leaving by 207 * @transport_header: Transport layer header 208 * @network_header: Network layer header 209 * @mac_header: Link layer header 210 * @dst: destination entry 211 * @sp: the security path, used for xfrm 212 * @cb: Control buffer. Free for use by every layer. Put private vars here 213 * @len: Length of actual data 214 * @data_len: Data length 215 * @mac_len: Length of link layer header 216 * @hdr_len: writable header length of cloned skb 217 * @csum: Checksum (must include start/offset pair) 218 * @csum_start: Offset from skb->head where checksumming should start 219 * @csum_offset: Offset from csum_start where checksum should be stored 220 * @local_df: allow local fragmentation 221 * @cloned: Head may be cloned (check refcnt to be sure) 222 * @nohdr: Payload reference only, must not modify header 223 * @pkt_type: Packet class 224 * @fclone: skbuff clone status 225 * @ip_summed: Driver fed us an IP checksum 226 * @priority: Packet queueing priority 227 * @users: User count - see {datagram,tcp}.c 228 * @protocol: Packet protocol from driver 229 * @truesize: Buffer size 230 * @head: Head of buffer 231 * @data: Data head pointer 232 * @tail: Tail pointer 233 * @end: End pointer 234 * @destructor: Destruct function 235 * @mark: Generic packet mark 236 * @nfct: Associated connection, if any 237 * @ipvs_property: skbuff is owned by ipvs 238 * @nf_trace: netfilter packet trace flag 239 * @nfctinfo: Relationship of this skb to the connection 240 * @nfct_reasm: netfilter conntrack re-assembly pointer 241 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 242 * @iif: ifindex of device we arrived on 243 * @queue_mapping: Queue mapping for multiqueue devices 244 * @tc_index: Traffic control index 245 * @tc_verd: traffic control verdict 246 * @dma_cookie: a cookie to one of several possible DMA operations 247 * done by skb DMA functions 248 * @secmark: security marking 249 */ 250 251 struct sk_buff { 252 /* These two members must be first. */ 253 struct sk_buff *next; 254 struct sk_buff *prev; 255 256 struct sock *sk; 257 ktime_t tstamp; 258 struct net_device *dev; 259 260 struct dst_entry *dst; 261 struct sec_path *sp; 262 263 /* 264 * This is the control buffer. It is free to use for every 265 * layer. Please put your private variables there. If you 266 * want to keep them across layers you have to do a skb_clone() 267 * first. This is owned by whoever has the skb queued ATM. 268 */ 269 char cb[48]; 270 271 unsigned int len, 272 data_len; 273 __u16 mac_len, 274 hdr_len; 275 union { 276 __wsum csum; 277 struct { 278 __u16 csum_start; 279 __u16 csum_offset; 280 }; 281 }; 282 __u32 priority; 283 __u8 local_df:1, 284 cloned:1, 285 ip_summed:2, 286 nohdr:1, 287 nfctinfo:3; 288 __u8 pkt_type:3, 289 fclone:2, 290 ipvs_property:1, 291 nf_trace:1; 292 __be16 protocol; 293 294 void (*destructor)(struct sk_buff *skb); 295 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 296 struct nf_conntrack *nfct; 297 struct sk_buff *nfct_reasm; 298 #endif 299 #ifdef CONFIG_BRIDGE_NETFILTER 300 struct nf_bridge_info *nf_bridge; 301 #endif 302 303 int iif; 304 __u16 queue_mapping; 305 306 #ifdef CONFIG_NET_SCHED 307 __u16 tc_index; /* traffic control index */ 308 #ifdef CONFIG_NET_CLS_ACT 309 __u16 tc_verd; /* traffic control verdict */ 310 #endif 311 #endif 312 /* 2 byte hole */ 313 314 #ifdef CONFIG_NET_DMA 315 dma_cookie_t dma_cookie; 316 #endif 317 #ifdef CONFIG_NETWORK_SECMARK 318 __u32 secmark; 319 #endif 320 321 __u32 mark; 322 323 sk_buff_data_t transport_header; 324 sk_buff_data_t network_header; 325 sk_buff_data_t mac_header; 326 /* These elements must be at the end, see alloc_skb() for details. */ 327 sk_buff_data_t tail; 328 sk_buff_data_t end; 329 unsigned char *head, 330 *data; 331 unsigned int truesize; 332 atomic_t users; 333 }; 334 335 #ifdef __KERNEL__ 336 /* 337 * Handling routines are only of interest to the kernel 338 */ 339 #include <linux/slab.h> 340 341 #include <asm/system.h> 342 343 extern void kfree_skb(struct sk_buff *skb); 344 extern void __kfree_skb(struct sk_buff *skb); 345 extern struct sk_buff *__alloc_skb(unsigned int size, 346 gfp_t priority, int fclone, int node); 347 static inline struct sk_buff *alloc_skb(unsigned int size, 348 gfp_t priority) 349 { 350 return __alloc_skb(size, priority, 0, -1); 351 } 352 353 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 354 gfp_t priority) 355 { 356 return __alloc_skb(size, priority, 1, -1); 357 } 358 359 extern void kfree_skbmem(struct sk_buff *skb); 360 extern struct sk_buff *skb_clone(struct sk_buff *skb, 361 gfp_t priority); 362 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 363 gfp_t priority); 364 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 365 gfp_t gfp_mask); 366 extern int pskb_expand_head(struct sk_buff *skb, 367 int nhead, int ntail, 368 gfp_t gfp_mask); 369 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 370 unsigned int headroom); 371 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 372 int newheadroom, int newtailroom, 373 gfp_t priority); 374 extern int skb_to_sgvec(struct sk_buff *skb, 375 struct scatterlist *sg, int offset, 376 int len); 377 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 378 struct sk_buff **trailer); 379 extern int skb_pad(struct sk_buff *skb, int pad); 380 #define dev_kfree_skb(a) kfree_skb(a) 381 extern void skb_over_panic(struct sk_buff *skb, int len, 382 void *here); 383 extern void skb_under_panic(struct sk_buff *skb, int len, 384 void *here); 385 extern void skb_truesize_bug(struct sk_buff *skb); 386 387 static inline void skb_truesize_check(struct sk_buff *skb) 388 { 389 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len)) 390 skb_truesize_bug(skb); 391 } 392 393 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 394 int getfrag(void *from, char *to, int offset, 395 int len,int odd, struct sk_buff *skb), 396 void *from, int length); 397 398 struct skb_seq_state 399 { 400 __u32 lower_offset; 401 __u32 upper_offset; 402 __u32 frag_idx; 403 __u32 stepped_offset; 404 struct sk_buff *root_skb; 405 struct sk_buff *cur_skb; 406 __u8 *frag_data; 407 }; 408 409 extern void skb_prepare_seq_read(struct sk_buff *skb, 410 unsigned int from, unsigned int to, 411 struct skb_seq_state *st); 412 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 413 struct skb_seq_state *st); 414 extern void skb_abort_seq_read(struct skb_seq_state *st); 415 416 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 417 unsigned int to, struct ts_config *config, 418 struct ts_state *state); 419 420 #ifdef NET_SKBUFF_DATA_USES_OFFSET 421 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 422 { 423 return skb->head + skb->end; 424 } 425 #else 426 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 427 { 428 return skb->end; 429 } 430 #endif 431 432 /* Internal */ 433 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 434 435 /** 436 * skb_queue_empty - check if a queue is empty 437 * @list: queue head 438 * 439 * Returns true if the queue is empty, false otherwise. 440 */ 441 static inline int skb_queue_empty(const struct sk_buff_head *list) 442 { 443 return list->next == (struct sk_buff *)list; 444 } 445 446 /** 447 * skb_get - reference buffer 448 * @skb: buffer to reference 449 * 450 * Makes another reference to a socket buffer and returns a pointer 451 * to the buffer. 452 */ 453 static inline struct sk_buff *skb_get(struct sk_buff *skb) 454 { 455 atomic_inc(&skb->users); 456 return skb; 457 } 458 459 /* 460 * If users == 1, we are the only owner and are can avoid redundant 461 * atomic change. 462 */ 463 464 /** 465 * skb_cloned - is the buffer a clone 466 * @skb: buffer to check 467 * 468 * Returns true if the buffer was generated with skb_clone() and is 469 * one of multiple shared copies of the buffer. Cloned buffers are 470 * shared data so must not be written to under normal circumstances. 471 */ 472 static inline int skb_cloned(const struct sk_buff *skb) 473 { 474 return skb->cloned && 475 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 476 } 477 478 /** 479 * skb_header_cloned - is the header a clone 480 * @skb: buffer to check 481 * 482 * Returns true if modifying the header part of the buffer requires 483 * the data to be copied. 484 */ 485 static inline int skb_header_cloned(const struct sk_buff *skb) 486 { 487 int dataref; 488 489 if (!skb->cloned) 490 return 0; 491 492 dataref = atomic_read(&skb_shinfo(skb)->dataref); 493 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 494 return dataref != 1; 495 } 496 497 /** 498 * skb_header_release - release reference to header 499 * @skb: buffer to operate on 500 * 501 * Drop a reference to the header part of the buffer. This is done 502 * by acquiring a payload reference. You must not read from the header 503 * part of skb->data after this. 504 */ 505 static inline void skb_header_release(struct sk_buff *skb) 506 { 507 BUG_ON(skb->nohdr); 508 skb->nohdr = 1; 509 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 510 } 511 512 /** 513 * skb_shared - is the buffer shared 514 * @skb: buffer to check 515 * 516 * Returns true if more than one person has a reference to this 517 * buffer. 518 */ 519 static inline int skb_shared(const struct sk_buff *skb) 520 { 521 return atomic_read(&skb->users) != 1; 522 } 523 524 /** 525 * skb_share_check - check if buffer is shared and if so clone it 526 * @skb: buffer to check 527 * @pri: priority for memory allocation 528 * 529 * If the buffer is shared the buffer is cloned and the old copy 530 * drops a reference. A new clone with a single reference is returned. 531 * If the buffer is not shared the original buffer is returned. When 532 * being called from interrupt status or with spinlocks held pri must 533 * be GFP_ATOMIC. 534 * 535 * NULL is returned on a memory allocation failure. 536 */ 537 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 538 gfp_t pri) 539 { 540 might_sleep_if(pri & __GFP_WAIT); 541 if (skb_shared(skb)) { 542 struct sk_buff *nskb = skb_clone(skb, pri); 543 kfree_skb(skb); 544 skb = nskb; 545 } 546 return skb; 547 } 548 549 /* 550 * Copy shared buffers into a new sk_buff. We effectively do COW on 551 * packets to handle cases where we have a local reader and forward 552 * and a couple of other messy ones. The normal one is tcpdumping 553 * a packet thats being forwarded. 554 */ 555 556 /** 557 * skb_unshare - make a copy of a shared buffer 558 * @skb: buffer to check 559 * @pri: priority for memory allocation 560 * 561 * If the socket buffer is a clone then this function creates a new 562 * copy of the data, drops a reference count on the old copy and returns 563 * the new copy with the reference count at 1. If the buffer is not a clone 564 * the original buffer is returned. When called with a spinlock held or 565 * from interrupt state @pri must be %GFP_ATOMIC 566 * 567 * %NULL is returned on a memory allocation failure. 568 */ 569 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 570 gfp_t pri) 571 { 572 might_sleep_if(pri & __GFP_WAIT); 573 if (skb_cloned(skb)) { 574 struct sk_buff *nskb = skb_copy(skb, pri); 575 kfree_skb(skb); /* Free our shared copy */ 576 skb = nskb; 577 } 578 return skb; 579 } 580 581 /** 582 * skb_peek 583 * @list_: list to peek at 584 * 585 * Peek an &sk_buff. Unlike most other operations you _MUST_ 586 * be careful with this one. A peek leaves the buffer on the 587 * list and someone else may run off with it. You must hold 588 * the appropriate locks or have a private queue to do this. 589 * 590 * Returns %NULL for an empty list or a pointer to the head element. 591 * The reference count is not incremented and the reference is therefore 592 * volatile. Use with caution. 593 */ 594 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 595 { 596 struct sk_buff *list = ((struct sk_buff *)list_)->next; 597 if (list == (struct sk_buff *)list_) 598 list = NULL; 599 return list; 600 } 601 602 /** 603 * skb_peek_tail 604 * @list_: list to peek at 605 * 606 * Peek an &sk_buff. Unlike most other operations you _MUST_ 607 * be careful with this one. A peek leaves the buffer on the 608 * list and someone else may run off with it. You must hold 609 * the appropriate locks or have a private queue to do this. 610 * 611 * Returns %NULL for an empty list or a pointer to the tail element. 612 * The reference count is not incremented and the reference is therefore 613 * volatile. Use with caution. 614 */ 615 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 616 { 617 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 618 if (list == (struct sk_buff *)list_) 619 list = NULL; 620 return list; 621 } 622 623 /** 624 * skb_queue_len - get queue length 625 * @list_: list to measure 626 * 627 * Return the length of an &sk_buff queue. 628 */ 629 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 630 { 631 return list_->qlen; 632 } 633 634 /* 635 * This function creates a split out lock class for each invocation; 636 * this is needed for now since a whole lot of users of the skb-queue 637 * infrastructure in drivers have different locking usage (in hardirq) 638 * than the networking core (in softirq only). In the long run either the 639 * network layer or drivers should need annotation to consolidate the 640 * main types of usage into 3 classes. 641 */ 642 static inline void skb_queue_head_init(struct sk_buff_head *list) 643 { 644 spin_lock_init(&list->lock); 645 list->prev = list->next = (struct sk_buff *)list; 646 list->qlen = 0; 647 } 648 649 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 650 struct lock_class_key *class) 651 { 652 skb_queue_head_init(list); 653 lockdep_set_class(&list->lock, class); 654 } 655 656 /* 657 * Insert an sk_buff at the start of a list. 658 * 659 * The "__skb_xxxx()" functions are the non-atomic ones that 660 * can only be called with interrupts disabled. 661 */ 662 663 /** 664 * __skb_queue_after - queue a buffer at the list head 665 * @list: list to use 666 * @prev: place after this buffer 667 * @newsk: buffer to queue 668 * 669 * Queue a buffer int the middle of a list. This function takes no locks 670 * and you must therefore hold required locks before calling it. 671 * 672 * A buffer cannot be placed on two lists at the same time. 673 */ 674 static inline void __skb_queue_after(struct sk_buff_head *list, 675 struct sk_buff *prev, 676 struct sk_buff *newsk) 677 { 678 struct sk_buff *next; 679 list->qlen++; 680 681 next = prev->next; 682 newsk->next = next; 683 newsk->prev = prev; 684 next->prev = prev->next = newsk; 685 } 686 687 /** 688 * __skb_queue_head - queue a buffer at the list head 689 * @list: list to use 690 * @newsk: buffer to queue 691 * 692 * Queue a buffer at the start of a list. This function takes no locks 693 * and you must therefore hold required locks before calling it. 694 * 695 * A buffer cannot be placed on two lists at the same time. 696 */ 697 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 698 static inline void __skb_queue_head(struct sk_buff_head *list, 699 struct sk_buff *newsk) 700 { 701 __skb_queue_after(list, (struct sk_buff *)list, newsk); 702 } 703 704 /** 705 * __skb_queue_tail - queue a buffer at the list tail 706 * @list: list to use 707 * @newsk: buffer to queue 708 * 709 * Queue a buffer at the end of a list. This function takes no locks 710 * and you must therefore hold required locks before calling it. 711 * 712 * A buffer cannot be placed on two lists at the same time. 713 */ 714 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 715 static inline void __skb_queue_tail(struct sk_buff_head *list, 716 struct sk_buff *newsk) 717 { 718 struct sk_buff *prev, *next; 719 720 list->qlen++; 721 next = (struct sk_buff *)list; 722 prev = next->prev; 723 newsk->next = next; 724 newsk->prev = prev; 725 next->prev = prev->next = newsk; 726 } 727 728 729 /** 730 * __skb_dequeue - remove from the head of the queue 731 * @list: list to dequeue from 732 * 733 * Remove the head of the list. This function does not take any locks 734 * so must be used with appropriate locks held only. The head item is 735 * returned or %NULL if the list is empty. 736 */ 737 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 738 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 739 { 740 struct sk_buff *next, *prev, *result; 741 742 prev = (struct sk_buff *) list; 743 next = prev->next; 744 result = NULL; 745 if (next != prev) { 746 result = next; 747 next = next->next; 748 list->qlen--; 749 next->prev = prev; 750 prev->next = next; 751 result->next = result->prev = NULL; 752 } 753 return result; 754 } 755 756 757 /* 758 * Insert a packet on a list. 759 */ 760 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 761 static inline void __skb_insert(struct sk_buff *newsk, 762 struct sk_buff *prev, struct sk_buff *next, 763 struct sk_buff_head *list) 764 { 765 newsk->next = next; 766 newsk->prev = prev; 767 next->prev = prev->next = newsk; 768 list->qlen++; 769 } 770 771 /* 772 * Place a packet after a given packet in a list. 773 */ 774 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 775 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 776 { 777 __skb_insert(newsk, old, old->next, list); 778 } 779 780 /* 781 * remove sk_buff from list. _Must_ be called atomically, and with 782 * the list known.. 783 */ 784 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 785 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 786 { 787 struct sk_buff *next, *prev; 788 789 list->qlen--; 790 next = skb->next; 791 prev = skb->prev; 792 skb->next = skb->prev = NULL; 793 next->prev = prev; 794 prev->next = next; 795 } 796 797 798 /* XXX: more streamlined implementation */ 799 800 /** 801 * __skb_dequeue_tail - remove from the tail of the queue 802 * @list: list to dequeue from 803 * 804 * Remove the tail of the list. This function does not take any locks 805 * so must be used with appropriate locks held only. The tail item is 806 * returned or %NULL if the list is empty. 807 */ 808 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 809 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 810 { 811 struct sk_buff *skb = skb_peek_tail(list); 812 if (skb) 813 __skb_unlink(skb, list); 814 return skb; 815 } 816 817 818 static inline int skb_is_nonlinear(const struct sk_buff *skb) 819 { 820 return skb->data_len; 821 } 822 823 static inline unsigned int skb_headlen(const struct sk_buff *skb) 824 { 825 return skb->len - skb->data_len; 826 } 827 828 static inline int skb_pagelen(const struct sk_buff *skb) 829 { 830 int i, len = 0; 831 832 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 833 len += skb_shinfo(skb)->frags[i].size; 834 return len + skb_headlen(skb); 835 } 836 837 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 838 struct page *page, int off, int size) 839 { 840 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 841 842 frag->page = page; 843 frag->page_offset = off; 844 frag->size = size; 845 skb_shinfo(skb)->nr_frags = i + 1; 846 } 847 848 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 849 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 850 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 851 852 #ifdef NET_SKBUFF_DATA_USES_OFFSET 853 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 854 { 855 return skb->head + skb->tail; 856 } 857 858 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 859 { 860 skb->tail = skb->data - skb->head; 861 } 862 863 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 864 { 865 skb_reset_tail_pointer(skb); 866 skb->tail += offset; 867 } 868 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 869 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 870 { 871 return skb->tail; 872 } 873 874 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 875 { 876 skb->tail = skb->data; 877 } 878 879 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 880 { 881 skb->tail = skb->data + offset; 882 } 883 884 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 885 886 /* 887 * Add data to an sk_buff 888 */ 889 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 890 { 891 unsigned char *tmp = skb_tail_pointer(skb); 892 SKB_LINEAR_ASSERT(skb); 893 skb->tail += len; 894 skb->len += len; 895 return tmp; 896 } 897 898 /** 899 * skb_put - add data to a buffer 900 * @skb: buffer to use 901 * @len: amount of data to add 902 * 903 * This function extends the used data area of the buffer. If this would 904 * exceed the total buffer size the kernel will panic. A pointer to the 905 * first byte of the extra data is returned. 906 */ 907 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 908 { 909 unsigned char *tmp = skb_tail_pointer(skb); 910 SKB_LINEAR_ASSERT(skb); 911 skb->tail += len; 912 skb->len += len; 913 if (unlikely(skb->tail > skb->end)) 914 skb_over_panic(skb, len, current_text_addr()); 915 return tmp; 916 } 917 918 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 919 { 920 skb->data -= len; 921 skb->len += len; 922 return skb->data; 923 } 924 925 /** 926 * skb_push - add data to the start of a buffer 927 * @skb: buffer to use 928 * @len: amount of data to add 929 * 930 * This function extends the used data area of the buffer at the buffer 931 * start. If this would exceed the total buffer headroom the kernel will 932 * panic. A pointer to the first byte of the extra data is returned. 933 */ 934 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 935 { 936 skb->data -= len; 937 skb->len += len; 938 if (unlikely(skb->data<skb->head)) 939 skb_under_panic(skb, len, current_text_addr()); 940 return skb->data; 941 } 942 943 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 944 { 945 skb->len -= len; 946 BUG_ON(skb->len < skb->data_len); 947 return skb->data += len; 948 } 949 950 /** 951 * skb_pull - remove data from the start of a buffer 952 * @skb: buffer to use 953 * @len: amount of data to remove 954 * 955 * This function removes data from the start of a buffer, returning 956 * the memory to the headroom. A pointer to the next data in the buffer 957 * is returned. Once the data has been pulled future pushes will overwrite 958 * the old data. 959 */ 960 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 961 { 962 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 963 } 964 965 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 966 967 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 968 { 969 if (len > skb_headlen(skb) && 970 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 971 return NULL; 972 skb->len -= len; 973 return skb->data += len; 974 } 975 976 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 977 { 978 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 979 } 980 981 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 982 { 983 if (likely(len <= skb_headlen(skb))) 984 return 1; 985 if (unlikely(len > skb->len)) 986 return 0; 987 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 988 } 989 990 /** 991 * skb_headroom - bytes at buffer head 992 * @skb: buffer to check 993 * 994 * Return the number of bytes of free space at the head of an &sk_buff. 995 */ 996 static inline int skb_headroom(const struct sk_buff *skb) 997 { 998 return skb->data - skb->head; 999 } 1000 1001 /** 1002 * skb_tailroom - bytes at buffer end 1003 * @skb: buffer to check 1004 * 1005 * Return the number of bytes of free space at the tail of an sk_buff 1006 */ 1007 static inline int skb_tailroom(const struct sk_buff *skb) 1008 { 1009 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1010 } 1011 1012 /** 1013 * skb_reserve - adjust headroom 1014 * @skb: buffer to alter 1015 * @len: bytes to move 1016 * 1017 * Increase the headroom of an empty &sk_buff by reducing the tail 1018 * room. This is only allowed for an empty buffer. 1019 */ 1020 static inline void skb_reserve(struct sk_buff *skb, int len) 1021 { 1022 skb->data += len; 1023 skb->tail += len; 1024 } 1025 1026 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1027 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1028 { 1029 return skb->head + skb->transport_header; 1030 } 1031 1032 static inline void skb_reset_transport_header(struct sk_buff *skb) 1033 { 1034 skb->transport_header = skb->data - skb->head; 1035 } 1036 1037 static inline void skb_set_transport_header(struct sk_buff *skb, 1038 const int offset) 1039 { 1040 skb_reset_transport_header(skb); 1041 skb->transport_header += offset; 1042 } 1043 1044 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1045 { 1046 return skb->head + skb->network_header; 1047 } 1048 1049 static inline void skb_reset_network_header(struct sk_buff *skb) 1050 { 1051 skb->network_header = skb->data - skb->head; 1052 } 1053 1054 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1055 { 1056 skb_reset_network_header(skb); 1057 skb->network_header += offset; 1058 } 1059 1060 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1061 { 1062 return skb->head + skb->mac_header; 1063 } 1064 1065 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1066 { 1067 return skb->mac_header != ~0U; 1068 } 1069 1070 static inline void skb_reset_mac_header(struct sk_buff *skb) 1071 { 1072 skb->mac_header = skb->data - skb->head; 1073 } 1074 1075 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1076 { 1077 skb_reset_mac_header(skb); 1078 skb->mac_header += offset; 1079 } 1080 1081 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1082 1083 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1084 { 1085 return skb->transport_header; 1086 } 1087 1088 static inline void skb_reset_transport_header(struct sk_buff *skb) 1089 { 1090 skb->transport_header = skb->data; 1091 } 1092 1093 static inline void skb_set_transport_header(struct sk_buff *skb, 1094 const int offset) 1095 { 1096 skb->transport_header = skb->data + offset; 1097 } 1098 1099 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1100 { 1101 return skb->network_header; 1102 } 1103 1104 static inline void skb_reset_network_header(struct sk_buff *skb) 1105 { 1106 skb->network_header = skb->data; 1107 } 1108 1109 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1110 { 1111 skb->network_header = skb->data + offset; 1112 } 1113 1114 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1115 { 1116 return skb->mac_header; 1117 } 1118 1119 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1120 { 1121 return skb->mac_header != NULL; 1122 } 1123 1124 static inline void skb_reset_mac_header(struct sk_buff *skb) 1125 { 1126 skb->mac_header = skb->data; 1127 } 1128 1129 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1130 { 1131 skb->mac_header = skb->data + offset; 1132 } 1133 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1134 1135 static inline int skb_transport_offset(const struct sk_buff *skb) 1136 { 1137 return skb_transport_header(skb) - skb->data; 1138 } 1139 1140 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1141 { 1142 return skb->transport_header - skb->network_header; 1143 } 1144 1145 static inline int skb_network_offset(const struct sk_buff *skb) 1146 { 1147 return skb_network_header(skb) - skb->data; 1148 } 1149 1150 /* 1151 * CPUs often take a performance hit when accessing unaligned memory 1152 * locations. The actual performance hit varies, it can be small if the 1153 * hardware handles it or large if we have to take an exception and fix it 1154 * in software. 1155 * 1156 * Since an ethernet header is 14 bytes network drivers often end up with 1157 * the IP header at an unaligned offset. The IP header can be aligned by 1158 * shifting the start of the packet by 2 bytes. Drivers should do this 1159 * with: 1160 * 1161 * skb_reserve(NET_IP_ALIGN); 1162 * 1163 * The downside to this alignment of the IP header is that the DMA is now 1164 * unaligned. On some architectures the cost of an unaligned DMA is high 1165 * and this cost outweighs the gains made by aligning the IP header. 1166 * 1167 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1168 * to be overridden. 1169 */ 1170 #ifndef NET_IP_ALIGN 1171 #define NET_IP_ALIGN 2 1172 #endif 1173 1174 /* 1175 * The networking layer reserves some headroom in skb data (via 1176 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1177 * the header has to grow. In the default case, if the header has to grow 1178 * 16 bytes or less we avoid the reallocation. 1179 * 1180 * Unfortunately this headroom changes the DMA alignment of the resulting 1181 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1182 * on some architectures. An architecture can override this value, 1183 * perhaps setting it to a cacheline in size (since that will maintain 1184 * cacheline alignment of the DMA). It must be a power of 2. 1185 * 1186 * Various parts of the networking layer expect at least 16 bytes of 1187 * headroom, you should not reduce this. 1188 */ 1189 #ifndef NET_SKB_PAD 1190 #define NET_SKB_PAD 16 1191 #endif 1192 1193 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1194 1195 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1196 { 1197 if (unlikely(skb->data_len)) { 1198 WARN_ON(1); 1199 return; 1200 } 1201 skb->len = len; 1202 skb_set_tail_pointer(skb, len); 1203 } 1204 1205 /** 1206 * skb_trim - remove end from a buffer 1207 * @skb: buffer to alter 1208 * @len: new length 1209 * 1210 * Cut the length of a buffer down by removing data from the tail. If 1211 * the buffer is already under the length specified it is not modified. 1212 * The skb must be linear. 1213 */ 1214 static inline void skb_trim(struct sk_buff *skb, unsigned int len) 1215 { 1216 if (skb->len > len) 1217 __skb_trim(skb, len); 1218 } 1219 1220 1221 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1222 { 1223 if (skb->data_len) 1224 return ___pskb_trim(skb, len); 1225 __skb_trim(skb, len); 1226 return 0; 1227 } 1228 1229 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1230 { 1231 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1232 } 1233 1234 /** 1235 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1236 * @skb: buffer to alter 1237 * @len: new length 1238 * 1239 * This is identical to pskb_trim except that the caller knows that 1240 * the skb is not cloned so we should never get an error due to out- 1241 * of-memory. 1242 */ 1243 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1244 { 1245 int err = pskb_trim(skb, len); 1246 BUG_ON(err); 1247 } 1248 1249 /** 1250 * skb_orphan - orphan a buffer 1251 * @skb: buffer to orphan 1252 * 1253 * If a buffer currently has an owner then we call the owner's 1254 * destructor function and make the @skb unowned. The buffer continues 1255 * to exist but is no longer charged to its former owner. 1256 */ 1257 static inline void skb_orphan(struct sk_buff *skb) 1258 { 1259 if (skb->destructor) 1260 skb->destructor(skb); 1261 skb->destructor = NULL; 1262 skb->sk = NULL; 1263 } 1264 1265 /** 1266 * __skb_queue_purge - empty a list 1267 * @list: list to empty 1268 * 1269 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1270 * the list and one reference dropped. This function does not take the 1271 * list lock and the caller must hold the relevant locks to use it. 1272 */ 1273 extern void skb_queue_purge(struct sk_buff_head *list); 1274 static inline void __skb_queue_purge(struct sk_buff_head *list) 1275 { 1276 struct sk_buff *skb; 1277 while ((skb = __skb_dequeue(list)) != NULL) 1278 kfree_skb(skb); 1279 } 1280 1281 /** 1282 * __dev_alloc_skb - allocate an skbuff for receiving 1283 * @length: length to allocate 1284 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1285 * 1286 * Allocate a new &sk_buff and assign it a usage count of one. The 1287 * buffer has unspecified headroom built in. Users should allocate 1288 * the headroom they think they need without accounting for the 1289 * built in space. The built in space is used for optimisations. 1290 * 1291 * %NULL is returned if there is no free memory. 1292 */ 1293 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1294 gfp_t gfp_mask) 1295 { 1296 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1297 if (likely(skb)) 1298 skb_reserve(skb, NET_SKB_PAD); 1299 return skb; 1300 } 1301 1302 /** 1303 * dev_alloc_skb - allocate an skbuff for receiving 1304 * @length: length to allocate 1305 * 1306 * Allocate a new &sk_buff and assign it a usage count of one. The 1307 * buffer has unspecified headroom built in. Users should allocate 1308 * the headroom they think they need without accounting for the 1309 * built in space. The built in space is used for optimisations. 1310 * 1311 * %NULL is returned if there is no free memory. Although this function 1312 * allocates memory it can be called from an interrupt. 1313 */ 1314 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1315 { 1316 return __dev_alloc_skb(length, GFP_ATOMIC); 1317 } 1318 1319 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1320 unsigned int length, gfp_t gfp_mask); 1321 1322 /** 1323 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1324 * @dev: network device to receive on 1325 * @length: length to allocate 1326 * 1327 * Allocate a new &sk_buff and assign it a usage count of one. The 1328 * buffer has unspecified headroom built in. Users should allocate 1329 * the headroom they think they need without accounting for the 1330 * built in space. The built in space is used for optimisations. 1331 * 1332 * %NULL is returned if there is no free memory. Although this function 1333 * allocates memory it can be called from an interrupt. 1334 */ 1335 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1336 unsigned int length) 1337 { 1338 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1339 } 1340 1341 /** 1342 * skb_clone_writable - is the header of a clone writable 1343 * @skb: buffer to check 1344 * @len: length up to which to write 1345 * 1346 * Returns true if modifying the header part of the cloned buffer 1347 * does not requires the data to be copied. 1348 */ 1349 static inline int skb_clone_writable(struct sk_buff *skb, int len) 1350 { 1351 return !skb_header_cloned(skb) && 1352 skb_headroom(skb) + len <= skb->hdr_len; 1353 } 1354 1355 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1356 int cloned) 1357 { 1358 int delta = 0; 1359 1360 if (headroom < NET_SKB_PAD) 1361 headroom = NET_SKB_PAD; 1362 if (headroom > skb_headroom(skb)) 1363 delta = headroom - skb_headroom(skb); 1364 1365 if (delta || cloned) 1366 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1367 GFP_ATOMIC); 1368 return 0; 1369 } 1370 1371 /** 1372 * skb_cow - copy header of skb when it is required 1373 * @skb: buffer to cow 1374 * @headroom: needed headroom 1375 * 1376 * If the skb passed lacks sufficient headroom or its data part 1377 * is shared, data is reallocated. If reallocation fails, an error 1378 * is returned and original skb is not changed. 1379 * 1380 * The result is skb with writable area skb->head...skb->tail 1381 * and at least @headroom of space at head. 1382 */ 1383 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1384 { 1385 return __skb_cow(skb, headroom, skb_cloned(skb)); 1386 } 1387 1388 /** 1389 * skb_cow_head - skb_cow but only making the head writable 1390 * @skb: buffer to cow 1391 * @headroom: needed headroom 1392 * 1393 * This function is identical to skb_cow except that we replace the 1394 * skb_cloned check by skb_header_cloned. It should be used when 1395 * you only need to push on some header and do not need to modify 1396 * the data. 1397 */ 1398 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1399 { 1400 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1401 } 1402 1403 /** 1404 * skb_padto - pad an skbuff up to a minimal size 1405 * @skb: buffer to pad 1406 * @len: minimal length 1407 * 1408 * Pads up a buffer to ensure the trailing bytes exist and are 1409 * blanked. If the buffer already contains sufficient data it 1410 * is untouched. Otherwise it is extended. Returns zero on 1411 * success. The skb is freed on error. 1412 */ 1413 1414 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1415 { 1416 unsigned int size = skb->len; 1417 if (likely(size >= len)) 1418 return 0; 1419 return skb_pad(skb, len-size); 1420 } 1421 1422 static inline int skb_add_data(struct sk_buff *skb, 1423 char __user *from, int copy) 1424 { 1425 const int off = skb->len; 1426 1427 if (skb->ip_summed == CHECKSUM_NONE) { 1428 int err = 0; 1429 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1430 copy, 0, &err); 1431 if (!err) { 1432 skb->csum = csum_block_add(skb->csum, csum, off); 1433 return 0; 1434 } 1435 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1436 return 0; 1437 1438 __skb_trim(skb, off); 1439 return -EFAULT; 1440 } 1441 1442 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1443 struct page *page, int off) 1444 { 1445 if (i) { 1446 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1447 1448 return page == frag->page && 1449 off == frag->page_offset + frag->size; 1450 } 1451 return 0; 1452 } 1453 1454 static inline int __skb_linearize(struct sk_buff *skb) 1455 { 1456 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1457 } 1458 1459 /** 1460 * skb_linearize - convert paged skb to linear one 1461 * @skb: buffer to linarize 1462 * 1463 * If there is no free memory -ENOMEM is returned, otherwise zero 1464 * is returned and the old skb data released. 1465 */ 1466 static inline int skb_linearize(struct sk_buff *skb) 1467 { 1468 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1469 } 1470 1471 /** 1472 * skb_linearize_cow - make sure skb is linear and writable 1473 * @skb: buffer to process 1474 * 1475 * If there is no free memory -ENOMEM is returned, otherwise zero 1476 * is returned and the old skb data released. 1477 */ 1478 static inline int skb_linearize_cow(struct sk_buff *skb) 1479 { 1480 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1481 __skb_linearize(skb) : 0; 1482 } 1483 1484 /** 1485 * skb_postpull_rcsum - update checksum for received skb after pull 1486 * @skb: buffer to update 1487 * @start: start of data before pull 1488 * @len: length of data pulled 1489 * 1490 * After doing a pull on a received packet, you need to call this to 1491 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1492 * CHECKSUM_NONE so that it can be recomputed from scratch. 1493 */ 1494 1495 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1496 const void *start, unsigned int len) 1497 { 1498 if (skb->ip_summed == CHECKSUM_COMPLETE) 1499 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1500 } 1501 1502 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1503 1504 /** 1505 * pskb_trim_rcsum - trim received skb and update checksum 1506 * @skb: buffer to trim 1507 * @len: new length 1508 * 1509 * This is exactly the same as pskb_trim except that it ensures the 1510 * checksum of received packets are still valid after the operation. 1511 */ 1512 1513 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1514 { 1515 if (likely(len >= skb->len)) 1516 return 0; 1517 if (skb->ip_summed == CHECKSUM_COMPLETE) 1518 skb->ip_summed = CHECKSUM_NONE; 1519 return __pskb_trim(skb, len); 1520 } 1521 1522 #define skb_queue_walk(queue, skb) \ 1523 for (skb = (queue)->next; \ 1524 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1525 skb = skb->next) 1526 1527 #define skb_queue_walk_safe(queue, skb, tmp) \ 1528 for (skb = (queue)->next, tmp = skb->next; \ 1529 skb != (struct sk_buff *)(queue); \ 1530 skb = tmp, tmp = skb->next) 1531 1532 #define skb_queue_reverse_walk(queue, skb) \ 1533 for (skb = (queue)->prev; \ 1534 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1535 skb = skb->prev) 1536 1537 1538 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1539 int noblock, int *err); 1540 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1541 struct poll_table_struct *wait); 1542 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1543 int offset, struct iovec *to, 1544 int size); 1545 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1546 int hlen, 1547 struct iovec *iov); 1548 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1549 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1550 unsigned int flags); 1551 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1552 int len, __wsum csum); 1553 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1554 void *to, int len); 1555 extern int skb_store_bits(struct sk_buff *skb, int offset, 1556 const void *from, int len); 1557 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1558 int offset, u8 *to, int len, 1559 __wsum csum); 1560 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1561 extern void skb_split(struct sk_buff *skb, 1562 struct sk_buff *skb1, const u32 len); 1563 1564 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1565 1566 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1567 int len, void *buffer) 1568 { 1569 int hlen = skb_headlen(skb); 1570 1571 if (hlen - offset >= len) 1572 return skb->data + offset; 1573 1574 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1575 return NULL; 1576 1577 return buffer; 1578 } 1579 1580 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1581 void *to, 1582 const unsigned int len) 1583 { 1584 memcpy(to, skb->data, len); 1585 } 1586 1587 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1588 const int offset, void *to, 1589 const unsigned int len) 1590 { 1591 memcpy(to, skb->data + offset, len); 1592 } 1593 1594 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1595 const void *from, 1596 const unsigned int len) 1597 { 1598 memcpy(skb->data, from, len); 1599 } 1600 1601 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1602 const int offset, 1603 const void *from, 1604 const unsigned int len) 1605 { 1606 memcpy(skb->data + offset, from, len); 1607 } 1608 1609 extern void skb_init(void); 1610 1611 /** 1612 * skb_get_timestamp - get timestamp from a skb 1613 * @skb: skb to get stamp from 1614 * @stamp: pointer to struct timeval to store stamp in 1615 * 1616 * Timestamps are stored in the skb as offsets to a base timestamp. 1617 * This function converts the offset back to a struct timeval and stores 1618 * it in stamp. 1619 */ 1620 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1621 { 1622 *stamp = ktime_to_timeval(skb->tstamp); 1623 } 1624 1625 static inline void __net_timestamp(struct sk_buff *skb) 1626 { 1627 skb->tstamp = ktime_get_real(); 1628 } 1629 1630 static inline ktime_t net_timedelta(ktime_t t) 1631 { 1632 return ktime_sub(ktime_get_real(), t); 1633 } 1634 1635 static inline ktime_t net_invalid_timestamp(void) 1636 { 1637 return ktime_set(0, 0); 1638 } 1639 1640 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1641 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1642 1643 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1644 { 1645 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1646 } 1647 1648 /** 1649 * skb_checksum_complete - Calculate checksum of an entire packet 1650 * @skb: packet to process 1651 * 1652 * This function calculates the checksum over the entire packet plus 1653 * the value of skb->csum. The latter can be used to supply the 1654 * checksum of a pseudo header as used by TCP/UDP. It returns the 1655 * checksum. 1656 * 1657 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1658 * this function can be used to verify that checksum on received 1659 * packets. In that case the function should return zero if the 1660 * checksum is correct. In particular, this function will return zero 1661 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1662 * hardware has already verified the correctness of the checksum. 1663 */ 1664 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1665 { 1666 return skb_csum_unnecessary(skb) ? 1667 0 : __skb_checksum_complete(skb); 1668 } 1669 1670 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1671 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1672 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1673 { 1674 if (nfct && atomic_dec_and_test(&nfct->use)) 1675 nf_conntrack_destroy(nfct); 1676 } 1677 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1678 { 1679 if (nfct) 1680 atomic_inc(&nfct->use); 1681 } 1682 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1683 { 1684 if (skb) 1685 atomic_inc(&skb->users); 1686 } 1687 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1688 { 1689 if (skb) 1690 kfree_skb(skb); 1691 } 1692 #endif 1693 #ifdef CONFIG_BRIDGE_NETFILTER 1694 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1695 { 1696 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1697 kfree(nf_bridge); 1698 } 1699 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1700 { 1701 if (nf_bridge) 1702 atomic_inc(&nf_bridge->use); 1703 } 1704 #endif /* CONFIG_BRIDGE_NETFILTER */ 1705 static inline void nf_reset(struct sk_buff *skb) 1706 { 1707 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1708 nf_conntrack_put(skb->nfct); 1709 skb->nfct = NULL; 1710 nf_conntrack_put_reasm(skb->nfct_reasm); 1711 skb->nfct_reasm = NULL; 1712 #endif 1713 #ifdef CONFIG_BRIDGE_NETFILTER 1714 nf_bridge_put(skb->nf_bridge); 1715 skb->nf_bridge = NULL; 1716 #endif 1717 } 1718 1719 /* Note: This doesn't put any conntrack and bridge info in dst. */ 1720 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1721 { 1722 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1723 dst->nfct = src->nfct; 1724 nf_conntrack_get(src->nfct); 1725 dst->nfctinfo = src->nfctinfo; 1726 dst->nfct_reasm = src->nfct_reasm; 1727 nf_conntrack_get_reasm(src->nfct_reasm); 1728 #endif 1729 #ifdef CONFIG_BRIDGE_NETFILTER 1730 dst->nf_bridge = src->nf_bridge; 1731 nf_bridge_get(src->nf_bridge); 1732 #endif 1733 } 1734 1735 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1736 { 1737 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1738 nf_conntrack_put(dst->nfct); 1739 nf_conntrack_put_reasm(dst->nfct_reasm); 1740 #endif 1741 #ifdef CONFIG_BRIDGE_NETFILTER 1742 nf_bridge_put(dst->nf_bridge); 1743 #endif 1744 __nf_copy(dst, src); 1745 } 1746 1747 #ifdef CONFIG_NETWORK_SECMARK 1748 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1749 { 1750 to->secmark = from->secmark; 1751 } 1752 1753 static inline void skb_init_secmark(struct sk_buff *skb) 1754 { 1755 skb->secmark = 0; 1756 } 1757 #else 1758 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1759 { } 1760 1761 static inline void skb_init_secmark(struct sk_buff *skb) 1762 { } 1763 #endif 1764 1765 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 1766 { 1767 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 1768 skb->queue_mapping = queue_mapping; 1769 #endif 1770 } 1771 1772 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 1773 { 1774 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 1775 to->queue_mapping = from->queue_mapping; 1776 #endif 1777 } 1778 1779 static inline int skb_is_gso(const struct sk_buff *skb) 1780 { 1781 return skb_shinfo(skb)->gso_size; 1782 } 1783 1784 static inline void skb_forward_csum(struct sk_buff *skb) 1785 { 1786 /* Unfortunately we don't support this one. Any brave souls? */ 1787 if (skb->ip_summed == CHECKSUM_COMPLETE) 1788 skb->ip_summed = CHECKSUM_NONE; 1789 } 1790 1791 #endif /* __KERNEL__ */ 1792 #endif /* _LINUX_SKBUFF_H */ 1793