xref: /linux-6.15/include/linux/skbuff.h (revision 22f367a6)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #include <net/page_pool.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	struct net_device	*physindev;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 };
334 #endif
335 
336 struct sk_buff_head {
337 	/* These two members must be first to match sk_buff. */
338 	struct_group_tagged(sk_buff_list, list,
339 		struct sk_buff	*next;
340 		struct sk_buff	*prev;
341 	);
342 
343 	__u32		qlen;
344 	spinlock_t	lock;
345 };
346 
347 struct sk_buff;
348 
349 /* To allow 64K frame to be packed as single skb without frag_list we
350  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
351  * buffers which do not start on a page boundary.
352  *
353  * Since GRO uses frags we allocate at least 16 regardless of page
354  * size.
355  */
356 #if (65536/PAGE_SIZE + 1) < 16
357 #define MAX_SKB_FRAGS 16UL
358 #else
359 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
360 #endif
361 extern int sysctl_max_skb_frags;
362 
363 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
364  * segment using its current segmentation instead.
365  */
366 #define GSO_BY_FRAGS	0xFFFF
367 
368 typedef struct bio_vec skb_frag_t;
369 
370 /**
371  * skb_frag_size() - Returns the size of a skb fragment
372  * @frag: skb fragment
373  */
374 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
375 {
376 	return frag->bv_len;
377 }
378 
379 /**
380  * skb_frag_size_set() - Sets the size of a skb fragment
381  * @frag: skb fragment
382  * @size: size of fragment
383  */
384 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
385 {
386 	frag->bv_len = size;
387 }
388 
389 /**
390  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
391  * @frag: skb fragment
392  * @delta: value to add
393  */
394 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
395 {
396 	frag->bv_len += delta;
397 }
398 
399 /**
400  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
401  * @frag: skb fragment
402  * @delta: value to subtract
403  */
404 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
405 {
406 	frag->bv_len -= delta;
407 }
408 
409 /**
410  * skb_frag_must_loop - Test if %p is a high memory page
411  * @p: fragment's page
412  */
413 static inline bool skb_frag_must_loop(struct page *p)
414 {
415 #if defined(CONFIG_HIGHMEM)
416 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
417 		return true;
418 #endif
419 	return false;
420 }
421 
422 /**
423  *	skb_frag_foreach_page - loop over pages in a fragment
424  *
425  *	@f:		skb frag to operate on
426  *	@f_off:		offset from start of f->bv_page
427  *	@f_len:		length from f_off to loop over
428  *	@p:		(temp var) current page
429  *	@p_off:		(temp var) offset from start of current page,
430  *	                           non-zero only on first page.
431  *	@p_len:		(temp var) length in current page,
432  *				   < PAGE_SIZE only on first and last page.
433  *	@copied:	(temp var) length so far, excluding current p_len.
434  *
435  *	A fragment can hold a compound page, in which case per-page
436  *	operations, notably kmap_atomic, must be called for each
437  *	regular page.
438  */
439 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
440 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
441 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
442 	     p_len = skb_frag_must_loop(p) ?				\
443 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
444 	     copied = 0;						\
445 	     copied < f_len;						\
446 	     copied += p_len, p++, p_off = 0,				\
447 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
448 
449 #define HAVE_HW_TIME_STAMP
450 
451 /**
452  * struct skb_shared_hwtstamps - hardware time stamps
453  * @hwtstamp:		hardware time stamp transformed into duration
454  *			since arbitrary point in time
455  * @netdev_data:	address/cookie of network device driver used as
456  *			reference to actual hardware time stamp
457  *
458  * Software time stamps generated by ktime_get_real() are stored in
459  * skb->tstamp.
460  *
461  * hwtstamps can only be compared against other hwtstamps from
462  * the same device.
463  *
464  * This structure is attached to packets as part of the
465  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
466  */
467 struct skb_shared_hwtstamps {
468 	union {
469 		ktime_t	hwtstamp;
470 		void *netdev_data;
471 	};
472 };
473 
474 /* Definitions for tx_flags in struct skb_shared_info */
475 enum {
476 	/* generate hardware time stamp */
477 	SKBTX_HW_TSTAMP = 1 << 0,
478 
479 	/* generate software time stamp when queueing packet to NIC */
480 	SKBTX_SW_TSTAMP = 1 << 1,
481 
482 	/* device driver is going to provide hardware time stamp */
483 	SKBTX_IN_PROGRESS = 1 << 2,
484 
485 	/* generate hardware time stamp based on cycles if supported */
486 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
487 
488 	/* generate wifi status information (where possible) */
489 	SKBTX_WIFI_STATUS = 1 << 4,
490 
491 	/* determine hardware time stamp based on time or cycles */
492 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
493 
494 	/* generate software time stamp when entering packet scheduling */
495 	SKBTX_SCHED_TSTAMP = 1 << 6,
496 };
497 
498 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
499 				 SKBTX_SCHED_TSTAMP)
500 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
501 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
502 				 SKBTX_ANY_SW_TSTAMP)
503 
504 /* Definitions for flags in struct skb_shared_info */
505 enum {
506 	/* use zcopy routines */
507 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
508 
509 	/* This indicates at least one fragment might be overwritten
510 	 * (as in vmsplice(), sendfile() ...)
511 	 * If we need to compute a TX checksum, we'll need to copy
512 	 * all frags to avoid possible bad checksum
513 	 */
514 	SKBFL_SHARED_FRAG = BIT(1),
515 
516 	/* segment contains only zerocopy data and should not be
517 	 * charged to the kernel memory.
518 	 */
519 	SKBFL_PURE_ZEROCOPY = BIT(2),
520 
521 	SKBFL_DONT_ORPHAN = BIT(3),
522 
523 	/* page references are managed by the ubuf_info, so it's safe to
524 	 * use frags only up until ubuf_info is released
525 	 */
526 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
527 };
528 
529 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
530 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
531 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
532 
533 /*
534  * The callback notifies userspace to release buffers when skb DMA is done in
535  * lower device, the skb last reference should be 0 when calling this.
536  * The zerocopy_success argument is true if zero copy transmit occurred,
537  * false on data copy or out of memory error caused by data copy attempt.
538  * The ctx field is used to track device context.
539  * The desc field is used to track userspace buffer index.
540  */
541 struct ubuf_info {
542 	void (*callback)(struct sk_buff *, struct ubuf_info *,
543 			 bool zerocopy_success);
544 	refcount_t refcnt;
545 	u8 flags;
546 };
547 
548 struct ubuf_info_msgzc {
549 	struct ubuf_info ubuf;
550 
551 	union {
552 		struct {
553 			unsigned long desc;
554 			void *ctx;
555 		};
556 		struct {
557 			u32 id;
558 			u16 len;
559 			u16 zerocopy:1;
560 			u32 bytelen;
561 		};
562 	};
563 
564 	struct mmpin {
565 		struct user_struct *user;
566 		unsigned int num_pg;
567 	} mmp;
568 };
569 
570 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
571 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
572 					     ubuf)
573 
574 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
575 void mm_unaccount_pinned_pages(struct mmpin *mmp);
576 
577 /* This data is invariant across clones and lives at
578  * the end of the header data, ie. at skb->end.
579  */
580 struct skb_shared_info {
581 	__u8		flags;
582 	__u8		meta_len;
583 	__u8		nr_frags;
584 	__u8		tx_flags;
585 	unsigned short	gso_size;
586 	/* Warning: this field is not always filled in (UFO)! */
587 	unsigned short	gso_segs;
588 	struct sk_buff	*frag_list;
589 	struct skb_shared_hwtstamps hwtstamps;
590 	unsigned int	gso_type;
591 	u32		tskey;
592 
593 	/*
594 	 * Warning : all fields before dataref are cleared in __alloc_skb()
595 	 */
596 	atomic_t	dataref;
597 	unsigned int	xdp_frags_size;
598 
599 	/* Intermediate layers must ensure that destructor_arg
600 	 * remains valid until skb destructor */
601 	void *		destructor_arg;
602 
603 	/* must be last field, see pskb_expand_head() */
604 	skb_frag_t	frags[MAX_SKB_FRAGS];
605 };
606 
607 /**
608  * DOC: dataref and headerless skbs
609  *
610  * Transport layers send out clones of payload skbs they hold for
611  * retransmissions. To allow lower layers of the stack to prepend their headers
612  * we split &skb_shared_info.dataref into two halves.
613  * The lower 16 bits count the overall number of references.
614  * The higher 16 bits indicate how many of the references are payload-only.
615  * skb_header_cloned() checks if skb is allowed to add / write the headers.
616  *
617  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
618  * (via __skb_header_release()). Any clone created from marked skb will get
619  * &sk_buff.hdr_len populated with the available headroom.
620  * If there's the only clone in existence it's able to modify the headroom
621  * at will. The sequence of calls inside the transport layer is::
622  *
623  *  <alloc skb>
624  *  skb_reserve()
625  *  __skb_header_release()
626  *  skb_clone()
627  *  // send the clone down the stack
628  *
629  * This is not a very generic construct and it depends on the transport layers
630  * doing the right thing. In practice there's usually only one payload-only skb.
631  * Having multiple payload-only skbs with different lengths of hdr_len is not
632  * possible. The payload-only skbs should never leave their owner.
633  */
634 #define SKB_DATAREF_SHIFT 16
635 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
636 
637 
638 enum {
639 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
640 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
641 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
642 };
643 
644 enum {
645 	SKB_GSO_TCPV4 = 1 << 0,
646 
647 	/* This indicates the skb is from an untrusted source. */
648 	SKB_GSO_DODGY = 1 << 1,
649 
650 	/* This indicates the tcp segment has CWR set. */
651 	SKB_GSO_TCP_ECN = 1 << 2,
652 
653 	SKB_GSO_TCP_FIXEDID = 1 << 3,
654 
655 	SKB_GSO_TCPV6 = 1 << 4,
656 
657 	SKB_GSO_FCOE = 1 << 5,
658 
659 	SKB_GSO_GRE = 1 << 6,
660 
661 	SKB_GSO_GRE_CSUM = 1 << 7,
662 
663 	SKB_GSO_IPXIP4 = 1 << 8,
664 
665 	SKB_GSO_IPXIP6 = 1 << 9,
666 
667 	SKB_GSO_UDP_TUNNEL = 1 << 10,
668 
669 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
670 
671 	SKB_GSO_PARTIAL = 1 << 12,
672 
673 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
674 
675 	SKB_GSO_SCTP = 1 << 14,
676 
677 	SKB_GSO_ESP = 1 << 15,
678 
679 	SKB_GSO_UDP = 1 << 16,
680 
681 	SKB_GSO_UDP_L4 = 1 << 17,
682 
683 	SKB_GSO_FRAGLIST = 1 << 18,
684 };
685 
686 #if BITS_PER_LONG > 32
687 #define NET_SKBUFF_DATA_USES_OFFSET 1
688 #endif
689 
690 #ifdef NET_SKBUFF_DATA_USES_OFFSET
691 typedef unsigned int sk_buff_data_t;
692 #else
693 typedef unsigned char *sk_buff_data_t;
694 #endif
695 
696 /**
697  * DOC: Basic sk_buff geometry
698  *
699  * struct sk_buff itself is a metadata structure and does not hold any packet
700  * data. All the data is held in associated buffers.
701  *
702  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
703  * into two parts:
704  *
705  *  - data buffer, containing headers and sometimes payload;
706  *    this is the part of the skb operated on by the common helpers
707  *    such as skb_put() or skb_pull();
708  *  - shared info (struct skb_shared_info) which holds an array of pointers
709  *    to read-only data in the (page, offset, length) format.
710  *
711  * Optionally &skb_shared_info.frag_list may point to another skb.
712  *
713  * Basic diagram may look like this::
714  *
715  *                                  ---------------
716  *                                 | sk_buff       |
717  *                                  ---------------
718  *     ,---------------------------  + head
719  *    /          ,-----------------  + data
720  *   /          /      ,-----------  + tail
721  *  |          |      |            , + end
722  *  |          |      |           |
723  *  v          v      v           v
724  *   -----------------------------------------------
725  *  | headroom | data |  tailroom | skb_shared_info |
726  *   -----------------------------------------------
727  *                                 + [page frag]
728  *                                 + [page frag]
729  *                                 + [page frag]
730  *                                 + [page frag]       ---------
731  *                                 + frag_list    --> | sk_buff |
732  *                                                     ---------
733  *
734  */
735 
736 /**
737  *	struct sk_buff - socket buffer
738  *	@next: Next buffer in list
739  *	@prev: Previous buffer in list
740  *	@tstamp: Time we arrived/left
741  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
742  *		for retransmit timer
743  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
744  *	@list: queue head
745  *	@ll_node: anchor in an llist (eg socket defer_list)
746  *	@sk: Socket we are owned by
747  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
748  *		fragmentation management
749  *	@dev: Device we arrived on/are leaving by
750  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
751  *	@cb: Control buffer. Free for use by every layer. Put private vars here
752  *	@_skb_refdst: destination entry (with norefcount bit)
753  *	@sp: the security path, used for xfrm
754  *	@len: Length of actual data
755  *	@data_len: Data length
756  *	@mac_len: Length of link layer header
757  *	@hdr_len: writable header length of cloned skb
758  *	@csum: Checksum (must include start/offset pair)
759  *	@csum_start: Offset from skb->head where checksumming should start
760  *	@csum_offset: Offset from csum_start where checksum should be stored
761  *	@priority: Packet queueing priority
762  *	@ignore_df: allow local fragmentation
763  *	@cloned: Head may be cloned (check refcnt to be sure)
764  *	@ip_summed: Driver fed us an IP checksum
765  *	@nohdr: Payload reference only, must not modify header
766  *	@pkt_type: Packet class
767  *	@fclone: skbuff clone status
768  *	@ipvs_property: skbuff is owned by ipvs
769  *	@inner_protocol_type: whether the inner protocol is
770  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
771  *	@remcsum_offload: remote checksum offload is enabled
772  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
773  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
774  *	@tc_skip_classify: do not classify packet. set by IFB device
775  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
776  *	@redirected: packet was redirected by packet classifier
777  *	@from_ingress: packet was redirected from the ingress path
778  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
779  *	@peeked: this packet has been seen already, so stats have been
780  *		done for it, don't do them again
781  *	@nf_trace: netfilter packet trace flag
782  *	@protocol: Packet protocol from driver
783  *	@destructor: Destruct function
784  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
785  *	@_sk_redir: socket redirection information for skmsg
786  *	@_nfct: Associated connection, if any (with nfctinfo bits)
787  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
788  *	@skb_iif: ifindex of device we arrived on
789  *	@tc_index: Traffic control index
790  *	@hash: the packet hash
791  *	@queue_mapping: Queue mapping for multiqueue devices
792  *	@head_frag: skb was allocated from page fragments,
793  *		not allocated by kmalloc() or vmalloc().
794  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
795  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
796  *		page_pool support on driver)
797  *	@active_extensions: active extensions (skb_ext_id types)
798  *	@ndisc_nodetype: router type (from link layer)
799  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
800  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
801  *		ports.
802  *	@sw_hash: indicates hash was computed in software stack
803  *	@wifi_acked_valid: wifi_acked was set
804  *	@wifi_acked: whether frame was acked on wifi or not
805  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
806  *	@encapsulation: indicates the inner headers in the skbuff are valid
807  *	@encap_hdr_csum: software checksum is needed
808  *	@csum_valid: checksum is already valid
809  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
810  *	@csum_complete_sw: checksum was completed by software
811  *	@csum_level: indicates the number of consecutive checksums found in
812  *		the packet minus one that have been verified as
813  *		CHECKSUM_UNNECESSARY (max 3)
814  *	@scm_io_uring: SKB holds io_uring registered files
815  *	@dst_pending_confirm: need to confirm neighbour
816  *	@decrypted: Decrypted SKB
817  *	@slow_gro: state present at GRO time, slower prepare step required
818  *	@mono_delivery_time: When set, skb->tstamp has the
819  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
820  *		skb->tstamp has the (rcv) timestamp at ingress and
821  *		delivery_time at egress.
822  *	@napi_id: id of the NAPI struct this skb came from
823  *	@sender_cpu: (aka @napi_id) source CPU in XPS
824  *	@alloc_cpu: CPU which did the skb allocation.
825  *	@secmark: security marking
826  *	@mark: Generic packet mark
827  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
828  *		at the tail of an sk_buff
829  *	@vlan_all: vlan fields (proto & tci)
830  *	@vlan_proto: vlan encapsulation protocol
831  *	@vlan_tci: vlan tag control information
832  *	@inner_protocol: Protocol (encapsulation)
833  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
834  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
835  *	@inner_transport_header: Inner transport layer header (encapsulation)
836  *	@inner_network_header: Network layer header (encapsulation)
837  *	@inner_mac_header: Link layer header (encapsulation)
838  *	@transport_header: Transport layer header
839  *	@network_header: Network layer header
840  *	@mac_header: Link layer header
841  *	@kcov_handle: KCOV remote handle for remote coverage collection
842  *	@tail: Tail pointer
843  *	@end: End pointer
844  *	@head: Head of buffer
845  *	@data: Data head pointer
846  *	@truesize: Buffer size
847  *	@users: User count - see {datagram,tcp}.c
848  *	@extensions: allocated extensions, valid if active_extensions is nonzero
849  */
850 
851 struct sk_buff {
852 	union {
853 		struct {
854 			/* These two members must be first to match sk_buff_head. */
855 			struct sk_buff		*next;
856 			struct sk_buff		*prev;
857 
858 			union {
859 				struct net_device	*dev;
860 				/* Some protocols might use this space to store information,
861 				 * while device pointer would be NULL.
862 				 * UDP receive path is one user.
863 				 */
864 				unsigned long		dev_scratch;
865 			};
866 		};
867 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
868 		struct list_head	list;
869 		struct llist_node	ll_node;
870 	};
871 
872 	union {
873 		struct sock		*sk;
874 		int			ip_defrag_offset;
875 	};
876 
877 	union {
878 		ktime_t		tstamp;
879 		u64		skb_mstamp_ns; /* earliest departure time */
880 	};
881 	/*
882 	 * This is the control buffer. It is free to use for every
883 	 * layer. Please put your private variables there. If you
884 	 * want to keep them across layers you have to do a skb_clone()
885 	 * first. This is owned by whoever has the skb queued ATM.
886 	 */
887 	char			cb[48] __aligned(8);
888 
889 	union {
890 		struct {
891 			unsigned long	_skb_refdst;
892 			void		(*destructor)(struct sk_buff *skb);
893 		};
894 		struct list_head	tcp_tsorted_anchor;
895 #ifdef CONFIG_NET_SOCK_MSG
896 		unsigned long		_sk_redir;
897 #endif
898 	};
899 
900 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
901 	unsigned long		 _nfct;
902 #endif
903 	unsigned int		len,
904 				data_len;
905 	__u16			mac_len,
906 				hdr_len;
907 
908 	/* Following fields are _not_ copied in __copy_skb_header()
909 	 * Note that queue_mapping is here mostly to fill a hole.
910 	 */
911 	__u16			queue_mapping;
912 
913 /* if you move cloned around you also must adapt those constants */
914 #ifdef __BIG_ENDIAN_BITFIELD
915 #define CLONED_MASK	(1 << 7)
916 #else
917 #define CLONED_MASK	1
918 #endif
919 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
920 
921 	/* private: */
922 	__u8			__cloned_offset[0];
923 	/* public: */
924 	__u8			cloned:1,
925 				nohdr:1,
926 				fclone:2,
927 				peeked:1,
928 				head_frag:1,
929 				pfmemalloc:1,
930 				pp_recycle:1; /* page_pool recycle indicator */
931 #ifdef CONFIG_SKB_EXTENSIONS
932 	__u8			active_extensions;
933 #endif
934 
935 	/* Fields enclosed in headers group are copied
936 	 * using a single memcpy() in __copy_skb_header()
937 	 */
938 	struct_group(headers,
939 
940 	/* private: */
941 	__u8			__pkt_type_offset[0];
942 	/* public: */
943 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
944 	__u8			ignore_df:1;
945 	__u8			nf_trace:1;
946 	__u8			ip_summed:2;
947 	__u8			ooo_okay:1;
948 
949 	__u8			l4_hash:1;
950 	__u8			sw_hash:1;
951 	__u8			wifi_acked_valid:1;
952 	__u8			wifi_acked:1;
953 	__u8			no_fcs:1;
954 	/* Indicates the inner headers are valid in the skbuff. */
955 	__u8			encapsulation:1;
956 	__u8			encap_hdr_csum:1;
957 	__u8			csum_valid:1;
958 
959 	/* private: */
960 	__u8			__pkt_vlan_present_offset[0];
961 	/* public: */
962 	__u8			remcsum_offload:1;
963 	__u8			csum_complete_sw:1;
964 	__u8			csum_level:2;
965 	__u8			dst_pending_confirm:1;
966 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
967 #ifdef CONFIG_NET_CLS_ACT
968 	__u8			tc_skip_classify:1;
969 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
970 #endif
971 #ifdef CONFIG_IPV6_NDISC_NODETYPE
972 	__u8			ndisc_nodetype:2;
973 #endif
974 
975 	__u8			ipvs_property:1;
976 	__u8			inner_protocol_type:1;
977 #ifdef CONFIG_NET_SWITCHDEV
978 	__u8			offload_fwd_mark:1;
979 	__u8			offload_l3_fwd_mark:1;
980 #endif
981 	__u8			redirected:1;
982 #ifdef CONFIG_NET_REDIRECT
983 	__u8			from_ingress:1;
984 #endif
985 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
986 	__u8			nf_skip_egress:1;
987 #endif
988 #ifdef CONFIG_TLS_DEVICE
989 	__u8			decrypted:1;
990 #endif
991 	__u8			slow_gro:1;
992 	__u8			csum_not_inet:1;
993 	__u8			scm_io_uring:1;
994 
995 #ifdef CONFIG_NET_SCHED
996 	__u16			tc_index;	/* traffic control index */
997 #endif
998 
999 	union {
1000 		__wsum		csum;
1001 		struct {
1002 			__u16	csum_start;
1003 			__u16	csum_offset;
1004 		};
1005 	};
1006 	__u32			priority;
1007 	int			skb_iif;
1008 	__u32			hash;
1009 	union {
1010 		u32		vlan_all;
1011 		struct {
1012 			__be16	vlan_proto;
1013 			__u16	vlan_tci;
1014 		};
1015 	};
1016 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1017 	union {
1018 		unsigned int	napi_id;
1019 		unsigned int	sender_cpu;
1020 	};
1021 #endif
1022 	u16			alloc_cpu;
1023 #ifdef CONFIG_NETWORK_SECMARK
1024 	__u32		secmark;
1025 #endif
1026 
1027 	union {
1028 		__u32		mark;
1029 		__u32		reserved_tailroom;
1030 	};
1031 
1032 	union {
1033 		__be16		inner_protocol;
1034 		__u8		inner_ipproto;
1035 	};
1036 
1037 	__u16			inner_transport_header;
1038 	__u16			inner_network_header;
1039 	__u16			inner_mac_header;
1040 
1041 	__be16			protocol;
1042 	__u16			transport_header;
1043 	__u16			network_header;
1044 	__u16			mac_header;
1045 
1046 #ifdef CONFIG_KCOV
1047 	u64			kcov_handle;
1048 #endif
1049 
1050 	); /* end headers group */
1051 
1052 	/* These elements must be at the end, see alloc_skb() for details.  */
1053 	sk_buff_data_t		tail;
1054 	sk_buff_data_t		end;
1055 	unsigned char		*head,
1056 				*data;
1057 	unsigned int		truesize;
1058 	refcount_t		users;
1059 
1060 #ifdef CONFIG_SKB_EXTENSIONS
1061 	/* only useable after checking ->active_extensions != 0 */
1062 	struct skb_ext		*extensions;
1063 #endif
1064 };
1065 
1066 /* if you move pkt_type around you also must adapt those constants */
1067 #ifdef __BIG_ENDIAN_BITFIELD
1068 #define PKT_TYPE_MAX	(7 << 5)
1069 #else
1070 #define PKT_TYPE_MAX	7
1071 #endif
1072 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1073 
1074 /* if you move tc_at_ingress or mono_delivery_time
1075  * around, you also must adapt these constants.
1076  */
1077 #ifdef __BIG_ENDIAN_BITFIELD
1078 #define TC_AT_INGRESS_MASK		(1 << 0)
1079 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1080 #else
1081 #define TC_AT_INGRESS_MASK		(1 << 7)
1082 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1083 #endif
1084 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1085 
1086 #ifdef __KERNEL__
1087 /*
1088  *	Handling routines are only of interest to the kernel
1089  */
1090 
1091 #define SKB_ALLOC_FCLONE	0x01
1092 #define SKB_ALLOC_RX		0x02
1093 #define SKB_ALLOC_NAPI		0x04
1094 
1095 /**
1096  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1097  * @skb: buffer
1098  */
1099 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1100 {
1101 	return unlikely(skb->pfmemalloc);
1102 }
1103 
1104 /*
1105  * skb might have a dst pointer attached, refcounted or not.
1106  * _skb_refdst low order bit is set if refcount was _not_ taken
1107  */
1108 #define SKB_DST_NOREF	1UL
1109 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1110 
1111 /**
1112  * skb_dst - returns skb dst_entry
1113  * @skb: buffer
1114  *
1115  * Returns skb dst_entry, regardless of reference taken or not.
1116  */
1117 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1118 {
1119 	/* If refdst was not refcounted, check we still are in a
1120 	 * rcu_read_lock section
1121 	 */
1122 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1123 		!rcu_read_lock_held() &&
1124 		!rcu_read_lock_bh_held());
1125 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1126 }
1127 
1128 /**
1129  * skb_dst_set - sets skb dst
1130  * @skb: buffer
1131  * @dst: dst entry
1132  *
1133  * Sets skb dst, assuming a reference was taken on dst and should
1134  * be released by skb_dst_drop()
1135  */
1136 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1137 {
1138 	skb->slow_gro |= !!dst;
1139 	skb->_skb_refdst = (unsigned long)dst;
1140 }
1141 
1142 /**
1143  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1144  * @skb: buffer
1145  * @dst: dst entry
1146  *
1147  * Sets skb dst, assuming a reference was not taken on dst.
1148  * If dst entry is cached, we do not take reference and dst_release
1149  * will be avoided by refdst_drop. If dst entry is not cached, we take
1150  * reference, so that last dst_release can destroy the dst immediately.
1151  */
1152 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1153 {
1154 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1155 	skb->slow_gro |= !!dst;
1156 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1157 }
1158 
1159 /**
1160  * skb_dst_is_noref - Test if skb dst isn't refcounted
1161  * @skb: buffer
1162  */
1163 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1164 {
1165 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1166 }
1167 
1168 /**
1169  * skb_rtable - Returns the skb &rtable
1170  * @skb: buffer
1171  */
1172 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1173 {
1174 	return (struct rtable *)skb_dst(skb);
1175 }
1176 
1177 /* For mangling skb->pkt_type from user space side from applications
1178  * such as nft, tc, etc, we only allow a conservative subset of
1179  * possible pkt_types to be set.
1180 */
1181 static inline bool skb_pkt_type_ok(u32 ptype)
1182 {
1183 	return ptype <= PACKET_OTHERHOST;
1184 }
1185 
1186 /**
1187  * skb_napi_id - Returns the skb's NAPI id
1188  * @skb: buffer
1189  */
1190 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1191 {
1192 #ifdef CONFIG_NET_RX_BUSY_POLL
1193 	return skb->napi_id;
1194 #else
1195 	return 0;
1196 #endif
1197 }
1198 
1199 /**
1200  * skb_unref - decrement the skb's reference count
1201  * @skb: buffer
1202  *
1203  * Returns true if we can free the skb.
1204  */
1205 static inline bool skb_unref(struct sk_buff *skb)
1206 {
1207 	if (unlikely(!skb))
1208 		return false;
1209 	if (likely(refcount_read(&skb->users) == 1))
1210 		smp_rmb();
1211 	else if (likely(!refcount_dec_and_test(&skb->users)))
1212 		return false;
1213 
1214 	return true;
1215 }
1216 
1217 void __fix_address
1218 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1219 
1220 /**
1221  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1222  *	@skb: buffer to free
1223  */
1224 static inline void kfree_skb(struct sk_buff *skb)
1225 {
1226 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1227 }
1228 
1229 void skb_release_head_state(struct sk_buff *skb);
1230 void kfree_skb_list_reason(struct sk_buff *segs,
1231 			   enum skb_drop_reason reason);
1232 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1233 void skb_tx_error(struct sk_buff *skb);
1234 
1235 static inline void kfree_skb_list(struct sk_buff *segs)
1236 {
1237 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1238 }
1239 
1240 #ifdef CONFIG_TRACEPOINTS
1241 void consume_skb(struct sk_buff *skb);
1242 #else
1243 static inline void consume_skb(struct sk_buff *skb)
1244 {
1245 	return kfree_skb(skb);
1246 }
1247 #endif
1248 
1249 void __consume_stateless_skb(struct sk_buff *skb);
1250 void  __kfree_skb(struct sk_buff *skb);
1251 extern struct kmem_cache *skbuff_cache;
1252 
1253 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1254 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1255 		      bool *fragstolen, int *delta_truesize);
1256 
1257 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1258 			    int node);
1259 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1260 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1261 struct sk_buff *build_skb_around(struct sk_buff *skb,
1262 				 void *data, unsigned int frag_size);
1263 void skb_attempt_defer_free(struct sk_buff *skb);
1264 
1265 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1266 struct sk_buff *slab_build_skb(void *data);
1267 
1268 /**
1269  * alloc_skb - allocate a network buffer
1270  * @size: size to allocate
1271  * @priority: allocation mask
1272  *
1273  * This function is a convenient wrapper around __alloc_skb().
1274  */
1275 static inline struct sk_buff *alloc_skb(unsigned int size,
1276 					gfp_t priority)
1277 {
1278 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1279 }
1280 
1281 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1282 				     unsigned long data_len,
1283 				     int max_page_order,
1284 				     int *errcode,
1285 				     gfp_t gfp_mask);
1286 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1287 
1288 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1289 struct sk_buff_fclones {
1290 	struct sk_buff	skb1;
1291 
1292 	struct sk_buff	skb2;
1293 
1294 	refcount_t	fclone_ref;
1295 };
1296 
1297 /**
1298  *	skb_fclone_busy - check if fclone is busy
1299  *	@sk: socket
1300  *	@skb: buffer
1301  *
1302  * Returns true if skb is a fast clone, and its clone is not freed.
1303  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1304  * so we also check that this didnt happen.
1305  */
1306 static inline bool skb_fclone_busy(const struct sock *sk,
1307 				   const struct sk_buff *skb)
1308 {
1309 	const struct sk_buff_fclones *fclones;
1310 
1311 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1312 
1313 	return skb->fclone == SKB_FCLONE_ORIG &&
1314 	       refcount_read(&fclones->fclone_ref) > 1 &&
1315 	       READ_ONCE(fclones->skb2.sk) == sk;
1316 }
1317 
1318 /**
1319  * alloc_skb_fclone - allocate a network buffer from fclone cache
1320  * @size: size to allocate
1321  * @priority: allocation mask
1322  *
1323  * This function is a convenient wrapper around __alloc_skb().
1324  */
1325 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1326 					       gfp_t priority)
1327 {
1328 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1329 }
1330 
1331 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1332 void skb_headers_offset_update(struct sk_buff *skb, int off);
1333 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1334 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1335 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1336 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1337 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1338 				   gfp_t gfp_mask, bool fclone);
1339 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1340 					  gfp_t gfp_mask)
1341 {
1342 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1343 }
1344 
1345 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1346 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1347 				     unsigned int headroom);
1348 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1349 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1350 				int newtailroom, gfp_t priority);
1351 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1352 				     int offset, int len);
1353 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1354 			      int offset, int len);
1355 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1356 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1357 
1358 /**
1359  *	skb_pad			-	zero pad the tail of an skb
1360  *	@skb: buffer to pad
1361  *	@pad: space to pad
1362  *
1363  *	Ensure that a buffer is followed by a padding area that is zero
1364  *	filled. Used by network drivers which may DMA or transfer data
1365  *	beyond the buffer end onto the wire.
1366  *
1367  *	May return error in out of memory cases. The skb is freed on error.
1368  */
1369 static inline int skb_pad(struct sk_buff *skb, int pad)
1370 {
1371 	return __skb_pad(skb, pad, true);
1372 }
1373 #define dev_kfree_skb(a)	consume_skb(a)
1374 
1375 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1376 			 int offset, size_t size);
1377 
1378 struct skb_seq_state {
1379 	__u32		lower_offset;
1380 	__u32		upper_offset;
1381 	__u32		frag_idx;
1382 	__u32		stepped_offset;
1383 	struct sk_buff	*root_skb;
1384 	struct sk_buff	*cur_skb;
1385 	__u8		*frag_data;
1386 	__u32		frag_off;
1387 };
1388 
1389 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1390 			  unsigned int to, struct skb_seq_state *st);
1391 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1392 			  struct skb_seq_state *st);
1393 void skb_abort_seq_read(struct skb_seq_state *st);
1394 
1395 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1396 			   unsigned int to, struct ts_config *config);
1397 
1398 /*
1399  * Packet hash types specify the type of hash in skb_set_hash.
1400  *
1401  * Hash types refer to the protocol layer addresses which are used to
1402  * construct a packet's hash. The hashes are used to differentiate or identify
1403  * flows of the protocol layer for the hash type. Hash types are either
1404  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1405  *
1406  * Properties of hashes:
1407  *
1408  * 1) Two packets in different flows have different hash values
1409  * 2) Two packets in the same flow should have the same hash value
1410  *
1411  * A hash at a higher layer is considered to be more specific. A driver should
1412  * set the most specific hash possible.
1413  *
1414  * A driver cannot indicate a more specific hash than the layer at which a hash
1415  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1416  *
1417  * A driver may indicate a hash level which is less specific than the
1418  * actual layer the hash was computed on. For instance, a hash computed
1419  * at L4 may be considered an L3 hash. This should only be done if the
1420  * driver can't unambiguously determine that the HW computed the hash at
1421  * the higher layer. Note that the "should" in the second property above
1422  * permits this.
1423  */
1424 enum pkt_hash_types {
1425 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1426 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1427 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1428 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1429 };
1430 
1431 static inline void skb_clear_hash(struct sk_buff *skb)
1432 {
1433 	skb->hash = 0;
1434 	skb->sw_hash = 0;
1435 	skb->l4_hash = 0;
1436 }
1437 
1438 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1439 {
1440 	if (!skb->l4_hash)
1441 		skb_clear_hash(skb);
1442 }
1443 
1444 static inline void
1445 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1446 {
1447 	skb->l4_hash = is_l4;
1448 	skb->sw_hash = is_sw;
1449 	skb->hash = hash;
1450 }
1451 
1452 static inline void
1453 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1454 {
1455 	/* Used by drivers to set hash from HW */
1456 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1457 }
1458 
1459 static inline void
1460 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1461 {
1462 	__skb_set_hash(skb, hash, true, is_l4);
1463 }
1464 
1465 void __skb_get_hash(struct sk_buff *skb);
1466 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1467 u32 skb_get_poff(const struct sk_buff *skb);
1468 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1469 		   const struct flow_keys_basic *keys, int hlen);
1470 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1471 			    const void *data, int hlen_proto);
1472 
1473 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1474 					int thoff, u8 ip_proto)
1475 {
1476 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1477 }
1478 
1479 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1480 			     const struct flow_dissector_key *key,
1481 			     unsigned int key_count);
1482 
1483 struct bpf_flow_dissector;
1484 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1485 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1486 
1487 bool __skb_flow_dissect(const struct net *net,
1488 			const struct sk_buff *skb,
1489 			struct flow_dissector *flow_dissector,
1490 			void *target_container, const void *data,
1491 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1492 
1493 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1494 				    struct flow_dissector *flow_dissector,
1495 				    void *target_container, unsigned int flags)
1496 {
1497 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1498 				  target_container, NULL, 0, 0, 0, flags);
1499 }
1500 
1501 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1502 					      struct flow_keys *flow,
1503 					      unsigned int flags)
1504 {
1505 	memset(flow, 0, sizeof(*flow));
1506 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1507 				  flow, NULL, 0, 0, 0, flags);
1508 }
1509 
1510 static inline bool
1511 skb_flow_dissect_flow_keys_basic(const struct net *net,
1512 				 const struct sk_buff *skb,
1513 				 struct flow_keys_basic *flow,
1514 				 const void *data, __be16 proto,
1515 				 int nhoff, int hlen, unsigned int flags)
1516 {
1517 	memset(flow, 0, sizeof(*flow));
1518 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1519 				  data, proto, nhoff, hlen, flags);
1520 }
1521 
1522 void skb_flow_dissect_meta(const struct sk_buff *skb,
1523 			   struct flow_dissector *flow_dissector,
1524 			   void *target_container);
1525 
1526 /* Gets a skb connection tracking info, ctinfo map should be a
1527  * map of mapsize to translate enum ip_conntrack_info states
1528  * to user states.
1529  */
1530 void
1531 skb_flow_dissect_ct(const struct sk_buff *skb,
1532 		    struct flow_dissector *flow_dissector,
1533 		    void *target_container,
1534 		    u16 *ctinfo_map, size_t mapsize,
1535 		    bool post_ct, u16 zone);
1536 void
1537 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1538 			     struct flow_dissector *flow_dissector,
1539 			     void *target_container);
1540 
1541 void skb_flow_dissect_hash(const struct sk_buff *skb,
1542 			   struct flow_dissector *flow_dissector,
1543 			   void *target_container);
1544 
1545 static inline __u32 skb_get_hash(struct sk_buff *skb)
1546 {
1547 	if (!skb->l4_hash && !skb->sw_hash)
1548 		__skb_get_hash(skb);
1549 
1550 	return skb->hash;
1551 }
1552 
1553 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1554 {
1555 	if (!skb->l4_hash && !skb->sw_hash) {
1556 		struct flow_keys keys;
1557 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1558 
1559 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1560 	}
1561 
1562 	return skb->hash;
1563 }
1564 
1565 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1566 			   const siphash_key_t *perturb);
1567 
1568 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1569 {
1570 	return skb->hash;
1571 }
1572 
1573 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1574 {
1575 	to->hash = from->hash;
1576 	to->sw_hash = from->sw_hash;
1577 	to->l4_hash = from->l4_hash;
1578 };
1579 
1580 static inline void skb_copy_decrypted(struct sk_buff *to,
1581 				      const struct sk_buff *from)
1582 {
1583 #ifdef CONFIG_TLS_DEVICE
1584 	to->decrypted = from->decrypted;
1585 #endif
1586 }
1587 
1588 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1589 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1590 {
1591 	return skb->head + skb->end;
1592 }
1593 
1594 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1595 {
1596 	return skb->end;
1597 }
1598 
1599 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1600 {
1601 	skb->end = offset;
1602 }
1603 #else
1604 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1605 {
1606 	return skb->end;
1607 }
1608 
1609 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1610 {
1611 	return skb->end - skb->head;
1612 }
1613 
1614 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1615 {
1616 	skb->end = skb->head + offset;
1617 }
1618 #endif
1619 
1620 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1621 				       struct ubuf_info *uarg);
1622 
1623 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1624 
1625 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1626 			   bool success);
1627 
1628 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1629 			    struct sk_buff *skb, struct iov_iter *from,
1630 			    size_t length);
1631 
1632 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1633 					  struct msghdr *msg, int len)
1634 {
1635 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1636 }
1637 
1638 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1639 			     struct msghdr *msg, int len,
1640 			     struct ubuf_info *uarg);
1641 
1642 /* Internal */
1643 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1644 
1645 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1646 {
1647 	return &skb_shinfo(skb)->hwtstamps;
1648 }
1649 
1650 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1651 {
1652 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1653 
1654 	return is_zcopy ? skb_uarg(skb) : NULL;
1655 }
1656 
1657 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1658 {
1659 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1660 }
1661 
1662 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1663 {
1664 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1665 }
1666 
1667 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1668 				       const struct sk_buff *skb2)
1669 {
1670 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1671 }
1672 
1673 static inline void net_zcopy_get(struct ubuf_info *uarg)
1674 {
1675 	refcount_inc(&uarg->refcnt);
1676 }
1677 
1678 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1679 {
1680 	skb_shinfo(skb)->destructor_arg = uarg;
1681 	skb_shinfo(skb)->flags |= uarg->flags;
1682 }
1683 
1684 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1685 				 bool *have_ref)
1686 {
1687 	if (skb && uarg && !skb_zcopy(skb)) {
1688 		if (unlikely(have_ref && *have_ref))
1689 			*have_ref = false;
1690 		else
1691 			net_zcopy_get(uarg);
1692 		skb_zcopy_init(skb, uarg);
1693 	}
1694 }
1695 
1696 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1697 {
1698 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1699 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1700 }
1701 
1702 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1703 {
1704 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1705 }
1706 
1707 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1708 {
1709 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1710 }
1711 
1712 static inline void net_zcopy_put(struct ubuf_info *uarg)
1713 {
1714 	if (uarg)
1715 		uarg->callback(NULL, uarg, true);
1716 }
1717 
1718 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1719 {
1720 	if (uarg) {
1721 		if (uarg->callback == msg_zerocopy_callback)
1722 			msg_zerocopy_put_abort(uarg, have_uref);
1723 		else if (have_uref)
1724 			net_zcopy_put(uarg);
1725 	}
1726 }
1727 
1728 /* Release a reference on a zerocopy structure */
1729 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1730 {
1731 	struct ubuf_info *uarg = skb_zcopy(skb);
1732 
1733 	if (uarg) {
1734 		if (!skb_zcopy_is_nouarg(skb))
1735 			uarg->callback(skb, uarg, zerocopy_success);
1736 
1737 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1738 	}
1739 }
1740 
1741 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1742 
1743 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1744 {
1745 	if (unlikely(skb_zcopy_managed(skb)))
1746 		__skb_zcopy_downgrade_managed(skb);
1747 }
1748 
1749 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1750 {
1751 	skb->next = NULL;
1752 }
1753 
1754 static inline void skb_poison_list(struct sk_buff *skb)
1755 {
1756 #ifdef CONFIG_DEBUG_NET
1757 	skb->next = SKB_LIST_POISON_NEXT;
1758 #endif
1759 }
1760 
1761 /* Iterate through singly-linked GSO fragments of an skb. */
1762 #define skb_list_walk_safe(first, skb, next_skb)                               \
1763 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1764 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1765 
1766 static inline void skb_list_del_init(struct sk_buff *skb)
1767 {
1768 	__list_del_entry(&skb->list);
1769 	skb_mark_not_on_list(skb);
1770 }
1771 
1772 /**
1773  *	skb_queue_empty - check if a queue is empty
1774  *	@list: queue head
1775  *
1776  *	Returns true if the queue is empty, false otherwise.
1777  */
1778 static inline int skb_queue_empty(const struct sk_buff_head *list)
1779 {
1780 	return list->next == (const struct sk_buff *) list;
1781 }
1782 
1783 /**
1784  *	skb_queue_empty_lockless - check if a queue is empty
1785  *	@list: queue head
1786  *
1787  *	Returns true if the queue is empty, false otherwise.
1788  *	This variant can be used in lockless contexts.
1789  */
1790 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1791 {
1792 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1793 }
1794 
1795 
1796 /**
1797  *	skb_queue_is_last - check if skb is the last entry in the queue
1798  *	@list: queue head
1799  *	@skb: buffer
1800  *
1801  *	Returns true if @skb is the last buffer on the list.
1802  */
1803 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1804 				     const struct sk_buff *skb)
1805 {
1806 	return skb->next == (const struct sk_buff *) list;
1807 }
1808 
1809 /**
1810  *	skb_queue_is_first - check if skb is the first entry in the queue
1811  *	@list: queue head
1812  *	@skb: buffer
1813  *
1814  *	Returns true if @skb is the first buffer on the list.
1815  */
1816 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1817 				      const struct sk_buff *skb)
1818 {
1819 	return skb->prev == (const struct sk_buff *) list;
1820 }
1821 
1822 /**
1823  *	skb_queue_next - return the next packet in the queue
1824  *	@list: queue head
1825  *	@skb: current buffer
1826  *
1827  *	Return the next packet in @list after @skb.  It is only valid to
1828  *	call this if skb_queue_is_last() evaluates to false.
1829  */
1830 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1831 					     const struct sk_buff *skb)
1832 {
1833 	/* This BUG_ON may seem severe, but if we just return then we
1834 	 * are going to dereference garbage.
1835 	 */
1836 	BUG_ON(skb_queue_is_last(list, skb));
1837 	return skb->next;
1838 }
1839 
1840 /**
1841  *	skb_queue_prev - return the prev packet in the queue
1842  *	@list: queue head
1843  *	@skb: current buffer
1844  *
1845  *	Return the prev packet in @list before @skb.  It is only valid to
1846  *	call this if skb_queue_is_first() evaluates to false.
1847  */
1848 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1849 					     const struct sk_buff *skb)
1850 {
1851 	/* This BUG_ON may seem severe, but if we just return then we
1852 	 * are going to dereference garbage.
1853 	 */
1854 	BUG_ON(skb_queue_is_first(list, skb));
1855 	return skb->prev;
1856 }
1857 
1858 /**
1859  *	skb_get - reference buffer
1860  *	@skb: buffer to reference
1861  *
1862  *	Makes another reference to a socket buffer and returns a pointer
1863  *	to the buffer.
1864  */
1865 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1866 {
1867 	refcount_inc(&skb->users);
1868 	return skb;
1869 }
1870 
1871 /*
1872  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1873  */
1874 
1875 /**
1876  *	skb_cloned - is the buffer a clone
1877  *	@skb: buffer to check
1878  *
1879  *	Returns true if the buffer was generated with skb_clone() and is
1880  *	one of multiple shared copies of the buffer. Cloned buffers are
1881  *	shared data so must not be written to under normal circumstances.
1882  */
1883 static inline int skb_cloned(const struct sk_buff *skb)
1884 {
1885 	return skb->cloned &&
1886 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1887 }
1888 
1889 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1890 {
1891 	might_sleep_if(gfpflags_allow_blocking(pri));
1892 
1893 	if (skb_cloned(skb))
1894 		return pskb_expand_head(skb, 0, 0, pri);
1895 
1896 	return 0;
1897 }
1898 
1899 /* This variant of skb_unclone() makes sure skb->truesize
1900  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1901  *
1902  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1903  * when various debugging features are in place.
1904  */
1905 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1906 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1907 {
1908 	might_sleep_if(gfpflags_allow_blocking(pri));
1909 
1910 	if (skb_cloned(skb))
1911 		return __skb_unclone_keeptruesize(skb, pri);
1912 	return 0;
1913 }
1914 
1915 /**
1916  *	skb_header_cloned - is the header a clone
1917  *	@skb: buffer to check
1918  *
1919  *	Returns true if modifying the header part of the buffer requires
1920  *	the data to be copied.
1921  */
1922 static inline int skb_header_cloned(const struct sk_buff *skb)
1923 {
1924 	int dataref;
1925 
1926 	if (!skb->cloned)
1927 		return 0;
1928 
1929 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1930 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1931 	return dataref != 1;
1932 }
1933 
1934 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1935 {
1936 	might_sleep_if(gfpflags_allow_blocking(pri));
1937 
1938 	if (skb_header_cloned(skb))
1939 		return pskb_expand_head(skb, 0, 0, pri);
1940 
1941 	return 0;
1942 }
1943 
1944 /**
1945  * __skb_header_release() - allow clones to use the headroom
1946  * @skb: buffer to operate on
1947  *
1948  * See "DOC: dataref and headerless skbs".
1949  */
1950 static inline void __skb_header_release(struct sk_buff *skb)
1951 {
1952 	skb->nohdr = 1;
1953 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1954 }
1955 
1956 
1957 /**
1958  *	skb_shared - is the buffer shared
1959  *	@skb: buffer to check
1960  *
1961  *	Returns true if more than one person has a reference to this
1962  *	buffer.
1963  */
1964 static inline int skb_shared(const struct sk_buff *skb)
1965 {
1966 	return refcount_read(&skb->users) != 1;
1967 }
1968 
1969 /**
1970  *	skb_share_check - check if buffer is shared and if so clone it
1971  *	@skb: buffer to check
1972  *	@pri: priority for memory allocation
1973  *
1974  *	If the buffer is shared the buffer is cloned and the old copy
1975  *	drops a reference. A new clone with a single reference is returned.
1976  *	If the buffer is not shared the original buffer is returned. When
1977  *	being called from interrupt status or with spinlocks held pri must
1978  *	be GFP_ATOMIC.
1979  *
1980  *	NULL is returned on a memory allocation failure.
1981  */
1982 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1983 {
1984 	might_sleep_if(gfpflags_allow_blocking(pri));
1985 	if (skb_shared(skb)) {
1986 		struct sk_buff *nskb = skb_clone(skb, pri);
1987 
1988 		if (likely(nskb))
1989 			consume_skb(skb);
1990 		else
1991 			kfree_skb(skb);
1992 		skb = nskb;
1993 	}
1994 	return skb;
1995 }
1996 
1997 /*
1998  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1999  *	packets to handle cases where we have a local reader and forward
2000  *	and a couple of other messy ones. The normal one is tcpdumping
2001  *	a packet thats being forwarded.
2002  */
2003 
2004 /**
2005  *	skb_unshare - make a copy of a shared buffer
2006  *	@skb: buffer to check
2007  *	@pri: priority for memory allocation
2008  *
2009  *	If the socket buffer is a clone then this function creates a new
2010  *	copy of the data, drops a reference count on the old copy and returns
2011  *	the new copy with the reference count at 1. If the buffer is not a clone
2012  *	the original buffer is returned. When called with a spinlock held or
2013  *	from interrupt state @pri must be %GFP_ATOMIC
2014  *
2015  *	%NULL is returned on a memory allocation failure.
2016  */
2017 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2018 					  gfp_t pri)
2019 {
2020 	might_sleep_if(gfpflags_allow_blocking(pri));
2021 	if (skb_cloned(skb)) {
2022 		struct sk_buff *nskb = skb_copy(skb, pri);
2023 
2024 		/* Free our shared copy */
2025 		if (likely(nskb))
2026 			consume_skb(skb);
2027 		else
2028 			kfree_skb(skb);
2029 		skb = nskb;
2030 	}
2031 	return skb;
2032 }
2033 
2034 /**
2035  *	skb_peek - peek at the head of an &sk_buff_head
2036  *	@list_: list to peek at
2037  *
2038  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2039  *	be careful with this one. A peek leaves the buffer on the
2040  *	list and someone else may run off with it. You must hold
2041  *	the appropriate locks or have a private queue to do this.
2042  *
2043  *	Returns %NULL for an empty list or a pointer to the head element.
2044  *	The reference count is not incremented and the reference is therefore
2045  *	volatile. Use with caution.
2046  */
2047 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2048 {
2049 	struct sk_buff *skb = list_->next;
2050 
2051 	if (skb == (struct sk_buff *)list_)
2052 		skb = NULL;
2053 	return skb;
2054 }
2055 
2056 /**
2057  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2058  *	@list_: list to peek at
2059  *
2060  *	Like skb_peek(), but the caller knows that the list is not empty.
2061  */
2062 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2063 {
2064 	return list_->next;
2065 }
2066 
2067 /**
2068  *	skb_peek_next - peek skb following the given one from a queue
2069  *	@skb: skb to start from
2070  *	@list_: list to peek at
2071  *
2072  *	Returns %NULL when the end of the list is met or a pointer to the
2073  *	next element. The reference count is not incremented and the
2074  *	reference is therefore volatile. Use with caution.
2075  */
2076 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2077 		const struct sk_buff_head *list_)
2078 {
2079 	struct sk_buff *next = skb->next;
2080 
2081 	if (next == (struct sk_buff *)list_)
2082 		next = NULL;
2083 	return next;
2084 }
2085 
2086 /**
2087  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2088  *	@list_: list to peek at
2089  *
2090  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2091  *	be careful with this one. A peek leaves the buffer on the
2092  *	list and someone else may run off with it. You must hold
2093  *	the appropriate locks or have a private queue to do this.
2094  *
2095  *	Returns %NULL for an empty list or a pointer to the tail element.
2096  *	The reference count is not incremented and the reference is therefore
2097  *	volatile. Use with caution.
2098  */
2099 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2100 {
2101 	struct sk_buff *skb = READ_ONCE(list_->prev);
2102 
2103 	if (skb == (struct sk_buff *)list_)
2104 		skb = NULL;
2105 	return skb;
2106 
2107 }
2108 
2109 /**
2110  *	skb_queue_len	- get queue length
2111  *	@list_: list to measure
2112  *
2113  *	Return the length of an &sk_buff queue.
2114  */
2115 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2116 {
2117 	return list_->qlen;
2118 }
2119 
2120 /**
2121  *	skb_queue_len_lockless	- get queue length
2122  *	@list_: list to measure
2123  *
2124  *	Return the length of an &sk_buff queue.
2125  *	This variant can be used in lockless contexts.
2126  */
2127 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2128 {
2129 	return READ_ONCE(list_->qlen);
2130 }
2131 
2132 /**
2133  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2134  *	@list: queue to initialize
2135  *
2136  *	This initializes only the list and queue length aspects of
2137  *	an sk_buff_head object.  This allows to initialize the list
2138  *	aspects of an sk_buff_head without reinitializing things like
2139  *	the spinlock.  It can also be used for on-stack sk_buff_head
2140  *	objects where the spinlock is known to not be used.
2141  */
2142 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2143 {
2144 	list->prev = list->next = (struct sk_buff *)list;
2145 	list->qlen = 0;
2146 }
2147 
2148 /*
2149  * This function creates a split out lock class for each invocation;
2150  * this is needed for now since a whole lot of users of the skb-queue
2151  * infrastructure in drivers have different locking usage (in hardirq)
2152  * than the networking core (in softirq only). In the long run either the
2153  * network layer or drivers should need annotation to consolidate the
2154  * main types of usage into 3 classes.
2155  */
2156 static inline void skb_queue_head_init(struct sk_buff_head *list)
2157 {
2158 	spin_lock_init(&list->lock);
2159 	__skb_queue_head_init(list);
2160 }
2161 
2162 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2163 		struct lock_class_key *class)
2164 {
2165 	skb_queue_head_init(list);
2166 	lockdep_set_class(&list->lock, class);
2167 }
2168 
2169 /*
2170  *	Insert an sk_buff on a list.
2171  *
2172  *	The "__skb_xxxx()" functions are the non-atomic ones that
2173  *	can only be called with interrupts disabled.
2174  */
2175 static inline void __skb_insert(struct sk_buff *newsk,
2176 				struct sk_buff *prev, struct sk_buff *next,
2177 				struct sk_buff_head *list)
2178 {
2179 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2180 	 * for the opposite READ_ONCE()
2181 	 */
2182 	WRITE_ONCE(newsk->next, next);
2183 	WRITE_ONCE(newsk->prev, prev);
2184 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2185 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2186 	WRITE_ONCE(list->qlen, list->qlen + 1);
2187 }
2188 
2189 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2190 				      struct sk_buff *prev,
2191 				      struct sk_buff *next)
2192 {
2193 	struct sk_buff *first = list->next;
2194 	struct sk_buff *last = list->prev;
2195 
2196 	WRITE_ONCE(first->prev, prev);
2197 	WRITE_ONCE(prev->next, first);
2198 
2199 	WRITE_ONCE(last->next, next);
2200 	WRITE_ONCE(next->prev, last);
2201 }
2202 
2203 /**
2204  *	skb_queue_splice - join two skb lists, this is designed for stacks
2205  *	@list: the new list to add
2206  *	@head: the place to add it in the first list
2207  */
2208 static inline void skb_queue_splice(const struct sk_buff_head *list,
2209 				    struct sk_buff_head *head)
2210 {
2211 	if (!skb_queue_empty(list)) {
2212 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2213 		head->qlen += list->qlen;
2214 	}
2215 }
2216 
2217 /**
2218  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2219  *	@list: the new list to add
2220  *	@head: the place to add it in the first list
2221  *
2222  *	The list at @list is reinitialised
2223  */
2224 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2225 					 struct sk_buff_head *head)
2226 {
2227 	if (!skb_queue_empty(list)) {
2228 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2229 		head->qlen += list->qlen;
2230 		__skb_queue_head_init(list);
2231 	}
2232 }
2233 
2234 /**
2235  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2236  *	@list: the new list to add
2237  *	@head: the place to add it in the first list
2238  */
2239 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2240 					 struct sk_buff_head *head)
2241 {
2242 	if (!skb_queue_empty(list)) {
2243 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2244 		head->qlen += list->qlen;
2245 	}
2246 }
2247 
2248 /**
2249  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2250  *	@list: the new list to add
2251  *	@head: the place to add it in the first list
2252  *
2253  *	Each of the lists is a queue.
2254  *	The list at @list is reinitialised
2255  */
2256 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2257 					      struct sk_buff_head *head)
2258 {
2259 	if (!skb_queue_empty(list)) {
2260 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2261 		head->qlen += list->qlen;
2262 		__skb_queue_head_init(list);
2263 	}
2264 }
2265 
2266 /**
2267  *	__skb_queue_after - queue a buffer at the list head
2268  *	@list: list to use
2269  *	@prev: place after this buffer
2270  *	@newsk: buffer to queue
2271  *
2272  *	Queue a buffer int the middle of a list. This function takes no locks
2273  *	and you must therefore hold required locks before calling it.
2274  *
2275  *	A buffer cannot be placed on two lists at the same time.
2276  */
2277 static inline void __skb_queue_after(struct sk_buff_head *list,
2278 				     struct sk_buff *prev,
2279 				     struct sk_buff *newsk)
2280 {
2281 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2282 }
2283 
2284 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2285 		struct sk_buff_head *list);
2286 
2287 static inline void __skb_queue_before(struct sk_buff_head *list,
2288 				      struct sk_buff *next,
2289 				      struct sk_buff *newsk)
2290 {
2291 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2292 }
2293 
2294 /**
2295  *	__skb_queue_head - queue a buffer at the list head
2296  *	@list: list to use
2297  *	@newsk: buffer to queue
2298  *
2299  *	Queue a buffer at the start of a list. This function takes no locks
2300  *	and you must therefore hold required locks before calling it.
2301  *
2302  *	A buffer cannot be placed on two lists at the same time.
2303  */
2304 static inline void __skb_queue_head(struct sk_buff_head *list,
2305 				    struct sk_buff *newsk)
2306 {
2307 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2308 }
2309 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2310 
2311 /**
2312  *	__skb_queue_tail - queue a buffer at the list tail
2313  *	@list: list to use
2314  *	@newsk: buffer to queue
2315  *
2316  *	Queue a buffer at the end of a list. This function takes no locks
2317  *	and you must therefore hold required locks before calling it.
2318  *
2319  *	A buffer cannot be placed on two lists at the same time.
2320  */
2321 static inline void __skb_queue_tail(struct sk_buff_head *list,
2322 				   struct sk_buff *newsk)
2323 {
2324 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2325 }
2326 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2327 
2328 /*
2329  * remove sk_buff from list. _Must_ be called atomically, and with
2330  * the list known..
2331  */
2332 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2333 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2334 {
2335 	struct sk_buff *next, *prev;
2336 
2337 	WRITE_ONCE(list->qlen, list->qlen - 1);
2338 	next	   = skb->next;
2339 	prev	   = skb->prev;
2340 	skb->next  = skb->prev = NULL;
2341 	WRITE_ONCE(next->prev, prev);
2342 	WRITE_ONCE(prev->next, next);
2343 }
2344 
2345 /**
2346  *	__skb_dequeue - remove from the head of the queue
2347  *	@list: list to dequeue from
2348  *
2349  *	Remove the head of the list. This function does not take any locks
2350  *	so must be used with appropriate locks held only. The head item is
2351  *	returned or %NULL if the list is empty.
2352  */
2353 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2354 {
2355 	struct sk_buff *skb = skb_peek(list);
2356 	if (skb)
2357 		__skb_unlink(skb, list);
2358 	return skb;
2359 }
2360 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2361 
2362 /**
2363  *	__skb_dequeue_tail - remove from the tail of the queue
2364  *	@list: list to dequeue from
2365  *
2366  *	Remove the tail of the list. This function does not take any locks
2367  *	so must be used with appropriate locks held only. The tail item is
2368  *	returned or %NULL if the list is empty.
2369  */
2370 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2371 {
2372 	struct sk_buff *skb = skb_peek_tail(list);
2373 	if (skb)
2374 		__skb_unlink(skb, list);
2375 	return skb;
2376 }
2377 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2378 
2379 
2380 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2381 {
2382 	return skb->data_len;
2383 }
2384 
2385 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2386 {
2387 	return skb->len - skb->data_len;
2388 }
2389 
2390 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2391 {
2392 	unsigned int i, len = 0;
2393 
2394 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2395 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2396 	return len;
2397 }
2398 
2399 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2400 {
2401 	return skb_headlen(skb) + __skb_pagelen(skb);
2402 }
2403 
2404 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2405 					      int i, struct page *page,
2406 					      int off, int size)
2407 {
2408 	skb_frag_t *frag = &shinfo->frags[i];
2409 
2410 	/*
2411 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2412 	 * that not all callers have unique ownership of the page but rely
2413 	 * on page_is_pfmemalloc doing the right thing(tm).
2414 	 */
2415 	frag->bv_page		  = page;
2416 	frag->bv_offset		  = off;
2417 	skb_frag_size_set(frag, size);
2418 }
2419 
2420 /**
2421  * skb_len_add - adds a number to len fields of skb
2422  * @skb: buffer to add len to
2423  * @delta: number of bytes to add
2424  */
2425 static inline void skb_len_add(struct sk_buff *skb, int delta)
2426 {
2427 	skb->len += delta;
2428 	skb->data_len += delta;
2429 	skb->truesize += delta;
2430 }
2431 
2432 /**
2433  * __skb_fill_page_desc - initialise a paged fragment in an skb
2434  * @skb: buffer containing fragment to be initialised
2435  * @i: paged fragment index to initialise
2436  * @page: the page to use for this fragment
2437  * @off: the offset to the data with @page
2438  * @size: the length of the data
2439  *
2440  * Initialises the @i'th fragment of @skb to point to &size bytes at
2441  * offset @off within @page.
2442  *
2443  * Does not take any additional reference on the fragment.
2444  */
2445 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2446 					struct page *page, int off, int size)
2447 {
2448 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2449 	page = compound_head(page);
2450 	if (page_is_pfmemalloc(page))
2451 		skb->pfmemalloc	= true;
2452 }
2453 
2454 /**
2455  * skb_fill_page_desc - initialise a paged fragment in an skb
2456  * @skb: buffer containing fragment to be initialised
2457  * @i: paged fragment index to initialise
2458  * @page: the page to use for this fragment
2459  * @off: the offset to the data with @page
2460  * @size: the length of the data
2461  *
2462  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2463  * @skb to point to @size bytes at offset @off within @page. In
2464  * addition updates @skb such that @i is the last fragment.
2465  *
2466  * Does not take any additional reference on the fragment.
2467  */
2468 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2469 				      struct page *page, int off, int size)
2470 {
2471 	__skb_fill_page_desc(skb, i, page, off, size);
2472 	skb_shinfo(skb)->nr_frags = i + 1;
2473 }
2474 
2475 /**
2476  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2477  * @skb: buffer containing fragment to be initialised
2478  * @i: paged fragment index to initialise
2479  * @page: the page to use for this fragment
2480  * @off: the offset to the data with @page
2481  * @size: the length of the data
2482  *
2483  * Variant of skb_fill_page_desc() which does not deal with
2484  * pfmemalloc, if page is not owned by us.
2485  */
2486 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2487 					    struct page *page, int off,
2488 					    int size)
2489 {
2490 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2491 
2492 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2493 	shinfo->nr_frags = i + 1;
2494 }
2495 
2496 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2497 		     int size, unsigned int truesize);
2498 
2499 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2500 			  unsigned int truesize);
2501 
2502 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2503 
2504 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2505 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2506 {
2507 	return skb->head + skb->tail;
2508 }
2509 
2510 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2511 {
2512 	skb->tail = skb->data - skb->head;
2513 }
2514 
2515 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2516 {
2517 	skb_reset_tail_pointer(skb);
2518 	skb->tail += offset;
2519 }
2520 
2521 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2522 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2523 {
2524 	return skb->tail;
2525 }
2526 
2527 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2528 {
2529 	skb->tail = skb->data;
2530 }
2531 
2532 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2533 {
2534 	skb->tail = skb->data + offset;
2535 }
2536 
2537 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2538 
2539 static inline void skb_assert_len(struct sk_buff *skb)
2540 {
2541 #ifdef CONFIG_DEBUG_NET
2542 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2543 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2544 #endif /* CONFIG_DEBUG_NET */
2545 }
2546 
2547 /*
2548  *	Add data to an sk_buff
2549  */
2550 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2551 void *skb_put(struct sk_buff *skb, unsigned int len);
2552 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2553 {
2554 	void *tmp = skb_tail_pointer(skb);
2555 	SKB_LINEAR_ASSERT(skb);
2556 	skb->tail += len;
2557 	skb->len  += len;
2558 	return tmp;
2559 }
2560 
2561 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2562 {
2563 	void *tmp = __skb_put(skb, len);
2564 
2565 	memset(tmp, 0, len);
2566 	return tmp;
2567 }
2568 
2569 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2570 				   unsigned int len)
2571 {
2572 	void *tmp = __skb_put(skb, len);
2573 
2574 	memcpy(tmp, data, len);
2575 	return tmp;
2576 }
2577 
2578 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2579 {
2580 	*(u8 *)__skb_put(skb, 1) = val;
2581 }
2582 
2583 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2584 {
2585 	void *tmp = skb_put(skb, len);
2586 
2587 	memset(tmp, 0, len);
2588 
2589 	return tmp;
2590 }
2591 
2592 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2593 				 unsigned int len)
2594 {
2595 	void *tmp = skb_put(skb, len);
2596 
2597 	memcpy(tmp, data, len);
2598 
2599 	return tmp;
2600 }
2601 
2602 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2603 {
2604 	*(u8 *)skb_put(skb, 1) = val;
2605 }
2606 
2607 void *skb_push(struct sk_buff *skb, unsigned int len);
2608 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2609 {
2610 	skb->data -= len;
2611 	skb->len  += len;
2612 	return skb->data;
2613 }
2614 
2615 void *skb_pull(struct sk_buff *skb, unsigned int len);
2616 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2617 {
2618 	skb->len -= len;
2619 	if (unlikely(skb->len < skb->data_len)) {
2620 #if defined(CONFIG_DEBUG_NET)
2621 		skb->len += len;
2622 		pr_err("__skb_pull(len=%u)\n", len);
2623 		skb_dump(KERN_ERR, skb, false);
2624 #endif
2625 		BUG();
2626 	}
2627 	return skb->data += len;
2628 }
2629 
2630 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2631 {
2632 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2633 }
2634 
2635 void *skb_pull_data(struct sk_buff *skb, size_t len);
2636 
2637 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2638 
2639 static inline enum skb_drop_reason
2640 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2641 {
2642 	if (likely(len <= skb_headlen(skb)))
2643 		return SKB_NOT_DROPPED_YET;
2644 
2645 	if (unlikely(len > skb->len))
2646 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2647 
2648 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2649 		return SKB_DROP_REASON_NOMEM;
2650 
2651 	return SKB_NOT_DROPPED_YET;
2652 }
2653 
2654 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2655 {
2656 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2657 }
2658 
2659 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2660 {
2661 	if (!pskb_may_pull(skb, len))
2662 		return NULL;
2663 
2664 	skb->len -= len;
2665 	return skb->data += len;
2666 }
2667 
2668 void skb_condense(struct sk_buff *skb);
2669 
2670 /**
2671  *	skb_headroom - bytes at buffer head
2672  *	@skb: buffer to check
2673  *
2674  *	Return the number of bytes of free space at the head of an &sk_buff.
2675  */
2676 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2677 {
2678 	return skb->data - skb->head;
2679 }
2680 
2681 /**
2682  *	skb_tailroom - bytes at buffer end
2683  *	@skb: buffer to check
2684  *
2685  *	Return the number of bytes of free space at the tail of an sk_buff
2686  */
2687 static inline int skb_tailroom(const struct sk_buff *skb)
2688 {
2689 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2690 }
2691 
2692 /**
2693  *	skb_availroom - bytes at buffer end
2694  *	@skb: buffer to check
2695  *
2696  *	Return the number of bytes of free space at the tail of an sk_buff
2697  *	allocated by sk_stream_alloc()
2698  */
2699 static inline int skb_availroom(const struct sk_buff *skb)
2700 {
2701 	if (skb_is_nonlinear(skb))
2702 		return 0;
2703 
2704 	return skb->end - skb->tail - skb->reserved_tailroom;
2705 }
2706 
2707 /**
2708  *	skb_reserve - adjust headroom
2709  *	@skb: buffer to alter
2710  *	@len: bytes to move
2711  *
2712  *	Increase the headroom of an empty &sk_buff by reducing the tail
2713  *	room. This is only allowed for an empty buffer.
2714  */
2715 static inline void skb_reserve(struct sk_buff *skb, int len)
2716 {
2717 	skb->data += len;
2718 	skb->tail += len;
2719 }
2720 
2721 /**
2722  *	skb_tailroom_reserve - adjust reserved_tailroom
2723  *	@skb: buffer to alter
2724  *	@mtu: maximum amount of headlen permitted
2725  *	@needed_tailroom: minimum amount of reserved_tailroom
2726  *
2727  *	Set reserved_tailroom so that headlen can be as large as possible but
2728  *	not larger than mtu and tailroom cannot be smaller than
2729  *	needed_tailroom.
2730  *	The required headroom should already have been reserved before using
2731  *	this function.
2732  */
2733 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2734 					unsigned int needed_tailroom)
2735 {
2736 	SKB_LINEAR_ASSERT(skb);
2737 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2738 		/* use at most mtu */
2739 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2740 	else
2741 		/* use up to all available space */
2742 		skb->reserved_tailroom = needed_tailroom;
2743 }
2744 
2745 #define ENCAP_TYPE_ETHER	0
2746 #define ENCAP_TYPE_IPPROTO	1
2747 
2748 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2749 					  __be16 protocol)
2750 {
2751 	skb->inner_protocol = protocol;
2752 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2753 }
2754 
2755 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2756 					 __u8 ipproto)
2757 {
2758 	skb->inner_ipproto = ipproto;
2759 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2760 }
2761 
2762 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2763 {
2764 	skb->inner_mac_header = skb->mac_header;
2765 	skb->inner_network_header = skb->network_header;
2766 	skb->inner_transport_header = skb->transport_header;
2767 }
2768 
2769 static inline void skb_reset_mac_len(struct sk_buff *skb)
2770 {
2771 	skb->mac_len = skb->network_header - skb->mac_header;
2772 }
2773 
2774 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2775 							*skb)
2776 {
2777 	return skb->head + skb->inner_transport_header;
2778 }
2779 
2780 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2781 {
2782 	return skb_inner_transport_header(skb) - skb->data;
2783 }
2784 
2785 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2786 {
2787 	skb->inner_transport_header = skb->data - skb->head;
2788 }
2789 
2790 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2791 						   const int offset)
2792 {
2793 	skb_reset_inner_transport_header(skb);
2794 	skb->inner_transport_header += offset;
2795 }
2796 
2797 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2798 {
2799 	return skb->head + skb->inner_network_header;
2800 }
2801 
2802 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2803 {
2804 	skb->inner_network_header = skb->data - skb->head;
2805 }
2806 
2807 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2808 						const int offset)
2809 {
2810 	skb_reset_inner_network_header(skb);
2811 	skb->inner_network_header += offset;
2812 }
2813 
2814 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2815 {
2816 	return skb->head + skb->inner_mac_header;
2817 }
2818 
2819 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2820 {
2821 	skb->inner_mac_header = skb->data - skb->head;
2822 }
2823 
2824 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2825 					    const int offset)
2826 {
2827 	skb_reset_inner_mac_header(skb);
2828 	skb->inner_mac_header += offset;
2829 }
2830 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2831 {
2832 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2833 }
2834 
2835 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2836 {
2837 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2838 	return skb->head + skb->transport_header;
2839 }
2840 
2841 static inline void skb_reset_transport_header(struct sk_buff *skb)
2842 {
2843 	skb->transport_header = skb->data - skb->head;
2844 }
2845 
2846 static inline void skb_set_transport_header(struct sk_buff *skb,
2847 					    const int offset)
2848 {
2849 	skb_reset_transport_header(skb);
2850 	skb->transport_header += offset;
2851 }
2852 
2853 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2854 {
2855 	return skb->head + skb->network_header;
2856 }
2857 
2858 static inline void skb_reset_network_header(struct sk_buff *skb)
2859 {
2860 	skb->network_header = skb->data - skb->head;
2861 }
2862 
2863 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2864 {
2865 	skb_reset_network_header(skb);
2866 	skb->network_header += offset;
2867 }
2868 
2869 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2870 {
2871 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2872 }
2873 
2874 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2875 {
2876 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2877 	return skb->head + skb->mac_header;
2878 }
2879 
2880 static inline int skb_mac_offset(const struct sk_buff *skb)
2881 {
2882 	return skb_mac_header(skb) - skb->data;
2883 }
2884 
2885 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2886 {
2887 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2888 	return skb->network_header - skb->mac_header;
2889 }
2890 
2891 static inline void skb_unset_mac_header(struct sk_buff *skb)
2892 {
2893 	skb->mac_header = (typeof(skb->mac_header))~0U;
2894 }
2895 
2896 static inline void skb_reset_mac_header(struct sk_buff *skb)
2897 {
2898 	skb->mac_header = skb->data - skb->head;
2899 }
2900 
2901 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2902 {
2903 	skb_reset_mac_header(skb);
2904 	skb->mac_header += offset;
2905 }
2906 
2907 static inline void skb_pop_mac_header(struct sk_buff *skb)
2908 {
2909 	skb->mac_header = skb->network_header;
2910 }
2911 
2912 static inline void skb_probe_transport_header(struct sk_buff *skb)
2913 {
2914 	struct flow_keys_basic keys;
2915 
2916 	if (skb_transport_header_was_set(skb))
2917 		return;
2918 
2919 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2920 					     NULL, 0, 0, 0, 0))
2921 		skb_set_transport_header(skb, keys.control.thoff);
2922 }
2923 
2924 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2925 {
2926 	if (skb_mac_header_was_set(skb)) {
2927 		const unsigned char *old_mac = skb_mac_header(skb);
2928 
2929 		skb_set_mac_header(skb, -skb->mac_len);
2930 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2931 	}
2932 }
2933 
2934 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2935 {
2936 	return skb->csum_start - skb_headroom(skb);
2937 }
2938 
2939 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2940 {
2941 	return skb->head + skb->csum_start;
2942 }
2943 
2944 static inline int skb_transport_offset(const struct sk_buff *skb)
2945 {
2946 	return skb_transport_header(skb) - skb->data;
2947 }
2948 
2949 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2950 {
2951 	return skb->transport_header - skb->network_header;
2952 }
2953 
2954 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2955 {
2956 	return skb->inner_transport_header - skb->inner_network_header;
2957 }
2958 
2959 static inline int skb_network_offset(const struct sk_buff *skb)
2960 {
2961 	return skb_network_header(skb) - skb->data;
2962 }
2963 
2964 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2965 {
2966 	return skb_inner_network_header(skb) - skb->data;
2967 }
2968 
2969 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2970 {
2971 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2972 }
2973 
2974 /*
2975  * CPUs often take a performance hit when accessing unaligned memory
2976  * locations. The actual performance hit varies, it can be small if the
2977  * hardware handles it or large if we have to take an exception and fix it
2978  * in software.
2979  *
2980  * Since an ethernet header is 14 bytes network drivers often end up with
2981  * the IP header at an unaligned offset. The IP header can be aligned by
2982  * shifting the start of the packet by 2 bytes. Drivers should do this
2983  * with:
2984  *
2985  * skb_reserve(skb, NET_IP_ALIGN);
2986  *
2987  * The downside to this alignment of the IP header is that the DMA is now
2988  * unaligned. On some architectures the cost of an unaligned DMA is high
2989  * and this cost outweighs the gains made by aligning the IP header.
2990  *
2991  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2992  * to be overridden.
2993  */
2994 #ifndef NET_IP_ALIGN
2995 #define NET_IP_ALIGN	2
2996 #endif
2997 
2998 /*
2999  * The networking layer reserves some headroom in skb data (via
3000  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3001  * the header has to grow. In the default case, if the header has to grow
3002  * 32 bytes or less we avoid the reallocation.
3003  *
3004  * Unfortunately this headroom changes the DMA alignment of the resulting
3005  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3006  * on some architectures. An architecture can override this value,
3007  * perhaps setting it to a cacheline in size (since that will maintain
3008  * cacheline alignment of the DMA). It must be a power of 2.
3009  *
3010  * Various parts of the networking layer expect at least 32 bytes of
3011  * headroom, you should not reduce this.
3012  *
3013  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3014  * to reduce average number of cache lines per packet.
3015  * get_rps_cpu() for example only access one 64 bytes aligned block :
3016  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3017  */
3018 #ifndef NET_SKB_PAD
3019 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3020 #endif
3021 
3022 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3023 
3024 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3025 {
3026 	if (WARN_ON(skb_is_nonlinear(skb)))
3027 		return;
3028 	skb->len = len;
3029 	skb_set_tail_pointer(skb, len);
3030 }
3031 
3032 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3033 {
3034 	__skb_set_length(skb, len);
3035 }
3036 
3037 void skb_trim(struct sk_buff *skb, unsigned int len);
3038 
3039 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3040 {
3041 	if (skb->data_len)
3042 		return ___pskb_trim(skb, len);
3043 	__skb_trim(skb, len);
3044 	return 0;
3045 }
3046 
3047 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3048 {
3049 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3050 }
3051 
3052 /**
3053  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3054  *	@skb: buffer to alter
3055  *	@len: new length
3056  *
3057  *	This is identical to pskb_trim except that the caller knows that
3058  *	the skb is not cloned so we should never get an error due to out-
3059  *	of-memory.
3060  */
3061 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3062 {
3063 	int err = pskb_trim(skb, len);
3064 	BUG_ON(err);
3065 }
3066 
3067 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3068 {
3069 	unsigned int diff = len - skb->len;
3070 
3071 	if (skb_tailroom(skb) < diff) {
3072 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3073 					   GFP_ATOMIC);
3074 		if (ret)
3075 			return ret;
3076 	}
3077 	__skb_set_length(skb, len);
3078 	return 0;
3079 }
3080 
3081 /**
3082  *	skb_orphan - orphan a buffer
3083  *	@skb: buffer to orphan
3084  *
3085  *	If a buffer currently has an owner then we call the owner's
3086  *	destructor function and make the @skb unowned. The buffer continues
3087  *	to exist but is no longer charged to its former owner.
3088  */
3089 static inline void skb_orphan(struct sk_buff *skb)
3090 {
3091 	if (skb->destructor) {
3092 		skb->destructor(skb);
3093 		skb->destructor = NULL;
3094 		skb->sk		= NULL;
3095 	} else {
3096 		BUG_ON(skb->sk);
3097 	}
3098 }
3099 
3100 /**
3101  *	skb_orphan_frags - orphan the frags contained in a buffer
3102  *	@skb: buffer to orphan frags from
3103  *	@gfp_mask: allocation mask for replacement pages
3104  *
3105  *	For each frag in the SKB which needs a destructor (i.e. has an
3106  *	owner) create a copy of that frag and release the original
3107  *	page by calling the destructor.
3108  */
3109 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3110 {
3111 	if (likely(!skb_zcopy(skb)))
3112 		return 0;
3113 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3114 		return 0;
3115 	return skb_copy_ubufs(skb, gfp_mask);
3116 }
3117 
3118 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3119 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3120 {
3121 	if (likely(!skb_zcopy(skb)))
3122 		return 0;
3123 	return skb_copy_ubufs(skb, gfp_mask);
3124 }
3125 
3126 /**
3127  *	__skb_queue_purge - empty a list
3128  *	@list: list to empty
3129  *
3130  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3131  *	the list and one reference dropped. This function does not take the
3132  *	list lock and the caller must hold the relevant locks to use it.
3133  */
3134 static inline void __skb_queue_purge(struct sk_buff_head *list)
3135 {
3136 	struct sk_buff *skb;
3137 	while ((skb = __skb_dequeue(list)) != NULL)
3138 		kfree_skb(skb);
3139 }
3140 void skb_queue_purge(struct sk_buff_head *list);
3141 
3142 unsigned int skb_rbtree_purge(struct rb_root *root);
3143 
3144 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3145 
3146 /**
3147  * netdev_alloc_frag - allocate a page fragment
3148  * @fragsz: fragment size
3149  *
3150  * Allocates a frag from a page for receive buffer.
3151  * Uses GFP_ATOMIC allocations.
3152  */
3153 static inline void *netdev_alloc_frag(unsigned int fragsz)
3154 {
3155 	return __netdev_alloc_frag_align(fragsz, ~0u);
3156 }
3157 
3158 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3159 					    unsigned int align)
3160 {
3161 	WARN_ON_ONCE(!is_power_of_2(align));
3162 	return __netdev_alloc_frag_align(fragsz, -align);
3163 }
3164 
3165 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3166 				   gfp_t gfp_mask);
3167 
3168 /**
3169  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3170  *	@dev: network device to receive on
3171  *	@length: length to allocate
3172  *
3173  *	Allocate a new &sk_buff and assign it a usage count of one. The
3174  *	buffer has unspecified headroom built in. Users should allocate
3175  *	the headroom they think they need without accounting for the
3176  *	built in space. The built in space is used for optimisations.
3177  *
3178  *	%NULL is returned if there is no free memory. Although this function
3179  *	allocates memory it can be called from an interrupt.
3180  */
3181 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3182 					       unsigned int length)
3183 {
3184 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3185 }
3186 
3187 /* legacy helper around __netdev_alloc_skb() */
3188 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3189 					      gfp_t gfp_mask)
3190 {
3191 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3192 }
3193 
3194 /* legacy helper around netdev_alloc_skb() */
3195 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3196 {
3197 	return netdev_alloc_skb(NULL, length);
3198 }
3199 
3200 
3201 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3202 		unsigned int length, gfp_t gfp)
3203 {
3204 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3205 
3206 	if (NET_IP_ALIGN && skb)
3207 		skb_reserve(skb, NET_IP_ALIGN);
3208 	return skb;
3209 }
3210 
3211 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3212 		unsigned int length)
3213 {
3214 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3215 }
3216 
3217 static inline void skb_free_frag(void *addr)
3218 {
3219 	page_frag_free(addr);
3220 }
3221 
3222 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3223 
3224 static inline void *napi_alloc_frag(unsigned int fragsz)
3225 {
3226 	return __napi_alloc_frag_align(fragsz, ~0u);
3227 }
3228 
3229 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3230 					  unsigned int align)
3231 {
3232 	WARN_ON_ONCE(!is_power_of_2(align));
3233 	return __napi_alloc_frag_align(fragsz, -align);
3234 }
3235 
3236 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3237 				 unsigned int length, gfp_t gfp_mask);
3238 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3239 					     unsigned int length)
3240 {
3241 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3242 }
3243 void napi_consume_skb(struct sk_buff *skb, int budget);
3244 
3245 void napi_skb_free_stolen_head(struct sk_buff *skb);
3246 void __kfree_skb_defer(struct sk_buff *skb);
3247 
3248 /**
3249  * __dev_alloc_pages - allocate page for network Rx
3250  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3251  * @order: size of the allocation
3252  *
3253  * Allocate a new page.
3254  *
3255  * %NULL is returned if there is no free memory.
3256 */
3257 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3258 					     unsigned int order)
3259 {
3260 	/* This piece of code contains several assumptions.
3261 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3262 	 * 2.  The expectation is the user wants a compound page.
3263 	 * 3.  If requesting a order 0 page it will not be compound
3264 	 *     due to the check to see if order has a value in prep_new_page
3265 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3266 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3267 	 */
3268 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3269 
3270 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3271 }
3272 
3273 static inline struct page *dev_alloc_pages(unsigned int order)
3274 {
3275 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3276 }
3277 
3278 /**
3279  * __dev_alloc_page - allocate a page for network Rx
3280  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3281  *
3282  * Allocate a new page.
3283  *
3284  * %NULL is returned if there is no free memory.
3285  */
3286 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3287 {
3288 	return __dev_alloc_pages(gfp_mask, 0);
3289 }
3290 
3291 static inline struct page *dev_alloc_page(void)
3292 {
3293 	return dev_alloc_pages(0);
3294 }
3295 
3296 /**
3297  * dev_page_is_reusable - check whether a page can be reused for network Rx
3298  * @page: the page to test
3299  *
3300  * A page shouldn't be considered for reusing/recycling if it was allocated
3301  * under memory pressure or at a distant memory node.
3302  *
3303  * Returns false if this page should be returned to page allocator, true
3304  * otherwise.
3305  */
3306 static inline bool dev_page_is_reusable(const struct page *page)
3307 {
3308 	return likely(page_to_nid(page) == numa_mem_id() &&
3309 		      !page_is_pfmemalloc(page));
3310 }
3311 
3312 /**
3313  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3314  *	@page: The page that was allocated from skb_alloc_page
3315  *	@skb: The skb that may need pfmemalloc set
3316  */
3317 static inline void skb_propagate_pfmemalloc(const struct page *page,
3318 					    struct sk_buff *skb)
3319 {
3320 	if (page_is_pfmemalloc(page))
3321 		skb->pfmemalloc = true;
3322 }
3323 
3324 /**
3325  * skb_frag_off() - Returns the offset of a skb fragment
3326  * @frag: the paged fragment
3327  */
3328 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3329 {
3330 	return frag->bv_offset;
3331 }
3332 
3333 /**
3334  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3335  * @frag: skb fragment
3336  * @delta: value to add
3337  */
3338 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3339 {
3340 	frag->bv_offset += delta;
3341 }
3342 
3343 /**
3344  * skb_frag_off_set() - Sets the offset of a skb fragment
3345  * @frag: skb fragment
3346  * @offset: offset of fragment
3347  */
3348 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3349 {
3350 	frag->bv_offset = offset;
3351 }
3352 
3353 /**
3354  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3355  * @fragto: skb fragment where offset is set
3356  * @fragfrom: skb fragment offset is copied from
3357  */
3358 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3359 				     const skb_frag_t *fragfrom)
3360 {
3361 	fragto->bv_offset = fragfrom->bv_offset;
3362 }
3363 
3364 /**
3365  * skb_frag_page - retrieve the page referred to by a paged fragment
3366  * @frag: the paged fragment
3367  *
3368  * Returns the &struct page associated with @frag.
3369  */
3370 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3371 {
3372 	return frag->bv_page;
3373 }
3374 
3375 /**
3376  * __skb_frag_ref - take an addition reference on a paged fragment.
3377  * @frag: the paged fragment
3378  *
3379  * Takes an additional reference on the paged fragment @frag.
3380  */
3381 static inline void __skb_frag_ref(skb_frag_t *frag)
3382 {
3383 	get_page(skb_frag_page(frag));
3384 }
3385 
3386 /**
3387  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3388  * @skb: the buffer
3389  * @f: the fragment offset.
3390  *
3391  * Takes an additional reference on the @f'th paged fragment of @skb.
3392  */
3393 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3394 {
3395 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3396 }
3397 
3398 /**
3399  * __skb_frag_unref - release a reference on a paged fragment.
3400  * @frag: the paged fragment
3401  * @recycle: recycle the page if allocated via page_pool
3402  *
3403  * Releases a reference on the paged fragment @frag
3404  * or recycles the page via the page_pool API.
3405  */
3406 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3407 {
3408 	struct page *page = skb_frag_page(frag);
3409 
3410 #ifdef CONFIG_PAGE_POOL
3411 	if (recycle && page_pool_return_skb_page(page))
3412 		return;
3413 #endif
3414 	put_page(page);
3415 }
3416 
3417 /**
3418  * skb_frag_unref - release a reference on a paged fragment of an skb.
3419  * @skb: the buffer
3420  * @f: the fragment offset
3421  *
3422  * Releases a reference on the @f'th paged fragment of @skb.
3423  */
3424 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3425 {
3426 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3427 
3428 	if (!skb_zcopy_managed(skb))
3429 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3430 }
3431 
3432 /**
3433  * skb_frag_address - gets the address of the data contained in a paged fragment
3434  * @frag: the paged fragment buffer
3435  *
3436  * Returns the address of the data within @frag. The page must already
3437  * be mapped.
3438  */
3439 static inline void *skb_frag_address(const skb_frag_t *frag)
3440 {
3441 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3442 }
3443 
3444 /**
3445  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3446  * @frag: the paged fragment buffer
3447  *
3448  * Returns the address of the data within @frag. Checks that the page
3449  * is mapped and returns %NULL otherwise.
3450  */
3451 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3452 {
3453 	void *ptr = page_address(skb_frag_page(frag));
3454 	if (unlikely(!ptr))
3455 		return NULL;
3456 
3457 	return ptr + skb_frag_off(frag);
3458 }
3459 
3460 /**
3461  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3462  * @fragto: skb fragment where page is set
3463  * @fragfrom: skb fragment page is copied from
3464  */
3465 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3466 				      const skb_frag_t *fragfrom)
3467 {
3468 	fragto->bv_page = fragfrom->bv_page;
3469 }
3470 
3471 /**
3472  * __skb_frag_set_page - sets the page contained in a paged fragment
3473  * @frag: the paged fragment
3474  * @page: the page to set
3475  *
3476  * Sets the fragment @frag to contain @page.
3477  */
3478 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3479 {
3480 	frag->bv_page = page;
3481 }
3482 
3483 /**
3484  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3485  * @skb: the buffer
3486  * @f: the fragment offset
3487  * @page: the page to set
3488  *
3489  * Sets the @f'th fragment of @skb to contain @page.
3490  */
3491 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3492 				     struct page *page)
3493 {
3494 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3495 }
3496 
3497 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3498 
3499 /**
3500  * skb_frag_dma_map - maps a paged fragment via the DMA API
3501  * @dev: the device to map the fragment to
3502  * @frag: the paged fragment to map
3503  * @offset: the offset within the fragment (starting at the
3504  *          fragment's own offset)
3505  * @size: the number of bytes to map
3506  * @dir: the direction of the mapping (``PCI_DMA_*``)
3507  *
3508  * Maps the page associated with @frag to @device.
3509  */
3510 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3511 					  const skb_frag_t *frag,
3512 					  size_t offset, size_t size,
3513 					  enum dma_data_direction dir)
3514 {
3515 	return dma_map_page(dev, skb_frag_page(frag),
3516 			    skb_frag_off(frag) + offset, size, dir);
3517 }
3518 
3519 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3520 					gfp_t gfp_mask)
3521 {
3522 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3523 }
3524 
3525 
3526 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3527 						  gfp_t gfp_mask)
3528 {
3529 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3530 }
3531 
3532 
3533 /**
3534  *	skb_clone_writable - is the header of a clone writable
3535  *	@skb: buffer to check
3536  *	@len: length up to which to write
3537  *
3538  *	Returns true if modifying the header part of the cloned buffer
3539  *	does not requires the data to be copied.
3540  */
3541 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3542 {
3543 	return !skb_header_cloned(skb) &&
3544 	       skb_headroom(skb) + len <= skb->hdr_len;
3545 }
3546 
3547 static inline int skb_try_make_writable(struct sk_buff *skb,
3548 					unsigned int write_len)
3549 {
3550 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3551 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3552 }
3553 
3554 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3555 			    int cloned)
3556 {
3557 	int delta = 0;
3558 
3559 	if (headroom > skb_headroom(skb))
3560 		delta = headroom - skb_headroom(skb);
3561 
3562 	if (delta || cloned)
3563 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3564 					GFP_ATOMIC);
3565 	return 0;
3566 }
3567 
3568 /**
3569  *	skb_cow - copy header of skb when it is required
3570  *	@skb: buffer to cow
3571  *	@headroom: needed headroom
3572  *
3573  *	If the skb passed lacks sufficient headroom or its data part
3574  *	is shared, data is reallocated. If reallocation fails, an error
3575  *	is returned and original skb is not changed.
3576  *
3577  *	The result is skb with writable area skb->head...skb->tail
3578  *	and at least @headroom of space at head.
3579  */
3580 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3581 {
3582 	return __skb_cow(skb, headroom, skb_cloned(skb));
3583 }
3584 
3585 /**
3586  *	skb_cow_head - skb_cow but only making the head writable
3587  *	@skb: buffer to cow
3588  *	@headroom: needed headroom
3589  *
3590  *	This function is identical to skb_cow except that we replace the
3591  *	skb_cloned check by skb_header_cloned.  It should be used when
3592  *	you only need to push on some header and do not need to modify
3593  *	the data.
3594  */
3595 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3596 {
3597 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3598 }
3599 
3600 /**
3601  *	skb_padto	- pad an skbuff up to a minimal size
3602  *	@skb: buffer to pad
3603  *	@len: minimal length
3604  *
3605  *	Pads up a buffer to ensure the trailing bytes exist and are
3606  *	blanked. If the buffer already contains sufficient data it
3607  *	is untouched. Otherwise it is extended. Returns zero on
3608  *	success. The skb is freed on error.
3609  */
3610 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3611 {
3612 	unsigned int size = skb->len;
3613 	if (likely(size >= len))
3614 		return 0;
3615 	return skb_pad(skb, len - size);
3616 }
3617 
3618 /**
3619  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3620  *	@skb: buffer to pad
3621  *	@len: minimal length
3622  *	@free_on_error: free buffer on error
3623  *
3624  *	Pads up a buffer to ensure the trailing bytes exist and are
3625  *	blanked. If the buffer already contains sufficient data it
3626  *	is untouched. Otherwise it is extended. Returns zero on
3627  *	success. The skb is freed on error if @free_on_error is true.
3628  */
3629 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3630 					       unsigned int len,
3631 					       bool free_on_error)
3632 {
3633 	unsigned int size = skb->len;
3634 
3635 	if (unlikely(size < len)) {
3636 		len -= size;
3637 		if (__skb_pad(skb, len, free_on_error))
3638 			return -ENOMEM;
3639 		__skb_put(skb, len);
3640 	}
3641 	return 0;
3642 }
3643 
3644 /**
3645  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3646  *	@skb: buffer to pad
3647  *	@len: minimal length
3648  *
3649  *	Pads up a buffer to ensure the trailing bytes exist and are
3650  *	blanked. If the buffer already contains sufficient data it
3651  *	is untouched. Otherwise it is extended. Returns zero on
3652  *	success. The skb is freed on error.
3653  */
3654 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3655 {
3656 	return __skb_put_padto(skb, len, true);
3657 }
3658 
3659 static inline int skb_add_data(struct sk_buff *skb,
3660 			       struct iov_iter *from, int copy)
3661 {
3662 	const int off = skb->len;
3663 
3664 	if (skb->ip_summed == CHECKSUM_NONE) {
3665 		__wsum csum = 0;
3666 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3667 					         &csum, from)) {
3668 			skb->csum = csum_block_add(skb->csum, csum, off);
3669 			return 0;
3670 		}
3671 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3672 		return 0;
3673 
3674 	__skb_trim(skb, off);
3675 	return -EFAULT;
3676 }
3677 
3678 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3679 				    const struct page *page, int off)
3680 {
3681 	if (skb_zcopy(skb))
3682 		return false;
3683 	if (i) {
3684 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3685 
3686 		return page == skb_frag_page(frag) &&
3687 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3688 	}
3689 	return false;
3690 }
3691 
3692 static inline int __skb_linearize(struct sk_buff *skb)
3693 {
3694 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3695 }
3696 
3697 /**
3698  *	skb_linearize - convert paged skb to linear one
3699  *	@skb: buffer to linarize
3700  *
3701  *	If there is no free memory -ENOMEM is returned, otherwise zero
3702  *	is returned and the old skb data released.
3703  */
3704 static inline int skb_linearize(struct sk_buff *skb)
3705 {
3706 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3707 }
3708 
3709 /**
3710  * skb_has_shared_frag - can any frag be overwritten
3711  * @skb: buffer to test
3712  *
3713  * Return true if the skb has at least one frag that might be modified
3714  * by an external entity (as in vmsplice()/sendfile())
3715  */
3716 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3717 {
3718 	return skb_is_nonlinear(skb) &&
3719 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3720 }
3721 
3722 /**
3723  *	skb_linearize_cow - make sure skb is linear and writable
3724  *	@skb: buffer to process
3725  *
3726  *	If there is no free memory -ENOMEM is returned, otherwise zero
3727  *	is returned and the old skb data released.
3728  */
3729 static inline int skb_linearize_cow(struct sk_buff *skb)
3730 {
3731 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3732 	       __skb_linearize(skb) : 0;
3733 }
3734 
3735 static __always_inline void
3736 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3737 		     unsigned int off)
3738 {
3739 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3740 		skb->csum = csum_block_sub(skb->csum,
3741 					   csum_partial(start, len, 0), off);
3742 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3743 		 skb_checksum_start_offset(skb) < 0)
3744 		skb->ip_summed = CHECKSUM_NONE;
3745 }
3746 
3747 /**
3748  *	skb_postpull_rcsum - update checksum for received skb after pull
3749  *	@skb: buffer to update
3750  *	@start: start of data before pull
3751  *	@len: length of data pulled
3752  *
3753  *	After doing a pull on a received packet, you need to call this to
3754  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3755  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3756  */
3757 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3758 				      const void *start, unsigned int len)
3759 {
3760 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3761 		skb->csum = wsum_negate(csum_partial(start, len,
3762 						     wsum_negate(skb->csum)));
3763 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3764 		 skb_checksum_start_offset(skb) < 0)
3765 		skb->ip_summed = CHECKSUM_NONE;
3766 }
3767 
3768 static __always_inline void
3769 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3770 		     unsigned int off)
3771 {
3772 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3773 		skb->csum = csum_block_add(skb->csum,
3774 					   csum_partial(start, len, 0), off);
3775 }
3776 
3777 /**
3778  *	skb_postpush_rcsum - update checksum for received skb after push
3779  *	@skb: buffer to update
3780  *	@start: start of data after push
3781  *	@len: length of data pushed
3782  *
3783  *	After doing a push on a received packet, you need to call this to
3784  *	update the CHECKSUM_COMPLETE checksum.
3785  */
3786 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3787 				      const void *start, unsigned int len)
3788 {
3789 	__skb_postpush_rcsum(skb, start, len, 0);
3790 }
3791 
3792 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3793 
3794 /**
3795  *	skb_push_rcsum - push skb and update receive checksum
3796  *	@skb: buffer to update
3797  *	@len: length of data pulled
3798  *
3799  *	This function performs an skb_push on the packet and updates
3800  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3801  *	receive path processing instead of skb_push unless you know
3802  *	that the checksum difference is zero (e.g., a valid IP header)
3803  *	or you are setting ip_summed to CHECKSUM_NONE.
3804  */
3805 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3806 {
3807 	skb_push(skb, len);
3808 	skb_postpush_rcsum(skb, skb->data, len);
3809 	return skb->data;
3810 }
3811 
3812 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3813 /**
3814  *	pskb_trim_rcsum - trim received skb and update checksum
3815  *	@skb: buffer to trim
3816  *	@len: new length
3817  *
3818  *	This is exactly the same as pskb_trim except that it ensures the
3819  *	checksum of received packets are still valid after the operation.
3820  *	It can change skb pointers.
3821  */
3822 
3823 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3824 {
3825 	if (likely(len >= skb->len))
3826 		return 0;
3827 	return pskb_trim_rcsum_slow(skb, len);
3828 }
3829 
3830 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3831 {
3832 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3833 		skb->ip_summed = CHECKSUM_NONE;
3834 	__skb_trim(skb, len);
3835 	return 0;
3836 }
3837 
3838 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3839 {
3840 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3841 		skb->ip_summed = CHECKSUM_NONE;
3842 	return __skb_grow(skb, len);
3843 }
3844 
3845 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3846 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3847 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3848 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3849 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3850 
3851 #define skb_queue_walk(queue, skb) \
3852 		for (skb = (queue)->next;					\
3853 		     skb != (struct sk_buff *)(queue);				\
3854 		     skb = skb->next)
3855 
3856 #define skb_queue_walk_safe(queue, skb, tmp)					\
3857 		for (skb = (queue)->next, tmp = skb->next;			\
3858 		     skb != (struct sk_buff *)(queue);				\
3859 		     skb = tmp, tmp = skb->next)
3860 
3861 #define skb_queue_walk_from(queue, skb)						\
3862 		for (; skb != (struct sk_buff *)(queue);			\
3863 		     skb = skb->next)
3864 
3865 #define skb_rbtree_walk(skb, root)						\
3866 		for (skb = skb_rb_first(root); skb != NULL;			\
3867 		     skb = skb_rb_next(skb))
3868 
3869 #define skb_rbtree_walk_from(skb)						\
3870 		for (; skb != NULL;						\
3871 		     skb = skb_rb_next(skb))
3872 
3873 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3874 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3875 		     skb = tmp)
3876 
3877 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3878 		for (tmp = skb->next;						\
3879 		     skb != (struct sk_buff *)(queue);				\
3880 		     skb = tmp, tmp = skb->next)
3881 
3882 #define skb_queue_reverse_walk(queue, skb) \
3883 		for (skb = (queue)->prev;					\
3884 		     skb != (struct sk_buff *)(queue);				\
3885 		     skb = skb->prev)
3886 
3887 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3888 		for (skb = (queue)->prev, tmp = skb->prev;			\
3889 		     skb != (struct sk_buff *)(queue);				\
3890 		     skb = tmp, tmp = skb->prev)
3891 
3892 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3893 		for (tmp = skb->prev;						\
3894 		     skb != (struct sk_buff *)(queue);				\
3895 		     skb = tmp, tmp = skb->prev)
3896 
3897 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3898 {
3899 	return skb_shinfo(skb)->frag_list != NULL;
3900 }
3901 
3902 static inline void skb_frag_list_init(struct sk_buff *skb)
3903 {
3904 	skb_shinfo(skb)->frag_list = NULL;
3905 }
3906 
3907 #define skb_walk_frags(skb, iter)	\
3908 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3909 
3910 
3911 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3912 				int *err, long *timeo_p,
3913 				const struct sk_buff *skb);
3914 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3915 					  struct sk_buff_head *queue,
3916 					  unsigned int flags,
3917 					  int *off, int *err,
3918 					  struct sk_buff **last);
3919 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3920 					struct sk_buff_head *queue,
3921 					unsigned int flags, int *off, int *err,
3922 					struct sk_buff **last);
3923 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3924 				    struct sk_buff_head *sk_queue,
3925 				    unsigned int flags, int *off, int *err);
3926 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3927 __poll_t datagram_poll(struct file *file, struct socket *sock,
3928 			   struct poll_table_struct *wait);
3929 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3930 			   struct iov_iter *to, int size);
3931 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3932 					struct msghdr *msg, int size)
3933 {
3934 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3935 }
3936 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3937 				   struct msghdr *msg);
3938 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3939 			   struct iov_iter *to, int len,
3940 			   struct ahash_request *hash);
3941 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3942 				 struct iov_iter *from, int len);
3943 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3944 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3945 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3946 static inline void skb_free_datagram_locked(struct sock *sk,
3947 					    struct sk_buff *skb)
3948 {
3949 	__skb_free_datagram_locked(sk, skb, 0);
3950 }
3951 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3952 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3953 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3954 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3955 			      int len);
3956 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3957 		    struct pipe_inode_info *pipe, unsigned int len,
3958 		    unsigned int flags);
3959 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3960 			 int len);
3961 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3962 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3963 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3964 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3965 		 int len, int hlen);
3966 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3967 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3968 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3969 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3970 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3971 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3972 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3973 				 unsigned int offset);
3974 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3975 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3976 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3977 int skb_vlan_pop(struct sk_buff *skb);
3978 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3979 int skb_eth_pop(struct sk_buff *skb);
3980 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3981 		 const unsigned char *src);
3982 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3983 		  int mac_len, bool ethernet);
3984 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3985 		 bool ethernet);
3986 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3987 int skb_mpls_dec_ttl(struct sk_buff *skb);
3988 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3989 			     gfp_t gfp);
3990 
3991 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3992 {
3993 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3994 }
3995 
3996 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3997 {
3998 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3999 }
4000 
4001 struct skb_checksum_ops {
4002 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4003 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4004 };
4005 
4006 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4007 
4008 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4009 		      __wsum csum, const struct skb_checksum_ops *ops);
4010 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4011 		    __wsum csum);
4012 
4013 static inline void * __must_check
4014 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4015 		     const void *data, int hlen, void *buffer)
4016 {
4017 	if (likely(hlen - offset >= len))
4018 		return (void *)data + offset;
4019 
4020 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4021 		return NULL;
4022 
4023 	return buffer;
4024 }
4025 
4026 static inline void * __must_check
4027 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4028 {
4029 	return __skb_header_pointer(skb, offset, len, skb->data,
4030 				    skb_headlen(skb), buffer);
4031 }
4032 
4033 /**
4034  *	skb_needs_linearize - check if we need to linearize a given skb
4035  *			      depending on the given device features.
4036  *	@skb: socket buffer to check
4037  *	@features: net device features
4038  *
4039  *	Returns true if either:
4040  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4041  *	2. skb is fragmented and the device does not support SG.
4042  */
4043 static inline bool skb_needs_linearize(struct sk_buff *skb,
4044 				       netdev_features_t features)
4045 {
4046 	return skb_is_nonlinear(skb) &&
4047 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4048 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4049 }
4050 
4051 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4052 					     void *to,
4053 					     const unsigned int len)
4054 {
4055 	memcpy(to, skb->data, len);
4056 }
4057 
4058 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4059 						    const int offset, void *to,
4060 						    const unsigned int len)
4061 {
4062 	memcpy(to, skb->data + offset, len);
4063 }
4064 
4065 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4066 					   const void *from,
4067 					   const unsigned int len)
4068 {
4069 	memcpy(skb->data, from, len);
4070 }
4071 
4072 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4073 						  const int offset,
4074 						  const void *from,
4075 						  const unsigned int len)
4076 {
4077 	memcpy(skb->data + offset, from, len);
4078 }
4079 
4080 void skb_init(void);
4081 
4082 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4083 {
4084 	return skb->tstamp;
4085 }
4086 
4087 /**
4088  *	skb_get_timestamp - get timestamp from a skb
4089  *	@skb: skb to get stamp from
4090  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4091  *
4092  *	Timestamps are stored in the skb as offsets to a base timestamp.
4093  *	This function converts the offset back to a struct timeval and stores
4094  *	it in stamp.
4095  */
4096 static inline void skb_get_timestamp(const struct sk_buff *skb,
4097 				     struct __kernel_old_timeval *stamp)
4098 {
4099 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4100 }
4101 
4102 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4103 					 struct __kernel_sock_timeval *stamp)
4104 {
4105 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4106 
4107 	stamp->tv_sec = ts.tv_sec;
4108 	stamp->tv_usec = ts.tv_nsec / 1000;
4109 }
4110 
4111 static inline void skb_get_timestampns(const struct sk_buff *skb,
4112 				       struct __kernel_old_timespec *stamp)
4113 {
4114 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4115 
4116 	stamp->tv_sec = ts.tv_sec;
4117 	stamp->tv_nsec = ts.tv_nsec;
4118 }
4119 
4120 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4121 					   struct __kernel_timespec *stamp)
4122 {
4123 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4124 
4125 	stamp->tv_sec = ts.tv_sec;
4126 	stamp->tv_nsec = ts.tv_nsec;
4127 }
4128 
4129 static inline void __net_timestamp(struct sk_buff *skb)
4130 {
4131 	skb->tstamp = ktime_get_real();
4132 	skb->mono_delivery_time = 0;
4133 }
4134 
4135 static inline ktime_t net_timedelta(ktime_t t)
4136 {
4137 	return ktime_sub(ktime_get_real(), t);
4138 }
4139 
4140 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4141 					 bool mono)
4142 {
4143 	skb->tstamp = kt;
4144 	skb->mono_delivery_time = kt && mono;
4145 }
4146 
4147 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4148 
4149 /* It is used in the ingress path to clear the delivery_time.
4150  * If needed, set the skb->tstamp to the (rcv) timestamp.
4151  */
4152 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4153 {
4154 	if (skb->mono_delivery_time) {
4155 		skb->mono_delivery_time = 0;
4156 		if (static_branch_unlikely(&netstamp_needed_key))
4157 			skb->tstamp = ktime_get_real();
4158 		else
4159 			skb->tstamp = 0;
4160 	}
4161 }
4162 
4163 static inline void skb_clear_tstamp(struct sk_buff *skb)
4164 {
4165 	if (skb->mono_delivery_time)
4166 		return;
4167 
4168 	skb->tstamp = 0;
4169 }
4170 
4171 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4172 {
4173 	if (skb->mono_delivery_time)
4174 		return 0;
4175 
4176 	return skb->tstamp;
4177 }
4178 
4179 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4180 {
4181 	if (!skb->mono_delivery_time && skb->tstamp)
4182 		return skb->tstamp;
4183 
4184 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4185 		return ktime_get_real();
4186 
4187 	return 0;
4188 }
4189 
4190 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4191 {
4192 	return skb_shinfo(skb)->meta_len;
4193 }
4194 
4195 static inline void *skb_metadata_end(const struct sk_buff *skb)
4196 {
4197 	return skb_mac_header(skb);
4198 }
4199 
4200 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4201 					  const struct sk_buff *skb_b,
4202 					  u8 meta_len)
4203 {
4204 	const void *a = skb_metadata_end(skb_a);
4205 	const void *b = skb_metadata_end(skb_b);
4206 	/* Using more efficient varaiant than plain call to memcmp(). */
4207 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4208 	u64 diffs = 0;
4209 
4210 	switch (meta_len) {
4211 #define __it(x, op) (x -= sizeof(u##op))
4212 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4213 	case 32: diffs |= __it_diff(a, b, 64);
4214 		fallthrough;
4215 	case 24: diffs |= __it_diff(a, b, 64);
4216 		fallthrough;
4217 	case 16: diffs |= __it_diff(a, b, 64);
4218 		fallthrough;
4219 	case  8: diffs |= __it_diff(a, b, 64);
4220 		break;
4221 	case 28: diffs |= __it_diff(a, b, 64);
4222 		fallthrough;
4223 	case 20: diffs |= __it_diff(a, b, 64);
4224 		fallthrough;
4225 	case 12: diffs |= __it_diff(a, b, 64);
4226 		fallthrough;
4227 	case  4: diffs |= __it_diff(a, b, 32);
4228 		break;
4229 	}
4230 	return diffs;
4231 #else
4232 	return memcmp(a - meta_len, b - meta_len, meta_len);
4233 #endif
4234 }
4235 
4236 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4237 					const struct sk_buff *skb_b)
4238 {
4239 	u8 len_a = skb_metadata_len(skb_a);
4240 	u8 len_b = skb_metadata_len(skb_b);
4241 
4242 	if (!(len_a | len_b))
4243 		return false;
4244 
4245 	return len_a != len_b ?
4246 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4247 }
4248 
4249 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4250 {
4251 	skb_shinfo(skb)->meta_len = meta_len;
4252 }
4253 
4254 static inline void skb_metadata_clear(struct sk_buff *skb)
4255 {
4256 	skb_metadata_set(skb, 0);
4257 }
4258 
4259 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4260 
4261 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4262 
4263 void skb_clone_tx_timestamp(struct sk_buff *skb);
4264 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4265 
4266 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4267 
4268 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4269 {
4270 }
4271 
4272 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4273 {
4274 	return false;
4275 }
4276 
4277 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4278 
4279 /**
4280  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4281  *
4282  * PHY drivers may accept clones of transmitted packets for
4283  * timestamping via their phy_driver.txtstamp method. These drivers
4284  * must call this function to return the skb back to the stack with a
4285  * timestamp.
4286  *
4287  * @skb: clone of the original outgoing packet
4288  * @hwtstamps: hardware time stamps
4289  *
4290  */
4291 void skb_complete_tx_timestamp(struct sk_buff *skb,
4292 			       struct skb_shared_hwtstamps *hwtstamps);
4293 
4294 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4295 		     struct skb_shared_hwtstamps *hwtstamps,
4296 		     struct sock *sk, int tstype);
4297 
4298 /**
4299  * skb_tstamp_tx - queue clone of skb with send time stamps
4300  * @orig_skb:	the original outgoing packet
4301  * @hwtstamps:	hardware time stamps, may be NULL if not available
4302  *
4303  * If the skb has a socket associated, then this function clones the
4304  * skb (thus sharing the actual data and optional structures), stores
4305  * the optional hardware time stamping information (if non NULL) or
4306  * generates a software time stamp (otherwise), then queues the clone
4307  * to the error queue of the socket.  Errors are silently ignored.
4308  */
4309 void skb_tstamp_tx(struct sk_buff *orig_skb,
4310 		   struct skb_shared_hwtstamps *hwtstamps);
4311 
4312 /**
4313  * skb_tx_timestamp() - Driver hook for transmit timestamping
4314  *
4315  * Ethernet MAC Drivers should call this function in their hard_xmit()
4316  * function immediately before giving the sk_buff to the MAC hardware.
4317  *
4318  * Specifically, one should make absolutely sure that this function is
4319  * called before TX completion of this packet can trigger.  Otherwise
4320  * the packet could potentially already be freed.
4321  *
4322  * @skb: A socket buffer.
4323  */
4324 static inline void skb_tx_timestamp(struct sk_buff *skb)
4325 {
4326 	skb_clone_tx_timestamp(skb);
4327 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4328 		skb_tstamp_tx(skb, NULL);
4329 }
4330 
4331 /**
4332  * skb_complete_wifi_ack - deliver skb with wifi status
4333  *
4334  * @skb: the original outgoing packet
4335  * @acked: ack status
4336  *
4337  */
4338 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4339 
4340 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4341 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4342 
4343 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4344 {
4345 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4346 		skb->csum_valid ||
4347 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4348 		 skb_checksum_start_offset(skb) >= 0));
4349 }
4350 
4351 /**
4352  *	skb_checksum_complete - Calculate checksum of an entire packet
4353  *	@skb: packet to process
4354  *
4355  *	This function calculates the checksum over the entire packet plus
4356  *	the value of skb->csum.  The latter can be used to supply the
4357  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4358  *	checksum.
4359  *
4360  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4361  *	this function can be used to verify that checksum on received
4362  *	packets.  In that case the function should return zero if the
4363  *	checksum is correct.  In particular, this function will return zero
4364  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4365  *	hardware has already verified the correctness of the checksum.
4366  */
4367 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4368 {
4369 	return skb_csum_unnecessary(skb) ?
4370 	       0 : __skb_checksum_complete(skb);
4371 }
4372 
4373 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4374 {
4375 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4376 		if (skb->csum_level == 0)
4377 			skb->ip_summed = CHECKSUM_NONE;
4378 		else
4379 			skb->csum_level--;
4380 	}
4381 }
4382 
4383 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4384 {
4385 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4386 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4387 			skb->csum_level++;
4388 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4389 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4390 		skb->csum_level = 0;
4391 	}
4392 }
4393 
4394 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4395 {
4396 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4397 		skb->ip_summed = CHECKSUM_NONE;
4398 		skb->csum_level = 0;
4399 	}
4400 }
4401 
4402 /* Check if we need to perform checksum complete validation.
4403  *
4404  * Returns true if checksum complete is needed, false otherwise
4405  * (either checksum is unnecessary or zero checksum is allowed).
4406  */
4407 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4408 						  bool zero_okay,
4409 						  __sum16 check)
4410 {
4411 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4412 		skb->csum_valid = 1;
4413 		__skb_decr_checksum_unnecessary(skb);
4414 		return false;
4415 	}
4416 
4417 	return true;
4418 }
4419 
4420 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4421  * in checksum_init.
4422  */
4423 #define CHECKSUM_BREAK 76
4424 
4425 /* Unset checksum-complete
4426  *
4427  * Unset checksum complete can be done when packet is being modified
4428  * (uncompressed for instance) and checksum-complete value is
4429  * invalidated.
4430  */
4431 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4432 {
4433 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4434 		skb->ip_summed = CHECKSUM_NONE;
4435 }
4436 
4437 /* Validate (init) checksum based on checksum complete.
4438  *
4439  * Return values:
4440  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4441  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4442  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4443  *   non-zero: value of invalid checksum
4444  *
4445  */
4446 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4447 						       bool complete,
4448 						       __wsum psum)
4449 {
4450 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4451 		if (!csum_fold(csum_add(psum, skb->csum))) {
4452 			skb->csum_valid = 1;
4453 			return 0;
4454 		}
4455 	}
4456 
4457 	skb->csum = psum;
4458 
4459 	if (complete || skb->len <= CHECKSUM_BREAK) {
4460 		__sum16 csum;
4461 
4462 		csum = __skb_checksum_complete(skb);
4463 		skb->csum_valid = !csum;
4464 		return csum;
4465 	}
4466 
4467 	return 0;
4468 }
4469 
4470 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4471 {
4472 	return 0;
4473 }
4474 
4475 /* Perform checksum validate (init). Note that this is a macro since we only
4476  * want to calculate the pseudo header which is an input function if necessary.
4477  * First we try to validate without any computation (checksum unnecessary) and
4478  * then calculate based on checksum complete calling the function to compute
4479  * pseudo header.
4480  *
4481  * Return values:
4482  *   0: checksum is validated or try to in skb_checksum_complete
4483  *   non-zero: value of invalid checksum
4484  */
4485 #define __skb_checksum_validate(skb, proto, complete,			\
4486 				zero_okay, check, compute_pseudo)	\
4487 ({									\
4488 	__sum16 __ret = 0;						\
4489 	skb->csum_valid = 0;						\
4490 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4491 		__ret = __skb_checksum_validate_complete(skb,		\
4492 				complete, compute_pseudo(skb, proto));	\
4493 	__ret;								\
4494 })
4495 
4496 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4497 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4498 
4499 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4500 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4501 
4502 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4503 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4504 
4505 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4506 					 compute_pseudo)		\
4507 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4508 
4509 #define skb_checksum_simple_validate(skb)				\
4510 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4511 
4512 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4513 {
4514 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4515 }
4516 
4517 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4518 {
4519 	skb->csum = ~pseudo;
4520 	skb->ip_summed = CHECKSUM_COMPLETE;
4521 }
4522 
4523 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4524 do {									\
4525 	if (__skb_checksum_convert_check(skb))				\
4526 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4527 } while (0)
4528 
4529 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4530 					      u16 start, u16 offset)
4531 {
4532 	skb->ip_summed = CHECKSUM_PARTIAL;
4533 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4534 	skb->csum_offset = offset - start;
4535 }
4536 
4537 /* Update skbuf and packet to reflect the remote checksum offload operation.
4538  * When called, ptr indicates the starting point for skb->csum when
4539  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4540  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4541  */
4542 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4543 				       int start, int offset, bool nopartial)
4544 {
4545 	__wsum delta;
4546 
4547 	if (!nopartial) {
4548 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4549 		return;
4550 	}
4551 
4552 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4553 		__skb_checksum_complete(skb);
4554 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4555 	}
4556 
4557 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4558 
4559 	/* Adjust skb->csum since we changed the packet */
4560 	skb->csum = csum_add(skb->csum, delta);
4561 }
4562 
4563 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4564 {
4565 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4566 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4567 #else
4568 	return NULL;
4569 #endif
4570 }
4571 
4572 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4573 {
4574 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4575 	return skb->_nfct;
4576 #else
4577 	return 0UL;
4578 #endif
4579 }
4580 
4581 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4582 {
4583 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4584 	skb->slow_gro |= !!nfct;
4585 	skb->_nfct = nfct;
4586 #endif
4587 }
4588 
4589 #ifdef CONFIG_SKB_EXTENSIONS
4590 enum skb_ext_id {
4591 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4592 	SKB_EXT_BRIDGE_NF,
4593 #endif
4594 #ifdef CONFIG_XFRM
4595 	SKB_EXT_SEC_PATH,
4596 #endif
4597 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4598 	TC_SKB_EXT,
4599 #endif
4600 #if IS_ENABLED(CONFIG_MPTCP)
4601 	SKB_EXT_MPTCP,
4602 #endif
4603 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4604 	SKB_EXT_MCTP,
4605 #endif
4606 	SKB_EXT_NUM, /* must be last */
4607 };
4608 
4609 /**
4610  *	struct skb_ext - sk_buff extensions
4611  *	@refcnt: 1 on allocation, deallocated on 0
4612  *	@offset: offset to add to @data to obtain extension address
4613  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4614  *	@data: start of extension data, variable sized
4615  *
4616  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4617  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4618  */
4619 struct skb_ext {
4620 	refcount_t refcnt;
4621 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4622 	u8 chunks;		/* same */
4623 	char data[] __aligned(8);
4624 };
4625 
4626 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4627 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4628 		    struct skb_ext *ext);
4629 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4630 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4631 void __skb_ext_put(struct skb_ext *ext);
4632 
4633 static inline void skb_ext_put(struct sk_buff *skb)
4634 {
4635 	if (skb->active_extensions)
4636 		__skb_ext_put(skb->extensions);
4637 }
4638 
4639 static inline void __skb_ext_copy(struct sk_buff *dst,
4640 				  const struct sk_buff *src)
4641 {
4642 	dst->active_extensions = src->active_extensions;
4643 
4644 	if (src->active_extensions) {
4645 		struct skb_ext *ext = src->extensions;
4646 
4647 		refcount_inc(&ext->refcnt);
4648 		dst->extensions = ext;
4649 	}
4650 }
4651 
4652 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4653 {
4654 	skb_ext_put(dst);
4655 	__skb_ext_copy(dst, src);
4656 }
4657 
4658 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4659 {
4660 	return !!ext->offset[i];
4661 }
4662 
4663 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4664 {
4665 	return skb->active_extensions & (1 << id);
4666 }
4667 
4668 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4669 {
4670 	if (skb_ext_exist(skb, id))
4671 		__skb_ext_del(skb, id);
4672 }
4673 
4674 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4675 {
4676 	if (skb_ext_exist(skb, id)) {
4677 		struct skb_ext *ext = skb->extensions;
4678 
4679 		return (void *)ext + (ext->offset[id] << 3);
4680 	}
4681 
4682 	return NULL;
4683 }
4684 
4685 static inline void skb_ext_reset(struct sk_buff *skb)
4686 {
4687 	if (unlikely(skb->active_extensions)) {
4688 		__skb_ext_put(skb->extensions);
4689 		skb->active_extensions = 0;
4690 	}
4691 }
4692 
4693 static inline bool skb_has_extensions(struct sk_buff *skb)
4694 {
4695 	return unlikely(skb->active_extensions);
4696 }
4697 #else
4698 static inline void skb_ext_put(struct sk_buff *skb) {}
4699 static inline void skb_ext_reset(struct sk_buff *skb) {}
4700 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4701 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4702 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4703 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4704 #endif /* CONFIG_SKB_EXTENSIONS */
4705 
4706 static inline void nf_reset_ct(struct sk_buff *skb)
4707 {
4708 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4709 	nf_conntrack_put(skb_nfct(skb));
4710 	skb->_nfct = 0;
4711 #endif
4712 }
4713 
4714 static inline void nf_reset_trace(struct sk_buff *skb)
4715 {
4716 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4717 	skb->nf_trace = 0;
4718 #endif
4719 }
4720 
4721 static inline void ipvs_reset(struct sk_buff *skb)
4722 {
4723 #if IS_ENABLED(CONFIG_IP_VS)
4724 	skb->ipvs_property = 0;
4725 #endif
4726 }
4727 
4728 /* Note: This doesn't put any conntrack info in dst. */
4729 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4730 			     bool copy)
4731 {
4732 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4733 	dst->_nfct = src->_nfct;
4734 	nf_conntrack_get(skb_nfct(src));
4735 #endif
4736 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4737 	if (copy)
4738 		dst->nf_trace = src->nf_trace;
4739 #endif
4740 }
4741 
4742 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4743 {
4744 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4745 	nf_conntrack_put(skb_nfct(dst));
4746 #endif
4747 	dst->slow_gro = src->slow_gro;
4748 	__nf_copy(dst, src, true);
4749 }
4750 
4751 #ifdef CONFIG_NETWORK_SECMARK
4752 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4753 {
4754 	to->secmark = from->secmark;
4755 }
4756 
4757 static inline void skb_init_secmark(struct sk_buff *skb)
4758 {
4759 	skb->secmark = 0;
4760 }
4761 #else
4762 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4763 { }
4764 
4765 static inline void skb_init_secmark(struct sk_buff *skb)
4766 { }
4767 #endif
4768 
4769 static inline int secpath_exists(const struct sk_buff *skb)
4770 {
4771 #ifdef CONFIG_XFRM
4772 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4773 #else
4774 	return 0;
4775 #endif
4776 }
4777 
4778 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4779 {
4780 	return !skb->destructor &&
4781 		!secpath_exists(skb) &&
4782 		!skb_nfct(skb) &&
4783 		!skb->_skb_refdst &&
4784 		!skb_has_frag_list(skb);
4785 }
4786 
4787 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4788 {
4789 	skb->queue_mapping = queue_mapping;
4790 }
4791 
4792 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4793 {
4794 	return skb->queue_mapping;
4795 }
4796 
4797 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4798 {
4799 	to->queue_mapping = from->queue_mapping;
4800 }
4801 
4802 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4803 {
4804 	skb->queue_mapping = rx_queue + 1;
4805 }
4806 
4807 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4808 {
4809 	return skb->queue_mapping - 1;
4810 }
4811 
4812 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4813 {
4814 	return skb->queue_mapping != 0;
4815 }
4816 
4817 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4818 {
4819 	skb->dst_pending_confirm = val;
4820 }
4821 
4822 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4823 {
4824 	return skb->dst_pending_confirm != 0;
4825 }
4826 
4827 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4828 {
4829 #ifdef CONFIG_XFRM
4830 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4831 #else
4832 	return NULL;
4833 #endif
4834 }
4835 
4836 /* Keeps track of mac header offset relative to skb->head.
4837  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4838  * For non-tunnel skb it points to skb_mac_header() and for
4839  * tunnel skb it points to outer mac header.
4840  * Keeps track of level of encapsulation of network headers.
4841  */
4842 struct skb_gso_cb {
4843 	union {
4844 		int	mac_offset;
4845 		int	data_offset;
4846 	};
4847 	int	encap_level;
4848 	__wsum	csum;
4849 	__u16	csum_start;
4850 };
4851 #define SKB_GSO_CB_OFFSET	32
4852 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4853 
4854 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4855 {
4856 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4857 		SKB_GSO_CB(inner_skb)->mac_offset;
4858 }
4859 
4860 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4861 {
4862 	int new_headroom, headroom;
4863 	int ret;
4864 
4865 	headroom = skb_headroom(skb);
4866 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4867 	if (ret)
4868 		return ret;
4869 
4870 	new_headroom = skb_headroom(skb);
4871 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4872 	return 0;
4873 }
4874 
4875 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4876 {
4877 	/* Do not update partial checksums if remote checksum is enabled. */
4878 	if (skb->remcsum_offload)
4879 		return;
4880 
4881 	SKB_GSO_CB(skb)->csum = res;
4882 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4883 }
4884 
4885 /* Compute the checksum for a gso segment. First compute the checksum value
4886  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4887  * then add in skb->csum (checksum from csum_start to end of packet).
4888  * skb->csum and csum_start are then updated to reflect the checksum of the
4889  * resultant packet starting from the transport header-- the resultant checksum
4890  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4891  * header.
4892  */
4893 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4894 {
4895 	unsigned char *csum_start = skb_transport_header(skb);
4896 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4897 	__wsum partial = SKB_GSO_CB(skb)->csum;
4898 
4899 	SKB_GSO_CB(skb)->csum = res;
4900 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4901 
4902 	return csum_fold(csum_partial(csum_start, plen, partial));
4903 }
4904 
4905 static inline bool skb_is_gso(const struct sk_buff *skb)
4906 {
4907 	return skb_shinfo(skb)->gso_size;
4908 }
4909 
4910 /* Note: Should be called only if skb_is_gso(skb) is true */
4911 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4912 {
4913 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4914 }
4915 
4916 /* Note: Should be called only if skb_is_gso(skb) is true */
4917 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4918 {
4919 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4920 }
4921 
4922 /* Note: Should be called only if skb_is_gso(skb) is true */
4923 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4924 {
4925 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4926 }
4927 
4928 static inline void skb_gso_reset(struct sk_buff *skb)
4929 {
4930 	skb_shinfo(skb)->gso_size = 0;
4931 	skb_shinfo(skb)->gso_segs = 0;
4932 	skb_shinfo(skb)->gso_type = 0;
4933 }
4934 
4935 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4936 					 u16 increment)
4937 {
4938 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4939 		return;
4940 	shinfo->gso_size += increment;
4941 }
4942 
4943 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4944 					 u16 decrement)
4945 {
4946 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4947 		return;
4948 	shinfo->gso_size -= decrement;
4949 }
4950 
4951 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4952 
4953 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4954 {
4955 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4956 	 * wanted then gso_type will be set. */
4957 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4958 
4959 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4960 	    unlikely(shinfo->gso_type == 0)) {
4961 		__skb_warn_lro_forwarding(skb);
4962 		return true;
4963 	}
4964 	return false;
4965 }
4966 
4967 static inline void skb_forward_csum(struct sk_buff *skb)
4968 {
4969 	/* Unfortunately we don't support this one.  Any brave souls? */
4970 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4971 		skb->ip_summed = CHECKSUM_NONE;
4972 }
4973 
4974 /**
4975  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4976  * @skb: skb to check
4977  *
4978  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4979  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4980  * use this helper, to document places where we make this assertion.
4981  */
4982 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4983 {
4984 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4985 }
4986 
4987 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4988 
4989 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4990 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4991 				     unsigned int transport_len,
4992 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4993 
4994 /**
4995  * skb_head_is_locked - Determine if the skb->head is locked down
4996  * @skb: skb to check
4997  *
4998  * The head on skbs build around a head frag can be removed if they are
4999  * not cloned.  This function returns true if the skb head is locked down
5000  * due to either being allocated via kmalloc, or by being a clone with
5001  * multiple references to the head.
5002  */
5003 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5004 {
5005 	return !skb->head_frag || skb_cloned(skb);
5006 }
5007 
5008 /* Local Checksum Offload.
5009  * Compute outer checksum based on the assumption that the
5010  * inner checksum will be offloaded later.
5011  * See Documentation/networking/checksum-offloads.rst for
5012  * explanation of how this works.
5013  * Fill in outer checksum adjustment (e.g. with sum of outer
5014  * pseudo-header) before calling.
5015  * Also ensure that inner checksum is in linear data area.
5016  */
5017 static inline __wsum lco_csum(struct sk_buff *skb)
5018 {
5019 	unsigned char *csum_start = skb_checksum_start(skb);
5020 	unsigned char *l4_hdr = skb_transport_header(skb);
5021 	__wsum partial;
5022 
5023 	/* Start with complement of inner checksum adjustment */
5024 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5025 						    skb->csum_offset));
5026 
5027 	/* Add in checksum of our headers (incl. outer checksum
5028 	 * adjustment filled in by caller) and return result.
5029 	 */
5030 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5031 }
5032 
5033 static inline bool skb_is_redirected(const struct sk_buff *skb)
5034 {
5035 	return skb->redirected;
5036 }
5037 
5038 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5039 {
5040 	skb->redirected = 1;
5041 #ifdef CONFIG_NET_REDIRECT
5042 	skb->from_ingress = from_ingress;
5043 	if (skb->from_ingress)
5044 		skb_clear_tstamp(skb);
5045 #endif
5046 }
5047 
5048 static inline void skb_reset_redirect(struct sk_buff *skb)
5049 {
5050 	skb->redirected = 0;
5051 }
5052 
5053 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5054 {
5055 	return skb->csum_not_inet;
5056 }
5057 
5058 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5059 				       const u64 kcov_handle)
5060 {
5061 #ifdef CONFIG_KCOV
5062 	skb->kcov_handle = kcov_handle;
5063 #endif
5064 }
5065 
5066 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5067 {
5068 #ifdef CONFIG_KCOV
5069 	return skb->kcov_handle;
5070 #else
5071 	return 0;
5072 #endif
5073 }
5074 
5075 #ifdef CONFIG_PAGE_POOL
5076 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5077 {
5078 	skb->pp_recycle = 1;
5079 }
5080 #endif
5081 
5082 #endif	/* __KERNEL__ */
5083 #endif	/* _LINUX_SKBUFF_H */
5084