1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/cache.h> 22 23 #include <asm/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/dmaengine.h> 31 #include <linux/hrtimer.h> 32 33 /* Don't change this without changing skb_csum_unnecessary! */ 34 #define CHECKSUM_NONE 0 35 #define CHECKSUM_UNNECESSARY 1 36 #define CHECKSUM_COMPLETE 2 37 #define CHECKSUM_PARTIAL 3 38 39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41 #define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43 #define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48 /* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94 struct net_device; 95 struct scatterlist; 96 struct pipe_inode_info; 97 98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99 struct nf_conntrack { 100 atomic_t use; 101 }; 102 #endif 103 104 #ifdef CONFIG_BRIDGE_NETFILTER 105 struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111 }; 112 #endif 113 114 struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121 }; 122 123 struct sk_buff; 124 125 /* To allow 64K frame to be packed as single skb without frag_list */ 126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128 typedef struct skb_frag_struct skb_frag_t; 129 130 struct skb_frag_struct { 131 struct page *page; 132 __u32 page_offset; 133 __u32 size; 134 }; 135 136 #define HAVE_HW_TIME_STAMP 137 138 /** 139 * struct skb_shared_hwtstamps - hardware time stamps 140 * @hwtstamp: hardware time stamp transformed into duration 141 * since arbitrary point in time 142 * @syststamp: hwtstamp transformed to system time base 143 * 144 * Software time stamps generated by ktime_get_real() are stored in 145 * skb->tstamp. The relation between the different kinds of time 146 * stamps is as follows: 147 * 148 * syststamp and tstamp can be compared against each other in 149 * arbitrary combinations. The accuracy of a 150 * syststamp/tstamp/"syststamp from other device" comparison is 151 * limited by the accuracy of the transformation into system time 152 * base. This depends on the device driver and its underlying 153 * hardware. 154 * 155 * hwtstamps can only be compared against other hwtstamps from 156 * the same device. 157 * 158 * This structure is attached to packets as part of the 159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 160 */ 161 struct skb_shared_hwtstamps { 162 ktime_t hwtstamp; 163 ktime_t syststamp; 164 }; 165 166 /** 167 * struct skb_shared_tx - instructions for time stamping of outgoing packets 168 * @hardware: generate hardware time stamp 169 * @software: generate software time stamp 170 * @in_progress: device driver is going to provide 171 * hardware time stamp 172 * @flags: all shared_tx flags 173 * 174 * These flags are attached to packets as part of the 175 * &skb_shared_info. Use skb_tx() to get a pointer. 176 */ 177 union skb_shared_tx { 178 struct { 179 __u8 hardware:1, 180 software:1, 181 in_progress:1; 182 }; 183 __u8 flags; 184 }; 185 186 /* This data is invariant across clones and lives at 187 * the end of the header data, ie. at skb->end. 188 */ 189 struct skb_shared_info { 190 atomic_t dataref; 191 unsigned short nr_frags; 192 unsigned short gso_size; 193 #ifdef CONFIG_HAS_DMA 194 dma_addr_t dma_head; 195 #endif 196 /* Warning: this field is not always filled in (UFO)! */ 197 unsigned short gso_segs; 198 unsigned short gso_type; 199 __be32 ip6_frag_id; 200 union skb_shared_tx tx_flags; 201 struct sk_buff *frag_list; 202 struct skb_shared_hwtstamps hwtstamps; 203 skb_frag_t frags[MAX_SKB_FRAGS]; 204 #ifdef CONFIG_HAS_DMA 205 dma_addr_t dma_maps[MAX_SKB_FRAGS]; 206 #endif 207 /* Intermediate layers must ensure that destructor_arg 208 * remains valid until skb destructor */ 209 void * destructor_arg; 210 }; 211 212 /* We divide dataref into two halves. The higher 16 bits hold references 213 * to the payload part of skb->data. The lower 16 bits hold references to 214 * the entire skb->data. A clone of a headerless skb holds the length of 215 * the header in skb->hdr_len. 216 * 217 * All users must obey the rule that the skb->data reference count must be 218 * greater than or equal to the payload reference count. 219 * 220 * Holding a reference to the payload part means that the user does not 221 * care about modifications to the header part of skb->data. 222 */ 223 #define SKB_DATAREF_SHIFT 16 224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 225 226 227 enum { 228 SKB_FCLONE_UNAVAILABLE, 229 SKB_FCLONE_ORIG, 230 SKB_FCLONE_CLONE, 231 }; 232 233 enum { 234 SKB_GSO_TCPV4 = 1 << 0, 235 SKB_GSO_UDP = 1 << 1, 236 237 /* This indicates the skb is from an untrusted source. */ 238 SKB_GSO_DODGY = 1 << 2, 239 240 /* This indicates the tcp segment has CWR set. */ 241 SKB_GSO_TCP_ECN = 1 << 3, 242 243 SKB_GSO_TCPV6 = 1 << 4, 244 245 SKB_GSO_FCOE = 1 << 5, 246 }; 247 248 #if BITS_PER_LONG > 32 249 #define NET_SKBUFF_DATA_USES_OFFSET 1 250 #endif 251 252 #ifdef NET_SKBUFF_DATA_USES_OFFSET 253 typedef unsigned int sk_buff_data_t; 254 #else 255 typedef unsigned char *sk_buff_data_t; 256 #endif 257 258 /** 259 * struct sk_buff - socket buffer 260 * @next: Next buffer in list 261 * @prev: Previous buffer in list 262 * @sk: Socket we are owned by 263 * @tstamp: Time we arrived 264 * @dev: Device we arrived on/are leaving by 265 * @transport_header: Transport layer header 266 * @network_header: Network layer header 267 * @mac_header: Link layer header 268 * @_skb_dst: destination entry 269 * @sp: the security path, used for xfrm 270 * @cb: Control buffer. Free for use by every layer. Put private vars here 271 * @len: Length of actual data 272 * @data_len: Data length 273 * @mac_len: Length of link layer header 274 * @hdr_len: writable header length of cloned skb 275 * @csum: Checksum (must include start/offset pair) 276 * @csum_start: Offset from skb->head where checksumming should start 277 * @csum_offset: Offset from csum_start where checksum should be stored 278 * @local_df: allow local fragmentation 279 * @cloned: Head may be cloned (check refcnt to be sure) 280 * @nohdr: Payload reference only, must not modify header 281 * @pkt_type: Packet class 282 * @fclone: skbuff clone status 283 * @ip_summed: Driver fed us an IP checksum 284 * @priority: Packet queueing priority 285 * @users: User count - see {datagram,tcp}.c 286 * @protocol: Packet protocol from driver 287 * @truesize: Buffer size 288 * @head: Head of buffer 289 * @data: Data head pointer 290 * @tail: Tail pointer 291 * @end: End pointer 292 * @destructor: Destruct function 293 * @mark: Generic packet mark 294 * @nfct: Associated connection, if any 295 * @ipvs_property: skbuff is owned by ipvs 296 * @peeked: this packet has been seen already, so stats have been 297 * done for it, don't do them again 298 * @nf_trace: netfilter packet trace flag 299 * @nfctinfo: Relationship of this skb to the connection 300 * @nfct_reasm: netfilter conntrack re-assembly pointer 301 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 302 * @skb_iif: ifindex of device we arrived on 303 * @queue_mapping: Queue mapping for multiqueue devices 304 * @tc_index: Traffic control index 305 * @tc_verd: traffic control verdict 306 * @ndisc_nodetype: router type (from link layer) 307 * @dma_cookie: a cookie to one of several possible DMA operations 308 * done by skb DMA functions 309 * @secmark: security marking 310 * @vlan_tci: vlan tag control information 311 */ 312 313 struct sk_buff { 314 /* These two members must be first. */ 315 struct sk_buff *next; 316 struct sk_buff *prev; 317 318 struct sock *sk; 319 ktime_t tstamp; 320 struct net_device *dev; 321 322 unsigned long _skb_dst; 323 #ifdef CONFIG_XFRM 324 struct sec_path *sp; 325 #endif 326 /* 327 * This is the control buffer. It is free to use for every 328 * layer. Please put your private variables there. If you 329 * want to keep them across layers you have to do a skb_clone() 330 * first. This is owned by whoever has the skb queued ATM. 331 */ 332 char cb[48]; 333 334 unsigned int len, 335 data_len; 336 __u16 mac_len, 337 hdr_len; 338 union { 339 __wsum csum; 340 struct { 341 __u16 csum_start; 342 __u16 csum_offset; 343 }; 344 }; 345 __u32 priority; 346 kmemcheck_bitfield_begin(flags1); 347 __u8 local_df:1, 348 cloned:1, 349 ip_summed:2, 350 nohdr:1, 351 nfctinfo:3; 352 __u8 pkt_type:3, 353 fclone:2, 354 ipvs_property:1, 355 peeked:1, 356 nf_trace:1; 357 __be16 protocol:16; 358 kmemcheck_bitfield_end(flags1); 359 360 void (*destructor)(struct sk_buff *skb); 361 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 362 struct nf_conntrack *nfct; 363 struct sk_buff *nfct_reasm; 364 #endif 365 #ifdef CONFIG_BRIDGE_NETFILTER 366 struct nf_bridge_info *nf_bridge; 367 #endif 368 369 int skb_iif; 370 #ifdef CONFIG_NET_SCHED 371 __u16 tc_index; /* traffic control index */ 372 #ifdef CONFIG_NET_CLS_ACT 373 __u16 tc_verd; /* traffic control verdict */ 374 #endif 375 #endif 376 377 kmemcheck_bitfield_begin(flags2); 378 __u16 queue_mapping:16; 379 #ifdef CONFIG_IPV6_NDISC_NODETYPE 380 __u8 ndisc_nodetype:2; 381 #endif 382 kmemcheck_bitfield_end(flags2); 383 384 /* 0/14 bit hole */ 385 386 #ifdef CONFIG_NET_DMA 387 dma_cookie_t dma_cookie; 388 #endif 389 #ifdef CONFIG_NETWORK_SECMARK 390 __u32 secmark; 391 #endif 392 union { 393 __u32 mark; 394 __u32 dropcount; 395 }; 396 397 __u16 vlan_tci; 398 399 sk_buff_data_t transport_header; 400 sk_buff_data_t network_header; 401 sk_buff_data_t mac_header; 402 /* These elements must be at the end, see alloc_skb() for details. */ 403 sk_buff_data_t tail; 404 sk_buff_data_t end; 405 unsigned char *head, 406 *data; 407 unsigned int truesize; 408 atomic_t users; 409 }; 410 411 #ifdef __KERNEL__ 412 /* 413 * Handling routines are only of interest to the kernel 414 */ 415 #include <linux/slab.h> 416 417 #include <asm/system.h> 418 419 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 420 { 421 return (struct dst_entry *)skb->_skb_dst; 422 } 423 424 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 425 { 426 skb->_skb_dst = (unsigned long)dst; 427 } 428 429 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 430 { 431 return (struct rtable *)skb_dst(skb); 432 } 433 434 extern void kfree_skb(struct sk_buff *skb); 435 extern void consume_skb(struct sk_buff *skb); 436 extern void __kfree_skb(struct sk_buff *skb); 437 extern struct sk_buff *__alloc_skb(unsigned int size, 438 gfp_t priority, int fclone, int node); 439 static inline struct sk_buff *alloc_skb(unsigned int size, 440 gfp_t priority) 441 { 442 return __alloc_skb(size, priority, 0, -1); 443 } 444 445 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 446 gfp_t priority) 447 { 448 return __alloc_skb(size, priority, 1, -1); 449 } 450 451 extern int skb_recycle_check(struct sk_buff *skb, int skb_size); 452 453 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 454 extern struct sk_buff *skb_clone(struct sk_buff *skb, 455 gfp_t priority); 456 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 457 gfp_t priority); 458 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 459 gfp_t gfp_mask); 460 extern int pskb_expand_head(struct sk_buff *skb, 461 int nhead, int ntail, 462 gfp_t gfp_mask); 463 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 464 unsigned int headroom); 465 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 466 int newheadroom, int newtailroom, 467 gfp_t priority); 468 extern int skb_to_sgvec(struct sk_buff *skb, 469 struct scatterlist *sg, int offset, 470 int len); 471 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 472 struct sk_buff **trailer); 473 extern int skb_pad(struct sk_buff *skb, int pad); 474 #define dev_kfree_skb(a) consume_skb(a) 475 #define dev_consume_skb(a) kfree_skb_clean(a) 476 extern void skb_over_panic(struct sk_buff *skb, int len, 477 void *here); 478 extern void skb_under_panic(struct sk_buff *skb, int len, 479 void *here); 480 481 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 482 int getfrag(void *from, char *to, int offset, 483 int len,int odd, struct sk_buff *skb), 484 void *from, int length); 485 486 struct skb_seq_state { 487 __u32 lower_offset; 488 __u32 upper_offset; 489 __u32 frag_idx; 490 __u32 stepped_offset; 491 struct sk_buff *root_skb; 492 struct sk_buff *cur_skb; 493 __u8 *frag_data; 494 }; 495 496 extern void skb_prepare_seq_read(struct sk_buff *skb, 497 unsigned int from, unsigned int to, 498 struct skb_seq_state *st); 499 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 500 struct skb_seq_state *st); 501 extern void skb_abort_seq_read(struct skb_seq_state *st); 502 503 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 504 unsigned int to, struct ts_config *config, 505 struct ts_state *state); 506 507 #ifdef NET_SKBUFF_DATA_USES_OFFSET 508 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 509 { 510 return skb->head + skb->end; 511 } 512 #else 513 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 514 { 515 return skb->end; 516 } 517 #endif 518 519 /* Internal */ 520 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 521 522 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 523 { 524 return &skb_shinfo(skb)->hwtstamps; 525 } 526 527 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb) 528 { 529 return &skb_shinfo(skb)->tx_flags; 530 } 531 532 /** 533 * skb_queue_empty - check if a queue is empty 534 * @list: queue head 535 * 536 * Returns true if the queue is empty, false otherwise. 537 */ 538 static inline int skb_queue_empty(const struct sk_buff_head *list) 539 { 540 return list->next == (struct sk_buff *)list; 541 } 542 543 /** 544 * skb_queue_is_last - check if skb is the last entry in the queue 545 * @list: queue head 546 * @skb: buffer 547 * 548 * Returns true if @skb is the last buffer on the list. 549 */ 550 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 551 const struct sk_buff *skb) 552 { 553 return (skb->next == (struct sk_buff *) list); 554 } 555 556 /** 557 * skb_queue_is_first - check if skb is the first entry in the queue 558 * @list: queue head 559 * @skb: buffer 560 * 561 * Returns true if @skb is the first buffer on the list. 562 */ 563 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 564 const struct sk_buff *skb) 565 { 566 return (skb->prev == (struct sk_buff *) list); 567 } 568 569 /** 570 * skb_queue_next - return the next packet in the queue 571 * @list: queue head 572 * @skb: current buffer 573 * 574 * Return the next packet in @list after @skb. It is only valid to 575 * call this if skb_queue_is_last() evaluates to false. 576 */ 577 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 578 const struct sk_buff *skb) 579 { 580 /* This BUG_ON may seem severe, but if we just return then we 581 * are going to dereference garbage. 582 */ 583 BUG_ON(skb_queue_is_last(list, skb)); 584 return skb->next; 585 } 586 587 /** 588 * skb_queue_prev - return the prev packet in the queue 589 * @list: queue head 590 * @skb: current buffer 591 * 592 * Return the prev packet in @list before @skb. It is only valid to 593 * call this if skb_queue_is_first() evaluates to false. 594 */ 595 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 596 const struct sk_buff *skb) 597 { 598 /* This BUG_ON may seem severe, but if we just return then we 599 * are going to dereference garbage. 600 */ 601 BUG_ON(skb_queue_is_first(list, skb)); 602 return skb->prev; 603 } 604 605 /** 606 * skb_get - reference buffer 607 * @skb: buffer to reference 608 * 609 * Makes another reference to a socket buffer and returns a pointer 610 * to the buffer. 611 */ 612 static inline struct sk_buff *skb_get(struct sk_buff *skb) 613 { 614 atomic_inc(&skb->users); 615 return skb; 616 } 617 618 /* 619 * If users == 1, we are the only owner and are can avoid redundant 620 * atomic change. 621 */ 622 623 /** 624 * skb_cloned - is the buffer a clone 625 * @skb: buffer to check 626 * 627 * Returns true if the buffer was generated with skb_clone() and is 628 * one of multiple shared copies of the buffer. Cloned buffers are 629 * shared data so must not be written to under normal circumstances. 630 */ 631 static inline int skb_cloned(const struct sk_buff *skb) 632 { 633 return skb->cloned && 634 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 635 } 636 637 /** 638 * skb_header_cloned - is the header a clone 639 * @skb: buffer to check 640 * 641 * Returns true if modifying the header part of the buffer requires 642 * the data to be copied. 643 */ 644 static inline int skb_header_cloned(const struct sk_buff *skb) 645 { 646 int dataref; 647 648 if (!skb->cloned) 649 return 0; 650 651 dataref = atomic_read(&skb_shinfo(skb)->dataref); 652 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 653 return dataref != 1; 654 } 655 656 /** 657 * skb_header_release - release reference to header 658 * @skb: buffer to operate on 659 * 660 * Drop a reference to the header part of the buffer. This is done 661 * by acquiring a payload reference. You must not read from the header 662 * part of skb->data after this. 663 */ 664 static inline void skb_header_release(struct sk_buff *skb) 665 { 666 BUG_ON(skb->nohdr); 667 skb->nohdr = 1; 668 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 669 } 670 671 /** 672 * skb_shared - is the buffer shared 673 * @skb: buffer to check 674 * 675 * Returns true if more than one person has a reference to this 676 * buffer. 677 */ 678 static inline int skb_shared(const struct sk_buff *skb) 679 { 680 return atomic_read(&skb->users) != 1; 681 } 682 683 /** 684 * skb_share_check - check if buffer is shared and if so clone it 685 * @skb: buffer to check 686 * @pri: priority for memory allocation 687 * 688 * If the buffer is shared the buffer is cloned and the old copy 689 * drops a reference. A new clone with a single reference is returned. 690 * If the buffer is not shared the original buffer is returned. When 691 * being called from interrupt status or with spinlocks held pri must 692 * be GFP_ATOMIC. 693 * 694 * NULL is returned on a memory allocation failure. 695 */ 696 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 697 gfp_t pri) 698 { 699 might_sleep_if(pri & __GFP_WAIT); 700 if (skb_shared(skb)) { 701 struct sk_buff *nskb = skb_clone(skb, pri); 702 kfree_skb(skb); 703 skb = nskb; 704 } 705 return skb; 706 } 707 708 /* 709 * Copy shared buffers into a new sk_buff. We effectively do COW on 710 * packets to handle cases where we have a local reader and forward 711 * and a couple of other messy ones. The normal one is tcpdumping 712 * a packet thats being forwarded. 713 */ 714 715 /** 716 * skb_unshare - make a copy of a shared buffer 717 * @skb: buffer to check 718 * @pri: priority for memory allocation 719 * 720 * If the socket buffer is a clone then this function creates a new 721 * copy of the data, drops a reference count on the old copy and returns 722 * the new copy with the reference count at 1. If the buffer is not a clone 723 * the original buffer is returned. When called with a spinlock held or 724 * from interrupt state @pri must be %GFP_ATOMIC 725 * 726 * %NULL is returned on a memory allocation failure. 727 */ 728 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 729 gfp_t pri) 730 { 731 might_sleep_if(pri & __GFP_WAIT); 732 if (skb_cloned(skb)) { 733 struct sk_buff *nskb = skb_copy(skb, pri); 734 kfree_skb(skb); /* Free our shared copy */ 735 skb = nskb; 736 } 737 return skb; 738 } 739 740 /** 741 * skb_peek 742 * @list_: list to peek at 743 * 744 * Peek an &sk_buff. Unlike most other operations you _MUST_ 745 * be careful with this one. A peek leaves the buffer on the 746 * list and someone else may run off with it. You must hold 747 * the appropriate locks or have a private queue to do this. 748 * 749 * Returns %NULL for an empty list or a pointer to the head element. 750 * The reference count is not incremented and the reference is therefore 751 * volatile. Use with caution. 752 */ 753 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 754 { 755 struct sk_buff *list = ((struct sk_buff *)list_)->next; 756 if (list == (struct sk_buff *)list_) 757 list = NULL; 758 return list; 759 } 760 761 /** 762 * skb_peek_tail 763 * @list_: list to peek at 764 * 765 * Peek an &sk_buff. Unlike most other operations you _MUST_ 766 * be careful with this one. A peek leaves the buffer on the 767 * list and someone else may run off with it. You must hold 768 * the appropriate locks or have a private queue to do this. 769 * 770 * Returns %NULL for an empty list or a pointer to the tail element. 771 * The reference count is not incremented and the reference is therefore 772 * volatile. Use with caution. 773 */ 774 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 775 { 776 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 777 if (list == (struct sk_buff *)list_) 778 list = NULL; 779 return list; 780 } 781 782 /** 783 * skb_queue_len - get queue length 784 * @list_: list to measure 785 * 786 * Return the length of an &sk_buff queue. 787 */ 788 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 789 { 790 return list_->qlen; 791 } 792 793 /** 794 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 795 * @list: queue to initialize 796 * 797 * This initializes only the list and queue length aspects of 798 * an sk_buff_head object. This allows to initialize the list 799 * aspects of an sk_buff_head without reinitializing things like 800 * the spinlock. It can also be used for on-stack sk_buff_head 801 * objects where the spinlock is known to not be used. 802 */ 803 static inline void __skb_queue_head_init(struct sk_buff_head *list) 804 { 805 list->prev = list->next = (struct sk_buff *)list; 806 list->qlen = 0; 807 } 808 809 /* 810 * This function creates a split out lock class for each invocation; 811 * this is needed for now since a whole lot of users of the skb-queue 812 * infrastructure in drivers have different locking usage (in hardirq) 813 * than the networking core (in softirq only). In the long run either the 814 * network layer or drivers should need annotation to consolidate the 815 * main types of usage into 3 classes. 816 */ 817 static inline void skb_queue_head_init(struct sk_buff_head *list) 818 { 819 spin_lock_init(&list->lock); 820 __skb_queue_head_init(list); 821 } 822 823 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 824 struct lock_class_key *class) 825 { 826 skb_queue_head_init(list); 827 lockdep_set_class(&list->lock, class); 828 } 829 830 /* 831 * Insert an sk_buff on a list. 832 * 833 * The "__skb_xxxx()" functions are the non-atomic ones that 834 * can only be called with interrupts disabled. 835 */ 836 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 837 static inline void __skb_insert(struct sk_buff *newsk, 838 struct sk_buff *prev, struct sk_buff *next, 839 struct sk_buff_head *list) 840 { 841 newsk->next = next; 842 newsk->prev = prev; 843 next->prev = prev->next = newsk; 844 list->qlen++; 845 } 846 847 static inline void __skb_queue_splice(const struct sk_buff_head *list, 848 struct sk_buff *prev, 849 struct sk_buff *next) 850 { 851 struct sk_buff *first = list->next; 852 struct sk_buff *last = list->prev; 853 854 first->prev = prev; 855 prev->next = first; 856 857 last->next = next; 858 next->prev = last; 859 } 860 861 /** 862 * skb_queue_splice - join two skb lists, this is designed for stacks 863 * @list: the new list to add 864 * @head: the place to add it in the first list 865 */ 866 static inline void skb_queue_splice(const struct sk_buff_head *list, 867 struct sk_buff_head *head) 868 { 869 if (!skb_queue_empty(list)) { 870 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 871 head->qlen += list->qlen; 872 } 873 } 874 875 /** 876 * skb_queue_splice - join two skb lists and reinitialise the emptied list 877 * @list: the new list to add 878 * @head: the place to add it in the first list 879 * 880 * The list at @list is reinitialised 881 */ 882 static inline void skb_queue_splice_init(struct sk_buff_head *list, 883 struct sk_buff_head *head) 884 { 885 if (!skb_queue_empty(list)) { 886 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 887 head->qlen += list->qlen; 888 __skb_queue_head_init(list); 889 } 890 } 891 892 /** 893 * skb_queue_splice_tail - join two skb lists, each list being a queue 894 * @list: the new list to add 895 * @head: the place to add it in the first list 896 */ 897 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 898 struct sk_buff_head *head) 899 { 900 if (!skb_queue_empty(list)) { 901 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 902 head->qlen += list->qlen; 903 } 904 } 905 906 /** 907 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 908 * @list: the new list to add 909 * @head: the place to add it in the first list 910 * 911 * Each of the lists is a queue. 912 * The list at @list is reinitialised 913 */ 914 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 915 struct sk_buff_head *head) 916 { 917 if (!skb_queue_empty(list)) { 918 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 919 head->qlen += list->qlen; 920 __skb_queue_head_init(list); 921 } 922 } 923 924 /** 925 * __skb_queue_after - queue a buffer at the list head 926 * @list: list to use 927 * @prev: place after this buffer 928 * @newsk: buffer to queue 929 * 930 * Queue a buffer int the middle of a list. This function takes no locks 931 * and you must therefore hold required locks before calling it. 932 * 933 * A buffer cannot be placed on two lists at the same time. 934 */ 935 static inline void __skb_queue_after(struct sk_buff_head *list, 936 struct sk_buff *prev, 937 struct sk_buff *newsk) 938 { 939 __skb_insert(newsk, prev, prev->next, list); 940 } 941 942 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 943 struct sk_buff_head *list); 944 945 static inline void __skb_queue_before(struct sk_buff_head *list, 946 struct sk_buff *next, 947 struct sk_buff *newsk) 948 { 949 __skb_insert(newsk, next->prev, next, list); 950 } 951 952 /** 953 * __skb_queue_head - queue a buffer at the list head 954 * @list: list to use 955 * @newsk: buffer to queue 956 * 957 * Queue a buffer at the start of a list. This function takes no locks 958 * and you must therefore hold required locks before calling it. 959 * 960 * A buffer cannot be placed on two lists at the same time. 961 */ 962 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 963 static inline void __skb_queue_head(struct sk_buff_head *list, 964 struct sk_buff *newsk) 965 { 966 __skb_queue_after(list, (struct sk_buff *)list, newsk); 967 } 968 969 /** 970 * __skb_queue_tail - queue a buffer at the list tail 971 * @list: list to use 972 * @newsk: buffer to queue 973 * 974 * Queue a buffer at the end of a list. This function takes no locks 975 * and you must therefore hold required locks before calling it. 976 * 977 * A buffer cannot be placed on two lists at the same time. 978 */ 979 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 980 static inline void __skb_queue_tail(struct sk_buff_head *list, 981 struct sk_buff *newsk) 982 { 983 __skb_queue_before(list, (struct sk_buff *)list, newsk); 984 } 985 986 /* 987 * remove sk_buff from list. _Must_ be called atomically, and with 988 * the list known.. 989 */ 990 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 991 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 992 { 993 struct sk_buff *next, *prev; 994 995 list->qlen--; 996 next = skb->next; 997 prev = skb->prev; 998 skb->next = skb->prev = NULL; 999 next->prev = prev; 1000 prev->next = next; 1001 } 1002 1003 /** 1004 * __skb_dequeue - remove from the head of the queue 1005 * @list: list to dequeue from 1006 * 1007 * Remove the head of the list. This function does not take any locks 1008 * so must be used with appropriate locks held only. The head item is 1009 * returned or %NULL if the list is empty. 1010 */ 1011 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1012 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1013 { 1014 struct sk_buff *skb = skb_peek(list); 1015 if (skb) 1016 __skb_unlink(skb, list); 1017 return skb; 1018 } 1019 1020 /** 1021 * __skb_dequeue_tail - remove from the tail of the queue 1022 * @list: list to dequeue from 1023 * 1024 * Remove the tail of the list. This function does not take any locks 1025 * so must be used with appropriate locks held only. The tail item is 1026 * returned or %NULL if the list is empty. 1027 */ 1028 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1029 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1030 { 1031 struct sk_buff *skb = skb_peek_tail(list); 1032 if (skb) 1033 __skb_unlink(skb, list); 1034 return skb; 1035 } 1036 1037 1038 static inline int skb_is_nonlinear(const struct sk_buff *skb) 1039 { 1040 return skb->data_len; 1041 } 1042 1043 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1044 { 1045 return skb->len - skb->data_len; 1046 } 1047 1048 static inline int skb_pagelen(const struct sk_buff *skb) 1049 { 1050 int i, len = 0; 1051 1052 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1053 len += skb_shinfo(skb)->frags[i].size; 1054 return len + skb_headlen(skb); 1055 } 1056 1057 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1058 struct page *page, int off, int size) 1059 { 1060 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1061 1062 frag->page = page; 1063 frag->page_offset = off; 1064 frag->size = size; 1065 skb_shinfo(skb)->nr_frags = i + 1; 1066 } 1067 1068 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1069 int off, int size); 1070 1071 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1072 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb)) 1073 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1074 1075 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1076 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1077 { 1078 return skb->head + skb->tail; 1079 } 1080 1081 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1082 { 1083 skb->tail = skb->data - skb->head; 1084 } 1085 1086 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1087 { 1088 skb_reset_tail_pointer(skb); 1089 skb->tail += offset; 1090 } 1091 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1092 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1093 { 1094 return skb->tail; 1095 } 1096 1097 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1098 { 1099 skb->tail = skb->data; 1100 } 1101 1102 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1103 { 1104 skb->tail = skb->data + offset; 1105 } 1106 1107 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1108 1109 /* 1110 * Add data to an sk_buff 1111 */ 1112 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1113 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1114 { 1115 unsigned char *tmp = skb_tail_pointer(skb); 1116 SKB_LINEAR_ASSERT(skb); 1117 skb->tail += len; 1118 skb->len += len; 1119 return tmp; 1120 } 1121 1122 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1123 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1124 { 1125 skb->data -= len; 1126 skb->len += len; 1127 return skb->data; 1128 } 1129 1130 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1131 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1132 { 1133 skb->len -= len; 1134 BUG_ON(skb->len < skb->data_len); 1135 return skb->data += len; 1136 } 1137 1138 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1139 1140 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1141 { 1142 if (len > skb_headlen(skb) && 1143 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1144 return NULL; 1145 skb->len -= len; 1146 return skb->data += len; 1147 } 1148 1149 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1150 { 1151 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1152 } 1153 1154 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1155 { 1156 if (likely(len <= skb_headlen(skb))) 1157 return 1; 1158 if (unlikely(len > skb->len)) 1159 return 0; 1160 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1161 } 1162 1163 /** 1164 * skb_headroom - bytes at buffer head 1165 * @skb: buffer to check 1166 * 1167 * Return the number of bytes of free space at the head of an &sk_buff. 1168 */ 1169 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1170 { 1171 return skb->data - skb->head; 1172 } 1173 1174 /** 1175 * skb_tailroom - bytes at buffer end 1176 * @skb: buffer to check 1177 * 1178 * Return the number of bytes of free space at the tail of an sk_buff 1179 */ 1180 static inline int skb_tailroom(const struct sk_buff *skb) 1181 { 1182 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1183 } 1184 1185 /** 1186 * skb_reserve - adjust headroom 1187 * @skb: buffer to alter 1188 * @len: bytes to move 1189 * 1190 * Increase the headroom of an empty &sk_buff by reducing the tail 1191 * room. This is only allowed for an empty buffer. 1192 */ 1193 static inline void skb_reserve(struct sk_buff *skb, int len) 1194 { 1195 skb->data += len; 1196 skb->tail += len; 1197 } 1198 1199 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1200 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1201 { 1202 return skb->head + skb->transport_header; 1203 } 1204 1205 static inline void skb_reset_transport_header(struct sk_buff *skb) 1206 { 1207 skb->transport_header = skb->data - skb->head; 1208 } 1209 1210 static inline void skb_set_transport_header(struct sk_buff *skb, 1211 const int offset) 1212 { 1213 skb_reset_transport_header(skb); 1214 skb->transport_header += offset; 1215 } 1216 1217 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1218 { 1219 return skb->head + skb->network_header; 1220 } 1221 1222 static inline void skb_reset_network_header(struct sk_buff *skb) 1223 { 1224 skb->network_header = skb->data - skb->head; 1225 } 1226 1227 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1228 { 1229 skb_reset_network_header(skb); 1230 skb->network_header += offset; 1231 } 1232 1233 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1234 { 1235 return skb->head + skb->mac_header; 1236 } 1237 1238 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1239 { 1240 return skb->mac_header != ~0U; 1241 } 1242 1243 static inline void skb_reset_mac_header(struct sk_buff *skb) 1244 { 1245 skb->mac_header = skb->data - skb->head; 1246 } 1247 1248 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1249 { 1250 skb_reset_mac_header(skb); 1251 skb->mac_header += offset; 1252 } 1253 1254 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1255 1256 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1257 { 1258 return skb->transport_header; 1259 } 1260 1261 static inline void skb_reset_transport_header(struct sk_buff *skb) 1262 { 1263 skb->transport_header = skb->data; 1264 } 1265 1266 static inline void skb_set_transport_header(struct sk_buff *skb, 1267 const int offset) 1268 { 1269 skb->transport_header = skb->data + offset; 1270 } 1271 1272 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1273 { 1274 return skb->network_header; 1275 } 1276 1277 static inline void skb_reset_network_header(struct sk_buff *skb) 1278 { 1279 skb->network_header = skb->data; 1280 } 1281 1282 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1283 { 1284 skb->network_header = skb->data + offset; 1285 } 1286 1287 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1288 { 1289 return skb->mac_header; 1290 } 1291 1292 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1293 { 1294 return skb->mac_header != NULL; 1295 } 1296 1297 static inline void skb_reset_mac_header(struct sk_buff *skb) 1298 { 1299 skb->mac_header = skb->data; 1300 } 1301 1302 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1303 { 1304 skb->mac_header = skb->data + offset; 1305 } 1306 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1307 1308 static inline int skb_transport_offset(const struct sk_buff *skb) 1309 { 1310 return skb_transport_header(skb) - skb->data; 1311 } 1312 1313 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1314 { 1315 return skb->transport_header - skb->network_header; 1316 } 1317 1318 static inline int skb_network_offset(const struct sk_buff *skb) 1319 { 1320 return skb_network_header(skb) - skb->data; 1321 } 1322 1323 /* 1324 * CPUs often take a performance hit when accessing unaligned memory 1325 * locations. The actual performance hit varies, it can be small if the 1326 * hardware handles it or large if we have to take an exception and fix it 1327 * in software. 1328 * 1329 * Since an ethernet header is 14 bytes network drivers often end up with 1330 * the IP header at an unaligned offset. The IP header can be aligned by 1331 * shifting the start of the packet by 2 bytes. Drivers should do this 1332 * with: 1333 * 1334 * skb_reserve(skb, NET_IP_ALIGN); 1335 * 1336 * The downside to this alignment of the IP header is that the DMA is now 1337 * unaligned. On some architectures the cost of an unaligned DMA is high 1338 * and this cost outweighs the gains made by aligning the IP header. 1339 * 1340 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1341 * to be overridden. 1342 */ 1343 #ifndef NET_IP_ALIGN 1344 #define NET_IP_ALIGN 2 1345 #endif 1346 1347 /* 1348 * The networking layer reserves some headroom in skb data (via 1349 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1350 * the header has to grow. In the default case, if the header has to grow 1351 * 32 bytes or less we avoid the reallocation. 1352 * 1353 * Unfortunately this headroom changes the DMA alignment of the resulting 1354 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1355 * on some architectures. An architecture can override this value, 1356 * perhaps setting it to a cacheline in size (since that will maintain 1357 * cacheline alignment of the DMA). It must be a power of 2. 1358 * 1359 * Various parts of the networking layer expect at least 32 bytes of 1360 * headroom, you should not reduce this. 1361 */ 1362 #ifndef NET_SKB_PAD 1363 #define NET_SKB_PAD 32 1364 #endif 1365 1366 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1367 1368 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1369 { 1370 if (unlikely(skb->data_len)) { 1371 WARN_ON(1); 1372 return; 1373 } 1374 skb->len = len; 1375 skb_set_tail_pointer(skb, len); 1376 } 1377 1378 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1379 1380 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1381 { 1382 if (skb->data_len) 1383 return ___pskb_trim(skb, len); 1384 __skb_trim(skb, len); 1385 return 0; 1386 } 1387 1388 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1389 { 1390 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1391 } 1392 1393 /** 1394 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1395 * @skb: buffer to alter 1396 * @len: new length 1397 * 1398 * This is identical to pskb_trim except that the caller knows that 1399 * the skb is not cloned so we should never get an error due to out- 1400 * of-memory. 1401 */ 1402 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1403 { 1404 int err = pskb_trim(skb, len); 1405 BUG_ON(err); 1406 } 1407 1408 /** 1409 * skb_orphan - orphan a buffer 1410 * @skb: buffer to orphan 1411 * 1412 * If a buffer currently has an owner then we call the owner's 1413 * destructor function and make the @skb unowned. The buffer continues 1414 * to exist but is no longer charged to its former owner. 1415 */ 1416 static inline void skb_orphan(struct sk_buff *skb) 1417 { 1418 if (skb->destructor) 1419 skb->destructor(skb); 1420 skb->destructor = NULL; 1421 skb->sk = NULL; 1422 } 1423 1424 /** 1425 * __skb_queue_purge - empty a list 1426 * @list: list to empty 1427 * 1428 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1429 * the list and one reference dropped. This function does not take the 1430 * list lock and the caller must hold the relevant locks to use it. 1431 */ 1432 extern void skb_queue_purge(struct sk_buff_head *list); 1433 static inline void __skb_queue_purge(struct sk_buff_head *list) 1434 { 1435 struct sk_buff *skb; 1436 while ((skb = __skb_dequeue(list)) != NULL) 1437 kfree_skb(skb); 1438 } 1439 1440 /** 1441 * __dev_alloc_skb - allocate an skbuff for receiving 1442 * @length: length to allocate 1443 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1444 * 1445 * Allocate a new &sk_buff and assign it a usage count of one. The 1446 * buffer has unspecified headroom built in. Users should allocate 1447 * the headroom they think they need without accounting for the 1448 * built in space. The built in space is used for optimisations. 1449 * 1450 * %NULL is returned if there is no free memory. 1451 */ 1452 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1453 gfp_t gfp_mask) 1454 { 1455 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1456 if (likely(skb)) 1457 skb_reserve(skb, NET_SKB_PAD); 1458 return skb; 1459 } 1460 1461 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1462 1463 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1464 unsigned int length, gfp_t gfp_mask); 1465 1466 /** 1467 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1468 * @dev: network device to receive on 1469 * @length: length to allocate 1470 * 1471 * Allocate a new &sk_buff and assign it a usage count of one. The 1472 * buffer has unspecified headroom built in. Users should allocate 1473 * the headroom they think they need without accounting for the 1474 * built in space. The built in space is used for optimisations. 1475 * 1476 * %NULL is returned if there is no free memory. Although this function 1477 * allocates memory it can be called from an interrupt. 1478 */ 1479 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1480 unsigned int length) 1481 { 1482 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1483 } 1484 1485 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1486 unsigned int length) 1487 { 1488 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); 1489 1490 if (NET_IP_ALIGN && skb) 1491 skb_reserve(skb, NET_IP_ALIGN); 1492 return skb; 1493 } 1494 1495 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask); 1496 1497 /** 1498 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1499 * @dev: network device to receive on 1500 * 1501 * Allocate a new page node local to the specified device. 1502 * 1503 * %NULL is returned if there is no free memory. 1504 */ 1505 static inline struct page *netdev_alloc_page(struct net_device *dev) 1506 { 1507 return __netdev_alloc_page(dev, GFP_ATOMIC); 1508 } 1509 1510 static inline void netdev_free_page(struct net_device *dev, struct page *page) 1511 { 1512 __free_page(page); 1513 } 1514 1515 /** 1516 * skb_clone_writable - is the header of a clone writable 1517 * @skb: buffer to check 1518 * @len: length up to which to write 1519 * 1520 * Returns true if modifying the header part of the cloned buffer 1521 * does not requires the data to be copied. 1522 */ 1523 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1524 { 1525 return !skb_header_cloned(skb) && 1526 skb_headroom(skb) + len <= skb->hdr_len; 1527 } 1528 1529 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1530 int cloned) 1531 { 1532 int delta = 0; 1533 1534 if (headroom < NET_SKB_PAD) 1535 headroom = NET_SKB_PAD; 1536 if (headroom > skb_headroom(skb)) 1537 delta = headroom - skb_headroom(skb); 1538 1539 if (delta || cloned) 1540 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1541 GFP_ATOMIC); 1542 return 0; 1543 } 1544 1545 /** 1546 * skb_cow - copy header of skb when it is required 1547 * @skb: buffer to cow 1548 * @headroom: needed headroom 1549 * 1550 * If the skb passed lacks sufficient headroom or its data part 1551 * is shared, data is reallocated. If reallocation fails, an error 1552 * is returned and original skb is not changed. 1553 * 1554 * The result is skb with writable area skb->head...skb->tail 1555 * and at least @headroom of space at head. 1556 */ 1557 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1558 { 1559 return __skb_cow(skb, headroom, skb_cloned(skb)); 1560 } 1561 1562 /** 1563 * skb_cow_head - skb_cow but only making the head writable 1564 * @skb: buffer to cow 1565 * @headroom: needed headroom 1566 * 1567 * This function is identical to skb_cow except that we replace the 1568 * skb_cloned check by skb_header_cloned. It should be used when 1569 * you only need to push on some header and do not need to modify 1570 * the data. 1571 */ 1572 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1573 { 1574 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1575 } 1576 1577 /** 1578 * skb_padto - pad an skbuff up to a minimal size 1579 * @skb: buffer to pad 1580 * @len: minimal length 1581 * 1582 * Pads up a buffer to ensure the trailing bytes exist and are 1583 * blanked. If the buffer already contains sufficient data it 1584 * is untouched. Otherwise it is extended. Returns zero on 1585 * success. The skb is freed on error. 1586 */ 1587 1588 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1589 { 1590 unsigned int size = skb->len; 1591 if (likely(size >= len)) 1592 return 0; 1593 return skb_pad(skb, len - size); 1594 } 1595 1596 static inline int skb_add_data(struct sk_buff *skb, 1597 char __user *from, int copy) 1598 { 1599 const int off = skb->len; 1600 1601 if (skb->ip_summed == CHECKSUM_NONE) { 1602 int err = 0; 1603 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1604 copy, 0, &err); 1605 if (!err) { 1606 skb->csum = csum_block_add(skb->csum, csum, off); 1607 return 0; 1608 } 1609 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1610 return 0; 1611 1612 __skb_trim(skb, off); 1613 return -EFAULT; 1614 } 1615 1616 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1617 struct page *page, int off) 1618 { 1619 if (i) { 1620 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1621 1622 return page == frag->page && 1623 off == frag->page_offset + frag->size; 1624 } 1625 return 0; 1626 } 1627 1628 static inline int __skb_linearize(struct sk_buff *skb) 1629 { 1630 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1631 } 1632 1633 /** 1634 * skb_linearize - convert paged skb to linear one 1635 * @skb: buffer to linarize 1636 * 1637 * If there is no free memory -ENOMEM is returned, otherwise zero 1638 * is returned and the old skb data released. 1639 */ 1640 static inline int skb_linearize(struct sk_buff *skb) 1641 { 1642 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1643 } 1644 1645 /** 1646 * skb_linearize_cow - make sure skb is linear and writable 1647 * @skb: buffer to process 1648 * 1649 * If there is no free memory -ENOMEM is returned, otherwise zero 1650 * is returned and the old skb data released. 1651 */ 1652 static inline int skb_linearize_cow(struct sk_buff *skb) 1653 { 1654 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1655 __skb_linearize(skb) : 0; 1656 } 1657 1658 /** 1659 * skb_postpull_rcsum - update checksum for received skb after pull 1660 * @skb: buffer to update 1661 * @start: start of data before pull 1662 * @len: length of data pulled 1663 * 1664 * After doing a pull on a received packet, you need to call this to 1665 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1666 * CHECKSUM_NONE so that it can be recomputed from scratch. 1667 */ 1668 1669 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1670 const void *start, unsigned int len) 1671 { 1672 if (skb->ip_summed == CHECKSUM_COMPLETE) 1673 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1674 } 1675 1676 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1677 1678 /** 1679 * pskb_trim_rcsum - trim received skb and update checksum 1680 * @skb: buffer to trim 1681 * @len: new length 1682 * 1683 * This is exactly the same as pskb_trim except that it ensures the 1684 * checksum of received packets are still valid after the operation. 1685 */ 1686 1687 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1688 { 1689 if (likely(len >= skb->len)) 1690 return 0; 1691 if (skb->ip_summed == CHECKSUM_COMPLETE) 1692 skb->ip_summed = CHECKSUM_NONE; 1693 return __pskb_trim(skb, len); 1694 } 1695 1696 #define skb_queue_walk(queue, skb) \ 1697 for (skb = (queue)->next; \ 1698 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1699 skb = skb->next) 1700 1701 #define skb_queue_walk_safe(queue, skb, tmp) \ 1702 for (skb = (queue)->next, tmp = skb->next; \ 1703 skb != (struct sk_buff *)(queue); \ 1704 skb = tmp, tmp = skb->next) 1705 1706 #define skb_queue_walk_from(queue, skb) \ 1707 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1708 skb = skb->next) 1709 1710 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 1711 for (tmp = skb->next; \ 1712 skb != (struct sk_buff *)(queue); \ 1713 skb = tmp, tmp = skb->next) 1714 1715 #define skb_queue_reverse_walk(queue, skb) \ 1716 for (skb = (queue)->prev; \ 1717 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1718 skb = skb->prev) 1719 1720 1721 static inline bool skb_has_frags(const struct sk_buff *skb) 1722 { 1723 return skb_shinfo(skb)->frag_list != NULL; 1724 } 1725 1726 static inline void skb_frag_list_init(struct sk_buff *skb) 1727 { 1728 skb_shinfo(skb)->frag_list = NULL; 1729 } 1730 1731 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1732 { 1733 frag->next = skb_shinfo(skb)->frag_list; 1734 skb_shinfo(skb)->frag_list = frag; 1735 } 1736 1737 #define skb_walk_frags(skb, iter) \ 1738 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1739 1740 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1741 int *peeked, int *err); 1742 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1743 int noblock, int *err); 1744 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1745 struct poll_table_struct *wait); 1746 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1747 int offset, struct iovec *to, 1748 int size); 1749 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1750 int hlen, 1751 struct iovec *iov); 1752 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1753 int offset, 1754 const struct iovec *from, 1755 int from_offset, 1756 int len); 1757 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1758 int offset, 1759 const struct iovec *to, 1760 int to_offset, 1761 int size); 1762 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1763 extern void skb_free_datagram_locked(struct sock *sk, 1764 struct sk_buff *skb); 1765 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1766 unsigned int flags); 1767 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1768 int len, __wsum csum); 1769 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1770 void *to, int len); 1771 extern int skb_store_bits(struct sk_buff *skb, int offset, 1772 const void *from, int len); 1773 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1774 int offset, u8 *to, int len, 1775 __wsum csum); 1776 extern int skb_splice_bits(struct sk_buff *skb, 1777 unsigned int offset, 1778 struct pipe_inode_info *pipe, 1779 unsigned int len, 1780 unsigned int flags); 1781 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1782 extern void skb_split(struct sk_buff *skb, 1783 struct sk_buff *skb1, const u32 len); 1784 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1785 int shiftlen); 1786 1787 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1788 1789 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1790 int len, void *buffer) 1791 { 1792 int hlen = skb_headlen(skb); 1793 1794 if (hlen - offset >= len) 1795 return skb->data + offset; 1796 1797 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1798 return NULL; 1799 1800 return buffer; 1801 } 1802 1803 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1804 void *to, 1805 const unsigned int len) 1806 { 1807 memcpy(to, skb->data, len); 1808 } 1809 1810 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1811 const int offset, void *to, 1812 const unsigned int len) 1813 { 1814 memcpy(to, skb->data + offset, len); 1815 } 1816 1817 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1818 const void *from, 1819 const unsigned int len) 1820 { 1821 memcpy(skb->data, from, len); 1822 } 1823 1824 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1825 const int offset, 1826 const void *from, 1827 const unsigned int len) 1828 { 1829 memcpy(skb->data + offset, from, len); 1830 } 1831 1832 extern void skb_init(void); 1833 1834 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1835 { 1836 return skb->tstamp; 1837 } 1838 1839 /** 1840 * skb_get_timestamp - get timestamp from a skb 1841 * @skb: skb to get stamp from 1842 * @stamp: pointer to struct timeval to store stamp in 1843 * 1844 * Timestamps are stored in the skb as offsets to a base timestamp. 1845 * This function converts the offset back to a struct timeval and stores 1846 * it in stamp. 1847 */ 1848 static inline void skb_get_timestamp(const struct sk_buff *skb, 1849 struct timeval *stamp) 1850 { 1851 *stamp = ktime_to_timeval(skb->tstamp); 1852 } 1853 1854 static inline void skb_get_timestampns(const struct sk_buff *skb, 1855 struct timespec *stamp) 1856 { 1857 *stamp = ktime_to_timespec(skb->tstamp); 1858 } 1859 1860 static inline void __net_timestamp(struct sk_buff *skb) 1861 { 1862 skb->tstamp = ktime_get_real(); 1863 } 1864 1865 static inline ktime_t net_timedelta(ktime_t t) 1866 { 1867 return ktime_sub(ktime_get_real(), t); 1868 } 1869 1870 static inline ktime_t net_invalid_timestamp(void) 1871 { 1872 return ktime_set(0, 0); 1873 } 1874 1875 /** 1876 * skb_tstamp_tx - queue clone of skb with send time stamps 1877 * @orig_skb: the original outgoing packet 1878 * @hwtstamps: hardware time stamps, may be NULL if not available 1879 * 1880 * If the skb has a socket associated, then this function clones the 1881 * skb (thus sharing the actual data and optional structures), stores 1882 * the optional hardware time stamping information (if non NULL) or 1883 * generates a software time stamp (otherwise), then queues the clone 1884 * to the error queue of the socket. Errors are silently ignored. 1885 */ 1886 extern void skb_tstamp_tx(struct sk_buff *orig_skb, 1887 struct skb_shared_hwtstamps *hwtstamps); 1888 1889 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1890 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1891 1892 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1893 { 1894 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1895 } 1896 1897 /** 1898 * skb_checksum_complete - Calculate checksum of an entire packet 1899 * @skb: packet to process 1900 * 1901 * This function calculates the checksum over the entire packet plus 1902 * the value of skb->csum. The latter can be used to supply the 1903 * checksum of a pseudo header as used by TCP/UDP. It returns the 1904 * checksum. 1905 * 1906 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1907 * this function can be used to verify that checksum on received 1908 * packets. In that case the function should return zero if the 1909 * checksum is correct. In particular, this function will return zero 1910 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1911 * hardware has already verified the correctness of the checksum. 1912 */ 1913 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1914 { 1915 return skb_csum_unnecessary(skb) ? 1916 0 : __skb_checksum_complete(skb); 1917 } 1918 1919 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1920 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1921 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1922 { 1923 if (nfct && atomic_dec_and_test(&nfct->use)) 1924 nf_conntrack_destroy(nfct); 1925 } 1926 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1927 { 1928 if (nfct) 1929 atomic_inc(&nfct->use); 1930 } 1931 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1932 { 1933 if (skb) 1934 atomic_inc(&skb->users); 1935 } 1936 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1937 { 1938 if (skb) 1939 kfree_skb(skb); 1940 } 1941 #endif 1942 #ifdef CONFIG_BRIDGE_NETFILTER 1943 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1944 { 1945 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1946 kfree(nf_bridge); 1947 } 1948 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1949 { 1950 if (nf_bridge) 1951 atomic_inc(&nf_bridge->use); 1952 } 1953 #endif /* CONFIG_BRIDGE_NETFILTER */ 1954 static inline void nf_reset(struct sk_buff *skb) 1955 { 1956 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1957 nf_conntrack_put(skb->nfct); 1958 skb->nfct = NULL; 1959 nf_conntrack_put_reasm(skb->nfct_reasm); 1960 skb->nfct_reasm = NULL; 1961 #endif 1962 #ifdef CONFIG_BRIDGE_NETFILTER 1963 nf_bridge_put(skb->nf_bridge); 1964 skb->nf_bridge = NULL; 1965 #endif 1966 } 1967 1968 /* Note: This doesn't put any conntrack and bridge info in dst. */ 1969 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1970 { 1971 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1972 dst->nfct = src->nfct; 1973 nf_conntrack_get(src->nfct); 1974 dst->nfctinfo = src->nfctinfo; 1975 dst->nfct_reasm = src->nfct_reasm; 1976 nf_conntrack_get_reasm(src->nfct_reasm); 1977 #endif 1978 #ifdef CONFIG_BRIDGE_NETFILTER 1979 dst->nf_bridge = src->nf_bridge; 1980 nf_bridge_get(src->nf_bridge); 1981 #endif 1982 } 1983 1984 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1985 { 1986 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1987 nf_conntrack_put(dst->nfct); 1988 nf_conntrack_put_reasm(dst->nfct_reasm); 1989 #endif 1990 #ifdef CONFIG_BRIDGE_NETFILTER 1991 nf_bridge_put(dst->nf_bridge); 1992 #endif 1993 __nf_copy(dst, src); 1994 } 1995 1996 #ifdef CONFIG_NETWORK_SECMARK 1997 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1998 { 1999 to->secmark = from->secmark; 2000 } 2001 2002 static inline void skb_init_secmark(struct sk_buff *skb) 2003 { 2004 skb->secmark = 0; 2005 } 2006 #else 2007 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2008 { } 2009 2010 static inline void skb_init_secmark(struct sk_buff *skb) 2011 { } 2012 #endif 2013 2014 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2015 { 2016 skb->queue_mapping = queue_mapping; 2017 } 2018 2019 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2020 { 2021 return skb->queue_mapping; 2022 } 2023 2024 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2025 { 2026 to->queue_mapping = from->queue_mapping; 2027 } 2028 2029 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2030 { 2031 skb->queue_mapping = rx_queue + 1; 2032 } 2033 2034 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2035 { 2036 return skb->queue_mapping - 1; 2037 } 2038 2039 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2040 { 2041 return (skb->queue_mapping != 0); 2042 } 2043 2044 extern u16 skb_tx_hash(const struct net_device *dev, 2045 const struct sk_buff *skb); 2046 2047 #ifdef CONFIG_XFRM 2048 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2049 { 2050 return skb->sp; 2051 } 2052 #else 2053 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2054 { 2055 return NULL; 2056 } 2057 #endif 2058 2059 static inline int skb_is_gso(const struct sk_buff *skb) 2060 { 2061 return skb_shinfo(skb)->gso_size; 2062 } 2063 2064 static inline int skb_is_gso_v6(const struct sk_buff *skb) 2065 { 2066 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2067 } 2068 2069 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2070 2071 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2072 { 2073 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2074 * wanted then gso_type will be set. */ 2075 struct skb_shared_info *shinfo = skb_shinfo(skb); 2076 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { 2077 __skb_warn_lro_forwarding(skb); 2078 return true; 2079 } 2080 return false; 2081 } 2082 2083 static inline void skb_forward_csum(struct sk_buff *skb) 2084 { 2085 /* Unfortunately we don't support this one. Any brave souls? */ 2086 if (skb->ip_summed == CHECKSUM_COMPLETE) 2087 skb->ip_summed = CHECKSUM_NONE; 2088 } 2089 2090 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2091 #endif /* __KERNEL__ */ 2092 #endif /* _LINUX_SKBUFF_H */ 2093