xref: /linux-6.15/include/linux/skbuff.h (revision 1f330c32)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <net/flow.h>
41 
42 /* The interface for checksum offload between the stack and networking drivers
43  * is as follows...
44  *
45  * A. IP checksum related features
46  *
47  * Drivers advertise checksum offload capabilities in the features of a device.
48  * From the stack's point of view these are capabilities offered by the driver,
49  * a driver typically only advertises features that it is capable of offloading
50  * to its device.
51  *
52  * The checksum related features are:
53  *
54  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
55  *			  IP (one's complement) checksum for any combination
56  *			  of protocols or protocol layering. The checksum is
57  *			  computed and set in a packet per the CHECKSUM_PARTIAL
58  *			  interface (see below).
59  *
60  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
61  *			  TCP or UDP packets over IPv4. These are specifically
62  *			  unencapsulated packets of the form IPv4|TCP or
63  *			  IPv4|UDP where the Protocol field in the IPv4 header
64  *			  is TCP or UDP. The IPv4 header may contain IP options
65  *			  This feature cannot be set in features for a device
66  *			  with NETIF_F_HW_CSUM also set. This feature is being
67  *			  DEPRECATED (see below).
68  *
69  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
70  *			  TCP or UDP packets over IPv6. These are specifically
71  *			  unencapsulated packets of the form IPv6|TCP or
72  *			  IPv4|UDP where the Next Header field in the IPv6
73  *			  header is either TCP or UDP. IPv6 extension headers
74  *			  are not supported with this feature. This feature
75  *			  cannot be set in features for a device with
76  *			  NETIF_F_HW_CSUM also set. This feature is being
77  *			  DEPRECATED (see below).
78  *
79  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
80  *			 This flag is used only used to disable the RX checksum
81  *			 feature for a device. The stack will accept receive
82  *			 checksum indication in packets received on a device
83  *			 regardless of whether NETIF_F_RXCSUM is set.
84  *
85  * B. Checksumming of received packets by device. Indication of checksum
86  *    verification is in set skb->ip_summed. Possible values are:
87  *
88  * CHECKSUM_NONE:
89  *
90  *   Device did not checksum this packet e.g. due to lack of capabilities.
91  *   The packet contains full (though not verified) checksum in packet but
92  *   not in skb->csum. Thus, skb->csum is undefined in this case.
93  *
94  * CHECKSUM_UNNECESSARY:
95  *
96  *   The hardware you're dealing with doesn't calculate the full checksum
97  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
98  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
99  *   if their checksums are okay. skb->csum is still undefined in this case
100  *   though. A driver or device must never modify the checksum field in the
101  *   packet even if checksum is verified.
102  *
103  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
104  *     TCP: IPv6 and IPv4.
105  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
106  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
107  *       may perform further validation in this case.
108  *     GRE: only if the checksum is present in the header.
109  *     SCTP: indicates the CRC in SCTP header has been validated.
110  *
111  *   skb->csum_level indicates the number of consecutive checksums found in
112  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
113  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
114  *   and a device is able to verify the checksums for UDP (possibly zero),
115  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
116  *   two. If the device were only able to verify the UDP checksum and not
117  *   GRE, either because it doesn't support GRE checksum of because GRE
118  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
119  *   not considered in this case).
120  *
121  * CHECKSUM_COMPLETE:
122  *
123  *   This is the most generic way. The device supplied checksum of the _whole_
124  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
125  *   hardware doesn't need to parse L3/L4 headers to implement this.
126  *
127  *   Note: Even if device supports only some protocols, but is able to produce
128  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129  *
130  * CHECKSUM_PARTIAL:
131  *
132  *   A checksum is set up to be offloaded to a device as described in the
133  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
134  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
135  *   on the same host, or it may be set in the input path in GRO or remote
136  *   checksum offload. For the purposes of checksum verification, the checksum
137  *   referred to by skb->csum_start + skb->csum_offset and any preceding
138  *   checksums in the packet are considered verified. Any checksums in the
139  *   packet that are after the checksum being offloaded are not considered to
140  *   be verified.
141  *
142  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
143  *    in the skb->ip_summed for a packet. Values are:
144  *
145  * CHECKSUM_PARTIAL:
146  *
147  *   The driver is required to checksum the packet as seen by hard_start_xmit()
148  *   from skb->csum_start up to the end, and to record/write the checksum at
149  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
150  *   csum_start and csum_offset values are valid values given the length and
151  *   offset of the packet, however they should not attempt to validate that the
152  *   checksum refers to a legitimate transport layer checksum-- it is the
153  *   purview of the stack to validate that csum_start and csum_offset are set
154  *   correctly.
155  *
156  *   When the stack requests checksum offload for a packet, the driver MUST
157  *   ensure that the checksum is set correctly. A driver can either offload the
158  *   checksum calculation to the device, or call skb_checksum_help (in the case
159  *   that the device does not support offload for a particular checksum).
160  *
161  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
162  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
163  *   checksum offload capability. If a	device has limited checksum capabilities
164  *   (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
165  *   described above) a helper function can be called to resolve
166  *   CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
167  *   function takes a spec argument that describes the protocol layer that is
168  *   supported for checksum offload and can be called for each packet. If a
169  *   packet does not match the specification for offload, skb_checksum_help
170  *   is called to resolve the checksum.
171  *
172  * CHECKSUM_NONE:
173  *
174  *   The skb was already checksummed by the protocol, or a checksum is not
175  *   required.
176  *
177  * CHECKSUM_UNNECESSARY:
178  *
179  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
180  *   output.
181  *
182  * CHECKSUM_COMPLETE:
183  *   Not used in checksum output. If a driver observes a packet with this value
184  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
185  *
186  * D. Non-IP checksum (CRC) offloads
187  *
188  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
189  *     offloading the SCTP CRC in a packet. To perform this offload the stack
190  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
191  *     accordingly. Note the there is no indication in the skbuff that the
192  *     CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
193  *     both IP checksum offload and SCTP CRC offload must verify which offload
194  *     is configured for a packet presumably by inspecting packet headers.
195  *
196  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197  *     offloading the FCOE CRC in a packet. To perform this offload the stack
198  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199  *     accordingly. Note the there is no indication in the skbuff that the
200  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201  *     both IP checksum offload and FCOE CRC offload must verify which offload
202  *     is configured for a packet presumably by inspecting packet headers.
203  *
204  * E. Checksumming on output with GSO.
205  *
206  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209  * part of the GSO operation is implied. If a checksum is being offloaded
210  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211  * are set to refer to the outermost checksum being offload (two offloaded
212  * checksums are possible with UDP encapsulation).
213  */
214 
215 /* Don't change this without changing skb_csum_unnecessary! */
216 #define CHECKSUM_NONE		0
217 #define CHECKSUM_UNNECESSARY	1
218 #define CHECKSUM_COMPLETE	2
219 #define CHECKSUM_PARTIAL	3
220 
221 /* Maximum value in skb->csum_level */
222 #define SKB_MAX_CSUM_LEVEL	3
223 
224 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
225 #define SKB_WITH_OVERHEAD(X)	\
226 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
227 #define SKB_MAX_ORDER(X, ORDER) \
228 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
229 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
230 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
231 
232 /* return minimum truesize of one skb containing X bytes of data */
233 #define SKB_TRUESIZE(X) ((X) +						\
234 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
235 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236 
237 struct net_device;
238 struct scatterlist;
239 struct pipe_inode_info;
240 struct iov_iter;
241 struct napi_struct;
242 
243 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
244 struct nf_conntrack {
245 	atomic_t use;
246 };
247 #endif
248 
249 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
250 struct nf_bridge_info {
251 	atomic_t		use;
252 	enum {
253 		BRNF_PROTO_UNCHANGED,
254 		BRNF_PROTO_8021Q,
255 		BRNF_PROTO_PPPOE
256 	} orig_proto:8;
257 	u8			pkt_otherhost:1;
258 	u8			in_prerouting:1;
259 	u8			bridged_dnat:1;
260 	__u16			frag_max_size;
261 	struct net_device	*physindev;
262 
263 	/* always valid & non-NULL from FORWARD on, for physdev match */
264 	struct net_device	*physoutdev;
265 	union {
266 		/* prerouting: detect dnat in orig/reply direction */
267 		__be32          ipv4_daddr;
268 		struct in6_addr ipv6_daddr;
269 
270 		/* after prerouting + nat detected: store original source
271 		 * mac since neigh resolution overwrites it, only used while
272 		 * skb is out in neigh layer.
273 		 */
274 		char neigh_header[8];
275 	};
276 };
277 #endif
278 
279 struct sk_buff_head {
280 	/* These two members must be first. */
281 	struct sk_buff	*next;
282 	struct sk_buff	*prev;
283 
284 	__u32		qlen;
285 	spinlock_t	lock;
286 };
287 
288 struct sk_buff;
289 
290 /* To allow 64K frame to be packed as single skb without frag_list we
291  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
292  * buffers which do not start on a page boundary.
293  *
294  * Since GRO uses frags we allocate at least 16 regardless of page
295  * size.
296  */
297 #if (65536/PAGE_SIZE + 1) < 16
298 #define MAX_SKB_FRAGS 16UL
299 #else
300 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
301 #endif
302 
303 typedef struct skb_frag_struct skb_frag_t;
304 
305 struct skb_frag_struct {
306 	struct {
307 		struct page *p;
308 	} page;
309 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
310 	__u32 page_offset;
311 	__u32 size;
312 #else
313 	__u16 page_offset;
314 	__u16 size;
315 #endif
316 };
317 
318 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
319 {
320 	return frag->size;
321 }
322 
323 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
324 {
325 	frag->size = size;
326 }
327 
328 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
329 {
330 	frag->size += delta;
331 }
332 
333 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
334 {
335 	frag->size -= delta;
336 }
337 
338 #define HAVE_HW_TIME_STAMP
339 
340 /**
341  * struct skb_shared_hwtstamps - hardware time stamps
342  * @hwtstamp:	hardware time stamp transformed into duration
343  *		since arbitrary point in time
344  *
345  * Software time stamps generated by ktime_get_real() are stored in
346  * skb->tstamp.
347  *
348  * hwtstamps can only be compared against other hwtstamps from
349  * the same device.
350  *
351  * This structure is attached to packets as part of the
352  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
353  */
354 struct skb_shared_hwtstamps {
355 	ktime_t	hwtstamp;
356 };
357 
358 /* Definitions for tx_flags in struct skb_shared_info */
359 enum {
360 	/* generate hardware time stamp */
361 	SKBTX_HW_TSTAMP = 1 << 0,
362 
363 	/* generate software time stamp when queueing packet to NIC */
364 	SKBTX_SW_TSTAMP = 1 << 1,
365 
366 	/* device driver is going to provide hardware time stamp */
367 	SKBTX_IN_PROGRESS = 1 << 2,
368 
369 	/* device driver supports TX zero-copy buffers */
370 	SKBTX_DEV_ZEROCOPY = 1 << 3,
371 
372 	/* generate wifi status information (where possible) */
373 	SKBTX_WIFI_STATUS = 1 << 4,
374 
375 	/* This indicates at least one fragment might be overwritten
376 	 * (as in vmsplice(), sendfile() ...)
377 	 * If we need to compute a TX checksum, we'll need to copy
378 	 * all frags to avoid possible bad checksum
379 	 */
380 	SKBTX_SHARED_FRAG = 1 << 5,
381 
382 	/* generate software time stamp when entering packet scheduling */
383 	SKBTX_SCHED_TSTAMP = 1 << 6,
384 
385 	/* generate software timestamp on peer data acknowledgment */
386 	SKBTX_ACK_TSTAMP = 1 << 7,
387 };
388 
389 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
390 				 SKBTX_SCHED_TSTAMP | \
391 				 SKBTX_ACK_TSTAMP)
392 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
393 
394 /*
395  * The callback notifies userspace to release buffers when skb DMA is done in
396  * lower device, the skb last reference should be 0 when calling this.
397  * The zerocopy_success argument is true if zero copy transmit occurred,
398  * false on data copy or out of memory error caused by data copy attempt.
399  * The ctx field is used to track device context.
400  * The desc field is used to track userspace buffer index.
401  */
402 struct ubuf_info {
403 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
404 	void *ctx;
405 	unsigned long desc;
406 };
407 
408 /* This data is invariant across clones and lives at
409  * the end of the header data, ie. at skb->end.
410  */
411 struct skb_shared_info {
412 	unsigned char	nr_frags;
413 	__u8		tx_flags;
414 	unsigned short	gso_size;
415 	/* Warning: this field is not always filled in (UFO)! */
416 	unsigned short	gso_segs;
417 	unsigned short  gso_type;
418 	struct sk_buff	*frag_list;
419 	struct skb_shared_hwtstamps hwtstamps;
420 	u32		tskey;
421 	__be32          ip6_frag_id;
422 
423 	/*
424 	 * Warning : all fields before dataref are cleared in __alloc_skb()
425 	 */
426 	atomic_t	dataref;
427 
428 	/* Intermediate layers must ensure that destructor_arg
429 	 * remains valid until skb destructor */
430 	void *		destructor_arg;
431 
432 	/* must be last field, see pskb_expand_head() */
433 	skb_frag_t	frags[MAX_SKB_FRAGS];
434 };
435 
436 /* We divide dataref into two halves.  The higher 16 bits hold references
437  * to the payload part of skb->data.  The lower 16 bits hold references to
438  * the entire skb->data.  A clone of a headerless skb holds the length of
439  * the header in skb->hdr_len.
440  *
441  * All users must obey the rule that the skb->data reference count must be
442  * greater than or equal to the payload reference count.
443  *
444  * Holding a reference to the payload part means that the user does not
445  * care about modifications to the header part of skb->data.
446  */
447 #define SKB_DATAREF_SHIFT 16
448 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
449 
450 
451 enum {
452 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
453 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
454 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
455 };
456 
457 enum {
458 	SKB_GSO_TCPV4 = 1 << 0,
459 	SKB_GSO_UDP = 1 << 1,
460 
461 	/* This indicates the skb is from an untrusted source. */
462 	SKB_GSO_DODGY = 1 << 2,
463 
464 	/* This indicates the tcp segment has CWR set. */
465 	SKB_GSO_TCP_ECN = 1 << 3,
466 
467 	SKB_GSO_TCPV6 = 1 << 4,
468 
469 	SKB_GSO_FCOE = 1 << 5,
470 
471 	SKB_GSO_GRE = 1 << 6,
472 
473 	SKB_GSO_GRE_CSUM = 1 << 7,
474 
475 	SKB_GSO_IPIP = 1 << 8,
476 
477 	SKB_GSO_SIT = 1 << 9,
478 
479 	SKB_GSO_UDP_TUNNEL = 1 << 10,
480 
481 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
482 
483 	SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
484 };
485 
486 #if BITS_PER_LONG > 32
487 #define NET_SKBUFF_DATA_USES_OFFSET 1
488 #endif
489 
490 #ifdef NET_SKBUFF_DATA_USES_OFFSET
491 typedef unsigned int sk_buff_data_t;
492 #else
493 typedef unsigned char *sk_buff_data_t;
494 #endif
495 
496 /**
497  * struct skb_mstamp - multi resolution time stamps
498  * @stamp_us: timestamp in us resolution
499  * @stamp_jiffies: timestamp in jiffies
500  */
501 struct skb_mstamp {
502 	union {
503 		u64		v64;
504 		struct {
505 			u32	stamp_us;
506 			u32	stamp_jiffies;
507 		};
508 	};
509 };
510 
511 /**
512  * skb_mstamp_get - get current timestamp
513  * @cl: place to store timestamps
514  */
515 static inline void skb_mstamp_get(struct skb_mstamp *cl)
516 {
517 	u64 val = local_clock();
518 
519 	do_div(val, NSEC_PER_USEC);
520 	cl->stamp_us = (u32)val;
521 	cl->stamp_jiffies = (u32)jiffies;
522 }
523 
524 /**
525  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
526  * @t1: pointer to newest sample
527  * @t0: pointer to oldest sample
528  */
529 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
530 				      const struct skb_mstamp *t0)
531 {
532 	s32 delta_us = t1->stamp_us - t0->stamp_us;
533 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
534 
535 	/* If delta_us is negative, this might be because interval is too big,
536 	 * or local_clock() drift is too big : fallback using jiffies.
537 	 */
538 	if (delta_us <= 0 ||
539 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
540 
541 		delta_us = jiffies_to_usecs(delta_jiffies);
542 
543 	return delta_us;
544 }
545 
546 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
547 				    const struct skb_mstamp *t0)
548 {
549 	s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
550 
551 	if (!diff)
552 		diff = t1->stamp_us - t0->stamp_us;
553 	return diff > 0;
554 }
555 
556 /**
557  *	struct sk_buff - socket buffer
558  *	@next: Next buffer in list
559  *	@prev: Previous buffer in list
560  *	@tstamp: Time we arrived/left
561  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
562  *	@sk: Socket we are owned by
563  *	@dev: Device we arrived on/are leaving by
564  *	@cb: Control buffer. Free for use by every layer. Put private vars here
565  *	@_skb_refdst: destination entry (with norefcount bit)
566  *	@sp: the security path, used for xfrm
567  *	@len: Length of actual data
568  *	@data_len: Data length
569  *	@mac_len: Length of link layer header
570  *	@hdr_len: writable header length of cloned skb
571  *	@csum: Checksum (must include start/offset pair)
572  *	@csum_start: Offset from skb->head where checksumming should start
573  *	@csum_offset: Offset from csum_start where checksum should be stored
574  *	@priority: Packet queueing priority
575  *	@ignore_df: allow local fragmentation
576  *	@cloned: Head may be cloned (check refcnt to be sure)
577  *	@ip_summed: Driver fed us an IP checksum
578  *	@nohdr: Payload reference only, must not modify header
579  *	@nfctinfo: Relationship of this skb to the connection
580  *	@pkt_type: Packet class
581  *	@fclone: skbuff clone status
582  *	@ipvs_property: skbuff is owned by ipvs
583  *	@peeked: this packet has been seen already, so stats have been
584  *		done for it, don't do them again
585  *	@nf_trace: netfilter packet trace flag
586  *	@protocol: Packet protocol from driver
587  *	@destructor: Destruct function
588  *	@nfct: Associated connection, if any
589  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
590  *	@skb_iif: ifindex of device we arrived on
591  *	@tc_index: Traffic control index
592  *	@tc_verd: traffic control verdict
593  *	@hash: the packet hash
594  *	@queue_mapping: Queue mapping for multiqueue devices
595  *	@xmit_more: More SKBs are pending for this queue
596  *	@ndisc_nodetype: router type (from link layer)
597  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
598  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
599  *		ports.
600  *	@sw_hash: indicates hash was computed in software stack
601  *	@wifi_acked_valid: wifi_acked was set
602  *	@wifi_acked: whether frame was acked on wifi or not
603  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
604   *	@napi_id: id of the NAPI struct this skb came from
605  *	@secmark: security marking
606  *	@offload_fwd_mark: fwding offload mark
607  *	@mark: Generic packet mark
608  *	@vlan_proto: vlan encapsulation protocol
609  *	@vlan_tci: vlan tag control information
610  *	@inner_protocol: Protocol (encapsulation)
611  *	@inner_transport_header: Inner transport layer header (encapsulation)
612  *	@inner_network_header: Network layer header (encapsulation)
613  *	@inner_mac_header: Link layer header (encapsulation)
614  *	@transport_header: Transport layer header
615  *	@network_header: Network layer header
616  *	@mac_header: Link layer header
617  *	@tail: Tail pointer
618  *	@end: End pointer
619  *	@head: Head of buffer
620  *	@data: Data head pointer
621  *	@truesize: Buffer size
622  *	@users: User count - see {datagram,tcp}.c
623  */
624 
625 struct sk_buff {
626 	union {
627 		struct {
628 			/* These two members must be first. */
629 			struct sk_buff		*next;
630 			struct sk_buff		*prev;
631 
632 			union {
633 				ktime_t		tstamp;
634 				struct skb_mstamp skb_mstamp;
635 			};
636 		};
637 		struct rb_node	rbnode; /* used in netem & tcp stack */
638 	};
639 	struct sock		*sk;
640 	struct net_device	*dev;
641 
642 	/*
643 	 * This is the control buffer. It is free to use for every
644 	 * layer. Please put your private variables there. If you
645 	 * want to keep them across layers you have to do a skb_clone()
646 	 * first. This is owned by whoever has the skb queued ATM.
647 	 */
648 	char			cb[48] __aligned(8);
649 
650 	unsigned long		_skb_refdst;
651 	void			(*destructor)(struct sk_buff *skb);
652 #ifdef CONFIG_XFRM
653 	struct	sec_path	*sp;
654 #endif
655 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
656 	struct nf_conntrack	*nfct;
657 #endif
658 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
659 	struct nf_bridge_info	*nf_bridge;
660 #endif
661 	unsigned int		len,
662 				data_len;
663 	__u16			mac_len,
664 				hdr_len;
665 
666 	/* Following fields are _not_ copied in __copy_skb_header()
667 	 * Note that queue_mapping is here mostly to fill a hole.
668 	 */
669 	kmemcheck_bitfield_begin(flags1);
670 	__u16			queue_mapping;
671 	__u8			cloned:1,
672 				nohdr:1,
673 				fclone:2,
674 				peeked:1,
675 				head_frag:1,
676 				xmit_more:1;
677 	/* one bit hole */
678 	kmemcheck_bitfield_end(flags1);
679 
680 	/* fields enclosed in headers_start/headers_end are copied
681 	 * using a single memcpy() in __copy_skb_header()
682 	 */
683 	/* private: */
684 	__u32			headers_start[0];
685 	/* public: */
686 
687 /* if you move pkt_type around you also must adapt those constants */
688 #ifdef __BIG_ENDIAN_BITFIELD
689 #define PKT_TYPE_MAX	(7 << 5)
690 #else
691 #define PKT_TYPE_MAX	7
692 #endif
693 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
694 
695 	__u8			__pkt_type_offset[0];
696 	__u8			pkt_type:3;
697 	__u8			pfmemalloc:1;
698 	__u8			ignore_df:1;
699 	__u8			nfctinfo:3;
700 
701 	__u8			nf_trace:1;
702 	__u8			ip_summed:2;
703 	__u8			ooo_okay:1;
704 	__u8			l4_hash:1;
705 	__u8			sw_hash:1;
706 	__u8			wifi_acked_valid:1;
707 	__u8			wifi_acked:1;
708 
709 	__u8			no_fcs:1;
710 	/* Indicates the inner headers are valid in the skbuff. */
711 	__u8			encapsulation:1;
712 	__u8			encap_hdr_csum:1;
713 	__u8			csum_valid:1;
714 	__u8			csum_complete_sw:1;
715 	__u8			csum_level:2;
716 	__u8			csum_bad:1;
717 
718 #ifdef CONFIG_IPV6_NDISC_NODETYPE
719 	__u8			ndisc_nodetype:2;
720 #endif
721 	__u8			ipvs_property:1;
722 	__u8			inner_protocol_type:1;
723 	__u8			remcsum_offload:1;
724 	/* 3 or 5 bit hole */
725 
726 #ifdef CONFIG_NET_SCHED
727 	__u16			tc_index;	/* traffic control index */
728 #ifdef CONFIG_NET_CLS_ACT
729 	__u16			tc_verd;	/* traffic control verdict */
730 #endif
731 #endif
732 
733 	union {
734 		__wsum		csum;
735 		struct {
736 			__u16	csum_start;
737 			__u16	csum_offset;
738 		};
739 	};
740 	__u32			priority;
741 	int			skb_iif;
742 	__u32			hash;
743 	__be16			vlan_proto;
744 	__u16			vlan_tci;
745 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
746 	union {
747 		unsigned int	napi_id;
748 		unsigned int	sender_cpu;
749 	};
750 #endif
751 	union {
752 #ifdef CONFIG_NETWORK_SECMARK
753 		__u32		secmark;
754 #endif
755 #ifdef CONFIG_NET_SWITCHDEV
756 		__u32		offload_fwd_mark;
757 #endif
758 	};
759 
760 	union {
761 		__u32		mark;
762 		__u32		reserved_tailroom;
763 	};
764 
765 	union {
766 		__be16		inner_protocol;
767 		__u8		inner_ipproto;
768 	};
769 
770 	__u16			inner_transport_header;
771 	__u16			inner_network_header;
772 	__u16			inner_mac_header;
773 
774 	__be16			protocol;
775 	__u16			transport_header;
776 	__u16			network_header;
777 	__u16			mac_header;
778 
779 	/* private: */
780 	__u32			headers_end[0];
781 	/* public: */
782 
783 	/* These elements must be at the end, see alloc_skb() for details.  */
784 	sk_buff_data_t		tail;
785 	sk_buff_data_t		end;
786 	unsigned char		*head,
787 				*data;
788 	unsigned int		truesize;
789 	atomic_t		users;
790 };
791 
792 #ifdef __KERNEL__
793 /*
794  *	Handling routines are only of interest to the kernel
795  */
796 #include <linux/slab.h>
797 
798 
799 #define SKB_ALLOC_FCLONE	0x01
800 #define SKB_ALLOC_RX		0x02
801 #define SKB_ALLOC_NAPI		0x04
802 
803 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
804 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
805 {
806 	return unlikely(skb->pfmemalloc);
807 }
808 
809 /*
810  * skb might have a dst pointer attached, refcounted or not.
811  * _skb_refdst low order bit is set if refcount was _not_ taken
812  */
813 #define SKB_DST_NOREF	1UL
814 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
815 
816 /**
817  * skb_dst - returns skb dst_entry
818  * @skb: buffer
819  *
820  * Returns skb dst_entry, regardless of reference taken or not.
821  */
822 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
823 {
824 	/* If refdst was not refcounted, check we still are in a
825 	 * rcu_read_lock section
826 	 */
827 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
828 		!rcu_read_lock_held() &&
829 		!rcu_read_lock_bh_held());
830 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
831 }
832 
833 /**
834  * skb_dst_set - sets skb dst
835  * @skb: buffer
836  * @dst: dst entry
837  *
838  * Sets skb dst, assuming a reference was taken on dst and should
839  * be released by skb_dst_drop()
840  */
841 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
842 {
843 	skb->_skb_refdst = (unsigned long)dst;
844 }
845 
846 /**
847  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
848  * @skb: buffer
849  * @dst: dst entry
850  *
851  * Sets skb dst, assuming a reference was not taken on dst.
852  * If dst entry is cached, we do not take reference and dst_release
853  * will be avoided by refdst_drop. If dst entry is not cached, we take
854  * reference, so that last dst_release can destroy the dst immediately.
855  */
856 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
857 {
858 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
859 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
860 }
861 
862 /**
863  * skb_dst_is_noref - Test if skb dst isn't refcounted
864  * @skb: buffer
865  */
866 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
867 {
868 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
869 }
870 
871 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
872 {
873 	return (struct rtable *)skb_dst(skb);
874 }
875 
876 void kfree_skb(struct sk_buff *skb);
877 void kfree_skb_list(struct sk_buff *segs);
878 void skb_tx_error(struct sk_buff *skb);
879 void consume_skb(struct sk_buff *skb);
880 void  __kfree_skb(struct sk_buff *skb);
881 extern struct kmem_cache *skbuff_head_cache;
882 
883 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
884 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
885 		      bool *fragstolen, int *delta_truesize);
886 
887 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
888 			    int node);
889 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
890 struct sk_buff *build_skb(void *data, unsigned int frag_size);
891 static inline struct sk_buff *alloc_skb(unsigned int size,
892 					gfp_t priority)
893 {
894 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
895 }
896 
897 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
898 				     unsigned long data_len,
899 				     int max_page_order,
900 				     int *errcode,
901 				     gfp_t gfp_mask);
902 
903 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
904 struct sk_buff_fclones {
905 	struct sk_buff	skb1;
906 
907 	struct sk_buff	skb2;
908 
909 	atomic_t	fclone_ref;
910 };
911 
912 /**
913  *	skb_fclone_busy - check if fclone is busy
914  *	@skb: buffer
915  *
916  * Returns true if skb is a fast clone, and its clone is not freed.
917  * Some drivers call skb_orphan() in their ndo_start_xmit(),
918  * so we also check that this didnt happen.
919  */
920 static inline bool skb_fclone_busy(const struct sock *sk,
921 				   const struct sk_buff *skb)
922 {
923 	const struct sk_buff_fclones *fclones;
924 
925 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
926 
927 	return skb->fclone == SKB_FCLONE_ORIG &&
928 	       atomic_read(&fclones->fclone_ref) > 1 &&
929 	       fclones->skb2.sk == sk;
930 }
931 
932 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
933 					       gfp_t priority)
934 {
935 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
936 }
937 
938 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
939 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
940 {
941 	return __alloc_skb_head(priority, -1);
942 }
943 
944 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
945 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
946 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
947 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
948 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
949 				   gfp_t gfp_mask, bool fclone);
950 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
951 					  gfp_t gfp_mask)
952 {
953 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
954 }
955 
956 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
957 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
958 				     unsigned int headroom);
959 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
960 				int newtailroom, gfp_t priority);
961 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
962 			int offset, int len);
963 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
964 		 int len);
965 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
966 int skb_pad(struct sk_buff *skb, int pad);
967 #define dev_kfree_skb(a)	consume_skb(a)
968 
969 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
970 			    int getfrag(void *from, char *to, int offset,
971 					int len, int odd, struct sk_buff *skb),
972 			    void *from, int length);
973 
974 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
975 			 int offset, size_t size);
976 
977 struct skb_seq_state {
978 	__u32		lower_offset;
979 	__u32		upper_offset;
980 	__u32		frag_idx;
981 	__u32		stepped_offset;
982 	struct sk_buff	*root_skb;
983 	struct sk_buff	*cur_skb;
984 	__u8		*frag_data;
985 };
986 
987 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
988 			  unsigned int to, struct skb_seq_state *st);
989 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
990 			  struct skb_seq_state *st);
991 void skb_abort_seq_read(struct skb_seq_state *st);
992 
993 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
994 			   unsigned int to, struct ts_config *config);
995 
996 /*
997  * Packet hash types specify the type of hash in skb_set_hash.
998  *
999  * Hash types refer to the protocol layer addresses which are used to
1000  * construct a packet's hash. The hashes are used to differentiate or identify
1001  * flows of the protocol layer for the hash type. Hash types are either
1002  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1003  *
1004  * Properties of hashes:
1005  *
1006  * 1) Two packets in different flows have different hash values
1007  * 2) Two packets in the same flow should have the same hash value
1008  *
1009  * A hash at a higher layer is considered to be more specific. A driver should
1010  * set the most specific hash possible.
1011  *
1012  * A driver cannot indicate a more specific hash than the layer at which a hash
1013  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1014  *
1015  * A driver may indicate a hash level which is less specific than the
1016  * actual layer the hash was computed on. For instance, a hash computed
1017  * at L4 may be considered an L3 hash. This should only be done if the
1018  * driver can't unambiguously determine that the HW computed the hash at
1019  * the higher layer. Note that the "should" in the second property above
1020  * permits this.
1021  */
1022 enum pkt_hash_types {
1023 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1024 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1025 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1026 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1027 };
1028 
1029 static inline void skb_clear_hash(struct sk_buff *skb)
1030 {
1031 	skb->hash = 0;
1032 	skb->sw_hash = 0;
1033 	skb->l4_hash = 0;
1034 }
1035 
1036 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1037 {
1038 	if (!skb->l4_hash)
1039 		skb_clear_hash(skb);
1040 }
1041 
1042 static inline void
1043 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1044 {
1045 	skb->l4_hash = is_l4;
1046 	skb->sw_hash = is_sw;
1047 	skb->hash = hash;
1048 }
1049 
1050 static inline void
1051 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1052 {
1053 	/* Used by drivers to set hash from HW */
1054 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1055 }
1056 
1057 static inline void
1058 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1059 {
1060 	__skb_set_hash(skb, hash, true, is_l4);
1061 }
1062 
1063 void __skb_get_hash(struct sk_buff *skb);
1064 u32 skb_get_poff(const struct sk_buff *skb);
1065 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1066 		   const struct flow_keys *keys, int hlen);
1067 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1068 			    void *data, int hlen_proto);
1069 
1070 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1071 					int thoff, u8 ip_proto)
1072 {
1073 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1074 }
1075 
1076 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1077 			     const struct flow_dissector_key *key,
1078 			     unsigned int key_count);
1079 
1080 bool __skb_flow_dissect(const struct sk_buff *skb,
1081 			struct flow_dissector *flow_dissector,
1082 			void *target_container,
1083 			void *data, __be16 proto, int nhoff, int hlen,
1084 			unsigned int flags);
1085 
1086 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1087 				    struct flow_dissector *flow_dissector,
1088 				    void *target_container, unsigned int flags)
1089 {
1090 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1091 				  NULL, 0, 0, 0, flags);
1092 }
1093 
1094 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1095 					      struct flow_keys *flow,
1096 					      unsigned int flags)
1097 {
1098 	memset(flow, 0, sizeof(*flow));
1099 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1100 				  NULL, 0, 0, 0, flags);
1101 }
1102 
1103 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1104 						  void *data, __be16 proto,
1105 						  int nhoff, int hlen,
1106 						  unsigned int flags)
1107 {
1108 	memset(flow, 0, sizeof(*flow));
1109 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1110 				  data, proto, nhoff, hlen, flags);
1111 }
1112 
1113 static inline __u32 skb_get_hash(struct sk_buff *skb)
1114 {
1115 	if (!skb->l4_hash && !skb->sw_hash)
1116 		__skb_get_hash(skb);
1117 
1118 	return skb->hash;
1119 }
1120 
1121 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1122 
1123 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1124 {
1125 	if (!skb->l4_hash && !skb->sw_hash) {
1126 		struct flow_keys keys;
1127 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1128 
1129 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1130 	}
1131 
1132 	return skb->hash;
1133 }
1134 
1135 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1136 
1137 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1138 {
1139 	if (!skb->l4_hash && !skb->sw_hash) {
1140 		struct flow_keys keys;
1141 		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1142 
1143 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1144 	}
1145 
1146 	return skb->hash;
1147 }
1148 
1149 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1150 
1151 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1152 {
1153 	return skb->hash;
1154 }
1155 
1156 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1157 {
1158 	to->hash = from->hash;
1159 	to->sw_hash = from->sw_hash;
1160 	to->l4_hash = from->l4_hash;
1161 };
1162 
1163 static inline void skb_sender_cpu_clear(struct sk_buff *skb)
1164 {
1165 }
1166 
1167 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1168 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1169 {
1170 	return skb->head + skb->end;
1171 }
1172 
1173 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1174 {
1175 	return skb->end;
1176 }
1177 #else
1178 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1179 {
1180 	return skb->end;
1181 }
1182 
1183 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1184 {
1185 	return skb->end - skb->head;
1186 }
1187 #endif
1188 
1189 /* Internal */
1190 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1191 
1192 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1193 {
1194 	return &skb_shinfo(skb)->hwtstamps;
1195 }
1196 
1197 /**
1198  *	skb_queue_empty - check if a queue is empty
1199  *	@list: queue head
1200  *
1201  *	Returns true if the queue is empty, false otherwise.
1202  */
1203 static inline int skb_queue_empty(const struct sk_buff_head *list)
1204 {
1205 	return list->next == (const struct sk_buff *) list;
1206 }
1207 
1208 /**
1209  *	skb_queue_is_last - check if skb is the last entry in the queue
1210  *	@list: queue head
1211  *	@skb: buffer
1212  *
1213  *	Returns true if @skb is the last buffer on the list.
1214  */
1215 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1216 				     const struct sk_buff *skb)
1217 {
1218 	return skb->next == (const struct sk_buff *) list;
1219 }
1220 
1221 /**
1222  *	skb_queue_is_first - check if skb is the first entry in the queue
1223  *	@list: queue head
1224  *	@skb: buffer
1225  *
1226  *	Returns true if @skb is the first buffer on the list.
1227  */
1228 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1229 				      const struct sk_buff *skb)
1230 {
1231 	return skb->prev == (const struct sk_buff *) list;
1232 }
1233 
1234 /**
1235  *	skb_queue_next - return the next packet in the queue
1236  *	@list: queue head
1237  *	@skb: current buffer
1238  *
1239  *	Return the next packet in @list after @skb.  It is only valid to
1240  *	call this if skb_queue_is_last() evaluates to false.
1241  */
1242 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1243 					     const struct sk_buff *skb)
1244 {
1245 	/* This BUG_ON may seem severe, but if we just return then we
1246 	 * are going to dereference garbage.
1247 	 */
1248 	BUG_ON(skb_queue_is_last(list, skb));
1249 	return skb->next;
1250 }
1251 
1252 /**
1253  *	skb_queue_prev - return the prev packet in the queue
1254  *	@list: queue head
1255  *	@skb: current buffer
1256  *
1257  *	Return the prev packet in @list before @skb.  It is only valid to
1258  *	call this if skb_queue_is_first() evaluates to false.
1259  */
1260 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1261 					     const struct sk_buff *skb)
1262 {
1263 	/* This BUG_ON may seem severe, but if we just return then we
1264 	 * are going to dereference garbage.
1265 	 */
1266 	BUG_ON(skb_queue_is_first(list, skb));
1267 	return skb->prev;
1268 }
1269 
1270 /**
1271  *	skb_get - reference buffer
1272  *	@skb: buffer to reference
1273  *
1274  *	Makes another reference to a socket buffer and returns a pointer
1275  *	to the buffer.
1276  */
1277 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1278 {
1279 	atomic_inc(&skb->users);
1280 	return skb;
1281 }
1282 
1283 /*
1284  * If users == 1, we are the only owner and are can avoid redundant
1285  * atomic change.
1286  */
1287 
1288 /**
1289  *	skb_cloned - is the buffer a clone
1290  *	@skb: buffer to check
1291  *
1292  *	Returns true if the buffer was generated with skb_clone() and is
1293  *	one of multiple shared copies of the buffer. Cloned buffers are
1294  *	shared data so must not be written to under normal circumstances.
1295  */
1296 static inline int skb_cloned(const struct sk_buff *skb)
1297 {
1298 	return skb->cloned &&
1299 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1300 }
1301 
1302 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1303 {
1304 	might_sleep_if(gfpflags_allow_blocking(pri));
1305 
1306 	if (skb_cloned(skb))
1307 		return pskb_expand_head(skb, 0, 0, pri);
1308 
1309 	return 0;
1310 }
1311 
1312 /**
1313  *	skb_header_cloned - is the header a clone
1314  *	@skb: buffer to check
1315  *
1316  *	Returns true if modifying the header part of the buffer requires
1317  *	the data to be copied.
1318  */
1319 static inline int skb_header_cloned(const struct sk_buff *skb)
1320 {
1321 	int dataref;
1322 
1323 	if (!skb->cloned)
1324 		return 0;
1325 
1326 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1327 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1328 	return dataref != 1;
1329 }
1330 
1331 /**
1332  *	skb_header_release - release reference to header
1333  *	@skb: buffer to operate on
1334  *
1335  *	Drop a reference to the header part of the buffer.  This is done
1336  *	by acquiring a payload reference.  You must not read from the header
1337  *	part of skb->data after this.
1338  *	Note : Check if you can use __skb_header_release() instead.
1339  */
1340 static inline void skb_header_release(struct sk_buff *skb)
1341 {
1342 	BUG_ON(skb->nohdr);
1343 	skb->nohdr = 1;
1344 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1345 }
1346 
1347 /**
1348  *	__skb_header_release - release reference to header
1349  *	@skb: buffer to operate on
1350  *
1351  *	Variant of skb_header_release() assuming skb is private to caller.
1352  *	We can avoid one atomic operation.
1353  */
1354 static inline void __skb_header_release(struct sk_buff *skb)
1355 {
1356 	skb->nohdr = 1;
1357 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1358 }
1359 
1360 
1361 /**
1362  *	skb_shared - is the buffer shared
1363  *	@skb: buffer to check
1364  *
1365  *	Returns true if more than one person has a reference to this
1366  *	buffer.
1367  */
1368 static inline int skb_shared(const struct sk_buff *skb)
1369 {
1370 	return atomic_read(&skb->users) != 1;
1371 }
1372 
1373 /**
1374  *	skb_share_check - check if buffer is shared and if so clone it
1375  *	@skb: buffer to check
1376  *	@pri: priority for memory allocation
1377  *
1378  *	If the buffer is shared the buffer is cloned and the old copy
1379  *	drops a reference. A new clone with a single reference is returned.
1380  *	If the buffer is not shared the original buffer is returned. When
1381  *	being called from interrupt status or with spinlocks held pri must
1382  *	be GFP_ATOMIC.
1383  *
1384  *	NULL is returned on a memory allocation failure.
1385  */
1386 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1387 {
1388 	might_sleep_if(gfpflags_allow_blocking(pri));
1389 	if (skb_shared(skb)) {
1390 		struct sk_buff *nskb = skb_clone(skb, pri);
1391 
1392 		if (likely(nskb))
1393 			consume_skb(skb);
1394 		else
1395 			kfree_skb(skb);
1396 		skb = nskb;
1397 	}
1398 	return skb;
1399 }
1400 
1401 /*
1402  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1403  *	packets to handle cases where we have a local reader and forward
1404  *	and a couple of other messy ones. The normal one is tcpdumping
1405  *	a packet thats being forwarded.
1406  */
1407 
1408 /**
1409  *	skb_unshare - make a copy of a shared buffer
1410  *	@skb: buffer to check
1411  *	@pri: priority for memory allocation
1412  *
1413  *	If the socket buffer is a clone then this function creates a new
1414  *	copy of the data, drops a reference count on the old copy and returns
1415  *	the new copy with the reference count at 1. If the buffer is not a clone
1416  *	the original buffer is returned. When called with a spinlock held or
1417  *	from interrupt state @pri must be %GFP_ATOMIC
1418  *
1419  *	%NULL is returned on a memory allocation failure.
1420  */
1421 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1422 					  gfp_t pri)
1423 {
1424 	might_sleep_if(gfpflags_allow_blocking(pri));
1425 	if (skb_cloned(skb)) {
1426 		struct sk_buff *nskb = skb_copy(skb, pri);
1427 
1428 		/* Free our shared copy */
1429 		if (likely(nskb))
1430 			consume_skb(skb);
1431 		else
1432 			kfree_skb(skb);
1433 		skb = nskb;
1434 	}
1435 	return skb;
1436 }
1437 
1438 /**
1439  *	skb_peek - peek at the head of an &sk_buff_head
1440  *	@list_: list to peek at
1441  *
1442  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1443  *	be careful with this one. A peek leaves the buffer on the
1444  *	list and someone else may run off with it. You must hold
1445  *	the appropriate locks or have a private queue to do this.
1446  *
1447  *	Returns %NULL for an empty list or a pointer to the head element.
1448  *	The reference count is not incremented and the reference is therefore
1449  *	volatile. Use with caution.
1450  */
1451 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1452 {
1453 	struct sk_buff *skb = list_->next;
1454 
1455 	if (skb == (struct sk_buff *)list_)
1456 		skb = NULL;
1457 	return skb;
1458 }
1459 
1460 /**
1461  *	skb_peek_next - peek skb following the given one from a queue
1462  *	@skb: skb to start from
1463  *	@list_: list to peek at
1464  *
1465  *	Returns %NULL when the end of the list is met or a pointer to the
1466  *	next element. The reference count is not incremented and the
1467  *	reference is therefore volatile. Use with caution.
1468  */
1469 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1470 		const struct sk_buff_head *list_)
1471 {
1472 	struct sk_buff *next = skb->next;
1473 
1474 	if (next == (struct sk_buff *)list_)
1475 		next = NULL;
1476 	return next;
1477 }
1478 
1479 /**
1480  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1481  *	@list_: list to peek at
1482  *
1483  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1484  *	be careful with this one. A peek leaves the buffer on the
1485  *	list and someone else may run off with it. You must hold
1486  *	the appropriate locks or have a private queue to do this.
1487  *
1488  *	Returns %NULL for an empty list or a pointer to the tail element.
1489  *	The reference count is not incremented and the reference is therefore
1490  *	volatile. Use with caution.
1491  */
1492 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1493 {
1494 	struct sk_buff *skb = list_->prev;
1495 
1496 	if (skb == (struct sk_buff *)list_)
1497 		skb = NULL;
1498 	return skb;
1499 
1500 }
1501 
1502 /**
1503  *	skb_queue_len	- get queue length
1504  *	@list_: list to measure
1505  *
1506  *	Return the length of an &sk_buff queue.
1507  */
1508 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1509 {
1510 	return list_->qlen;
1511 }
1512 
1513 /**
1514  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1515  *	@list: queue to initialize
1516  *
1517  *	This initializes only the list and queue length aspects of
1518  *	an sk_buff_head object.  This allows to initialize the list
1519  *	aspects of an sk_buff_head without reinitializing things like
1520  *	the spinlock.  It can also be used for on-stack sk_buff_head
1521  *	objects where the spinlock is known to not be used.
1522  */
1523 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1524 {
1525 	list->prev = list->next = (struct sk_buff *)list;
1526 	list->qlen = 0;
1527 }
1528 
1529 /*
1530  * This function creates a split out lock class for each invocation;
1531  * this is needed for now since a whole lot of users of the skb-queue
1532  * infrastructure in drivers have different locking usage (in hardirq)
1533  * than the networking core (in softirq only). In the long run either the
1534  * network layer or drivers should need annotation to consolidate the
1535  * main types of usage into 3 classes.
1536  */
1537 static inline void skb_queue_head_init(struct sk_buff_head *list)
1538 {
1539 	spin_lock_init(&list->lock);
1540 	__skb_queue_head_init(list);
1541 }
1542 
1543 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1544 		struct lock_class_key *class)
1545 {
1546 	skb_queue_head_init(list);
1547 	lockdep_set_class(&list->lock, class);
1548 }
1549 
1550 /*
1551  *	Insert an sk_buff on a list.
1552  *
1553  *	The "__skb_xxxx()" functions are the non-atomic ones that
1554  *	can only be called with interrupts disabled.
1555  */
1556 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1557 		struct sk_buff_head *list);
1558 static inline void __skb_insert(struct sk_buff *newsk,
1559 				struct sk_buff *prev, struct sk_buff *next,
1560 				struct sk_buff_head *list)
1561 {
1562 	newsk->next = next;
1563 	newsk->prev = prev;
1564 	next->prev  = prev->next = newsk;
1565 	list->qlen++;
1566 }
1567 
1568 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1569 				      struct sk_buff *prev,
1570 				      struct sk_buff *next)
1571 {
1572 	struct sk_buff *first = list->next;
1573 	struct sk_buff *last = list->prev;
1574 
1575 	first->prev = prev;
1576 	prev->next = first;
1577 
1578 	last->next = next;
1579 	next->prev = last;
1580 }
1581 
1582 /**
1583  *	skb_queue_splice - join two skb lists, this is designed for stacks
1584  *	@list: the new list to add
1585  *	@head: the place to add it in the first list
1586  */
1587 static inline void skb_queue_splice(const struct sk_buff_head *list,
1588 				    struct sk_buff_head *head)
1589 {
1590 	if (!skb_queue_empty(list)) {
1591 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1592 		head->qlen += list->qlen;
1593 	}
1594 }
1595 
1596 /**
1597  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1598  *	@list: the new list to add
1599  *	@head: the place to add it in the first list
1600  *
1601  *	The list at @list is reinitialised
1602  */
1603 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1604 					 struct sk_buff_head *head)
1605 {
1606 	if (!skb_queue_empty(list)) {
1607 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1608 		head->qlen += list->qlen;
1609 		__skb_queue_head_init(list);
1610 	}
1611 }
1612 
1613 /**
1614  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1615  *	@list: the new list to add
1616  *	@head: the place to add it in the first list
1617  */
1618 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1619 					 struct sk_buff_head *head)
1620 {
1621 	if (!skb_queue_empty(list)) {
1622 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1623 		head->qlen += list->qlen;
1624 	}
1625 }
1626 
1627 /**
1628  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1629  *	@list: the new list to add
1630  *	@head: the place to add it in the first list
1631  *
1632  *	Each of the lists is a queue.
1633  *	The list at @list is reinitialised
1634  */
1635 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1636 					      struct sk_buff_head *head)
1637 {
1638 	if (!skb_queue_empty(list)) {
1639 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1640 		head->qlen += list->qlen;
1641 		__skb_queue_head_init(list);
1642 	}
1643 }
1644 
1645 /**
1646  *	__skb_queue_after - queue a buffer at the list head
1647  *	@list: list to use
1648  *	@prev: place after this buffer
1649  *	@newsk: buffer to queue
1650  *
1651  *	Queue a buffer int the middle of a list. This function takes no locks
1652  *	and you must therefore hold required locks before calling it.
1653  *
1654  *	A buffer cannot be placed on two lists at the same time.
1655  */
1656 static inline void __skb_queue_after(struct sk_buff_head *list,
1657 				     struct sk_buff *prev,
1658 				     struct sk_buff *newsk)
1659 {
1660 	__skb_insert(newsk, prev, prev->next, list);
1661 }
1662 
1663 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1664 		struct sk_buff_head *list);
1665 
1666 static inline void __skb_queue_before(struct sk_buff_head *list,
1667 				      struct sk_buff *next,
1668 				      struct sk_buff *newsk)
1669 {
1670 	__skb_insert(newsk, next->prev, next, list);
1671 }
1672 
1673 /**
1674  *	__skb_queue_head - queue a buffer at the list head
1675  *	@list: list to use
1676  *	@newsk: buffer to queue
1677  *
1678  *	Queue a buffer at the start of a list. This function takes no locks
1679  *	and you must therefore hold required locks before calling it.
1680  *
1681  *	A buffer cannot be placed on two lists at the same time.
1682  */
1683 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1684 static inline void __skb_queue_head(struct sk_buff_head *list,
1685 				    struct sk_buff *newsk)
1686 {
1687 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1688 }
1689 
1690 /**
1691  *	__skb_queue_tail - queue a buffer at the list tail
1692  *	@list: list to use
1693  *	@newsk: buffer to queue
1694  *
1695  *	Queue a buffer at the end of a list. This function takes no locks
1696  *	and you must therefore hold required locks before calling it.
1697  *
1698  *	A buffer cannot be placed on two lists at the same time.
1699  */
1700 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1701 static inline void __skb_queue_tail(struct sk_buff_head *list,
1702 				   struct sk_buff *newsk)
1703 {
1704 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1705 }
1706 
1707 /*
1708  * remove sk_buff from list. _Must_ be called atomically, and with
1709  * the list known..
1710  */
1711 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1712 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1713 {
1714 	struct sk_buff *next, *prev;
1715 
1716 	list->qlen--;
1717 	next	   = skb->next;
1718 	prev	   = skb->prev;
1719 	skb->next  = skb->prev = NULL;
1720 	next->prev = prev;
1721 	prev->next = next;
1722 }
1723 
1724 /**
1725  *	__skb_dequeue - remove from the head of the queue
1726  *	@list: list to dequeue from
1727  *
1728  *	Remove the head of the list. This function does not take any locks
1729  *	so must be used with appropriate locks held only. The head item is
1730  *	returned or %NULL if the list is empty.
1731  */
1732 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1733 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1734 {
1735 	struct sk_buff *skb = skb_peek(list);
1736 	if (skb)
1737 		__skb_unlink(skb, list);
1738 	return skb;
1739 }
1740 
1741 /**
1742  *	__skb_dequeue_tail - remove from the tail of the queue
1743  *	@list: list to dequeue from
1744  *
1745  *	Remove the tail of the list. This function does not take any locks
1746  *	so must be used with appropriate locks held only. The tail item is
1747  *	returned or %NULL if the list is empty.
1748  */
1749 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1750 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1751 {
1752 	struct sk_buff *skb = skb_peek_tail(list);
1753 	if (skb)
1754 		__skb_unlink(skb, list);
1755 	return skb;
1756 }
1757 
1758 
1759 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1760 {
1761 	return skb->data_len;
1762 }
1763 
1764 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1765 {
1766 	return skb->len - skb->data_len;
1767 }
1768 
1769 static inline int skb_pagelen(const struct sk_buff *skb)
1770 {
1771 	int i, len = 0;
1772 
1773 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1774 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1775 	return len + skb_headlen(skb);
1776 }
1777 
1778 /**
1779  * __skb_fill_page_desc - initialise a paged fragment in an skb
1780  * @skb: buffer containing fragment to be initialised
1781  * @i: paged fragment index to initialise
1782  * @page: the page to use for this fragment
1783  * @off: the offset to the data with @page
1784  * @size: the length of the data
1785  *
1786  * Initialises the @i'th fragment of @skb to point to &size bytes at
1787  * offset @off within @page.
1788  *
1789  * Does not take any additional reference on the fragment.
1790  */
1791 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1792 					struct page *page, int off, int size)
1793 {
1794 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1795 
1796 	/*
1797 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1798 	 * that not all callers have unique ownership of the page but rely
1799 	 * on page_is_pfmemalloc doing the right thing(tm).
1800 	 */
1801 	frag->page.p		  = page;
1802 	frag->page_offset	  = off;
1803 	skb_frag_size_set(frag, size);
1804 
1805 	page = compound_head(page);
1806 	if (page_is_pfmemalloc(page))
1807 		skb->pfmemalloc	= true;
1808 }
1809 
1810 /**
1811  * skb_fill_page_desc - initialise a paged fragment in an skb
1812  * @skb: buffer containing fragment to be initialised
1813  * @i: paged fragment index to initialise
1814  * @page: the page to use for this fragment
1815  * @off: the offset to the data with @page
1816  * @size: the length of the data
1817  *
1818  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1819  * @skb to point to @size bytes at offset @off within @page. In
1820  * addition updates @skb such that @i is the last fragment.
1821  *
1822  * Does not take any additional reference on the fragment.
1823  */
1824 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1825 				      struct page *page, int off, int size)
1826 {
1827 	__skb_fill_page_desc(skb, i, page, off, size);
1828 	skb_shinfo(skb)->nr_frags = i + 1;
1829 }
1830 
1831 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1832 		     int size, unsigned int truesize);
1833 
1834 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1835 			  unsigned int truesize);
1836 
1837 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1838 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1839 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1840 
1841 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1842 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1843 {
1844 	return skb->head + skb->tail;
1845 }
1846 
1847 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1848 {
1849 	skb->tail = skb->data - skb->head;
1850 }
1851 
1852 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1853 {
1854 	skb_reset_tail_pointer(skb);
1855 	skb->tail += offset;
1856 }
1857 
1858 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1859 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1860 {
1861 	return skb->tail;
1862 }
1863 
1864 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1865 {
1866 	skb->tail = skb->data;
1867 }
1868 
1869 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1870 {
1871 	skb->tail = skb->data + offset;
1872 }
1873 
1874 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1875 
1876 /*
1877  *	Add data to an sk_buff
1878  */
1879 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1880 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1881 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1882 {
1883 	unsigned char *tmp = skb_tail_pointer(skb);
1884 	SKB_LINEAR_ASSERT(skb);
1885 	skb->tail += len;
1886 	skb->len  += len;
1887 	return tmp;
1888 }
1889 
1890 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1891 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1892 {
1893 	skb->data -= len;
1894 	skb->len  += len;
1895 	return skb->data;
1896 }
1897 
1898 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1899 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1900 {
1901 	skb->len -= len;
1902 	BUG_ON(skb->len < skb->data_len);
1903 	return skb->data += len;
1904 }
1905 
1906 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1907 {
1908 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1909 }
1910 
1911 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1912 
1913 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1914 {
1915 	if (len > skb_headlen(skb) &&
1916 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1917 		return NULL;
1918 	skb->len -= len;
1919 	return skb->data += len;
1920 }
1921 
1922 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1923 {
1924 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1925 }
1926 
1927 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1928 {
1929 	if (likely(len <= skb_headlen(skb)))
1930 		return 1;
1931 	if (unlikely(len > skb->len))
1932 		return 0;
1933 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1934 }
1935 
1936 /**
1937  *	skb_headroom - bytes at buffer head
1938  *	@skb: buffer to check
1939  *
1940  *	Return the number of bytes of free space at the head of an &sk_buff.
1941  */
1942 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1943 {
1944 	return skb->data - skb->head;
1945 }
1946 
1947 /**
1948  *	skb_tailroom - bytes at buffer end
1949  *	@skb: buffer to check
1950  *
1951  *	Return the number of bytes of free space at the tail of an sk_buff
1952  */
1953 static inline int skb_tailroom(const struct sk_buff *skb)
1954 {
1955 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1956 }
1957 
1958 /**
1959  *	skb_availroom - bytes at buffer end
1960  *	@skb: buffer to check
1961  *
1962  *	Return the number of bytes of free space at the tail of an sk_buff
1963  *	allocated by sk_stream_alloc()
1964  */
1965 static inline int skb_availroom(const struct sk_buff *skb)
1966 {
1967 	if (skb_is_nonlinear(skb))
1968 		return 0;
1969 
1970 	return skb->end - skb->tail - skb->reserved_tailroom;
1971 }
1972 
1973 /**
1974  *	skb_reserve - adjust headroom
1975  *	@skb: buffer to alter
1976  *	@len: bytes to move
1977  *
1978  *	Increase the headroom of an empty &sk_buff by reducing the tail
1979  *	room. This is only allowed for an empty buffer.
1980  */
1981 static inline void skb_reserve(struct sk_buff *skb, int len)
1982 {
1983 	skb->data += len;
1984 	skb->tail += len;
1985 }
1986 
1987 #define ENCAP_TYPE_ETHER	0
1988 #define ENCAP_TYPE_IPPROTO	1
1989 
1990 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1991 					  __be16 protocol)
1992 {
1993 	skb->inner_protocol = protocol;
1994 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1995 }
1996 
1997 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1998 					 __u8 ipproto)
1999 {
2000 	skb->inner_ipproto = ipproto;
2001 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2002 }
2003 
2004 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2005 {
2006 	skb->inner_mac_header = skb->mac_header;
2007 	skb->inner_network_header = skb->network_header;
2008 	skb->inner_transport_header = skb->transport_header;
2009 }
2010 
2011 static inline void skb_reset_mac_len(struct sk_buff *skb)
2012 {
2013 	skb->mac_len = skb->network_header - skb->mac_header;
2014 }
2015 
2016 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2017 							*skb)
2018 {
2019 	return skb->head + skb->inner_transport_header;
2020 }
2021 
2022 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2023 {
2024 	return skb_inner_transport_header(skb) - skb->data;
2025 }
2026 
2027 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2028 {
2029 	skb->inner_transport_header = skb->data - skb->head;
2030 }
2031 
2032 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2033 						   const int offset)
2034 {
2035 	skb_reset_inner_transport_header(skb);
2036 	skb->inner_transport_header += offset;
2037 }
2038 
2039 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2040 {
2041 	return skb->head + skb->inner_network_header;
2042 }
2043 
2044 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2045 {
2046 	skb->inner_network_header = skb->data - skb->head;
2047 }
2048 
2049 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2050 						const int offset)
2051 {
2052 	skb_reset_inner_network_header(skb);
2053 	skb->inner_network_header += offset;
2054 }
2055 
2056 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2057 {
2058 	return skb->head + skb->inner_mac_header;
2059 }
2060 
2061 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2062 {
2063 	skb->inner_mac_header = skb->data - skb->head;
2064 }
2065 
2066 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2067 					    const int offset)
2068 {
2069 	skb_reset_inner_mac_header(skb);
2070 	skb->inner_mac_header += offset;
2071 }
2072 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2073 {
2074 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2075 }
2076 
2077 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2078 {
2079 	return skb->head + skb->transport_header;
2080 }
2081 
2082 static inline void skb_reset_transport_header(struct sk_buff *skb)
2083 {
2084 	skb->transport_header = skb->data - skb->head;
2085 }
2086 
2087 static inline void skb_set_transport_header(struct sk_buff *skb,
2088 					    const int offset)
2089 {
2090 	skb_reset_transport_header(skb);
2091 	skb->transport_header += offset;
2092 }
2093 
2094 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2095 {
2096 	return skb->head + skb->network_header;
2097 }
2098 
2099 static inline void skb_reset_network_header(struct sk_buff *skb)
2100 {
2101 	skb->network_header = skb->data - skb->head;
2102 }
2103 
2104 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2105 {
2106 	skb_reset_network_header(skb);
2107 	skb->network_header += offset;
2108 }
2109 
2110 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2111 {
2112 	return skb->head + skb->mac_header;
2113 }
2114 
2115 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2116 {
2117 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2118 }
2119 
2120 static inline void skb_reset_mac_header(struct sk_buff *skb)
2121 {
2122 	skb->mac_header = skb->data - skb->head;
2123 }
2124 
2125 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2126 {
2127 	skb_reset_mac_header(skb);
2128 	skb->mac_header += offset;
2129 }
2130 
2131 static inline void skb_pop_mac_header(struct sk_buff *skb)
2132 {
2133 	skb->mac_header = skb->network_header;
2134 }
2135 
2136 static inline void skb_probe_transport_header(struct sk_buff *skb,
2137 					      const int offset_hint)
2138 {
2139 	struct flow_keys keys;
2140 
2141 	if (skb_transport_header_was_set(skb))
2142 		return;
2143 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2144 		skb_set_transport_header(skb, keys.control.thoff);
2145 	else
2146 		skb_set_transport_header(skb, offset_hint);
2147 }
2148 
2149 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2150 {
2151 	if (skb_mac_header_was_set(skb)) {
2152 		const unsigned char *old_mac = skb_mac_header(skb);
2153 
2154 		skb_set_mac_header(skb, -skb->mac_len);
2155 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2156 	}
2157 }
2158 
2159 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2160 {
2161 	return skb->csum_start - skb_headroom(skb);
2162 }
2163 
2164 static inline int skb_transport_offset(const struct sk_buff *skb)
2165 {
2166 	return skb_transport_header(skb) - skb->data;
2167 }
2168 
2169 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2170 {
2171 	return skb->transport_header - skb->network_header;
2172 }
2173 
2174 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2175 {
2176 	return skb->inner_transport_header - skb->inner_network_header;
2177 }
2178 
2179 static inline int skb_network_offset(const struct sk_buff *skb)
2180 {
2181 	return skb_network_header(skb) - skb->data;
2182 }
2183 
2184 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2185 {
2186 	return skb_inner_network_header(skb) - skb->data;
2187 }
2188 
2189 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2190 {
2191 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2192 }
2193 
2194 /*
2195  * CPUs often take a performance hit when accessing unaligned memory
2196  * locations. The actual performance hit varies, it can be small if the
2197  * hardware handles it or large if we have to take an exception and fix it
2198  * in software.
2199  *
2200  * Since an ethernet header is 14 bytes network drivers often end up with
2201  * the IP header at an unaligned offset. The IP header can be aligned by
2202  * shifting the start of the packet by 2 bytes. Drivers should do this
2203  * with:
2204  *
2205  * skb_reserve(skb, NET_IP_ALIGN);
2206  *
2207  * The downside to this alignment of the IP header is that the DMA is now
2208  * unaligned. On some architectures the cost of an unaligned DMA is high
2209  * and this cost outweighs the gains made by aligning the IP header.
2210  *
2211  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2212  * to be overridden.
2213  */
2214 #ifndef NET_IP_ALIGN
2215 #define NET_IP_ALIGN	2
2216 #endif
2217 
2218 /*
2219  * The networking layer reserves some headroom in skb data (via
2220  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2221  * the header has to grow. In the default case, if the header has to grow
2222  * 32 bytes or less we avoid the reallocation.
2223  *
2224  * Unfortunately this headroom changes the DMA alignment of the resulting
2225  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2226  * on some architectures. An architecture can override this value,
2227  * perhaps setting it to a cacheline in size (since that will maintain
2228  * cacheline alignment of the DMA). It must be a power of 2.
2229  *
2230  * Various parts of the networking layer expect at least 32 bytes of
2231  * headroom, you should not reduce this.
2232  *
2233  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2234  * to reduce average number of cache lines per packet.
2235  * get_rps_cpus() for example only access one 64 bytes aligned block :
2236  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2237  */
2238 #ifndef NET_SKB_PAD
2239 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2240 #endif
2241 
2242 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2243 
2244 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2245 {
2246 	if (unlikely(skb_is_nonlinear(skb))) {
2247 		WARN_ON(1);
2248 		return;
2249 	}
2250 	skb->len = len;
2251 	skb_set_tail_pointer(skb, len);
2252 }
2253 
2254 void skb_trim(struct sk_buff *skb, unsigned int len);
2255 
2256 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2257 {
2258 	if (skb->data_len)
2259 		return ___pskb_trim(skb, len);
2260 	__skb_trim(skb, len);
2261 	return 0;
2262 }
2263 
2264 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2265 {
2266 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2267 }
2268 
2269 /**
2270  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2271  *	@skb: buffer to alter
2272  *	@len: new length
2273  *
2274  *	This is identical to pskb_trim except that the caller knows that
2275  *	the skb is not cloned so we should never get an error due to out-
2276  *	of-memory.
2277  */
2278 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2279 {
2280 	int err = pskb_trim(skb, len);
2281 	BUG_ON(err);
2282 }
2283 
2284 /**
2285  *	skb_orphan - orphan a buffer
2286  *	@skb: buffer to orphan
2287  *
2288  *	If a buffer currently has an owner then we call the owner's
2289  *	destructor function and make the @skb unowned. The buffer continues
2290  *	to exist but is no longer charged to its former owner.
2291  */
2292 static inline void skb_orphan(struct sk_buff *skb)
2293 {
2294 	if (skb->destructor) {
2295 		skb->destructor(skb);
2296 		skb->destructor = NULL;
2297 		skb->sk		= NULL;
2298 	} else {
2299 		BUG_ON(skb->sk);
2300 	}
2301 }
2302 
2303 /**
2304  *	skb_orphan_frags - orphan the frags contained in a buffer
2305  *	@skb: buffer to orphan frags from
2306  *	@gfp_mask: allocation mask for replacement pages
2307  *
2308  *	For each frag in the SKB which needs a destructor (i.e. has an
2309  *	owner) create a copy of that frag and release the original
2310  *	page by calling the destructor.
2311  */
2312 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2313 {
2314 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2315 		return 0;
2316 	return skb_copy_ubufs(skb, gfp_mask);
2317 }
2318 
2319 /**
2320  *	__skb_queue_purge - empty a list
2321  *	@list: list to empty
2322  *
2323  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2324  *	the list and one reference dropped. This function does not take the
2325  *	list lock and the caller must hold the relevant locks to use it.
2326  */
2327 void skb_queue_purge(struct sk_buff_head *list);
2328 static inline void __skb_queue_purge(struct sk_buff_head *list)
2329 {
2330 	struct sk_buff *skb;
2331 	while ((skb = __skb_dequeue(list)) != NULL)
2332 		kfree_skb(skb);
2333 }
2334 
2335 void *netdev_alloc_frag(unsigned int fragsz);
2336 
2337 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2338 				   gfp_t gfp_mask);
2339 
2340 /**
2341  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2342  *	@dev: network device to receive on
2343  *	@length: length to allocate
2344  *
2345  *	Allocate a new &sk_buff and assign it a usage count of one. The
2346  *	buffer has unspecified headroom built in. Users should allocate
2347  *	the headroom they think they need without accounting for the
2348  *	built in space. The built in space is used for optimisations.
2349  *
2350  *	%NULL is returned if there is no free memory. Although this function
2351  *	allocates memory it can be called from an interrupt.
2352  */
2353 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2354 					       unsigned int length)
2355 {
2356 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2357 }
2358 
2359 /* legacy helper around __netdev_alloc_skb() */
2360 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2361 					      gfp_t gfp_mask)
2362 {
2363 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2364 }
2365 
2366 /* legacy helper around netdev_alloc_skb() */
2367 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2368 {
2369 	return netdev_alloc_skb(NULL, length);
2370 }
2371 
2372 
2373 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2374 		unsigned int length, gfp_t gfp)
2375 {
2376 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2377 
2378 	if (NET_IP_ALIGN && skb)
2379 		skb_reserve(skb, NET_IP_ALIGN);
2380 	return skb;
2381 }
2382 
2383 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2384 		unsigned int length)
2385 {
2386 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2387 }
2388 
2389 static inline void skb_free_frag(void *addr)
2390 {
2391 	__free_page_frag(addr);
2392 }
2393 
2394 void *napi_alloc_frag(unsigned int fragsz);
2395 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2396 				 unsigned int length, gfp_t gfp_mask);
2397 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2398 					     unsigned int length)
2399 {
2400 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2401 }
2402 
2403 /**
2404  * __dev_alloc_pages - allocate page for network Rx
2405  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2406  * @order: size of the allocation
2407  *
2408  * Allocate a new page.
2409  *
2410  * %NULL is returned if there is no free memory.
2411 */
2412 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2413 					     unsigned int order)
2414 {
2415 	/* This piece of code contains several assumptions.
2416 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2417 	 * 2.  The expectation is the user wants a compound page.
2418 	 * 3.  If requesting a order 0 page it will not be compound
2419 	 *     due to the check to see if order has a value in prep_new_page
2420 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2421 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2422 	 */
2423 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2424 
2425 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2426 }
2427 
2428 static inline struct page *dev_alloc_pages(unsigned int order)
2429 {
2430 	return __dev_alloc_pages(GFP_ATOMIC, order);
2431 }
2432 
2433 /**
2434  * __dev_alloc_page - allocate a page for network Rx
2435  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2436  *
2437  * Allocate a new page.
2438  *
2439  * %NULL is returned if there is no free memory.
2440  */
2441 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2442 {
2443 	return __dev_alloc_pages(gfp_mask, 0);
2444 }
2445 
2446 static inline struct page *dev_alloc_page(void)
2447 {
2448 	return __dev_alloc_page(GFP_ATOMIC);
2449 }
2450 
2451 /**
2452  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2453  *	@page: The page that was allocated from skb_alloc_page
2454  *	@skb: The skb that may need pfmemalloc set
2455  */
2456 static inline void skb_propagate_pfmemalloc(struct page *page,
2457 					     struct sk_buff *skb)
2458 {
2459 	if (page_is_pfmemalloc(page))
2460 		skb->pfmemalloc = true;
2461 }
2462 
2463 /**
2464  * skb_frag_page - retrieve the page referred to by a paged fragment
2465  * @frag: the paged fragment
2466  *
2467  * Returns the &struct page associated with @frag.
2468  */
2469 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2470 {
2471 	return frag->page.p;
2472 }
2473 
2474 /**
2475  * __skb_frag_ref - take an addition reference on a paged fragment.
2476  * @frag: the paged fragment
2477  *
2478  * Takes an additional reference on the paged fragment @frag.
2479  */
2480 static inline void __skb_frag_ref(skb_frag_t *frag)
2481 {
2482 	get_page(skb_frag_page(frag));
2483 }
2484 
2485 /**
2486  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2487  * @skb: the buffer
2488  * @f: the fragment offset.
2489  *
2490  * Takes an additional reference on the @f'th paged fragment of @skb.
2491  */
2492 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2493 {
2494 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2495 }
2496 
2497 /**
2498  * __skb_frag_unref - release a reference on a paged fragment.
2499  * @frag: the paged fragment
2500  *
2501  * Releases a reference on the paged fragment @frag.
2502  */
2503 static inline void __skb_frag_unref(skb_frag_t *frag)
2504 {
2505 	put_page(skb_frag_page(frag));
2506 }
2507 
2508 /**
2509  * skb_frag_unref - release a reference on a paged fragment of an skb.
2510  * @skb: the buffer
2511  * @f: the fragment offset
2512  *
2513  * Releases a reference on the @f'th paged fragment of @skb.
2514  */
2515 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2516 {
2517 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2518 }
2519 
2520 /**
2521  * skb_frag_address - gets the address of the data contained in a paged fragment
2522  * @frag: the paged fragment buffer
2523  *
2524  * Returns the address of the data within @frag. The page must already
2525  * be mapped.
2526  */
2527 static inline void *skb_frag_address(const skb_frag_t *frag)
2528 {
2529 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2530 }
2531 
2532 /**
2533  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2534  * @frag: the paged fragment buffer
2535  *
2536  * Returns the address of the data within @frag. Checks that the page
2537  * is mapped and returns %NULL otherwise.
2538  */
2539 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2540 {
2541 	void *ptr = page_address(skb_frag_page(frag));
2542 	if (unlikely(!ptr))
2543 		return NULL;
2544 
2545 	return ptr + frag->page_offset;
2546 }
2547 
2548 /**
2549  * __skb_frag_set_page - sets the page contained in a paged fragment
2550  * @frag: the paged fragment
2551  * @page: the page to set
2552  *
2553  * Sets the fragment @frag to contain @page.
2554  */
2555 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2556 {
2557 	frag->page.p = page;
2558 }
2559 
2560 /**
2561  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2562  * @skb: the buffer
2563  * @f: the fragment offset
2564  * @page: the page to set
2565  *
2566  * Sets the @f'th fragment of @skb to contain @page.
2567  */
2568 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2569 				     struct page *page)
2570 {
2571 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2572 }
2573 
2574 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2575 
2576 /**
2577  * skb_frag_dma_map - maps a paged fragment via the DMA API
2578  * @dev: the device to map the fragment to
2579  * @frag: the paged fragment to map
2580  * @offset: the offset within the fragment (starting at the
2581  *          fragment's own offset)
2582  * @size: the number of bytes to map
2583  * @dir: the direction of the mapping (%PCI_DMA_*)
2584  *
2585  * Maps the page associated with @frag to @device.
2586  */
2587 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2588 					  const skb_frag_t *frag,
2589 					  size_t offset, size_t size,
2590 					  enum dma_data_direction dir)
2591 {
2592 	return dma_map_page(dev, skb_frag_page(frag),
2593 			    frag->page_offset + offset, size, dir);
2594 }
2595 
2596 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2597 					gfp_t gfp_mask)
2598 {
2599 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2600 }
2601 
2602 
2603 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2604 						  gfp_t gfp_mask)
2605 {
2606 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2607 }
2608 
2609 
2610 /**
2611  *	skb_clone_writable - is the header of a clone writable
2612  *	@skb: buffer to check
2613  *	@len: length up to which to write
2614  *
2615  *	Returns true if modifying the header part of the cloned buffer
2616  *	does not requires the data to be copied.
2617  */
2618 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2619 {
2620 	return !skb_header_cloned(skb) &&
2621 	       skb_headroom(skb) + len <= skb->hdr_len;
2622 }
2623 
2624 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2625 			    int cloned)
2626 {
2627 	int delta = 0;
2628 
2629 	if (headroom > skb_headroom(skb))
2630 		delta = headroom - skb_headroom(skb);
2631 
2632 	if (delta || cloned)
2633 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2634 					GFP_ATOMIC);
2635 	return 0;
2636 }
2637 
2638 /**
2639  *	skb_cow - copy header of skb when it is required
2640  *	@skb: buffer to cow
2641  *	@headroom: needed headroom
2642  *
2643  *	If the skb passed lacks sufficient headroom or its data part
2644  *	is shared, data is reallocated. If reallocation fails, an error
2645  *	is returned and original skb is not changed.
2646  *
2647  *	The result is skb with writable area skb->head...skb->tail
2648  *	and at least @headroom of space at head.
2649  */
2650 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2651 {
2652 	return __skb_cow(skb, headroom, skb_cloned(skb));
2653 }
2654 
2655 /**
2656  *	skb_cow_head - skb_cow but only making the head writable
2657  *	@skb: buffer to cow
2658  *	@headroom: needed headroom
2659  *
2660  *	This function is identical to skb_cow except that we replace the
2661  *	skb_cloned check by skb_header_cloned.  It should be used when
2662  *	you only need to push on some header and do not need to modify
2663  *	the data.
2664  */
2665 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2666 {
2667 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2668 }
2669 
2670 /**
2671  *	skb_padto	- pad an skbuff up to a minimal size
2672  *	@skb: buffer to pad
2673  *	@len: minimal length
2674  *
2675  *	Pads up a buffer to ensure the trailing bytes exist and are
2676  *	blanked. If the buffer already contains sufficient data it
2677  *	is untouched. Otherwise it is extended. Returns zero on
2678  *	success. The skb is freed on error.
2679  */
2680 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2681 {
2682 	unsigned int size = skb->len;
2683 	if (likely(size >= len))
2684 		return 0;
2685 	return skb_pad(skb, len - size);
2686 }
2687 
2688 /**
2689  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2690  *	@skb: buffer to pad
2691  *	@len: minimal length
2692  *
2693  *	Pads up a buffer to ensure the trailing bytes exist and are
2694  *	blanked. If the buffer already contains sufficient data it
2695  *	is untouched. Otherwise it is extended. Returns zero on
2696  *	success. The skb is freed on error.
2697  */
2698 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2699 {
2700 	unsigned int size = skb->len;
2701 
2702 	if (unlikely(size < len)) {
2703 		len -= size;
2704 		if (skb_pad(skb, len))
2705 			return -ENOMEM;
2706 		__skb_put(skb, len);
2707 	}
2708 	return 0;
2709 }
2710 
2711 static inline int skb_add_data(struct sk_buff *skb,
2712 			       struct iov_iter *from, int copy)
2713 {
2714 	const int off = skb->len;
2715 
2716 	if (skb->ip_summed == CHECKSUM_NONE) {
2717 		__wsum csum = 0;
2718 		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2719 					    &csum, from) == copy) {
2720 			skb->csum = csum_block_add(skb->csum, csum, off);
2721 			return 0;
2722 		}
2723 	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2724 		return 0;
2725 
2726 	__skb_trim(skb, off);
2727 	return -EFAULT;
2728 }
2729 
2730 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2731 				    const struct page *page, int off)
2732 {
2733 	if (i) {
2734 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2735 
2736 		return page == skb_frag_page(frag) &&
2737 		       off == frag->page_offset + skb_frag_size(frag);
2738 	}
2739 	return false;
2740 }
2741 
2742 static inline int __skb_linearize(struct sk_buff *skb)
2743 {
2744 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2745 }
2746 
2747 /**
2748  *	skb_linearize - convert paged skb to linear one
2749  *	@skb: buffer to linarize
2750  *
2751  *	If there is no free memory -ENOMEM is returned, otherwise zero
2752  *	is returned and the old skb data released.
2753  */
2754 static inline int skb_linearize(struct sk_buff *skb)
2755 {
2756 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2757 }
2758 
2759 /**
2760  * skb_has_shared_frag - can any frag be overwritten
2761  * @skb: buffer to test
2762  *
2763  * Return true if the skb has at least one frag that might be modified
2764  * by an external entity (as in vmsplice()/sendfile())
2765  */
2766 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2767 {
2768 	return skb_is_nonlinear(skb) &&
2769 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2770 }
2771 
2772 /**
2773  *	skb_linearize_cow - make sure skb is linear and writable
2774  *	@skb: buffer to process
2775  *
2776  *	If there is no free memory -ENOMEM is returned, otherwise zero
2777  *	is returned and the old skb data released.
2778  */
2779 static inline int skb_linearize_cow(struct sk_buff *skb)
2780 {
2781 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2782 	       __skb_linearize(skb) : 0;
2783 }
2784 
2785 /**
2786  *	skb_postpull_rcsum - update checksum for received skb after pull
2787  *	@skb: buffer to update
2788  *	@start: start of data before pull
2789  *	@len: length of data pulled
2790  *
2791  *	After doing a pull on a received packet, you need to call this to
2792  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2793  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2794  */
2795 
2796 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2797 				      const void *start, unsigned int len)
2798 {
2799 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2800 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2801 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2802 		 skb_checksum_start_offset(skb) < 0)
2803 		skb->ip_summed = CHECKSUM_NONE;
2804 }
2805 
2806 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2807 
2808 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2809 				      const void *start, unsigned int len)
2810 {
2811 	/* For performing the reverse operation to skb_postpull_rcsum(),
2812 	 * we can instead of ...
2813 	 *
2814 	 *   skb->csum = csum_add(skb->csum, csum_partial(start, len, 0));
2815 	 *
2816 	 * ... just use this equivalent version here to save a few
2817 	 * instructions. Feeding csum of 0 in csum_partial() and later
2818 	 * on adding skb->csum is equivalent to feed skb->csum in the
2819 	 * first place.
2820 	 */
2821 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2822 		skb->csum = csum_partial(start, len, skb->csum);
2823 }
2824 
2825 /**
2826  *	pskb_trim_rcsum - trim received skb and update checksum
2827  *	@skb: buffer to trim
2828  *	@len: new length
2829  *
2830  *	This is exactly the same as pskb_trim except that it ensures the
2831  *	checksum of received packets are still valid after the operation.
2832  */
2833 
2834 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2835 {
2836 	if (likely(len >= skb->len))
2837 		return 0;
2838 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2839 		skb->ip_summed = CHECKSUM_NONE;
2840 	return __pskb_trim(skb, len);
2841 }
2842 
2843 #define skb_queue_walk(queue, skb) \
2844 		for (skb = (queue)->next;					\
2845 		     skb != (struct sk_buff *)(queue);				\
2846 		     skb = skb->next)
2847 
2848 #define skb_queue_walk_safe(queue, skb, tmp)					\
2849 		for (skb = (queue)->next, tmp = skb->next;			\
2850 		     skb != (struct sk_buff *)(queue);				\
2851 		     skb = tmp, tmp = skb->next)
2852 
2853 #define skb_queue_walk_from(queue, skb)						\
2854 		for (; skb != (struct sk_buff *)(queue);			\
2855 		     skb = skb->next)
2856 
2857 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2858 		for (tmp = skb->next;						\
2859 		     skb != (struct sk_buff *)(queue);				\
2860 		     skb = tmp, tmp = skb->next)
2861 
2862 #define skb_queue_reverse_walk(queue, skb) \
2863 		for (skb = (queue)->prev;					\
2864 		     skb != (struct sk_buff *)(queue);				\
2865 		     skb = skb->prev)
2866 
2867 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2868 		for (skb = (queue)->prev, tmp = skb->prev;			\
2869 		     skb != (struct sk_buff *)(queue);				\
2870 		     skb = tmp, tmp = skb->prev)
2871 
2872 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2873 		for (tmp = skb->prev;						\
2874 		     skb != (struct sk_buff *)(queue);				\
2875 		     skb = tmp, tmp = skb->prev)
2876 
2877 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2878 {
2879 	return skb_shinfo(skb)->frag_list != NULL;
2880 }
2881 
2882 static inline void skb_frag_list_init(struct sk_buff *skb)
2883 {
2884 	skb_shinfo(skb)->frag_list = NULL;
2885 }
2886 
2887 #define skb_walk_frags(skb, iter)	\
2888 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2889 
2890 
2891 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
2892 				const struct sk_buff *skb);
2893 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
2894 					int *peeked, int *off, int *err,
2895 					struct sk_buff **last);
2896 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2897 				    int *peeked, int *off, int *err);
2898 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2899 				  int *err);
2900 unsigned int datagram_poll(struct file *file, struct socket *sock,
2901 			   struct poll_table_struct *wait);
2902 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2903 			   struct iov_iter *to, int size);
2904 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2905 					struct msghdr *msg, int size)
2906 {
2907 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2908 }
2909 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2910 				   struct msghdr *msg);
2911 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2912 				 struct iov_iter *from, int len);
2913 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2914 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2915 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2916 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2917 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2918 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2919 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2920 			      int len, __wsum csum);
2921 ssize_t skb_socket_splice(struct sock *sk,
2922 			  struct pipe_inode_info *pipe,
2923 			  struct splice_pipe_desc *spd);
2924 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2925 		    struct pipe_inode_info *pipe, unsigned int len,
2926 		    unsigned int flags,
2927 		    ssize_t (*splice_cb)(struct sock *,
2928 					 struct pipe_inode_info *,
2929 					 struct splice_pipe_desc *));
2930 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2931 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2932 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2933 		 int len, int hlen);
2934 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2935 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2936 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2937 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2938 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2939 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2940 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2941 int skb_vlan_pop(struct sk_buff *skb);
2942 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2943 
2944 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2945 {
2946 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2947 }
2948 
2949 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2950 {
2951 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2952 }
2953 
2954 struct skb_checksum_ops {
2955 	__wsum (*update)(const void *mem, int len, __wsum wsum);
2956 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2957 };
2958 
2959 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2960 		      __wsum csum, const struct skb_checksum_ops *ops);
2961 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2962 		    __wsum csum);
2963 
2964 static inline void * __must_check
2965 __skb_header_pointer(const struct sk_buff *skb, int offset,
2966 		     int len, void *data, int hlen, void *buffer)
2967 {
2968 	if (hlen - offset >= len)
2969 		return data + offset;
2970 
2971 	if (!skb ||
2972 	    skb_copy_bits(skb, offset, buffer, len) < 0)
2973 		return NULL;
2974 
2975 	return buffer;
2976 }
2977 
2978 static inline void * __must_check
2979 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
2980 {
2981 	return __skb_header_pointer(skb, offset, len, skb->data,
2982 				    skb_headlen(skb), buffer);
2983 }
2984 
2985 /**
2986  *	skb_needs_linearize - check if we need to linearize a given skb
2987  *			      depending on the given device features.
2988  *	@skb: socket buffer to check
2989  *	@features: net device features
2990  *
2991  *	Returns true if either:
2992  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2993  *	2. skb is fragmented and the device does not support SG.
2994  */
2995 static inline bool skb_needs_linearize(struct sk_buff *skb,
2996 				       netdev_features_t features)
2997 {
2998 	return skb_is_nonlinear(skb) &&
2999 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3000 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3001 }
3002 
3003 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3004 					     void *to,
3005 					     const unsigned int len)
3006 {
3007 	memcpy(to, skb->data, len);
3008 }
3009 
3010 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3011 						    const int offset, void *to,
3012 						    const unsigned int len)
3013 {
3014 	memcpy(to, skb->data + offset, len);
3015 }
3016 
3017 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3018 					   const void *from,
3019 					   const unsigned int len)
3020 {
3021 	memcpy(skb->data, from, len);
3022 }
3023 
3024 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3025 						  const int offset,
3026 						  const void *from,
3027 						  const unsigned int len)
3028 {
3029 	memcpy(skb->data + offset, from, len);
3030 }
3031 
3032 void skb_init(void);
3033 
3034 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3035 {
3036 	return skb->tstamp;
3037 }
3038 
3039 /**
3040  *	skb_get_timestamp - get timestamp from a skb
3041  *	@skb: skb to get stamp from
3042  *	@stamp: pointer to struct timeval to store stamp in
3043  *
3044  *	Timestamps are stored in the skb as offsets to a base timestamp.
3045  *	This function converts the offset back to a struct timeval and stores
3046  *	it in stamp.
3047  */
3048 static inline void skb_get_timestamp(const struct sk_buff *skb,
3049 				     struct timeval *stamp)
3050 {
3051 	*stamp = ktime_to_timeval(skb->tstamp);
3052 }
3053 
3054 static inline void skb_get_timestampns(const struct sk_buff *skb,
3055 				       struct timespec *stamp)
3056 {
3057 	*stamp = ktime_to_timespec(skb->tstamp);
3058 }
3059 
3060 static inline void __net_timestamp(struct sk_buff *skb)
3061 {
3062 	skb->tstamp = ktime_get_real();
3063 }
3064 
3065 static inline ktime_t net_timedelta(ktime_t t)
3066 {
3067 	return ktime_sub(ktime_get_real(), t);
3068 }
3069 
3070 static inline ktime_t net_invalid_timestamp(void)
3071 {
3072 	return ktime_set(0, 0);
3073 }
3074 
3075 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3076 
3077 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3078 
3079 void skb_clone_tx_timestamp(struct sk_buff *skb);
3080 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3081 
3082 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3083 
3084 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3085 {
3086 }
3087 
3088 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3089 {
3090 	return false;
3091 }
3092 
3093 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3094 
3095 /**
3096  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3097  *
3098  * PHY drivers may accept clones of transmitted packets for
3099  * timestamping via their phy_driver.txtstamp method. These drivers
3100  * must call this function to return the skb back to the stack with a
3101  * timestamp.
3102  *
3103  * @skb: clone of the the original outgoing packet
3104  * @hwtstamps: hardware time stamps
3105  *
3106  */
3107 void skb_complete_tx_timestamp(struct sk_buff *skb,
3108 			       struct skb_shared_hwtstamps *hwtstamps);
3109 
3110 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3111 		     struct skb_shared_hwtstamps *hwtstamps,
3112 		     struct sock *sk, int tstype);
3113 
3114 /**
3115  * skb_tstamp_tx - queue clone of skb with send time stamps
3116  * @orig_skb:	the original outgoing packet
3117  * @hwtstamps:	hardware time stamps, may be NULL if not available
3118  *
3119  * If the skb has a socket associated, then this function clones the
3120  * skb (thus sharing the actual data and optional structures), stores
3121  * the optional hardware time stamping information (if non NULL) or
3122  * generates a software time stamp (otherwise), then queues the clone
3123  * to the error queue of the socket.  Errors are silently ignored.
3124  */
3125 void skb_tstamp_tx(struct sk_buff *orig_skb,
3126 		   struct skb_shared_hwtstamps *hwtstamps);
3127 
3128 static inline void sw_tx_timestamp(struct sk_buff *skb)
3129 {
3130 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3131 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3132 		skb_tstamp_tx(skb, NULL);
3133 }
3134 
3135 /**
3136  * skb_tx_timestamp() - Driver hook for transmit timestamping
3137  *
3138  * Ethernet MAC Drivers should call this function in their hard_xmit()
3139  * function immediately before giving the sk_buff to the MAC hardware.
3140  *
3141  * Specifically, one should make absolutely sure that this function is
3142  * called before TX completion of this packet can trigger.  Otherwise
3143  * the packet could potentially already be freed.
3144  *
3145  * @skb: A socket buffer.
3146  */
3147 static inline void skb_tx_timestamp(struct sk_buff *skb)
3148 {
3149 	skb_clone_tx_timestamp(skb);
3150 	sw_tx_timestamp(skb);
3151 }
3152 
3153 /**
3154  * skb_complete_wifi_ack - deliver skb with wifi status
3155  *
3156  * @skb: the original outgoing packet
3157  * @acked: ack status
3158  *
3159  */
3160 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3161 
3162 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3163 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3164 
3165 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3166 {
3167 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3168 		skb->csum_valid ||
3169 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3170 		 skb_checksum_start_offset(skb) >= 0));
3171 }
3172 
3173 /**
3174  *	skb_checksum_complete - Calculate checksum of an entire packet
3175  *	@skb: packet to process
3176  *
3177  *	This function calculates the checksum over the entire packet plus
3178  *	the value of skb->csum.  The latter can be used to supply the
3179  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3180  *	checksum.
3181  *
3182  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3183  *	this function can be used to verify that checksum on received
3184  *	packets.  In that case the function should return zero if the
3185  *	checksum is correct.  In particular, this function will return zero
3186  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3187  *	hardware has already verified the correctness of the checksum.
3188  */
3189 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3190 {
3191 	return skb_csum_unnecessary(skb) ?
3192 	       0 : __skb_checksum_complete(skb);
3193 }
3194 
3195 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3196 {
3197 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3198 		if (skb->csum_level == 0)
3199 			skb->ip_summed = CHECKSUM_NONE;
3200 		else
3201 			skb->csum_level--;
3202 	}
3203 }
3204 
3205 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3206 {
3207 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3208 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3209 			skb->csum_level++;
3210 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3211 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3212 		skb->csum_level = 0;
3213 	}
3214 }
3215 
3216 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3217 {
3218 	/* Mark current checksum as bad (typically called from GRO
3219 	 * path). In the case that ip_summed is CHECKSUM_NONE
3220 	 * this must be the first checksum encountered in the packet.
3221 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3222 	 * checksum after the last one validated. For UDP, a zero
3223 	 * checksum can not be marked as bad.
3224 	 */
3225 
3226 	if (skb->ip_summed == CHECKSUM_NONE ||
3227 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
3228 		skb->csum_bad = 1;
3229 }
3230 
3231 /* Check if we need to perform checksum complete validation.
3232  *
3233  * Returns true if checksum complete is needed, false otherwise
3234  * (either checksum is unnecessary or zero checksum is allowed).
3235  */
3236 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3237 						  bool zero_okay,
3238 						  __sum16 check)
3239 {
3240 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3241 		skb->csum_valid = 1;
3242 		__skb_decr_checksum_unnecessary(skb);
3243 		return false;
3244 	}
3245 
3246 	return true;
3247 }
3248 
3249 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3250  * in checksum_init.
3251  */
3252 #define CHECKSUM_BREAK 76
3253 
3254 /* Unset checksum-complete
3255  *
3256  * Unset checksum complete can be done when packet is being modified
3257  * (uncompressed for instance) and checksum-complete value is
3258  * invalidated.
3259  */
3260 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3261 {
3262 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3263 		skb->ip_summed = CHECKSUM_NONE;
3264 }
3265 
3266 /* Validate (init) checksum based on checksum complete.
3267  *
3268  * Return values:
3269  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3270  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3271  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3272  *   non-zero: value of invalid checksum
3273  *
3274  */
3275 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3276 						       bool complete,
3277 						       __wsum psum)
3278 {
3279 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3280 		if (!csum_fold(csum_add(psum, skb->csum))) {
3281 			skb->csum_valid = 1;
3282 			return 0;
3283 		}
3284 	} else if (skb->csum_bad) {
3285 		/* ip_summed == CHECKSUM_NONE in this case */
3286 		return (__force __sum16)1;
3287 	}
3288 
3289 	skb->csum = psum;
3290 
3291 	if (complete || skb->len <= CHECKSUM_BREAK) {
3292 		__sum16 csum;
3293 
3294 		csum = __skb_checksum_complete(skb);
3295 		skb->csum_valid = !csum;
3296 		return csum;
3297 	}
3298 
3299 	return 0;
3300 }
3301 
3302 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3303 {
3304 	return 0;
3305 }
3306 
3307 /* Perform checksum validate (init). Note that this is a macro since we only
3308  * want to calculate the pseudo header which is an input function if necessary.
3309  * First we try to validate without any computation (checksum unnecessary) and
3310  * then calculate based on checksum complete calling the function to compute
3311  * pseudo header.
3312  *
3313  * Return values:
3314  *   0: checksum is validated or try to in skb_checksum_complete
3315  *   non-zero: value of invalid checksum
3316  */
3317 #define __skb_checksum_validate(skb, proto, complete,			\
3318 				zero_okay, check, compute_pseudo)	\
3319 ({									\
3320 	__sum16 __ret = 0;						\
3321 	skb->csum_valid = 0;						\
3322 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3323 		__ret = __skb_checksum_validate_complete(skb,		\
3324 				complete, compute_pseudo(skb, proto));	\
3325 	__ret;								\
3326 })
3327 
3328 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3329 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3330 
3331 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3332 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3333 
3334 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3335 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3336 
3337 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3338 					 compute_pseudo)		\
3339 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3340 
3341 #define skb_checksum_simple_validate(skb)				\
3342 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3343 
3344 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3345 {
3346 	return (skb->ip_summed == CHECKSUM_NONE &&
3347 		skb->csum_valid && !skb->csum_bad);
3348 }
3349 
3350 static inline void __skb_checksum_convert(struct sk_buff *skb,
3351 					  __sum16 check, __wsum pseudo)
3352 {
3353 	skb->csum = ~pseudo;
3354 	skb->ip_summed = CHECKSUM_COMPLETE;
3355 }
3356 
3357 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3358 do {									\
3359 	if (__skb_checksum_convert_check(skb))				\
3360 		__skb_checksum_convert(skb, check,			\
3361 				       compute_pseudo(skb, proto));	\
3362 } while (0)
3363 
3364 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3365 					      u16 start, u16 offset)
3366 {
3367 	skb->ip_summed = CHECKSUM_PARTIAL;
3368 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3369 	skb->csum_offset = offset - start;
3370 }
3371 
3372 /* Update skbuf and packet to reflect the remote checksum offload operation.
3373  * When called, ptr indicates the starting point for skb->csum when
3374  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3375  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3376  */
3377 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3378 				       int start, int offset, bool nopartial)
3379 {
3380 	__wsum delta;
3381 
3382 	if (!nopartial) {
3383 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3384 		return;
3385 	}
3386 
3387 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3388 		__skb_checksum_complete(skb);
3389 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3390 	}
3391 
3392 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3393 
3394 	/* Adjust skb->csum since we changed the packet */
3395 	skb->csum = csum_add(skb->csum, delta);
3396 }
3397 
3398 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3399 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3400 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3401 {
3402 	if (nfct && atomic_dec_and_test(&nfct->use))
3403 		nf_conntrack_destroy(nfct);
3404 }
3405 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3406 {
3407 	if (nfct)
3408 		atomic_inc(&nfct->use);
3409 }
3410 #endif
3411 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3412 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3413 {
3414 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3415 		kfree(nf_bridge);
3416 }
3417 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3418 {
3419 	if (nf_bridge)
3420 		atomic_inc(&nf_bridge->use);
3421 }
3422 #endif /* CONFIG_BRIDGE_NETFILTER */
3423 static inline void nf_reset(struct sk_buff *skb)
3424 {
3425 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3426 	nf_conntrack_put(skb->nfct);
3427 	skb->nfct = NULL;
3428 #endif
3429 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3430 	nf_bridge_put(skb->nf_bridge);
3431 	skb->nf_bridge = NULL;
3432 #endif
3433 }
3434 
3435 static inline void nf_reset_trace(struct sk_buff *skb)
3436 {
3437 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3438 	skb->nf_trace = 0;
3439 #endif
3440 }
3441 
3442 /* Note: This doesn't put any conntrack and bridge info in dst. */
3443 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3444 			     bool copy)
3445 {
3446 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3447 	dst->nfct = src->nfct;
3448 	nf_conntrack_get(src->nfct);
3449 	if (copy)
3450 		dst->nfctinfo = src->nfctinfo;
3451 #endif
3452 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3453 	dst->nf_bridge  = src->nf_bridge;
3454 	nf_bridge_get(src->nf_bridge);
3455 #endif
3456 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3457 	if (copy)
3458 		dst->nf_trace = src->nf_trace;
3459 #endif
3460 }
3461 
3462 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3463 {
3464 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3465 	nf_conntrack_put(dst->nfct);
3466 #endif
3467 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3468 	nf_bridge_put(dst->nf_bridge);
3469 #endif
3470 	__nf_copy(dst, src, true);
3471 }
3472 
3473 #ifdef CONFIG_NETWORK_SECMARK
3474 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3475 {
3476 	to->secmark = from->secmark;
3477 }
3478 
3479 static inline void skb_init_secmark(struct sk_buff *skb)
3480 {
3481 	skb->secmark = 0;
3482 }
3483 #else
3484 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3485 { }
3486 
3487 static inline void skb_init_secmark(struct sk_buff *skb)
3488 { }
3489 #endif
3490 
3491 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3492 {
3493 	return !skb->destructor &&
3494 #if IS_ENABLED(CONFIG_XFRM)
3495 		!skb->sp &&
3496 #endif
3497 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3498 		!skb->nfct &&
3499 #endif
3500 		!skb->_skb_refdst &&
3501 		!skb_has_frag_list(skb);
3502 }
3503 
3504 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3505 {
3506 	skb->queue_mapping = queue_mapping;
3507 }
3508 
3509 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3510 {
3511 	return skb->queue_mapping;
3512 }
3513 
3514 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3515 {
3516 	to->queue_mapping = from->queue_mapping;
3517 }
3518 
3519 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3520 {
3521 	skb->queue_mapping = rx_queue + 1;
3522 }
3523 
3524 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3525 {
3526 	return skb->queue_mapping - 1;
3527 }
3528 
3529 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3530 {
3531 	return skb->queue_mapping != 0;
3532 }
3533 
3534 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3535 {
3536 #ifdef CONFIG_XFRM
3537 	return skb->sp;
3538 #else
3539 	return NULL;
3540 #endif
3541 }
3542 
3543 /* Keeps track of mac header offset relative to skb->head.
3544  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3545  * For non-tunnel skb it points to skb_mac_header() and for
3546  * tunnel skb it points to outer mac header.
3547  * Keeps track of level of encapsulation of network headers.
3548  */
3549 struct skb_gso_cb {
3550 	int	mac_offset;
3551 	int	encap_level;
3552 	__u16	csum_start;
3553 };
3554 #define SKB_SGO_CB_OFFSET	32
3555 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3556 
3557 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3558 {
3559 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3560 		SKB_GSO_CB(inner_skb)->mac_offset;
3561 }
3562 
3563 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3564 {
3565 	int new_headroom, headroom;
3566 	int ret;
3567 
3568 	headroom = skb_headroom(skb);
3569 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3570 	if (ret)
3571 		return ret;
3572 
3573 	new_headroom = skb_headroom(skb);
3574 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3575 	return 0;
3576 }
3577 
3578 /* Compute the checksum for a gso segment. First compute the checksum value
3579  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3580  * then add in skb->csum (checksum from csum_start to end of packet).
3581  * skb->csum and csum_start are then updated to reflect the checksum of the
3582  * resultant packet starting from the transport header-- the resultant checksum
3583  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3584  * header.
3585  */
3586 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3587 {
3588 	int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3589 		   skb_transport_offset(skb);
3590 	__wsum partial;
3591 
3592 	partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
3593 	skb->csum = res;
3594 	SKB_GSO_CB(skb)->csum_start -= plen;
3595 
3596 	return csum_fold(partial);
3597 }
3598 
3599 static inline bool skb_is_gso(const struct sk_buff *skb)
3600 {
3601 	return skb_shinfo(skb)->gso_size;
3602 }
3603 
3604 /* Note: Should be called only if skb_is_gso(skb) is true */
3605 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3606 {
3607 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3608 }
3609 
3610 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3611 
3612 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3613 {
3614 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3615 	 * wanted then gso_type will be set. */
3616 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3617 
3618 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3619 	    unlikely(shinfo->gso_type == 0)) {
3620 		__skb_warn_lro_forwarding(skb);
3621 		return true;
3622 	}
3623 	return false;
3624 }
3625 
3626 static inline void skb_forward_csum(struct sk_buff *skb)
3627 {
3628 	/* Unfortunately we don't support this one.  Any brave souls? */
3629 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3630 		skb->ip_summed = CHECKSUM_NONE;
3631 }
3632 
3633 /**
3634  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3635  * @skb: skb to check
3636  *
3637  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3638  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3639  * use this helper, to document places where we make this assertion.
3640  */
3641 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3642 {
3643 #ifdef DEBUG
3644 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3645 #endif
3646 }
3647 
3648 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3649 
3650 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3651 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3652 				     unsigned int transport_len,
3653 				     __sum16(*skb_chkf)(struct sk_buff *skb));
3654 
3655 /**
3656  * skb_head_is_locked - Determine if the skb->head is locked down
3657  * @skb: skb to check
3658  *
3659  * The head on skbs build around a head frag can be removed if they are
3660  * not cloned.  This function returns true if the skb head is locked down
3661  * due to either being allocated via kmalloc, or by being a clone with
3662  * multiple references to the head.
3663  */
3664 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3665 {
3666 	return !skb->head_frag || skb_cloned(skb);
3667 }
3668 
3669 /**
3670  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3671  *
3672  * @skb: GSO skb
3673  *
3674  * skb_gso_network_seglen is used to determine the real size of the
3675  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3676  *
3677  * The MAC/L2 header is not accounted for.
3678  */
3679 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3680 {
3681 	unsigned int hdr_len = skb_transport_header(skb) -
3682 			       skb_network_header(skb);
3683 	return hdr_len + skb_gso_transport_seglen(skb);
3684 }
3685 
3686 #endif	/* __KERNEL__ */
3687 #endif	/* _LINUX_SKBUFF_H */
3688