xref: /linux-6.15/include/linux/skbuff.h (revision 20dd026d)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/poll.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 
33 #define HAVE_ALLOC_SKB		/* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
35 #define SLAB_SKB 		/* Slabified skbuffs 	   */
36 
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_HW 1
39 #define CHECKSUM_UNNECESSARY 2
40 
41 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
42 				 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_MAX_ORDER(X, ORDER)	(((PAGE_SIZE << (ORDER)) - (X) - \
44 				  sizeof(struct skb_shared_info)) & \
45 				  ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
48 
49 /* A. Checksumming of received packets by device.
50  *
51  *	NONE: device failed to checksum this packet.
52  *		skb->csum is undefined.
53  *
54  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
55  *		skb->csum is undefined.
56  *	      It is bad option, but, unfortunately, many of vendors do this.
57  *	      Apparently with secret goal to sell you new device, when you
58  *	      will add new protocol to your host. F.e. IPv6. 8)
59  *
60  *	HW: the most generic way. Device supplied checksum of _all_
61  *	    the packet as seen by netif_rx in skb->csum.
62  *	    NOTE: Even if device supports only some protocols, but
63  *	    is able to produce some skb->csum, it MUST use HW,
64  *	    not UNNECESSARY.
65  *
66  * B. Checksumming on output.
67  *
68  *	NONE: skb is checksummed by protocol or csum is not required.
69  *
70  *	HW: device is required to csum packet as seen by hard_start_xmit
71  *	from skb->h.raw to the end and to record the checksum
72  *	at skb->h.raw+skb->csum.
73  *
74  *	Device must show its capabilities in dev->features, set
75  *	at device setup time.
76  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
77  *			  everything.
78  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
79  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80  *			  TCP/UDP over IPv4. Sigh. Vendors like this
81  *			  way by an unknown reason. Though, see comment above
82  *			  about CHECKSUM_UNNECESSARY. 8)
83  *
84  *	Any questions? No questions, good. 		--ANK
85  */
86 
87 struct net_device;
88 
89 #ifdef CONFIG_NETFILTER
90 struct nf_conntrack {
91 	atomic_t use;
92 	void (*destroy)(struct nf_conntrack *);
93 };
94 
95 #ifdef CONFIG_BRIDGE_NETFILTER
96 struct nf_bridge_info {
97 	atomic_t use;
98 	struct net_device *physindev;
99 	struct net_device *physoutdev;
100 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 	struct net_device *netoutdev;
102 #endif
103 	unsigned int mask;
104 	unsigned long data[32 / sizeof(unsigned long)];
105 };
106 #endif
107 
108 #endif
109 
110 struct sk_buff_head {
111 	/* These two members must be first. */
112 	struct sk_buff	*next;
113 	struct sk_buff	*prev;
114 
115 	__u32		qlen;
116 	spinlock_t	lock;
117 };
118 
119 struct sk_buff;
120 
121 /* To allow 64K frame to be packed as single skb without frag_list */
122 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123 
124 typedef struct skb_frag_struct skb_frag_t;
125 
126 struct skb_frag_struct {
127 	struct page *page;
128 	__u16 page_offset;
129 	__u16 size;
130 };
131 
132 /* This data is invariant across clones and lives at
133  * the end of the header data, ie. at skb->end.
134  */
135 struct skb_shared_info {
136 	atomic_t	dataref;
137 	unsigned int	nr_frags;
138 	unsigned short	tso_size;
139 	unsigned short	tso_segs;
140 	struct sk_buff	*frag_list;
141 	skb_frag_t	frags[MAX_SKB_FRAGS];
142 };
143 
144 /* We divide dataref into two halves.  The higher 16 bits hold references
145  * to the payload part of skb->data.  The lower 16 bits hold references to
146  * the entire skb->data.  It is up to the users of the skb to agree on
147  * where the payload starts.
148  *
149  * All users must obey the rule that the skb->data reference count must be
150  * greater than or equal to the payload reference count.
151  *
152  * Holding a reference to the payload part means that the user does not
153  * care about modifications to the header part of skb->data.
154  */
155 #define SKB_DATAREF_SHIFT 16
156 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
157 
158 extern struct timeval skb_tv_base;
159 
160 struct skb_timeval {
161 	u32	off_sec;
162 	u32	off_usec;
163 };
164 
165 
166 enum {
167 	SKB_FCLONE_UNAVAILABLE,
168 	SKB_FCLONE_ORIG,
169 	SKB_FCLONE_CLONE,
170 };
171 
172 /**
173  *	struct sk_buff - socket buffer
174  *	@next: Next buffer in list
175  *	@prev: Previous buffer in list
176  *	@list: List we are on
177  *	@sk: Socket we are owned by
178  *	@tstamp: Time we arrived stored as offset to skb_tv_base
179  *	@dev: Device we arrived on/are leaving by
180  *	@input_dev: Device we arrived on
181  *	@h: Transport layer header
182  *	@nh: Network layer header
183  *	@mac: Link layer header
184  *	@dst: destination entry
185  *	@sp: the security path, used for xfrm
186  *	@cb: Control buffer. Free for use by every layer. Put private vars here
187  *	@len: Length of actual data
188  *	@data_len: Data length
189  *	@mac_len: Length of link layer header
190  *	@csum: Checksum
191  *	@local_df: allow local fragmentation
192  *	@cloned: Head may be cloned (check refcnt to be sure)
193  *	@nohdr: Payload reference only, must not modify header
194  *	@pkt_type: Packet class
195  *	@ip_summed: Driver fed us an IP checksum
196  *	@priority: Packet queueing priority
197  *	@users: User count - see {datagram,tcp}.c
198  *	@protocol: Packet protocol from driver
199  *	@truesize: Buffer size
200  *	@head: Head of buffer
201  *	@data: Data head pointer
202  *	@tail: Tail pointer
203  *	@end: End pointer
204  *	@destructor: Destruct function
205  *	@nfmark: Can be used for communication between hooks
206  *	@nfct: Associated connection, if any
207  *	@nfctinfo: Relationship of this skb to the connection
208  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
209  *	@tc_index: Traffic control index
210  *	@tc_verd: traffic control verdict
211  */
212 
213 struct sk_buff {
214 	/* These two members must be first. */
215 	struct sk_buff		*next;
216 	struct sk_buff		*prev;
217 
218 	struct sock		*sk;
219 	struct skb_timeval	tstamp;
220 	struct net_device	*dev;
221 	struct net_device	*input_dev;
222 
223 	union {
224 		struct tcphdr	*th;
225 		struct udphdr	*uh;
226 		struct icmphdr	*icmph;
227 		struct igmphdr	*igmph;
228 		struct iphdr	*ipiph;
229 		struct ipv6hdr	*ipv6h;
230 		unsigned char	*raw;
231 	} h;
232 
233 	union {
234 		struct iphdr	*iph;
235 		struct ipv6hdr	*ipv6h;
236 		struct arphdr	*arph;
237 		unsigned char	*raw;
238 	} nh;
239 
240 	union {
241 	  	unsigned char 	*raw;
242 	} mac;
243 
244 	struct  dst_entry	*dst;
245 	struct	sec_path	*sp;
246 
247 	/*
248 	 * This is the control buffer. It is free to use for every
249 	 * layer. Please put your private variables there. If you
250 	 * want to keep them across layers you have to do a skb_clone()
251 	 * first. This is owned by whoever has the skb queued ATM.
252 	 */
253 	char			cb[40];
254 
255 	unsigned int		len,
256 				data_len,
257 				mac_len,
258 				csum;
259 	__u32			priority;
260 	__u8			local_df:1,
261 				cloned:1,
262 				ip_summed:2,
263 				nohdr:1,
264 				nfctinfo:3;
265 	__u8			pkt_type:3,
266 				fclone:2;
267 	__be16			protocol;
268 
269 	void			(*destructor)(struct sk_buff *skb);
270 #ifdef CONFIG_NETFILTER
271 	__u32			nfmark;
272 	struct nf_conntrack	*nfct;
273 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
274 	__u8			ipvs_property:1;
275 #endif
276 #ifdef CONFIG_BRIDGE_NETFILTER
277 	struct nf_bridge_info	*nf_bridge;
278 #endif
279 #endif /* CONFIG_NETFILTER */
280 #ifdef CONFIG_NET_SCHED
281 	__u16			tc_index;	/* traffic control index */
282 #ifdef CONFIG_NET_CLS_ACT
283 	__u16			tc_verd;	/* traffic control verdict */
284 #endif
285 #endif
286 
287 
288 	/* These elements must be at the end, see alloc_skb() for details.  */
289 	unsigned int		truesize;
290 	atomic_t		users;
291 	unsigned char		*head,
292 				*data,
293 				*tail,
294 				*end;
295 };
296 
297 #ifdef __KERNEL__
298 /*
299  *	Handling routines are only of interest to the kernel
300  */
301 #include <linux/slab.h>
302 
303 #include <asm/system.h>
304 
305 extern void	       __kfree_skb(struct sk_buff *skb);
306 extern struct sk_buff *__alloc_skb(unsigned int size,
307 				   unsigned int __nocast priority, int fclone);
308 static inline struct sk_buff *alloc_skb(unsigned int size,
309 					unsigned int __nocast priority)
310 {
311 	return __alloc_skb(size, priority, 0);
312 }
313 
314 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
315 					       unsigned int __nocast priority)
316 {
317 	return __alloc_skb(size, priority, 1);
318 }
319 
320 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
321 					    unsigned int size,
322 					    unsigned int __nocast priority);
323 extern void	       kfree_skbmem(struct sk_buff *skb);
324 extern struct sk_buff *skb_clone(struct sk_buff *skb,
325 				 unsigned int __nocast priority);
326 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
327 				unsigned int __nocast priority);
328 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
329 				 unsigned int __nocast gfp_mask);
330 extern int	       pskb_expand_head(struct sk_buff *skb,
331 					int nhead, int ntail,
332 					unsigned int __nocast gfp_mask);
333 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
334 					    unsigned int headroom);
335 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
336 				       int newheadroom, int newtailroom,
337 				       unsigned int __nocast priority);
338 extern struct sk_buff *		skb_pad(struct sk_buff *skb, int pad);
339 #define dev_kfree_skb(a)	kfree_skb(a)
340 extern void	      skb_over_panic(struct sk_buff *skb, int len,
341 				     void *here);
342 extern void	      skb_under_panic(struct sk_buff *skb, int len,
343 				      void *here);
344 
345 struct skb_seq_state
346 {
347 	__u32		lower_offset;
348 	__u32		upper_offset;
349 	__u32		frag_idx;
350 	__u32		stepped_offset;
351 	struct sk_buff	*root_skb;
352 	struct sk_buff	*cur_skb;
353 	__u8		*frag_data;
354 };
355 
356 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
357 					   unsigned int from, unsigned int to,
358 					   struct skb_seq_state *st);
359 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
360 				   struct skb_seq_state *st);
361 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
362 
363 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
364 				    unsigned int to, struct ts_config *config,
365 				    struct ts_state *state);
366 
367 /* Internal */
368 #define skb_shinfo(SKB)		((struct skb_shared_info *)((SKB)->end))
369 
370 /**
371  *	skb_queue_empty - check if a queue is empty
372  *	@list: queue head
373  *
374  *	Returns true if the queue is empty, false otherwise.
375  */
376 static inline int skb_queue_empty(const struct sk_buff_head *list)
377 {
378 	return list->next == (struct sk_buff *)list;
379 }
380 
381 /**
382  *	skb_get - reference buffer
383  *	@skb: buffer to reference
384  *
385  *	Makes another reference to a socket buffer and returns a pointer
386  *	to the buffer.
387  */
388 static inline struct sk_buff *skb_get(struct sk_buff *skb)
389 {
390 	atomic_inc(&skb->users);
391 	return skb;
392 }
393 
394 /*
395  * If users == 1, we are the only owner and are can avoid redundant
396  * atomic change.
397  */
398 
399 /**
400  *	kfree_skb - free an sk_buff
401  *	@skb: buffer to free
402  *
403  *	Drop a reference to the buffer and free it if the usage count has
404  *	hit zero.
405  */
406 static inline void kfree_skb(struct sk_buff *skb)
407 {
408 	if (likely(atomic_read(&skb->users) == 1))
409 		smp_rmb();
410 	else if (likely(!atomic_dec_and_test(&skb->users)))
411 		return;
412 	__kfree_skb(skb);
413 }
414 
415 /**
416  *	skb_cloned - is the buffer a clone
417  *	@skb: buffer to check
418  *
419  *	Returns true if the buffer was generated with skb_clone() and is
420  *	one of multiple shared copies of the buffer. Cloned buffers are
421  *	shared data so must not be written to under normal circumstances.
422  */
423 static inline int skb_cloned(const struct sk_buff *skb)
424 {
425 	return skb->cloned &&
426 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
427 }
428 
429 /**
430  *	skb_header_cloned - is the header a clone
431  *	@skb: buffer to check
432  *
433  *	Returns true if modifying the header part of the buffer requires
434  *	the data to be copied.
435  */
436 static inline int skb_header_cloned(const struct sk_buff *skb)
437 {
438 	int dataref;
439 
440 	if (!skb->cloned)
441 		return 0;
442 
443 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
444 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
445 	return dataref != 1;
446 }
447 
448 /**
449  *	skb_header_release - release reference to header
450  *	@skb: buffer to operate on
451  *
452  *	Drop a reference to the header part of the buffer.  This is done
453  *	by acquiring a payload reference.  You must not read from the header
454  *	part of skb->data after this.
455  */
456 static inline void skb_header_release(struct sk_buff *skb)
457 {
458 	BUG_ON(skb->nohdr);
459 	skb->nohdr = 1;
460 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
461 }
462 
463 /**
464  *	skb_shared - is the buffer shared
465  *	@skb: buffer to check
466  *
467  *	Returns true if more than one person has a reference to this
468  *	buffer.
469  */
470 static inline int skb_shared(const struct sk_buff *skb)
471 {
472 	return atomic_read(&skb->users) != 1;
473 }
474 
475 /**
476  *	skb_share_check - check if buffer is shared and if so clone it
477  *	@skb: buffer to check
478  *	@pri: priority for memory allocation
479  *
480  *	If the buffer is shared the buffer is cloned and the old copy
481  *	drops a reference. A new clone with a single reference is returned.
482  *	If the buffer is not shared the original buffer is returned. When
483  *	being called from interrupt status or with spinlocks held pri must
484  *	be GFP_ATOMIC.
485  *
486  *	NULL is returned on a memory allocation failure.
487  */
488 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
489 					      unsigned int __nocast pri)
490 {
491 	might_sleep_if(pri & __GFP_WAIT);
492 	if (skb_shared(skb)) {
493 		struct sk_buff *nskb = skb_clone(skb, pri);
494 		kfree_skb(skb);
495 		skb = nskb;
496 	}
497 	return skb;
498 }
499 
500 /*
501  *	Copy shared buffers into a new sk_buff. We effectively do COW on
502  *	packets to handle cases where we have a local reader and forward
503  *	and a couple of other messy ones. The normal one is tcpdumping
504  *	a packet thats being forwarded.
505  */
506 
507 /**
508  *	skb_unshare - make a copy of a shared buffer
509  *	@skb: buffer to check
510  *	@pri: priority for memory allocation
511  *
512  *	If the socket buffer is a clone then this function creates a new
513  *	copy of the data, drops a reference count on the old copy and returns
514  *	the new copy with the reference count at 1. If the buffer is not a clone
515  *	the original buffer is returned. When called with a spinlock held or
516  *	from interrupt state @pri must be %GFP_ATOMIC
517  *
518  *	%NULL is returned on a memory allocation failure.
519  */
520 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
521 					  unsigned int __nocast pri)
522 {
523 	might_sleep_if(pri & __GFP_WAIT);
524 	if (skb_cloned(skb)) {
525 		struct sk_buff *nskb = skb_copy(skb, pri);
526 		kfree_skb(skb);	/* Free our shared copy */
527 		skb = nskb;
528 	}
529 	return skb;
530 }
531 
532 /**
533  *	skb_peek
534  *	@list_: list to peek at
535  *
536  *	Peek an &sk_buff. Unlike most other operations you _MUST_
537  *	be careful with this one. A peek leaves the buffer on the
538  *	list and someone else may run off with it. You must hold
539  *	the appropriate locks or have a private queue to do this.
540  *
541  *	Returns %NULL for an empty list or a pointer to the head element.
542  *	The reference count is not incremented and the reference is therefore
543  *	volatile. Use with caution.
544  */
545 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
546 {
547 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
548 	if (list == (struct sk_buff *)list_)
549 		list = NULL;
550 	return list;
551 }
552 
553 /**
554  *	skb_peek_tail
555  *	@list_: list to peek at
556  *
557  *	Peek an &sk_buff. Unlike most other operations you _MUST_
558  *	be careful with this one. A peek leaves the buffer on the
559  *	list and someone else may run off with it. You must hold
560  *	the appropriate locks or have a private queue to do this.
561  *
562  *	Returns %NULL for an empty list or a pointer to the tail element.
563  *	The reference count is not incremented and the reference is therefore
564  *	volatile. Use with caution.
565  */
566 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
567 {
568 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
569 	if (list == (struct sk_buff *)list_)
570 		list = NULL;
571 	return list;
572 }
573 
574 /**
575  *	skb_queue_len	- get queue length
576  *	@list_: list to measure
577  *
578  *	Return the length of an &sk_buff queue.
579  */
580 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
581 {
582 	return list_->qlen;
583 }
584 
585 static inline void skb_queue_head_init(struct sk_buff_head *list)
586 {
587 	spin_lock_init(&list->lock);
588 	list->prev = list->next = (struct sk_buff *)list;
589 	list->qlen = 0;
590 }
591 
592 /*
593  *	Insert an sk_buff at the start of a list.
594  *
595  *	The "__skb_xxxx()" functions are the non-atomic ones that
596  *	can only be called with interrupts disabled.
597  */
598 
599 /**
600  *	__skb_queue_head - queue a buffer at the list head
601  *	@list: list to use
602  *	@newsk: buffer to queue
603  *
604  *	Queue a buffer at the start of a list. This function takes no locks
605  *	and you must therefore hold required locks before calling it.
606  *
607  *	A buffer cannot be placed on two lists at the same time.
608  */
609 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
610 static inline void __skb_queue_head(struct sk_buff_head *list,
611 				    struct sk_buff *newsk)
612 {
613 	struct sk_buff *prev, *next;
614 
615 	list->qlen++;
616 	prev = (struct sk_buff *)list;
617 	next = prev->next;
618 	newsk->next = next;
619 	newsk->prev = prev;
620 	next->prev  = prev->next = newsk;
621 }
622 
623 /**
624  *	__skb_queue_tail - queue a buffer at the list tail
625  *	@list: list to use
626  *	@newsk: buffer to queue
627  *
628  *	Queue a buffer at the end of a list. This function takes no locks
629  *	and you must therefore hold required locks before calling it.
630  *
631  *	A buffer cannot be placed on two lists at the same time.
632  */
633 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
634 static inline void __skb_queue_tail(struct sk_buff_head *list,
635 				   struct sk_buff *newsk)
636 {
637 	struct sk_buff *prev, *next;
638 
639 	list->qlen++;
640 	next = (struct sk_buff *)list;
641 	prev = next->prev;
642 	newsk->next = next;
643 	newsk->prev = prev;
644 	next->prev  = prev->next = newsk;
645 }
646 
647 
648 /**
649  *	__skb_dequeue - remove from the head of the queue
650  *	@list: list to dequeue from
651  *
652  *	Remove the head of the list. This function does not take any locks
653  *	so must be used with appropriate locks held only. The head item is
654  *	returned or %NULL if the list is empty.
655  */
656 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
657 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
658 {
659 	struct sk_buff *next, *prev, *result;
660 
661 	prev = (struct sk_buff *) list;
662 	next = prev->next;
663 	result = NULL;
664 	if (next != prev) {
665 		result	     = next;
666 		next	     = next->next;
667 		list->qlen--;
668 		next->prev   = prev;
669 		prev->next   = next;
670 		result->next = result->prev = NULL;
671 	}
672 	return result;
673 }
674 
675 
676 /*
677  *	Insert a packet on a list.
678  */
679 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
680 static inline void __skb_insert(struct sk_buff *newsk,
681 				struct sk_buff *prev, struct sk_buff *next,
682 				struct sk_buff_head *list)
683 {
684 	newsk->next = next;
685 	newsk->prev = prev;
686 	next->prev  = prev->next = newsk;
687 	list->qlen++;
688 }
689 
690 /*
691  *	Place a packet after a given packet in a list.
692  */
693 extern void	   skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
694 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
695 {
696 	__skb_insert(newsk, old, old->next, list);
697 }
698 
699 /*
700  * remove sk_buff from list. _Must_ be called atomically, and with
701  * the list known..
702  */
703 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
704 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
705 {
706 	struct sk_buff *next, *prev;
707 
708 	list->qlen--;
709 	next	   = skb->next;
710 	prev	   = skb->prev;
711 	skb->next  = skb->prev = NULL;
712 	next->prev = prev;
713 	prev->next = next;
714 }
715 
716 
717 /* XXX: more streamlined implementation */
718 
719 /**
720  *	__skb_dequeue_tail - remove from the tail of the queue
721  *	@list: list to dequeue from
722  *
723  *	Remove the tail of the list. This function does not take any locks
724  *	so must be used with appropriate locks held only. The tail item is
725  *	returned or %NULL if the list is empty.
726  */
727 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
728 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
729 {
730 	struct sk_buff *skb = skb_peek_tail(list);
731 	if (skb)
732 		__skb_unlink(skb, list);
733 	return skb;
734 }
735 
736 
737 static inline int skb_is_nonlinear(const struct sk_buff *skb)
738 {
739 	return skb->data_len;
740 }
741 
742 static inline unsigned int skb_headlen(const struct sk_buff *skb)
743 {
744 	return skb->len - skb->data_len;
745 }
746 
747 static inline int skb_pagelen(const struct sk_buff *skb)
748 {
749 	int i, len = 0;
750 
751 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
752 		len += skb_shinfo(skb)->frags[i].size;
753 	return len + skb_headlen(skb);
754 }
755 
756 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
757 				      struct page *page, int off, int size)
758 {
759 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
760 
761 	frag->page		  = page;
762 	frag->page_offset	  = off;
763 	frag->size		  = size;
764 	skb_shinfo(skb)->nr_frags = i + 1;
765 }
766 
767 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
768 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
769 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
770 
771 /*
772  *	Add data to an sk_buff
773  */
774 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
775 {
776 	unsigned char *tmp = skb->tail;
777 	SKB_LINEAR_ASSERT(skb);
778 	skb->tail += len;
779 	skb->len  += len;
780 	return tmp;
781 }
782 
783 /**
784  *	skb_put - add data to a buffer
785  *	@skb: buffer to use
786  *	@len: amount of data to add
787  *
788  *	This function extends the used data area of the buffer. If this would
789  *	exceed the total buffer size the kernel will panic. A pointer to the
790  *	first byte of the extra data is returned.
791  */
792 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
793 {
794 	unsigned char *tmp = skb->tail;
795 	SKB_LINEAR_ASSERT(skb);
796 	skb->tail += len;
797 	skb->len  += len;
798 	if (unlikely(skb->tail>skb->end))
799 		skb_over_panic(skb, len, current_text_addr());
800 	return tmp;
801 }
802 
803 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
804 {
805 	skb->data -= len;
806 	skb->len  += len;
807 	return skb->data;
808 }
809 
810 /**
811  *	skb_push - add data to the start of a buffer
812  *	@skb: buffer to use
813  *	@len: amount of data to add
814  *
815  *	This function extends the used data area of the buffer at the buffer
816  *	start. If this would exceed the total buffer headroom the kernel will
817  *	panic. A pointer to the first byte of the extra data is returned.
818  */
819 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
820 {
821 	skb->data -= len;
822 	skb->len  += len;
823 	if (unlikely(skb->data<skb->head))
824 		skb_under_panic(skb, len, current_text_addr());
825 	return skb->data;
826 }
827 
828 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
829 {
830 	skb->len -= len;
831 	BUG_ON(skb->len < skb->data_len);
832 	return skb->data += len;
833 }
834 
835 /**
836  *	skb_pull - remove data from the start of a buffer
837  *	@skb: buffer to use
838  *	@len: amount of data to remove
839  *
840  *	This function removes data from the start of a buffer, returning
841  *	the memory to the headroom. A pointer to the next data in the buffer
842  *	is returned. Once the data has been pulled future pushes will overwrite
843  *	the old data.
844  */
845 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
846 {
847 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
848 }
849 
850 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
851 
852 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
853 {
854 	if (len > skb_headlen(skb) &&
855 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
856 		return NULL;
857 	skb->len -= len;
858 	return skb->data += len;
859 }
860 
861 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
862 {
863 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
864 }
865 
866 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
867 {
868 	if (likely(len <= skb_headlen(skb)))
869 		return 1;
870 	if (unlikely(len > skb->len))
871 		return 0;
872 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
873 }
874 
875 /**
876  *	skb_headroom - bytes at buffer head
877  *	@skb: buffer to check
878  *
879  *	Return the number of bytes of free space at the head of an &sk_buff.
880  */
881 static inline int skb_headroom(const struct sk_buff *skb)
882 {
883 	return skb->data - skb->head;
884 }
885 
886 /**
887  *	skb_tailroom - bytes at buffer end
888  *	@skb: buffer to check
889  *
890  *	Return the number of bytes of free space at the tail of an sk_buff
891  */
892 static inline int skb_tailroom(const struct sk_buff *skb)
893 {
894 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
895 }
896 
897 /**
898  *	skb_reserve - adjust headroom
899  *	@skb: buffer to alter
900  *	@len: bytes to move
901  *
902  *	Increase the headroom of an empty &sk_buff by reducing the tail
903  *	room. This is only allowed for an empty buffer.
904  */
905 static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
906 {
907 	skb->data += len;
908 	skb->tail += len;
909 }
910 
911 /*
912  * CPUs often take a performance hit when accessing unaligned memory
913  * locations. The actual performance hit varies, it can be small if the
914  * hardware handles it or large if we have to take an exception and fix it
915  * in software.
916  *
917  * Since an ethernet header is 14 bytes network drivers often end up with
918  * the IP header at an unaligned offset. The IP header can be aligned by
919  * shifting the start of the packet by 2 bytes. Drivers should do this
920  * with:
921  *
922  * skb_reserve(NET_IP_ALIGN);
923  *
924  * The downside to this alignment of the IP header is that the DMA is now
925  * unaligned. On some architectures the cost of an unaligned DMA is high
926  * and this cost outweighs the gains made by aligning the IP header.
927  *
928  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
929  * to be overridden.
930  */
931 #ifndef NET_IP_ALIGN
932 #define NET_IP_ALIGN	2
933 #endif
934 
935 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
936 
937 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
938 {
939 	if (!skb->data_len) {
940 		skb->len  = len;
941 		skb->tail = skb->data + len;
942 	} else
943 		___pskb_trim(skb, len, 0);
944 }
945 
946 /**
947  *	skb_trim - remove end from a buffer
948  *	@skb: buffer to alter
949  *	@len: new length
950  *
951  *	Cut the length of a buffer down by removing data from the tail. If
952  *	the buffer is already under the length specified it is not modified.
953  */
954 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
955 {
956 	if (skb->len > len)
957 		__skb_trim(skb, len);
958 }
959 
960 
961 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
962 {
963 	if (!skb->data_len) {
964 		skb->len  = len;
965 		skb->tail = skb->data+len;
966 		return 0;
967 	}
968 	return ___pskb_trim(skb, len, 1);
969 }
970 
971 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
972 {
973 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
974 }
975 
976 /**
977  *	skb_orphan - orphan a buffer
978  *	@skb: buffer to orphan
979  *
980  *	If a buffer currently has an owner then we call the owner's
981  *	destructor function and make the @skb unowned. The buffer continues
982  *	to exist but is no longer charged to its former owner.
983  */
984 static inline void skb_orphan(struct sk_buff *skb)
985 {
986 	if (skb->destructor)
987 		skb->destructor(skb);
988 	skb->destructor = NULL;
989 	skb->sk		= NULL;
990 }
991 
992 /**
993  *	__skb_queue_purge - empty a list
994  *	@list: list to empty
995  *
996  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
997  *	the list and one reference dropped. This function does not take the
998  *	list lock and the caller must hold the relevant locks to use it.
999  */
1000 extern void skb_queue_purge(struct sk_buff_head *list);
1001 static inline void __skb_queue_purge(struct sk_buff_head *list)
1002 {
1003 	struct sk_buff *skb;
1004 	while ((skb = __skb_dequeue(list)) != NULL)
1005 		kfree_skb(skb);
1006 }
1007 
1008 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1009 /**
1010  *	__dev_alloc_skb - allocate an skbuff for sending
1011  *	@length: length to allocate
1012  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1013  *
1014  *	Allocate a new &sk_buff and assign it a usage count of one. The
1015  *	buffer has unspecified headroom built in. Users should allocate
1016  *	the headroom they think they need without accounting for the
1017  *	built in space. The built in space is used for optimisations.
1018  *
1019  *	%NULL is returned in there is no free memory.
1020  */
1021 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1022 					      unsigned int __nocast gfp_mask)
1023 {
1024 	struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1025 	if (likely(skb))
1026 		skb_reserve(skb, 16);
1027 	return skb;
1028 }
1029 #else
1030 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1031 #endif
1032 
1033 /**
1034  *	dev_alloc_skb - allocate an skbuff for sending
1035  *	@length: length to allocate
1036  *
1037  *	Allocate a new &sk_buff and assign it a usage count of one. The
1038  *	buffer has unspecified headroom built in. Users should allocate
1039  *	the headroom they think they need without accounting for the
1040  *	built in space. The built in space is used for optimisations.
1041  *
1042  *	%NULL is returned in there is no free memory. Although this function
1043  *	allocates memory it can be called from an interrupt.
1044  */
1045 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1046 {
1047 	return __dev_alloc_skb(length, GFP_ATOMIC);
1048 }
1049 
1050 /**
1051  *	skb_cow - copy header of skb when it is required
1052  *	@skb: buffer to cow
1053  *	@headroom: needed headroom
1054  *
1055  *	If the skb passed lacks sufficient headroom or its data part
1056  *	is shared, data is reallocated. If reallocation fails, an error
1057  *	is returned and original skb is not changed.
1058  *
1059  *	The result is skb with writable area skb->head...skb->tail
1060  *	and at least @headroom of space at head.
1061  */
1062 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1063 {
1064 	int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1065 
1066 	if (delta < 0)
1067 		delta = 0;
1068 
1069 	if (delta || skb_cloned(skb))
1070 		return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1071 	return 0;
1072 }
1073 
1074 /**
1075  *	skb_padto	- pad an skbuff up to a minimal size
1076  *	@skb: buffer to pad
1077  *	@len: minimal length
1078  *
1079  *	Pads up a buffer to ensure the trailing bytes exist and are
1080  *	blanked. If the buffer already contains sufficient data it
1081  *	is untouched. Returns the buffer, which may be a replacement
1082  *	for the original, or NULL for out of memory - in which case
1083  *	the original buffer is still freed.
1084  */
1085 
1086 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1087 {
1088 	unsigned int size = skb->len;
1089 	if (likely(size >= len))
1090 		return skb;
1091 	return skb_pad(skb, len-size);
1092 }
1093 
1094 static inline int skb_add_data(struct sk_buff *skb,
1095 			       char __user *from, int copy)
1096 {
1097 	const int off = skb->len;
1098 
1099 	if (skb->ip_summed == CHECKSUM_NONE) {
1100 		int err = 0;
1101 		unsigned int csum = csum_and_copy_from_user(from,
1102 							    skb_put(skb, copy),
1103 							    copy, 0, &err);
1104 		if (!err) {
1105 			skb->csum = csum_block_add(skb->csum, csum, off);
1106 			return 0;
1107 		}
1108 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1109 		return 0;
1110 
1111 	__skb_trim(skb, off);
1112 	return -EFAULT;
1113 }
1114 
1115 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1116 				   struct page *page, int off)
1117 {
1118 	if (i) {
1119 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1120 
1121 		return page == frag->page &&
1122 		       off == frag->page_offset + frag->size;
1123 	}
1124 	return 0;
1125 }
1126 
1127 /**
1128  *	skb_linearize - convert paged skb to linear one
1129  *	@skb: buffer to linarize
1130  *	@gfp: allocation mode
1131  *
1132  *	If there is no free memory -ENOMEM is returned, otherwise zero
1133  *	is returned and the old skb data released.
1134  */
1135 extern int __skb_linearize(struct sk_buff *skb, unsigned int __nocast gfp);
1136 static inline int skb_linearize(struct sk_buff *skb, unsigned int __nocast gfp)
1137 {
1138 	return __skb_linearize(skb, gfp);
1139 }
1140 
1141 /**
1142  *	skb_postpull_rcsum - update checksum for received skb after pull
1143  *	@skb: buffer to update
1144  *	@start: start of data before pull
1145  *	@len: length of data pulled
1146  *
1147  *	After doing a pull on a received packet, you need to call this to
1148  *	update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1149  *	so that it can be recomputed from scratch.
1150  */
1151 
1152 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1153 					 const void *start, int len)
1154 {
1155 	if (skb->ip_summed == CHECKSUM_HW)
1156 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1157 }
1158 
1159 /**
1160  *	pskb_trim_rcsum - trim received skb and update checksum
1161  *	@skb: buffer to trim
1162  *	@len: new length
1163  *
1164  *	This is exactly the same as pskb_trim except that it ensures the
1165  *	checksum of received packets are still valid after the operation.
1166  */
1167 
1168 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1169 {
1170 	if (len >= skb->len)
1171 		return 0;
1172 	if (skb->ip_summed == CHECKSUM_HW)
1173 		skb->ip_summed = CHECKSUM_NONE;
1174 	return __pskb_trim(skb, len);
1175 }
1176 
1177 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1178 {
1179 #ifdef CONFIG_HIGHMEM
1180 	BUG_ON(in_irq());
1181 
1182 	local_bh_disable();
1183 #endif
1184 	return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1185 }
1186 
1187 static inline void kunmap_skb_frag(void *vaddr)
1188 {
1189 	kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1190 #ifdef CONFIG_HIGHMEM
1191 	local_bh_enable();
1192 #endif
1193 }
1194 
1195 #define skb_queue_walk(queue, skb) \
1196 		for (skb = (queue)->next;					\
1197 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1198 		     skb = skb->next)
1199 
1200 
1201 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1202 					 int noblock, int *err);
1203 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1204 				     struct poll_table_struct *wait);
1205 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1206 					       int offset, struct iovec *to,
1207 					       int size);
1208 extern int	       skb_copy_and_csum_datagram_iovec(const
1209 							struct sk_buff *skb,
1210 							int hlen,
1211 							struct iovec *iov);
1212 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1213 extern unsigned int    skb_checksum(const struct sk_buff *skb, int offset,
1214 				    int len, unsigned int csum);
1215 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1216 				     void *to, int len);
1217 extern int	       skb_store_bits(const struct sk_buff *skb, int offset,
1218 				      void *from, int len);
1219 extern unsigned int    skb_copy_and_csum_bits(const struct sk_buff *skb,
1220 					      int offset, u8 *to, int len,
1221 					      unsigned int csum);
1222 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1223 extern void	       skb_split(struct sk_buff *skb,
1224 				 struct sk_buff *skb1, const u32 len);
1225 
1226 extern void	       skb_release_data(struct sk_buff *skb);
1227 
1228 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1229 				       int len, void *buffer)
1230 {
1231 	int hlen = skb_headlen(skb);
1232 
1233 	if (hlen - offset >= len)
1234 		return skb->data + offset;
1235 
1236 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1237 		return NULL;
1238 
1239 	return buffer;
1240 }
1241 
1242 extern void skb_init(void);
1243 extern void skb_add_mtu(int mtu);
1244 
1245 /**
1246  *	skb_get_timestamp - get timestamp from a skb
1247  *	@skb: skb to get stamp from
1248  *	@stamp: pointer to struct timeval to store stamp in
1249  *
1250  *	Timestamps are stored in the skb as offsets to a base timestamp.
1251  *	This function converts the offset back to a struct timeval and stores
1252  *	it in stamp.
1253  */
1254 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1255 {
1256 	stamp->tv_sec  = skb->tstamp.off_sec;
1257 	stamp->tv_usec = skb->tstamp.off_usec;
1258 	if (skb->tstamp.off_sec) {
1259 		stamp->tv_sec  += skb_tv_base.tv_sec;
1260 		stamp->tv_usec += skb_tv_base.tv_usec;
1261 	}
1262 }
1263 
1264 /**
1265  * 	skb_set_timestamp - set timestamp of a skb
1266  *	@skb: skb to set stamp of
1267  *	@stamp: pointer to struct timeval to get stamp from
1268  *
1269  *	Timestamps are stored in the skb as offsets to a base timestamp.
1270  *	This function converts a struct timeval to an offset and stores
1271  *	it in the skb.
1272  */
1273 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1274 {
1275 	skb->tstamp.off_sec  = stamp->tv_sec - skb_tv_base.tv_sec;
1276 	skb->tstamp.off_usec = stamp->tv_usec - skb_tv_base.tv_usec;
1277 }
1278 
1279 extern void __net_timestamp(struct sk_buff *skb);
1280 
1281 #ifdef CONFIG_NETFILTER
1282 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1283 {
1284 	if (nfct && atomic_dec_and_test(&nfct->use))
1285 		nfct->destroy(nfct);
1286 }
1287 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1288 {
1289 	if (nfct)
1290 		atomic_inc(&nfct->use);
1291 }
1292 static inline void nf_reset(struct sk_buff *skb)
1293 {
1294 	nf_conntrack_put(skb->nfct);
1295 	skb->nfct = NULL;
1296 }
1297 
1298 #ifdef CONFIG_BRIDGE_NETFILTER
1299 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1300 {
1301 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1302 		kfree(nf_bridge);
1303 }
1304 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1305 {
1306 	if (nf_bridge)
1307 		atomic_inc(&nf_bridge->use);
1308 }
1309 #endif /* CONFIG_BRIDGE_NETFILTER */
1310 #else /* CONFIG_NETFILTER */
1311 static inline void nf_reset(struct sk_buff *skb) {}
1312 #endif /* CONFIG_NETFILTER */
1313 
1314 #endif	/* __KERNEL__ */
1315 #endif	/* _LINUX_SKBUFF_H */
1316