xref: /linux-6.15/include/linux/skbuff.h (revision 266fe2f2)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 
128 typedef struct skb_frag_struct skb_frag_t;
129 
130 struct skb_frag_struct {
131 	struct page *page;
132 	__u32 page_offset;
133 	__u32 size;
134 };
135 
136 #define HAVE_HW_TIME_STAMP
137 
138 /**
139  * struct skb_shared_hwtstamps - hardware time stamps
140  * @hwtstamp:	hardware time stamp transformed into duration
141  *		since arbitrary point in time
142  * @syststamp:	hwtstamp transformed to system time base
143  *
144  * Software time stamps generated by ktime_get_real() are stored in
145  * skb->tstamp. The relation between the different kinds of time
146  * stamps is as follows:
147  *
148  * syststamp and tstamp can be compared against each other in
149  * arbitrary combinations.  The accuracy of a
150  * syststamp/tstamp/"syststamp from other device" comparison is
151  * limited by the accuracy of the transformation into system time
152  * base. This depends on the device driver and its underlying
153  * hardware.
154  *
155  * hwtstamps can only be compared against other hwtstamps from
156  * the same device.
157  *
158  * This structure is attached to packets as part of the
159  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
160  */
161 struct skb_shared_hwtstamps {
162 	ktime_t	hwtstamp;
163 	ktime_t	syststamp;
164 };
165 
166 /**
167  * struct skb_shared_tx - instructions for time stamping of outgoing packets
168  * @hardware:		generate hardware time stamp
169  * @software:		generate software time stamp
170  * @in_progress:	device driver is going to provide
171  *			hardware time stamp
172  * @flags:		all shared_tx flags
173  *
174  * These flags are attached to packets as part of the
175  * &skb_shared_info. Use skb_tx() to get a pointer.
176  */
177 union skb_shared_tx {
178 	struct {
179 		__u8	hardware:1,
180 			software:1,
181 			in_progress:1;
182 	};
183 	__u8 flags;
184 };
185 
186 /* This data is invariant across clones and lives at
187  * the end of the header data, ie. at skb->end.
188  */
189 struct skb_shared_info {
190 	atomic_t	dataref;
191 	unsigned short	nr_frags;
192 	unsigned short	gso_size;
193 #ifdef CONFIG_HAS_DMA
194 	dma_addr_t	dma_head;
195 #endif
196 	/* Warning: this field is not always filled in (UFO)! */
197 	unsigned short	gso_segs;
198 	unsigned short  gso_type;
199 	__be32          ip6_frag_id;
200 	union skb_shared_tx tx_flags;
201 	struct sk_buff	*frag_list;
202 	struct skb_shared_hwtstamps hwtstamps;
203 	skb_frag_t	frags[MAX_SKB_FRAGS];
204 #ifdef CONFIG_HAS_DMA
205 	dma_addr_t	dma_maps[MAX_SKB_FRAGS];
206 #endif
207 	/* Intermediate layers must ensure that destructor_arg
208 	 * remains valid until skb destructor */
209 	void *		destructor_arg;
210 };
211 
212 /* We divide dataref into two halves.  The higher 16 bits hold references
213  * to the payload part of skb->data.  The lower 16 bits hold references to
214  * the entire skb->data.  A clone of a headerless skb holds the length of
215  * the header in skb->hdr_len.
216  *
217  * All users must obey the rule that the skb->data reference count must be
218  * greater than or equal to the payload reference count.
219  *
220  * Holding a reference to the payload part means that the user does not
221  * care about modifications to the header part of skb->data.
222  */
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
225 
226 
227 enum {
228 	SKB_FCLONE_UNAVAILABLE,
229 	SKB_FCLONE_ORIG,
230 	SKB_FCLONE_CLONE,
231 };
232 
233 enum {
234 	SKB_GSO_TCPV4 = 1 << 0,
235 	SKB_GSO_UDP = 1 << 1,
236 
237 	/* This indicates the skb is from an untrusted source. */
238 	SKB_GSO_DODGY = 1 << 2,
239 
240 	/* This indicates the tcp segment has CWR set. */
241 	SKB_GSO_TCP_ECN = 1 << 3,
242 
243 	SKB_GSO_TCPV6 = 1 << 4,
244 
245 	SKB_GSO_FCOE = 1 << 5,
246 };
247 
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
250 #endif
251 
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t;
254 #else
255 typedef unsigned char *sk_buff_data_t;
256 #endif
257 
258 /**
259  *	struct sk_buff - socket buffer
260  *	@next: Next buffer in list
261  *	@prev: Previous buffer in list
262  *	@sk: Socket we are owned by
263  *	@tstamp: Time we arrived
264  *	@dev: Device we arrived on/are leaving by
265  *	@transport_header: Transport layer header
266  *	@network_header: Network layer header
267  *	@mac_header: Link layer header
268  *	@_skb_dst: destination entry
269  *	@sp: the security path, used for xfrm
270  *	@cb: Control buffer. Free for use by every layer. Put private vars here
271  *	@len: Length of actual data
272  *	@data_len: Data length
273  *	@mac_len: Length of link layer header
274  *	@hdr_len: writable header length of cloned skb
275  *	@csum: Checksum (must include start/offset pair)
276  *	@csum_start: Offset from skb->head where checksumming should start
277  *	@csum_offset: Offset from csum_start where checksum should be stored
278  *	@local_df: allow local fragmentation
279  *	@cloned: Head may be cloned (check refcnt to be sure)
280  *	@nohdr: Payload reference only, must not modify header
281  *	@pkt_type: Packet class
282  *	@fclone: skbuff clone status
283  *	@ip_summed: Driver fed us an IP checksum
284  *	@priority: Packet queueing priority
285  *	@users: User count - see {datagram,tcp}.c
286  *	@protocol: Packet protocol from driver
287  *	@truesize: Buffer size
288  *	@head: Head of buffer
289  *	@data: Data head pointer
290  *	@tail: Tail pointer
291  *	@end: End pointer
292  *	@destructor: Destruct function
293  *	@mark: Generic packet mark
294  *	@nfct: Associated connection, if any
295  *	@ipvs_property: skbuff is owned by ipvs
296  *	@peeked: this packet has been seen already, so stats have been
297  *		done for it, don't do them again
298  *	@nf_trace: netfilter packet trace flag
299  *	@nfctinfo: Relationship of this skb to the connection
300  *	@nfct_reasm: netfilter conntrack re-assembly pointer
301  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
302  *	@skb_iif: ifindex of device we arrived on
303  *	@queue_mapping: Queue mapping for multiqueue devices
304  *	@tc_index: Traffic control index
305  *	@tc_verd: traffic control verdict
306  *	@ndisc_nodetype: router type (from link layer)
307  *	@dma_cookie: a cookie to one of several possible DMA operations
308  *		done by skb DMA functions
309  *	@secmark: security marking
310  *	@vlan_tci: vlan tag control information
311  */
312 
313 struct sk_buff {
314 	/* These two members must be first. */
315 	struct sk_buff		*next;
316 	struct sk_buff		*prev;
317 
318 	struct sock		*sk;
319 	ktime_t			tstamp;
320 	struct net_device	*dev;
321 
322 	unsigned long		_skb_dst;
323 #ifdef CONFIG_XFRM
324 	struct	sec_path	*sp;
325 #endif
326 	/*
327 	 * This is the control buffer. It is free to use for every
328 	 * layer. Please put your private variables there. If you
329 	 * want to keep them across layers you have to do a skb_clone()
330 	 * first. This is owned by whoever has the skb queued ATM.
331 	 */
332 	char			cb[48];
333 
334 	unsigned int		len,
335 				data_len;
336 	__u16			mac_len,
337 				hdr_len;
338 	union {
339 		__wsum		csum;
340 		struct {
341 			__u16	csum_start;
342 			__u16	csum_offset;
343 		};
344 	};
345 	__u32			priority;
346 	kmemcheck_bitfield_begin(flags1);
347 	__u8			local_df:1,
348 				cloned:1,
349 				ip_summed:2,
350 				nohdr:1,
351 				nfctinfo:3;
352 	__u8			pkt_type:3,
353 				fclone:2,
354 				ipvs_property:1,
355 				peeked:1,
356 				nf_trace:1;
357 	__be16			protocol:16;
358 	kmemcheck_bitfield_end(flags1);
359 
360 	void			(*destructor)(struct sk_buff *skb);
361 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
362 	struct nf_conntrack	*nfct;
363 	struct sk_buff		*nfct_reasm;
364 #endif
365 #ifdef CONFIG_BRIDGE_NETFILTER
366 	struct nf_bridge_info	*nf_bridge;
367 #endif
368 
369 	int			skb_iif;
370 #ifdef CONFIG_NET_SCHED
371 	__u16			tc_index;	/* traffic control index */
372 #ifdef CONFIG_NET_CLS_ACT
373 	__u16			tc_verd;	/* traffic control verdict */
374 #endif
375 #endif
376 
377 	kmemcheck_bitfield_begin(flags2);
378 	__u16			queue_mapping:16;
379 #ifdef CONFIG_IPV6_NDISC_NODETYPE
380 	__u8			ndisc_nodetype:2;
381 #endif
382 	kmemcheck_bitfield_end(flags2);
383 
384 	/* 0/14 bit hole */
385 
386 #ifdef CONFIG_NET_DMA
387 	dma_cookie_t		dma_cookie;
388 #endif
389 #ifdef CONFIG_NETWORK_SECMARK
390 	__u32			secmark;
391 #endif
392 	union {
393 		__u32		mark;
394 		__u32		dropcount;
395 	};
396 
397 	__u16			vlan_tci;
398 
399 	sk_buff_data_t		transport_header;
400 	sk_buff_data_t		network_header;
401 	sk_buff_data_t		mac_header;
402 	/* These elements must be at the end, see alloc_skb() for details.  */
403 	sk_buff_data_t		tail;
404 	sk_buff_data_t		end;
405 	unsigned char		*head,
406 				*data;
407 	unsigned int		truesize;
408 	atomic_t		users;
409 };
410 
411 #ifdef __KERNEL__
412 /*
413  *	Handling routines are only of interest to the kernel
414  */
415 #include <linux/slab.h>
416 
417 #include <asm/system.h>
418 
419 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
420 {
421 	return (struct dst_entry *)skb->_skb_dst;
422 }
423 
424 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
425 {
426 	skb->_skb_dst = (unsigned long)dst;
427 }
428 
429 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
430 {
431 	return (struct rtable *)skb_dst(skb);
432 }
433 
434 extern void kfree_skb(struct sk_buff *skb);
435 extern void consume_skb(struct sk_buff *skb);
436 extern void	       __kfree_skb(struct sk_buff *skb);
437 extern struct sk_buff *__alloc_skb(unsigned int size,
438 				   gfp_t priority, int fclone, int node);
439 static inline struct sk_buff *alloc_skb(unsigned int size,
440 					gfp_t priority)
441 {
442 	return __alloc_skb(size, priority, 0, -1);
443 }
444 
445 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
446 					       gfp_t priority)
447 {
448 	return __alloc_skb(size, priority, 1, -1);
449 }
450 
451 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
452 
453 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
454 extern struct sk_buff *skb_clone(struct sk_buff *skb,
455 				 gfp_t priority);
456 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
457 				gfp_t priority);
458 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
459 				 gfp_t gfp_mask);
460 extern int	       pskb_expand_head(struct sk_buff *skb,
461 					int nhead, int ntail,
462 					gfp_t gfp_mask);
463 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
464 					    unsigned int headroom);
465 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
466 				       int newheadroom, int newtailroom,
467 				       gfp_t priority);
468 extern int	       skb_to_sgvec(struct sk_buff *skb,
469 				    struct scatterlist *sg, int offset,
470 				    int len);
471 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
472 				    struct sk_buff **trailer);
473 extern int	       skb_pad(struct sk_buff *skb, int pad);
474 #define dev_kfree_skb(a)	consume_skb(a)
475 #define dev_consume_skb(a)	kfree_skb_clean(a)
476 extern void	      skb_over_panic(struct sk_buff *skb, int len,
477 				     void *here);
478 extern void	      skb_under_panic(struct sk_buff *skb, int len,
479 				      void *here);
480 
481 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
482 			int getfrag(void *from, char *to, int offset,
483 			int len,int odd, struct sk_buff *skb),
484 			void *from, int length);
485 
486 struct skb_seq_state {
487 	__u32		lower_offset;
488 	__u32		upper_offset;
489 	__u32		frag_idx;
490 	__u32		stepped_offset;
491 	struct sk_buff	*root_skb;
492 	struct sk_buff	*cur_skb;
493 	__u8		*frag_data;
494 };
495 
496 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
497 					   unsigned int from, unsigned int to,
498 					   struct skb_seq_state *st);
499 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
500 				   struct skb_seq_state *st);
501 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
502 
503 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
504 				    unsigned int to, struct ts_config *config,
505 				    struct ts_state *state);
506 
507 #ifdef NET_SKBUFF_DATA_USES_OFFSET
508 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
509 {
510 	return skb->head + skb->end;
511 }
512 #else
513 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
514 {
515 	return skb->end;
516 }
517 #endif
518 
519 /* Internal */
520 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
521 
522 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
523 {
524 	return &skb_shinfo(skb)->hwtstamps;
525 }
526 
527 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
528 {
529 	return &skb_shinfo(skb)->tx_flags;
530 }
531 
532 /**
533  *	skb_queue_empty - check if a queue is empty
534  *	@list: queue head
535  *
536  *	Returns true if the queue is empty, false otherwise.
537  */
538 static inline int skb_queue_empty(const struct sk_buff_head *list)
539 {
540 	return list->next == (struct sk_buff *)list;
541 }
542 
543 /**
544  *	skb_queue_is_last - check if skb is the last entry in the queue
545  *	@list: queue head
546  *	@skb: buffer
547  *
548  *	Returns true if @skb is the last buffer on the list.
549  */
550 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
551 				     const struct sk_buff *skb)
552 {
553 	return (skb->next == (struct sk_buff *) list);
554 }
555 
556 /**
557  *	skb_queue_is_first - check if skb is the first entry in the queue
558  *	@list: queue head
559  *	@skb: buffer
560  *
561  *	Returns true if @skb is the first buffer on the list.
562  */
563 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
564 				      const struct sk_buff *skb)
565 {
566 	return (skb->prev == (struct sk_buff *) list);
567 }
568 
569 /**
570  *	skb_queue_next - return the next packet in the queue
571  *	@list: queue head
572  *	@skb: current buffer
573  *
574  *	Return the next packet in @list after @skb.  It is only valid to
575  *	call this if skb_queue_is_last() evaluates to false.
576  */
577 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
578 					     const struct sk_buff *skb)
579 {
580 	/* This BUG_ON may seem severe, but if we just return then we
581 	 * are going to dereference garbage.
582 	 */
583 	BUG_ON(skb_queue_is_last(list, skb));
584 	return skb->next;
585 }
586 
587 /**
588  *	skb_queue_prev - return the prev packet in the queue
589  *	@list: queue head
590  *	@skb: current buffer
591  *
592  *	Return the prev packet in @list before @skb.  It is only valid to
593  *	call this if skb_queue_is_first() evaluates to false.
594  */
595 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
596 					     const struct sk_buff *skb)
597 {
598 	/* This BUG_ON may seem severe, but if we just return then we
599 	 * are going to dereference garbage.
600 	 */
601 	BUG_ON(skb_queue_is_first(list, skb));
602 	return skb->prev;
603 }
604 
605 /**
606  *	skb_get - reference buffer
607  *	@skb: buffer to reference
608  *
609  *	Makes another reference to a socket buffer and returns a pointer
610  *	to the buffer.
611  */
612 static inline struct sk_buff *skb_get(struct sk_buff *skb)
613 {
614 	atomic_inc(&skb->users);
615 	return skb;
616 }
617 
618 /*
619  * If users == 1, we are the only owner and are can avoid redundant
620  * atomic change.
621  */
622 
623 /**
624  *	skb_cloned - is the buffer a clone
625  *	@skb: buffer to check
626  *
627  *	Returns true if the buffer was generated with skb_clone() and is
628  *	one of multiple shared copies of the buffer. Cloned buffers are
629  *	shared data so must not be written to under normal circumstances.
630  */
631 static inline int skb_cloned(const struct sk_buff *skb)
632 {
633 	return skb->cloned &&
634 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
635 }
636 
637 /**
638  *	skb_header_cloned - is the header a clone
639  *	@skb: buffer to check
640  *
641  *	Returns true if modifying the header part of the buffer requires
642  *	the data to be copied.
643  */
644 static inline int skb_header_cloned(const struct sk_buff *skb)
645 {
646 	int dataref;
647 
648 	if (!skb->cloned)
649 		return 0;
650 
651 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
652 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
653 	return dataref != 1;
654 }
655 
656 /**
657  *	skb_header_release - release reference to header
658  *	@skb: buffer to operate on
659  *
660  *	Drop a reference to the header part of the buffer.  This is done
661  *	by acquiring a payload reference.  You must not read from the header
662  *	part of skb->data after this.
663  */
664 static inline void skb_header_release(struct sk_buff *skb)
665 {
666 	BUG_ON(skb->nohdr);
667 	skb->nohdr = 1;
668 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
669 }
670 
671 /**
672  *	skb_shared - is the buffer shared
673  *	@skb: buffer to check
674  *
675  *	Returns true if more than one person has a reference to this
676  *	buffer.
677  */
678 static inline int skb_shared(const struct sk_buff *skb)
679 {
680 	return atomic_read(&skb->users) != 1;
681 }
682 
683 /**
684  *	skb_share_check - check if buffer is shared and if so clone it
685  *	@skb: buffer to check
686  *	@pri: priority for memory allocation
687  *
688  *	If the buffer is shared the buffer is cloned and the old copy
689  *	drops a reference. A new clone with a single reference is returned.
690  *	If the buffer is not shared the original buffer is returned. When
691  *	being called from interrupt status or with spinlocks held pri must
692  *	be GFP_ATOMIC.
693  *
694  *	NULL is returned on a memory allocation failure.
695  */
696 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
697 					      gfp_t pri)
698 {
699 	might_sleep_if(pri & __GFP_WAIT);
700 	if (skb_shared(skb)) {
701 		struct sk_buff *nskb = skb_clone(skb, pri);
702 		kfree_skb(skb);
703 		skb = nskb;
704 	}
705 	return skb;
706 }
707 
708 /*
709  *	Copy shared buffers into a new sk_buff. We effectively do COW on
710  *	packets to handle cases where we have a local reader and forward
711  *	and a couple of other messy ones. The normal one is tcpdumping
712  *	a packet thats being forwarded.
713  */
714 
715 /**
716  *	skb_unshare - make a copy of a shared buffer
717  *	@skb: buffer to check
718  *	@pri: priority for memory allocation
719  *
720  *	If the socket buffer is a clone then this function creates a new
721  *	copy of the data, drops a reference count on the old copy and returns
722  *	the new copy with the reference count at 1. If the buffer is not a clone
723  *	the original buffer is returned. When called with a spinlock held or
724  *	from interrupt state @pri must be %GFP_ATOMIC
725  *
726  *	%NULL is returned on a memory allocation failure.
727  */
728 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
729 					  gfp_t pri)
730 {
731 	might_sleep_if(pri & __GFP_WAIT);
732 	if (skb_cloned(skb)) {
733 		struct sk_buff *nskb = skb_copy(skb, pri);
734 		kfree_skb(skb);	/* Free our shared copy */
735 		skb = nskb;
736 	}
737 	return skb;
738 }
739 
740 /**
741  *	skb_peek
742  *	@list_: list to peek at
743  *
744  *	Peek an &sk_buff. Unlike most other operations you _MUST_
745  *	be careful with this one. A peek leaves the buffer on the
746  *	list and someone else may run off with it. You must hold
747  *	the appropriate locks or have a private queue to do this.
748  *
749  *	Returns %NULL for an empty list or a pointer to the head element.
750  *	The reference count is not incremented and the reference is therefore
751  *	volatile. Use with caution.
752  */
753 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
754 {
755 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
756 	if (list == (struct sk_buff *)list_)
757 		list = NULL;
758 	return list;
759 }
760 
761 /**
762  *	skb_peek_tail
763  *	@list_: list to peek at
764  *
765  *	Peek an &sk_buff. Unlike most other operations you _MUST_
766  *	be careful with this one. A peek leaves the buffer on the
767  *	list and someone else may run off with it. You must hold
768  *	the appropriate locks or have a private queue to do this.
769  *
770  *	Returns %NULL for an empty list or a pointer to the tail element.
771  *	The reference count is not incremented and the reference is therefore
772  *	volatile. Use with caution.
773  */
774 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
775 {
776 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
777 	if (list == (struct sk_buff *)list_)
778 		list = NULL;
779 	return list;
780 }
781 
782 /**
783  *	skb_queue_len	- get queue length
784  *	@list_: list to measure
785  *
786  *	Return the length of an &sk_buff queue.
787  */
788 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
789 {
790 	return list_->qlen;
791 }
792 
793 /**
794  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
795  *	@list: queue to initialize
796  *
797  *	This initializes only the list and queue length aspects of
798  *	an sk_buff_head object.  This allows to initialize the list
799  *	aspects of an sk_buff_head without reinitializing things like
800  *	the spinlock.  It can also be used for on-stack sk_buff_head
801  *	objects where the spinlock is known to not be used.
802  */
803 static inline void __skb_queue_head_init(struct sk_buff_head *list)
804 {
805 	list->prev = list->next = (struct sk_buff *)list;
806 	list->qlen = 0;
807 }
808 
809 /*
810  * This function creates a split out lock class for each invocation;
811  * this is needed for now since a whole lot of users of the skb-queue
812  * infrastructure in drivers have different locking usage (in hardirq)
813  * than the networking core (in softirq only). In the long run either the
814  * network layer or drivers should need annotation to consolidate the
815  * main types of usage into 3 classes.
816  */
817 static inline void skb_queue_head_init(struct sk_buff_head *list)
818 {
819 	spin_lock_init(&list->lock);
820 	__skb_queue_head_init(list);
821 }
822 
823 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
824 		struct lock_class_key *class)
825 {
826 	skb_queue_head_init(list);
827 	lockdep_set_class(&list->lock, class);
828 }
829 
830 /*
831  *	Insert an sk_buff on a list.
832  *
833  *	The "__skb_xxxx()" functions are the non-atomic ones that
834  *	can only be called with interrupts disabled.
835  */
836 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
837 static inline void __skb_insert(struct sk_buff *newsk,
838 				struct sk_buff *prev, struct sk_buff *next,
839 				struct sk_buff_head *list)
840 {
841 	newsk->next = next;
842 	newsk->prev = prev;
843 	next->prev  = prev->next = newsk;
844 	list->qlen++;
845 }
846 
847 static inline void __skb_queue_splice(const struct sk_buff_head *list,
848 				      struct sk_buff *prev,
849 				      struct sk_buff *next)
850 {
851 	struct sk_buff *first = list->next;
852 	struct sk_buff *last = list->prev;
853 
854 	first->prev = prev;
855 	prev->next = first;
856 
857 	last->next = next;
858 	next->prev = last;
859 }
860 
861 /**
862  *	skb_queue_splice - join two skb lists, this is designed for stacks
863  *	@list: the new list to add
864  *	@head: the place to add it in the first list
865  */
866 static inline void skb_queue_splice(const struct sk_buff_head *list,
867 				    struct sk_buff_head *head)
868 {
869 	if (!skb_queue_empty(list)) {
870 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
871 		head->qlen += list->qlen;
872 	}
873 }
874 
875 /**
876  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
877  *	@list: the new list to add
878  *	@head: the place to add it in the first list
879  *
880  *	The list at @list is reinitialised
881  */
882 static inline void skb_queue_splice_init(struct sk_buff_head *list,
883 					 struct sk_buff_head *head)
884 {
885 	if (!skb_queue_empty(list)) {
886 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
887 		head->qlen += list->qlen;
888 		__skb_queue_head_init(list);
889 	}
890 }
891 
892 /**
893  *	skb_queue_splice_tail - join two skb lists, each list being a queue
894  *	@list: the new list to add
895  *	@head: the place to add it in the first list
896  */
897 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
898 					 struct sk_buff_head *head)
899 {
900 	if (!skb_queue_empty(list)) {
901 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
902 		head->qlen += list->qlen;
903 	}
904 }
905 
906 /**
907  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
908  *	@list: the new list to add
909  *	@head: the place to add it in the first list
910  *
911  *	Each of the lists is a queue.
912  *	The list at @list is reinitialised
913  */
914 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
915 					      struct sk_buff_head *head)
916 {
917 	if (!skb_queue_empty(list)) {
918 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
919 		head->qlen += list->qlen;
920 		__skb_queue_head_init(list);
921 	}
922 }
923 
924 /**
925  *	__skb_queue_after - queue a buffer at the list head
926  *	@list: list to use
927  *	@prev: place after this buffer
928  *	@newsk: buffer to queue
929  *
930  *	Queue a buffer int the middle of a list. This function takes no locks
931  *	and you must therefore hold required locks before calling it.
932  *
933  *	A buffer cannot be placed on two lists at the same time.
934  */
935 static inline void __skb_queue_after(struct sk_buff_head *list,
936 				     struct sk_buff *prev,
937 				     struct sk_buff *newsk)
938 {
939 	__skb_insert(newsk, prev, prev->next, list);
940 }
941 
942 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
943 		       struct sk_buff_head *list);
944 
945 static inline void __skb_queue_before(struct sk_buff_head *list,
946 				      struct sk_buff *next,
947 				      struct sk_buff *newsk)
948 {
949 	__skb_insert(newsk, next->prev, next, list);
950 }
951 
952 /**
953  *	__skb_queue_head - queue a buffer at the list head
954  *	@list: list to use
955  *	@newsk: buffer to queue
956  *
957  *	Queue a buffer at the start of a list. This function takes no locks
958  *	and you must therefore hold required locks before calling it.
959  *
960  *	A buffer cannot be placed on two lists at the same time.
961  */
962 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
963 static inline void __skb_queue_head(struct sk_buff_head *list,
964 				    struct sk_buff *newsk)
965 {
966 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
967 }
968 
969 /**
970  *	__skb_queue_tail - queue a buffer at the list tail
971  *	@list: list to use
972  *	@newsk: buffer to queue
973  *
974  *	Queue a buffer at the end of a list. This function takes no locks
975  *	and you must therefore hold required locks before calling it.
976  *
977  *	A buffer cannot be placed on two lists at the same time.
978  */
979 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
980 static inline void __skb_queue_tail(struct sk_buff_head *list,
981 				   struct sk_buff *newsk)
982 {
983 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
984 }
985 
986 /*
987  * remove sk_buff from list. _Must_ be called atomically, and with
988  * the list known..
989  */
990 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
991 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
992 {
993 	struct sk_buff *next, *prev;
994 
995 	list->qlen--;
996 	next	   = skb->next;
997 	prev	   = skb->prev;
998 	skb->next  = skb->prev = NULL;
999 	next->prev = prev;
1000 	prev->next = next;
1001 }
1002 
1003 /**
1004  *	__skb_dequeue - remove from the head of the queue
1005  *	@list: list to dequeue from
1006  *
1007  *	Remove the head of the list. This function does not take any locks
1008  *	so must be used with appropriate locks held only. The head item is
1009  *	returned or %NULL if the list is empty.
1010  */
1011 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1012 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1013 {
1014 	struct sk_buff *skb = skb_peek(list);
1015 	if (skb)
1016 		__skb_unlink(skb, list);
1017 	return skb;
1018 }
1019 
1020 /**
1021  *	__skb_dequeue_tail - remove from the tail of the queue
1022  *	@list: list to dequeue from
1023  *
1024  *	Remove the tail of the list. This function does not take any locks
1025  *	so must be used with appropriate locks held only. The tail item is
1026  *	returned or %NULL if the list is empty.
1027  */
1028 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1029 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1030 {
1031 	struct sk_buff *skb = skb_peek_tail(list);
1032 	if (skb)
1033 		__skb_unlink(skb, list);
1034 	return skb;
1035 }
1036 
1037 
1038 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1039 {
1040 	return skb->data_len;
1041 }
1042 
1043 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1044 {
1045 	return skb->len - skb->data_len;
1046 }
1047 
1048 static inline int skb_pagelen(const struct sk_buff *skb)
1049 {
1050 	int i, len = 0;
1051 
1052 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1053 		len += skb_shinfo(skb)->frags[i].size;
1054 	return len + skb_headlen(skb);
1055 }
1056 
1057 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1058 				      struct page *page, int off, int size)
1059 {
1060 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1061 
1062 	frag->page		  = page;
1063 	frag->page_offset	  = off;
1064 	frag->size		  = size;
1065 	skb_shinfo(skb)->nr_frags = i + 1;
1066 }
1067 
1068 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1069 			    int off, int size);
1070 
1071 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1072 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frags(skb))
1073 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1074 
1075 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1076 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1077 {
1078 	return skb->head + skb->tail;
1079 }
1080 
1081 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1082 {
1083 	skb->tail = skb->data - skb->head;
1084 }
1085 
1086 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1087 {
1088 	skb_reset_tail_pointer(skb);
1089 	skb->tail += offset;
1090 }
1091 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1092 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1093 {
1094 	return skb->tail;
1095 }
1096 
1097 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1098 {
1099 	skb->tail = skb->data;
1100 }
1101 
1102 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1103 {
1104 	skb->tail = skb->data + offset;
1105 }
1106 
1107 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1108 
1109 /*
1110  *	Add data to an sk_buff
1111  */
1112 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1113 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1114 {
1115 	unsigned char *tmp = skb_tail_pointer(skb);
1116 	SKB_LINEAR_ASSERT(skb);
1117 	skb->tail += len;
1118 	skb->len  += len;
1119 	return tmp;
1120 }
1121 
1122 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1123 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1124 {
1125 	skb->data -= len;
1126 	skb->len  += len;
1127 	return skb->data;
1128 }
1129 
1130 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1131 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1132 {
1133 	skb->len -= len;
1134 	BUG_ON(skb->len < skb->data_len);
1135 	return skb->data += len;
1136 }
1137 
1138 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1139 
1140 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1141 {
1142 	if (len > skb_headlen(skb) &&
1143 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1144 		return NULL;
1145 	skb->len -= len;
1146 	return skb->data += len;
1147 }
1148 
1149 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1150 {
1151 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1152 }
1153 
1154 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1155 {
1156 	if (likely(len <= skb_headlen(skb)))
1157 		return 1;
1158 	if (unlikely(len > skb->len))
1159 		return 0;
1160 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1161 }
1162 
1163 /**
1164  *	skb_headroom - bytes at buffer head
1165  *	@skb: buffer to check
1166  *
1167  *	Return the number of bytes of free space at the head of an &sk_buff.
1168  */
1169 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1170 {
1171 	return skb->data - skb->head;
1172 }
1173 
1174 /**
1175  *	skb_tailroom - bytes at buffer end
1176  *	@skb: buffer to check
1177  *
1178  *	Return the number of bytes of free space at the tail of an sk_buff
1179  */
1180 static inline int skb_tailroom(const struct sk_buff *skb)
1181 {
1182 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1183 }
1184 
1185 /**
1186  *	skb_reserve - adjust headroom
1187  *	@skb: buffer to alter
1188  *	@len: bytes to move
1189  *
1190  *	Increase the headroom of an empty &sk_buff by reducing the tail
1191  *	room. This is only allowed for an empty buffer.
1192  */
1193 static inline void skb_reserve(struct sk_buff *skb, int len)
1194 {
1195 	skb->data += len;
1196 	skb->tail += len;
1197 }
1198 
1199 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1200 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1201 {
1202 	return skb->head + skb->transport_header;
1203 }
1204 
1205 static inline void skb_reset_transport_header(struct sk_buff *skb)
1206 {
1207 	skb->transport_header = skb->data - skb->head;
1208 }
1209 
1210 static inline void skb_set_transport_header(struct sk_buff *skb,
1211 					    const int offset)
1212 {
1213 	skb_reset_transport_header(skb);
1214 	skb->transport_header += offset;
1215 }
1216 
1217 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1218 {
1219 	return skb->head + skb->network_header;
1220 }
1221 
1222 static inline void skb_reset_network_header(struct sk_buff *skb)
1223 {
1224 	skb->network_header = skb->data - skb->head;
1225 }
1226 
1227 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1228 {
1229 	skb_reset_network_header(skb);
1230 	skb->network_header += offset;
1231 }
1232 
1233 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1234 {
1235 	return skb->head + skb->mac_header;
1236 }
1237 
1238 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1239 {
1240 	return skb->mac_header != ~0U;
1241 }
1242 
1243 static inline void skb_reset_mac_header(struct sk_buff *skb)
1244 {
1245 	skb->mac_header = skb->data - skb->head;
1246 }
1247 
1248 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1249 {
1250 	skb_reset_mac_header(skb);
1251 	skb->mac_header += offset;
1252 }
1253 
1254 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1255 
1256 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1257 {
1258 	return skb->transport_header;
1259 }
1260 
1261 static inline void skb_reset_transport_header(struct sk_buff *skb)
1262 {
1263 	skb->transport_header = skb->data;
1264 }
1265 
1266 static inline void skb_set_transport_header(struct sk_buff *skb,
1267 					    const int offset)
1268 {
1269 	skb->transport_header = skb->data + offset;
1270 }
1271 
1272 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1273 {
1274 	return skb->network_header;
1275 }
1276 
1277 static inline void skb_reset_network_header(struct sk_buff *skb)
1278 {
1279 	skb->network_header = skb->data;
1280 }
1281 
1282 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1283 {
1284 	skb->network_header = skb->data + offset;
1285 }
1286 
1287 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1288 {
1289 	return skb->mac_header;
1290 }
1291 
1292 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1293 {
1294 	return skb->mac_header != NULL;
1295 }
1296 
1297 static inline void skb_reset_mac_header(struct sk_buff *skb)
1298 {
1299 	skb->mac_header = skb->data;
1300 }
1301 
1302 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1303 {
1304 	skb->mac_header = skb->data + offset;
1305 }
1306 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1307 
1308 static inline int skb_transport_offset(const struct sk_buff *skb)
1309 {
1310 	return skb_transport_header(skb) - skb->data;
1311 }
1312 
1313 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1314 {
1315 	return skb->transport_header - skb->network_header;
1316 }
1317 
1318 static inline int skb_network_offset(const struct sk_buff *skb)
1319 {
1320 	return skb_network_header(skb) - skb->data;
1321 }
1322 
1323 /*
1324  * CPUs often take a performance hit when accessing unaligned memory
1325  * locations. The actual performance hit varies, it can be small if the
1326  * hardware handles it or large if we have to take an exception and fix it
1327  * in software.
1328  *
1329  * Since an ethernet header is 14 bytes network drivers often end up with
1330  * the IP header at an unaligned offset. The IP header can be aligned by
1331  * shifting the start of the packet by 2 bytes. Drivers should do this
1332  * with:
1333  *
1334  * skb_reserve(skb, NET_IP_ALIGN);
1335  *
1336  * The downside to this alignment of the IP header is that the DMA is now
1337  * unaligned. On some architectures the cost of an unaligned DMA is high
1338  * and this cost outweighs the gains made by aligning the IP header.
1339  *
1340  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1341  * to be overridden.
1342  */
1343 #ifndef NET_IP_ALIGN
1344 #define NET_IP_ALIGN	2
1345 #endif
1346 
1347 /*
1348  * The networking layer reserves some headroom in skb data (via
1349  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1350  * the header has to grow. In the default case, if the header has to grow
1351  * 32 bytes or less we avoid the reallocation.
1352  *
1353  * Unfortunately this headroom changes the DMA alignment of the resulting
1354  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1355  * on some architectures. An architecture can override this value,
1356  * perhaps setting it to a cacheline in size (since that will maintain
1357  * cacheline alignment of the DMA). It must be a power of 2.
1358  *
1359  * Various parts of the networking layer expect at least 32 bytes of
1360  * headroom, you should not reduce this.
1361  */
1362 #ifndef NET_SKB_PAD
1363 #define NET_SKB_PAD	32
1364 #endif
1365 
1366 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1367 
1368 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1369 {
1370 	if (unlikely(skb->data_len)) {
1371 		WARN_ON(1);
1372 		return;
1373 	}
1374 	skb->len = len;
1375 	skb_set_tail_pointer(skb, len);
1376 }
1377 
1378 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1379 
1380 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1381 {
1382 	if (skb->data_len)
1383 		return ___pskb_trim(skb, len);
1384 	__skb_trim(skb, len);
1385 	return 0;
1386 }
1387 
1388 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1389 {
1390 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1391 }
1392 
1393 /**
1394  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1395  *	@skb: buffer to alter
1396  *	@len: new length
1397  *
1398  *	This is identical to pskb_trim except that the caller knows that
1399  *	the skb is not cloned so we should never get an error due to out-
1400  *	of-memory.
1401  */
1402 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1403 {
1404 	int err = pskb_trim(skb, len);
1405 	BUG_ON(err);
1406 }
1407 
1408 /**
1409  *	skb_orphan - orphan a buffer
1410  *	@skb: buffer to orphan
1411  *
1412  *	If a buffer currently has an owner then we call the owner's
1413  *	destructor function and make the @skb unowned. The buffer continues
1414  *	to exist but is no longer charged to its former owner.
1415  */
1416 static inline void skb_orphan(struct sk_buff *skb)
1417 {
1418 	if (skb->destructor)
1419 		skb->destructor(skb);
1420 	skb->destructor = NULL;
1421 	skb->sk		= NULL;
1422 }
1423 
1424 /**
1425  *	__skb_queue_purge - empty a list
1426  *	@list: list to empty
1427  *
1428  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1429  *	the list and one reference dropped. This function does not take the
1430  *	list lock and the caller must hold the relevant locks to use it.
1431  */
1432 extern void skb_queue_purge(struct sk_buff_head *list);
1433 static inline void __skb_queue_purge(struct sk_buff_head *list)
1434 {
1435 	struct sk_buff *skb;
1436 	while ((skb = __skb_dequeue(list)) != NULL)
1437 		kfree_skb(skb);
1438 }
1439 
1440 /**
1441  *	__dev_alloc_skb - allocate an skbuff for receiving
1442  *	@length: length to allocate
1443  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1444  *
1445  *	Allocate a new &sk_buff and assign it a usage count of one. The
1446  *	buffer has unspecified headroom built in. Users should allocate
1447  *	the headroom they think they need without accounting for the
1448  *	built in space. The built in space is used for optimisations.
1449  *
1450  *	%NULL is returned if there is no free memory.
1451  */
1452 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1453 					      gfp_t gfp_mask)
1454 {
1455 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1456 	if (likely(skb))
1457 		skb_reserve(skb, NET_SKB_PAD);
1458 	return skb;
1459 }
1460 
1461 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1462 
1463 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1464 		unsigned int length, gfp_t gfp_mask);
1465 
1466 /**
1467  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1468  *	@dev: network device to receive on
1469  *	@length: length to allocate
1470  *
1471  *	Allocate a new &sk_buff and assign it a usage count of one. The
1472  *	buffer has unspecified headroom built in. Users should allocate
1473  *	the headroom they think they need without accounting for the
1474  *	built in space. The built in space is used for optimisations.
1475  *
1476  *	%NULL is returned if there is no free memory. Although this function
1477  *	allocates memory it can be called from an interrupt.
1478  */
1479 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1480 		unsigned int length)
1481 {
1482 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1483 }
1484 
1485 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1486 		unsigned int length)
1487 {
1488 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1489 
1490 	if (NET_IP_ALIGN && skb)
1491 		skb_reserve(skb, NET_IP_ALIGN);
1492 	return skb;
1493 }
1494 
1495 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1496 
1497 /**
1498  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1499  *	@dev: network device to receive on
1500  *
1501  * 	Allocate a new page node local to the specified device.
1502  *
1503  * 	%NULL is returned if there is no free memory.
1504  */
1505 static inline struct page *netdev_alloc_page(struct net_device *dev)
1506 {
1507 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1508 }
1509 
1510 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1511 {
1512 	__free_page(page);
1513 }
1514 
1515 /**
1516  *	skb_clone_writable - is the header of a clone writable
1517  *	@skb: buffer to check
1518  *	@len: length up to which to write
1519  *
1520  *	Returns true if modifying the header part of the cloned buffer
1521  *	does not requires the data to be copied.
1522  */
1523 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1524 {
1525 	return !skb_header_cloned(skb) &&
1526 	       skb_headroom(skb) + len <= skb->hdr_len;
1527 }
1528 
1529 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1530 			    int cloned)
1531 {
1532 	int delta = 0;
1533 
1534 	if (headroom < NET_SKB_PAD)
1535 		headroom = NET_SKB_PAD;
1536 	if (headroom > skb_headroom(skb))
1537 		delta = headroom - skb_headroom(skb);
1538 
1539 	if (delta || cloned)
1540 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1541 					GFP_ATOMIC);
1542 	return 0;
1543 }
1544 
1545 /**
1546  *	skb_cow - copy header of skb when it is required
1547  *	@skb: buffer to cow
1548  *	@headroom: needed headroom
1549  *
1550  *	If the skb passed lacks sufficient headroom or its data part
1551  *	is shared, data is reallocated. If reallocation fails, an error
1552  *	is returned and original skb is not changed.
1553  *
1554  *	The result is skb with writable area skb->head...skb->tail
1555  *	and at least @headroom of space at head.
1556  */
1557 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1558 {
1559 	return __skb_cow(skb, headroom, skb_cloned(skb));
1560 }
1561 
1562 /**
1563  *	skb_cow_head - skb_cow but only making the head writable
1564  *	@skb: buffer to cow
1565  *	@headroom: needed headroom
1566  *
1567  *	This function is identical to skb_cow except that we replace the
1568  *	skb_cloned check by skb_header_cloned.  It should be used when
1569  *	you only need to push on some header and do not need to modify
1570  *	the data.
1571  */
1572 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1573 {
1574 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1575 }
1576 
1577 /**
1578  *	skb_padto	- pad an skbuff up to a minimal size
1579  *	@skb: buffer to pad
1580  *	@len: minimal length
1581  *
1582  *	Pads up a buffer to ensure the trailing bytes exist and are
1583  *	blanked. If the buffer already contains sufficient data it
1584  *	is untouched. Otherwise it is extended. Returns zero on
1585  *	success. The skb is freed on error.
1586  */
1587 
1588 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1589 {
1590 	unsigned int size = skb->len;
1591 	if (likely(size >= len))
1592 		return 0;
1593 	return skb_pad(skb, len - size);
1594 }
1595 
1596 static inline int skb_add_data(struct sk_buff *skb,
1597 			       char __user *from, int copy)
1598 {
1599 	const int off = skb->len;
1600 
1601 	if (skb->ip_summed == CHECKSUM_NONE) {
1602 		int err = 0;
1603 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1604 							    copy, 0, &err);
1605 		if (!err) {
1606 			skb->csum = csum_block_add(skb->csum, csum, off);
1607 			return 0;
1608 		}
1609 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1610 		return 0;
1611 
1612 	__skb_trim(skb, off);
1613 	return -EFAULT;
1614 }
1615 
1616 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1617 				   struct page *page, int off)
1618 {
1619 	if (i) {
1620 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1621 
1622 		return page == frag->page &&
1623 		       off == frag->page_offset + frag->size;
1624 	}
1625 	return 0;
1626 }
1627 
1628 static inline int __skb_linearize(struct sk_buff *skb)
1629 {
1630 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1631 }
1632 
1633 /**
1634  *	skb_linearize - convert paged skb to linear one
1635  *	@skb: buffer to linarize
1636  *
1637  *	If there is no free memory -ENOMEM is returned, otherwise zero
1638  *	is returned and the old skb data released.
1639  */
1640 static inline int skb_linearize(struct sk_buff *skb)
1641 {
1642 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1643 }
1644 
1645 /**
1646  *	skb_linearize_cow - make sure skb is linear and writable
1647  *	@skb: buffer to process
1648  *
1649  *	If there is no free memory -ENOMEM is returned, otherwise zero
1650  *	is returned and the old skb data released.
1651  */
1652 static inline int skb_linearize_cow(struct sk_buff *skb)
1653 {
1654 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1655 	       __skb_linearize(skb) : 0;
1656 }
1657 
1658 /**
1659  *	skb_postpull_rcsum - update checksum for received skb after pull
1660  *	@skb: buffer to update
1661  *	@start: start of data before pull
1662  *	@len: length of data pulled
1663  *
1664  *	After doing a pull on a received packet, you need to call this to
1665  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1666  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1667  */
1668 
1669 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1670 				      const void *start, unsigned int len)
1671 {
1672 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1673 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1674 }
1675 
1676 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1677 
1678 /**
1679  *	pskb_trim_rcsum - trim received skb and update checksum
1680  *	@skb: buffer to trim
1681  *	@len: new length
1682  *
1683  *	This is exactly the same as pskb_trim except that it ensures the
1684  *	checksum of received packets are still valid after the operation.
1685  */
1686 
1687 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1688 {
1689 	if (likely(len >= skb->len))
1690 		return 0;
1691 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1692 		skb->ip_summed = CHECKSUM_NONE;
1693 	return __pskb_trim(skb, len);
1694 }
1695 
1696 #define skb_queue_walk(queue, skb) \
1697 		for (skb = (queue)->next;					\
1698 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1699 		     skb = skb->next)
1700 
1701 #define skb_queue_walk_safe(queue, skb, tmp)					\
1702 		for (skb = (queue)->next, tmp = skb->next;			\
1703 		     skb != (struct sk_buff *)(queue);				\
1704 		     skb = tmp, tmp = skb->next)
1705 
1706 #define skb_queue_walk_from(queue, skb)						\
1707 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1708 		     skb = skb->next)
1709 
1710 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1711 		for (tmp = skb->next;						\
1712 		     skb != (struct sk_buff *)(queue);				\
1713 		     skb = tmp, tmp = skb->next)
1714 
1715 #define skb_queue_reverse_walk(queue, skb) \
1716 		for (skb = (queue)->prev;					\
1717 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1718 		     skb = skb->prev)
1719 
1720 
1721 static inline bool skb_has_frags(const struct sk_buff *skb)
1722 {
1723 	return skb_shinfo(skb)->frag_list != NULL;
1724 }
1725 
1726 static inline void skb_frag_list_init(struct sk_buff *skb)
1727 {
1728 	skb_shinfo(skb)->frag_list = NULL;
1729 }
1730 
1731 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1732 {
1733 	frag->next = skb_shinfo(skb)->frag_list;
1734 	skb_shinfo(skb)->frag_list = frag;
1735 }
1736 
1737 #define skb_walk_frags(skb, iter)	\
1738 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1739 
1740 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1741 					   int *peeked, int *err);
1742 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1743 					 int noblock, int *err);
1744 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1745 				     struct poll_table_struct *wait);
1746 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1747 					       int offset, struct iovec *to,
1748 					       int size);
1749 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1750 							int hlen,
1751 							struct iovec *iov);
1752 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1753 						    int offset,
1754 						    const struct iovec *from,
1755 						    int from_offset,
1756 						    int len);
1757 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1758 						     int offset,
1759 						     const struct iovec *to,
1760 						     int to_offset,
1761 						     int size);
1762 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1763 extern void	       skb_free_datagram_locked(struct sock *sk,
1764 						struct sk_buff *skb);
1765 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1766 					 unsigned int flags);
1767 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1768 				    int len, __wsum csum);
1769 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1770 				     void *to, int len);
1771 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1772 				      const void *from, int len);
1773 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1774 					      int offset, u8 *to, int len,
1775 					      __wsum csum);
1776 extern int             skb_splice_bits(struct sk_buff *skb,
1777 						unsigned int offset,
1778 						struct pipe_inode_info *pipe,
1779 						unsigned int len,
1780 						unsigned int flags);
1781 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1782 extern void	       skb_split(struct sk_buff *skb,
1783 				 struct sk_buff *skb1, const u32 len);
1784 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1785 				 int shiftlen);
1786 
1787 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1788 
1789 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1790 				       int len, void *buffer)
1791 {
1792 	int hlen = skb_headlen(skb);
1793 
1794 	if (hlen - offset >= len)
1795 		return skb->data + offset;
1796 
1797 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1798 		return NULL;
1799 
1800 	return buffer;
1801 }
1802 
1803 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1804 					     void *to,
1805 					     const unsigned int len)
1806 {
1807 	memcpy(to, skb->data, len);
1808 }
1809 
1810 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1811 						    const int offset, void *to,
1812 						    const unsigned int len)
1813 {
1814 	memcpy(to, skb->data + offset, len);
1815 }
1816 
1817 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1818 					   const void *from,
1819 					   const unsigned int len)
1820 {
1821 	memcpy(skb->data, from, len);
1822 }
1823 
1824 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1825 						  const int offset,
1826 						  const void *from,
1827 						  const unsigned int len)
1828 {
1829 	memcpy(skb->data + offset, from, len);
1830 }
1831 
1832 extern void skb_init(void);
1833 
1834 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1835 {
1836 	return skb->tstamp;
1837 }
1838 
1839 /**
1840  *	skb_get_timestamp - get timestamp from a skb
1841  *	@skb: skb to get stamp from
1842  *	@stamp: pointer to struct timeval to store stamp in
1843  *
1844  *	Timestamps are stored in the skb as offsets to a base timestamp.
1845  *	This function converts the offset back to a struct timeval and stores
1846  *	it in stamp.
1847  */
1848 static inline void skb_get_timestamp(const struct sk_buff *skb,
1849 				     struct timeval *stamp)
1850 {
1851 	*stamp = ktime_to_timeval(skb->tstamp);
1852 }
1853 
1854 static inline void skb_get_timestampns(const struct sk_buff *skb,
1855 				       struct timespec *stamp)
1856 {
1857 	*stamp = ktime_to_timespec(skb->tstamp);
1858 }
1859 
1860 static inline void __net_timestamp(struct sk_buff *skb)
1861 {
1862 	skb->tstamp = ktime_get_real();
1863 }
1864 
1865 static inline ktime_t net_timedelta(ktime_t t)
1866 {
1867 	return ktime_sub(ktime_get_real(), t);
1868 }
1869 
1870 static inline ktime_t net_invalid_timestamp(void)
1871 {
1872 	return ktime_set(0, 0);
1873 }
1874 
1875 /**
1876  * skb_tstamp_tx - queue clone of skb with send time stamps
1877  * @orig_skb:	the original outgoing packet
1878  * @hwtstamps:	hardware time stamps, may be NULL if not available
1879  *
1880  * If the skb has a socket associated, then this function clones the
1881  * skb (thus sharing the actual data and optional structures), stores
1882  * the optional hardware time stamping information (if non NULL) or
1883  * generates a software time stamp (otherwise), then queues the clone
1884  * to the error queue of the socket.  Errors are silently ignored.
1885  */
1886 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1887 			struct skb_shared_hwtstamps *hwtstamps);
1888 
1889 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1890 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1891 
1892 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1893 {
1894 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1895 }
1896 
1897 /**
1898  *	skb_checksum_complete - Calculate checksum of an entire packet
1899  *	@skb: packet to process
1900  *
1901  *	This function calculates the checksum over the entire packet plus
1902  *	the value of skb->csum.  The latter can be used to supply the
1903  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1904  *	checksum.
1905  *
1906  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1907  *	this function can be used to verify that checksum on received
1908  *	packets.  In that case the function should return zero if the
1909  *	checksum is correct.  In particular, this function will return zero
1910  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1911  *	hardware has already verified the correctness of the checksum.
1912  */
1913 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1914 {
1915 	return skb_csum_unnecessary(skb) ?
1916 	       0 : __skb_checksum_complete(skb);
1917 }
1918 
1919 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1920 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1921 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1922 {
1923 	if (nfct && atomic_dec_and_test(&nfct->use))
1924 		nf_conntrack_destroy(nfct);
1925 }
1926 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1927 {
1928 	if (nfct)
1929 		atomic_inc(&nfct->use);
1930 }
1931 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1932 {
1933 	if (skb)
1934 		atomic_inc(&skb->users);
1935 }
1936 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1937 {
1938 	if (skb)
1939 		kfree_skb(skb);
1940 }
1941 #endif
1942 #ifdef CONFIG_BRIDGE_NETFILTER
1943 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1944 {
1945 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1946 		kfree(nf_bridge);
1947 }
1948 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1949 {
1950 	if (nf_bridge)
1951 		atomic_inc(&nf_bridge->use);
1952 }
1953 #endif /* CONFIG_BRIDGE_NETFILTER */
1954 static inline void nf_reset(struct sk_buff *skb)
1955 {
1956 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1957 	nf_conntrack_put(skb->nfct);
1958 	skb->nfct = NULL;
1959 	nf_conntrack_put_reasm(skb->nfct_reasm);
1960 	skb->nfct_reasm = NULL;
1961 #endif
1962 #ifdef CONFIG_BRIDGE_NETFILTER
1963 	nf_bridge_put(skb->nf_bridge);
1964 	skb->nf_bridge = NULL;
1965 #endif
1966 }
1967 
1968 /* Note: This doesn't put any conntrack and bridge info in dst. */
1969 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1970 {
1971 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1972 	dst->nfct = src->nfct;
1973 	nf_conntrack_get(src->nfct);
1974 	dst->nfctinfo = src->nfctinfo;
1975 	dst->nfct_reasm = src->nfct_reasm;
1976 	nf_conntrack_get_reasm(src->nfct_reasm);
1977 #endif
1978 #ifdef CONFIG_BRIDGE_NETFILTER
1979 	dst->nf_bridge  = src->nf_bridge;
1980 	nf_bridge_get(src->nf_bridge);
1981 #endif
1982 }
1983 
1984 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1985 {
1986 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1987 	nf_conntrack_put(dst->nfct);
1988 	nf_conntrack_put_reasm(dst->nfct_reasm);
1989 #endif
1990 #ifdef CONFIG_BRIDGE_NETFILTER
1991 	nf_bridge_put(dst->nf_bridge);
1992 #endif
1993 	__nf_copy(dst, src);
1994 }
1995 
1996 #ifdef CONFIG_NETWORK_SECMARK
1997 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1998 {
1999 	to->secmark = from->secmark;
2000 }
2001 
2002 static inline void skb_init_secmark(struct sk_buff *skb)
2003 {
2004 	skb->secmark = 0;
2005 }
2006 #else
2007 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2008 { }
2009 
2010 static inline void skb_init_secmark(struct sk_buff *skb)
2011 { }
2012 #endif
2013 
2014 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2015 {
2016 	skb->queue_mapping = queue_mapping;
2017 }
2018 
2019 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2020 {
2021 	return skb->queue_mapping;
2022 }
2023 
2024 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2025 {
2026 	to->queue_mapping = from->queue_mapping;
2027 }
2028 
2029 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2030 {
2031 	skb->queue_mapping = rx_queue + 1;
2032 }
2033 
2034 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2035 {
2036 	return skb->queue_mapping - 1;
2037 }
2038 
2039 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2040 {
2041 	return (skb->queue_mapping != 0);
2042 }
2043 
2044 extern u16 skb_tx_hash(const struct net_device *dev,
2045 		       const struct sk_buff *skb);
2046 
2047 #ifdef CONFIG_XFRM
2048 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2049 {
2050 	return skb->sp;
2051 }
2052 #else
2053 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2054 {
2055 	return NULL;
2056 }
2057 #endif
2058 
2059 static inline int skb_is_gso(const struct sk_buff *skb)
2060 {
2061 	return skb_shinfo(skb)->gso_size;
2062 }
2063 
2064 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2065 {
2066 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2067 }
2068 
2069 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2070 
2071 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2072 {
2073 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2074 	 * wanted then gso_type will be set. */
2075 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2076 	if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2077 		__skb_warn_lro_forwarding(skb);
2078 		return true;
2079 	}
2080 	return false;
2081 }
2082 
2083 static inline void skb_forward_csum(struct sk_buff *skb)
2084 {
2085 	/* Unfortunately we don't support this one.  Any brave souls? */
2086 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2087 		skb->ip_summed = CHECKSUM_NONE;
2088 }
2089 
2090 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2091 #endif	/* __KERNEL__ */
2092 #endif	/* _LINUX_SKBUFF_H */
2093