xref: /linux-6.15/include/linux/skbuff.h (revision 26fdb67e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #include <net/page_pool.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason-core.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	struct net_device	*physindev;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334 };
335 #endif
336 
337 struct sk_buff_head {
338 	/* These two members must be first to match sk_buff. */
339 	struct_group_tagged(sk_buff_list, list,
340 		struct sk_buff	*next;
341 		struct sk_buff	*prev;
342 	);
343 
344 	__u32		qlen;
345 	spinlock_t	lock;
346 };
347 
348 struct sk_buff;
349 
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
352 #endif
353 
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 
356 extern int sysctl_max_skb_frags;
357 
358 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
359  * segment using its current segmentation instead.
360  */
361 #define GSO_BY_FRAGS	0xFFFF
362 
363 typedef struct bio_vec skb_frag_t;
364 
365 /**
366  * skb_frag_size() - Returns the size of a skb fragment
367  * @frag: skb fragment
368  */
369 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
370 {
371 	return frag->bv_len;
372 }
373 
374 /**
375  * skb_frag_size_set() - Sets the size of a skb fragment
376  * @frag: skb fragment
377  * @size: size of fragment
378  */
379 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
380 {
381 	frag->bv_len = size;
382 }
383 
384 /**
385  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
386  * @frag: skb fragment
387  * @delta: value to add
388  */
389 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
390 {
391 	frag->bv_len += delta;
392 }
393 
394 /**
395  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
396  * @frag: skb fragment
397  * @delta: value to subtract
398  */
399 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
400 {
401 	frag->bv_len -= delta;
402 }
403 
404 /**
405  * skb_frag_must_loop - Test if %p is a high memory page
406  * @p: fragment's page
407  */
408 static inline bool skb_frag_must_loop(struct page *p)
409 {
410 #if defined(CONFIG_HIGHMEM)
411 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
412 		return true;
413 #endif
414 	return false;
415 }
416 
417 /**
418  *	skb_frag_foreach_page - loop over pages in a fragment
419  *
420  *	@f:		skb frag to operate on
421  *	@f_off:		offset from start of f->bv_page
422  *	@f_len:		length from f_off to loop over
423  *	@p:		(temp var) current page
424  *	@p_off:		(temp var) offset from start of current page,
425  *	                           non-zero only on first page.
426  *	@p_len:		(temp var) length in current page,
427  *				   < PAGE_SIZE only on first and last page.
428  *	@copied:	(temp var) length so far, excluding current p_len.
429  *
430  *	A fragment can hold a compound page, in which case per-page
431  *	operations, notably kmap_atomic, must be called for each
432  *	regular page.
433  */
434 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
435 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
436 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
437 	     p_len = skb_frag_must_loop(p) ?				\
438 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
439 	     copied = 0;						\
440 	     copied < f_len;						\
441 	     copied += p_len, p++, p_off = 0,				\
442 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
443 
444 /**
445  * struct skb_shared_hwtstamps - hardware time stamps
446  * @hwtstamp:		hardware time stamp transformed into duration
447  *			since arbitrary point in time
448  * @netdev_data:	address/cookie of network device driver used as
449  *			reference to actual hardware time stamp
450  *
451  * Software time stamps generated by ktime_get_real() are stored in
452  * skb->tstamp.
453  *
454  * hwtstamps can only be compared against other hwtstamps from
455  * the same device.
456  *
457  * This structure is attached to packets as part of the
458  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
459  */
460 struct skb_shared_hwtstamps {
461 	union {
462 		ktime_t	hwtstamp;
463 		void *netdev_data;
464 	};
465 };
466 
467 /* Definitions for tx_flags in struct skb_shared_info */
468 enum {
469 	/* generate hardware time stamp */
470 	SKBTX_HW_TSTAMP = 1 << 0,
471 
472 	/* generate software time stamp when queueing packet to NIC */
473 	SKBTX_SW_TSTAMP = 1 << 1,
474 
475 	/* device driver is going to provide hardware time stamp */
476 	SKBTX_IN_PROGRESS = 1 << 2,
477 
478 	/* generate hardware time stamp based on cycles if supported */
479 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
480 
481 	/* generate wifi status information (where possible) */
482 	SKBTX_WIFI_STATUS = 1 << 4,
483 
484 	/* determine hardware time stamp based on time or cycles */
485 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
486 
487 	/* generate software time stamp when entering packet scheduling */
488 	SKBTX_SCHED_TSTAMP = 1 << 6,
489 };
490 
491 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
492 				 SKBTX_SCHED_TSTAMP)
493 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
494 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
495 				 SKBTX_ANY_SW_TSTAMP)
496 
497 /* Definitions for flags in struct skb_shared_info */
498 enum {
499 	/* use zcopy routines */
500 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
501 
502 	/* This indicates at least one fragment might be overwritten
503 	 * (as in vmsplice(), sendfile() ...)
504 	 * If we need to compute a TX checksum, we'll need to copy
505 	 * all frags to avoid possible bad checksum
506 	 */
507 	SKBFL_SHARED_FRAG = BIT(1),
508 
509 	/* segment contains only zerocopy data and should not be
510 	 * charged to the kernel memory.
511 	 */
512 	SKBFL_PURE_ZEROCOPY = BIT(2),
513 
514 	SKBFL_DONT_ORPHAN = BIT(3),
515 
516 	/* page references are managed by the ubuf_info, so it's safe to
517 	 * use frags only up until ubuf_info is released
518 	 */
519 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
520 };
521 
522 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
523 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
524 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
525 
526 /*
527  * The callback notifies userspace to release buffers when skb DMA is done in
528  * lower device, the skb last reference should be 0 when calling this.
529  * The zerocopy_success argument is true if zero copy transmit occurred,
530  * false on data copy or out of memory error caused by data copy attempt.
531  * The ctx field is used to track device context.
532  * The desc field is used to track userspace buffer index.
533  */
534 struct ubuf_info {
535 	void (*callback)(struct sk_buff *, struct ubuf_info *,
536 			 bool zerocopy_success);
537 	refcount_t refcnt;
538 	u8 flags;
539 };
540 
541 struct ubuf_info_msgzc {
542 	struct ubuf_info ubuf;
543 
544 	union {
545 		struct {
546 			unsigned long desc;
547 			void *ctx;
548 		};
549 		struct {
550 			u32 id;
551 			u16 len;
552 			u16 zerocopy:1;
553 			u32 bytelen;
554 		};
555 	};
556 
557 	struct mmpin {
558 		struct user_struct *user;
559 		unsigned int num_pg;
560 	} mmp;
561 };
562 
563 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
564 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
565 					     ubuf)
566 
567 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
568 void mm_unaccount_pinned_pages(struct mmpin *mmp);
569 
570 /* This data is invariant across clones and lives at
571  * the end of the header data, ie. at skb->end.
572  */
573 struct skb_shared_info {
574 	__u8		flags;
575 	__u8		meta_len;
576 	__u8		nr_frags;
577 	__u8		tx_flags;
578 	unsigned short	gso_size;
579 	/* Warning: this field is not always filled in (UFO)! */
580 	unsigned short	gso_segs;
581 	struct sk_buff	*frag_list;
582 	struct skb_shared_hwtstamps hwtstamps;
583 	unsigned int	gso_type;
584 	u32		tskey;
585 
586 	/*
587 	 * Warning : all fields before dataref are cleared in __alloc_skb()
588 	 */
589 	atomic_t	dataref;
590 	unsigned int	xdp_frags_size;
591 
592 	/* Intermediate layers must ensure that destructor_arg
593 	 * remains valid until skb destructor */
594 	void *		destructor_arg;
595 
596 	/* must be last field, see pskb_expand_head() */
597 	skb_frag_t	frags[MAX_SKB_FRAGS];
598 };
599 
600 /**
601  * DOC: dataref and headerless skbs
602  *
603  * Transport layers send out clones of payload skbs they hold for
604  * retransmissions. To allow lower layers of the stack to prepend their headers
605  * we split &skb_shared_info.dataref into two halves.
606  * The lower 16 bits count the overall number of references.
607  * The higher 16 bits indicate how many of the references are payload-only.
608  * skb_header_cloned() checks if skb is allowed to add / write the headers.
609  *
610  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
611  * (via __skb_header_release()). Any clone created from marked skb will get
612  * &sk_buff.hdr_len populated with the available headroom.
613  * If there's the only clone in existence it's able to modify the headroom
614  * at will. The sequence of calls inside the transport layer is::
615  *
616  *  <alloc skb>
617  *  skb_reserve()
618  *  __skb_header_release()
619  *  skb_clone()
620  *  // send the clone down the stack
621  *
622  * This is not a very generic construct and it depends on the transport layers
623  * doing the right thing. In practice there's usually only one payload-only skb.
624  * Having multiple payload-only skbs with different lengths of hdr_len is not
625  * possible. The payload-only skbs should never leave their owner.
626  */
627 #define SKB_DATAREF_SHIFT 16
628 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
629 
630 
631 enum {
632 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
633 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
634 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
635 };
636 
637 enum {
638 	SKB_GSO_TCPV4 = 1 << 0,
639 
640 	/* This indicates the skb is from an untrusted source. */
641 	SKB_GSO_DODGY = 1 << 1,
642 
643 	/* This indicates the tcp segment has CWR set. */
644 	SKB_GSO_TCP_ECN = 1 << 2,
645 
646 	SKB_GSO_TCP_FIXEDID = 1 << 3,
647 
648 	SKB_GSO_TCPV6 = 1 << 4,
649 
650 	SKB_GSO_FCOE = 1 << 5,
651 
652 	SKB_GSO_GRE = 1 << 6,
653 
654 	SKB_GSO_GRE_CSUM = 1 << 7,
655 
656 	SKB_GSO_IPXIP4 = 1 << 8,
657 
658 	SKB_GSO_IPXIP6 = 1 << 9,
659 
660 	SKB_GSO_UDP_TUNNEL = 1 << 10,
661 
662 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
663 
664 	SKB_GSO_PARTIAL = 1 << 12,
665 
666 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
667 
668 	SKB_GSO_SCTP = 1 << 14,
669 
670 	SKB_GSO_ESP = 1 << 15,
671 
672 	SKB_GSO_UDP = 1 << 16,
673 
674 	SKB_GSO_UDP_L4 = 1 << 17,
675 
676 	SKB_GSO_FRAGLIST = 1 << 18,
677 };
678 
679 #if BITS_PER_LONG > 32
680 #define NET_SKBUFF_DATA_USES_OFFSET 1
681 #endif
682 
683 #ifdef NET_SKBUFF_DATA_USES_OFFSET
684 typedef unsigned int sk_buff_data_t;
685 #else
686 typedef unsigned char *sk_buff_data_t;
687 #endif
688 
689 /**
690  * DOC: Basic sk_buff geometry
691  *
692  * struct sk_buff itself is a metadata structure and does not hold any packet
693  * data. All the data is held in associated buffers.
694  *
695  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
696  * into two parts:
697  *
698  *  - data buffer, containing headers and sometimes payload;
699  *    this is the part of the skb operated on by the common helpers
700  *    such as skb_put() or skb_pull();
701  *  - shared info (struct skb_shared_info) which holds an array of pointers
702  *    to read-only data in the (page, offset, length) format.
703  *
704  * Optionally &skb_shared_info.frag_list may point to another skb.
705  *
706  * Basic diagram may look like this::
707  *
708  *                                  ---------------
709  *                                 | sk_buff       |
710  *                                  ---------------
711  *     ,---------------------------  + head
712  *    /          ,-----------------  + data
713  *   /          /      ,-----------  + tail
714  *  |          |      |            , + end
715  *  |          |      |           |
716  *  v          v      v           v
717  *   -----------------------------------------------
718  *  | headroom | data |  tailroom | skb_shared_info |
719  *   -----------------------------------------------
720  *                                 + [page frag]
721  *                                 + [page frag]
722  *                                 + [page frag]
723  *                                 + [page frag]       ---------
724  *                                 + frag_list    --> | sk_buff |
725  *                                                     ---------
726  *
727  */
728 
729 /**
730  *	struct sk_buff - socket buffer
731  *	@next: Next buffer in list
732  *	@prev: Previous buffer in list
733  *	@tstamp: Time we arrived/left
734  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
735  *		for retransmit timer
736  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
737  *	@list: queue head
738  *	@ll_node: anchor in an llist (eg socket defer_list)
739  *	@sk: Socket we are owned by
740  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
741  *		fragmentation management
742  *	@dev: Device we arrived on/are leaving by
743  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
744  *	@cb: Control buffer. Free for use by every layer. Put private vars here
745  *	@_skb_refdst: destination entry (with norefcount bit)
746  *	@sp: the security path, used for xfrm
747  *	@len: Length of actual data
748  *	@data_len: Data length
749  *	@mac_len: Length of link layer header
750  *	@hdr_len: writable header length of cloned skb
751  *	@csum: Checksum (must include start/offset pair)
752  *	@csum_start: Offset from skb->head where checksumming should start
753  *	@csum_offset: Offset from csum_start where checksum should be stored
754  *	@priority: Packet queueing priority
755  *	@ignore_df: allow local fragmentation
756  *	@cloned: Head may be cloned (check refcnt to be sure)
757  *	@ip_summed: Driver fed us an IP checksum
758  *	@nohdr: Payload reference only, must not modify header
759  *	@pkt_type: Packet class
760  *	@fclone: skbuff clone status
761  *	@ipvs_property: skbuff is owned by ipvs
762  *	@inner_protocol_type: whether the inner protocol is
763  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
764  *	@remcsum_offload: remote checksum offload is enabled
765  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
766  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
767  *	@tc_skip_classify: do not classify packet. set by IFB device
768  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
769  *	@redirected: packet was redirected by packet classifier
770  *	@from_ingress: packet was redirected from the ingress path
771  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
772  *	@peeked: this packet has been seen already, so stats have been
773  *		done for it, don't do them again
774  *	@nf_trace: netfilter packet trace flag
775  *	@protocol: Packet protocol from driver
776  *	@destructor: Destruct function
777  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
778  *	@_sk_redir: socket redirection information for skmsg
779  *	@_nfct: Associated connection, if any (with nfctinfo bits)
780  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
781  *	@skb_iif: ifindex of device we arrived on
782  *	@tc_index: Traffic control index
783  *	@hash: the packet hash
784  *	@queue_mapping: Queue mapping for multiqueue devices
785  *	@head_frag: skb was allocated from page fragments,
786  *		not allocated by kmalloc() or vmalloc().
787  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
788  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
789  *		page_pool support on driver)
790  *	@active_extensions: active extensions (skb_ext_id types)
791  *	@ndisc_nodetype: router type (from link layer)
792  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
793  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
794  *		ports.
795  *	@sw_hash: indicates hash was computed in software stack
796  *	@wifi_acked_valid: wifi_acked was set
797  *	@wifi_acked: whether frame was acked on wifi or not
798  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
799  *	@encapsulation: indicates the inner headers in the skbuff are valid
800  *	@encap_hdr_csum: software checksum is needed
801  *	@csum_valid: checksum is already valid
802  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
803  *	@csum_complete_sw: checksum was completed by software
804  *	@csum_level: indicates the number of consecutive checksums found in
805  *		the packet minus one that have been verified as
806  *		CHECKSUM_UNNECESSARY (max 3)
807  *	@dst_pending_confirm: need to confirm neighbour
808  *	@decrypted: Decrypted SKB
809  *	@slow_gro: state present at GRO time, slower prepare step required
810  *	@mono_delivery_time: When set, skb->tstamp has the
811  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
812  *		skb->tstamp has the (rcv) timestamp at ingress and
813  *		delivery_time at egress.
814  *	@napi_id: id of the NAPI struct this skb came from
815  *	@sender_cpu: (aka @napi_id) source CPU in XPS
816  *	@alloc_cpu: CPU which did the skb allocation.
817  *	@secmark: security marking
818  *	@mark: Generic packet mark
819  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
820  *		at the tail of an sk_buff
821  *	@vlan_all: vlan fields (proto & tci)
822  *	@vlan_proto: vlan encapsulation protocol
823  *	@vlan_tci: vlan tag control information
824  *	@inner_protocol: Protocol (encapsulation)
825  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
826  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
827  *	@inner_transport_header: Inner transport layer header (encapsulation)
828  *	@inner_network_header: Network layer header (encapsulation)
829  *	@inner_mac_header: Link layer header (encapsulation)
830  *	@transport_header: Transport layer header
831  *	@network_header: Network layer header
832  *	@mac_header: Link layer header
833  *	@kcov_handle: KCOV remote handle for remote coverage collection
834  *	@tail: Tail pointer
835  *	@end: End pointer
836  *	@head: Head of buffer
837  *	@data: Data head pointer
838  *	@truesize: Buffer size
839  *	@users: User count - see {datagram,tcp}.c
840  *	@extensions: allocated extensions, valid if active_extensions is nonzero
841  */
842 
843 struct sk_buff {
844 	union {
845 		struct {
846 			/* These two members must be first to match sk_buff_head. */
847 			struct sk_buff		*next;
848 			struct sk_buff		*prev;
849 
850 			union {
851 				struct net_device	*dev;
852 				/* Some protocols might use this space to store information,
853 				 * while device pointer would be NULL.
854 				 * UDP receive path is one user.
855 				 */
856 				unsigned long		dev_scratch;
857 			};
858 		};
859 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
860 		struct list_head	list;
861 		struct llist_node	ll_node;
862 	};
863 
864 	union {
865 		struct sock		*sk;
866 		int			ip_defrag_offset;
867 	};
868 
869 	union {
870 		ktime_t		tstamp;
871 		u64		skb_mstamp_ns; /* earliest departure time */
872 	};
873 	/*
874 	 * This is the control buffer. It is free to use for every
875 	 * layer. Please put your private variables there. If you
876 	 * want to keep them across layers you have to do a skb_clone()
877 	 * first. This is owned by whoever has the skb queued ATM.
878 	 */
879 	char			cb[48] __aligned(8);
880 
881 	union {
882 		struct {
883 			unsigned long	_skb_refdst;
884 			void		(*destructor)(struct sk_buff *skb);
885 		};
886 		struct list_head	tcp_tsorted_anchor;
887 #ifdef CONFIG_NET_SOCK_MSG
888 		unsigned long		_sk_redir;
889 #endif
890 	};
891 
892 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
893 	unsigned long		 _nfct;
894 #endif
895 	unsigned int		len,
896 				data_len;
897 	__u16			mac_len,
898 				hdr_len;
899 
900 	/* Following fields are _not_ copied in __copy_skb_header()
901 	 * Note that queue_mapping is here mostly to fill a hole.
902 	 */
903 	__u16			queue_mapping;
904 
905 /* if you move cloned around you also must adapt those constants */
906 #ifdef __BIG_ENDIAN_BITFIELD
907 #define CLONED_MASK	(1 << 7)
908 #else
909 #define CLONED_MASK	1
910 #endif
911 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
912 
913 	/* private: */
914 	__u8			__cloned_offset[0];
915 	/* public: */
916 	__u8			cloned:1,
917 				nohdr:1,
918 				fclone:2,
919 				peeked:1,
920 				head_frag:1,
921 				pfmemalloc:1,
922 				pp_recycle:1; /* page_pool recycle indicator */
923 #ifdef CONFIG_SKB_EXTENSIONS
924 	__u8			active_extensions;
925 #endif
926 
927 	/* Fields enclosed in headers group are copied
928 	 * using a single memcpy() in __copy_skb_header()
929 	 */
930 	struct_group(headers,
931 
932 	/* private: */
933 	__u8			__pkt_type_offset[0];
934 	/* public: */
935 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
936 	__u8			ignore_df:1;
937 	__u8			dst_pending_confirm:1;
938 	__u8			ip_summed:2;
939 	__u8			ooo_okay:1;
940 
941 	/* private: */
942 	__u8			__mono_tc_offset[0];
943 	/* public: */
944 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
945 #ifdef CONFIG_NET_XGRESS
946 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
947 	__u8			tc_skip_classify:1;
948 #endif
949 	__u8			remcsum_offload:1;
950 	__u8			csum_complete_sw:1;
951 	__u8			csum_level:2;
952 	__u8			inner_protocol_type:1;
953 
954 	__u8			l4_hash:1;
955 	__u8			sw_hash:1;
956 #ifdef CONFIG_WIRELESS
957 	__u8			wifi_acked_valid:1;
958 	__u8			wifi_acked:1;
959 #endif
960 	__u8			no_fcs:1;
961 	/* Indicates the inner headers are valid in the skbuff. */
962 	__u8			encapsulation:1;
963 	__u8			encap_hdr_csum:1;
964 	__u8			csum_valid:1;
965 #ifdef CONFIG_IPV6_NDISC_NODETYPE
966 	__u8			ndisc_nodetype:2;
967 #endif
968 
969 #if IS_ENABLED(CONFIG_IP_VS)
970 	__u8			ipvs_property:1;
971 #endif
972 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
973 	__u8			nf_trace:1;
974 #endif
975 #ifdef CONFIG_NET_SWITCHDEV
976 	__u8			offload_fwd_mark:1;
977 	__u8			offload_l3_fwd_mark:1;
978 #endif
979 	__u8			redirected:1;
980 #ifdef CONFIG_NET_REDIRECT
981 	__u8			from_ingress:1;
982 #endif
983 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
984 	__u8			nf_skip_egress:1;
985 #endif
986 #ifdef CONFIG_TLS_DEVICE
987 	__u8			decrypted:1;
988 #endif
989 	__u8			slow_gro:1;
990 #if IS_ENABLED(CONFIG_IP_SCTP)
991 	__u8			csum_not_inet:1;
992 #endif
993 
994 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
995 	__u16			tc_index;	/* traffic control index */
996 #endif
997 
998 	u16			alloc_cpu;
999 
1000 	union {
1001 		__wsum		csum;
1002 		struct {
1003 			__u16	csum_start;
1004 			__u16	csum_offset;
1005 		};
1006 	};
1007 	__u32			priority;
1008 	int			skb_iif;
1009 	__u32			hash;
1010 	union {
1011 		u32		vlan_all;
1012 		struct {
1013 			__be16	vlan_proto;
1014 			__u16	vlan_tci;
1015 		};
1016 	};
1017 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1018 	union {
1019 		unsigned int	napi_id;
1020 		unsigned int	sender_cpu;
1021 	};
1022 #endif
1023 #ifdef CONFIG_NETWORK_SECMARK
1024 	__u32		secmark;
1025 #endif
1026 
1027 	union {
1028 		__u32		mark;
1029 		__u32		reserved_tailroom;
1030 	};
1031 
1032 	union {
1033 		__be16		inner_protocol;
1034 		__u8		inner_ipproto;
1035 	};
1036 
1037 	__u16			inner_transport_header;
1038 	__u16			inner_network_header;
1039 	__u16			inner_mac_header;
1040 
1041 	__be16			protocol;
1042 	__u16			transport_header;
1043 	__u16			network_header;
1044 	__u16			mac_header;
1045 
1046 #ifdef CONFIG_KCOV
1047 	u64			kcov_handle;
1048 #endif
1049 
1050 	); /* end headers group */
1051 
1052 	/* These elements must be at the end, see alloc_skb() for details.  */
1053 	sk_buff_data_t		tail;
1054 	sk_buff_data_t		end;
1055 	unsigned char		*head,
1056 				*data;
1057 	unsigned int		truesize;
1058 	refcount_t		users;
1059 
1060 #ifdef CONFIG_SKB_EXTENSIONS
1061 	/* only useable after checking ->active_extensions != 0 */
1062 	struct skb_ext		*extensions;
1063 #endif
1064 };
1065 
1066 /* if you move pkt_type around you also must adapt those constants */
1067 #ifdef __BIG_ENDIAN_BITFIELD
1068 #define PKT_TYPE_MAX	(7 << 5)
1069 #else
1070 #define PKT_TYPE_MAX	7
1071 #endif
1072 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1073 
1074 /* if you move tc_at_ingress or mono_delivery_time
1075  * around, you also must adapt these constants.
1076  */
1077 #ifdef __BIG_ENDIAN_BITFIELD
1078 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 7)
1079 #define TC_AT_INGRESS_MASK		(1 << 6)
1080 #else
1081 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 0)
1082 #define TC_AT_INGRESS_MASK		(1 << 1)
1083 #endif
1084 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1085 
1086 #ifdef __KERNEL__
1087 /*
1088  *	Handling routines are only of interest to the kernel
1089  */
1090 
1091 #define SKB_ALLOC_FCLONE	0x01
1092 #define SKB_ALLOC_RX		0x02
1093 #define SKB_ALLOC_NAPI		0x04
1094 
1095 /**
1096  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1097  * @skb: buffer
1098  */
1099 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1100 {
1101 	return unlikely(skb->pfmemalloc);
1102 }
1103 
1104 /*
1105  * skb might have a dst pointer attached, refcounted or not.
1106  * _skb_refdst low order bit is set if refcount was _not_ taken
1107  */
1108 #define SKB_DST_NOREF	1UL
1109 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1110 
1111 /**
1112  * skb_dst - returns skb dst_entry
1113  * @skb: buffer
1114  *
1115  * Returns skb dst_entry, regardless of reference taken or not.
1116  */
1117 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1118 {
1119 	/* If refdst was not refcounted, check we still are in a
1120 	 * rcu_read_lock section
1121 	 */
1122 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1123 		!rcu_read_lock_held() &&
1124 		!rcu_read_lock_bh_held());
1125 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1126 }
1127 
1128 /**
1129  * skb_dst_set - sets skb dst
1130  * @skb: buffer
1131  * @dst: dst entry
1132  *
1133  * Sets skb dst, assuming a reference was taken on dst and should
1134  * be released by skb_dst_drop()
1135  */
1136 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1137 {
1138 	skb->slow_gro |= !!dst;
1139 	skb->_skb_refdst = (unsigned long)dst;
1140 }
1141 
1142 /**
1143  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1144  * @skb: buffer
1145  * @dst: dst entry
1146  *
1147  * Sets skb dst, assuming a reference was not taken on dst.
1148  * If dst entry is cached, we do not take reference and dst_release
1149  * will be avoided by refdst_drop. If dst entry is not cached, we take
1150  * reference, so that last dst_release can destroy the dst immediately.
1151  */
1152 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1153 {
1154 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1155 	skb->slow_gro |= !!dst;
1156 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1157 }
1158 
1159 /**
1160  * skb_dst_is_noref - Test if skb dst isn't refcounted
1161  * @skb: buffer
1162  */
1163 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1164 {
1165 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1166 }
1167 
1168 /**
1169  * skb_rtable - Returns the skb &rtable
1170  * @skb: buffer
1171  */
1172 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1173 {
1174 	return (struct rtable *)skb_dst(skb);
1175 }
1176 
1177 /* For mangling skb->pkt_type from user space side from applications
1178  * such as nft, tc, etc, we only allow a conservative subset of
1179  * possible pkt_types to be set.
1180 */
1181 static inline bool skb_pkt_type_ok(u32 ptype)
1182 {
1183 	return ptype <= PACKET_OTHERHOST;
1184 }
1185 
1186 /**
1187  * skb_napi_id - Returns the skb's NAPI id
1188  * @skb: buffer
1189  */
1190 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1191 {
1192 #ifdef CONFIG_NET_RX_BUSY_POLL
1193 	return skb->napi_id;
1194 #else
1195 	return 0;
1196 #endif
1197 }
1198 
1199 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1200 {
1201 #ifdef CONFIG_WIRELESS
1202 	return skb->wifi_acked_valid;
1203 #else
1204 	return 0;
1205 #endif
1206 }
1207 
1208 /**
1209  * skb_unref - decrement the skb's reference count
1210  * @skb: buffer
1211  *
1212  * Returns true if we can free the skb.
1213  */
1214 static inline bool skb_unref(struct sk_buff *skb)
1215 {
1216 	if (unlikely(!skb))
1217 		return false;
1218 	if (likely(refcount_read(&skb->users) == 1))
1219 		smp_rmb();
1220 	else if (likely(!refcount_dec_and_test(&skb->users)))
1221 		return false;
1222 
1223 	return true;
1224 }
1225 
1226 void __fix_address
1227 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1228 
1229 /**
1230  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1231  *	@skb: buffer to free
1232  */
1233 static inline void kfree_skb(struct sk_buff *skb)
1234 {
1235 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1236 }
1237 
1238 void skb_release_head_state(struct sk_buff *skb);
1239 void kfree_skb_list_reason(struct sk_buff *segs,
1240 			   enum skb_drop_reason reason);
1241 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1242 void skb_tx_error(struct sk_buff *skb);
1243 
1244 static inline void kfree_skb_list(struct sk_buff *segs)
1245 {
1246 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1247 }
1248 
1249 #ifdef CONFIG_TRACEPOINTS
1250 void consume_skb(struct sk_buff *skb);
1251 #else
1252 static inline void consume_skb(struct sk_buff *skb)
1253 {
1254 	return kfree_skb(skb);
1255 }
1256 #endif
1257 
1258 void __consume_stateless_skb(struct sk_buff *skb);
1259 void  __kfree_skb(struct sk_buff *skb);
1260 extern struct kmem_cache *skbuff_cache;
1261 
1262 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1263 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1264 		      bool *fragstolen, int *delta_truesize);
1265 
1266 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1267 			    int node);
1268 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1269 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1270 struct sk_buff *build_skb_around(struct sk_buff *skb,
1271 				 void *data, unsigned int frag_size);
1272 void skb_attempt_defer_free(struct sk_buff *skb);
1273 
1274 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1275 struct sk_buff *slab_build_skb(void *data);
1276 
1277 /**
1278  * alloc_skb - allocate a network buffer
1279  * @size: size to allocate
1280  * @priority: allocation mask
1281  *
1282  * This function is a convenient wrapper around __alloc_skb().
1283  */
1284 static inline struct sk_buff *alloc_skb(unsigned int size,
1285 					gfp_t priority)
1286 {
1287 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1288 }
1289 
1290 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1291 				     unsigned long data_len,
1292 				     int max_page_order,
1293 				     int *errcode,
1294 				     gfp_t gfp_mask);
1295 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1296 
1297 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1298 struct sk_buff_fclones {
1299 	struct sk_buff	skb1;
1300 
1301 	struct sk_buff	skb2;
1302 
1303 	refcount_t	fclone_ref;
1304 };
1305 
1306 /**
1307  *	skb_fclone_busy - check if fclone is busy
1308  *	@sk: socket
1309  *	@skb: buffer
1310  *
1311  * Returns true if skb is a fast clone, and its clone is not freed.
1312  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1313  * so we also check that this didnt happen.
1314  */
1315 static inline bool skb_fclone_busy(const struct sock *sk,
1316 				   const struct sk_buff *skb)
1317 {
1318 	const struct sk_buff_fclones *fclones;
1319 
1320 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1321 
1322 	return skb->fclone == SKB_FCLONE_ORIG &&
1323 	       refcount_read(&fclones->fclone_ref) > 1 &&
1324 	       READ_ONCE(fclones->skb2.sk) == sk;
1325 }
1326 
1327 /**
1328  * alloc_skb_fclone - allocate a network buffer from fclone cache
1329  * @size: size to allocate
1330  * @priority: allocation mask
1331  *
1332  * This function is a convenient wrapper around __alloc_skb().
1333  */
1334 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1335 					       gfp_t priority)
1336 {
1337 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1338 }
1339 
1340 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1341 void skb_headers_offset_update(struct sk_buff *skb, int off);
1342 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1343 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1344 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1345 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1346 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1347 				   gfp_t gfp_mask, bool fclone);
1348 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1349 					  gfp_t gfp_mask)
1350 {
1351 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1352 }
1353 
1354 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1355 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1356 				     unsigned int headroom);
1357 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1358 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1359 				int newtailroom, gfp_t priority);
1360 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1361 				     int offset, int len);
1362 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1363 			      int offset, int len);
1364 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1365 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1366 
1367 /**
1368  *	skb_pad			-	zero pad the tail of an skb
1369  *	@skb: buffer to pad
1370  *	@pad: space to pad
1371  *
1372  *	Ensure that a buffer is followed by a padding area that is zero
1373  *	filled. Used by network drivers which may DMA or transfer data
1374  *	beyond the buffer end onto the wire.
1375  *
1376  *	May return error in out of memory cases. The skb is freed on error.
1377  */
1378 static inline int skb_pad(struct sk_buff *skb, int pad)
1379 {
1380 	return __skb_pad(skb, pad, true);
1381 }
1382 #define dev_kfree_skb(a)	consume_skb(a)
1383 
1384 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1385 			 int offset, size_t size, size_t max_frags);
1386 
1387 struct skb_seq_state {
1388 	__u32		lower_offset;
1389 	__u32		upper_offset;
1390 	__u32		frag_idx;
1391 	__u32		stepped_offset;
1392 	struct sk_buff	*root_skb;
1393 	struct sk_buff	*cur_skb;
1394 	__u8		*frag_data;
1395 	__u32		frag_off;
1396 };
1397 
1398 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1399 			  unsigned int to, struct skb_seq_state *st);
1400 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1401 			  struct skb_seq_state *st);
1402 void skb_abort_seq_read(struct skb_seq_state *st);
1403 
1404 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1405 			   unsigned int to, struct ts_config *config);
1406 
1407 /*
1408  * Packet hash types specify the type of hash in skb_set_hash.
1409  *
1410  * Hash types refer to the protocol layer addresses which are used to
1411  * construct a packet's hash. The hashes are used to differentiate or identify
1412  * flows of the protocol layer for the hash type. Hash types are either
1413  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1414  *
1415  * Properties of hashes:
1416  *
1417  * 1) Two packets in different flows have different hash values
1418  * 2) Two packets in the same flow should have the same hash value
1419  *
1420  * A hash at a higher layer is considered to be more specific. A driver should
1421  * set the most specific hash possible.
1422  *
1423  * A driver cannot indicate a more specific hash than the layer at which a hash
1424  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1425  *
1426  * A driver may indicate a hash level which is less specific than the
1427  * actual layer the hash was computed on. For instance, a hash computed
1428  * at L4 may be considered an L3 hash. This should only be done if the
1429  * driver can't unambiguously determine that the HW computed the hash at
1430  * the higher layer. Note that the "should" in the second property above
1431  * permits this.
1432  */
1433 enum pkt_hash_types {
1434 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1435 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1436 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1437 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1438 };
1439 
1440 static inline void skb_clear_hash(struct sk_buff *skb)
1441 {
1442 	skb->hash = 0;
1443 	skb->sw_hash = 0;
1444 	skb->l4_hash = 0;
1445 }
1446 
1447 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1448 {
1449 	if (!skb->l4_hash)
1450 		skb_clear_hash(skb);
1451 }
1452 
1453 static inline void
1454 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1455 {
1456 	skb->l4_hash = is_l4;
1457 	skb->sw_hash = is_sw;
1458 	skb->hash = hash;
1459 }
1460 
1461 static inline void
1462 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1463 {
1464 	/* Used by drivers to set hash from HW */
1465 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1466 }
1467 
1468 static inline void
1469 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1470 {
1471 	__skb_set_hash(skb, hash, true, is_l4);
1472 }
1473 
1474 void __skb_get_hash(struct sk_buff *skb);
1475 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1476 u32 skb_get_poff(const struct sk_buff *skb);
1477 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1478 		   const struct flow_keys_basic *keys, int hlen);
1479 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1480 			    const void *data, int hlen_proto);
1481 
1482 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1483 					int thoff, u8 ip_proto)
1484 {
1485 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1486 }
1487 
1488 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1489 			     const struct flow_dissector_key *key,
1490 			     unsigned int key_count);
1491 
1492 struct bpf_flow_dissector;
1493 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1494 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1495 
1496 bool __skb_flow_dissect(const struct net *net,
1497 			const struct sk_buff *skb,
1498 			struct flow_dissector *flow_dissector,
1499 			void *target_container, const void *data,
1500 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1501 
1502 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1503 				    struct flow_dissector *flow_dissector,
1504 				    void *target_container, unsigned int flags)
1505 {
1506 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1507 				  target_container, NULL, 0, 0, 0, flags);
1508 }
1509 
1510 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1511 					      struct flow_keys *flow,
1512 					      unsigned int flags)
1513 {
1514 	memset(flow, 0, sizeof(*flow));
1515 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1516 				  flow, NULL, 0, 0, 0, flags);
1517 }
1518 
1519 static inline bool
1520 skb_flow_dissect_flow_keys_basic(const struct net *net,
1521 				 const struct sk_buff *skb,
1522 				 struct flow_keys_basic *flow,
1523 				 const void *data, __be16 proto,
1524 				 int nhoff, int hlen, unsigned int flags)
1525 {
1526 	memset(flow, 0, sizeof(*flow));
1527 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1528 				  data, proto, nhoff, hlen, flags);
1529 }
1530 
1531 void skb_flow_dissect_meta(const struct sk_buff *skb,
1532 			   struct flow_dissector *flow_dissector,
1533 			   void *target_container);
1534 
1535 /* Gets a skb connection tracking info, ctinfo map should be a
1536  * map of mapsize to translate enum ip_conntrack_info states
1537  * to user states.
1538  */
1539 void
1540 skb_flow_dissect_ct(const struct sk_buff *skb,
1541 		    struct flow_dissector *flow_dissector,
1542 		    void *target_container,
1543 		    u16 *ctinfo_map, size_t mapsize,
1544 		    bool post_ct, u16 zone);
1545 void
1546 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1547 			     struct flow_dissector *flow_dissector,
1548 			     void *target_container);
1549 
1550 void skb_flow_dissect_hash(const struct sk_buff *skb,
1551 			   struct flow_dissector *flow_dissector,
1552 			   void *target_container);
1553 
1554 static inline __u32 skb_get_hash(struct sk_buff *skb)
1555 {
1556 	if (!skb->l4_hash && !skb->sw_hash)
1557 		__skb_get_hash(skb);
1558 
1559 	return skb->hash;
1560 }
1561 
1562 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1563 {
1564 	if (!skb->l4_hash && !skb->sw_hash) {
1565 		struct flow_keys keys;
1566 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1567 
1568 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1569 	}
1570 
1571 	return skb->hash;
1572 }
1573 
1574 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1575 			   const siphash_key_t *perturb);
1576 
1577 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1578 {
1579 	return skb->hash;
1580 }
1581 
1582 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1583 {
1584 	to->hash = from->hash;
1585 	to->sw_hash = from->sw_hash;
1586 	to->l4_hash = from->l4_hash;
1587 };
1588 
1589 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1590 				    const struct sk_buff *skb2)
1591 {
1592 #ifdef CONFIG_TLS_DEVICE
1593 	return skb2->decrypted - skb1->decrypted;
1594 #else
1595 	return 0;
1596 #endif
1597 }
1598 
1599 static inline void skb_copy_decrypted(struct sk_buff *to,
1600 				      const struct sk_buff *from)
1601 {
1602 #ifdef CONFIG_TLS_DEVICE
1603 	to->decrypted = from->decrypted;
1604 #endif
1605 }
1606 
1607 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1608 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1609 {
1610 	return skb->head + skb->end;
1611 }
1612 
1613 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1614 {
1615 	return skb->end;
1616 }
1617 
1618 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1619 {
1620 	skb->end = offset;
1621 }
1622 #else
1623 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1624 {
1625 	return skb->end;
1626 }
1627 
1628 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1629 {
1630 	return skb->end - skb->head;
1631 }
1632 
1633 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1634 {
1635 	skb->end = skb->head + offset;
1636 }
1637 #endif
1638 
1639 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1640 				       struct ubuf_info *uarg);
1641 
1642 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1643 
1644 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1645 			   bool success);
1646 
1647 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1648 			    struct sk_buff *skb, struct iov_iter *from,
1649 			    size_t length);
1650 
1651 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1652 					  struct msghdr *msg, int len)
1653 {
1654 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1655 }
1656 
1657 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1658 			     struct msghdr *msg, int len,
1659 			     struct ubuf_info *uarg);
1660 
1661 /* Internal */
1662 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1663 
1664 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1665 {
1666 	return &skb_shinfo(skb)->hwtstamps;
1667 }
1668 
1669 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1670 {
1671 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1672 
1673 	return is_zcopy ? skb_uarg(skb) : NULL;
1674 }
1675 
1676 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1677 {
1678 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1679 }
1680 
1681 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1682 {
1683 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1684 }
1685 
1686 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1687 				       const struct sk_buff *skb2)
1688 {
1689 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1690 }
1691 
1692 static inline void net_zcopy_get(struct ubuf_info *uarg)
1693 {
1694 	refcount_inc(&uarg->refcnt);
1695 }
1696 
1697 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1698 {
1699 	skb_shinfo(skb)->destructor_arg = uarg;
1700 	skb_shinfo(skb)->flags |= uarg->flags;
1701 }
1702 
1703 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1704 				 bool *have_ref)
1705 {
1706 	if (skb && uarg && !skb_zcopy(skb)) {
1707 		if (unlikely(have_ref && *have_ref))
1708 			*have_ref = false;
1709 		else
1710 			net_zcopy_get(uarg);
1711 		skb_zcopy_init(skb, uarg);
1712 	}
1713 }
1714 
1715 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1716 {
1717 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1718 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1719 }
1720 
1721 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1722 {
1723 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1724 }
1725 
1726 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1727 {
1728 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1729 }
1730 
1731 static inline void net_zcopy_put(struct ubuf_info *uarg)
1732 {
1733 	if (uarg)
1734 		uarg->callback(NULL, uarg, true);
1735 }
1736 
1737 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1738 {
1739 	if (uarg) {
1740 		if (uarg->callback == msg_zerocopy_callback)
1741 			msg_zerocopy_put_abort(uarg, have_uref);
1742 		else if (have_uref)
1743 			net_zcopy_put(uarg);
1744 	}
1745 }
1746 
1747 /* Release a reference on a zerocopy structure */
1748 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1749 {
1750 	struct ubuf_info *uarg = skb_zcopy(skb);
1751 
1752 	if (uarg) {
1753 		if (!skb_zcopy_is_nouarg(skb))
1754 			uarg->callback(skb, uarg, zerocopy_success);
1755 
1756 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1757 	}
1758 }
1759 
1760 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1761 
1762 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1763 {
1764 	if (unlikely(skb_zcopy_managed(skb)))
1765 		__skb_zcopy_downgrade_managed(skb);
1766 }
1767 
1768 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1769 {
1770 	skb->next = NULL;
1771 }
1772 
1773 static inline void skb_poison_list(struct sk_buff *skb)
1774 {
1775 #ifdef CONFIG_DEBUG_NET
1776 	skb->next = SKB_LIST_POISON_NEXT;
1777 #endif
1778 }
1779 
1780 /* Iterate through singly-linked GSO fragments of an skb. */
1781 #define skb_list_walk_safe(first, skb, next_skb)                               \
1782 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1783 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1784 
1785 static inline void skb_list_del_init(struct sk_buff *skb)
1786 {
1787 	__list_del_entry(&skb->list);
1788 	skb_mark_not_on_list(skb);
1789 }
1790 
1791 /**
1792  *	skb_queue_empty - check if a queue is empty
1793  *	@list: queue head
1794  *
1795  *	Returns true if the queue is empty, false otherwise.
1796  */
1797 static inline int skb_queue_empty(const struct sk_buff_head *list)
1798 {
1799 	return list->next == (const struct sk_buff *) list;
1800 }
1801 
1802 /**
1803  *	skb_queue_empty_lockless - check if a queue is empty
1804  *	@list: queue head
1805  *
1806  *	Returns true if the queue is empty, false otherwise.
1807  *	This variant can be used in lockless contexts.
1808  */
1809 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1810 {
1811 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1812 }
1813 
1814 
1815 /**
1816  *	skb_queue_is_last - check if skb is the last entry in the queue
1817  *	@list: queue head
1818  *	@skb: buffer
1819  *
1820  *	Returns true if @skb is the last buffer on the list.
1821  */
1822 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1823 				     const struct sk_buff *skb)
1824 {
1825 	return skb->next == (const struct sk_buff *) list;
1826 }
1827 
1828 /**
1829  *	skb_queue_is_first - check if skb is the first entry in the queue
1830  *	@list: queue head
1831  *	@skb: buffer
1832  *
1833  *	Returns true if @skb is the first buffer on the list.
1834  */
1835 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1836 				      const struct sk_buff *skb)
1837 {
1838 	return skb->prev == (const struct sk_buff *) list;
1839 }
1840 
1841 /**
1842  *	skb_queue_next - return the next packet in the queue
1843  *	@list: queue head
1844  *	@skb: current buffer
1845  *
1846  *	Return the next packet in @list after @skb.  It is only valid to
1847  *	call this if skb_queue_is_last() evaluates to false.
1848  */
1849 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1850 					     const struct sk_buff *skb)
1851 {
1852 	/* This BUG_ON may seem severe, but if we just return then we
1853 	 * are going to dereference garbage.
1854 	 */
1855 	BUG_ON(skb_queue_is_last(list, skb));
1856 	return skb->next;
1857 }
1858 
1859 /**
1860  *	skb_queue_prev - return the prev packet in the queue
1861  *	@list: queue head
1862  *	@skb: current buffer
1863  *
1864  *	Return the prev packet in @list before @skb.  It is only valid to
1865  *	call this if skb_queue_is_first() evaluates to false.
1866  */
1867 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1868 					     const struct sk_buff *skb)
1869 {
1870 	/* This BUG_ON may seem severe, but if we just return then we
1871 	 * are going to dereference garbage.
1872 	 */
1873 	BUG_ON(skb_queue_is_first(list, skb));
1874 	return skb->prev;
1875 }
1876 
1877 /**
1878  *	skb_get - reference buffer
1879  *	@skb: buffer to reference
1880  *
1881  *	Makes another reference to a socket buffer and returns a pointer
1882  *	to the buffer.
1883  */
1884 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1885 {
1886 	refcount_inc(&skb->users);
1887 	return skb;
1888 }
1889 
1890 /*
1891  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1892  */
1893 
1894 /**
1895  *	skb_cloned - is the buffer a clone
1896  *	@skb: buffer to check
1897  *
1898  *	Returns true if the buffer was generated with skb_clone() and is
1899  *	one of multiple shared copies of the buffer. Cloned buffers are
1900  *	shared data so must not be written to under normal circumstances.
1901  */
1902 static inline int skb_cloned(const struct sk_buff *skb)
1903 {
1904 	return skb->cloned &&
1905 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1906 }
1907 
1908 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1909 {
1910 	might_sleep_if(gfpflags_allow_blocking(pri));
1911 
1912 	if (skb_cloned(skb))
1913 		return pskb_expand_head(skb, 0, 0, pri);
1914 
1915 	return 0;
1916 }
1917 
1918 /* This variant of skb_unclone() makes sure skb->truesize
1919  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1920  *
1921  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1922  * when various debugging features are in place.
1923  */
1924 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1925 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1926 {
1927 	might_sleep_if(gfpflags_allow_blocking(pri));
1928 
1929 	if (skb_cloned(skb))
1930 		return __skb_unclone_keeptruesize(skb, pri);
1931 	return 0;
1932 }
1933 
1934 /**
1935  *	skb_header_cloned - is the header a clone
1936  *	@skb: buffer to check
1937  *
1938  *	Returns true if modifying the header part of the buffer requires
1939  *	the data to be copied.
1940  */
1941 static inline int skb_header_cloned(const struct sk_buff *skb)
1942 {
1943 	int dataref;
1944 
1945 	if (!skb->cloned)
1946 		return 0;
1947 
1948 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1949 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1950 	return dataref != 1;
1951 }
1952 
1953 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1954 {
1955 	might_sleep_if(gfpflags_allow_blocking(pri));
1956 
1957 	if (skb_header_cloned(skb))
1958 		return pskb_expand_head(skb, 0, 0, pri);
1959 
1960 	return 0;
1961 }
1962 
1963 /**
1964  * __skb_header_release() - allow clones to use the headroom
1965  * @skb: buffer to operate on
1966  *
1967  * See "DOC: dataref and headerless skbs".
1968  */
1969 static inline void __skb_header_release(struct sk_buff *skb)
1970 {
1971 	skb->nohdr = 1;
1972 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1973 }
1974 
1975 
1976 /**
1977  *	skb_shared - is the buffer shared
1978  *	@skb: buffer to check
1979  *
1980  *	Returns true if more than one person has a reference to this
1981  *	buffer.
1982  */
1983 static inline int skb_shared(const struct sk_buff *skb)
1984 {
1985 	return refcount_read(&skb->users) != 1;
1986 }
1987 
1988 /**
1989  *	skb_share_check - check if buffer is shared and if so clone it
1990  *	@skb: buffer to check
1991  *	@pri: priority for memory allocation
1992  *
1993  *	If the buffer is shared the buffer is cloned and the old copy
1994  *	drops a reference. A new clone with a single reference is returned.
1995  *	If the buffer is not shared the original buffer is returned. When
1996  *	being called from interrupt status or with spinlocks held pri must
1997  *	be GFP_ATOMIC.
1998  *
1999  *	NULL is returned on a memory allocation failure.
2000  */
2001 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2002 {
2003 	might_sleep_if(gfpflags_allow_blocking(pri));
2004 	if (skb_shared(skb)) {
2005 		struct sk_buff *nskb = skb_clone(skb, pri);
2006 
2007 		if (likely(nskb))
2008 			consume_skb(skb);
2009 		else
2010 			kfree_skb(skb);
2011 		skb = nskb;
2012 	}
2013 	return skb;
2014 }
2015 
2016 /*
2017  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2018  *	packets to handle cases where we have a local reader and forward
2019  *	and a couple of other messy ones. The normal one is tcpdumping
2020  *	a packet thats being forwarded.
2021  */
2022 
2023 /**
2024  *	skb_unshare - make a copy of a shared buffer
2025  *	@skb: buffer to check
2026  *	@pri: priority for memory allocation
2027  *
2028  *	If the socket buffer is a clone then this function creates a new
2029  *	copy of the data, drops a reference count on the old copy and returns
2030  *	the new copy with the reference count at 1. If the buffer is not a clone
2031  *	the original buffer is returned. When called with a spinlock held or
2032  *	from interrupt state @pri must be %GFP_ATOMIC
2033  *
2034  *	%NULL is returned on a memory allocation failure.
2035  */
2036 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2037 					  gfp_t pri)
2038 {
2039 	might_sleep_if(gfpflags_allow_blocking(pri));
2040 	if (skb_cloned(skb)) {
2041 		struct sk_buff *nskb = skb_copy(skb, pri);
2042 
2043 		/* Free our shared copy */
2044 		if (likely(nskb))
2045 			consume_skb(skb);
2046 		else
2047 			kfree_skb(skb);
2048 		skb = nskb;
2049 	}
2050 	return skb;
2051 }
2052 
2053 /**
2054  *	skb_peek - peek at the head of an &sk_buff_head
2055  *	@list_: list to peek at
2056  *
2057  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2058  *	be careful with this one. A peek leaves the buffer on the
2059  *	list and someone else may run off with it. You must hold
2060  *	the appropriate locks or have a private queue to do this.
2061  *
2062  *	Returns %NULL for an empty list or a pointer to the head element.
2063  *	The reference count is not incremented and the reference is therefore
2064  *	volatile. Use with caution.
2065  */
2066 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2067 {
2068 	struct sk_buff *skb = list_->next;
2069 
2070 	if (skb == (struct sk_buff *)list_)
2071 		skb = NULL;
2072 	return skb;
2073 }
2074 
2075 /**
2076  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2077  *	@list_: list to peek at
2078  *
2079  *	Like skb_peek(), but the caller knows that the list is not empty.
2080  */
2081 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2082 {
2083 	return list_->next;
2084 }
2085 
2086 /**
2087  *	skb_peek_next - peek skb following the given one from a queue
2088  *	@skb: skb to start from
2089  *	@list_: list to peek at
2090  *
2091  *	Returns %NULL when the end of the list is met or a pointer to the
2092  *	next element. The reference count is not incremented and the
2093  *	reference is therefore volatile. Use with caution.
2094  */
2095 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2096 		const struct sk_buff_head *list_)
2097 {
2098 	struct sk_buff *next = skb->next;
2099 
2100 	if (next == (struct sk_buff *)list_)
2101 		next = NULL;
2102 	return next;
2103 }
2104 
2105 /**
2106  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2107  *	@list_: list to peek at
2108  *
2109  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2110  *	be careful with this one. A peek leaves the buffer on the
2111  *	list and someone else may run off with it. You must hold
2112  *	the appropriate locks or have a private queue to do this.
2113  *
2114  *	Returns %NULL for an empty list or a pointer to the tail element.
2115  *	The reference count is not incremented and the reference is therefore
2116  *	volatile. Use with caution.
2117  */
2118 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2119 {
2120 	struct sk_buff *skb = READ_ONCE(list_->prev);
2121 
2122 	if (skb == (struct sk_buff *)list_)
2123 		skb = NULL;
2124 	return skb;
2125 
2126 }
2127 
2128 /**
2129  *	skb_queue_len	- get queue length
2130  *	@list_: list to measure
2131  *
2132  *	Return the length of an &sk_buff queue.
2133  */
2134 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2135 {
2136 	return list_->qlen;
2137 }
2138 
2139 /**
2140  *	skb_queue_len_lockless	- get queue length
2141  *	@list_: list to measure
2142  *
2143  *	Return the length of an &sk_buff queue.
2144  *	This variant can be used in lockless contexts.
2145  */
2146 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2147 {
2148 	return READ_ONCE(list_->qlen);
2149 }
2150 
2151 /**
2152  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2153  *	@list: queue to initialize
2154  *
2155  *	This initializes only the list and queue length aspects of
2156  *	an sk_buff_head object.  This allows to initialize the list
2157  *	aspects of an sk_buff_head without reinitializing things like
2158  *	the spinlock.  It can also be used for on-stack sk_buff_head
2159  *	objects where the spinlock is known to not be used.
2160  */
2161 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2162 {
2163 	list->prev = list->next = (struct sk_buff *)list;
2164 	list->qlen = 0;
2165 }
2166 
2167 /*
2168  * This function creates a split out lock class for each invocation;
2169  * this is needed for now since a whole lot of users of the skb-queue
2170  * infrastructure in drivers have different locking usage (in hardirq)
2171  * than the networking core (in softirq only). In the long run either the
2172  * network layer or drivers should need annotation to consolidate the
2173  * main types of usage into 3 classes.
2174  */
2175 static inline void skb_queue_head_init(struct sk_buff_head *list)
2176 {
2177 	spin_lock_init(&list->lock);
2178 	__skb_queue_head_init(list);
2179 }
2180 
2181 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2182 		struct lock_class_key *class)
2183 {
2184 	skb_queue_head_init(list);
2185 	lockdep_set_class(&list->lock, class);
2186 }
2187 
2188 /*
2189  *	Insert an sk_buff on a list.
2190  *
2191  *	The "__skb_xxxx()" functions are the non-atomic ones that
2192  *	can only be called with interrupts disabled.
2193  */
2194 static inline void __skb_insert(struct sk_buff *newsk,
2195 				struct sk_buff *prev, struct sk_buff *next,
2196 				struct sk_buff_head *list)
2197 {
2198 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2199 	 * for the opposite READ_ONCE()
2200 	 */
2201 	WRITE_ONCE(newsk->next, next);
2202 	WRITE_ONCE(newsk->prev, prev);
2203 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2204 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2205 	WRITE_ONCE(list->qlen, list->qlen + 1);
2206 }
2207 
2208 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2209 				      struct sk_buff *prev,
2210 				      struct sk_buff *next)
2211 {
2212 	struct sk_buff *first = list->next;
2213 	struct sk_buff *last = list->prev;
2214 
2215 	WRITE_ONCE(first->prev, prev);
2216 	WRITE_ONCE(prev->next, first);
2217 
2218 	WRITE_ONCE(last->next, next);
2219 	WRITE_ONCE(next->prev, last);
2220 }
2221 
2222 /**
2223  *	skb_queue_splice - join two skb lists, this is designed for stacks
2224  *	@list: the new list to add
2225  *	@head: the place to add it in the first list
2226  */
2227 static inline void skb_queue_splice(const struct sk_buff_head *list,
2228 				    struct sk_buff_head *head)
2229 {
2230 	if (!skb_queue_empty(list)) {
2231 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2232 		head->qlen += list->qlen;
2233 	}
2234 }
2235 
2236 /**
2237  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2238  *	@list: the new list to add
2239  *	@head: the place to add it in the first list
2240  *
2241  *	The list at @list is reinitialised
2242  */
2243 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2244 					 struct sk_buff_head *head)
2245 {
2246 	if (!skb_queue_empty(list)) {
2247 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2248 		head->qlen += list->qlen;
2249 		__skb_queue_head_init(list);
2250 	}
2251 }
2252 
2253 /**
2254  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2255  *	@list: the new list to add
2256  *	@head: the place to add it in the first list
2257  */
2258 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2259 					 struct sk_buff_head *head)
2260 {
2261 	if (!skb_queue_empty(list)) {
2262 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2263 		head->qlen += list->qlen;
2264 	}
2265 }
2266 
2267 /**
2268  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2269  *	@list: the new list to add
2270  *	@head: the place to add it in the first list
2271  *
2272  *	Each of the lists is a queue.
2273  *	The list at @list is reinitialised
2274  */
2275 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2276 					      struct sk_buff_head *head)
2277 {
2278 	if (!skb_queue_empty(list)) {
2279 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2280 		head->qlen += list->qlen;
2281 		__skb_queue_head_init(list);
2282 	}
2283 }
2284 
2285 /**
2286  *	__skb_queue_after - queue a buffer at the list head
2287  *	@list: list to use
2288  *	@prev: place after this buffer
2289  *	@newsk: buffer to queue
2290  *
2291  *	Queue a buffer int the middle of a list. This function takes no locks
2292  *	and you must therefore hold required locks before calling it.
2293  *
2294  *	A buffer cannot be placed on two lists at the same time.
2295  */
2296 static inline void __skb_queue_after(struct sk_buff_head *list,
2297 				     struct sk_buff *prev,
2298 				     struct sk_buff *newsk)
2299 {
2300 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2301 }
2302 
2303 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2304 		struct sk_buff_head *list);
2305 
2306 static inline void __skb_queue_before(struct sk_buff_head *list,
2307 				      struct sk_buff *next,
2308 				      struct sk_buff *newsk)
2309 {
2310 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2311 }
2312 
2313 /**
2314  *	__skb_queue_head - queue a buffer at the list head
2315  *	@list: list to use
2316  *	@newsk: buffer to queue
2317  *
2318  *	Queue a buffer at the start of a list. This function takes no locks
2319  *	and you must therefore hold required locks before calling it.
2320  *
2321  *	A buffer cannot be placed on two lists at the same time.
2322  */
2323 static inline void __skb_queue_head(struct sk_buff_head *list,
2324 				    struct sk_buff *newsk)
2325 {
2326 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2327 }
2328 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2329 
2330 /**
2331  *	__skb_queue_tail - queue a buffer at the list tail
2332  *	@list: list to use
2333  *	@newsk: buffer to queue
2334  *
2335  *	Queue a buffer at the end of a list. This function takes no locks
2336  *	and you must therefore hold required locks before calling it.
2337  *
2338  *	A buffer cannot be placed on two lists at the same time.
2339  */
2340 static inline void __skb_queue_tail(struct sk_buff_head *list,
2341 				   struct sk_buff *newsk)
2342 {
2343 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2344 }
2345 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2346 
2347 /*
2348  * remove sk_buff from list. _Must_ be called atomically, and with
2349  * the list known..
2350  */
2351 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2352 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2353 {
2354 	struct sk_buff *next, *prev;
2355 
2356 	WRITE_ONCE(list->qlen, list->qlen - 1);
2357 	next	   = skb->next;
2358 	prev	   = skb->prev;
2359 	skb->next  = skb->prev = NULL;
2360 	WRITE_ONCE(next->prev, prev);
2361 	WRITE_ONCE(prev->next, next);
2362 }
2363 
2364 /**
2365  *	__skb_dequeue - remove from the head of the queue
2366  *	@list: list to dequeue from
2367  *
2368  *	Remove the head of the list. This function does not take any locks
2369  *	so must be used with appropriate locks held only. The head item is
2370  *	returned or %NULL if the list is empty.
2371  */
2372 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2373 {
2374 	struct sk_buff *skb = skb_peek(list);
2375 	if (skb)
2376 		__skb_unlink(skb, list);
2377 	return skb;
2378 }
2379 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2380 
2381 /**
2382  *	__skb_dequeue_tail - remove from the tail of the queue
2383  *	@list: list to dequeue from
2384  *
2385  *	Remove the tail of the list. This function does not take any locks
2386  *	so must be used with appropriate locks held only. The tail item is
2387  *	returned or %NULL if the list is empty.
2388  */
2389 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2390 {
2391 	struct sk_buff *skb = skb_peek_tail(list);
2392 	if (skb)
2393 		__skb_unlink(skb, list);
2394 	return skb;
2395 }
2396 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2397 
2398 
2399 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2400 {
2401 	return skb->data_len;
2402 }
2403 
2404 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2405 {
2406 	return skb->len - skb->data_len;
2407 }
2408 
2409 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2410 {
2411 	unsigned int i, len = 0;
2412 
2413 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2414 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2415 	return len;
2416 }
2417 
2418 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2419 {
2420 	return skb_headlen(skb) + __skb_pagelen(skb);
2421 }
2422 
2423 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2424 					   struct page *page,
2425 					   int off, int size)
2426 {
2427 	frag->bv_page = page;
2428 	frag->bv_offset = off;
2429 	skb_frag_size_set(frag, size);
2430 }
2431 
2432 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2433 					      int i, struct page *page,
2434 					      int off, int size)
2435 {
2436 	skb_frag_t *frag = &shinfo->frags[i];
2437 
2438 	skb_frag_fill_page_desc(frag, page, off, size);
2439 }
2440 
2441 /**
2442  * skb_len_add - adds a number to len fields of skb
2443  * @skb: buffer to add len to
2444  * @delta: number of bytes to add
2445  */
2446 static inline void skb_len_add(struct sk_buff *skb, int delta)
2447 {
2448 	skb->len += delta;
2449 	skb->data_len += delta;
2450 	skb->truesize += delta;
2451 }
2452 
2453 /**
2454  * __skb_fill_page_desc - initialise a paged fragment in an skb
2455  * @skb: buffer containing fragment to be initialised
2456  * @i: paged fragment index to initialise
2457  * @page: the page to use for this fragment
2458  * @off: the offset to the data with @page
2459  * @size: the length of the data
2460  *
2461  * Initialises the @i'th fragment of @skb to point to &size bytes at
2462  * offset @off within @page.
2463  *
2464  * Does not take any additional reference on the fragment.
2465  */
2466 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2467 					struct page *page, int off, int size)
2468 {
2469 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2470 
2471 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2472 	 * that not all callers have unique ownership of the page but rely
2473 	 * on page_is_pfmemalloc doing the right thing(tm).
2474 	 */
2475 	page = compound_head(page);
2476 	if (page_is_pfmemalloc(page))
2477 		skb->pfmemalloc	= true;
2478 }
2479 
2480 /**
2481  * skb_fill_page_desc - initialise a paged fragment in an skb
2482  * @skb: buffer containing fragment to be initialised
2483  * @i: paged fragment index to initialise
2484  * @page: the page to use for this fragment
2485  * @off: the offset to the data with @page
2486  * @size: the length of the data
2487  *
2488  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2489  * @skb to point to @size bytes at offset @off within @page. In
2490  * addition updates @skb such that @i is the last fragment.
2491  *
2492  * Does not take any additional reference on the fragment.
2493  */
2494 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2495 				      struct page *page, int off, int size)
2496 {
2497 	__skb_fill_page_desc(skb, i, page, off, size);
2498 	skb_shinfo(skb)->nr_frags = i + 1;
2499 }
2500 
2501 /**
2502  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2503  * @skb: buffer containing fragment to be initialised
2504  * @i: paged fragment index to initialise
2505  * @page: the page to use for this fragment
2506  * @off: the offset to the data with @page
2507  * @size: the length of the data
2508  *
2509  * Variant of skb_fill_page_desc() which does not deal with
2510  * pfmemalloc, if page is not owned by us.
2511  */
2512 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2513 					    struct page *page, int off,
2514 					    int size)
2515 {
2516 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2517 
2518 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2519 	shinfo->nr_frags = i + 1;
2520 }
2521 
2522 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2523 		     int size, unsigned int truesize);
2524 
2525 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2526 			  unsigned int truesize);
2527 
2528 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2529 
2530 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2531 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2532 {
2533 	return skb->head + skb->tail;
2534 }
2535 
2536 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2537 {
2538 	skb->tail = skb->data - skb->head;
2539 }
2540 
2541 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2542 {
2543 	skb_reset_tail_pointer(skb);
2544 	skb->tail += offset;
2545 }
2546 
2547 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2548 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2549 {
2550 	return skb->tail;
2551 }
2552 
2553 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2554 {
2555 	skb->tail = skb->data;
2556 }
2557 
2558 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2559 {
2560 	skb->tail = skb->data + offset;
2561 }
2562 
2563 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2564 
2565 static inline void skb_assert_len(struct sk_buff *skb)
2566 {
2567 #ifdef CONFIG_DEBUG_NET
2568 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2569 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2570 #endif /* CONFIG_DEBUG_NET */
2571 }
2572 
2573 /*
2574  *	Add data to an sk_buff
2575  */
2576 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2577 void *skb_put(struct sk_buff *skb, unsigned int len);
2578 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2579 {
2580 	void *tmp = skb_tail_pointer(skb);
2581 	SKB_LINEAR_ASSERT(skb);
2582 	skb->tail += len;
2583 	skb->len  += len;
2584 	return tmp;
2585 }
2586 
2587 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2588 {
2589 	void *tmp = __skb_put(skb, len);
2590 
2591 	memset(tmp, 0, len);
2592 	return tmp;
2593 }
2594 
2595 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2596 				   unsigned int len)
2597 {
2598 	void *tmp = __skb_put(skb, len);
2599 
2600 	memcpy(tmp, data, len);
2601 	return tmp;
2602 }
2603 
2604 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2605 {
2606 	*(u8 *)__skb_put(skb, 1) = val;
2607 }
2608 
2609 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2610 {
2611 	void *tmp = skb_put(skb, len);
2612 
2613 	memset(tmp, 0, len);
2614 
2615 	return tmp;
2616 }
2617 
2618 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2619 				 unsigned int len)
2620 {
2621 	void *tmp = skb_put(skb, len);
2622 
2623 	memcpy(tmp, data, len);
2624 
2625 	return tmp;
2626 }
2627 
2628 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2629 {
2630 	*(u8 *)skb_put(skb, 1) = val;
2631 }
2632 
2633 void *skb_push(struct sk_buff *skb, unsigned int len);
2634 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2635 {
2636 	skb->data -= len;
2637 	skb->len  += len;
2638 	return skb->data;
2639 }
2640 
2641 void *skb_pull(struct sk_buff *skb, unsigned int len);
2642 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2643 {
2644 	skb->len -= len;
2645 	if (unlikely(skb->len < skb->data_len)) {
2646 #if defined(CONFIG_DEBUG_NET)
2647 		skb->len += len;
2648 		pr_err("__skb_pull(len=%u)\n", len);
2649 		skb_dump(KERN_ERR, skb, false);
2650 #endif
2651 		BUG();
2652 	}
2653 	return skb->data += len;
2654 }
2655 
2656 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2657 {
2658 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2659 }
2660 
2661 void *skb_pull_data(struct sk_buff *skb, size_t len);
2662 
2663 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2664 
2665 static inline enum skb_drop_reason
2666 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2667 {
2668 	if (likely(len <= skb_headlen(skb)))
2669 		return SKB_NOT_DROPPED_YET;
2670 
2671 	if (unlikely(len > skb->len))
2672 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2673 
2674 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2675 		return SKB_DROP_REASON_NOMEM;
2676 
2677 	return SKB_NOT_DROPPED_YET;
2678 }
2679 
2680 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2681 {
2682 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2683 }
2684 
2685 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2686 {
2687 	if (!pskb_may_pull(skb, len))
2688 		return NULL;
2689 
2690 	skb->len -= len;
2691 	return skb->data += len;
2692 }
2693 
2694 void skb_condense(struct sk_buff *skb);
2695 
2696 /**
2697  *	skb_headroom - bytes at buffer head
2698  *	@skb: buffer to check
2699  *
2700  *	Return the number of bytes of free space at the head of an &sk_buff.
2701  */
2702 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2703 {
2704 	return skb->data - skb->head;
2705 }
2706 
2707 /**
2708  *	skb_tailroom - bytes at buffer end
2709  *	@skb: buffer to check
2710  *
2711  *	Return the number of bytes of free space at the tail of an sk_buff
2712  */
2713 static inline int skb_tailroom(const struct sk_buff *skb)
2714 {
2715 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2716 }
2717 
2718 /**
2719  *	skb_availroom - bytes at buffer end
2720  *	@skb: buffer to check
2721  *
2722  *	Return the number of bytes of free space at the tail of an sk_buff
2723  *	allocated by sk_stream_alloc()
2724  */
2725 static inline int skb_availroom(const struct sk_buff *skb)
2726 {
2727 	if (skb_is_nonlinear(skb))
2728 		return 0;
2729 
2730 	return skb->end - skb->tail - skb->reserved_tailroom;
2731 }
2732 
2733 /**
2734  *	skb_reserve - adjust headroom
2735  *	@skb: buffer to alter
2736  *	@len: bytes to move
2737  *
2738  *	Increase the headroom of an empty &sk_buff by reducing the tail
2739  *	room. This is only allowed for an empty buffer.
2740  */
2741 static inline void skb_reserve(struct sk_buff *skb, int len)
2742 {
2743 	skb->data += len;
2744 	skb->tail += len;
2745 }
2746 
2747 /**
2748  *	skb_tailroom_reserve - adjust reserved_tailroom
2749  *	@skb: buffer to alter
2750  *	@mtu: maximum amount of headlen permitted
2751  *	@needed_tailroom: minimum amount of reserved_tailroom
2752  *
2753  *	Set reserved_tailroom so that headlen can be as large as possible but
2754  *	not larger than mtu and tailroom cannot be smaller than
2755  *	needed_tailroom.
2756  *	The required headroom should already have been reserved before using
2757  *	this function.
2758  */
2759 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2760 					unsigned int needed_tailroom)
2761 {
2762 	SKB_LINEAR_ASSERT(skb);
2763 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2764 		/* use at most mtu */
2765 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2766 	else
2767 		/* use up to all available space */
2768 		skb->reserved_tailroom = needed_tailroom;
2769 }
2770 
2771 #define ENCAP_TYPE_ETHER	0
2772 #define ENCAP_TYPE_IPPROTO	1
2773 
2774 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2775 					  __be16 protocol)
2776 {
2777 	skb->inner_protocol = protocol;
2778 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2779 }
2780 
2781 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2782 					 __u8 ipproto)
2783 {
2784 	skb->inner_ipproto = ipproto;
2785 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2786 }
2787 
2788 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2789 {
2790 	skb->inner_mac_header = skb->mac_header;
2791 	skb->inner_network_header = skb->network_header;
2792 	skb->inner_transport_header = skb->transport_header;
2793 }
2794 
2795 static inline void skb_reset_mac_len(struct sk_buff *skb)
2796 {
2797 	skb->mac_len = skb->network_header - skb->mac_header;
2798 }
2799 
2800 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2801 							*skb)
2802 {
2803 	return skb->head + skb->inner_transport_header;
2804 }
2805 
2806 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2807 {
2808 	return skb_inner_transport_header(skb) - skb->data;
2809 }
2810 
2811 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2812 {
2813 	skb->inner_transport_header = skb->data - skb->head;
2814 }
2815 
2816 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2817 						   const int offset)
2818 {
2819 	skb_reset_inner_transport_header(skb);
2820 	skb->inner_transport_header += offset;
2821 }
2822 
2823 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2824 {
2825 	return skb->head + skb->inner_network_header;
2826 }
2827 
2828 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2829 {
2830 	skb->inner_network_header = skb->data - skb->head;
2831 }
2832 
2833 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2834 						const int offset)
2835 {
2836 	skb_reset_inner_network_header(skb);
2837 	skb->inner_network_header += offset;
2838 }
2839 
2840 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2841 {
2842 	return skb->head + skb->inner_mac_header;
2843 }
2844 
2845 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2846 {
2847 	skb->inner_mac_header = skb->data - skb->head;
2848 }
2849 
2850 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2851 					    const int offset)
2852 {
2853 	skb_reset_inner_mac_header(skb);
2854 	skb->inner_mac_header += offset;
2855 }
2856 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2857 {
2858 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2859 }
2860 
2861 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2862 {
2863 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2864 	return skb->head + skb->transport_header;
2865 }
2866 
2867 static inline void skb_reset_transport_header(struct sk_buff *skb)
2868 {
2869 	skb->transport_header = skb->data - skb->head;
2870 }
2871 
2872 static inline void skb_set_transport_header(struct sk_buff *skb,
2873 					    const int offset)
2874 {
2875 	skb_reset_transport_header(skb);
2876 	skb->transport_header += offset;
2877 }
2878 
2879 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2880 {
2881 	return skb->head + skb->network_header;
2882 }
2883 
2884 static inline void skb_reset_network_header(struct sk_buff *skb)
2885 {
2886 	skb->network_header = skb->data - skb->head;
2887 }
2888 
2889 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2890 {
2891 	skb_reset_network_header(skb);
2892 	skb->network_header += offset;
2893 }
2894 
2895 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2896 {
2897 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2898 }
2899 
2900 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2901 {
2902 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2903 	return skb->head + skb->mac_header;
2904 }
2905 
2906 static inline int skb_mac_offset(const struct sk_buff *skb)
2907 {
2908 	return skb_mac_header(skb) - skb->data;
2909 }
2910 
2911 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2912 {
2913 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2914 	return skb->network_header - skb->mac_header;
2915 }
2916 
2917 static inline void skb_unset_mac_header(struct sk_buff *skb)
2918 {
2919 	skb->mac_header = (typeof(skb->mac_header))~0U;
2920 }
2921 
2922 static inline void skb_reset_mac_header(struct sk_buff *skb)
2923 {
2924 	skb->mac_header = skb->data - skb->head;
2925 }
2926 
2927 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2928 {
2929 	skb_reset_mac_header(skb);
2930 	skb->mac_header += offset;
2931 }
2932 
2933 static inline void skb_pop_mac_header(struct sk_buff *skb)
2934 {
2935 	skb->mac_header = skb->network_header;
2936 }
2937 
2938 static inline void skb_probe_transport_header(struct sk_buff *skb)
2939 {
2940 	struct flow_keys_basic keys;
2941 
2942 	if (skb_transport_header_was_set(skb))
2943 		return;
2944 
2945 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2946 					     NULL, 0, 0, 0, 0))
2947 		skb_set_transport_header(skb, keys.control.thoff);
2948 }
2949 
2950 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2951 {
2952 	if (skb_mac_header_was_set(skb)) {
2953 		const unsigned char *old_mac = skb_mac_header(skb);
2954 
2955 		skb_set_mac_header(skb, -skb->mac_len);
2956 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2957 	}
2958 }
2959 
2960 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2961 {
2962 	return skb->csum_start - skb_headroom(skb);
2963 }
2964 
2965 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2966 {
2967 	return skb->head + skb->csum_start;
2968 }
2969 
2970 static inline int skb_transport_offset(const struct sk_buff *skb)
2971 {
2972 	return skb_transport_header(skb) - skb->data;
2973 }
2974 
2975 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2976 {
2977 	return skb->transport_header - skb->network_header;
2978 }
2979 
2980 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2981 {
2982 	return skb->inner_transport_header - skb->inner_network_header;
2983 }
2984 
2985 static inline int skb_network_offset(const struct sk_buff *skb)
2986 {
2987 	return skb_network_header(skb) - skb->data;
2988 }
2989 
2990 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2991 {
2992 	return skb_inner_network_header(skb) - skb->data;
2993 }
2994 
2995 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2996 {
2997 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2998 }
2999 
3000 /*
3001  * CPUs often take a performance hit when accessing unaligned memory
3002  * locations. The actual performance hit varies, it can be small if the
3003  * hardware handles it or large if we have to take an exception and fix it
3004  * in software.
3005  *
3006  * Since an ethernet header is 14 bytes network drivers often end up with
3007  * the IP header at an unaligned offset. The IP header can be aligned by
3008  * shifting the start of the packet by 2 bytes. Drivers should do this
3009  * with:
3010  *
3011  * skb_reserve(skb, NET_IP_ALIGN);
3012  *
3013  * The downside to this alignment of the IP header is that the DMA is now
3014  * unaligned. On some architectures the cost of an unaligned DMA is high
3015  * and this cost outweighs the gains made by aligning the IP header.
3016  *
3017  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3018  * to be overridden.
3019  */
3020 #ifndef NET_IP_ALIGN
3021 #define NET_IP_ALIGN	2
3022 #endif
3023 
3024 /*
3025  * The networking layer reserves some headroom in skb data (via
3026  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3027  * the header has to grow. In the default case, if the header has to grow
3028  * 32 bytes or less we avoid the reallocation.
3029  *
3030  * Unfortunately this headroom changes the DMA alignment of the resulting
3031  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3032  * on some architectures. An architecture can override this value,
3033  * perhaps setting it to a cacheline in size (since that will maintain
3034  * cacheline alignment of the DMA). It must be a power of 2.
3035  *
3036  * Various parts of the networking layer expect at least 32 bytes of
3037  * headroom, you should not reduce this.
3038  *
3039  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3040  * to reduce average number of cache lines per packet.
3041  * get_rps_cpu() for example only access one 64 bytes aligned block :
3042  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3043  */
3044 #ifndef NET_SKB_PAD
3045 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3046 #endif
3047 
3048 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3049 
3050 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3051 {
3052 	if (WARN_ON(skb_is_nonlinear(skb)))
3053 		return;
3054 	skb->len = len;
3055 	skb_set_tail_pointer(skb, len);
3056 }
3057 
3058 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3059 {
3060 	__skb_set_length(skb, len);
3061 }
3062 
3063 void skb_trim(struct sk_buff *skb, unsigned int len);
3064 
3065 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3066 {
3067 	if (skb->data_len)
3068 		return ___pskb_trim(skb, len);
3069 	__skb_trim(skb, len);
3070 	return 0;
3071 }
3072 
3073 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3074 {
3075 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3076 }
3077 
3078 /**
3079  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3080  *	@skb: buffer to alter
3081  *	@len: new length
3082  *
3083  *	This is identical to pskb_trim except that the caller knows that
3084  *	the skb is not cloned so we should never get an error due to out-
3085  *	of-memory.
3086  */
3087 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3088 {
3089 	int err = pskb_trim(skb, len);
3090 	BUG_ON(err);
3091 }
3092 
3093 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3094 {
3095 	unsigned int diff = len - skb->len;
3096 
3097 	if (skb_tailroom(skb) < diff) {
3098 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3099 					   GFP_ATOMIC);
3100 		if (ret)
3101 			return ret;
3102 	}
3103 	__skb_set_length(skb, len);
3104 	return 0;
3105 }
3106 
3107 /**
3108  *	skb_orphan - orphan a buffer
3109  *	@skb: buffer to orphan
3110  *
3111  *	If a buffer currently has an owner then we call the owner's
3112  *	destructor function and make the @skb unowned. The buffer continues
3113  *	to exist but is no longer charged to its former owner.
3114  */
3115 static inline void skb_orphan(struct sk_buff *skb)
3116 {
3117 	if (skb->destructor) {
3118 		skb->destructor(skb);
3119 		skb->destructor = NULL;
3120 		skb->sk		= NULL;
3121 	} else {
3122 		BUG_ON(skb->sk);
3123 	}
3124 }
3125 
3126 /**
3127  *	skb_orphan_frags - orphan the frags contained in a buffer
3128  *	@skb: buffer to orphan frags from
3129  *	@gfp_mask: allocation mask for replacement pages
3130  *
3131  *	For each frag in the SKB which needs a destructor (i.e. has an
3132  *	owner) create a copy of that frag and release the original
3133  *	page by calling the destructor.
3134  */
3135 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3136 {
3137 	if (likely(!skb_zcopy(skb)))
3138 		return 0;
3139 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3140 		return 0;
3141 	return skb_copy_ubufs(skb, gfp_mask);
3142 }
3143 
3144 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3145 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3146 {
3147 	if (likely(!skb_zcopy(skb)))
3148 		return 0;
3149 	return skb_copy_ubufs(skb, gfp_mask);
3150 }
3151 
3152 /**
3153  *	__skb_queue_purge - empty a list
3154  *	@list: list to empty
3155  *
3156  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3157  *	the list and one reference dropped. This function does not take the
3158  *	list lock and the caller must hold the relevant locks to use it.
3159  */
3160 static inline void __skb_queue_purge(struct sk_buff_head *list)
3161 {
3162 	struct sk_buff *skb;
3163 	while ((skb = __skb_dequeue(list)) != NULL)
3164 		kfree_skb(skb);
3165 }
3166 void skb_queue_purge(struct sk_buff_head *list);
3167 
3168 unsigned int skb_rbtree_purge(struct rb_root *root);
3169 
3170 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3171 
3172 /**
3173  * netdev_alloc_frag - allocate a page fragment
3174  * @fragsz: fragment size
3175  *
3176  * Allocates a frag from a page for receive buffer.
3177  * Uses GFP_ATOMIC allocations.
3178  */
3179 static inline void *netdev_alloc_frag(unsigned int fragsz)
3180 {
3181 	return __netdev_alloc_frag_align(fragsz, ~0u);
3182 }
3183 
3184 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3185 					    unsigned int align)
3186 {
3187 	WARN_ON_ONCE(!is_power_of_2(align));
3188 	return __netdev_alloc_frag_align(fragsz, -align);
3189 }
3190 
3191 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3192 				   gfp_t gfp_mask);
3193 
3194 /**
3195  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3196  *	@dev: network device to receive on
3197  *	@length: length to allocate
3198  *
3199  *	Allocate a new &sk_buff and assign it a usage count of one. The
3200  *	buffer has unspecified headroom built in. Users should allocate
3201  *	the headroom they think they need without accounting for the
3202  *	built in space. The built in space is used for optimisations.
3203  *
3204  *	%NULL is returned if there is no free memory. Although this function
3205  *	allocates memory it can be called from an interrupt.
3206  */
3207 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3208 					       unsigned int length)
3209 {
3210 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3211 }
3212 
3213 /* legacy helper around __netdev_alloc_skb() */
3214 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3215 					      gfp_t gfp_mask)
3216 {
3217 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3218 }
3219 
3220 /* legacy helper around netdev_alloc_skb() */
3221 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3222 {
3223 	return netdev_alloc_skb(NULL, length);
3224 }
3225 
3226 
3227 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3228 		unsigned int length, gfp_t gfp)
3229 {
3230 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3231 
3232 	if (NET_IP_ALIGN && skb)
3233 		skb_reserve(skb, NET_IP_ALIGN);
3234 	return skb;
3235 }
3236 
3237 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3238 		unsigned int length)
3239 {
3240 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3241 }
3242 
3243 static inline void skb_free_frag(void *addr)
3244 {
3245 	page_frag_free(addr);
3246 }
3247 
3248 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3249 
3250 static inline void *napi_alloc_frag(unsigned int fragsz)
3251 {
3252 	return __napi_alloc_frag_align(fragsz, ~0u);
3253 }
3254 
3255 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3256 					  unsigned int align)
3257 {
3258 	WARN_ON_ONCE(!is_power_of_2(align));
3259 	return __napi_alloc_frag_align(fragsz, -align);
3260 }
3261 
3262 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3263 				 unsigned int length, gfp_t gfp_mask);
3264 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3265 					     unsigned int length)
3266 {
3267 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3268 }
3269 void napi_consume_skb(struct sk_buff *skb, int budget);
3270 
3271 void napi_skb_free_stolen_head(struct sk_buff *skb);
3272 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3273 
3274 /**
3275  * __dev_alloc_pages - allocate page for network Rx
3276  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3277  * @order: size of the allocation
3278  *
3279  * Allocate a new page.
3280  *
3281  * %NULL is returned if there is no free memory.
3282 */
3283 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3284 					     unsigned int order)
3285 {
3286 	/* This piece of code contains several assumptions.
3287 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3288 	 * 2.  The expectation is the user wants a compound page.
3289 	 * 3.  If requesting a order 0 page it will not be compound
3290 	 *     due to the check to see if order has a value in prep_new_page
3291 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3292 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3293 	 */
3294 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3295 
3296 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3297 }
3298 
3299 static inline struct page *dev_alloc_pages(unsigned int order)
3300 {
3301 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3302 }
3303 
3304 /**
3305  * __dev_alloc_page - allocate a page for network Rx
3306  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3307  *
3308  * Allocate a new page.
3309  *
3310  * %NULL is returned if there is no free memory.
3311  */
3312 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3313 {
3314 	return __dev_alloc_pages(gfp_mask, 0);
3315 }
3316 
3317 static inline struct page *dev_alloc_page(void)
3318 {
3319 	return dev_alloc_pages(0);
3320 }
3321 
3322 /**
3323  * dev_page_is_reusable - check whether a page can be reused for network Rx
3324  * @page: the page to test
3325  *
3326  * A page shouldn't be considered for reusing/recycling if it was allocated
3327  * under memory pressure or at a distant memory node.
3328  *
3329  * Returns false if this page should be returned to page allocator, true
3330  * otherwise.
3331  */
3332 static inline bool dev_page_is_reusable(const struct page *page)
3333 {
3334 	return likely(page_to_nid(page) == numa_mem_id() &&
3335 		      !page_is_pfmemalloc(page));
3336 }
3337 
3338 /**
3339  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3340  *	@page: The page that was allocated from skb_alloc_page
3341  *	@skb: The skb that may need pfmemalloc set
3342  */
3343 static inline void skb_propagate_pfmemalloc(const struct page *page,
3344 					    struct sk_buff *skb)
3345 {
3346 	if (page_is_pfmemalloc(page))
3347 		skb->pfmemalloc = true;
3348 }
3349 
3350 /**
3351  * skb_frag_off() - Returns the offset of a skb fragment
3352  * @frag: the paged fragment
3353  */
3354 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3355 {
3356 	return frag->bv_offset;
3357 }
3358 
3359 /**
3360  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3361  * @frag: skb fragment
3362  * @delta: value to add
3363  */
3364 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3365 {
3366 	frag->bv_offset += delta;
3367 }
3368 
3369 /**
3370  * skb_frag_off_set() - Sets the offset of a skb fragment
3371  * @frag: skb fragment
3372  * @offset: offset of fragment
3373  */
3374 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3375 {
3376 	frag->bv_offset = offset;
3377 }
3378 
3379 /**
3380  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3381  * @fragto: skb fragment where offset is set
3382  * @fragfrom: skb fragment offset is copied from
3383  */
3384 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3385 				     const skb_frag_t *fragfrom)
3386 {
3387 	fragto->bv_offset = fragfrom->bv_offset;
3388 }
3389 
3390 /**
3391  * skb_frag_page - retrieve the page referred to by a paged fragment
3392  * @frag: the paged fragment
3393  *
3394  * Returns the &struct page associated with @frag.
3395  */
3396 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3397 {
3398 	return frag->bv_page;
3399 }
3400 
3401 /**
3402  * __skb_frag_ref - take an addition reference on a paged fragment.
3403  * @frag: the paged fragment
3404  *
3405  * Takes an additional reference on the paged fragment @frag.
3406  */
3407 static inline void __skb_frag_ref(skb_frag_t *frag)
3408 {
3409 	get_page(skb_frag_page(frag));
3410 }
3411 
3412 /**
3413  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3414  * @skb: the buffer
3415  * @f: the fragment offset.
3416  *
3417  * Takes an additional reference on the @f'th paged fragment of @skb.
3418  */
3419 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3420 {
3421 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3422 }
3423 
3424 static inline void
3425 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3426 {
3427 	struct page *page = skb_frag_page(frag);
3428 
3429 #ifdef CONFIG_PAGE_POOL
3430 	if (recycle && page_pool_return_skb_page(page, napi_safe))
3431 		return;
3432 #endif
3433 	put_page(page);
3434 }
3435 
3436 /**
3437  * __skb_frag_unref - release a reference on a paged fragment.
3438  * @frag: the paged fragment
3439  * @recycle: recycle the page if allocated via page_pool
3440  *
3441  * Releases a reference on the paged fragment @frag
3442  * or recycles the page via the page_pool API.
3443  */
3444 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3445 {
3446 	napi_frag_unref(frag, recycle, false);
3447 }
3448 
3449 /**
3450  * skb_frag_unref - release a reference on a paged fragment of an skb.
3451  * @skb: the buffer
3452  * @f: the fragment offset
3453  *
3454  * Releases a reference on the @f'th paged fragment of @skb.
3455  */
3456 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3457 {
3458 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3459 
3460 	if (!skb_zcopy_managed(skb))
3461 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3462 }
3463 
3464 /**
3465  * skb_frag_address - gets the address of the data contained in a paged fragment
3466  * @frag: the paged fragment buffer
3467  *
3468  * Returns the address of the data within @frag. The page must already
3469  * be mapped.
3470  */
3471 static inline void *skb_frag_address(const skb_frag_t *frag)
3472 {
3473 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3474 }
3475 
3476 /**
3477  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3478  * @frag: the paged fragment buffer
3479  *
3480  * Returns the address of the data within @frag. Checks that the page
3481  * is mapped and returns %NULL otherwise.
3482  */
3483 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3484 {
3485 	void *ptr = page_address(skb_frag_page(frag));
3486 	if (unlikely(!ptr))
3487 		return NULL;
3488 
3489 	return ptr + skb_frag_off(frag);
3490 }
3491 
3492 /**
3493  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3494  * @fragto: skb fragment where page is set
3495  * @fragfrom: skb fragment page is copied from
3496  */
3497 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3498 				      const skb_frag_t *fragfrom)
3499 {
3500 	fragto->bv_page = fragfrom->bv_page;
3501 }
3502 
3503 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3504 
3505 /**
3506  * skb_frag_dma_map - maps a paged fragment via the DMA API
3507  * @dev: the device to map the fragment to
3508  * @frag: the paged fragment to map
3509  * @offset: the offset within the fragment (starting at the
3510  *          fragment's own offset)
3511  * @size: the number of bytes to map
3512  * @dir: the direction of the mapping (``PCI_DMA_*``)
3513  *
3514  * Maps the page associated with @frag to @device.
3515  */
3516 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3517 					  const skb_frag_t *frag,
3518 					  size_t offset, size_t size,
3519 					  enum dma_data_direction dir)
3520 {
3521 	return dma_map_page(dev, skb_frag_page(frag),
3522 			    skb_frag_off(frag) + offset, size, dir);
3523 }
3524 
3525 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3526 					gfp_t gfp_mask)
3527 {
3528 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3529 }
3530 
3531 
3532 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3533 						  gfp_t gfp_mask)
3534 {
3535 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3536 }
3537 
3538 
3539 /**
3540  *	skb_clone_writable - is the header of a clone writable
3541  *	@skb: buffer to check
3542  *	@len: length up to which to write
3543  *
3544  *	Returns true if modifying the header part of the cloned buffer
3545  *	does not requires the data to be copied.
3546  */
3547 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3548 {
3549 	return !skb_header_cloned(skb) &&
3550 	       skb_headroom(skb) + len <= skb->hdr_len;
3551 }
3552 
3553 static inline int skb_try_make_writable(struct sk_buff *skb,
3554 					unsigned int write_len)
3555 {
3556 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3557 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3558 }
3559 
3560 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3561 			    int cloned)
3562 {
3563 	int delta = 0;
3564 
3565 	if (headroom > skb_headroom(skb))
3566 		delta = headroom - skb_headroom(skb);
3567 
3568 	if (delta || cloned)
3569 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3570 					GFP_ATOMIC);
3571 	return 0;
3572 }
3573 
3574 /**
3575  *	skb_cow - copy header of skb when it is required
3576  *	@skb: buffer to cow
3577  *	@headroom: needed headroom
3578  *
3579  *	If the skb passed lacks sufficient headroom or its data part
3580  *	is shared, data is reallocated. If reallocation fails, an error
3581  *	is returned and original skb is not changed.
3582  *
3583  *	The result is skb with writable area skb->head...skb->tail
3584  *	and at least @headroom of space at head.
3585  */
3586 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3587 {
3588 	return __skb_cow(skb, headroom, skb_cloned(skb));
3589 }
3590 
3591 /**
3592  *	skb_cow_head - skb_cow but only making the head writable
3593  *	@skb: buffer to cow
3594  *	@headroom: needed headroom
3595  *
3596  *	This function is identical to skb_cow except that we replace the
3597  *	skb_cloned check by skb_header_cloned.  It should be used when
3598  *	you only need to push on some header and do not need to modify
3599  *	the data.
3600  */
3601 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3602 {
3603 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3604 }
3605 
3606 /**
3607  *	skb_padto	- pad an skbuff up to a minimal size
3608  *	@skb: buffer to pad
3609  *	@len: minimal length
3610  *
3611  *	Pads up a buffer to ensure the trailing bytes exist and are
3612  *	blanked. If the buffer already contains sufficient data it
3613  *	is untouched. Otherwise it is extended. Returns zero on
3614  *	success. The skb is freed on error.
3615  */
3616 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3617 {
3618 	unsigned int size = skb->len;
3619 	if (likely(size >= len))
3620 		return 0;
3621 	return skb_pad(skb, len - size);
3622 }
3623 
3624 /**
3625  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3626  *	@skb: buffer to pad
3627  *	@len: minimal length
3628  *	@free_on_error: free buffer on error
3629  *
3630  *	Pads up a buffer to ensure the trailing bytes exist and are
3631  *	blanked. If the buffer already contains sufficient data it
3632  *	is untouched. Otherwise it is extended. Returns zero on
3633  *	success. The skb is freed on error if @free_on_error is true.
3634  */
3635 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3636 					       unsigned int len,
3637 					       bool free_on_error)
3638 {
3639 	unsigned int size = skb->len;
3640 
3641 	if (unlikely(size < len)) {
3642 		len -= size;
3643 		if (__skb_pad(skb, len, free_on_error))
3644 			return -ENOMEM;
3645 		__skb_put(skb, len);
3646 	}
3647 	return 0;
3648 }
3649 
3650 /**
3651  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3652  *	@skb: buffer to pad
3653  *	@len: minimal length
3654  *
3655  *	Pads up a buffer to ensure the trailing bytes exist and are
3656  *	blanked. If the buffer already contains sufficient data it
3657  *	is untouched. Otherwise it is extended. Returns zero on
3658  *	success. The skb is freed on error.
3659  */
3660 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3661 {
3662 	return __skb_put_padto(skb, len, true);
3663 }
3664 
3665 static inline int skb_add_data(struct sk_buff *skb,
3666 			       struct iov_iter *from, int copy)
3667 {
3668 	const int off = skb->len;
3669 
3670 	if (skb->ip_summed == CHECKSUM_NONE) {
3671 		__wsum csum = 0;
3672 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3673 					         &csum, from)) {
3674 			skb->csum = csum_block_add(skb->csum, csum, off);
3675 			return 0;
3676 		}
3677 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3678 		return 0;
3679 
3680 	__skb_trim(skb, off);
3681 	return -EFAULT;
3682 }
3683 
3684 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3685 				    const struct page *page, int off)
3686 {
3687 	if (skb_zcopy(skb))
3688 		return false;
3689 	if (i) {
3690 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3691 
3692 		return page == skb_frag_page(frag) &&
3693 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3694 	}
3695 	return false;
3696 }
3697 
3698 static inline int __skb_linearize(struct sk_buff *skb)
3699 {
3700 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3701 }
3702 
3703 /**
3704  *	skb_linearize - convert paged skb to linear one
3705  *	@skb: buffer to linarize
3706  *
3707  *	If there is no free memory -ENOMEM is returned, otherwise zero
3708  *	is returned and the old skb data released.
3709  */
3710 static inline int skb_linearize(struct sk_buff *skb)
3711 {
3712 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3713 }
3714 
3715 /**
3716  * skb_has_shared_frag - can any frag be overwritten
3717  * @skb: buffer to test
3718  *
3719  * Return true if the skb has at least one frag that might be modified
3720  * by an external entity (as in vmsplice()/sendfile())
3721  */
3722 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3723 {
3724 	return skb_is_nonlinear(skb) &&
3725 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3726 }
3727 
3728 /**
3729  *	skb_linearize_cow - make sure skb is linear and writable
3730  *	@skb: buffer to process
3731  *
3732  *	If there is no free memory -ENOMEM is returned, otherwise zero
3733  *	is returned and the old skb data released.
3734  */
3735 static inline int skb_linearize_cow(struct sk_buff *skb)
3736 {
3737 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3738 	       __skb_linearize(skb) : 0;
3739 }
3740 
3741 static __always_inline void
3742 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3743 		     unsigned int off)
3744 {
3745 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3746 		skb->csum = csum_block_sub(skb->csum,
3747 					   csum_partial(start, len, 0), off);
3748 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3749 		 skb_checksum_start_offset(skb) < 0)
3750 		skb->ip_summed = CHECKSUM_NONE;
3751 }
3752 
3753 /**
3754  *	skb_postpull_rcsum - update checksum for received skb after pull
3755  *	@skb: buffer to update
3756  *	@start: start of data before pull
3757  *	@len: length of data pulled
3758  *
3759  *	After doing a pull on a received packet, you need to call this to
3760  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3761  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3762  */
3763 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3764 				      const void *start, unsigned int len)
3765 {
3766 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3767 		skb->csum = wsum_negate(csum_partial(start, len,
3768 						     wsum_negate(skb->csum)));
3769 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3770 		 skb_checksum_start_offset(skb) < 0)
3771 		skb->ip_summed = CHECKSUM_NONE;
3772 }
3773 
3774 static __always_inline void
3775 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3776 		     unsigned int off)
3777 {
3778 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3779 		skb->csum = csum_block_add(skb->csum,
3780 					   csum_partial(start, len, 0), off);
3781 }
3782 
3783 /**
3784  *	skb_postpush_rcsum - update checksum for received skb after push
3785  *	@skb: buffer to update
3786  *	@start: start of data after push
3787  *	@len: length of data pushed
3788  *
3789  *	After doing a push on a received packet, you need to call this to
3790  *	update the CHECKSUM_COMPLETE checksum.
3791  */
3792 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3793 				      const void *start, unsigned int len)
3794 {
3795 	__skb_postpush_rcsum(skb, start, len, 0);
3796 }
3797 
3798 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3799 
3800 /**
3801  *	skb_push_rcsum - push skb and update receive checksum
3802  *	@skb: buffer to update
3803  *	@len: length of data pulled
3804  *
3805  *	This function performs an skb_push on the packet and updates
3806  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3807  *	receive path processing instead of skb_push unless you know
3808  *	that the checksum difference is zero (e.g., a valid IP header)
3809  *	or you are setting ip_summed to CHECKSUM_NONE.
3810  */
3811 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3812 {
3813 	skb_push(skb, len);
3814 	skb_postpush_rcsum(skb, skb->data, len);
3815 	return skb->data;
3816 }
3817 
3818 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3819 /**
3820  *	pskb_trim_rcsum - trim received skb and update checksum
3821  *	@skb: buffer to trim
3822  *	@len: new length
3823  *
3824  *	This is exactly the same as pskb_trim except that it ensures the
3825  *	checksum of received packets are still valid after the operation.
3826  *	It can change skb pointers.
3827  */
3828 
3829 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3830 {
3831 	if (likely(len >= skb->len))
3832 		return 0;
3833 	return pskb_trim_rcsum_slow(skb, len);
3834 }
3835 
3836 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3837 {
3838 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3839 		skb->ip_summed = CHECKSUM_NONE;
3840 	__skb_trim(skb, len);
3841 	return 0;
3842 }
3843 
3844 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3845 {
3846 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3847 		skb->ip_summed = CHECKSUM_NONE;
3848 	return __skb_grow(skb, len);
3849 }
3850 
3851 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3852 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3853 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3854 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3855 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3856 
3857 #define skb_queue_walk(queue, skb) \
3858 		for (skb = (queue)->next;					\
3859 		     skb != (struct sk_buff *)(queue);				\
3860 		     skb = skb->next)
3861 
3862 #define skb_queue_walk_safe(queue, skb, tmp)					\
3863 		for (skb = (queue)->next, tmp = skb->next;			\
3864 		     skb != (struct sk_buff *)(queue);				\
3865 		     skb = tmp, tmp = skb->next)
3866 
3867 #define skb_queue_walk_from(queue, skb)						\
3868 		for (; skb != (struct sk_buff *)(queue);			\
3869 		     skb = skb->next)
3870 
3871 #define skb_rbtree_walk(skb, root)						\
3872 		for (skb = skb_rb_first(root); skb != NULL;			\
3873 		     skb = skb_rb_next(skb))
3874 
3875 #define skb_rbtree_walk_from(skb)						\
3876 		for (; skb != NULL;						\
3877 		     skb = skb_rb_next(skb))
3878 
3879 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3880 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3881 		     skb = tmp)
3882 
3883 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3884 		for (tmp = skb->next;						\
3885 		     skb != (struct sk_buff *)(queue);				\
3886 		     skb = tmp, tmp = skb->next)
3887 
3888 #define skb_queue_reverse_walk(queue, skb) \
3889 		for (skb = (queue)->prev;					\
3890 		     skb != (struct sk_buff *)(queue);				\
3891 		     skb = skb->prev)
3892 
3893 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3894 		for (skb = (queue)->prev, tmp = skb->prev;			\
3895 		     skb != (struct sk_buff *)(queue);				\
3896 		     skb = tmp, tmp = skb->prev)
3897 
3898 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3899 		for (tmp = skb->prev;						\
3900 		     skb != (struct sk_buff *)(queue);				\
3901 		     skb = tmp, tmp = skb->prev)
3902 
3903 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3904 {
3905 	return skb_shinfo(skb)->frag_list != NULL;
3906 }
3907 
3908 static inline void skb_frag_list_init(struct sk_buff *skb)
3909 {
3910 	skb_shinfo(skb)->frag_list = NULL;
3911 }
3912 
3913 #define skb_walk_frags(skb, iter)	\
3914 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3915 
3916 
3917 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3918 				int *err, long *timeo_p,
3919 				const struct sk_buff *skb);
3920 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3921 					  struct sk_buff_head *queue,
3922 					  unsigned int flags,
3923 					  int *off, int *err,
3924 					  struct sk_buff **last);
3925 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3926 					struct sk_buff_head *queue,
3927 					unsigned int flags, int *off, int *err,
3928 					struct sk_buff **last);
3929 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3930 				    struct sk_buff_head *sk_queue,
3931 				    unsigned int flags, int *off, int *err);
3932 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3933 __poll_t datagram_poll(struct file *file, struct socket *sock,
3934 			   struct poll_table_struct *wait);
3935 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3936 			   struct iov_iter *to, int size);
3937 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3938 					struct msghdr *msg, int size)
3939 {
3940 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3941 }
3942 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3943 				   struct msghdr *msg);
3944 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3945 			   struct iov_iter *to, int len,
3946 			   struct ahash_request *hash);
3947 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3948 				 struct iov_iter *from, int len);
3949 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3950 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3951 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3952 static inline void skb_free_datagram_locked(struct sock *sk,
3953 					    struct sk_buff *skb)
3954 {
3955 	__skb_free_datagram_locked(sk, skb, 0);
3956 }
3957 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3958 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3959 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3960 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3961 			      int len);
3962 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3963 		    struct pipe_inode_info *pipe, unsigned int len,
3964 		    unsigned int flags);
3965 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3966 			 int len);
3967 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3968 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3969 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3970 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3971 		 int len, int hlen);
3972 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3973 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3974 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3975 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3976 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3977 				 unsigned int offset);
3978 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3979 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3980 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3981 int skb_vlan_pop(struct sk_buff *skb);
3982 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3983 int skb_eth_pop(struct sk_buff *skb);
3984 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3985 		 const unsigned char *src);
3986 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3987 		  int mac_len, bool ethernet);
3988 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3989 		 bool ethernet);
3990 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3991 int skb_mpls_dec_ttl(struct sk_buff *skb);
3992 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3993 			     gfp_t gfp);
3994 
3995 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3996 {
3997 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3998 }
3999 
4000 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4001 {
4002 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4003 }
4004 
4005 struct skb_checksum_ops {
4006 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4007 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4008 };
4009 
4010 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4011 
4012 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4013 		      __wsum csum, const struct skb_checksum_ops *ops);
4014 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4015 		    __wsum csum);
4016 
4017 static inline void * __must_check
4018 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4019 		     const void *data, int hlen, void *buffer)
4020 {
4021 	if (likely(hlen - offset >= len))
4022 		return (void *)data + offset;
4023 
4024 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4025 		return NULL;
4026 
4027 	return buffer;
4028 }
4029 
4030 static inline void * __must_check
4031 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4032 {
4033 	return __skb_header_pointer(skb, offset, len, skb->data,
4034 				    skb_headlen(skb), buffer);
4035 }
4036 
4037 static inline void * __must_check
4038 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4039 {
4040 	if (likely(skb_headlen(skb) - offset >= len))
4041 		return skb->data + offset;
4042 	return NULL;
4043 }
4044 
4045 /**
4046  *	skb_needs_linearize - check if we need to linearize a given skb
4047  *			      depending on the given device features.
4048  *	@skb: socket buffer to check
4049  *	@features: net device features
4050  *
4051  *	Returns true if either:
4052  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4053  *	2. skb is fragmented and the device does not support SG.
4054  */
4055 static inline bool skb_needs_linearize(struct sk_buff *skb,
4056 				       netdev_features_t features)
4057 {
4058 	return skb_is_nonlinear(skb) &&
4059 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4060 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4061 }
4062 
4063 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4064 					     void *to,
4065 					     const unsigned int len)
4066 {
4067 	memcpy(to, skb->data, len);
4068 }
4069 
4070 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4071 						    const int offset, void *to,
4072 						    const unsigned int len)
4073 {
4074 	memcpy(to, skb->data + offset, len);
4075 }
4076 
4077 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4078 					   const void *from,
4079 					   const unsigned int len)
4080 {
4081 	memcpy(skb->data, from, len);
4082 }
4083 
4084 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4085 						  const int offset,
4086 						  const void *from,
4087 						  const unsigned int len)
4088 {
4089 	memcpy(skb->data + offset, from, len);
4090 }
4091 
4092 void skb_init(void);
4093 
4094 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4095 {
4096 	return skb->tstamp;
4097 }
4098 
4099 /**
4100  *	skb_get_timestamp - get timestamp from a skb
4101  *	@skb: skb to get stamp from
4102  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4103  *
4104  *	Timestamps are stored in the skb as offsets to a base timestamp.
4105  *	This function converts the offset back to a struct timeval and stores
4106  *	it in stamp.
4107  */
4108 static inline void skb_get_timestamp(const struct sk_buff *skb,
4109 				     struct __kernel_old_timeval *stamp)
4110 {
4111 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4112 }
4113 
4114 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4115 					 struct __kernel_sock_timeval *stamp)
4116 {
4117 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4118 
4119 	stamp->tv_sec = ts.tv_sec;
4120 	stamp->tv_usec = ts.tv_nsec / 1000;
4121 }
4122 
4123 static inline void skb_get_timestampns(const struct sk_buff *skb,
4124 				       struct __kernel_old_timespec *stamp)
4125 {
4126 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4127 
4128 	stamp->tv_sec = ts.tv_sec;
4129 	stamp->tv_nsec = ts.tv_nsec;
4130 }
4131 
4132 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4133 					   struct __kernel_timespec *stamp)
4134 {
4135 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4136 
4137 	stamp->tv_sec = ts.tv_sec;
4138 	stamp->tv_nsec = ts.tv_nsec;
4139 }
4140 
4141 static inline void __net_timestamp(struct sk_buff *skb)
4142 {
4143 	skb->tstamp = ktime_get_real();
4144 	skb->mono_delivery_time = 0;
4145 }
4146 
4147 static inline ktime_t net_timedelta(ktime_t t)
4148 {
4149 	return ktime_sub(ktime_get_real(), t);
4150 }
4151 
4152 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4153 					 bool mono)
4154 {
4155 	skb->tstamp = kt;
4156 	skb->mono_delivery_time = kt && mono;
4157 }
4158 
4159 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4160 
4161 /* It is used in the ingress path to clear the delivery_time.
4162  * If needed, set the skb->tstamp to the (rcv) timestamp.
4163  */
4164 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4165 {
4166 	if (skb->mono_delivery_time) {
4167 		skb->mono_delivery_time = 0;
4168 		if (static_branch_unlikely(&netstamp_needed_key))
4169 			skb->tstamp = ktime_get_real();
4170 		else
4171 			skb->tstamp = 0;
4172 	}
4173 }
4174 
4175 static inline void skb_clear_tstamp(struct sk_buff *skb)
4176 {
4177 	if (skb->mono_delivery_time)
4178 		return;
4179 
4180 	skb->tstamp = 0;
4181 }
4182 
4183 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4184 {
4185 	if (skb->mono_delivery_time)
4186 		return 0;
4187 
4188 	return skb->tstamp;
4189 }
4190 
4191 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4192 {
4193 	if (!skb->mono_delivery_time && skb->tstamp)
4194 		return skb->tstamp;
4195 
4196 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4197 		return ktime_get_real();
4198 
4199 	return 0;
4200 }
4201 
4202 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4203 {
4204 	return skb_shinfo(skb)->meta_len;
4205 }
4206 
4207 static inline void *skb_metadata_end(const struct sk_buff *skb)
4208 {
4209 	return skb_mac_header(skb);
4210 }
4211 
4212 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4213 					  const struct sk_buff *skb_b,
4214 					  u8 meta_len)
4215 {
4216 	const void *a = skb_metadata_end(skb_a);
4217 	const void *b = skb_metadata_end(skb_b);
4218 	/* Using more efficient varaiant than plain call to memcmp(). */
4219 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4220 	u64 diffs = 0;
4221 
4222 	switch (meta_len) {
4223 #define __it(x, op) (x -= sizeof(u##op))
4224 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4225 	case 32: diffs |= __it_diff(a, b, 64);
4226 		fallthrough;
4227 	case 24: diffs |= __it_diff(a, b, 64);
4228 		fallthrough;
4229 	case 16: diffs |= __it_diff(a, b, 64);
4230 		fallthrough;
4231 	case  8: diffs |= __it_diff(a, b, 64);
4232 		break;
4233 	case 28: diffs |= __it_diff(a, b, 64);
4234 		fallthrough;
4235 	case 20: diffs |= __it_diff(a, b, 64);
4236 		fallthrough;
4237 	case 12: diffs |= __it_diff(a, b, 64);
4238 		fallthrough;
4239 	case  4: diffs |= __it_diff(a, b, 32);
4240 		break;
4241 	}
4242 	return diffs;
4243 #else
4244 	return memcmp(a - meta_len, b - meta_len, meta_len);
4245 #endif
4246 }
4247 
4248 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4249 					const struct sk_buff *skb_b)
4250 {
4251 	u8 len_a = skb_metadata_len(skb_a);
4252 	u8 len_b = skb_metadata_len(skb_b);
4253 
4254 	if (!(len_a | len_b))
4255 		return false;
4256 
4257 	return len_a != len_b ?
4258 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4259 }
4260 
4261 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4262 {
4263 	skb_shinfo(skb)->meta_len = meta_len;
4264 }
4265 
4266 static inline void skb_metadata_clear(struct sk_buff *skb)
4267 {
4268 	skb_metadata_set(skb, 0);
4269 }
4270 
4271 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4272 
4273 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4274 
4275 void skb_clone_tx_timestamp(struct sk_buff *skb);
4276 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4277 
4278 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4279 
4280 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4281 {
4282 }
4283 
4284 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4285 {
4286 	return false;
4287 }
4288 
4289 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4290 
4291 /**
4292  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4293  *
4294  * PHY drivers may accept clones of transmitted packets for
4295  * timestamping via their phy_driver.txtstamp method. These drivers
4296  * must call this function to return the skb back to the stack with a
4297  * timestamp.
4298  *
4299  * @skb: clone of the original outgoing packet
4300  * @hwtstamps: hardware time stamps
4301  *
4302  */
4303 void skb_complete_tx_timestamp(struct sk_buff *skb,
4304 			       struct skb_shared_hwtstamps *hwtstamps);
4305 
4306 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4307 		     struct skb_shared_hwtstamps *hwtstamps,
4308 		     struct sock *sk, int tstype);
4309 
4310 /**
4311  * skb_tstamp_tx - queue clone of skb with send time stamps
4312  * @orig_skb:	the original outgoing packet
4313  * @hwtstamps:	hardware time stamps, may be NULL if not available
4314  *
4315  * If the skb has a socket associated, then this function clones the
4316  * skb (thus sharing the actual data and optional structures), stores
4317  * the optional hardware time stamping information (if non NULL) or
4318  * generates a software time stamp (otherwise), then queues the clone
4319  * to the error queue of the socket.  Errors are silently ignored.
4320  */
4321 void skb_tstamp_tx(struct sk_buff *orig_skb,
4322 		   struct skb_shared_hwtstamps *hwtstamps);
4323 
4324 /**
4325  * skb_tx_timestamp() - Driver hook for transmit timestamping
4326  *
4327  * Ethernet MAC Drivers should call this function in their hard_xmit()
4328  * function immediately before giving the sk_buff to the MAC hardware.
4329  *
4330  * Specifically, one should make absolutely sure that this function is
4331  * called before TX completion of this packet can trigger.  Otherwise
4332  * the packet could potentially already be freed.
4333  *
4334  * @skb: A socket buffer.
4335  */
4336 static inline void skb_tx_timestamp(struct sk_buff *skb)
4337 {
4338 	skb_clone_tx_timestamp(skb);
4339 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4340 		skb_tstamp_tx(skb, NULL);
4341 }
4342 
4343 /**
4344  * skb_complete_wifi_ack - deliver skb with wifi status
4345  *
4346  * @skb: the original outgoing packet
4347  * @acked: ack status
4348  *
4349  */
4350 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4351 
4352 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4353 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4354 
4355 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4356 {
4357 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4358 		skb->csum_valid ||
4359 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4360 		 skb_checksum_start_offset(skb) >= 0));
4361 }
4362 
4363 /**
4364  *	skb_checksum_complete - Calculate checksum of an entire packet
4365  *	@skb: packet to process
4366  *
4367  *	This function calculates the checksum over the entire packet plus
4368  *	the value of skb->csum.  The latter can be used to supply the
4369  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4370  *	checksum.
4371  *
4372  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4373  *	this function can be used to verify that checksum on received
4374  *	packets.  In that case the function should return zero if the
4375  *	checksum is correct.  In particular, this function will return zero
4376  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4377  *	hardware has already verified the correctness of the checksum.
4378  */
4379 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4380 {
4381 	return skb_csum_unnecessary(skb) ?
4382 	       0 : __skb_checksum_complete(skb);
4383 }
4384 
4385 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4386 {
4387 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4388 		if (skb->csum_level == 0)
4389 			skb->ip_summed = CHECKSUM_NONE;
4390 		else
4391 			skb->csum_level--;
4392 	}
4393 }
4394 
4395 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4396 {
4397 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4398 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4399 			skb->csum_level++;
4400 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4401 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4402 		skb->csum_level = 0;
4403 	}
4404 }
4405 
4406 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4407 {
4408 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4409 		skb->ip_summed = CHECKSUM_NONE;
4410 		skb->csum_level = 0;
4411 	}
4412 }
4413 
4414 /* Check if we need to perform checksum complete validation.
4415  *
4416  * Returns true if checksum complete is needed, false otherwise
4417  * (either checksum is unnecessary or zero checksum is allowed).
4418  */
4419 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4420 						  bool zero_okay,
4421 						  __sum16 check)
4422 {
4423 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4424 		skb->csum_valid = 1;
4425 		__skb_decr_checksum_unnecessary(skb);
4426 		return false;
4427 	}
4428 
4429 	return true;
4430 }
4431 
4432 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4433  * in checksum_init.
4434  */
4435 #define CHECKSUM_BREAK 76
4436 
4437 /* Unset checksum-complete
4438  *
4439  * Unset checksum complete can be done when packet is being modified
4440  * (uncompressed for instance) and checksum-complete value is
4441  * invalidated.
4442  */
4443 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4444 {
4445 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4446 		skb->ip_summed = CHECKSUM_NONE;
4447 }
4448 
4449 /* Validate (init) checksum based on checksum complete.
4450  *
4451  * Return values:
4452  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4453  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4454  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4455  *   non-zero: value of invalid checksum
4456  *
4457  */
4458 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4459 						       bool complete,
4460 						       __wsum psum)
4461 {
4462 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4463 		if (!csum_fold(csum_add(psum, skb->csum))) {
4464 			skb->csum_valid = 1;
4465 			return 0;
4466 		}
4467 	}
4468 
4469 	skb->csum = psum;
4470 
4471 	if (complete || skb->len <= CHECKSUM_BREAK) {
4472 		__sum16 csum;
4473 
4474 		csum = __skb_checksum_complete(skb);
4475 		skb->csum_valid = !csum;
4476 		return csum;
4477 	}
4478 
4479 	return 0;
4480 }
4481 
4482 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4483 {
4484 	return 0;
4485 }
4486 
4487 /* Perform checksum validate (init). Note that this is a macro since we only
4488  * want to calculate the pseudo header which is an input function if necessary.
4489  * First we try to validate without any computation (checksum unnecessary) and
4490  * then calculate based on checksum complete calling the function to compute
4491  * pseudo header.
4492  *
4493  * Return values:
4494  *   0: checksum is validated or try to in skb_checksum_complete
4495  *   non-zero: value of invalid checksum
4496  */
4497 #define __skb_checksum_validate(skb, proto, complete,			\
4498 				zero_okay, check, compute_pseudo)	\
4499 ({									\
4500 	__sum16 __ret = 0;						\
4501 	skb->csum_valid = 0;						\
4502 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4503 		__ret = __skb_checksum_validate_complete(skb,		\
4504 				complete, compute_pseudo(skb, proto));	\
4505 	__ret;								\
4506 })
4507 
4508 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4509 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4510 
4511 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4512 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4513 
4514 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4515 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4516 
4517 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4518 					 compute_pseudo)		\
4519 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4520 
4521 #define skb_checksum_simple_validate(skb)				\
4522 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4523 
4524 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4525 {
4526 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4527 }
4528 
4529 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4530 {
4531 	skb->csum = ~pseudo;
4532 	skb->ip_summed = CHECKSUM_COMPLETE;
4533 }
4534 
4535 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4536 do {									\
4537 	if (__skb_checksum_convert_check(skb))				\
4538 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4539 } while (0)
4540 
4541 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4542 					      u16 start, u16 offset)
4543 {
4544 	skb->ip_summed = CHECKSUM_PARTIAL;
4545 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4546 	skb->csum_offset = offset - start;
4547 }
4548 
4549 /* Update skbuf and packet to reflect the remote checksum offload operation.
4550  * When called, ptr indicates the starting point for skb->csum when
4551  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4552  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4553  */
4554 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4555 				       int start, int offset, bool nopartial)
4556 {
4557 	__wsum delta;
4558 
4559 	if (!nopartial) {
4560 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4561 		return;
4562 	}
4563 
4564 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4565 		__skb_checksum_complete(skb);
4566 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4567 	}
4568 
4569 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4570 
4571 	/* Adjust skb->csum since we changed the packet */
4572 	skb->csum = csum_add(skb->csum, delta);
4573 }
4574 
4575 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4576 {
4577 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4578 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4579 #else
4580 	return NULL;
4581 #endif
4582 }
4583 
4584 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4585 {
4586 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4587 	return skb->_nfct;
4588 #else
4589 	return 0UL;
4590 #endif
4591 }
4592 
4593 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4594 {
4595 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4596 	skb->slow_gro |= !!nfct;
4597 	skb->_nfct = nfct;
4598 #endif
4599 }
4600 
4601 #ifdef CONFIG_SKB_EXTENSIONS
4602 enum skb_ext_id {
4603 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4604 	SKB_EXT_BRIDGE_NF,
4605 #endif
4606 #ifdef CONFIG_XFRM
4607 	SKB_EXT_SEC_PATH,
4608 #endif
4609 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4610 	TC_SKB_EXT,
4611 #endif
4612 #if IS_ENABLED(CONFIG_MPTCP)
4613 	SKB_EXT_MPTCP,
4614 #endif
4615 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4616 	SKB_EXT_MCTP,
4617 #endif
4618 	SKB_EXT_NUM, /* must be last */
4619 };
4620 
4621 /**
4622  *	struct skb_ext - sk_buff extensions
4623  *	@refcnt: 1 on allocation, deallocated on 0
4624  *	@offset: offset to add to @data to obtain extension address
4625  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4626  *	@data: start of extension data, variable sized
4627  *
4628  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4629  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4630  */
4631 struct skb_ext {
4632 	refcount_t refcnt;
4633 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4634 	u8 chunks;		/* same */
4635 	char data[] __aligned(8);
4636 };
4637 
4638 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4639 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4640 		    struct skb_ext *ext);
4641 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4642 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4643 void __skb_ext_put(struct skb_ext *ext);
4644 
4645 static inline void skb_ext_put(struct sk_buff *skb)
4646 {
4647 	if (skb->active_extensions)
4648 		__skb_ext_put(skb->extensions);
4649 }
4650 
4651 static inline void __skb_ext_copy(struct sk_buff *dst,
4652 				  const struct sk_buff *src)
4653 {
4654 	dst->active_extensions = src->active_extensions;
4655 
4656 	if (src->active_extensions) {
4657 		struct skb_ext *ext = src->extensions;
4658 
4659 		refcount_inc(&ext->refcnt);
4660 		dst->extensions = ext;
4661 	}
4662 }
4663 
4664 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4665 {
4666 	skb_ext_put(dst);
4667 	__skb_ext_copy(dst, src);
4668 }
4669 
4670 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4671 {
4672 	return !!ext->offset[i];
4673 }
4674 
4675 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4676 {
4677 	return skb->active_extensions & (1 << id);
4678 }
4679 
4680 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4681 {
4682 	if (skb_ext_exist(skb, id))
4683 		__skb_ext_del(skb, id);
4684 }
4685 
4686 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4687 {
4688 	if (skb_ext_exist(skb, id)) {
4689 		struct skb_ext *ext = skb->extensions;
4690 
4691 		return (void *)ext + (ext->offset[id] << 3);
4692 	}
4693 
4694 	return NULL;
4695 }
4696 
4697 static inline void skb_ext_reset(struct sk_buff *skb)
4698 {
4699 	if (unlikely(skb->active_extensions)) {
4700 		__skb_ext_put(skb->extensions);
4701 		skb->active_extensions = 0;
4702 	}
4703 }
4704 
4705 static inline bool skb_has_extensions(struct sk_buff *skb)
4706 {
4707 	return unlikely(skb->active_extensions);
4708 }
4709 #else
4710 static inline void skb_ext_put(struct sk_buff *skb) {}
4711 static inline void skb_ext_reset(struct sk_buff *skb) {}
4712 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4713 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4714 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4715 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4716 #endif /* CONFIG_SKB_EXTENSIONS */
4717 
4718 static inline void nf_reset_ct(struct sk_buff *skb)
4719 {
4720 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4721 	nf_conntrack_put(skb_nfct(skb));
4722 	skb->_nfct = 0;
4723 #endif
4724 }
4725 
4726 static inline void nf_reset_trace(struct sk_buff *skb)
4727 {
4728 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4729 	skb->nf_trace = 0;
4730 #endif
4731 }
4732 
4733 static inline void ipvs_reset(struct sk_buff *skb)
4734 {
4735 #if IS_ENABLED(CONFIG_IP_VS)
4736 	skb->ipvs_property = 0;
4737 #endif
4738 }
4739 
4740 /* Note: This doesn't put any conntrack info in dst. */
4741 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4742 			     bool copy)
4743 {
4744 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4745 	dst->_nfct = src->_nfct;
4746 	nf_conntrack_get(skb_nfct(src));
4747 #endif
4748 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4749 	if (copy)
4750 		dst->nf_trace = src->nf_trace;
4751 #endif
4752 }
4753 
4754 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4755 {
4756 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4757 	nf_conntrack_put(skb_nfct(dst));
4758 #endif
4759 	dst->slow_gro = src->slow_gro;
4760 	__nf_copy(dst, src, true);
4761 }
4762 
4763 #ifdef CONFIG_NETWORK_SECMARK
4764 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4765 {
4766 	to->secmark = from->secmark;
4767 }
4768 
4769 static inline void skb_init_secmark(struct sk_buff *skb)
4770 {
4771 	skb->secmark = 0;
4772 }
4773 #else
4774 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4775 { }
4776 
4777 static inline void skb_init_secmark(struct sk_buff *skb)
4778 { }
4779 #endif
4780 
4781 static inline int secpath_exists(const struct sk_buff *skb)
4782 {
4783 #ifdef CONFIG_XFRM
4784 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4785 #else
4786 	return 0;
4787 #endif
4788 }
4789 
4790 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4791 {
4792 	return !skb->destructor &&
4793 		!secpath_exists(skb) &&
4794 		!skb_nfct(skb) &&
4795 		!skb->_skb_refdst &&
4796 		!skb_has_frag_list(skb);
4797 }
4798 
4799 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4800 {
4801 	skb->queue_mapping = queue_mapping;
4802 }
4803 
4804 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4805 {
4806 	return skb->queue_mapping;
4807 }
4808 
4809 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4810 {
4811 	to->queue_mapping = from->queue_mapping;
4812 }
4813 
4814 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4815 {
4816 	skb->queue_mapping = rx_queue + 1;
4817 }
4818 
4819 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4820 {
4821 	return skb->queue_mapping - 1;
4822 }
4823 
4824 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4825 {
4826 	return skb->queue_mapping != 0;
4827 }
4828 
4829 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4830 {
4831 	skb->dst_pending_confirm = val;
4832 }
4833 
4834 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4835 {
4836 	return skb->dst_pending_confirm != 0;
4837 }
4838 
4839 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4840 {
4841 #ifdef CONFIG_XFRM
4842 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4843 #else
4844 	return NULL;
4845 #endif
4846 }
4847 
4848 static inline bool skb_is_gso(const struct sk_buff *skb)
4849 {
4850 	return skb_shinfo(skb)->gso_size;
4851 }
4852 
4853 /* Note: Should be called only if skb_is_gso(skb) is true */
4854 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4855 {
4856 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4857 }
4858 
4859 /* Note: Should be called only if skb_is_gso(skb) is true */
4860 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4861 {
4862 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4863 }
4864 
4865 /* Note: Should be called only if skb_is_gso(skb) is true */
4866 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4867 {
4868 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4869 }
4870 
4871 static inline void skb_gso_reset(struct sk_buff *skb)
4872 {
4873 	skb_shinfo(skb)->gso_size = 0;
4874 	skb_shinfo(skb)->gso_segs = 0;
4875 	skb_shinfo(skb)->gso_type = 0;
4876 }
4877 
4878 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4879 					 u16 increment)
4880 {
4881 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4882 		return;
4883 	shinfo->gso_size += increment;
4884 }
4885 
4886 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4887 					 u16 decrement)
4888 {
4889 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4890 		return;
4891 	shinfo->gso_size -= decrement;
4892 }
4893 
4894 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4895 
4896 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4897 {
4898 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4899 	 * wanted then gso_type will be set. */
4900 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4901 
4902 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4903 	    unlikely(shinfo->gso_type == 0)) {
4904 		__skb_warn_lro_forwarding(skb);
4905 		return true;
4906 	}
4907 	return false;
4908 }
4909 
4910 static inline void skb_forward_csum(struct sk_buff *skb)
4911 {
4912 	/* Unfortunately we don't support this one.  Any brave souls? */
4913 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4914 		skb->ip_summed = CHECKSUM_NONE;
4915 }
4916 
4917 /**
4918  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4919  * @skb: skb to check
4920  *
4921  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4922  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4923  * use this helper, to document places where we make this assertion.
4924  */
4925 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4926 {
4927 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4928 }
4929 
4930 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4931 
4932 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4933 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4934 				     unsigned int transport_len,
4935 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4936 
4937 /**
4938  * skb_head_is_locked - Determine if the skb->head is locked down
4939  * @skb: skb to check
4940  *
4941  * The head on skbs build around a head frag can be removed if they are
4942  * not cloned.  This function returns true if the skb head is locked down
4943  * due to either being allocated via kmalloc, or by being a clone with
4944  * multiple references to the head.
4945  */
4946 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4947 {
4948 	return !skb->head_frag || skb_cloned(skb);
4949 }
4950 
4951 /* Local Checksum Offload.
4952  * Compute outer checksum based on the assumption that the
4953  * inner checksum will be offloaded later.
4954  * See Documentation/networking/checksum-offloads.rst for
4955  * explanation of how this works.
4956  * Fill in outer checksum adjustment (e.g. with sum of outer
4957  * pseudo-header) before calling.
4958  * Also ensure that inner checksum is in linear data area.
4959  */
4960 static inline __wsum lco_csum(struct sk_buff *skb)
4961 {
4962 	unsigned char *csum_start = skb_checksum_start(skb);
4963 	unsigned char *l4_hdr = skb_transport_header(skb);
4964 	__wsum partial;
4965 
4966 	/* Start with complement of inner checksum adjustment */
4967 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4968 						    skb->csum_offset));
4969 
4970 	/* Add in checksum of our headers (incl. outer checksum
4971 	 * adjustment filled in by caller) and return result.
4972 	 */
4973 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4974 }
4975 
4976 static inline bool skb_is_redirected(const struct sk_buff *skb)
4977 {
4978 	return skb->redirected;
4979 }
4980 
4981 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4982 {
4983 	skb->redirected = 1;
4984 #ifdef CONFIG_NET_REDIRECT
4985 	skb->from_ingress = from_ingress;
4986 	if (skb->from_ingress)
4987 		skb_clear_tstamp(skb);
4988 #endif
4989 }
4990 
4991 static inline void skb_reset_redirect(struct sk_buff *skb)
4992 {
4993 	skb->redirected = 0;
4994 }
4995 
4996 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
4997 					      bool from_ingress)
4998 {
4999 	skb->redirected = 1;
5000 #ifdef CONFIG_NET_REDIRECT
5001 	skb->from_ingress = from_ingress;
5002 #endif
5003 }
5004 
5005 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5006 {
5007 #if IS_ENABLED(CONFIG_IP_SCTP)
5008 	return skb->csum_not_inet;
5009 #else
5010 	return 0;
5011 #endif
5012 }
5013 
5014 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5015 {
5016 	skb->ip_summed = CHECKSUM_NONE;
5017 #if IS_ENABLED(CONFIG_IP_SCTP)
5018 	skb->csum_not_inet = 0;
5019 #endif
5020 }
5021 
5022 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5023 				       const u64 kcov_handle)
5024 {
5025 #ifdef CONFIG_KCOV
5026 	skb->kcov_handle = kcov_handle;
5027 #endif
5028 }
5029 
5030 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5031 {
5032 #ifdef CONFIG_KCOV
5033 	return skb->kcov_handle;
5034 #else
5035 	return 0;
5036 #endif
5037 }
5038 
5039 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5040 {
5041 #ifdef CONFIG_PAGE_POOL
5042 	skb->pp_recycle = 1;
5043 #endif
5044 }
5045 
5046 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5047 			     ssize_t maxsize, gfp_t gfp);
5048 
5049 #endif	/* __KERNEL__ */
5050 #endif	/* _LINUX_SKBUFF_H */
5051