xref: /linux-6.15/include/linux/skbuff.h (revision 275876e2)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 #include <linux/sched.h>
36 #include <net/flow_keys.h>
37 
38 /* A. Checksumming of received packets by device.
39  *
40  * CHECKSUM_NONE:
41  *
42  *   Device failed to checksum this packet e.g. due to lack of capabilities.
43  *   The packet contains full (though not verified) checksum in packet but
44  *   not in skb->csum. Thus, skb->csum is undefined in this case.
45  *
46  * CHECKSUM_UNNECESSARY:
47  *
48  *   The hardware you're dealing with doesn't calculate the full checksum
49  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
50  *   for specific protocols e.g. TCP/UDP/SCTP, then, for such packets it will
51  *   set CHECKSUM_UNNECESSARY if their checksums are okay. skb->csum is still
52  *   undefined in this case though. It is a bad option, but, unfortunately,
53  *   nowadays most vendors do this. Apparently with the secret goal to sell
54  *   you new devices, when you will add new protocol to your host, f.e. IPv6 8)
55  *
56  * CHECKSUM_COMPLETE:
57  *
58  *   This is the most generic way. The device supplied checksum of the _whole_
59  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
60  *   hardware doesn't need to parse L3/L4 headers to implement this.
61  *
62  *   Note: Even if device supports only some protocols, but is able to produce
63  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
64  *
65  * CHECKSUM_PARTIAL:
66  *
67  *   This is identical to the case for output below. This may occur on a packet
68  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
69  *   on the same host. The packet can be treated in the same way as
70  *   CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
71  *   checksum must be filled in by the OS or the hardware.
72  *
73  * B. Checksumming on output.
74  *
75  * CHECKSUM_NONE:
76  *
77  *   The skb was already checksummed by the protocol, or a checksum is not
78  *   required.
79  *
80  * CHECKSUM_PARTIAL:
81  *
82  *   The device is required to checksum the packet as seen by hard_start_xmit()
83  *   from skb->csum_start up to the end, and to record/write the checksum at
84  *   offset skb->csum_start + skb->csum_offset.
85  *
86  *   The device must show its capabilities in dev->features, set up at device
87  *   setup time, e.g. netdev_features.h:
88  *
89  *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything.
90  *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
91  *			  IPv4. Sigh. Vendors like this way for an unknown reason.
92  *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8)
93  *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
94  *	NETIF_F_...     - Well, you get the picture.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   Normally, the device will do per protocol specific checksumming. Protocol
99  *   implementations that do not want the NIC to perform the checksum
100  *   calculation should use this flag in their outgoing skbs.
101  *
102  *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
103  *			   offload. Correspondingly, the FCoE protocol driver
104  *			   stack should use CHECKSUM_UNNECESSARY.
105  *
106  * Any questions? No questions, good.		--ANK
107  */
108 
109 /* Don't change this without changing skb_csum_unnecessary! */
110 #define CHECKSUM_NONE		0
111 #define CHECKSUM_UNNECESSARY	1
112 #define CHECKSUM_COMPLETE	2
113 #define CHECKSUM_PARTIAL	3
114 
115 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
116 #define SKB_WITH_OVERHEAD(X)	\
117 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
118 #define SKB_MAX_ORDER(X, ORDER) \
119 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
120 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
121 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
122 
123 /* return minimum truesize of one skb containing X bytes of data */
124 #define SKB_TRUESIZE(X) ((X) +						\
125 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
126 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
127 
128 struct net_device;
129 struct scatterlist;
130 struct pipe_inode_info;
131 
132 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
133 struct nf_conntrack {
134 	atomic_t use;
135 };
136 #endif
137 
138 #ifdef CONFIG_BRIDGE_NETFILTER
139 struct nf_bridge_info {
140 	atomic_t		use;
141 	unsigned int		mask;
142 	struct net_device	*physindev;
143 	struct net_device	*physoutdev;
144 	unsigned long		data[32 / sizeof(unsigned long)];
145 };
146 #endif
147 
148 struct sk_buff_head {
149 	/* These two members must be first. */
150 	struct sk_buff	*next;
151 	struct sk_buff	*prev;
152 
153 	__u32		qlen;
154 	spinlock_t	lock;
155 };
156 
157 struct sk_buff;
158 
159 /* To allow 64K frame to be packed as single skb without frag_list we
160  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
161  * buffers which do not start on a page boundary.
162  *
163  * Since GRO uses frags we allocate at least 16 regardless of page
164  * size.
165  */
166 #if (65536/PAGE_SIZE + 1) < 16
167 #define MAX_SKB_FRAGS 16UL
168 #else
169 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
170 #endif
171 
172 typedef struct skb_frag_struct skb_frag_t;
173 
174 struct skb_frag_struct {
175 	struct {
176 		struct page *p;
177 	} page;
178 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
179 	__u32 page_offset;
180 	__u32 size;
181 #else
182 	__u16 page_offset;
183 	__u16 size;
184 #endif
185 };
186 
187 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
188 {
189 	return frag->size;
190 }
191 
192 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
193 {
194 	frag->size = size;
195 }
196 
197 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
198 {
199 	frag->size += delta;
200 }
201 
202 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
203 {
204 	frag->size -= delta;
205 }
206 
207 #define HAVE_HW_TIME_STAMP
208 
209 /**
210  * struct skb_shared_hwtstamps - hardware time stamps
211  * @hwtstamp:	hardware time stamp transformed into duration
212  *		since arbitrary point in time
213  *
214  * Software time stamps generated by ktime_get_real() are stored in
215  * skb->tstamp.
216  *
217  * hwtstamps can only be compared against other hwtstamps from
218  * the same device.
219  *
220  * This structure is attached to packets as part of the
221  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
222  */
223 struct skb_shared_hwtstamps {
224 	ktime_t	hwtstamp;
225 };
226 
227 /* Definitions for tx_flags in struct skb_shared_info */
228 enum {
229 	/* generate hardware time stamp */
230 	SKBTX_HW_TSTAMP = 1 << 0,
231 
232 	/* generate software time stamp when queueing packet to NIC */
233 	SKBTX_SW_TSTAMP = 1 << 1,
234 
235 	/* device driver is going to provide hardware time stamp */
236 	SKBTX_IN_PROGRESS = 1 << 2,
237 
238 	/* device driver supports TX zero-copy buffers */
239 	SKBTX_DEV_ZEROCOPY = 1 << 3,
240 
241 	/* generate wifi status information (where possible) */
242 	SKBTX_WIFI_STATUS = 1 << 4,
243 
244 	/* This indicates at least one fragment might be overwritten
245 	 * (as in vmsplice(), sendfile() ...)
246 	 * If we need to compute a TX checksum, we'll need to copy
247 	 * all frags to avoid possible bad checksum
248 	 */
249 	SKBTX_SHARED_FRAG = 1 << 5,
250 
251 	/* generate software time stamp when entering packet scheduling */
252 	SKBTX_SCHED_TSTAMP = 1 << 6,
253 
254 	/* generate software timestamp on peer data acknowledgment */
255 	SKBTX_ACK_TSTAMP = 1 << 7,
256 };
257 
258 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
259 				 SKBTX_SCHED_TSTAMP | \
260 				 SKBTX_ACK_TSTAMP)
261 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
262 
263 /*
264  * The callback notifies userspace to release buffers when skb DMA is done in
265  * lower device, the skb last reference should be 0 when calling this.
266  * The zerocopy_success argument is true if zero copy transmit occurred,
267  * false on data copy or out of memory error caused by data copy attempt.
268  * The ctx field is used to track device context.
269  * The desc field is used to track userspace buffer index.
270  */
271 struct ubuf_info {
272 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
273 	void *ctx;
274 	unsigned long desc;
275 };
276 
277 /* This data is invariant across clones and lives at
278  * the end of the header data, ie. at skb->end.
279  */
280 struct skb_shared_info {
281 	unsigned char	nr_frags;
282 	__u8		tx_flags;
283 	unsigned short	gso_size;
284 	/* Warning: this field is not always filled in (UFO)! */
285 	unsigned short	gso_segs;
286 	unsigned short  gso_type;
287 	struct sk_buff	*frag_list;
288 	struct skb_shared_hwtstamps hwtstamps;
289 	u32		tskey;
290 	__be32          ip6_frag_id;
291 
292 	/*
293 	 * Warning : all fields before dataref are cleared in __alloc_skb()
294 	 */
295 	atomic_t	dataref;
296 
297 	/* Intermediate layers must ensure that destructor_arg
298 	 * remains valid until skb destructor */
299 	void *		destructor_arg;
300 
301 	/* must be last field, see pskb_expand_head() */
302 	skb_frag_t	frags[MAX_SKB_FRAGS];
303 };
304 
305 /* We divide dataref into two halves.  The higher 16 bits hold references
306  * to the payload part of skb->data.  The lower 16 bits hold references to
307  * the entire skb->data.  A clone of a headerless skb holds the length of
308  * the header in skb->hdr_len.
309  *
310  * All users must obey the rule that the skb->data reference count must be
311  * greater than or equal to the payload reference count.
312  *
313  * Holding a reference to the payload part means that the user does not
314  * care about modifications to the header part of skb->data.
315  */
316 #define SKB_DATAREF_SHIFT 16
317 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
318 
319 
320 enum {
321 	SKB_FCLONE_UNAVAILABLE,
322 	SKB_FCLONE_ORIG,
323 	SKB_FCLONE_CLONE,
324 };
325 
326 enum {
327 	SKB_GSO_TCPV4 = 1 << 0,
328 	SKB_GSO_UDP = 1 << 1,
329 
330 	/* This indicates the skb is from an untrusted source. */
331 	SKB_GSO_DODGY = 1 << 2,
332 
333 	/* This indicates the tcp segment has CWR set. */
334 	SKB_GSO_TCP_ECN = 1 << 3,
335 
336 	SKB_GSO_TCPV6 = 1 << 4,
337 
338 	SKB_GSO_FCOE = 1 << 5,
339 
340 	SKB_GSO_GRE = 1 << 6,
341 
342 	SKB_GSO_GRE_CSUM = 1 << 7,
343 
344 	SKB_GSO_IPIP = 1 << 8,
345 
346 	SKB_GSO_SIT = 1 << 9,
347 
348 	SKB_GSO_UDP_TUNNEL = 1 << 10,
349 
350 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
351 
352 	SKB_GSO_MPLS = 1 << 12,
353 
354 };
355 
356 #if BITS_PER_LONG > 32
357 #define NET_SKBUFF_DATA_USES_OFFSET 1
358 #endif
359 
360 #ifdef NET_SKBUFF_DATA_USES_OFFSET
361 typedef unsigned int sk_buff_data_t;
362 #else
363 typedef unsigned char *sk_buff_data_t;
364 #endif
365 
366 /**
367  * struct skb_mstamp - multi resolution time stamps
368  * @stamp_us: timestamp in us resolution
369  * @stamp_jiffies: timestamp in jiffies
370  */
371 struct skb_mstamp {
372 	union {
373 		u64		v64;
374 		struct {
375 			u32	stamp_us;
376 			u32	stamp_jiffies;
377 		};
378 	};
379 };
380 
381 /**
382  * skb_mstamp_get - get current timestamp
383  * @cl: place to store timestamps
384  */
385 static inline void skb_mstamp_get(struct skb_mstamp *cl)
386 {
387 	u64 val = local_clock();
388 
389 	do_div(val, NSEC_PER_USEC);
390 	cl->stamp_us = (u32)val;
391 	cl->stamp_jiffies = (u32)jiffies;
392 }
393 
394 /**
395  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
396  * @t1: pointer to newest sample
397  * @t0: pointer to oldest sample
398  */
399 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
400 				      const struct skb_mstamp *t0)
401 {
402 	s32 delta_us = t1->stamp_us - t0->stamp_us;
403 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
404 
405 	/* If delta_us is negative, this might be because interval is too big,
406 	 * or local_clock() drift is too big : fallback using jiffies.
407 	 */
408 	if (delta_us <= 0 ||
409 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
410 
411 		delta_us = jiffies_to_usecs(delta_jiffies);
412 
413 	return delta_us;
414 }
415 
416 
417 /**
418  *	struct sk_buff - socket buffer
419  *	@next: Next buffer in list
420  *	@prev: Previous buffer in list
421  *	@tstamp: Time we arrived/left
422  *	@sk: Socket we are owned by
423  *	@dev: Device we arrived on/are leaving by
424  *	@cb: Control buffer. Free for use by every layer. Put private vars here
425  *	@_skb_refdst: destination entry (with norefcount bit)
426  *	@sp: the security path, used for xfrm
427  *	@len: Length of actual data
428  *	@data_len: Data length
429  *	@mac_len: Length of link layer header
430  *	@hdr_len: writable header length of cloned skb
431  *	@csum: Checksum (must include start/offset pair)
432  *	@csum_start: Offset from skb->head where checksumming should start
433  *	@csum_offset: Offset from csum_start where checksum should be stored
434  *	@priority: Packet queueing priority
435  *	@ignore_df: allow local fragmentation
436  *	@cloned: Head may be cloned (check refcnt to be sure)
437  *	@ip_summed: Driver fed us an IP checksum
438  *	@nohdr: Payload reference only, must not modify header
439  *	@nfctinfo: Relationship of this skb to the connection
440  *	@pkt_type: Packet class
441  *	@fclone: skbuff clone status
442  *	@ipvs_property: skbuff is owned by ipvs
443  *	@peeked: this packet has been seen already, so stats have been
444  *		done for it, don't do them again
445  *	@nf_trace: netfilter packet trace flag
446  *	@protocol: Packet protocol from driver
447  *	@destructor: Destruct function
448  *	@nfct: Associated connection, if any
449  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
450  *	@skb_iif: ifindex of device we arrived on
451  *	@tc_index: Traffic control index
452  *	@tc_verd: traffic control verdict
453  *	@hash: the packet hash
454  *	@queue_mapping: Queue mapping for multiqueue devices
455  *	@ndisc_nodetype: router type (from link layer)
456  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
457  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
458  *		ports.
459  *	@sw_hash: indicates hash was computed in software stack
460  *	@wifi_acked_valid: wifi_acked was set
461  *	@wifi_acked: whether frame was acked on wifi or not
462  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
463  *	@dma_cookie: a cookie to one of several possible DMA operations
464  *		done by skb DMA functions
465   *	@napi_id: id of the NAPI struct this skb came from
466  *	@secmark: security marking
467  *	@mark: Generic packet mark
468  *	@dropcount: total number of sk_receive_queue overflows
469  *	@vlan_proto: vlan encapsulation protocol
470  *	@vlan_tci: vlan tag control information
471  *	@inner_protocol: Protocol (encapsulation)
472  *	@inner_transport_header: Inner transport layer header (encapsulation)
473  *	@inner_network_header: Network layer header (encapsulation)
474  *	@inner_mac_header: Link layer header (encapsulation)
475  *	@transport_header: Transport layer header
476  *	@network_header: Network layer header
477  *	@mac_header: Link layer header
478  *	@tail: Tail pointer
479  *	@end: End pointer
480  *	@head: Head of buffer
481  *	@data: Data head pointer
482  *	@truesize: Buffer size
483  *	@users: User count - see {datagram,tcp}.c
484  */
485 
486 struct sk_buff {
487 	/* These two members must be first. */
488 	struct sk_buff		*next;
489 	struct sk_buff		*prev;
490 
491 	union {
492 		ktime_t		tstamp;
493 		struct skb_mstamp skb_mstamp;
494 	};
495 
496 	struct sock		*sk;
497 	struct net_device	*dev;
498 
499 	/*
500 	 * This is the control buffer. It is free to use for every
501 	 * layer. Please put your private variables there. If you
502 	 * want to keep them across layers you have to do a skb_clone()
503 	 * first. This is owned by whoever has the skb queued ATM.
504 	 */
505 	char			cb[48] __aligned(8);
506 
507 	unsigned long		_skb_refdst;
508 #ifdef CONFIG_XFRM
509 	struct	sec_path	*sp;
510 #endif
511 	unsigned int		len,
512 				data_len;
513 	__u16			mac_len,
514 				hdr_len;
515 	union {
516 		__wsum		csum;
517 		struct {
518 			__u16	csum_start;
519 			__u16	csum_offset;
520 		};
521 	};
522 	__u32			priority;
523 	kmemcheck_bitfield_begin(flags1);
524 	__u8			ignore_df:1,
525 				cloned:1,
526 				ip_summed:2,
527 				nohdr:1,
528 				nfctinfo:3;
529 	__u8			pkt_type:3,
530 				fclone:2,
531 				ipvs_property:1,
532 				peeked:1,
533 				nf_trace:1;
534 	kmemcheck_bitfield_end(flags1);
535 	__be16			protocol;
536 
537 	void			(*destructor)(struct sk_buff *skb);
538 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
539 	struct nf_conntrack	*nfct;
540 #endif
541 #ifdef CONFIG_BRIDGE_NETFILTER
542 	struct nf_bridge_info	*nf_bridge;
543 #endif
544 
545 	int			skb_iif;
546 
547 	__u32			hash;
548 
549 	__be16			vlan_proto;
550 	__u16			vlan_tci;
551 
552 #ifdef CONFIG_NET_SCHED
553 	__u16			tc_index;	/* traffic control index */
554 #ifdef CONFIG_NET_CLS_ACT
555 	__u16			tc_verd;	/* traffic control verdict */
556 #endif
557 #endif
558 
559 	__u16			queue_mapping;
560 	kmemcheck_bitfield_begin(flags2);
561 #ifdef CONFIG_IPV6_NDISC_NODETYPE
562 	__u8			ndisc_nodetype:2;
563 #endif
564 	__u8			pfmemalloc:1;
565 	__u8			ooo_okay:1;
566 	__u8			l4_hash:1;
567 	__u8			sw_hash:1;
568 	__u8			wifi_acked_valid:1;
569 	__u8			wifi_acked:1;
570 	__u8			no_fcs:1;
571 	__u8			head_frag:1;
572 	/* Encapsulation protocol and NIC drivers should use
573 	 * this flag to indicate to each other if the skb contains
574 	 * encapsulated packet or not and maybe use the inner packet
575 	 * headers if needed
576 	 */
577 	__u8			encapsulation:1;
578 	__u8			encap_hdr_csum:1;
579 	__u8			csum_valid:1;
580 	__u8			csum_complete_sw:1;
581 	/* 2/4 bit hole (depending on ndisc_nodetype presence) */
582 	kmemcheck_bitfield_end(flags2);
583 
584 #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
585 	union {
586 		unsigned int	napi_id;
587 		dma_cookie_t	dma_cookie;
588 	};
589 #endif
590 #ifdef CONFIG_NETWORK_SECMARK
591 	__u32			secmark;
592 #endif
593 	union {
594 		__u32		mark;
595 		__u32		dropcount;
596 		__u32		reserved_tailroom;
597 	};
598 
599 	__be16			inner_protocol;
600 	__u16			inner_transport_header;
601 	__u16			inner_network_header;
602 	__u16			inner_mac_header;
603 	__u16			transport_header;
604 	__u16			network_header;
605 	__u16			mac_header;
606 	/* These elements must be at the end, see alloc_skb() for details.  */
607 	sk_buff_data_t		tail;
608 	sk_buff_data_t		end;
609 	unsigned char		*head,
610 				*data;
611 	unsigned int		truesize;
612 	atomic_t		users;
613 };
614 
615 #ifdef __KERNEL__
616 /*
617  *	Handling routines are only of interest to the kernel
618  */
619 #include <linux/slab.h>
620 
621 
622 #define SKB_ALLOC_FCLONE	0x01
623 #define SKB_ALLOC_RX		0x02
624 
625 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
626 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
627 {
628 	return unlikely(skb->pfmemalloc);
629 }
630 
631 /*
632  * skb might have a dst pointer attached, refcounted or not.
633  * _skb_refdst low order bit is set if refcount was _not_ taken
634  */
635 #define SKB_DST_NOREF	1UL
636 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
637 
638 /**
639  * skb_dst - returns skb dst_entry
640  * @skb: buffer
641  *
642  * Returns skb dst_entry, regardless of reference taken or not.
643  */
644 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
645 {
646 	/* If refdst was not refcounted, check we still are in a
647 	 * rcu_read_lock section
648 	 */
649 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
650 		!rcu_read_lock_held() &&
651 		!rcu_read_lock_bh_held());
652 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
653 }
654 
655 /**
656  * skb_dst_set - sets skb dst
657  * @skb: buffer
658  * @dst: dst entry
659  *
660  * Sets skb dst, assuming a reference was taken on dst and should
661  * be released by skb_dst_drop()
662  */
663 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
664 {
665 	skb->_skb_refdst = (unsigned long)dst;
666 }
667 
668 void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
669 			 bool force);
670 
671 /**
672  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
673  * @skb: buffer
674  * @dst: dst entry
675  *
676  * Sets skb dst, assuming a reference was not taken on dst.
677  * If dst entry is cached, we do not take reference and dst_release
678  * will be avoided by refdst_drop. If dst entry is not cached, we take
679  * reference, so that last dst_release can destroy the dst immediately.
680  */
681 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
682 {
683 	__skb_dst_set_noref(skb, dst, false);
684 }
685 
686 /**
687  * skb_dst_set_noref_force - sets skb dst, without taking reference
688  * @skb: buffer
689  * @dst: dst entry
690  *
691  * Sets skb dst, assuming a reference was not taken on dst.
692  * No reference is taken and no dst_release will be called. While for
693  * cached dsts deferred reclaim is a basic feature, for entries that are
694  * not cached it is caller's job to guarantee that last dst_release for
695  * provided dst happens when nobody uses it, eg. after a RCU grace period.
696  */
697 static inline void skb_dst_set_noref_force(struct sk_buff *skb,
698 					   struct dst_entry *dst)
699 {
700 	__skb_dst_set_noref(skb, dst, true);
701 }
702 
703 /**
704  * skb_dst_is_noref - Test if skb dst isn't refcounted
705  * @skb: buffer
706  */
707 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
708 {
709 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
710 }
711 
712 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
713 {
714 	return (struct rtable *)skb_dst(skb);
715 }
716 
717 void kfree_skb(struct sk_buff *skb);
718 void kfree_skb_list(struct sk_buff *segs);
719 void skb_tx_error(struct sk_buff *skb);
720 void consume_skb(struct sk_buff *skb);
721 void  __kfree_skb(struct sk_buff *skb);
722 extern struct kmem_cache *skbuff_head_cache;
723 
724 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
725 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
726 		      bool *fragstolen, int *delta_truesize);
727 
728 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
729 			    int node);
730 struct sk_buff *build_skb(void *data, unsigned int frag_size);
731 static inline struct sk_buff *alloc_skb(unsigned int size,
732 					gfp_t priority)
733 {
734 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
735 }
736 
737 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
738 					       gfp_t priority)
739 {
740 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
741 }
742 
743 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
744 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
745 {
746 	return __alloc_skb_head(priority, -1);
747 }
748 
749 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
750 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
751 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
752 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
753 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
754 				   gfp_t gfp_mask, bool fclone);
755 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
756 					  gfp_t gfp_mask)
757 {
758 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
759 }
760 
761 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
762 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
763 				     unsigned int headroom);
764 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
765 				int newtailroom, gfp_t priority);
766 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
767 			int offset, int len);
768 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
769 		 int len);
770 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
771 int skb_pad(struct sk_buff *skb, int pad);
772 #define dev_kfree_skb(a)	consume_skb(a)
773 
774 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
775 			    int getfrag(void *from, char *to, int offset,
776 					int len, int odd, struct sk_buff *skb),
777 			    void *from, int length);
778 
779 struct skb_seq_state {
780 	__u32		lower_offset;
781 	__u32		upper_offset;
782 	__u32		frag_idx;
783 	__u32		stepped_offset;
784 	struct sk_buff	*root_skb;
785 	struct sk_buff	*cur_skb;
786 	__u8		*frag_data;
787 };
788 
789 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
790 			  unsigned int to, struct skb_seq_state *st);
791 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
792 			  struct skb_seq_state *st);
793 void skb_abort_seq_read(struct skb_seq_state *st);
794 
795 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
796 			   unsigned int to, struct ts_config *config,
797 			   struct ts_state *state);
798 
799 /*
800  * Packet hash types specify the type of hash in skb_set_hash.
801  *
802  * Hash types refer to the protocol layer addresses which are used to
803  * construct a packet's hash. The hashes are used to differentiate or identify
804  * flows of the protocol layer for the hash type. Hash types are either
805  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
806  *
807  * Properties of hashes:
808  *
809  * 1) Two packets in different flows have different hash values
810  * 2) Two packets in the same flow should have the same hash value
811  *
812  * A hash at a higher layer is considered to be more specific. A driver should
813  * set the most specific hash possible.
814  *
815  * A driver cannot indicate a more specific hash than the layer at which a hash
816  * was computed. For instance an L3 hash cannot be set as an L4 hash.
817  *
818  * A driver may indicate a hash level which is less specific than the
819  * actual layer the hash was computed on. For instance, a hash computed
820  * at L4 may be considered an L3 hash. This should only be done if the
821  * driver can't unambiguously determine that the HW computed the hash at
822  * the higher layer. Note that the "should" in the second property above
823  * permits this.
824  */
825 enum pkt_hash_types {
826 	PKT_HASH_TYPE_NONE,	/* Undefined type */
827 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
828 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
829 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
830 };
831 
832 static inline void
833 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
834 {
835 	skb->l4_hash = (type == PKT_HASH_TYPE_L4);
836 	skb->sw_hash = 0;
837 	skb->hash = hash;
838 }
839 
840 void __skb_get_hash(struct sk_buff *skb);
841 static inline __u32 skb_get_hash(struct sk_buff *skb)
842 {
843 	if (!skb->l4_hash && !skb->sw_hash)
844 		__skb_get_hash(skb);
845 
846 	return skb->hash;
847 }
848 
849 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
850 {
851 	return skb->hash;
852 }
853 
854 static inline void skb_clear_hash(struct sk_buff *skb)
855 {
856 	skb->hash = 0;
857 	skb->sw_hash = 0;
858 	skb->l4_hash = 0;
859 }
860 
861 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
862 {
863 	if (!skb->l4_hash)
864 		skb_clear_hash(skb);
865 }
866 
867 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
868 {
869 	to->hash = from->hash;
870 	to->sw_hash = from->sw_hash;
871 	to->l4_hash = from->l4_hash;
872 };
873 
874 #ifdef NET_SKBUFF_DATA_USES_OFFSET
875 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
876 {
877 	return skb->head + skb->end;
878 }
879 
880 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
881 {
882 	return skb->end;
883 }
884 #else
885 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
886 {
887 	return skb->end;
888 }
889 
890 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
891 {
892 	return skb->end - skb->head;
893 }
894 #endif
895 
896 /* Internal */
897 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
898 
899 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
900 {
901 	return &skb_shinfo(skb)->hwtstamps;
902 }
903 
904 /**
905  *	skb_queue_empty - check if a queue is empty
906  *	@list: queue head
907  *
908  *	Returns true if the queue is empty, false otherwise.
909  */
910 static inline int skb_queue_empty(const struct sk_buff_head *list)
911 {
912 	return list->next == (const struct sk_buff *) list;
913 }
914 
915 /**
916  *	skb_queue_is_last - check if skb is the last entry in the queue
917  *	@list: queue head
918  *	@skb: buffer
919  *
920  *	Returns true if @skb is the last buffer on the list.
921  */
922 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
923 				     const struct sk_buff *skb)
924 {
925 	return skb->next == (const struct sk_buff *) list;
926 }
927 
928 /**
929  *	skb_queue_is_first - check if skb is the first entry in the queue
930  *	@list: queue head
931  *	@skb: buffer
932  *
933  *	Returns true if @skb is the first buffer on the list.
934  */
935 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
936 				      const struct sk_buff *skb)
937 {
938 	return skb->prev == (const struct sk_buff *) list;
939 }
940 
941 /**
942  *	skb_queue_next - return the next packet in the queue
943  *	@list: queue head
944  *	@skb: current buffer
945  *
946  *	Return the next packet in @list after @skb.  It is only valid to
947  *	call this if skb_queue_is_last() evaluates to false.
948  */
949 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
950 					     const struct sk_buff *skb)
951 {
952 	/* This BUG_ON may seem severe, but if we just return then we
953 	 * are going to dereference garbage.
954 	 */
955 	BUG_ON(skb_queue_is_last(list, skb));
956 	return skb->next;
957 }
958 
959 /**
960  *	skb_queue_prev - return the prev packet in the queue
961  *	@list: queue head
962  *	@skb: current buffer
963  *
964  *	Return the prev packet in @list before @skb.  It is only valid to
965  *	call this if skb_queue_is_first() evaluates to false.
966  */
967 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
968 					     const struct sk_buff *skb)
969 {
970 	/* This BUG_ON may seem severe, but if we just return then we
971 	 * are going to dereference garbage.
972 	 */
973 	BUG_ON(skb_queue_is_first(list, skb));
974 	return skb->prev;
975 }
976 
977 /**
978  *	skb_get - reference buffer
979  *	@skb: buffer to reference
980  *
981  *	Makes another reference to a socket buffer and returns a pointer
982  *	to the buffer.
983  */
984 static inline struct sk_buff *skb_get(struct sk_buff *skb)
985 {
986 	atomic_inc(&skb->users);
987 	return skb;
988 }
989 
990 /*
991  * If users == 1, we are the only owner and are can avoid redundant
992  * atomic change.
993  */
994 
995 /**
996  *	skb_cloned - is the buffer a clone
997  *	@skb: buffer to check
998  *
999  *	Returns true if the buffer was generated with skb_clone() and is
1000  *	one of multiple shared copies of the buffer. Cloned buffers are
1001  *	shared data so must not be written to under normal circumstances.
1002  */
1003 static inline int skb_cloned(const struct sk_buff *skb)
1004 {
1005 	return skb->cloned &&
1006 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1007 }
1008 
1009 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1010 {
1011 	might_sleep_if(pri & __GFP_WAIT);
1012 
1013 	if (skb_cloned(skb))
1014 		return pskb_expand_head(skb, 0, 0, pri);
1015 
1016 	return 0;
1017 }
1018 
1019 /**
1020  *	skb_header_cloned - is the header a clone
1021  *	@skb: buffer to check
1022  *
1023  *	Returns true if modifying the header part of the buffer requires
1024  *	the data to be copied.
1025  */
1026 static inline int skb_header_cloned(const struct sk_buff *skb)
1027 {
1028 	int dataref;
1029 
1030 	if (!skb->cloned)
1031 		return 0;
1032 
1033 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1034 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1035 	return dataref != 1;
1036 }
1037 
1038 /**
1039  *	skb_header_release - release reference to header
1040  *	@skb: buffer to operate on
1041  *
1042  *	Drop a reference to the header part of the buffer.  This is done
1043  *	by acquiring a payload reference.  You must not read from the header
1044  *	part of skb->data after this.
1045  */
1046 static inline void skb_header_release(struct sk_buff *skb)
1047 {
1048 	BUG_ON(skb->nohdr);
1049 	skb->nohdr = 1;
1050 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1051 }
1052 
1053 /**
1054  *	skb_shared - is the buffer shared
1055  *	@skb: buffer to check
1056  *
1057  *	Returns true if more than one person has a reference to this
1058  *	buffer.
1059  */
1060 static inline int skb_shared(const struct sk_buff *skb)
1061 {
1062 	return atomic_read(&skb->users) != 1;
1063 }
1064 
1065 /**
1066  *	skb_share_check - check if buffer is shared and if so clone it
1067  *	@skb: buffer to check
1068  *	@pri: priority for memory allocation
1069  *
1070  *	If the buffer is shared the buffer is cloned and the old copy
1071  *	drops a reference. A new clone with a single reference is returned.
1072  *	If the buffer is not shared the original buffer is returned. When
1073  *	being called from interrupt status or with spinlocks held pri must
1074  *	be GFP_ATOMIC.
1075  *
1076  *	NULL is returned on a memory allocation failure.
1077  */
1078 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1079 {
1080 	might_sleep_if(pri & __GFP_WAIT);
1081 	if (skb_shared(skb)) {
1082 		struct sk_buff *nskb = skb_clone(skb, pri);
1083 
1084 		if (likely(nskb))
1085 			consume_skb(skb);
1086 		else
1087 			kfree_skb(skb);
1088 		skb = nskb;
1089 	}
1090 	return skb;
1091 }
1092 
1093 /*
1094  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1095  *	packets to handle cases where we have a local reader and forward
1096  *	and a couple of other messy ones. The normal one is tcpdumping
1097  *	a packet thats being forwarded.
1098  */
1099 
1100 /**
1101  *	skb_unshare - make a copy of a shared buffer
1102  *	@skb: buffer to check
1103  *	@pri: priority for memory allocation
1104  *
1105  *	If the socket buffer is a clone then this function creates a new
1106  *	copy of the data, drops a reference count on the old copy and returns
1107  *	the new copy with the reference count at 1. If the buffer is not a clone
1108  *	the original buffer is returned. When called with a spinlock held or
1109  *	from interrupt state @pri must be %GFP_ATOMIC
1110  *
1111  *	%NULL is returned on a memory allocation failure.
1112  */
1113 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1114 					  gfp_t pri)
1115 {
1116 	might_sleep_if(pri & __GFP_WAIT);
1117 	if (skb_cloned(skb)) {
1118 		struct sk_buff *nskb = skb_copy(skb, pri);
1119 		kfree_skb(skb);	/* Free our shared copy */
1120 		skb = nskb;
1121 	}
1122 	return skb;
1123 }
1124 
1125 /**
1126  *	skb_peek - peek at the head of an &sk_buff_head
1127  *	@list_: list to peek at
1128  *
1129  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1130  *	be careful with this one. A peek leaves the buffer on the
1131  *	list and someone else may run off with it. You must hold
1132  *	the appropriate locks or have a private queue to do this.
1133  *
1134  *	Returns %NULL for an empty list or a pointer to the head element.
1135  *	The reference count is not incremented and the reference is therefore
1136  *	volatile. Use with caution.
1137  */
1138 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1139 {
1140 	struct sk_buff *skb = list_->next;
1141 
1142 	if (skb == (struct sk_buff *)list_)
1143 		skb = NULL;
1144 	return skb;
1145 }
1146 
1147 /**
1148  *	skb_peek_next - peek skb following the given one from a queue
1149  *	@skb: skb to start from
1150  *	@list_: list to peek at
1151  *
1152  *	Returns %NULL when the end of the list is met or a pointer to the
1153  *	next element. The reference count is not incremented and the
1154  *	reference is therefore volatile. Use with caution.
1155  */
1156 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1157 		const struct sk_buff_head *list_)
1158 {
1159 	struct sk_buff *next = skb->next;
1160 
1161 	if (next == (struct sk_buff *)list_)
1162 		next = NULL;
1163 	return next;
1164 }
1165 
1166 /**
1167  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1168  *	@list_: list to peek at
1169  *
1170  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1171  *	be careful with this one. A peek leaves the buffer on the
1172  *	list and someone else may run off with it. You must hold
1173  *	the appropriate locks or have a private queue to do this.
1174  *
1175  *	Returns %NULL for an empty list or a pointer to the tail element.
1176  *	The reference count is not incremented and the reference is therefore
1177  *	volatile. Use with caution.
1178  */
1179 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1180 {
1181 	struct sk_buff *skb = list_->prev;
1182 
1183 	if (skb == (struct sk_buff *)list_)
1184 		skb = NULL;
1185 	return skb;
1186 
1187 }
1188 
1189 /**
1190  *	skb_queue_len	- get queue length
1191  *	@list_: list to measure
1192  *
1193  *	Return the length of an &sk_buff queue.
1194  */
1195 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1196 {
1197 	return list_->qlen;
1198 }
1199 
1200 /**
1201  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1202  *	@list: queue to initialize
1203  *
1204  *	This initializes only the list and queue length aspects of
1205  *	an sk_buff_head object.  This allows to initialize the list
1206  *	aspects of an sk_buff_head without reinitializing things like
1207  *	the spinlock.  It can also be used for on-stack sk_buff_head
1208  *	objects where the spinlock is known to not be used.
1209  */
1210 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1211 {
1212 	list->prev = list->next = (struct sk_buff *)list;
1213 	list->qlen = 0;
1214 }
1215 
1216 /*
1217  * This function creates a split out lock class for each invocation;
1218  * this is needed for now since a whole lot of users of the skb-queue
1219  * infrastructure in drivers have different locking usage (in hardirq)
1220  * than the networking core (in softirq only). In the long run either the
1221  * network layer or drivers should need annotation to consolidate the
1222  * main types of usage into 3 classes.
1223  */
1224 static inline void skb_queue_head_init(struct sk_buff_head *list)
1225 {
1226 	spin_lock_init(&list->lock);
1227 	__skb_queue_head_init(list);
1228 }
1229 
1230 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1231 		struct lock_class_key *class)
1232 {
1233 	skb_queue_head_init(list);
1234 	lockdep_set_class(&list->lock, class);
1235 }
1236 
1237 /*
1238  *	Insert an sk_buff on a list.
1239  *
1240  *	The "__skb_xxxx()" functions are the non-atomic ones that
1241  *	can only be called with interrupts disabled.
1242  */
1243 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1244 		struct sk_buff_head *list);
1245 static inline void __skb_insert(struct sk_buff *newsk,
1246 				struct sk_buff *prev, struct sk_buff *next,
1247 				struct sk_buff_head *list)
1248 {
1249 	newsk->next = next;
1250 	newsk->prev = prev;
1251 	next->prev  = prev->next = newsk;
1252 	list->qlen++;
1253 }
1254 
1255 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1256 				      struct sk_buff *prev,
1257 				      struct sk_buff *next)
1258 {
1259 	struct sk_buff *first = list->next;
1260 	struct sk_buff *last = list->prev;
1261 
1262 	first->prev = prev;
1263 	prev->next = first;
1264 
1265 	last->next = next;
1266 	next->prev = last;
1267 }
1268 
1269 /**
1270  *	skb_queue_splice - join two skb lists, this is designed for stacks
1271  *	@list: the new list to add
1272  *	@head: the place to add it in the first list
1273  */
1274 static inline void skb_queue_splice(const struct sk_buff_head *list,
1275 				    struct sk_buff_head *head)
1276 {
1277 	if (!skb_queue_empty(list)) {
1278 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1279 		head->qlen += list->qlen;
1280 	}
1281 }
1282 
1283 /**
1284  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1285  *	@list: the new list to add
1286  *	@head: the place to add it in the first list
1287  *
1288  *	The list at @list is reinitialised
1289  */
1290 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1291 					 struct sk_buff_head *head)
1292 {
1293 	if (!skb_queue_empty(list)) {
1294 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1295 		head->qlen += list->qlen;
1296 		__skb_queue_head_init(list);
1297 	}
1298 }
1299 
1300 /**
1301  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1302  *	@list: the new list to add
1303  *	@head: the place to add it in the first list
1304  */
1305 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1306 					 struct sk_buff_head *head)
1307 {
1308 	if (!skb_queue_empty(list)) {
1309 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1310 		head->qlen += list->qlen;
1311 	}
1312 }
1313 
1314 /**
1315  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1316  *	@list: the new list to add
1317  *	@head: the place to add it in the first list
1318  *
1319  *	Each of the lists is a queue.
1320  *	The list at @list is reinitialised
1321  */
1322 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1323 					      struct sk_buff_head *head)
1324 {
1325 	if (!skb_queue_empty(list)) {
1326 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1327 		head->qlen += list->qlen;
1328 		__skb_queue_head_init(list);
1329 	}
1330 }
1331 
1332 /**
1333  *	__skb_queue_after - queue a buffer at the list head
1334  *	@list: list to use
1335  *	@prev: place after this buffer
1336  *	@newsk: buffer to queue
1337  *
1338  *	Queue a buffer int the middle of a list. This function takes no locks
1339  *	and you must therefore hold required locks before calling it.
1340  *
1341  *	A buffer cannot be placed on two lists at the same time.
1342  */
1343 static inline void __skb_queue_after(struct sk_buff_head *list,
1344 				     struct sk_buff *prev,
1345 				     struct sk_buff *newsk)
1346 {
1347 	__skb_insert(newsk, prev, prev->next, list);
1348 }
1349 
1350 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1351 		struct sk_buff_head *list);
1352 
1353 static inline void __skb_queue_before(struct sk_buff_head *list,
1354 				      struct sk_buff *next,
1355 				      struct sk_buff *newsk)
1356 {
1357 	__skb_insert(newsk, next->prev, next, list);
1358 }
1359 
1360 /**
1361  *	__skb_queue_head - queue a buffer at the list head
1362  *	@list: list to use
1363  *	@newsk: buffer to queue
1364  *
1365  *	Queue a buffer at the start of a list. This function takes no locks
1366  *	and you must therefore hold required locks before calling it.
1367  *
1368  *	A buffer cannot be placed on two lists at the same time.
1369  */
1370 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1371 static inline void __skb_queue_head(struct sk_buff_head *list,
1372 				    struct sk_buff *newsk)
1373 {
1374 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1375 }
1376 
1377 /**
1378  *	__skb_queue_tail - queue a buffer at the list tail
1379  *	@list: list to use
1380  *	@newsk: buffer to queue
1381  *
1382  *	Queue a buffer at the end of a list. This function takes no locks
1383  *	and you must therefore hold required locks before calling it.
1384  *
1385  *	A buffer cannot be placed on two lists at the same time.
1386  */
1387 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1388 static inline void __skb_queue_tail(struct sk_buff_head *list,
1389 				   struct sk_buff *newsk)
1390 {
1391 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1392 }
1393 
1394 /*
1395  * remove sk_buff from list. _Must_ be called atomically, and with
1396  * the list known..
1397  */
1398 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1399 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1400 {
1401 	struct sk_buff *next, *prev;
1402 
1403 	list->qlen--;
1404 	next	   = skb->next;
1405 	prev	   = skb->prev;
1406 	skb->next  = skb->prev = NULL;
1407 	next->prev = prev;
1408 	prev->next = next;
1409 }
1410 
1411 /**
1412  *	__skb_dequeue - remove from the head of the queue
1413  *	@list: list to dequeue from
1414  *
1415  *	Remove the head of the list. This function does not take any locks
1416  *	so must be used with appropriate locks held only. The head item is
1417  *	returned or %NULL if the list is empty.
1418  */
1419 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1420 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1421 {
1422 	struct sk_buff *skb = skb_peek(list);
1423 	if (skb)
1424 		__skb_unlink(skb, list);
1425 	return skb;
1426 }
1427 
1428 /**
1429  *	__skb_dequeue_tail - remove from the tail of the queue
1430  *	@list: list to dequeue from
1431  *
1432  *	Remove the tail of the list. This function does not take any locks
1433  *	so must be used with appropriate locks held only. The tail item is
1434  *	returned or %NULL if the list is empty.
1435  */
1436 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1437 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1438 {
1439 	struct sk_buff *skb = skb_peek_tail(list);
1440 	if (skb)
1441 		__skb_unlink(skb, list);
1442 	return skb;
1443 }
1444 
1445 
1446 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1447 {
1448 	return skb->data_len;
1449 }
1450 
1451 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1452 {
1453 	return skb->len - skb->data_len;
1454 }
1455 
1456 static inline int skb_pagelen(const struct sk_buff *skb)
1457 {
1458 	int i, len = 0;
1459 
1460 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1461 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1462 	return len + skb_headlen(skb);
1463 }
1464 
1465 /**
1466  * __skb_fill_page_desc - initialise a paged fragment in an skb
1467  * @skb: buffer containing fragment to be initialised
1468  * @i: paged fragment index to initialise
1469  * @page: the page to use for this fragment
1470  * @off: the offset to the data with @page
1471  * @size: the length of the data
1472  *
1473  * Initialises the @i'th fragment of @skb to point to &size bytes at
1474  * offset @off within @page.
1475  *
1476  * Does not take any additional reference on the fragment.
1477  */
1478 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1479 					struct page *page, int off, int size)
1480 {
1481 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1482 
1483 	/*
1484 	 * Propagate page->pfmemalloc to the skb if we can. The problem is
1485 	 * that not all callers have unique ownership of the page. If
1486 	 * pfmemalloc is set, we check the mapping as a mapping implies
1487 	 * page->index is set (index and pfmemalloc share space).
1488 	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1489 	 * do not lose pfmemalloc information as the pages would not be
1490 	 * allocated using __GFP_MEMALLOC.
1491 	 */
1492 	frag->page.p		  = page;
1493 	frag->page_offset	  = off;
1494 	skb_frag_size_set(frag, size);
1495 
1496 	page = compound_head(page);
1497 	if (page->pfmemalloc && !page->mapping)
1498 		skb->pfmemalloc	= true;
1499 }
1500 
1501 /**
1502  * skb_fill_page_desc - initialise a paged fragment in an skb
1503  * @skb: buffer containing fragment to be initialised
1504  * @i: paged fragment index to initialise
1505  * @page: the page to use for this fragment
1506  * @off: the offset to the data with @page
1507  * @size: the length of the data
1508  *
1509  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1510  * @skb to point to @size bytes at offset @off within @page. In
1511  * addition updates @skb such that @i is the last fragment.
1512  *
1513  * Does not take any additional reference on the fragment.
1514  */
1515 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1516 				      struct page *page, int off, int size)
1517 {
1518 	__skb_fill_page_desc(skb, i, page, off, size);
1519 	skb_shinfo(skb)->nr_frags = i + 1;
1520 }
1521 
1522 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1523 		     int size, unsigned int truesize);
1524 
1525 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1526 			  unsigned int truesize);
1527 
1528 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1529 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1530 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1531 
1532 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1533 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1534 {
1535 	return skb->head + skb->tail;
1536 }
1537 
1538 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1539 {
1540 	skb->tail = skb->data - skb->head;
1541 }
1542 
1543 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1544 {
1545 	skb_reset_tail_pointer(skb);
1546 	skb->tail += offset;
1547 }
1548 
1549 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1550 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1551 {
1552 	return skb->tail;
1553 }
1554 
1555 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1556 {
1557 	skb->tail = skb->data;
1558 }
1559 
1560 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1561 {
1562 	skb->tail = skb->data + offset;
1563 }
1564 
1565 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1566 
1567 /*
1568  *	Add data to an sk_buff
1569  */
1570 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1571 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1572 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1573 {
1574 	unsigned char *tmp = skb_tail_pointer(skb);
1575 	SKB_LINEAR_ASSERT(skb);
1576 	skb->tail += len;
1577 	skb->len  += len;
1578 	return tmp;
1579 }
1580 
1581 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1582 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1583 {
1584 	skb->data -= len;
1585 	skb->len  += len;
1586 	return skb->data;
1587 }
1588 
1589 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1590 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1591 {
1592 	skb->len -= len;
1593 	BUG_ON(skb->len < skb->data_len);
1594 	return skb->data += len;
1595 }
1596 
1597 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1598 {
1599 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1600 }
1601 
1602 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1603 
1604 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1605 {
1606 	if (len > skb_headlen(skb) &&
1607 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1608 		return NULL;
1609 	skb->len -= len;
1610 	return skb->data += len;
1611 }
1612 
1613 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1614 {
1615 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1616 }
1617 
1618 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1619 {
1620 	if (likely(len <= skb_headlen(skb)))
1621 		return 1;
1622 	if (unlikely(len > skb->len))
1623 		return 0;
1624 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1625 }
1626 
1627 /**
1628  *	skb_headroom - bytes at buffer head
1629  *	@skb: buffer to check
1630  *
1631  *	Return the number of bytes of free space at the head of an &sk_buff.
1632  */
1633 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1634 {
1635 	return skb->data - skb->head;
1636 }
1637 
1638 /**
1639  *	skb_tailroom - bytes at buffer end
1640  *	@skb: buffer to check
1641  *
1642  *	Return the number of bytes of free space at the tail of an sk_buff
1643  */
1644 static inline int skb_tailroom(const struct sk_buff *skb)
1645 {
1646 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1647 }
1648 
1649 /**
1650  *	skb_availroom - bytes at buffer end
1651  *	@skb: buffer to check
1652  *
1653  *	Return the number of bytes of free space at the tail of an sk_buff
1654  *	allocated by sk_stream_alloc()
1655  */
1656 static inline int skb_availroom(const struct sk_buff *skb)
1657 {
1658 	if (skb_is_nonlinear(skb))
1659 		return 0;
1660 
1661 	return skb->end - skb->tail - skb->reserved_tailroom;
1662 }
1663 
1664 /**
1665  *	skb_reserve - adjust headroom
1666  *	@skb: buffer to alter
1667  *	@len: bytes to move
1668  *
1669  *	Increase the headroom of an empty &sk_buff by reducing the tail
1670  *	room. This is only allowed for an empty buffer.
1671  */
1672 static inline void skb_reserve(struct sk_buff *skb, int len)
1673 {
1674 	skb->data += len;
1675 	skb->tail += len;
1676 }
1677 
1678 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1679 {
1680 	skb->inner_mac_header = skb->mac_header;
1681 	skb->inner_network_header = skb->network_header;
1682 	skb->inner_transport_header = skb->transport_header;
1683 }
1684 
1685 static inline void skb_reset_mac_len(struct sk_buff *skb)
1686 {
1687 	skb->mac_len = skb->network_header - skb->mac_header;
1688 }
1689 
1690 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1691 							*skb)
1692 {
1693 	return skb->head + skb->inner_transport_header;
1694 }
1695 
1696 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1697 {
1698 	skb->inner_transport_header = skb->data - skb->head;
1699 }
1700 
1701 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1702 						   const int offset)
1703 {
1704 	skb_reset_inner_transport_header(skb);
1705 	skb->inner_transport_header += offset;
1706 }
1707 
1708 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1709 {
1710 	return skb->head + skb->inner_network_header;
1711 }
1712 
1713 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1714 {
1715 	skb->inner_network_header = skb->data - skb->head;
1716 }
1717 
1718 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1719 						const int offset)
1720 {
1721 	skb_reset_inner_network_header(skb);
1722 	skb->inner_network_header += offset;
1723 }
1724 
1725 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1726 {
1727 	return skb->head + skb->inner_mac_header;
1728 }
1729 
1730 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1731 {
1732 	skb->inner_mac_header = skb->data - skb->head;
1733 }
1734 
1735 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1736 					    const int offset)
1737 {
1738 	skb_reset_inner_mac_header(skb);
1739 	skb->inner_mac_header += offset;
1740 }
1741 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1742 {
1743 	return skb->transport_header != (typeof(skb->transport_header))~0U;
1744 }
1745 
1746 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1747 {
1748 	return skb->head + skb->transport_header;
1749 }
1750 
1751 static inline void skb_reset_transport_header(struct sk_buff *skb)
1752 {
1753 	skb->transport_header = skb->data - skb->head;
1754 }
1755 
1756 static inline void skb_set_transport_header(struct sk_buff *skb,
1757 					    const int offset)
1758 {
1759 	skb_reset_transport_header(skb);
1760 	skb->transport_header += offset;
1761 }
1762 
1763 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1764 {
1765 	return skb->head + skb->network_header;
1766 }
1767 
1768 static inline void skb_reset_network_header(struct sk_buff *skb)
1769 {
1770 	skb->network_header = skb->data - skb->head;
1771 }
1772 
1773 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1774 {
1775 	skb_reset_network_header(skb);
1776 	skb->network_header += offset;
1777 }
1778 
1779 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1780 {
1781 	return skb->head + skb->mac_header;
1782 }
1783 
1784 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1785 {
1786 	return skb->mac_header != (typeof(skb->mac_header))~0U;
1787 }
1788 
1789 static inline void skb_reset_mac_header(struct sk_buff *skb)
1790 {
1791 	skb->mac_header = skb->data - skb->head;
1792 }
1793 
1794 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1795 {
1796 	skb_reset_mac_header(skb);
1797 	skb->mac_header += offset;
1798 }
1799 
1800 static inline void skb_pop_mac_header(struct sk_buff *skb)
1801 {
1802 	skb->mac_header = skb->network_header;
1803 }
1804 
1805 static inline void skb_probe_transport_header(struct sk_buff *skb,
1806 					      const int offset_hint)
1807 {
1808 	struct flow_keys keys;
1809 
1810 	if (skb_transport_header_was_set(skb))
1811 		return;
1812 	else if (skb_flow_dissect(skb, &keys))
1813 		skb_set_transport_header(skb, keys.thoff);
1814 	else
1815 		skb_set_transport_header(skb, offset_hint);
1816 }
1817 
1818 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1819 {
1820 	if (skb_mac_header_was_set(skb)) {
1821 		const unsigned char *old_mac = skb_mac_header(skb);
1822 
1823 		skb_set_mac_header(skb, -skb->mac_len);
1824 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1825 	}
1826 }
1827 
1828 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1829 {
1830 	return skb->csum_start - skb_headroom(skb);
1831 }
1832 
1833 static inline int skb_transport_offset(const struct sk_buff *skb)
1834 {
1835 	return skb_transport_header(skb) - skb->data;
1836 }
1837 
1838 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1839 {
1840 	return skb->transport_header - skb->network_header;
1841 }
1842 
1843 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1844 {
1845 	return skb->inner_transport_header - skb->inner_network_header;
1846 }
1847 
1848 static inline int skb_network_offset(const struct sk_buff *skb)
1849 {
1850 	return skb_network_header(skb) - skb->data;
1851 }
1852 
1853 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1854 {
1855 	return skb_inner_network_header(skb) - skb->data;
1856 }
1857 
1858 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1859 {
1860 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1861 }
1862 
1863 static inline void skb_pop_rcv_encapsulation(struct sk_buff *skb)
1864 {
1865 	/* Only continue with checksum unnecessary if device indicated
1866 	 * it is valid across encapsulation (skb->encapsulation was set).
1867 	 */
1868 	if (skb->ip_summed == CHECKSUM_UNNECESSARY && !skb->encapsulation)
1869 		skb->ip_summed = CHECKSUM_NONE;
1870 
1871 	skb->encapsulation = 0;
1872 	skb->csum_valid = 0;
1873 }
1874 
1875 /*
1876  * CPUs often take a performance hit when accessing unaligned memory
1877  * locations. The actual performance hit varies, it can be small if the
1878  * hardware handles it or large if we have to take an exception and fix it
1879  * in software.
1880  *
1881  * Since an ethernet header is 14 bytes network drivers often end up with
1882  * the IP header at an unaligned offset. The IP header can be aligned by
1883  * shifting the start of the packet by 2 bytes. Drivers should do this
1884  * with:
1885  *
1886  * skb_reserve(skb, NET_IP_ALIGN);
1887  *
1888  * The downside to this alignment of the IP header is that the DMA is now
1889  * unaligned. On some architectures the cost of an unaligned DMA is high
1890  * and this cost outweighs the gains made by aligning the IP header.
1891  *
1892  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1893  * to be overridden.
1894  */
1895 #ifndef NET_IP_ALIGN
1896 #define NET_IP_ALIGN	2
1897 #endif
1898 
1899 /*
1900  * The networking layer reserves some headroom in skb data (via
1901  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1902  * the header has to grow. In the default case, if the header has to grow
1903  * 32 bytes or less we avoid the reallocation.
1904  *
1905  * Unfortunately this headroom changes the DMA alignment of the resulting
1906  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1907  * on some architectures. An architecture can override this value,
1908  * perhaps setting it to a cacheline in size (since that will maintain
1909  * cacheline alignment of the DMA). It must be a power of 2.
1910  *
1911  * Various parts of the networking layer expect at least 32 bytes of
1912  * headroom, you should not reduce this.
1913  *
1914  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1915  * to reduce average number of cache lines per packet.
1916  * get_rps_cpus() for example only access one 64 bytes aligned block :
1917  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1918  */
1919 #ifndef NET_SKB_PAD
1920 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1921 #endif
1922 
1923 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1924 
1925 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1926 {
1927 	if (unlikely(skb_is_nonlinear(skb))) {
1928 		WARN_ON(1);
1929 		return;
1930 	}
1931 	skb->len = len;
1932 	skb_set_tail_pointer(skb, len);
1933 }
1934 
1935 void skb_trim(struct sk_buff *skb, unsigned int len);
1936 
1937 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1938 {
1939 	if (skb->data_len)
1940 		return ___pskb_trim(skb, len);
1941 	__skb_trim(skb, len);
1942 	return 0;
1943 }
1944 
1945 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1946 {
1947 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1948 }
1949 
1950 /**
1951  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1952  *	@skb: buffer to alter
1953  *	@len: new length
1954  *
1955  *	This is identical to pskb_trim except that the caller knows that
1956  *	the skb is not cloned so we should never get an error due to out-
1957  *	of-memory.
1958  */
1959 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1960 {
1961 	int err = pskb_trim(skb, len);
1962 	BUG_ON(err);
1963 }
1964 
1965 /**
1966  *	skb_orphan - orphan a buffer
1967  *	@skb: buffer to orphan
1968  *
1969  *	If a buffer currently has an owner then we call the owner's
1970  *	destructor function and make the @skb unowned. The buffer continues
1971  *	to exist but is no longer charged to its former owner.
1972  */
1973 static inline void skb_orphan(struct sk_buff *skb)
1974 {
1975 	if (skb->destructor) {
1976 		skb->destructor(skb);
1977 		skb->destructor = NULL;
1978 		skb->sk		= NULL;
1979 	} else {
1980 		BUG_ON(skb->sk);
1981 	}
1982 }
1983 
1984 /**
1985  *	skb_orphan_frags - orphan the frags contained in a buffer
1986  *	@skb: buffer to orphan frags from
1987  *	@gfp_mask: allocation mask for replacement pages
1988  *
1989  *	For each frag in the SKB which needs a destructor (i.e. has an
1990  *	owner) create a copy of that frag and release the original
1991  *	page by calling the destructor.
1992  */
1993 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1994 {
1995 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1996 		return 0;
1997 	return skb_copy_ubufs(skb, gfp_mask);
1998 }
1999 
2000 /**
2001  *	__skb_queue_purge - empty a list
2002  *	@list: list to empty
2003  *
2004  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2005  *	the list and one reference dropped. This function does not take the
2006  *	list lock and the caller must hold the relevant locks to use it.
2007  */
2008 void skb_queue_purge(struct sk_buff_head *list);
2009 static inline void __skb_queue_purge(struct sk_buff_head *list)
2010 {
2011 	struct sk_buff *skb;
2012 	while ((skb = __skb_dequeue(list)) != NULL)
2013 		kfree_skb(skb);
2014 }
2015 
2016 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2017 #define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2018 #define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE
2019 
2020 void *netdev_alloc_frag(unsigned int fragsz);
2021 
2022 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2023 				   gfp_t gfp_mask);
2024 
2025 /**
2026  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2027  *	@dev: network device to receive on
2028  *	@length: length to allocate
2029  *
2030  *	Allocate a new &sk_buff and assign it a usage count of one. The
2031  *	buffer has unspecified headroom built in. Users should allocate
2032  *	the headroom they think they need without accounting for the
2033  *	built in space. The built in space is used for optimisations.
2034  *
2035  *	%NULL is returned if there is no free memory. Although this function
2036  *	allocates memory it can be called from an interrupt.
2037  */
2038 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2039 					       unsigned int length)
2040 {
2041 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2042 }
2043 
2044 /* legacy helper around __netdev_alloc_skb() */
2045 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2046 					      gfp_t gfp_mask)
2047 {
2048 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2049 }
2050 
2051 /* legacy helper around netdev_alloc_skb() */
2052 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2053 {
2054 	return netdev_alloc_skb(NULL, length);
2055 }
2056 
2057 
2058 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2059 		unsigned int length, gfp_t gfp)
2060 {
2061 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2062 
2063 	if (NET_IP_ALIGN && skb)
2064 		skb_reserve(skb, NET_IP_ALIGN);
2065 	return skb;
2066 }
2067 
2068 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2069 		unsigned int length)
2070 {
2071 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2072 }
2073 
2074 /**
2075  *	__skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
2076  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2077  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2078  *	@order: size of the allocation
2079  *
2080  * 	Allocate a new page.
2081  *
2082  * 	%NULL is returned if there is no free memory.
2083 */
2084 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
2085 					      struct sk_buff *skb,
2086 					      unsigned int order)
2087 {
2088 	struct page *page;
2089 
2090 	gfp_mask |= __GFP_COLD;
2091 
2092 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2093 		gfp_mask |= __GFP_MEMALLOC;
2094 
2095 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2096 	if (skb && page && page->pfmemalloc)
2097 		skb->pfmemalloc = true;
2098 
2099 	return page;
2100 }
2101 
2102 /**
2103  *	__skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
2104  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2105  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2106  *
2107  * 	Allocate a new page.
2108  *
2109  * 	%NULL is returned if there is no free memory.
2110  */
2111 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
2112 					     struct sk_buff *skb)
2113 {
2114 	return __skb_alloc_pages(gfp_mask, skb, 0);
2115 }
2116 
2117 /**
2118  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2119  *	@page: The page that was allocated from skb_alloc_page
2120  *	@skb: The skb that may need pfmemalloc set
2121  */
2122 static inline void skb_propagate_pfmemalloc(struct page *page,
2123 					     struct sk_buff *skb)
2124 {
2125 	if (page && page->pfmemalloc)
2126 		skb->pfmemalloc = true;
2127 }
2128 
2129 /**
2130  * skb_frag_page - retrieve the page referred to by a paged fragment
2131  * @frag: the paged fragment
2132  *
2133  * Returns the &struct page associated with @frag.
2134  */
2135 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2136 {
2137 	return frag->page.p;
2138 }
2139 
2140 /**
2141  * __skb_frag_ref - take an addition reference on a paged fragment.
2142  * @frag: the paged fragment
2143  *
2144  * Takes an additional reference on the paged fragment @frag.
2145  */
2146 static inline void __skb_frag_ref(skb_frag_t *frag)
2147 {
2148 	get_page(skb_frag_page(frag));
2149 }
2150 
2151 /**
2152  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2153  * @skb: the buffer
2154  * @f: the fragment offset.
2155  *
2156  * Takes an additional reference on the @f'th paged fragment of @skb.
2157  */
2158 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2159 {
2160 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2161 }
2162 
2163 /**
2164  * __skb_frag_unref - release a reference on a paged fragment.
2165  * @frag: the paged fragment
2166  *
2167  * Releases a reference on the paged fragment @frag.
2168  */
2169 static inline void __skb_frag_unref(skb_frag_t *frag)
2170 {
2171 	put_page(skb_frag_page(frag));
2172 }
2173 
2174 /**
2175  * skb_frag_unref - release a reference on a paged fragment of an skb.
2176  * @skb: the buffer
2177  * @f: the fragment offset
2178  *
2179  * Releases a reference on the @f'th paged fragment of @skb.
2180  */
2181 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2182 {
2183 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2184 }
2185 
2186 /**
2187  * skb_frag_address - gets the address of the data contained in a paged fragment
2188  * @frag: the paged fragment buffer
2189  *
2190  * Returns the address of the data within @frag. The page must already
2191  * be mapped.
2192  */
2193 static inline void *skb_frag_address(const skb_frag_t *frag)
2194 {
2195 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2196 }
2197 
2198 /**
2199  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2200  * @frag: the paged fragment buffer
2201  *
2202  * Returns the address of the data within @frag. Checks that the page
2203  * is mapped and returns %NULL otherwise.
2204  */
2205 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2206 {
2207 	void *ptr = page_address(skb_frag_page(frag));
2208 	if (unlikely(!ptr))
2209 		return NULL;
2210 
2211 	return ptr + frag->page_offset;
2212 }
2213 
2214 /**
2215  * __skb_frag_set_page - sets the page contained in a paged fragment
2216  * @frag: the paged fragment
2217  * @page: the page to set
2218  *
2219  * Sets the fragment @frag to contain @page.
2220  */
2221 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2222 {
2223 	frag->page.p = page;
2224 }
2225 
2226 /**
2227  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2228  * @skb: the buffer
2229  * @f: the fragment offset
2230  * @page: the page to set
2231  *
2232  * Sets the @f'th fragment of @skb to contain @page.
2233  */
2234 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2235 				     struct page *page)
2236 {
2237 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2238 }
2239 
2240 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2241 
2242 /**
2243  * skb_frag_dma_map - maps a paged fragment via the DMA API
2244  * @dev: the device to map the fragment to
2245  * @frag: the paged fragment to map
2246  * @offset: the offset within the fragment (starting at the
2247  *          fragment's own offset)
2248  * @size: the number of bytes to map
2249  * @dir: the direction of the mapping (%PCI_DMA_*)
2250  *
2251  * Maps the page associated with @frag to @device.
2252  */
2253 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2254 					  const skb_frag_t *frag,
2255 					  size_t offset, size_t size,
2256 					  enum dma_data_direction dir)
2257 {
2258 	return dma_map_page(dev, skb_frag_page(frag),
2259 			    frag->page_offset + offset, size, dir);
2260 }
2261 
2262 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2263 					gfp_t gfp_mask)
2264 {
2265 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2266 }
2267 
2268 
2269 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2270 						  gfp_t gfp_mask)
2271 {
2272 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2273 }
2274 
2275 
2276 /**
2277  *	skb_clone_writable - is the header of a clone writable
2278  *	@skb: buffer to check
2279  *	@len: length up to which to write
2280  *
2281  *	Returns true if modifying the header part of the cloned buffer
2282  *	does not requires the data to be copied.
2283  */
2284 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2285 {
2286 	return !skb_header_cloned(skb) &&
2287 	       skb_headroom(skb) + len <= skb->hdr_len;
2288 }
2289 
2290 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2291 			    int cloned)
2292 {
2293 	int delta = 0;
2294 
2295 	if (headroom > skb_headroom(skb))
2296 		delta = headroom - skb_headroom(skb);
2297 
2298 	if (delta || cloned)
2299 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2300 					GFP_ATOMIC);
2301 	return 0;
2302 }
2303 
2304 /**
2305  *	skb_cow - copy header of skb when it is required
2306  *	@skb: buffer to cow
2307  *	@headroom: needed headroom
2308  *
2309  *	If the skb passed lacks sufficient headroom or its data part
2310  *	is shared, data is reallocated. If reallocation fails, an error
2311  *	is returned and original skb is not changed.
2312  *
2313  *	The result is skb with writable area skb->head...skb->tail
2314  *	and at least @headroom of space at head.
2315  */
2316 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2317 {
2318 	return __skb_cow(skb, headroom, skb_cloned(skb));
2319 }
2320 
2321 /**
2322  *	skb_cow_head - skb_cow but only making the head writable
2323  *	@skb: buffer to cow
2324  *	@headroom: needed headroom
2325  *
2326  *	This function is identical to skb_cow except that we replace the
2327  *	skb_cloned check by skb_header_cloned.  It should be used when
2328  *	you only need to push on some header and do not need to modify
2329  *	the data.
2330  */
2331 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2332 {
2333 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2334 }
2335 
2336 /**
2337  *	skb_padto	- pad an skbuff up to a minimal size
2338  *	@skb: buffer to pad
2339  *	@len: minimal length
2340  *
2341  *	Pads up a buffer to ensure the trailing bytes exist and are
2342  *	blanked. If the buffer already contains sufficient data it
2343  *	is untouched. Otherwise it is extended. Returns zero on
2344  *	success. The skb is freed on error.
2345  */
2346 
2347 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2348 {
2349 	unsigned int size = skb->len;
2350 	if (likely(size >= len))
2351 		return 0;
2352 	return skb_pad(skb, len - size);
2353 }
2354 
2355 static inline int skb_add_data(struct sk_buff *skb,
2356 			       char __user *from, int copy)
2357 {
2358 	const int off = skb->len;
2359 
2360 	if (skb->ip_summed == CHECKSUM_NONE) {
2361 		int err = 0;
2362 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2363 							    copy, 0, &err);
2364 		if (!err) {
2365 			skb->csum = csum_block_add(skb->csum, csum, off);
2366 			return 0;
2367 		}
2368 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
2369 		return 0;
2370 
2371 	__skb_trim(skb, off);
2372 	return -EFAULT;
2373 }
2374 
2375 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2376 				    const struct page *page, int off)
2377 {
2378 	if (i) {
2379 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2380 
2381 		return page == skb_frag_page(frag) &&
2382 		       off == frag->page_offset + skb_frag_size(frag);
2383 	}
2384 	return false;
2385 }
2386 
2387 static inline int __skb_linearize(struct sk_buff *skb)
2388 {
2389 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2390 }
2391 
2392 /**
2393  *	skb_linearize - convert paged skb to linear one
2394  *	@skb: buffer to linarize
2395  *
2396  *	If there is no free memory -ENOMEM is returned, otherwise zero
2397  *	is returned and the old skb data released.
2398  */
2399 static inline int skb_linearize(struct sk_buff *skb)
2400 {
2401 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2402 }
2403 
2404 /**
2405  * skb_has_shared_frag - can any frag be overwritten
2406  * @skb: buffer to test
2407  *
2408  * Return true if the skb has at least one frag that might be modified
2409  * by an external entity (as in vmsplice()/sendfile())
2410  */
2411 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2412 {
2413 	return skb_is_nonlinear(skb) &&
2414 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2415 }
2416 
2417 /**
2418  *	skb_linearize_cow - make sure skb is linear and writable
2419  *	@skb: buffer to process
2420  *
2421  *	If there is no free memory -ENOMEM is returned, otherwise zero
2422  *	is returned and the old skb data released.
2423  */
2424 static inline int skb_linearize_cow(struct sk_buff *skb)
2425 {
2426 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2427 	       __skb_linearize(skb) : 0;
2428 }
2429 
2430 /**
2431  *	skb_postpull_rcsum - update checksum for received skb after pull
2432  *	@skb: buffer to update
2433  *	@start: start of data before pull
2434  *	@len: length of data pulled
2435  *
2436  *	After doing a pull on a received packet, you need to call this to
2437  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2438  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2439  */
2440 
2441 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2442 				      const void *start, unsigned int len)
2443 {
2444 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2445 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2446 }
2447 
2448 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2449 
2450 /**
2451  *	pskb_trim_rcsum - trim received skb and update checksum
2452  *	@skb: buffer to trim
2453  *	@len: new length
2454  *
2455  *	This is exactly the same as pskb_trim except that it ensures the
2456  *	checksum of received packets are still valid after the operation.
2457  */
2458 
2459 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2460 {
2461 	if (likely(len >= skb->len))
2462 		return 0;
2463 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2464 		skb->ip_summed = CHECKSUM_NONE;
2465 	return __pskb_trim(skb, len);
2466 }
2467 
2468 #define skb_queue_walk(queue, skb) \
2469 		for (skb = (queue)->next;					\
2470 		     skb != (struct sk_buff *)(queue);				\
2471 		     skb = skb->next)
2472 
2473 #define skb_queue_walk_safe(queue, skb, tmp)					\
2474 		for (skb = (queue)->next, tmp = skb->next;			\
2475 		     skb != (struct sk_buff *)(queue);				\
2476 		     skb = tmp, tmp = skb->next)
2477 
2478 #define skb_queue_walk_from(queue, skb)						\
2479 		for (; skb != (struct sk_buff *)(queue);			\
2480 		     skb = skb->next)
2481 
2482 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2483 		for (tmp = skb->next;						\
2484 		     skb != (struct sk_buff *)(queue);				\
2485 		     skb = tmp, tmp = skb->next)
2486 
2487 #define skb_queue_reverse_walk(queue, skb) \
2488 		for (skb = (queue)->prev;					\
2489 		     skb != (struct sk_buff *)(queue);				\
2490 		     skb = skb->prev)
2491 
2492 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2493 		for (skb = (queue)->prev, tmp = skb->prev;			\
2494 		     skb != (struct sk_buff *)(queue);				\
2495 		     skb = tmp, tmp = skb->prev)
2496 
2497 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2498 		for (tmp = skb->prev;						\
2499 		     skb != (struct sk_buff *)(queue);				\
2500 		     skb = tmp, tmp = skb->prev)
2501 
2502 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2503 {
2504 	return skb_shinfo(skb)->frag_list != NULL;
2505 }
2506 
2507 static inline void skb_frag_list_init(struct sk_buff *skb)
2508 {
2509 	skb_shinfo(skb)->frag_list = NULL;
2510 }
2511 
2512 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2513 {
2514 	frag->next = skb_shinfo(skb)->frag_list;
2515 	skb_shinfo(skb)->frag_list = frag;
2516 }
2517 
2518 #define skb_walk_frags(skb, iter)	\
2519 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2520 
2521 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2522 				    int *peeked, int *off, int *err);
2523 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2524 				  int *err);
2525 unsigned int datagram_poll(struct file *file, struct socket *sock,
2526 			   struct poll_table_struct *wait);
2527 int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
2528 			    struct iovec *to, int size);
2529 int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
2530 				     struct iovec *iov);
2531 int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
2532 				 const struct iovec *from, int from_offset,
2533 				 int len);
2534 int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
2535 			   int offset, size_t count);
2536 int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
2537 				  const struct iovec *to, int to_offset,
2538 				  int size);
2539 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2540 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2541 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2542 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2543 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2544 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2545 			      int len, __wsum csum);
2546 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2547 		    struct pipe_inode_info *pipe, unsigned int len,
2548 		    unsigned int flags);
2549 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2550 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2551 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2552 		 int len, int hlen);
2553 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2554 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2555 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2556 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2557 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2558 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2559 
2560 struct skb_checksum_ops {
2561 	__wsum (*update)(const void *mem, int len, __wsum wsum);
2562 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2563 };
2564 
2565 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2566 		      __wsum csum, const struct skb_checksum_ops *ops);
2567 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2568 		    __wsum csum);
2569 
2570 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2571 				       int len, void *buffer)
2572 {
2573 	int hlen = skb_headlen(skb);
2574 
2575 	if (hlen - offset >= len)
2576 		return skb->data + offset;
2577 
2578 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
2579 		return NULL;
2580 
2581 	return buffer;
2582 }
2583 
2584 /**
2585  *	skb_needs_linearize - check if we need to linearize a given skb
2586  *			      depending on the given device features.
2587  *	@skb: socket buffer to check
2588  *	@features: net device features
2589  *
2590  *	Returns true if either:
2591  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2592  *	2. skb is fragmented and the device does not support SG.
2593  */
2594 static inline bool skb_needs_linearize(struct sk_buff *skb,
2595 				       netdev_features_t features)
2596 {
2597 	return skb_is_nonlinear(skb) &&
2598 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2599 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2600 }
2601 
2602 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2603 					     void *to,
2604 					     const unsigned int len)
2605 {
2606 	memcpy(to, skb->data, len);
2607 }
2608 
2609 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2610 						    const int offset, void *to,
2611 						    const unsigned int len)
2612 {
2613 	memcpy(to, skb->data + offset, len);
2614 }
2615 
2616 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2617 					   const void *from,
2618 					   const unsigned int len)
2619 {
2620 	memcpy(skb->data, from, len);
2621 }
2622 
2623 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2624 						  const int offset,
2625 						  const void *from,
2626 						  const unsigned int len)
2627 {
2628 	memcpy(skb->data + offset, from, len);
2629 }
2630 
2631 void skb_init(void);
2632 
2633 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2634 {
2635 	return skb->tstamp;
2636 }
2637 
2638 /**
2639  *	skb_get_timestamp - get timestamp from a skb
2640  *	@skb: skb to get stamp from
2641  *	@stamp: pointer to struct timeval to store stamp in
2642  *
2643  *	Timestamps are stored in the skb as offsets to a base timestamp.
2644  *	This function converts the offset back to a struct timeval and stores
2645  *	it in stamp.
2646  */
2647 static inline void skb_get_timestamp(const struct sk_buff *skb,
2648 				     struct timeval *stamp)
2649 {
2650 	*stamp = ktime_to_timeval(skb->tstamp);
2651 }
2652 
2653 static inline void skb_get_timestampns(const struct sk_buff *skb,
2654 				       struct timespec *stamp)
2655 {
2656 	*stamp = ktime_to_timespec(skb->tstamp);
2657 }
2658 
2659 static inline void __net_timestamp(struct sk_buff *skb)
2660 {
2661 	skb->tstamp = ktime_get_real();
2662 }
2663 
2664 static inline ktime_t net_timedelta(ktime_t t)
2665 {
2666 	return ktime_sub(ktime_get_real(), t);
2667 }
2668 
2669 static inline ktime_t net_invalid_timestamp(void)
2670 {
2671 	return ktime_set(0, 0);
2672 }
2673 
2674 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2675 
2676 void skb_clone_tx_timestamp(struct sk_buff *skb);
2677 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2678 
2679 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2680 
2681 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2682 {
2683 }
2684 
2685 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2686 {
2687 	return false;
2688 }
2689 
2690 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2691 
2692 /**
2693  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2694  *
2695  * PHY drivers may accept clones of transmitted packets for
2696  * timestamping via their phy_driver.txtstamp method. These drivers
2697  * must call this function to return the skb back to the stack, with
2698  * or without a timestamp.
2699  *
2700  * @skb: clone of the the original outgoing packet
2701  * @hwtstamps: hardware time stamps, may be NULL if not available
2702  *
2703  */
2704 void skb_complete_tx_timestamp(struct sk_buff *skb,
2705 			       struct skb_shared_hwtstamps *hwtstamps);
2706 
2707 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2708 		     struct skb_shared_hwtstamps *hwtstamps,
2709 		     struct sock *sk, int tstype);
2710 
2711 /**
2712  * skb_tstamp_tx - queue clone of skb with send time stamps
2713  * @orig_skb:	the original outgoing packet
2714  * @hwtstamps:	hardware time stamps, may be NULL if not available
2715  *
2716  * If the skb has a socket associated, then this function clones the
2717  * skb (thus sharing the actual data and optional structures), stores
2718  * the optional hardware time stamping information (if non NULL) or
2719  * generates a software time stamp (otherwise), then queues the clone
2720  * to the error queue of the socket.  Errors are silently ignored.
2721  */
2722 void skb_tstamp_tx(struct sk_buff *orig_skb,
2723 		   struct skb_shared_hwtstamps *hwtstamps);
2724 
2725 static inline void sw_tx_timestamp(struct sk_buff *skb)
2726 {
2727 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2728 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2729 		skb_tstamp_tx(skb, NULL);
2730 }
2731 
2732 /**
2733  * skb_tx_timestamp() - Driver hook for transmit timestamping
2734  *
2735  * Ethernet MAC Drivers should call this function in their hard_xmit()
2736  * function immediately before giving the sk_buff to the MAC hardware.
2737  *
2738  * Specifically, one should make absolutely sure that this function is
2739  * called before TX completion of this packet can trigger.  Otherwise
2740  * the packet could potentially already be freed.
2741  *
2742  * @skb: A socket buffer.
2743  */
2744 static inline void skb_tx_timestamp(struct sk_buff *skb)
2745 {
2746 	skb_clone_tx_timestamp(skb);
2747 	sw_tx_timestamp(skb);
2748 }
2749 
2750 /**
2751  * skb_complete_wifi_ack - deliver skb with wifi status
2752  *
2753  * @skb: the original outgoing packet
2754  * @acked: ack status
2755  *
2756  */
2757 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2758 
2759 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2760 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2761 
2762 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2763 {
2764 	return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid);
2765 }
2766 
2767 /**
2768  *	skb_checksum_complete - Calculate checksum of an entire packet
2769  *	@skb: packet to process
2770  *
2771  *	This function calculates the checksum over the entire packet plus
2772  *	the value of skb->csum.  The latter can be used to supply the
2773  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2774  *	checksum.
2775  *
2776  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2777  *	this function can be used to verify that checksum on received
2778  *	packets.  In that case the function should return zero if the
2779  *	checksum is correct.  In particular, this function will return zero
2780  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2781  *	hardware has already verified the correctness of the checksum.
2782  */
2783 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2784 {
2785 	return skb_csum_unnecessary(skb) ?
2786 	       0 : __skb_checksum_complete(skb);
2787 }
2788 
2789 /* Check if we need to perform checksum complete validation.
2790  *
2791  * Returns true if checksum complete is needed, false otherwise
2792  * (either checksum is unnecessary or zero checksum is allowed).
2793  */
2794 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
2795 						  bool zero_okay,
2796 						  __sum16 check)
2797 {
2798 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
2799 		skb->csum_valid = 1;
2800 		return false;
2801 	}
2802 
2803 	return true;
2804 }
2805 
2806 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
2807  * in checksum_init.
2808  */
2809 #define CHECKSUM_BREAK 76
2810 
2811 /* Validate (init) checksum based on checksum complete.
2812  *
2813  * Return values:
2814  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
2815  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
2816  *	checksum is stored in skb->csum for use in __skb_checksum_complete
2817  *   non-zero: value of invalid checksum
2818  *
2819  */
2820 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
2821 						       bool complete,
2822 						       __wsum psum)
2823 {
2824 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2825 		if (!csum_fold(csum_add(psum, skb->csum))) {
2826 			skb->csum_valid = 1;
2827 			return 0;
2828 		}
2829 	}
2830 
2831 	skb->csum = psum;
2832 
2833 	if (complete || skb->len <= CHECKSUM_BREAK) {
2834 		__sum16 csum;
2835 
2836 		csum = __skb_checksum_complete(skb);
2837 		skb->csum_valid = !csum;
2838 		return csum;
2839 	}
2840 
2841 	return 0;
2842 }
2843 
2844 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
2845 {
2846 	return 0;
2847 }
2848 
2849 /* Perform checksum validate (init). Note that this is a macro since we only
2850  * want to calculate the pseudo header which is an input function if necessary.
2851  * First we try to validate without any computation (checksum unnecessary) and
2852  * then calculate based on checksum complete calling the function to compute
2853  * pseudo header.
2854  *
2855  * Return values:
2856  *   0: checksum is validated or try to in skb_checksum_complete
2857  *   non-zero: value of invalid checksum
2858  */
2859 #define __skb_checksum_validate(skb, proto, complete,			\
2860 				zero_okay, check, compute_pseudo)	\
2861 ({									\
2862 	__sum16 __ret = 0;						\
2863 	skb->csum_valid = 0;						\
2864 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
2865 		__ret = __skb_checksum_validate_complete(skb,		\
2866 				complete, compute_pseudo(skb, proto));	\
2867 	__ret;								\
2868 })
2869 
2870 #define skb_checksum_init(skb, proto, compute_pseudo)			\
2871 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
2872 
2873 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
2874 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
2875 
2876 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
2877 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
2878 
2879 #define skb_checksum_validate_zero_check(skb, proto, check,		\
2880 					 compute_pseudo)		\
2881 	__skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)
2882 
2883 #define skb_checksum_simple_validate(skb)				\
2884 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
2885 
2886 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2887 void nf_conntrack_destroy(struct nf_conntrack *nfct);
2888 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2889 {
2890 	if (nfct && atomic_dec_and_test(&nfct->use))
2891 		nf_conntrack_destroy(nfct);
2892 }
2893 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2894 {
2895 	if (nfct)
2896 		atomic_inc(&nfct->use);
2897 }
2898 #endif
2899 #ifdef CONFIG_BRIDGE_NETFILTER
2900 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2901 {
2902 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2903 		kfree(nf_bridge);
2904 }
2905 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2906 {
2907 	if (nf_bridge)
2908 		atomic_inc(&nf_bridge->use);
2909 }
2910 #endif /* CONFIG_BRIDGE_NETFILTER */
2911 static inline void nf_reset(struct sk_buff *skb)
2912 {
2913 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2914 	nf_conntrack_put(skb->nfct);
2915 	skb->nfct = NULL;
2916 #endif
2917 #ifdef CONFIG_BRIDGE_NETFILTER
2918 	nf_bridge_put(skb->nf_bridge);
2919 	skb->nf_bridge = NULL;
2920 #endif
2921 }
2922 
2923 static inline void nf_reset_trace(struct sk_buff *skb)
2924 {
2925 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
2926 	skb->nf_trace = 0;
2927 #endif
2928 }
2929 
2930 /* Note: This doesn't put any conntrack and bridge info in dst. */
2931 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2932 {
2933 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2934 	dst->nfct = src->nfct;
2935 	nf_conntrack_get(src->nfct);
2936 	dst->nfctinfo = src->nfctinfo;
2937 #endif
2938 #ifdef CONFIG_BRIDGE_NETFILTER
2939 	dst->nf_bridge  = src->nf_bridge;
2940 	nf_bridge_get(src->nf_bridge);
2941 #endif
2942 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
2943 	dst->nf_trace = src->nf_trace;
2944 #endif
2945 }
2946 
2947 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2948 {
2949 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2950 	nf_conntrack_put(dst->nfct);
2951 #endif
2952 #ifdef CONFIG_BRIDGE_NETFILTER
2953 	nf_bridge_put(dst->nf_bridge);
2954 #endif
2955 	__nf_copy(dst, src);
2956 }
2957 
2958 #ifdef CONFIG_NETWORK_SECMARK
2959 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2960 {
2961 	to->secmark = from->secmark;
2962 }
2963 
2964 static inline void skb_init_secmark(struct sk_buff *skb)
2965 {
2966 	skb->secmark = 0;
2967 }
2968 #else
2969 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2970 { }
2971 
2972 static inline void skb_init_secmark(struct sk_buff *skb)
2973 { }
2974 #endif
2975 
2976 static inline bool skb_irq_freeable(const struct sk_buff *skb)
2977 {
2978 	return !skb->destructor &&
2979 #if IS_ENABLED(CONFIG_XFRM)
2980 		!skb->sp &&
2981 #endif
2982 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2983 		!skb->nfct &&
2984 #endif
2985 		!skb->_skb_refdst &&
2986 		!skb_has_frag_list(skb);
2987 }
2988 
2989 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2990 {
2991 	skb->queue_mapping = queue_mapping;
2992 }
2993 
2994 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2995 {
2996 	return skb->queue_mapping;
2997 }
2998 
2999 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3000 {
3001 	to->queue_mapping = from->queue_mapping;
3002 }
3003 
3004 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3005 {
3006 	skb->queue_mapping = rx_queue + 1;
3007 }
3008 
3009 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3010 {
3011 	return skb->queue_mapping - 1;
3012 }
3013 
3014 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3015 {
3016 	return skb->queue_mapping != 0;
3017 }
3018 
3019 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3020 		  unsigned int num_tx_queues);
3021 
3022 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3023 {
3024 #ifdef CONFIG_XFRM
3025 	return skb->sp;
3026 #else
3027 	return NULL;
3028 #endif
3029 }
3030 
3031 /* Keeps track of mac header offset relative to skb->head.
3032  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3033  * For non-tunnel skb it points to skb_mac_header() and for
3034  * tunnel skb it points to outer mac header.
3035  * Keeps track of level of encapsulation of network headers.
3036  */
3037 struct skb_gso_cb {
3038 	int	mac_offset;
3039 	int	encap_level;
3040 	__u16	csum_start;
3041 };
3042 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3043 
3044 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3045 {
3046 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3047 		SKB_GSO_CB(inner_skb)->mac_offset;
3048 }
3049 
3050 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3051 {
3052 	int new_headroom, headroom;
3053 	int ret;
3054 
3055 	headroom = skb_headroom(skb);
3056 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3057 	if (ret)
3058 		return ret;
3059 
3060 	new_headroom = skb_headroom(skb);
3061 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3062 	return 0;
3063 }
3064 
3065 /* Compute the checksum for a gso segment. First compute the checksum value
3066  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3067  * then add in skb->csum (checksum from csum_start to end of packet).
3068  * skb->csum and csum_start are then updated to reflect the checksum of the
3069  * resultant packet starting from the transport header-- the resultant checksum
3070  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3071  * header.
3072  */
3073 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3074 {
3075 	int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3076 	    skb_transport_offset(skb);
3077 	__u16 csum;
3078 
3079 	csum = csum_fold(csum_partial(skb_transport_header(skb),
3080 				      plen, skb->csum));
3081 	skb->csum = res;
3082 	SKB_GSO_CB(skb)->csum_start -= plen;
3083 
3084 	return csum;
3085 }
3086 
3087 static inline bool skb_is_gso(const struct sk_buff *skb)
3088 {
3089 	return skb_shinfo(skb)->gso_size;
3090 }
3091 
3092 /* Note: Should be called only if skb_is_gso(skb) is true */
3093 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3094 {
3095 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3096 }
3097 
3098 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3099 
3100 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3101 {
3102 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3103 	 * wanted then gso_type will be set. */
3104 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3105 
3106 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3107 	    unlikely(shinfo->gso_type == 0)) {
3108 		__skb_warn_lro_forwarding(skb);
3109 		return true;
3110 	}
3111 	return false;
3112 }
3113 
3114 static inline void skb_forward_csum(struct sk_buff *skb)
3115 {
3116 	/* Unfortunately we don't support this one.  Any brave souls? */
3117 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3118 		skb->ip_summed = CHECKSUM_NONE;
3119 }
3120 
3121 /**
3122  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3123  * @skb: skb to check
3124  *
3125  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3126  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3127  * use this helper, to document places where we make this assertion.
3128  */
3129 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3130 {
3131 #ifdef DEBUG
3132 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3133 #endif
3134 }
3135 
3136 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3137 
3138 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3139 
3140 u32 __skb_get_poff(const struct sk_buff *skb);
3141 
3142 /**
3143  * skb_head_is_locked - Determine if the skb->head is locked down
3144  * @skb: skb to check
3145  *
3146  * The head on skbs build around a head frag can be removed if they are
3147  * not cloned.  This function returns true if the skb head is locked down
3148  * due to either being allocated via kmalloc, or by being a clone with
3149  * multiple references to the head.
3150  */
3151 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3152 {
3153 	return !skb->head_frag || skb_cloned(skb);
3154 }
3155 
3156 /**
3157  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3158  *
3159  * @skb: GSO skb
3160  *
3161  * skb_gso_network_seglen is used to determine the real size of the
3162  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3163  *
3164  * The MAC/L2 header is not accounted for.
3165  */
3166 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3167 {
3168 	unsigned int hdr_len = skb_transport_header(skb) -
3169 			       skb_network_header(skb);
3170 	return hdr_len + skb_gso_transport_seglen(skb);
3171 }
3172 #endif	/* __KERNEL__ */
3173 #endif	/* _LINUX_SKBUFF_H */
3174