1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 #include <linux/rbtree.h> 24 #include <linux/socket.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <net/flow_dissector.h> 38 #include <linux/splice.h> 39 #include <linux/in6.h> 40 #include <net/flow.h> 41 42 /* The interface for checksum offload between the stack and networking drivers 43 * is as follows... 44 * 45 * A. IP checksum related features 46 * 47 * Drivers advertise checksum offload capabilities in the features of a device. 48 * From the stack's point of view these are capabilities offered by the driver, 49 * a driver typically only advertises features that it is capable of offloading 50 * to its device. 51 * 52 * The checksum related features are: 53 * 54 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 55 * IP (one's complement) checksum for any combination 56 * of protocols or protocol layering. The checksum is 57 * computed and set in a packet per the CHECKSUM_PARTIAL 58 * interface (see below). 59 * 60 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 61 * TCP or UDP packets over IPv4. These are specifically 62 * unencapsulated packets of the form IPv4|TCP or 63 * IPv4|UDP where the Protocol field in the IPv4 header 64 * is TCP or UDP. The IPv4 header may contain IP options 65 * This feature cannot be set in features for a device 66 * with NETIF_F_HW_CSUM also set. This feature is being 67 * DEPRECATED (see below). 68 * 69 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 70 * TCP or UDP packets over IPv6. These are specifically 71 * unencapsulated packets of the form IPv6|TCP or 72 * IPv4|UDP where the Next Header field in the IPv6 73 * header is either TCP or UDP. IPv6 extension headers 74 * are not supported with this feature. This feature 75 * cannot be set in features for a device with 76 * NETIF_F_HW_CSUM also set. This feature is being 77 * DEPRECATED (see below). 78 * 79 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 80 * This flag is used only used to disable the RX checksum 81 * feature for a device. The stack will accept receive 82 * checksum indication in packets received on a device 83 * regardless of whether NETIF_F_RXCSUM is set. 84 * 85 * B. Checksumming of received packets by device. Indication of checksum 86 * verification is in set skb->ip_summed. Possible values are: 87 * 88 * CHECKSUM_NONE: 89 * 90 * Device did not checksum this packet e.g. due to lack of capabilities. 91 * The packet contains full (though not verified) checksum in packet but 92 * not in skb->csum. Thus, skb->csum is undefined in this case. 93 * 94 * CHECKSUM_UNNECESSARY: 95 * 96 * The hardware you're dealing with doesn't calculate the full checksum 97 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 98 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 99 * if their checksums are okay. skb->csum is still undefined in this case 100 * though. A driver or device must never modify the checksum field in the 101 * packet even if checksum is verified. 102 * 103 * CHECKSUM_UNNECESSARY is applicable to following protocols: 104 * TCP: IPv6 and IPv4. 105 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 106 * zero UDP checksum for either IPv4 or IPv6, the networking stack 107 * may perform further validation in this case. 108 * GRE: only if the checksum is present in the header. 109 * SCTP: indicates the CRC in SCTP header has been validated. 110 * 111 * skb->csum_level indicates the number of consecutive checksums found in 112 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 113 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 114 * and a device is able to verify the checksums for UDP (possibly zero), 115 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 116 * two. If the device were only able to verify the UDP checksum and not 117 * GRE, either because it doesn't support GRE checksum of because GRE 118 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 119 * not considered in this case). 120 * 121 * CHECKSUM_COMPLETE: 122 * 123 * This is the most generic way. The device supplied checksum of the _whole_ 124 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 125 * hardware doesn't need to parse L3/L4 headers to implement this. 126 * 127 * Note: Even if device supports only some protocols, but is able to produce 128 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 129 * 130 * CHECKSUM_PARTIAL: 131 * 132 * A checksum is set up to be offloaded to a device as described in the 133 * output description for CHECKSUM_PARTIAL. This may occur on a packet 134 * received directly from another Linux OS, e.g., a virtualized Linux kernel 135 * on the same host, or it may be set in the input path in GRO or remote 136 * checksum offload. For the purposes of checksum verification, the checksum 137 * referred to by skb->csum_start + skb->csum_offset and any preceding 138 * checksums in the packet are considered verified. Any checksums in the 139 * packet that are after the checksum being offloaded are not considered to 140 * be verified. 141 * 142 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 143 * in the skb->ip_summed for a packet. Values are: 144 * 145 * CHECKSUM_PARTIAL: 146 * 147 * The driver is required to checksum the packet as seen by hard_start_xmit() 148 * from skb->csum_start up to the end, and to record/write the checksum at 149 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 150 * csum_start and csum_offset values are valid values given the length and 151 * offset of the packet, however they should not attempt to validate that the 152 * checksum refers to a legitimate transport layer checksum-- it is the 153 * purview of the stack to validate that csum_start and csum_offset are set 154 * correctly. 155 * 156 * When the stack requests checksum offload for a packet, the driver MUST 157 * ensure that the checksum is set correctly. A driver can either offload the 158 * checksum calculation to the device, or call skb_checksum_help (in the case 159 * that the device does not support offload for a particular checksum). 160 * 161 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 162 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 163 * checksum offload capability. If a device has limited checksum capabilities 164 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as 165 * described above) a helper function can be called to resolve 166 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper 167 * function takes a spec argument that describes the protocol layer that is 168 * supported for checksum offload and can be called for each packet. If a 169 * packet does not match the specification for offload, skb_checksum_help 170 * is called to resolve the checksum. 171 * 172 * CHECKSUM_NONE: 173 * 174 * The skb was already checksummed by the protocol, or a checksum is not 175 * required. 176 * 177 * CHECKSUM_UNNECESSARY: 178 * 179 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 180 * output. 181 * 182 * CHECKSUM_COMPLETE: 183 * Not used in checksum output. If a driver observes a packet with this value 184 * set in skbuff, if should treat as CHECKSUM_NONE being set. 185 * 186 * D. Non-IP checksum (CRC) offloads 187 * 188 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 189 * offloading the SCTP CRC in a packet. To perform this offload the stack 190 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 191 * accordingly. Note the there is no indication in the skbuff that the 192 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports 193 * both IP checksum offload and SCTP CRC offload must verify which offload 194 * is configured for a packet presumably by inspecting packet headers. 195 * 196 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 197 * offloading the FCOE CRC in a packet. To perform this offload the stack 198 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 199 * accordingly. Note the there is no indication in the skbuff that the 200 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 201 * both IP checksum offload and FCOE CRC offload must verify which offload 202 * is configured for a packet presumably by inspecting packet headers. 203 * 204 * E. Checksumming on output with GSO. 205 * 206 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 207 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 208 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 209 * part of the GSO operation is implied. If a checksum is being offloaded 210 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 211 * are set to refer to the outermost checksum being offload (two offloaded 212 * checksums are possible with UDP encapsulation). 213 */ 214 215 /* Don't change this without changing skb_csum_unnecessary! */ 216 #define CHECKSUM_NONE 0 217 #define CHECKSUM_UNNECESSARY 1 218 #define CHECKSUM_COMPLETE 2 219 #define CHECKSUM_PARTIAL 3 220 221 /* Maximum value in skb->csum_level */ 222 #define SKB_MAX_CSUM_LEVEL 3 223 224 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 225 #define SKB_WITH_OVERHEAD(X) \ 226 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 227 #define SKB_MAX_ORDER(X, ORDER) \ 228 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 229 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 230 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 231 232 /* return minimum truesize of one skb containing X bytes of data */ 233 #define SKB_TRUESIZE(X) ((X) + \ 234 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 235 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 236 237 struct net_device; 238 struct scatterlist; 239 struct pipe_inode_info; 240 struct iov_iter; 241 struct napi_struct; 242 243 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 244 struct nf_conntrack { 245 atomic_t use; 246 }; 247 #endif 248 249 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 250 struct nf_bridge_info { 251 atomic_t use; 252 enum { 253 BRNF_PROTO_UNCHANGED, 254 BRNF_PROTO_8021Q, 255 BRNF_PROTO_PPPOE 256 } orig_proto:8; 257 u8 pkt_otherhost:1; 258 u8 in_prerouting:1; 259 u8 bridged_dnat:1; 260 __u16 frag_max_size; 261 struct net_device *physindev; 262 263 /* always valid & non-NULL from FORWARD on, for physdev match */ 264 struct net_device *physoutdev; 265 union { 266 /* prerouting: detect dnat in orig/reply direction */ 267 __be32 ipv4_daddr; 268 struct in6_addr ipv6_daddr; 269 270 /* after prerouting + nat detected: store original source 271 * mac since neigh resolution overwrites it, only used while 272 * skb is out in neigh layer. 273 */ 274 char neigh_header[8]; 275 }; 276 }; 277 #endif 278 279 struct sk_buff_head { 280 /* These two members must be first. */ 281 struct sk_buff *next; 282 struct sk_buff *prev; 283 284 __u32 qlen; 285 spinlock_t lock; 286 }; 287 288 struct sk_buff; 289 290 /* To allow 64K frame to be packed as single skb without frag_list we 291 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 292 * buffers which do not start on a page boundary. 293 * 294 * Since GRO uses frags we allocate at least 16 regardless of page 295 * size. 296 */ 297 #if (65536/PAGE_SIZE + 1) < 16 298 #define MAX_SKB_FRAGS 16UL 299 #else 300 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 301 #endif 302 303 typedef struct skb_frag_struct skb_frag_t; 304 305 struct skb_frag_struct { 306 struct { 307 struct page *p; 308 } page; 309 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 310 __u32 page_offset; 311 __u32 size; 312 #else 313 __u16 page_offset; 314 __u16 size; 315 #endif 316 }; 317 318 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 319 { 320 return frag->size; 321 } 322 323 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 324 { 325 frag->size = size; 326 } 327 328 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 329 { 330 frag->size += delta; 331 } 332 333 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 334 { 335 frag->size -= delta; 336 } 337 338 #define HAVE_HW_TIME_STAMP 339 340 /** 341 * struct skb_shared_hwtstamps - hardware time stamps 342 * @hwtstamp: hardware time stamp transformed into duration 343 * since arbitrary point in time 344 * 345 * Software time stamps generated by ktime_get_real() are stored in 346 * skb->tstamp. 347 * 348 * hwtstamps can only be compared against other hwtstamps from 349 * the same device. 350 * 351 * This structure is attached to packets as part of the 352 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 353 */ 354 struct skb_shared_hwtstamps { 355 ktime_t hwtstamp; 356 }; 357 358 /* Definitions for tx_flags in struct skb_shared_info */ 359 enum { 360 /* generate hardware time stamp */ 361 SKBTX_HW_TSTAMP = 1 << 0, 362 363 /* generate software time stamp when queueing packet to NIC */ 364 SKBTX_SW_TSTAMP = 1 << 1, 365 366 /* device driver is going to provide hardware time stamp */ 367 SKBTX_IN_PROGRESS = 1 << 2, 368 369 /* device driver supports TX zero-copy buffers */ 370 SKBTX_DEV_ZEROCOPY = 1 << 3, 371 372 /* generate wifi status information (where possible) */ 373 SKBTX_WIFI_STATUS = 1 << 4, 374 375 /* This indicates at least one fragment might be overwritten 376 * (as in vmsplice(), sendfile() ...) 377 * If we need to compute a TX checksum, we'll need to copy 378 * all frags to avoid possible bad checksum 379 */ 380 SKBTX_SHARED_FRAG = 1 << 5, 381 382 /* generate software time stamp when entering packet scheduling */ 383 SKBTX_SCHED_TSTAMP = 1 << 6, 384 385 /* generate software timestamp on peer data acknowledgment */ 386 SKBTX_ACK_TSTAMP = 1 << 7, 387 }; 388 389 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 390 SKBTX_SCHED_TSTAMP | \ 391 SKBTX_ACK_TSTAMP) 392 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 393 394 /* 395 * The callback notifies userspace to release buffers when skb DMA is done in 396 * lower device, the skb last reference should be 0 when calling this. 397 * The zerocopy_success argument is true if zero copy transmit occurred, 398 * false on data copy or out of memory error caused by data copy attempt. 399 * The ctx field is used to track device context. 400 * The desc field is used to track userspace buffer index. 401 */ 402 struct ubuf_info { 403 void (*callback)(struct ubuf_info *, bool zerocopy_success); 404 void *ctx; 405 unsigned long desc; 406 }; 407 408 /* This data is invariant across clones and lives at 409 * the end of the header data, ie. at skb->end. 410 */ 411 struct skb_shared_info { 412 unsigned char nr_frags; 413 __u8 tx_flags; 414 unsigned short gso_size; 415 /* Warning: this field is not always filled in (UFO)! */ 416 unsigned short gso_segs; 417 unsigned short gso_type; 418 struct sk_buff *frag_list; 419 struct skb_shared_hwtstamps hwtstamps; 420 u32 tskey; 421 __be32 ip6_frag_id; 422 423 /* 424 * Warning : all fields before dataref are cleared in __alloc_skb() 425 */ 426 atomic_t dataref; 427 428 /* Intermediate layers must ensure that destructor_arg 429 * remains valid until skb destructor */ 430 void * destructor_arg; 431 432 /* must be last field, see pskb_expand_head() */ 433 skb_frag_t frags[MAX_SKB_FRAGS]; 434 }; 435 436 /* We divide dataref into two halves. The higher 16 bits hold references 437 * to the payload part of skb->data. The lower 16 bits hold references to 438 * the entire skb->data. A clone of a headerless skb holds the length of 439 * the header in skb->hdr_len. 440 * 441 * All users must obey the rule that the skb->data reference count must be 442 * greater than or equal to the payload reference count. 443 * 444 * Holding a reference to the payload part means that the user does not 445 * care about modifications to the header part of skb->data. 446 */ 447 #define SKB_DATAREF_SHIFT 16 448 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 449 450 451 enum { 452 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 453 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 454 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 455 }; 456 457 enum { 458 SKB_GSO_TCPV4 = 1 << 0, 459 SKB_GSO_UDP = 1 << 1, 460 461 /* This indicates the skb is from an untrusted source. */ 462 SKB_GSO_DODGY = 1 << 2, 463 464 /* This indicates the tcp segment has CWR set. */ 465 SKB_GSO_TCP_ECN = 1 << 3, 466 467 SKB_GSO_TCPV6 = 1 << 4, 468 469 SKB_GSO_FCOE = 1 << 5, 470 471 SKB_GSO_GRE = 1 << 6, 472 473 SKB_GSO_GRE_CSUM = 1 << 7, 474 475 SKB_GSO_IPIP = 1 << 8, 476 477 SKB_GSO_SIT = 1 << 9, 478 479 SKB_GSO_UDP_TUNNEL = 1 << 10, 480 481 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 482 483 SKB_GSO_TUNNEL_REMCSUM = 1 << 12, 484 }; 485 486 #if BITS_PER_LONG > 32 487 #define NET_SKBUFF_DATA_USES_OFFSET 1 488 #endif 489 490 #ifdef NET_SKBUFF_DATA_USES_OFFSET 491 typedef unsigned int sk_buff_data_t; 492 #else 493 typedef unsigned char *sk_buff_data_t; 494 #endif 495 496 /** 497 * struct skb_mstamp - multi resolution time stamps 498 * @stamp_us: timestamp in us resolution 499 * @stamp_jiffies: timestamp in jiffies 500 */ 501 struct skb_mstamp { 502 union { 503 u64 v64; 504 struct { 505 u32 stamp_us; 506 u32 stamp_jiffies; 507 }; 508 }; 509 }; 510 511 /** 512 * skb_mstamp_get - get current timestamp 513 * @cl: place to store timestamps 514 */ 515 static inline void skb_mstamp_get(struct skb_mstamp *cl) 516 { 517 u64 val = local_clock(); 518 519 do_div(val, NSEC_PER_USEC); 520 cl->stamp_us = (u32)val; 521 cl->stamp_jiffies = (u32)jiffies; 522 } 523 524 /** 525 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 526 * @t1: pointer to newest sample 527 * @t0: pointer to oldest sample 528 */ 529 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 530 const struct skb_mstamp *t0) 531 { 532 s32 delta_us = t1->stamp_us - t0->stamp_us; 533 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 534 535 /* If delta_us is negative, this might be because interval is too big, 536 * or local_clock() drift is too big : fallback using jiffies. 537 */ 538 if (delta_us <= 0 || 539 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 540 541 delta_us = jiffies_to_usecs(delta_jiffies); 542 543 return delta_us; 544 } 545 546 static inline bool skb_mstamp_after(const struct skb_mstamp *t1, 547 const struct skb_mstamp *t0) 548 { 549 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies; 550 551 if (!diff) 552 diff = t1->stamp_us - t0->stamp_us; 553 return diff > 0; 554 } 555 556 /** 557 * struct sk_buff - socket buffer 558 * @next: Next buffer in list 559 * @prev: Previous buffer in list 560 * @tstamp: Time we arrived/left 561 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 562 * @sk: Socket we are owned by 563 * @dev: Device we arrived on/are leaving by 564 * @cb: Control buffer. Free for use by every layer. Put private vars here 565 * @_skb_refdst: destination entry (with norefcount bit) 566 * @sp: the security path, used for xfrm 567 * @len: Length of actual data 568 * @data_len: Data length 569 * @mac_len: Length of link layer header 570 * @hdr_len: writable header length of cloned skb 571 * @csum: Checksum (must include start/offset pair) 572 * @csum_start: Offset from skb->head where checksumming should start 573 * @csum_offset: Offset from csum_start where checksum should be stored 574 * @priority: Packet queueing priority 575 * @ignore_df: allow local fragmentation 576 * @cloned: Head may be cloned (check refcnt to be sure) 577 * @ip_summed: Driver fed us an IP checksum 578 * @nohdr: Payload reference only, must not modify header 579 * @nfctinfo: Relationship of this skb to the connection 580 * @pkt_type: Packet class 581 * @fclone: skbuff clone status 582 * @ipvs_property: skbuff is owned by ipvs 583 * @peeked: this packet has been seen already, so stats have been 584 * done for it, don't do them again 585 * @nf_trace: netfilter packet trace flag 586 * @protocol: Packet protocol from driver 587 * @destructor: Destruct function 588 * @nfct: Associated connection, if any 589 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 590 * @skb_iif: ifindex of device we arrived on 591 * @tc_index: Traffic control index 592 * @tc_verd: traffic control verdict 593 * @hash: the packet hash 594 * @queue_mapping: Queue mapping for multiqueue devices 595 * @xmit_more: More SKBs are pending for this queue 596 * @ndisc_nodetype: router type (from link layer) 597 * @ooo_okay: allow the mapping of a socket to a queue to be changed 598 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 599 * ports. 600 * @sw_hash: indicates hash was computed in software stack 601 * @wifi_acked_valid: wifi_acked was set 602 * @wifi_acked: whether frame was acked on wifi or not 603 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 604 * @napi_id: id of the NAPI struct this skb came from 605 * @secmark: security marking 606 * @offload_fwd_mark: fwding offload mark 607 * @mark: Generic packet mark 608 * @vlan_proto: vlan encapsulation protocol 609 * @vlan_tci: vlan tag control information 610 * @inner_protocol: Protocol (encapsulation) 611 * @inner_transport_header: Inner transport layer header (encapsulation) 612 * @inner_network_header: Network layer header (encapsulation) 613 * @inner_mac_header: Link layer header (encapsulation) 614 * @transport_header: Transport layer header 615 * @network_header: Network layer header 616 * @mac_header: Link layer header 617 * @tail: Tail pointer 618 * @end: End pointer 619 * @head: Head of buffer 620 * @data: Data head pointer 621 * @truesize: Buffer size 622 * @users: User count - see {datagram,tcp}.c 623 */ 624 625 struct sk_buff { 626 union { 627 struct { 628 /* These two members must be first. */ 629 struct sk_buff *next; 630 struct sk_buff *prev; 631 632 union { 633 ktime_t tstamp; 634 struct skb_mstamp skb_mstamp; 635 }; 636 }; 637 struct rb_node rbnode; /* used in netem & tcp stack */ 638 }; 639 struct sock *sk; 640 struct net_device *dev; 641 642 /* 643 * This is the control buffer. It is free to use for every 644 * layer. Please put your private variables there. If you 645 * want to keep them across layers you have to do a skb_clone() 646 * first. This is owned by whoever has the skb queued ATM. 647 */ 648 char cb[48] __aligned(8); 649 650 unsigned long _skb_refdst; 651 void (*destructor)(struct sk_buff *skb); 652 #ifdef CONFIG_XFRM 653 struct sec_path *sp; 654 #endif 655 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 656 struct nf_conntrack *nfct; 657 #endif 658 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 659 struct nf_bridge_info *nf_bridge; 660 #endif 661 unsigned int len, 662 data_len; 663 __u16 mac_len, 664 hdr_len; 665 666 /* Following fields are _not_ copied in __copy_skb_header() 667 * Note that queue_mapping is here mostly to fill a hole. 668 */ 669 kmemcheck_bitfield_begin(flags1); 670 __u16 queue_mapping; 671 __u8 cloned:1, 672 nohdr:1, 673 fclone:2, 674 peeked:1, 675 head_frag:1, 676 xmit_more:1; 677 /* one bit hole */ 678 kmemcheck_bitfield_end(flags1); 679 680 /* fields enclosed in headers_start/headers_end are copied 681 * using a single memcpy() in __copy_skb_header() 682 */ 683 /* private: */ 684 __u32 headers_start[0]; 685 /* public: */ 686 687 /* if you move pkt_type around you also must adapt those constants */ 688 #ifdef __BIG_ENDIAN_BITFIELD 689 #define PKT_TYPE_MAX (7 << 5) 690 #else 691 #define PKT_TYPE_MAX 7 692 #endif 693 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 694 695 __u8 __pkt_type_offset[0]; 696 __u8 pkt_type:3; 697 __u8 pfmemalloc:1; 698 __u8 ignore_df:1; 699 __u8 nfctinfo:3; 700 701 __u8 nf_trace:1; 702 __u8 ip_summed:2; 703 __u8 ooo_okay:1; 704 __u8 l4_hash:1; 705 __u8 sw_hash:1; 706 __u8 wifi_acked_valid:1; 707 __u8 wifi_acked:1; 708 709 __u8 no_fcs:1; 710 /* Indicates the inner headers are valid in the skbuff. */ 711 __u8 encapsulation:1; 712 __u8 encap_hdr_csum:1; 713 __u8 csum_valid:1; 714 __u8 csum_complete_sw:1; 715 __u8 csum_level:2; 716 __u8 csum_bad:1; 717 718 #ifdef CONFIG_IPV6_NDISC_NODETYPE 719 __u8 ndisc_nodetype:2; 720 #endif 721 __u8 ipvs_property:1; 722 __u8 inner_protocol_type:1; 723 __u8 remcsum_offload:1; 724 /* 3 or 5 bit hole */ 725 726 #ifdef CONFIG_NET_SCHED 727 __u16 tc_index; /* traffic control index */ 728 #ifdef CONFIG_NET_CLS_ACT 729 __u16 tc_verd; /* traffic control verdict */ 730 #endif 731 #endif 732 733 union { 734 __wsum csum; 735 struct { 736 __u16 csum_start; 737 __u16 csum_offset; 738 }; 739 }; 740 __u32 priority; 741 int skb_iif; 742 __u32 hash; 743 __be16 vlan_proto; 744 __u16 vlan_tci; 745 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 746 union { 747 unsigned int napi_id; 748 unsigned int sender_cpu; 749 }; 750 #endif 751 union { 752 #ifdef CONFIG_NETWORK_SECMARK 753 __u32 secmark; 754 #endif 755 #ifdef CONFIG_NET_SWITCHDEV 756 __u32 offload_fwd_mark; 757 #endif 758 }; 759 760 union { 761 __u32 mark; 762 __u32 reserved_tailroom; 763 }; 764 765 union { 766 __be16 inner_protocol; 767 __u8 inner_ipproto; 768 }; 769 770 __u16 inner_transport_header; 771 __u16 inner_network_header; 772 __u16 inner_mac_header; 773 774 __be16 protocol; 775 __u16 transport_header; 776 __u16 network_header; 777 __u16 mac_header; 778 779 /* private: */ 780 __u32 headers_end[0]; 781 /* public: */ 782 783 /* These elements must be at the end, see alloc_skb() for details. */ 784 sk_buff_data_t tail; 785 sk_buff_data_t end; 786 unsigned char *head, 787 *data; 788 unsigned int truesize; 789 atomic_t users; 790 }; 791 792 #ifdef __KERNEL__ 793 /* 794 * Handling routines are only of interest to the kernel 795 */ 796 #include <linux/slab.h> 797 798 799 #define SKB_ALLOC_FCLONE 0x01 800 #define SKB_ALLOC_RX 0x02 801 #define SKB_ALLOC_NAPI 0x04 802 803 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 804 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 805 { 806 return unlikely(skb->pfmemalloc); 807 } 808 809 /* 810 * skb might have a dst pointer attached, refcounted or not. 811 * _skb_refdst low order bit is set if refcount was _not_ taken 812 */ 813 #define SKB_DST_NOREF 1UL 814 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 815 816 /** 817 * skb_dst - returns skb dst_entry 818 * @skb: buffer 819 * 820 * Returns skb dst_entry, regardless of reference taken or not. 821 */ 822 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 823 { 824 /* If refdst was not refcounted, check we still are in a 825 * rcu_read_lock section 826 */ 827 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 828 !rcu_read_lock_held() && 829 !rcu_read_lock_bh_held()); 830 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 831 } 832 833 /** 834 * skb_dst_set - sets skb dst 835 * @skb: buffer 836 * @dst: dst entry 837 * 838 * Sets skb dst, assuming a reference was taken on dst and should 839 * be released by skb_dst_drop() 840 */ 841 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 842 { 843 skb->_skb_refdst = (unsigned long)dst; 844 } 845 846 /** 847 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 848 * @skb: buffer 849 * @dst: dst entry 850 * 851 * Sets skb dst, assuming a reference was not taken on dst. 852 * If dst entry is cached, we do not take reference and dst_release 853 * will be avoided by refdst_drop. If dst entry is not cached, we take 854 * reference, so that last dst_release can destroy the dst immediately. 855 */ 856 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 857 { 858 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 859 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 860 } 861 862 /** 863 * skb_dst_is_noref - Test if skb dst isn't refcounted 864 * @skb: buffer 865 */ 866 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 867 { 868 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 869 } 870 871 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 872 { 873 return (struct rtable *)skb_dst(skb); 874 } 875 876 void kfree_skb(struct sk_buff *skb); 877 void kfree_skb_list(struct sk_buff *segs); 878 void skb_tx_error(struct sk_buff *skb); 879 void consume_skb(struct sk_buff *skb); 880 void __kfree_skb(struct sk_buff *skb); 881 extern struct kmem_cache *skbuff_head_cache; 882 883 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 884 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 885 bool *fragstolen, int *delta_truesize); 886 887 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 888 int node); 889 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 890 struct sk_buff *build_skb(void *data, unsigned int frag_size); 891 static inline struct sk_buff *alloc_skb(unsigned int size, 892 gfp_t priority) 893 { 894 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 895 } 896 897 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 898 unsigned long data_len, 899 int max_page_order, 900 int *errcode, 901 gfp_t gfp_mask); 902 903 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 904 struct sk_buff_fclones { 905 struct sk_buff skb1; 906 907 struct sk_buff skb2; 908 909 atomic_t fclone_ref; 910 }; 911 912 /** 913 * skb_fclone_busy - check if fclone is busy 914 * @skb: buffer 915 * 916 * Returns true if skb is a fast clone, and its clone is not freed. 917 * Some drivers call skb_orphan() in their ndo_start_xmit(), 918 * so we also check that this didnt happen. 919 */ 920 static inline bool skb_fclone_busy(const struct sock *sk, 921 const struct sk_buff *skb) 922 { 923 const struct sk_buff_fclones *fclones; 924 925 fclones = container_of(skb, struct sk_buff_fclones, skb1); 926 927 return skb->fclone == SKB_FCLONE_ORIG && 928 atomic_read(&fclones->fclone_ref) > 1 && 929 fclones->skb2.sk == sk; 930 } 931 932 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 933 gfp_t priority) 934 { 935 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 936 } 937 938 struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 939 static inline struct sk_buff *alloc_skb_head(gfp_t priority) 940 { 941 return __alloc_skb_head(priority, -1); 942 } 943 944 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 945 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 946 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 947 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 948 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 949 gfp_t gfp_mask, bool fclone); 950 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 951 gfp_t gfp_mask) 952 { 953 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 954 } 955 956 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 957 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 958 unsigned int headroom); 959 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 960 int newtailroom, gfp_t priority); 961 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 962 int offset, int len); 963 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 964 int len); 965 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 966 int skb_pad(struct sk_buff *skb, int pad); 967 #define dev_kfree_skb(a) consume_skb(a) 968 969 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 970 int getfrag(void *from, char *to, int offset, 971 int len, int odd, struct sk_buff *skb), 972 void *from, int length); 973 974 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 975 int offset, size_t size); 976 977 struct skb_seq_state { 978 __u32 lower_offset; 979 __u32 upper_offset; 980 __u32 frag_idx; 981 __u32 stepped_offset; 982 struct sk_buff *root_skb; 983 struct sk_buff *cur_skb; 984 __u8 *frag_data; 985 }; 986 987 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 988 unsigned int to, struct skb_seq_state *st); 989 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 990 struct skb_seq_state *st); 991 void skb_abort_seq_read(struct skb_seq_state *st); 992 993 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 994 unsigned int to, struct ts_config *config); 995 996 /* 997 * Packet hash types specify the type of hash in skb_set_hash. 998 * 999 * Hash types refer to the protocol layer addresses which are used to 1000 * construct a packet's hash. The hashes are used to differentiate or identify 1001 * flows of the protocol layer for the hash type. Hash types are either 1002 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1003 * 1004 * Properties of hashes: 1005 * 1006 * 1) Two packets in different flows have different hash values 1007 * 2) Two packets in the same flow should have the same hash value 1008 * 1009 * A hash at a higher layer is considered to be more specific. A driver should 1010 * set the most specific hash possible. 1011 * 1012 * A driver cannot indicate a more specific hash than the layer at which a hash 1013 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1014 * 1015 * A driver may indicate a hash level which is less specific than the 1016 * actual layer the hash was computed on. For instance, a hash computed 1017 * at L4 may be considered an L3 hash. This should only be done if the 1018 * driver can't unambiguously determine that the HW computed the hash at 1019 * the higher layer. Note that the "should" in the second property above 1020 * permits this. 1021 */ 1022 enum pkt_hash_types { 1023 PKT_HASH_TYPE_NONE, /* Undefined type */ 1024 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1025 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1026 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1027 }; 1028 1029 static inline void skb_clear_hash(struct sk_buff *skb) 1030 { 1031 skb->hash = 0; 1032 skb->sw_hash = 0; 1033 skb->l4_hash = 0; 1034 } 1035 1036 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1037 { 1038 if (!skb->l4_hash) 1039 skb_clear_hash(skb); 1040 } 1041 1042 static inline void 1043 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1044 { 1045 skb->l4_hash = is_l4; 1046 skb->sw_hash = is_sw; 1047 skb->hash = hash; 1048 } 1049 1050 static inline void 1051 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1052 { 1053 /* Used by drivers to set hash from HW */ 1054 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1055 } 1056 1057 static inline void 1058 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1059 { 1060 __skb_set_hash(skb, hash, true, is_l4); 1061 } 1062 1063 void __skb_get_hash(struct sk_buff *skb); 1064 u32 skb_get_poff(const struct sk_buff *skb); 1065 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1066 const struct flow_keys *keys, int hlen); 1067 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1068 void *data, int hlen_proto); 1069 1070 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1071 int thoff, u8 ip_proto) 1072 { 1073 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1074 } 1075 1076 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1077 const struct flow_dissector_key *key, 1078 unsigned int key_count); 1079 1080 bool __skb_flow_dissect(const struct sk_buff *skb, 1081 struct flow_dissector *flow_dissector, 1082 void *target_container, 1083 void *data, __be16 proto, int nhoff, int hlen, 1084 unsigned int flags); 1085 1086 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1087 struct flow_dissector *flow_dissector, 1088 void *target_container, unsigned int flags) 1089 { 1090 return __skb_flow_dissect(skb, flow_dissector, target_container, 1091 NULL, 0, 0, 0, flags); 1092 } 1093 1094 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1095 struct flow_keys *flow, 1096 unsigned int flags) 1097 { 1098 memset(flow, 0, sizeof(*flow)); 1099 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1100 NULL, 0, 0, 0, flags); 1101 } 1102 1103 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, 1104 void *data, __be16 proto, 1105 int nhoff, int hlen, 1106 unsigned int flags) 1107 { 1108 memset(flow, 0, sizeof(*flow)); 1109 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, 1110 data, proto, nhoff, hlen, flags); 1111 } 1112 1113 static inline __u32 skb_get_hash(struct sk_buff *skb) 1114 { 1115 if (!skb->l4_hash && !skb->sw_hash) 1116 __skb_get_hash(skb); 1117 1118 return skb->hash; 1119 } 1120 1121 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6); 1122 1123 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1124 { 1125 if (!skb->l4_hash && !skb->sw_hash) { 1126 struct flow_keys keys; 1127 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1128 1129 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1130 } 1131 1132 return skb->hash; 1133 } 1134 1135 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl); 1136 1137 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4) 1138 { 1139 if (!skb->l4_hash && !skb->sw_hash) { 1140 struct flow_keys keys; 1141 __u32 hash = __get_hash_from_flowi4(fl4, &keys); 1142 1143 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1144 } 1145 1146 return skb->hash; 1147 } 1148 1149 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1150 1151 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1152 { 1153 return skb->hash; 1154 } 1155 1156 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1157 { 1158 to->hash = from->hash; 1159 to->sw_hash = from->sw_hash; 1160 to->l4_hash = from->l4_hash; 1161 }; 1162 1163 static inline void skb_sender_cpu_clear(struct sk_buff *skb) 1164 { 1165 } 1166 1167 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1168 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1169 { 1170 return skb->head + skb->end; 1171 } 1172 1173 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1174 { 1175 return skb->end; 1176 } 1177 #else 1178 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1179 { 1180 return skb->end; 1181 } 1182 1183 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1184 { 1185 return skb->end - skb->head; 1186 } 1187 #endif 1188 1189 /* Internal */ 1190 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1191 1192 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1193 { 1194 return &skb_shinfo(skb)->hwtstamps; 1195 } 1196 1197 /** 1198 * skb_queue_empty - check if a queue is empty 1199 * @list: queue head 1200 * 1201 * Returns true if the queue is empty, false otherwise. 1202 */ 1203 static inline int skb_queue_empty(const struct sk_buff_head *list) 1204 { 1205 return list->next == (const struct sk_buff *) list; 1206 } 1207 1208 /** 1209 * skb_queue_is_last - check if skb is the last entry in the queue 1210 * @list: queue head 1211 * @skb: buffer 1212 * 1213 * Returns true if @skb is the last buffer on the list. 1214 */ 1215 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1216 const struct sk_buff *skb) 1217 { 1218 return skb->next == (const struct sk_buff *) list; 1219 } 1220 1221 /** 1222 * skb_queue_is_first - check if skb is the first entry in the queue 1223 * @list: queue head 1224 * @skb: buffer 1225 * 1226 * Returns true if @skb is the first buffer on the list. 1227 */ 1228 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1229 const struct sk_buff *skb) 1230 { 1231 return skb->prev == (const struct sk_buff *) list; 1232 } 1233 1234 /** 1235 * skb_queue_next - return the next packet in the queue 1236 * @list: queue head 1237 * @skb: current buffer 1238 * 1239 * Return the next packet in @list after @skb. It is only valid to 1240 * call this if skb_queue_is_last() evaluates to false. 1241 */ 1242 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1243 const struct sk_buff *skb) 1244 { 1245 /* This BUG_ON may seem severe, but if we just return then we 1246 * are going to dereference garbage. 1247 */ 1248 BUG_ON(skb_queue_is_last(list, skb)); 1249 return skb->next; 1250 } 1251 1252 /** 1253 * skb_queue_prev - return the prev packet in the queue 1254 * @list: queue head 1255 * @skb: current buffer 1256 * 1257 * Return the prev packet in @list before @skb. It is only valid to 1258 * call this if skb_queue_is_first() evaluates to false. 1259 */ 1260 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1261 const struct sk_buff *skb) 1262 { 1263 /* This BUG_ON may seem severe, but if we just return then we 1264 * are going to dereference garbage. 1265 */ 1266 BUG_ON(skb_queue_is_first(list, skb)); 1267 return skb->prev; 1268 } 1269 1270 /** 1271 * skb_get - reference buffer 1272 * @skb: buffer to reference 1273 * 1274 * Makes another reference to a socket buffer and returns a pointer 1275 * to the buffer. 1276 */ 1277 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1278 { 1279 atomic_inc(&skb->users); 1280 return skb; 1281 } 1282 1283 /* 1284 * If users == 1, we are the only owner and are can avoid redundant 1285 * atomic change. 1286 */ 1287 1288 /** 1289 * skb_cloned - is the buffer a clone 1290 * @skb: buffer to check 1291 * 1292 * Returns true if the buffer was generated with skb_clone() and is 1293 * one of multiple shared copies of the buffer. Cloned buffers are 1294 * shared data so must not be written to under normal circumstances. 1295 */ 1296 static inline int skb_cloned(const struct sk_buff *skb) 1297 { 1298 return skb->cloned && 1299 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1300 } 1301 1302 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1303 { 1304 might_sleep_if(gfpflags_allow_blocking(pri)); 1305 1306 if (skb_cloned(skb)) 1307 return pskb_expand_head(skb, 0, 0, pri); 1308 1309 return 0; 1310 } 1311 1312 /** 1313 * skb_header_cloned - is the header a clone 1314 * @skb: buffer to check 1315 * 1316 * Returns true if modifying the header part of the buffer requires 1317 * the data to be copied. 1318 */ 1319 static inline int skb_header_cloned(const struct sk_buff *skb) 1320 { 1321 int dataref; 1322 1323 if (!skb->cloned) 1324 return 0; 1325 1326 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1327 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1328 return dataref != 1; 1329 } 1330 1331 /** 1332 * skb_header_release - release reference to header 1333 * @skb: buffer to operate on 1334 * 1335 * Drop a reference to the header part of the buffer. This is done 1336 * by acquiring a payload reference. You must not read from the header 1337 * part of skb->data after this. 1338 * Note : Check if you can use __skb_header_release() instead. 1339 */ 1340 static inline void skb_header_release(struct sk_buff *skb) 1341 { 1342 BUG_ON(skb->nohdr); 1343 skb->nohdr = 1; 1344 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1345 } 1346 1347 /** 1348 * __skb_header_release - release reference to header 1349 * @skb: buffer to operate on 1350 * 1351 * Variant of skb_header_release() assuming skb is private to caller. 1352 * We can avoid one atomic operation. 1353 */ 1354 static inline void __skb_header_release(struct sk_buff *skb) 1355 { 1356 skb->nohdr = 1; 1357 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1358 } 1359 1360 1361 /** 1362 * skb_shared - is the buffer shared 1363 * @skb: buffer to check 1364 * 1365 * Returns true if more than one person has a reference to this 1366 * buffer. 1367 */ 1368 static inline int skb_shared(const struct sk_buff *skb) 1369 { 1370 return atomic_read(&skb->users) != 1; 1371 } 1372 1373 /** 1374 * skb_share_check - check if buffer is shared and if so clone it 1375 * @skb: buffer to check 1376 * @pri: priority for memory allocation 1377 * 1378 * If the buffer is shared the buffer is cloned and the old copy 1379 * drops a reference. A new clone with a single reference is returned. 1380 * If the buffer is not shared the original buffer is returned. When 1381 * being called from interrupt status or with spinlocks held pri must 1382 * be GFP_ATOMIC. 1383 * 1384 * NULL is returned on a memory allocation failure. 1385 */ 1386 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1387 { 1388 might_sleep_if(gfpflags_allow_blocking(pri)); 1389 if (skb_shared(skb)) { 1390 struct sk_buff *nskb = skb_clone(skb, pri); 1391 1392 if (likely(nskb)) 1393 consume_skb(skb); 1394 else 1395 kfree_skb(skb); 1396 skb = nskb; 1397 } 1398 return skb; 1399 } 1400 1401 /* 1402 * Copy shared buffers into a new sk_buff. We effectively do COW on 1403 * packets to handle cases where we have a local reader and forward 1404 * and a couple of other messy ones. The normal one is tcpdumping 1405 * a packet thats being forwarded. 1406 */ 1407 1408 /** 1409 * skb_unshare - make a copy of a shared buffer 1410 * @skb: buffer to check 1411 * @pri: priority for memory allocation 1412 * 1413 * If the socket buffer is a clone then this function creates a new 1414 * copy of the data, drops a reference count on the old copy and returns 1415 * the new copy with the reference count at 1. If the buffer is not a clone 1416 * the original buffer is returned. When called with a spinlock held or 1417 * from interrupt state @pri must be %GFP_ATOMIC 1418 * 1419 * %NULL is returned on a memory allocation failure. 1420 */ 1421 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1422 gfp_t pri) 1423 { 1424 might_sleep_if(gfpflags_allow_blocking(pri)); 1425 if (skb_cloned(skb)) { 1426 struct sk_buff *nskb = skb_copy(skb, pri); 1427 1428 /* Free our shared copy */ 1429 if (likely(nskb)) 1430 consume_skb(skb); 1431 else 1432 kfree_skb(skb); 1433 skb = nskb; 1434 } 1435 return skb; 1436 } 1437 1438 /** 1439 * skb_peek - peek at the head of an &sk_buff_head 1440 * @list_: list to peek at 1441 * 1442 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1443 * be careful with this one. A peek leaves the buffer on the 1444 * list and someone else may run off with it. You must hold 1445 * the appropriate locks or have a private queue to do this. 1446 * 1447 * Returns %NULL for an empty list or a pointer to the head element. 1448 * The reference count is not incremented and the reference is therefore 1449 * volatile. Use with caution. 1450 */ 1451 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1452 { 1453 struct sk_buff *skb = list_->next; 1454 1455 if (skb == (struct sk_buff *)list_) 1456 skb = NULL; 1457 return skb; 1458 } 1459 1460 /** 1461 * skb_peek_next - peek skb following the given one from a queue 1462 * @skb: skb to start from 1463 * @list_: list to peek at 1464 * 1465 * Returns %NULL when the end of the list is met or a pointer to the 1466 * next element. The reference count is not incremented and the 1467 * reference is therefore volatile. Use with caution. 1468 */ 1469 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1470 const struct sk_buff_head *list_) 1471 { 1472 struct sk_buff *next = skb->next; 1473 1474 if (next == (struct sk_buff *)list_) 1475 next = NULL; 1476 return next; 1477 } 1478 1479 /** 1480 * skb_peek_tail - peek at the tail of an &sk_buff_head 1481 * @list_: list to peek at 1482 * 1483 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1484 * be careful with this one. A peek leaves the buffer on the 1485 * list and someone else may run off with it. You must hold 1486 * the appropriate locks or have a private queue to do this. 1487 * 1488 * Returns %NULL for an empty list or a pointer to the tail element. 1489 * The reference count is not incremented and the reference is therefore 1490 * volatile. Use with caution. 1491 */ 1492 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1493 { 1494 struct sk_buff *skb = list_->prev; 1495 1496 if (skb == (struct sk_buff *)list_) 1497 skb = NULL; 1498 return skb; 1499 1500 } 1501 1502 /** 1503 * skb_queue_len - get queue length 1504 * @list_: list to measure 1505 * 1506 * Return the length of an &sk_buff queue. 1507 */ 1508 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1509 { 1510 return list_->qlen; 1511 } 1512 1513 /** 1514 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1515 * @list: queue to initialize 1516 * 1517 * This initializes only the list and queue length aspects of 1518 * an sk_buff_head object. This allows to initialize the list 1519 * aspects of an sk_buff_head without reinitializing things like 1520 * the spinlock. It can also be used for on-stack sk_buff_head 1521 * objects where the spinlock is known to not be used. 1522 */ 1523 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1524 { 1525 list->prev = list->next = (struct sk_buff *)list; 1526 list->qlen = 0; 1527 } 1528 1529 /* 1530 * This function creates a split out lock class for each invocation; 1531 * this is needed for now since a whole lot of users of the skb-queue 1532 * infrastructure in drivers have different locking usage (in hardirq) 1533 * than the networking core (in softirq only). In the long run either the 1534 * network layer or drivers should need annotation to consolidate the 1535 * main types of usage into 3 classes. 1536 */ 1537 static inline void skb_queue_head_init(struct sk_buff_head *list) 1538 { 1539 spin_lock_init(&list->lock); 1540 __skb_queue_head_init(list); 1541 } 1542 1543 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1544 struct lock_class_key *class) 1545 { 1546 skb_queue_head_init(list); 1547 lockdep_set_class(&list->lock, class); 1548 } 1549 1550 /* 1551 * Insert an sk_buff on a list. 1552 * 1553 * The "__skb_xxxx()" functions are the non-atomic ones that 1554 * can only be called with interrupts disabled. 1555 */ 1556 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1557 struct sk_buff_head *list); 1558 static inline void __skb_insert(struct sk_buff *newsk, 1559 struct sk_buff *prev, struct sk_buff *next, 1560 struct sk_buff_head *list) 1561 { 1562 newsk->next = next; 1563 newsk->prev = prev; 1564 next->prev = prev->next = newsk; 1565 list->qlen++; 1566 } 1567 1568 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1569 struct sk_buff *prev, 1570 struct sk_buff *next) 1571 { 1572 struct sk_buff *first = list->next; 1573 struct sk_buff *last = list->prev; 1574 1575 first->prev = prev; 1576 prev->next = first; 1577 1578 last->next = next; 1579 next->prev = last; 1580 } 1581 1582 /** 1583 * skb_queue_splice - join two skb lists, this is designed for stacks 1584 * @list: the new list to add 1585 * @head: the place to add it in the first list 1586 */ 1587 static inline void skb_queue_splice(const struct sk_buff_head *list, 1588 struct sk_buff_head *head) 1589 { 1590 if (!skb_queue_empty(list)) { 1591 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1592 head->qlen += list->qlen; 1593 } 1594 } 1595 1596 /** 1597 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1598 * @list: the new list to add 1599 * @head: the place to add it in the first list 1600 * 1601 * The list at @list is reinitialised 1602 */ 1603 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1604 struct sk_buff_head *head) 1605 { 1606 if (!skb_queue_empty(list)) { 1607 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1608 head->qlen += list->qlen; 1609 __skb_queue_head_init(list); 1610 } 1611 } 1612 1613 /** 1614 * skb_queue_splice_tail - join two skb lists, each list being a queue 1615 * @list: the new list to add 1616 * @head: the place to add it in the first list 1617 */ 1618 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1619 struct sk_buff_head *head) 1620 { 1621 if (!skb_queue_empty(list)) { 1622 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1623 head->qlen += list->qlen; 1624 } 1625 } 1626 1627 /** 1628 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1629 * @list: the new list to add 1630 * @head: the place to add it in the first list 1631 * 1632 * Each of the lists is a queue. 1633 * The list at @list is reinitialised 1634 */ 1635 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1636 struct sk_buff_head *head) 1637 { 1638 if (!skb_queue_empty(list)) { 1639 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1640 head->qlen += list->qlen; 1641 __skb_queue_head_init(list); 1642 } 1643 } 1644 1645 /** 1646 * __skb_queue_after - queue a buffer at the list head 1647 * @list: list to use 1648 * @prev: place after this buffer 1649 * @newsk: buffer to queue 1650 * 1651 * Queue a buffer int the middle of a list. This function takes no locks 1652 * and you must therefore hold required locks before calling it. 1653 * 1654 * A buffer cannot be placed on two lists at the same time. 1655 */ 1656 static inline void __skb_queue_after(struct sk_buff_head *list, 1657 struct sk_buff *prev, 1658 struct sk_buff *newsk) 1659 { 1660 __skb_insert(newsk, prev, prev->next, list); 1661 } 1662 1663 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1664 struct sk_buff_head *list); 1665 1666 static inline void __skb_queue_before(struct sk_buff_head *list, 1667 struct sk_buff *next, 1668 struct sk_buff *newsk) 1669 { 1670 __skb_insert(newsk, next->prev, next, list); 1671 } 1672 1673 /** 1674 * __skb_queue_head - queue a buffer at the list head 1675 * @list: list to use 1676 * @newsk: buffer to queue 1677 * 1678 * Queue a buffer at the start of a list. This function takes no locks 1679 * and you must therefore hold required locks before calling it. 1680 * 1681 * A buffer cannot be placed on two lists at the same time. 1682 */ 1683 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1684 static inline void __skb_queue_head(struct sk_buff_head *list, 1685 struct sk_buff *newsk) 1686 { 1687 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1688 } 1689 1690 /** 1691 * __skb_queue_tail - queue a buffer at the list tail 1692 * @list: list to use 1693 * @newsk: buffer to queue 1694 * 1695 * Queue a buffer at the end of a list. This function takes no locks 1696 * and you must therefore hold required locks before calling it. 1697 * 1698 * A buffer cannot be placed on two lists at the same time. 1699 */ 1700 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1701 static inline void __skb_queue_tail(struct sk_buff_head *list, 1702 struct sk_buff *newsk) 1703 { 1704 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1705 } 1706 1707 /* 1708 * remove sk_buff from list. _Must_ be called atomically, and with 1709 * the list known.. 1710 */ 1711 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1712 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1713 { 1714 struct sk_buff *next, *prev; 1715 1716 list->qlen--; 1717 next = skb->next; 1718 prev = skb->prev; 1719 skb->next = skb->prev = NULL; 1720 next->prev = prev; 1721 prev->next = next; 1722 } 1723 1724 /** 1725 * __skb_dequeue - remove from the head of the queue 1726 * @list: list to dequeue from 1727 * 1728 * Remove the head of the list. This function does not take any locks 1729 * so must be used with appropriate locks held only. The head item is 1730 * returned or %NULL if the list is empty. 1731 */ 1732 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1733 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1734 { 1735 struct sk_buff *skb = skb_peek(list); 1736 if (skb) 1737 __skb_unlink(skb, list); 1738 return skb; 1739 } 1740 1741 /** 1742 * __skb_dequeue_tail - remove from the tail of the queue 1743 * @list: list to dequeue from 1744 * 1745 * Remove the tail of the list. This function does not take any locks 1746 * so must be used with appropriate locks held only. The tail item is 1747 * returned or %NULL if the list is empty. 1748 */ 1749 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1750 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1751 { 1752 struct sk_buff *skb = skb_peek_tail(list); 1753 if (skb) 1754 __skb_unlink(skb, list); 1755 return skb; 1756 } 1757 1758 1759 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1760 { 1761 return skb->data_len; 1762 } 1763 1764 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1765 { 1766 return skb->len - skb->data_len; 1767 } 1768 1769 static inline int skb_pagelen(const struct sk_buff *skb) 1770 { 1771 int i, len = 0; 1772 1773 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1774 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1775 return len + skb_headlen(skb); 1776 } 1777 1778 /** 1779 * __skb_fill_page_desc - initialise a paged fragment in an skb 1780 * @skb: buffer containing fragment to be initialised 1781 * @i: paged fragment index to initialise 1782 * @page: the page to use for this fragment 1783 * @off: the offset to the data with @page 1784 * @size: the length of the data 1785 * 1786 * Initialises the @i'th fragment of @skb to point to &size bytes at 1787 * offset @off within @page. 1788 * 1789 * Does not take any additional reference on the fragment. 1790 */ 1791 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1792 struct page *page, int off, int size) 1793 { 1794 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1795 1796 /* 1797 * Propagate page pfmemalloc to the skb if we can. The problem is 1798 * that not all callers have unique ownership of the page but rely 1799 * on page_is_pfmemalloc doing the right thing(tm). 1800 */ 1801 frag->page.p = page; 1802 frag->page_offset = off; 1803 skb_frag_size_set(frag, size); 1804 1805 page = compound_head(page); 1806 if (page_is_pfmemalloc(page)) 1807 skb->pfmemalloc = true; 1808 } 1809 1810 /** 1811 * skb_fill_page_desc - initialise a paged fragment in an skb 1812 * @skb: buffer containing fragment to be initialised 1813 * @i: paged fragment index to initialise 1814 * @page: the page to use for this fragment 1815 * @off: the offset to the data with @page 1816 * @size: the length of the data 1817 * 1818 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1819 * @skb to point to @size bytes at offset @off within @page. In 1820 * addition updates @skb such that @i is the last fragment. 1821 * 1822 * Does not take any additional reference on the fragment. 1823 */ 1824 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1825 struct page *page, int off, int size) 1826 { 1827 __skb_fill_page_desc(skb, i, page, off, size); 1828 skb_shinfo(skb)->nr_frags = i + 1; 1829 } 1830 1831 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1832 int size, unsigned int truesize); 1833 1834 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1835 unsigned int truesize); 1836 1837 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1838 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1839 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1840 1841 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1842 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1843 { 1844 return skb->head + skb->tail; 1845 } 1846 1847 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1848 { 1849 skb->tail = skb->data - skb->head; 1850 } 1851 1852 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1853 { 1854 skb_reset_tail_pointer(skb); 1855 skb->tail += offset; 1856 } 1857 1858 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1859 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1860 { 1861 return skb->tail; 1862 } 1863 1864 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1865 { 1866 skb->tail = skb->data; 1867 } 1868 1869 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1870 { 1871 skb->tail = skb->data + offset; 1872 } 1873 1874 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1875 1876 /* 1877 * Add data to an sk_buff 1878 */ 1879 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1880 unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1881 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1882 { 1883 unsigned char *tmp = skb_tail_pointer(skb); 1884 SKB_LINEAR_ASSERT(skb); 1885 skb->tail += len; 1886 skb->len += len; 1887 return tmp; 1888 } 1889 1890 unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1891 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1892 { 1893 skb->data -= len; 1894 skb->len += len; 1895 return skb->data; 1896 } 1897 1898 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1899 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1900 { 1901 skb->len -= len; 1902 BUG_ON(skb->len < skb->data_len); 1903 return skb->data += len; 1904 } 1905 1906 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1907 { 1908 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1909 } 1910 1911 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1912 1913 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1914 { 1915 if (len > skb_headlen(skb) && 1916 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1917 return NULL; 1918 skb->len -= len; 1919 return skb->data += len; 1920 } 1921 1922 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1923 { 1924 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1925 } 1926 1927 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1928 { 1929 if (likely(len <= skb_headlen(skb))) 1930 return 1; 1931 if (unlikely(len > skb->len)) 1932 return 0; 1933 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1934 } 1935 1936 /** 1937 * skb_headroom - bytes at buffer head 1938 * @skb: buffer to check 1939 * 1940 * Return the number of bytes of free space at the head of an &sk_buff. 1941 */ 1942 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1943 { 1944 return skb->data - skb->head; 1945 } 1946 1947 /** 1948 * skb_tailroom - bytes at buffer end 1949 * @skb: buffer to check 1950 * 1951 * Return the number of bytes of free space at the tail of an sk_buff 1952 */ 1953 static inline int skb_tailroom(const struct sk_buff *skb) 1954 { 1955 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1956 } 1957 1958 /** 1959 * skb_availroom - bytes at buffer end 1960 * @skb: buffer to check 1961 * 1962 * Return the number of bytes of free space at the tail of an sk_buff 1963 * allocated by sk_stream_alloc() 1964 */ 1965 static inline int skb_availroom(const struct sk_buff *skb) 1966 { 1967 if (skb_is_nonlinear(skb)) 1968 return 0; 1969 1970 return skb->end - skb->tail - skb->reserved_tailroom; 1971 } 1972 1973 /** 1974 * skb_reserve - adjust headroom 1975 * @skb: buffer to alter 1976 * @len: bytes to move 1977 * 1978 * Increase the headroom of an empty &sk_buff by reducing the tail 1979 * room. This is only allowed for an empty buffer. 1980 */ 1981 static inline void skb_reserve(struct sk_buff *skb, int len) 1982 { 1983 skb->data += len; 1984 skb->tail += len; 1985 } 1986 1987 #define ENCAP_TYPE_ETHER 0 1988 #define ENCAP_TYPE_IPPROTO 1 1989 1990 static inline void skb_set_inner_protocol(struct sk_buff *skb, 1991 __be16 protocol) 1992 { 1993 skb->inner_protocol = protocol; 1994 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 1995 } 1996 1997 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 1998 __u8 ipproto) 1999 { 2000 skb->inner_ipproto = ipproto; 2001 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2002 } 2003 2004 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2005 { 2006 skb->inner_mac_header = skb->mac_header; 2007 skb->inner_network_header = skb->network_header; 2008 skb->inner_transport_header = skb->transport_header; 2009 } 2010 2011 static inline void skb_reset_mac_len(struct sk_buff *skb) 2012 { 2013 skb->mac_len = skb->network_header - skb->mac_header; 2014 } 2015 2016 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2017 *skb) 2018 { 2019 return skb->head + skb->inner_transport_header; 2020 } 2021 2022 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2023 { 2024 return skb_inner_transport_header(skb) - skb->data; 2025 } 2026 2027 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2028 { 2029 skb->inner_transport_header = skb->data - skb->head; 2030 } 2031 2032 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2033 const int offset) 2034 { 2035 skb_reset_inner_transport_header(skb); 2036 skb->inner_transport_header += offset; 2037 } 2038 2039 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2040 { 2041 return skb->head + skb->inner_network_header; 2042 } 2043 2044 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2045 { 2046 skb->inner_network_header = skb->data - skb->head; 2047 } 2048 2049 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2050 const int offset) 2051 { 2052 skb_reset_inner_network_header(skb); 2053 skb->inner_network_header += offset; 2054 } 2055 2056 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2057 { 2058 return skb->head + skb->inner_mac_header; 2059 } 2060 2061 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2062 { 2063 skb->inner_mac_header = skb->data - skb->head; 2064 } 2065 2066 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2067 const int offset) 2068 { 2069 skb_reset_inner_mac_header(skb); 2070 skb->inner_mac_header += offset; 2071 } 2072 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2073 { 2074 return skb->transport_header != (typeof(skb->transport_header))~0U; 2075 } 2076 2077 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2078 { 2079 return skb->head + skb->transport_header; 2080 } 2081 2082 static inline void skb_reset_transport_header(struct sk_buff *skb) 2083 { 2084 skb->transport_header = skb->data - skb->head; 2085 } 2086 2087 static inline void skb_set_transport_header(struct sk_buff *skb, 2088 const int offset) 2089 { 2090 skb_reset_transport_header(skb); 2091 skb->transport_header += offset; 2092 } 2093 2094 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2095 { 2096 return skb->head + skb->network_header; 2097 } 2098 2099 static inline void skb_reset_network_header(struct sk_buff *skb) 2100 { 2101 skb->network_header = skb->data - skb->head; 2102 } 2103 2104 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2105 { 2106 skb_reset_network_header(skb); 2107 skb->network_header += offset; 2108 } 2109 2110 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2111 { 2112 return skb->head + skb->mac_header; 2113 } 2114 2115 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2116 { 2117 return skb->mac_header != (typeof(skb->mac_header))~0U; 2118 } 2119 2120 static inline void skb_reset_mac_header(struct sk_buff *skb) 2121 { 2122 skb->mac_header = skb->data - skb->head; 2123 } 2124 2125 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2126 { 2127 skb_reset_mac_header(skb); 2128 skb->mac_header += offset; 2129 } 2130 2131 static inline void skb_pop_mac_header(struct sk_buff *skb) 2132 { 2133 skb->mac_header = skb->network_header; 2134 } 2135 2136 static inline void skb_probe_transport_header(struct sk_buff *skb, 2137 const int offset_hint) 2138 { 2139 struct flow_keys keys; 2140 2141 if (skb_transport_header_was_set(skb)) 2142 return; 2143 else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) 2144 skb_set_transport_header(skb, keys.control.thoff); 2145 else 2146 skb_set_transport_header(skb, offset_hint); 2147 } 2148 2149 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2150 { 2151 if (skb_mac_header_was_set(skb)) { 2152 const unsigned char *old_mac = skb_mac_header(skb); 2153 2154 skb_set_mac_header(skb, -skb->mac_len); 2155 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2156 } 2157 } 2158 2159 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2160 { 2161 return skb->csum_start - skb_headroom(skb); 2162 } 2163 2164 static inline int skb_transport_offset(const struct sk_buff *skb) 2165 { 2166 return skb_transport_header(skb) - skb->data; 2167 } 2168 2169 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2170 { 2171 return skb->transport_header - skb->network_header; 2172 } 2173 2174 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2175 { 2176 return skb->inner_transport_header - skb->inner_network_header; 2177 } 2178 2179 static inline int skb_network_offset(const struct sk_buff *skb) 2180 { 2181 return skb_network_header(skb) - skb->data; 2182 } 2183 2184 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2185 { 2186 return skb_inner_network_header(skb) - skb->data; 2187 } 2188 2189 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2190 { 2191 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2192 } 2193 2194 /* 2195 * CPUs often take a performance hit when accessing unaligned memory 2196 * locations. The actual performance hit varies, it can be small if the 2197 * hardware handles it or large if we have to take an exception and fix it 2198 * in software. 2199 * 2200 * Since an ethernet header is 14 bytes network drivers often end up with 2201 * the IP header at an unaligned offset. The IP header can be aligned by 2202 * shifting the start of the packet by 2 bytes. Drivers should do this 2203 * with: 2204 * 2205 * skb_reserve(skb, NET_IP_ALIGN); 2206 * 2207 * The downside to this alignment of the IP header is that the DMA is now 2208 * unaligned. On some architectures the cost of an unaligned DMA is high 2209 * and this cost outweighs the gains made by aligning the IP header. 2210 * 2211 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2212 * to be overridden. 2213 */ 2214 #ifndef NET_IP_ALIGN 2215 #define NET_IP_ALIGN 2 2216 #endif 2217 2218 /* 2219 * The networking layer reserves some headroom in skb data (via 2220 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2221 * the header has to grow. In the default case, if the header has to grow 2222 * 32 bytes or less we avoid the reallocation. 2223 * 2224 * Unfortunately this headroom changes the DMA alignment of the resulting 2225 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2226 * on some architectures. An architecture can override this value, 2227 * perhaps setting it to a cacheline in size (since that will maintain 2228 * cacheline alignment of the DMA). It must be a power of 2. 2229 * 2230 * Various parts of the networking layer expect at least 32 bytes of 2231 * headroom, you should not reduce this. 2232 * 2233 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2234 * to reduce average number of cache lines per packet. 2235 * get_rps_cpus() for example only access one 64 bytes aligned block : 2236 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2237 */ 2238 #ifndef NET_SKB_PAD 2239 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2240 #endif 2241 2242 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2243 2244 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2245 { 2246 if (unlikely(skb_is_nonlinear(skb))) { 2247 WARN_ON(1); 2248 return; 2249 } 2250 skb->len = len; 2251 skb_set_tail_pointer(skb, len); 2252 } 2253 2254 void skb_trim(struct sk_buff *skb, unsigned int len); 2255 2256 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2257 { 2258 if (skb->data_len) 2259 return ___pskb_trim(skb, len); 2260 __skb_trim(skb, len); 2261 return 0; 2262 } 2263 2264 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2265 { 2266 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2267 } 2268 2269 /** 2270 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2271 * @skb: buffer to alter 2272 * @len: new length 2273 * 2274 * This is identical to pskb_trim except that the caller knows that 2275 * the skb is not cloned so we should never get an error due to out- 2276 * of-memory. 2277 */ 2278 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2279 { 2280 int err = pskb_trim(skb, len); 2281 BUG_ON(err); 2282 } 2283 2284 /** 2285 * skb_orphan - orphan a buffer 2286 * @skb: buffer to orphan 2287 * 2288 * If a buffer currently has an owner then we call the owner's 2289 * destructor function and make the @skb unowned. The buffer continues 2290 * to exist but is no longer charged to its former owner. 2291 */ 2292 static inline void skb_orphan(struct sk_buff *skb) 2293 { 2294 if (skb->destructor) { 2295 skb->destructor(skb); 2296 skb->destructor = NULL; 2297 skb->sk = NULL; 2298 } else { 2299 BUG_ON(skb->sk); 2300 } 2301 } 2302 2303 /** 2304 * skb_orphan_frags - orphan the frags contained in a buffer 2305 * @skb: buffer to orphan frags from 2306 * @gfp_mask: allocation mask for replacement pages 2307 * 2308 * For each frag in the SKB which needs a destructor (i.e. has an 2309 * owner) create a copy of that frag and release the original 2310 * page by calling the destructor. 2311 */ 2312 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2313 { 2314 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2315 return 0; 2316 return skb_copy_ubufs(skb, gfp_mask); 2317 } 2318 2319 /** 2320 * __skb_queue_purge - empty a list 2321 * @list: list to empty 2322 * 2323 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2324 * the list and one reference dropped. This function does not take the 2325 * list lock and the caller must hold the relevant locks to use it. 2326 */ 2327 void skb_queue_purge(struct sk_buff_head *list); 2328 static inline void __skb_queue_purge(struct sk_buff_head *list) 2329 { 2330 struct sk_buff *skb; 2331 while ((skb = __skb_dequeue(list)) != NULL) 2332 kfree_skb(skb); 2333 } 2334 2335 void *netdev_alloc_frag(unsigned int fragsz); 2336 2337 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2338 gfp_t gfp_mask); 2339 2340 /** 2341 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2342 * @dev: network device to receive on 2343 * @length: length to allocate 2344 * 2345 * Allocate a new &sk_buff and assign it a usage count of one. The 2346 * buffer has unspecified headroom built in. Users should allocate 2347 * the headroom they think they need without accounting for the 2348 * built in space. The built in space is used for optimisations. 2349 * 2350 * %NULL is returned if there is no free memory. Although this function 2351 * allocates memory it can be called from an interrupt. 2352 */ 2353 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2354 unsigned int length) 2355 { 2356 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2357 } 2358 2359 /* legacy helper around __netdev_alloc_skb() */ 2360 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2361 gfp_t gfp_mask) 2362 { 2363 return __netdev_alloc_skb(NULL, length, gfp_mask); 2364 } 2365 2366 /* legacy helper around netdev_alloc_skb() */ 2367 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2368 { 2369 return netdev_alloc_skb(NULL, length); 2370 } 2371 2372 2373 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2374 unsigned int length, gfp_t gfp) 2375 { 2376 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2377 2378 if (NET_IP_ALIGN && skb) 2379 skb_reserve(skb, NET_IP_ALIGN); 2380 return skb; 2381 } 2382 2383 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2384 unsigned int length) 2385 { 2386 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2387 } 2388 2389 static inline void skb_free_frag(void *addr) 2390 { 2391 __free_page_frag(addr); 2392 } 2393 2394 void *napi_alloc_frag(unsigned int fragsz); 2395 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2396 unsigned int length, gfp_t gfp_mask); 2397 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2398 unsigned int length) 2399 { 2400 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2401 } 2402 2403 /** 2404 * __dev_alloc_pages - allocate page for network Rx 2405 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2406 * @order: size of the allocation 2407 * 2408 * Allocate a new page. 2409 * 2410 * %NULL is returned if there is no free memory. 2411 */ 2412 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2413 unsigned int order) 2414 { 2415 /* This piece of code contains several assumptions. 2416 * 1. This is for device Rx, therefor a cold page is preferred. 2417 * 2. The expectation is the user wants a compound page. 2418 * 3. If requesting a order 0 page it will not be compound 2419 * due to the check to see if order has a value in prep_new_page 2420 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2421 * code in gfp_to_alloc_flags that should be enforcing this. 2422 */ 2423 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2424 2425 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2426 } 2427 2428 static inline struct page *dev_alloc_pages(unsigned int order) 2429 { 2430 return __dev_alloc_pages(GFP_ATOMIC, order); 2431 } 2432 2433 /** 2434 * __dev_alloc_page - allocate a page for network Rx 2435 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2436 * 2437 * Allocate a new page. 2438 * 2439 * %NULL is returned if there is no free memory. 2440 */ 2441 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2442 { 2443 return __dev_alloc_pages(gfp_mask, 0); 2444 } 2445 2446 static inline struct page *dev_alloc_page(void) 2447 { 2448 return __dev_alloc_page(GFP_ATOMIC); 2449 } 2450 2451 /** 2452 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2453 * @page: The page that was allocated from skb_alloc_page 2454 * @skb: The skb that may need pfmemalloc set 2455 */ 2456 static inline void skb_propagate_pfmemalloc(struct page *page, 2457 struct sk_buff *skb) 2458 { 2459 if (page_is_pfmemalloc(page)) 2460 skb->pfmemalloc = true; 2461 } 2462 2463 /** 2464 * skb_frag_page - retrieve the page referred to by a paged fragment 2465 * @frag: the paged fragment 2466 * 2467 * Returns the &struct page associated with @frag. 2468 */ 2469 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2470 { 2471 return frag->page.p; 2472 } 2473 2474 /** 2475 * __skb_frag_ref - take an addition reference on a paged fragment. 2476 * @frag: the paged fragment 2477 * 2478 * Takes an additional reference on the paged fragment @frag. 2479 */ 2480 static inline void __skb_frag_ref(skb_frag_t *frag) 2481 { 2482 get_page(skb_frag_page(frag)); 2483 } 2484 2485 /** 2486 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2487 * @skb: the buffer 2488 * @f: the fragment offset. 2489 * 2490 * Takes an additional reference on the @f'th paged fragment of @skb. 2491 */ 2492 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2493 { 2494 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2495 } 2496 2497 /** 2498 * __skb_frag_unref - release a reference on a paged fragment. 2499 * @frag: the paged fragment 2500 * 2501 * Releases a reference on the paged fragment @frag. 2502 */ 2503 static inline void __skb_frag_unref(skb_frag_t *frag) 2504 { 2505 put_page(skb_frag_page(frag)); 2506 } 2507 2508 /** 2509 * skb_frag_unref - release a reference on a paged fragment of an skb. 2510 * @skb: the buffer 2511 * @f: the fragment offset 2512 * 2513 * Releases a reference on the @f'th paged fragment of @skb. 2514 */ 2515 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2516 { 2517 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2518 } 2519 2520 /** 2521 * skb_frag_address - gets the address of the data contained in a paged fragment 2522 * @frag: the paged fragment buffer 2523 * 2524 * Returns the address of the data within @frag. The page must already 2525 * be mapped. 2526 */ 2527 static inline void *skb_frag_address(const skb_frag_t *frag) 2528 { 2529 return page_address(skb_frag_page(frag)) + frag->page_offset; 2530 } 2531 2532 /** 2533 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2534 * @frag: the paged fragment buffer 2535 * 2536 * Returns the address of the data within @frag. Checks that the page 2537 * is mapped and returns %NULL otherwise. 2538 */ 2539 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2540 { 2541 void *ptr = page_address(skb_frag_page(frag)); 2542 if (unlikely(!ptr)) 2543 return NULL; 2544 2545 return ptr + frag->page_offset; 2546 } 2547 2548 /** 2549 * __skb_frag_set_page - sets the page contained in a paged fragment 2550 * @frag: the paged fragment 2551 * @page: the page to set 2552 * 2553 * Sets the fragment @frag to contain @page. 2554 */ 2555 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2556 { 2557 frag->page.p = page; 2558 } 2559 2560 /** 2561 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2562 * @skb: the buffer 2563 * @f: the fragment offset 2564 * @page: the page to set 2565 * 2566 * Sets the @f'th fragment of @skb to contain @page. 2567 */ 2568 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2569 struct page *page) 2570 { 2571 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2572 } 2573 2574 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2575 2576 /** 2577 * skb_frag_dma_map - maps a paged fragment via the DMA API 2578 * @dev: the device to map the fragment to 2579 * @frag: the paged fragment to map 2580 * @offset: the offset within the fragment (starting at the 2581 * fragment's own offset) 2582 * @size: the number of bytes to map 2583 * @dir: the direction of the mapping (%PCI_DMA_*) 2584 * 2585 * Maps the page associated with @frag to @device. 2586 */ 2587 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2588 const skb_frag_t *frag, 2589 size_t offset, size_t size, 2590 enum dma_data_direction dir) 2591 { 2592 return dma_map_page(dev, skb_frag_page(frag), 2593 frag->page_offset + offset, size, dir); 2594 } 2595 2596 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2597 gfp_t gfp_mask) 2598 { 2599 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2600 } 2601 2602 2603 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2604 gfp_t gfp_mask) 2605 { 2606 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2607 } 2608 2609 2610 /** 2611 * skb_clone_writable - is the header of a clone writable 2612 * @skb: buffer to check 2613 * @len: length up to which to write 2614 * 2615 * Returns true if modifying the header part of the cloned buffer 2616 * does not requires the data to be copied. 2617 */ 2618 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2619 { 2620 return !skb_header_cloned(skb) && 2621 skb_headroom(skb) + len <= skb->hdr_len; 2622 } 2623 2624 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2625 int cloned) 2626 { 2627 int delta = 0; 2628 2629 if (headroom > skb_headroom(skb)) 2630 delta = headroom - skb_headroom(skb); 2631 2632 if (delta || cloned) 2633 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2634 GFP_ATOMIC); 2635 return 0; 2636 } 2637 2638 /** 2639 * skb_cow - copy header of skb when it is required 2640 * @skb: buffer to cow 2641 * @headroom: needed headroom 2642 * 2643 * If the skb passed lacks sufficient headroom or its data part 2644 * is shared, data is reallocated. If reallocation fails, an error 2645 * is returned and original skb is not changed. 2646 * 2647 * The result is skb with writable area skb->head...skb->tail 2648 * and at least @headroom of space at head. 2649 */ 2650 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2651 { 2652 return __skb_cow(skb, headroom, skb_cloned(skb)); 2653 } 2654 2655 /** 2656 * skb_cow_head - skb_cow but only making the head writable 2657 * @skb: buffer to cow 2658 * @headroom: needed headroom 2659 * 2660 * This function is identical to skb_cow except that we replace the 2661 * skb_cloned check by skb_header_cloned. It should be used when 2662 * you only need to push on some header and do not need to modify 2663 * the data. 2664 */ 2665 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2666 { 2667 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2668 } 2669 2670 /** 2671 * skb_padto - pad an skbuff up to a minimal size 2672 * @skb: buffer to pad 2673 * @len: minimal length 2674 * 2675 * Pads up a buffer to ensure the trailing bytes exist and are 2676 * blanked. If the buffer already contains sufficient data it 2677 * is untouched. Otherwise it is extended. Returns zero on 2678 * success. The skb is freed on error. 2679 */ 2680 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2681 { 2682 unsigned int size = skb->len; 2683 if (likely(size >= len)) 2684 return 0; 2685 return skb_pad(skb, len - size); 2686 } 2687 2688 /** 2689 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2690 * @skb: buffer to pad 2691 * @len: minimal length 2692 * 2693 * Pads up a buffer to ensure the trailing bytes exist and are 2694 * blanked. If the buffer already contains sufficient data it 2695 * is untouched. Otherwise it is extended. Returns zero on 2696 * success. The skb is freed on error. 2697 */ 2698 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2699 { 2700 unsigned int size = skb->len; 2701 2702 if (unlikely(size < len)) { 2703 len -= size; 2704 if (skb_pad(skb, len)) 2705 return -ENOMEM; 2706 __skb_put(skb, len); 2707 } 2708 return 0; 2709 } 2710 2711 static inline int skb_add_data(struct sk_buff *skb, 2712 struct iov_iter *from, int copy) 2713 { 2714 const int off = skb->len; 2715 2716 if (skb->ip_summed == CHECKSUM_NONE) { 2717 __wsum csum = 0; 2718 if (csum_and_copy_from_iter(skb_put(skb, copy), copy, 2719 &csum, from) == copy) { 2720 skb->csum = csum_block_add(skb->csum, csum, off); 2721 return 0; 2722 } 2723 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy) 2724 return 0; 2725 2726 __skb_trim(skb, off); 2727 return -EFAULT; 2728 } 2729 2730 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2731 const struct page *page, int off) 2732 { 2733 if (i) { 2734 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2735 2736 return page == skb_frag_page(frag) && 2737 off == frag->page_offset + skb_frag_size(frag); 2738 } 2739 return false; 2740 } 2741 2742 static inline int __skb_linearize(struct sk_buff *skb) 2743 { 2744 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2745 } 2746 2747 /** 2748 * skb_linearize - convert paged skb to linear one 2749 * @skb: buffer to linarize 2750 * 2751 * If there is no free memory -ENOMEM is returned, otherwise zero 2752 * is returned and the old skb data released. 2753 */ 2754 static inline int skb_linearize(struct sk_buff *skb) 2755 { 2756 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2757 } 2758 2759 /** 2760 * skb_has_shared_frag - can any frag be overwritten 2761 * @skb: buffer to test 2762 * 2763 * Return true if the skb has at least one frag that might be modified 2764 * by an external entity (as in vmsplice()/sendfile()) 2765 */ 2766 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2767 { 2768 return skb_is_nonlinear(skb) && 2769 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2770 } 2771 2772 /** 2773 * skb_linearize_cow - make sure skb is linear and writable 2774 * @skb: buffer to process 2775 * 2776 * If there is no free memory -ENOMEM is returned, otherwise zero 2777 * is returned and the old skb data released. 2778 */ 2779 static inline int skb_linearize_cow(struct sk_buff *skb) 2780 { 2781 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2782 __skb_linearize(skb) : 0; 2783 } 2784 2785 /** 2786 * skb_postpull_rcsum - update checksum for received skb after pull 2787 * @skb: buffer to update 2788 * @start: start of data before pull 2789 * @len: length of data pulled 2790 * 2791 * After doing a pull on a received packet, you need to call this to 2792 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2793 * CHECKSUM_NONE so that it can be recomputed from scratch. 2794 */ 2795 2796 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2797 const void *start, unsigned int len) 2798 { 2799 if (skb->ip_summed == CHECKSUM_COMPLETE) 2800 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2801 else if (skb->ip_summed == CHECKSUM_PARTIAL && 2802 skb_checksum_start_offset(skb) < 0) 2803 skb->ip_summed = CHECKSUM_NONE; 2804 } 2805 2806 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2807 2808 static inline void skb_postpush_rcsum(struct sk_buff *skb, 2809 const void *start, unsigned int len) 2810 { 2811 /* For performing the reverse operation to skb_postpull_rcsum(), 2812 * we can instead of ... 2813 * 2814 * skb->csum = csum_add(skb->csum, csum_partial(start, len, 0)); 2815 * 2816 * ... just use this equivalent version here to save a few 2817 * instructions. Feeding csum of 0 in csum_partial() and later 2818 * on adding skb->csum is equivalent to feed skb->csum in the 2819 * first place. 2820 */ 2821 if (skb->ip_summed == CHECKSUM_COMPLETE) 2822 skb->csum = csum_partial(start, len, skb->csum); 2823 } 2824 2825 /** 2826 * pskb_trim_rcsum - trim received skb and update checksum 2827 * @skb: buffer to trim 2828 * @len: new length 2829 * 2830 * This is exactly the same as pskb_trim except that it ensures the 2831 * checksum of received packets are still valid after the operation. 2832 */ 2833 2834 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2835 { 2836 if (likely(len >= skb->len)) 2837 return 0; 2838 if (skb->ip_summed == CHECKSUM_COMPLETE) 2839 skb->ip_summed = CHECKSUM_NONE; 2840 return __pskb_trim(skb, len); 2841 } 2842 2843 #define skb_queue_walk(queue, skb) \ 2844 for (skb = (queue)->next; \ 2845 skb != (struct sk_buff *)(queue); \ 2846 skb = skb->next) 2847 2848 #define skb_queue_walk_safe(queue, skb, tmp) \ 2849 for (skb = (queue)->next, tmp = skb->next; \ 2850 skb != (struct sk_buff *)(queue); \ 2851 skb = tmp, tmp = skb->next) 2852 2853 #define skb_queue_walk_from(queue, skb) \ 2854 for (; skb != (struct sk_buff *)(queue); \ 2855 skb = skb->next) 2856 2857 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 2858 for (tmp = skb->next; \ 2859 skb != (struct sk_buff *)(queue); \ 2860 skb = tmp, tmp = skb->next) 2861 2862 #define skb_queue_reverse_walk(queue, skb) \ 2863 for (skb = (queue)->prev; \ 2864 skb != (struct sk_buff *)(queue); \ 2865 skb = skb->prev) 2866 2867 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2868 for (skb = (queue)->prev, tmp = skb->prev; \ 2869 skb != (struct sk_buff *)(queue); \ 2870 skb = tmp, tmp = skb->prev) 2871 2872 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2873 for (tmp = skb->prev; \ 2874 skb != (struct sk_buff *)(queue); \ 2875 skb = tmp, tmp = skb->prev) 2876 2877 static inline bool skb_has_frag_list(const struct sk_buff *skb) 2878 { 2879 return skb_shinfo(skb)->frag_list != NULL; 2880 } 2881 2882 static inline void skb_frag_list_init(struct sk_buff *skb) 2883 { 2884 skb_shinfo(skb)->frag_list = NULL; 2885 } 2886 2887 #define skb_walk_frags(skb, iter) \ 2888 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2889 2890 2891 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 2892 const struct sk_buff *skb); 2893 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 2894 int *peeked, int *off, int *err, 2895 struct sk_buff **last); 2896 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2897 int *peeked, int *off, int *err); 2898 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2899 int *err); 2900 unsigned int datagram_poll(struct file *file, struct socket *sock, 2901 struct poll_table_struct *wait); 2902 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 2903 struct iov_iter *to, int size); 2904 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 2905 struct msghdr *msg, int size) 2906 { 2907 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 2908 } 2909 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 2910 struct msghdr *msg); 2911 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 2912 struct iov_iter *from, int len); 2913 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 2914 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2915 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2916 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2917 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2918 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2919 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2920 int len, __wsum csum); 2921 ssize_t skb_socket_splice(struct sock *sk, 2922 struct pipe_inode_info *pipe, 2923 struct splice_pipe_desc *spd); 2924 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2925 struct pipe_inode_info *pipe, unsigned int len, 2926 unsigned int flags, 2927 ssize_t (*splice_cb)(struct sock *, 2928 struct pipe_inode_info *, 2929 struct splice_pipe_desc *)); 2930 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2931 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 2932 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 2933 int len, int hlen); 2934 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2935 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2936 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2937 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 2938 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2939 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 2940 int skb_ensure_writable(struct sk_buff *skb, int write_len); 2941 int skb_vlan_pop(struct sk_buff *skb); 2942 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 2943 2944 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 2945 { 2946 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 2947 } 2948 2949 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 2950 { 2951 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 2952 } 2953 2954 struct skb_checksum_ops { 2955 __wsum (*update)(const void *mem, int len, __wsum wsum); 2956 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2957 }; 2958 2959 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2960 __wsum csum, const struct skb_checksum_ops *ops); 2961 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2962 __wsum csum); 2963 2964 static inline void * __must_check 2965 __skb_header_pointer(const struct sk_buff *skb, int offset, 2966 int len, void *data, int hlen, void *buffer) 2967 { 2968 if (hlen - offset >= len) 2969 return data + offset; 2970 2971 if (!skb || 2972 skb_copy_bits(skb, offset, buffer, len) < 0) 2973 return NULL; 2974 2975 return buffer; 2976 } 2977 2978 static inline void * __must_check 2979 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 2980 { 2981 return __skb_header_pointer(skb, offset, len, skb->data, 2982 skb_headlen(skb), buffer); 2983 } 2984 2985 /** 2986 * skb_needs_linearize - check if we need to linearize a given skb 2987 * depending on the given device features. 2988 * @skb: socket buffer to check 2989 * @features: net device features 2990 * 2991 * Returns true if either: 2992 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2993 * 2. skb is fragmented and the device does not support SG. 2994 */ 2995 static inline bool skb_needs_linearize(struct sk_buff *skb, 2996 netdev_features_t features) 2997 { 2998 return skb_is_nonlinear(skb) && 2999 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3000 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3001 } 3002 3003 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3004 void *to, 3005 const unsigned int len) 3006 { 3007 memcpy(to, skb->data, len); 3008 } 3009 3010 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3011 const int offset, void *to, 3012 const unsigned int len) 3013 { 3014 memcpy(to, skb->data + offset, len); 3015 } 3016 3017 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3018 const void *from, 3019 const unsigned int len) 3020 { 3021 memcpy(skb->data, from, len); 3022 } 3023 3024 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3025 const int offset, 3026 const void *from, 3027 const unsigned int len) 3028 { 3029 memcpy(skb->data + offset, from, len); 3030 } 3031 3032 void skb_init(void); 3033 3034 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3035 { 3036 return skb->tstamp; 3037 } 3038 3039 /** 3040 * skb_get_timestamp - get timestamp from a skb 3041 * @skb: skb to get stamp from 3042 * @stamp: pointer to struct timeval to store stamp in 3043 * 3044 * Timestamps are stored in the skb as offsets to a base timestamp. 3045 * This function converts the offset back to a struct timeval and stores 3046 * it in stamp. 3047 */ 3048 static inline void skb_get_timestamp(const struct sk_buff *skb, 3049 struct timeval *stamp) 3050 { 3051 *stamp = ktime_to_timeval(skb->tstamp); 3052 } 3053 3054 static inline void skb_get_timestampns(const struct sk_buff *skb, 3055 struct timespec *stamp) 3056 { 3057 *stamp = ktime_to_timespec(skb->tstamp); 3058 } 3059 3060 static inline void __net_timestamp(struct sk_buff *skb) 3061 { 3062 skb->tstamp = ktime_get_real(); 3063 } 3064 3065 static inline ktime_t net_timedelta(ktime_t t) 3066 { 3067 return ktime_sub(ktime_get_real(), t); 3068 } 3069 3070 static inline ktime_t net_invalid_timestamp(void) 3071 { 3072 return ktime_set(0, 0); 3073 } 3074 3075 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3076 3077 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3078 3079 void skb_clone_tx_timestamp(struct sk_buff *skb); 3080 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3081 3082 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3083 3084 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3085 { 3086 } 3087 3088 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3089 { 3090 return false; 3091 } 3092 3093 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3094 3095 /** 3096 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3097 * 3098 * PHY drivers may accept clones of transmitted packets for 3099 * timestamping via their phy_driver.txtstamp method. These drivers 3100 * must call this function to return the skb back to the stack with a 3101 * timestamp. 3102 * 3103 * @skb: clone of the the original outgoing packet 3104 * @hwtstamps: hardware time stamps 3105 * 3106 */ 3107 void skb_complete_tx_timestamp(struct sk_buff *skb, 3108 struct skb_shared_hwtstamps *hwtstamps); 3109 3110 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3111 struct skb_shared_hwtstamps *hwtstamps, 3112 struct sock *sk, int tstype); 3113 3114 /** 3115 * skb_tstamp_tx - queue clone of skb with send time stamps 3116 * @orig_skb: the original outgoing packet 3117 * @hwtstamps: hardware time stamps, may be NULL if not available 3118 * 3119 * If the skb has a socket associated, then this function clones the 3120 * skb (thus sharing the actual data and optional structures), stores 3121 * the optional hardware time stamping information (if non NULL) or 3122 * generates a software time stamp (otherwise), then queues the clone 3123 * to the error queue of the socket. Errors are silently ignored. 3124 */ 3125 void skb_tstamp_tx(struct sk_buff *orig_skb, 3126 struct skb_shared_hwtstamps *hwtstamps); 3127 3128 static inline void sw_tx_timestamp(struct sk_buff *skb) 3129 { 3130 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 3131 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 3132 skb_tstamp_tx(skb, NULL); 3133 } 3134 3135 /** 3136 * skb_tx_timestamp() - Driver hook for transmit timestamping 3137 * 3138 * Ethernet MAC Drivers should call this function in their hard_xmit() 3139 * function immediately before giving the sk_buff to the MAC hardware. 3140 * 3141 * Specifically, one should make absolutely sure that this function is 3142 * called before TX completion of this packet can trigger. Otherwise 3143 * the packet could potentially already be freed. 3144 * 3145 * @skb: A socket buffer. 3146 */ 3147 static inline void skb_tx_timestamp(struct sk_buff *skb) 3148 { 3149 skb_clone_tx_timestamp(skb); 3150 sw_tx_timestamp(skb); 3151 } 3152 3153 /** 3154 * skb_complete_wifi_ack - deliver skb with wifi status 3155 * 3156 * @skb: the original outgoing packet 3157 * @acked: ack status 3158 * 3159 */ 3160 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3161 3162 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3163 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3164 3165 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3166 { 3167 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3168 skb->csum_valid || 3169 (skb->ip_summed == CHECKSUM_PARTIAL && 3170 skb_checksum_start_offset(skb) >= 0)); 3171 } 3172 3173 /** 3174 * skb_checksum_complete - Calculate checksum of an entire packet 3175 * @skb: packet to process 3176 * 3177 * This function calculates the checksum over the entire packet plus 3178 * the value of skb->csum. The latter can be used to supply the 3179 * checksum of a pseudo header as used by TCP/UDP. It returns the 3180 * checksum. 3181 * 3182 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3183 * this function can be used to verify that checksum on received 3184 * packets. In that case the function should return zero if the 3185 * checksum is correct. In particular, this function will return zero 3186 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3187 * hardware has already verified the correctness of the checksum. 3188 */ 3189 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3190 { 3191 return skb_csum_unnecessary(skb) ? 3192 0 : __skb_checksum_complete(skb); 3193 } 3194 3195 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3196 { 3197 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3198 if (skb->csum_level == 0) 3199 skb->ip_summed = CHECKSUM_NONE; 3200 else 3201 skb->csum_level--; 3202 } 3203 } 3204 3205 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3206 { 3207 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3208 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3209 skb->csum_level++; 3210 } else if (skb->ip_summed == CHECKSUM_NONE) { 3211 skb->ip_summed = CHECKSUM_UNNECESSARY; 3212 skb->csum_level = 0; 3213 } 3214 } 3215 3216 static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 3217 { 3218 /* Mark current checksum as bad (typically called from GRO 3219 * path). In the case that ip_summed is CHECKSUM_NONE 3220 * this must be the first checksum encountered in the packet. 3221 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 3222 * checksum after the last one validated. For UDP, a zero 3223 * checksum can not be marked as bad. 3224 */ 3225 3226 if (skb->ip_summed == CHECKSUM_NONE || 3227 skb->ip_summed == CHECKSUM_UNNECESSARY) 3228 skb->csum_bad = 1; 3229 } 3230 3231 /* Check if we need to perform checksum complete validation. 3232 * 3233 * Returns true if checksum complete is needed, false otherwise 3234 * (either checksum is unnecessary or zero checksum is allowed). 3235 */ 3236 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3237 bool zero_okay, 3238 __sum16 check) 3239 { 3240 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3241 skb->csum_valid = 1; 3242 __skb_decr_checksum_unnecessary(skb); 3243 return false; 3244 } 3245 3246 return true; 3247 } 3248 3249 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3250 * in checksum_init. 3251 */ 3252 #define CHECKSUM_BREAK 76 3253 3254 /* Unset checksum-complete 3255 * 3256 * Unset checksum complete can be done when packet is being modified 3257 * (uncompressed for instance) and checksum-complete value is 3258 * invalidated. 3259 */ 3260 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3261 { 3262 if (skb->ip_summed == CHECKSUM_COMPLETE) 3263 skb->ip_summed = CHECKSUM_NONE; 3264 } 3265 3266 /* Validate (init) checksum based on checksum complete. 3267 * 3268 * Return values: 3269 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3270 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3271 * checksum is stored in skb->csum for use in __skb_checksum_complete 3272 * non-zero: value of invalid checksum 3273 * 3274 */ 3275 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3276 bool complete, 3277 __wsum psum) 3278 { 3279 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3280 if (!csum_fold(csum_add(psum, skb->csum))) { 3281 skb->csum_valid = 1; 3282 return 0; 3283 } 3284 } else if (skb->csum_bad) { 3285 /* ip_summed == CHECKSUM_NONE in this case */ 3286 return (__force __sum16)1; 3287 } 3288 3289 skb->csum = psum; 3290 3291 if (complete || skb->len <= CHECKSUM_BREAK) { 3292 __sum16 csum; 3293 3294 csum = __skb_checksum_complete(skb); 3295 skb->csum_valid = !csum; 3296 return csum; 3297 } 3298 3299 return 0; 3300 } 3301 3302 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3303 { 3304 return 0; 3305 } 3306 3307 /* Perform checksum validate (init). Note that this is a macro since we only 3308 * want to calculate the pseudo header which is an input function if necessary. 3309 * First we try to validate without any computation (checksum unnecessary) and 3310 * then calculate based on checksum complete calling the function to compute 3311 * pseudo header. 3312 * 3313 * Return values: 3314 * 0: checksum is validated or try to in skb_checksum_complete 3315 * non-zero: value of invalid checksum 3316 */ 3317 #define __skb_checksum_validate(skb, proto, complete, \ 3318 zero_okay, check, compute_pseudo) \ 3319 ({ \ 3320 __sum16 __ret = 0; \ 3321 skb->csum_valid = 0; \ 3322 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3323 __ret = __skb_checksum_validate_complete(skb, \ 3324 complete, compute_pseudo(skb, proto)); \ 3325 __ret; \ 3326 }) 3327 3328 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3329 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3330 3331 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3332 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3333 3334 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3335 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3336 3337 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3338 compute_pseudo) \ 3339 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3340 3341 #define skb_checksum_simple_validate(skb) \ 3342 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3343 3344 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3345 { 3346 return (skb->ip_summed == CHECKSUM_NONE && 3347 skb->csum_valid && !skb->csum_bad); 3348 } 3349 3350 static inline void __skb_checksum_convert(struct sk_buff *skb, 3351 __sum16 check, __wsum pseudo) 3352 { 3353 skb->csum = ~pseudo; 3354 skb->ip_summed = CHECKSUM_COMPLETE; 3355 } 3356 3357 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3358 do { \ 3359 if (__skb_checksum_convert_check(skb)) \ 3360 __skb_checksum_convert(skb, check, \ 3361 compute_pseudo(skb, proto)); \ 3362 } while (0) 3363 3364 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3365 u16 start, u16 offset) 3366 { 3367 skb->ip_summed = CHECKSUM_PARTIAL; 3368 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3369 skb->csum_offset = offset - start; 3370 } 3371 3372 /* Update skbuf and packet to reflect the remote checksum offload operation. 3373 * When called, ptr indicates the starting point for skb->csum when 3374 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3375 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3376 */ 3377 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3378 int start, int offset, bool nopartial) 3379 { 3380 __wsum delta; 3381 3382 if (!nopartial) { 3383 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3384 return; 3385 } 3386 3387 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3388 __skb_checksum_complete(skb); 3389 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3390 } 3391 3392 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3393 3394 /* Adjust skb->csum since we changed the packet */ 3395 skb->csum = csum_add(skb->csum, delta); 3396 } 3397 3398 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3399 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3400 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3401 { 3402 if (nfct && atomic_dec_and_test(&nfct->use)) 3403 nf_conntrack_destroy(nfct); 3404 } 3405 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3406 { 3407 if (nfct) 3408 atomic_inc(&nfct->use); 3409 } 3410 #endif 3411 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3412 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3413 { 3414 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3415 kfree(nf_bridge); 3416 } 3417 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3418 { 3419 if (nf_bridge) 3420 atomic_inc(&nf_bridge->use); 3421 } 3422 #endif /* CONFIG_BRIDGE_NETFILTER */ 3423 static inline void nf_reset(struct sk_buff *skb) 3424 { 3425 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3426 nf_conntrack_put(skb->nfct); 3427 skb->nfct = NULL; 3428 #endif 3429 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3430 nf_bridge_put(skb->nf_bridge); 3431 skb->nf_bridge = NULL; 3432 #endif 3433 } 3434 3435 static inline void nf_reset_trace(struct sk_buff *skb) 3436 { 3437 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3438 skb->nf_trace = 0; 3439 #endif 3440 } 3441 3442 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3443 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3444 bool copy) 3445 { 3446 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3447 dst->nfct = src->nfct; 3448 nf_conntrack_get(src->nfct); 3449 if (copy) 3450 dst->nfctinfo = src->nfctinfo; 3451 #endif 3452 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3453 dst->nf_bridge = src->nf_bridge; 3454 nf_bridge_get(src->nf_bridge); 3455 #endif 3456 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3457 if (copy) 3458 dst->nf_trace = src->nf_trace; 3459 #endif 3460 } 3461 3462 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3463 { 3464 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3465 nf_conntrack_put(dst->nfct); 3466 #endif 3467 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3468 nf_bridge_put(dst->nf_bridge); 3469 #endif 3470 __nf_copy(dst, src, true); 3471 } 3472 3473 #ifdef CONFIG_NETWORK_SECMARK 3474 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3475 { 3476 to->secmark = from->secmark; 3477 } 3478 3479 static inline void skb_init_secmark(struct sk_buff *skb) 3480 { 3481 skb->secmark = 0; 3482 } 3483 #else 3484 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3485 { } 3486 3487 static inline void skb_init_secmark(struct sk_buff *skb) 3488 { } 3489 #endif 3490 3491 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3492 { 3493 return !skb->destructor && 3494 #if IS_ENABLED(CONFIG_XFRM) 3495 !skb->sp && 3496 #endif 3497 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3498 !skb->nfct && 3499 #endif 3500 !skb->_skb_refdst && 3501 !skb_has_frag_list(skb); 3502 } 3503 3504 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3505 { 3506 skb->queue_mapping = queue_mapping; 3507 } 3508 3509 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3510 { 3511 return skb->queue_mapping; 3512 } 3513 3514 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3515 { 3516 to->queue_mapping = from->queue_mapping; 3517 } 3518 3519 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3520 { 3521 skb->queue_mapping = rx_queue + 1; 3522 } 3523 3524 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3525 { 3526 return skb->queue_mapping - 1; 3527 } 3528 3529 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3530 { 3531 return skb->queue_mapping != 0; 3532 } 3533 3534 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3535 { 3536 #ifdef CONFIG_XFRM 3537 return skb->sp; 3538 #else 3539 return NULL; 3540 #endif 3541 } 3542 3543 /* Keeps track of mac header offset relative to skb->head. 3544 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3545 * For non-tunnel skb it points to skb_mac_header() and for 3546 * tunnel skb it points to outer mac header. 3547 * Keeps track of level of encapsulation of network headers. 3548 */ 3549 struct skb_gso_cb { 3550 int mac_offset; 3551 int encap_level; 3552 __u16 csum_start; 3553 }; 3554 #define SKB_SGO_CB_OFFSET 32 3555 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3556 3557 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3558 { 3559 return (skb_mac_header(inner_skb) - inner_skb->head) - 3560 SKB_GSO_CB(inner_skb)->mac_offset; 3561 } 3562 3563 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3564 { 3565 int new_headroom, headroom; 3566 int ret; 3567 3568 headroom = skb_headroom(skb); 3569 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3570 if (ret) 3571 return ret; 3572 3573 new_headroom = skb_headroom(skb); 3574 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3575 return 0; 3576 } 3577 3578 /* Compute the checksum for a gso segment. First compute the checksum value 3579 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3580 * then add in skb->csum (checksum from csum_start to end of packet). 3581 * skb->csum and csum_start are then updated to reflect the checksum of the 3582 * resultant packet starting from the transport header-- the resultant checksum 3583 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3584 * header. 3585 */ 3586 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3587 { 3588 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) - 3589 skb_transport_offset(skb); 3590 __wsum partial; 3591 3592 partial = csum_partial(skb_transport_header(skb), plen, skb->csum); 3593 skb->csum = res; 3594 SKB_GSO_CB(skb)->csum_start -= plen; 3595 3596 return csum_fold(partial); 3597 } 3598 3599 static inline bool skb_is_gso(const struct sk_buff *skb) 3600 { 3601 return skb_shinfo(skb)->gso_size; 3602 } 3603 3604 /* Note: Should be called only if skb_is_gso(skb) is true */ 3605 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3606 { 3607 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3608 } 3609 3610 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3611 3612 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3613 { 3614 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3615 * wanted then gso_type will be set. */ 3616 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3617 3618 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3619 unlikely(shinfo->gso_type == 0)) { 3620 __skb_warn_lro_forwarding(skb); 3621 return true; 3622 } 3623 return false; 3624 } 3625 3626 static inline void skb_forward_csum(struct sk_buff *skb) 3627 { 3628 /* Unfortunately we don't support this one. Any brave souls? */ 3629 if (skb->ip_summed == CHECKSUM_COMPLETE) 3630 skb->ip_summed = CHECKSUM_NONE; 3631 } 3632 3633 /** 3634 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3635 * @skb: skb to check 3636 * 3637 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3638 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3639 * use this helper, to document places where we make this assertion. 3640 */ 3641 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3642 { 3643 #ifdef DEBUG 3644 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3645 #endif 3646 } 3647 3648 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3649 3650 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3651 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 3652 unsigned int transport_len, 3653 __sum16(*skb_chkf)(struct sk_buff *skb)); 3654 3655 /** 3656 * skb_head_is_locked - Determine if the skb->head is locked down 3657 * @skb: skb to check 3658 * 3659 * The head on skbs build around a head frag can be removed if they are 3660 * not cloned. This function returns true if the skb head is locked down 3661 * due to either being allocated via kmalloc, or by being a clone with 3662 * multiple references to the head. 3663 */ 3664 static inline bool skb_head_is_locked(const struct sk_buff *skb) 3665 { 3666 return !skb->head_frag || skb_cloned(skb); 3667 } 3668 3669 /** 3670 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3671 * 3672 * @skb: GSO skb 3673 * 3674 * skb_gso_network_seglen is used to determine the real size of the 3675 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3676 * 3677 * The MAC/L2 header is not accounted for. 3678 */ 3679 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3680 { 3681 unsigned int hdr_len = skb_transport_header(skb) - 3682 skb_network_header(skb); 3683 return hdr_len + skb_gso_transport_seglen(skb); 3684 } 3685 3686 #endif /* __KERNEL__ */ 3687 #endif /* _LINUX_SKBUFF_H */ 3688