xref: /linux-6.15/include/linux/skbuff.h (revision 1ddbddd7)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 
46 /* The interface for checksum offload between the stack and networking drivers
47  * is as follows...
48  *
49  * A. IP checksum related features
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * The checksum related features are:
57  *
58  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
59  *			  IP (one's complement) checksum for any combination
60  *			  of protocols or protocol layering. The checksum is
61  *			  computed and set in a packet per the CHECKSUM_PARTIAL
62  *			  interface (see below).
63  *
64  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
65  *			  TCP or UDP packets over IPv4. These are specifically
66  *			  unencapsulated packets of the form IPv4|TCP or
67  *			  IPv4|UDP where the Protocol field in the IPv4 header
68  *			  is TCP or UDP. The IPv4 header may contain IP options.
69  *			  This feature cannot be set in features for a device
70  *			  with NETIF_F_HW_CSUM also set. This feature is being
71  *			  DEPRECATED (see below).
72  *
73  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
74  *			  TCP or UDP packets over IPv6. These are specifically
75  *			  unencapsulated packets of the form IPv6|TCP or
76  *			  IPv6|UDP where the Next Header field in the IPv6
77  *			  header is either TCP or UDP. IPv6 extension headers
78  *			  are not supported with this feature. This feature
79  *			  cannot be set in features for a device with
80  *			  NETIF_F_HW_CSUM also set. This feature is being
81  *			  DEPRECATED (see below).
82  *
83  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
84  *			 This flag is only used to disable the RX checksum
85  *			 feature for a device. The stack will accept receive
86  *			 checksum indication in packets received on a device
87  *			 regardless of whether NETIF_F_RXCSUM is set.
88  *
89  * B. Checksumming of received packets by device. Indication of checksum
90  *    verification is set in skb->ip_summed. Possible values are:
91  *
92  * CHECKSUM_NONE:
93  *
94  *   Device did not checksum this packet e.g. due to lack of capabilities.
95  *   The packet contains full (though not verified) checksum in packet but
96  *   not in skb->csum. Thus, skb->csum is undefined in this case.
97  *
98  * CHECKSUM_UNNECESSARY:
99  *
100  *   The hardware you're dealing with doesn't calculate the full checksum
101  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
102  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
103  *   if their checksums are okay. skb->csum is still undefined in this case
104  *   though. A driver or device must never modify the checksum field in the
105  *   packet even if checksum is verified.
106  *
107  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
108  *     TCP: IPv6 and IPv4.
109  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
110  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
111  *       may perform further validation in this case.
112  *     GRE: only if the checksum is present in the header.
113  *     SCTP: indicates the CRC in SCTP header has been validated.
114  *     FCOE: indicates the CRC in FC frame has been validated.
115  *
116  *   skb->csum_level indicates the number of consecutive checksums found in
117  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
118  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
119  *   and a device is able to verify the checksums for UDP (possibly zero),
120  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
121  *   two. If the device were only able to verify the UDP checksum and not
122  *   GRE, either because it doesn't support GRE checksum or because GRE
123  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
124  *   not considered in this case).
125  *
126  * CHECKSUM_COMPLETE:
127  *
128  *   This is the most generic way. The device supplied checksum of the _whole_
129  *   packet as seen by netif_rx() and fills in skb->csum. This means the
130  *   hardware doesn't need to parse L3/L4 headers to implement this.
131  *
132  *   Notes:
133  *   - Even if device supports only some protocols, but is able to produce
134  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
135  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
136  *
137  * CHECKSUM_PARTIAL:
138  *
139  *   A checksum is set up to be offloaded to a device as described in the
140  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
141  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
142  *   on the same host, or it may be set in the input path in GRO or remote
143  *   checksum offload. For the purposes of checksum verification, the checksum
144  *   referred to by skb->csum_start + skb->csum_offset and any preceding
145  *   checksums in the packet are considered verified. Any checksums in the
146  *   packet that are after the checksum being offloaded are not considered to
147  *   be verified.
148  *
149  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
150  *    in the skb->ip_summed for a packet. Values are:
151  *
152  * CHECKSUM_PARTIAL:
153  *
154  *   The driver is required to checksum the packet as seen by hard_start_xmit()
155  *   from skb->csum_start up to the end, and to record/write the checksum at
156  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
157  *   csum_start and csum_offset values are valid values given the length and
158  *   offset of the packet, but it should not attempt to validate that the
159  *   checksum refers to a legitimate transport layer checksum -- it is the
160  *   purview of the stack to validate that csum_start and csum_offset are set
161  *   correctly.
162  *
163  *   When the stack requests checksum offload for a packet, the driver MUST
164  *   ensure that the checksum is set correctly. A driver can either offload the
165  *   checksum calculation to the device, or call skb_checksum_help (in the case
166  *   that the device does not support offload for a particular checksum).
167  *
168  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
169  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
170  *   checksum offload capability.
171  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
172  *   on network device checksumming capabilities: if a packet does not match
173  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
174  *   csum_not_inet, see item D.) is called to resolve the checksum.
175  *
176  * CHECKSUM_NONE:
177  *
178  *   The skb was already checksummed by the protocol, or a checksum is not
179  *   required.
180  *
181  * CHECKSUM_UNNECESSARY:
182  *
183  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
184  *   output.
185  *
186  * CHECKSUM_COMPLETE:
187  *   Not used in checksum output. If a driver observes a packet with this value
188  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
189  *
190  * D. Non-IP checksum (CRC) offloads
191  *
192  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
193  *     offloading the SCTP CRC in a packet. To perform this offload the stack
194  *     will set csum_start and csum_offset accordingly, set ip_summed to
195  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
196  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
197  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
198  *     must verify which offload is configured for a packet by testing the
199  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
200  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
201  *
202  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
203  *     offloading the FCOE CRC in a packet. To perform this offload the stack
204  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
205  *     accordingly. Note that there is no indication in the skbuff that the
206  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
207  *     both IP checksum offload and FCOE CRC offload must verify which offload
208  *     is configured for a packet, presumably by inspecting packet headers.
209  *
210  * E. Checksumming on output with GSO.
211  *
212  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
213  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
214  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
215  * part of the GSO operation is implied. If a checksum is being offloaded
216  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
217  * csum_offset are set to refer to the outermost checksum being offloaded
218  * (two offloaded checksums are possible with UDP encapsulation).
219  */
220 
221 /* Don't change this without changing skb_csum_unnecessary! */
222 #define CHECKSUM_NONE		0
223 #define CHECKSUM_UNNECESSARY	1
224 #define CHECKSUM_COMPLETE	2
225 #define CHECKSUM_PARTIAL	3
226 
227 /* Maximum value in skb->csum_level */
228 #define SKB_MAX_CSUM_LEVEL	3
229 
230 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
231 #define SKB_WITH_OVERHEAD(X)	\
232 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
233 #define SKB_MAX_ORDER(X, ORDER) \
234 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
235 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
236 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
237 
238 /* return minimum truesize of one skb containing X bytes of data */
239 #define SKB_TRUESIZE(X) ((X) +						\
240 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
241 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
242 
243 struct ahash_request;
244 struct net_device;
245 struct scatterlist;
246 struct pipe_inode_info;
247 struct iov_iter;
248 struct napi_struct;
249 struct bpf_prog;
250 union bpf_attr;
251 struct skb_ext;
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	enum {
256 		BRNF_PROTO_UNCHANGED,
257 		BRNF_PROTO_8021Q,
258 		BRNF_PROTO_PPPOE
259 	} orig_proto:8;
260 	u8			pkt_otherhost:1;
261 	u8			in_prerouting:1;
262 	u8			bridged_dnat:1;
263 	__u16			frag_max_size;
264 	struct net_device	*physindev;
265 
266 	/* always valid & non-NULL from FORWARD on, for physdev match */
267 	struct net_device	*physoutdev;
268 	union {
269 		/* prerouting: detect dnat in orig/reply direction */
270 		__be32          ipv4_daddr;
271 		struct in6_addr ipv6_daddr;
272 
273 		/* after prerouting + nat detected: store original source
274 		 * mac since neigh resolution overwrites it, only used while
275 		 * skb is out in neigh layer.
276 		 */
277 		char neigh_header[8];
278 	};
279 };
280 #endif
281 
282 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
283 /* Chain in tc_skb_ext will be used to share the tc chain with
284  * ovs recirc_id. It will be set to the current chain by tc
285  * and read by ovs to recirc_id.
286  */
287 struct tc_skb_ext {
288 	__u32 chain;
289 	__u16 mru;
290 	__u16 zone;
291 	u8 post_ct:1;
292 	u8 post_ct_snat:1;
293 	u8 post_ct_dnat:1;
294 };
295 #endif
296 
297 struct sk_buff_head {
298 	/* These two members must be first to match sk_buff. */
299 	struct_group_tagged(sk_buff_list, list,
300 		struct sk_buff	*next;
301 		struct sk_buff	*prev;
302 	);
303 
304 	__u32		qlen;
305 	spinlock_t	lock;
306 };
307 
308 struct sk_buff;
309 
310 /* The reason of skb drop, which is used in kfree_skb_reason().
311  * en...maybe they should be splited by group?
312  *
313  * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is
314  * used to translate the reason to string.
315  */
316 enum skb_drop_reason {
317 	SKB_DROP_REASON_NOT_SPECIFIED,
318 	SKB_DROP_REASON_NO_SOCKET,
319 	SKB_DROP_REASON_PKT_TOO_SMALL,
320 	SKB_DROP_REASON_TCP_CSUM,
321 	SKB_DROP_REASON_TCP_FILTER,
322 	SKB_DROP_REASON_UDP_CSUM,
323 	SKB_DROP_REASON_MAX,
324 };
325 
326 /* To allow 64K frame to be packed as single skb without frag_list we
327  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
328  * buffers which do not start on a page boundary.
329  *
330  * Since GRO uses frags we allocate at least 16 regardless of page
331  * size.
332  */
333 #if (65536/PAGE_SIZE + 1) < 16
334 #define MAX_SKB_FRAGS 16UL
335 #else
336 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
337 #endif
338 extern int sysctl_max_skb_frags;
339 
340 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
341  * segment using its current segmentation instead.
342  */
343 #define GSO_BY_FRAGS	0xFFFF
344 
345 typedef struct bio_vec skb_frag_t;
346 
347 /**
348  * skb_frag_size() - Returns the size of a skb fragment
349  * @frag: skb fragment
350  */
351 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
352 {
353 	return frag->bv_len;
354 }
355 
356 /**
357  * skb_frag_size_set() - Sets the size of a skb fragment
358  * @frag: skb fragment
359  * @size: size of fragment
360  */
361 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
362 {
363 	frag->bv_len = size;
364 }
365 
366 /**
367  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
368  * @frag: skb fragment
369  * @delta: value to add
370  */
371 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
372 {
373 	frag->bv_len += delta;
374 }
375 
376 /**
377  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
378  * @frag: skb fragment
379  * @delta: value to subtract
380  */
381 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
382 {
383 	frag->bv_len -= delta;
384 }
385 
386 /**
387  * skb_frag_must_loop - Test if %p is a high memory page
388  * @p: fragment's page
389  */
390 static inline bool skb_frag_must_loop(struct page *p)
391 {
392 #if defined(CONFIG_HIGHMEM)
393 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
394 		return true;
395 #endif
396 	return false;
397 }
398 
399 /**
400  *	skb_frag_foreach_page - loop over pages in a fragment
401  *
402  *	@f:		skb frag to operate on
403  *	@f_off:		offset from start of f->bv_page
404  *	@f_len:		length from f_off to loop over
405  *	@p:		(temp var) current page
406  *	@p_off:		(temp var) offset from start of current page,
407  *	                           non-zero only on first page.
408  *	@p_len:		(temp var) length in current page,
409  *				   < PAGE_SIZE only on first and last page.
410  *	@copied:	(temp var) length so far, excluding current p_len.
411  *
412  *	A fragment can hold a compound page, in which case per-page
413  *	operations, notably kmap_atomic, must be called for each
414  *	regular page.
415  */
416 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
417 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
418 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
419 	     p_len = skb_frag_must_loop(p) ?				\
420 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
421 	     copied = 0;						\
422 	     copied < f_len;						\
423 	     copied += p_len, p++, p_off = 0,				\
424 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
425 
426 #define HAVE_HW_TIME_STAMP
427 
428 /**
429  * struct skb_shared_hwtstamps - hardware time stamps
430  * @hwtstamp:	hardware time stamp transformed into duration
431  *		since arbitrary point in time
432  *
433  * Software time stamps generated by ktime_get_real() are stored in
434  * skb->tstamp.
435  *
436  * hwtstamps can only be compared against other hwtstamps from
437  * the same device.
438  *
439  * This structure is attached to packets as part of the
440  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
441  */
442 struct skb_shared_hwtstamps {
443 	ktime_t	hwtstamp;
444 };
445 
446 /* Definitions for tx_flags in struct skb_shared_info */
447 enum {
448 	/* generate hardware time stamp */
449 	SKBTX_HW_TSTAMP = 1 << 0,
450 
451 	/* generate software time stamp when queueing packet to NIC */
452 	SKBTX_SW_TSTAMP = 1 << 1,
453 
454 	/* device driver is going to provide hardware time stamp */
455 	SKBTX_IN_PROGRESS = 1 << 2,
456 
457 	/* generate wifi status information (where possible) */
458 	SKBTX_WIFI_STATUS = 1 << 4,
459 
460 	/* generate software time stamp when entering packet scheduling */
461 	SKBTX_SCHED_TSTAMP = 1 << 6,
462 };
463 
464 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
465 				 SKBTX_SCHED_TSTAMP)
466 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
467 
468 /* Definitions for flags in struct skb_shared_info */
469 enum {
470 	/* use zcopy routines */
471 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
472 
473 	/* This indicates at least one fragment might be overwritten
474 	 * (as in vmsplice(), sendfile() ...)
475 	 * If we need to compute a TX checksum, we'll need to copy
476 	 * all frags to avoid possible bad checksum
477 	 */
478 	SKBFL_SHARED_FRAG = BIT(1),
479 
480 	/* segment contains only zerocopy data and should not be
481 	 * charged to the kernel memory.
482 	 */
483 	SKBFL_PURE_ZEROCOPY = BIT(2),
484 };
485 
486 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
487 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
488 
489 /*
490  * The callback notifies userspace to release buffers when skb DMA is done in
491  * lower device, the skb last reference should be 0 when calling this.
492  * The zerocopy_success argument is true if zero copy transmit occurred,
493  * false on data copy or out of memory error caused by data copy attempt.
494  * The ctx field is used to track device context.
495  * The desc field is used to track userspace buffer index.
496  */
497 struct ubuf_info {
498 	void (*callback)(struct sk_buff *, struct ubuf_info *,
499 			 bool zerocopy_success);
500 	union {
501 		struct {
502 			unsigned long desc;
503 			void *ctx;
504 		};
505 		struct {
506 			u32 id;
507 			u16 len;
508 			u16 zerocopy:1;
509 			u32 bytelen;
510 		};
511 	};
512 	refcount_t refcnt;
513 	u8 flags;
514 
515 	struct mmpin {
516 		struct user_struct *user;
517 		unsigned int num_pg;
518 	} mmp;
519 };
520 
521 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
522 
523 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
524 void mm_unaccount_pinned_pages(struct mmpin *mmp);
525 
526 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
527 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
528 				       struct ubuf_info *uarg);
529 
530 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
531 
532 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
533 			   bool success);
534 
535 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
536 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
537 			     struct msghdr *msg, int len,
538 			     struct ubuf_info *uarg);
539 
540 /* This data is invariant across clones and lives at
541  * the end of the header data, ie. at skb->end.
542  */
543 struct skb_shared_info {
544 	__u8		flags;
545 	__u8		meta_len;
546 	__u8		nr_frags;
547 	__u8		tx_flags;
548 	unsigned short	gso_size;
549 	/* Warning: this field is not always filled in (UFO)! */
550 	unsigned short	gso_segs;
551 	struct sk_buff	*frag_list;
552 	struct skb_shared_hwtstamps hwtstamps;
553 	unsigned int	gso_type;
554 	u32		tskey;
555 
556 	/*
557 	 * Warning : all fields before dataref are cleared in __alloc_skb()
558 	 */
559 	atomic_t	dataref;
560 	unsigned int	xdp_frags_size;
561 
562 	/* Intermediate layers must ensure that destructor_arg
563 	 * remains valid until skb destructor */
564 	void *		destructor_arg;
565 
566 	/* must be last field, see pskb_expand_head() */
567 	skb_frag_t	frags[MAX_SKB_FRAGS];
568 };
569 
570 /* We divide dataref into two halves.  The higher 16 bits hold references
571  * to the payload part of skb->data.  The lower 16 bits hold references to
572  * the entire skb->data.  A clone of a headerless skb holds the length of
573  * the header in skb->hdr_len.
574  *
575  * All users must obey the rule that the skb->data reference count must be
576  * greater than or equal to the payload reference count.
577  *
578  * Holding a reference to the payload part means that the user does not
579  * care about modifications to the header part of skb->data.
580  */
581 #define SKB_DATAREF_SHIFT 16
582 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
583 
584 
585 enum {
586 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
587 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
588 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
589 };
590 
591 enum {
592 	SKB_GSO_TCPV4 = 1 << 0,
593 
594 	/* This indicates the skb is from an untrusted source. */
595 	SKB_GSO_DODGY = 1 << 1,
596 
597 	/* This indicates the tcp segment has CWR set. */
598 	SKB_GSO_TCP_ECN = 1 << 2,
599 
600 	SKB_GSO_TCP_FIXEDID = 1 << 3,
601 
602 	SKB_GSO_TCPV6 = 1 << 4,
603 
604 	SKB_GSO_FCOE = 1 << 5,
605 
606 	SKB_GSO_GRE = 1 << 6,
607 
608 	SKB_GSO_GRE_CSUM = 1 << 7,
609 
610 	SKB_GSO_IPXIP4 = 1 << 8,
611 
612 	SKB_GSO_IPXIP6 = 1 << 9,
613 
614 	SKB_GSO_UDP_TUNNEL = 1 << 10,
615 
616 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
617 
618 	SKB_GSO_PARTIAL = 1 << 12,
619 
620 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
621 
622 	SKB_GSO_SCTP = 1 << 14,
623 
624 	SKB_GSO_ESP = 1 << 15,
625 
626 	SKB_GSO_UDP = 1 << 16,
627 
628 	SKB_GSO_UDP_L4 = 1 << 17,
629 
630 	SKB_GSO_FRAGLIST = 1 << 18,
631 };
632 
633 #if BITS_PER_LONG > 32
634 #define NET_SKBUFF_DATA_USES_OFFSET 1
635 #endif
636 
637 #ifdef NET_SKBUFF_DATA_USES_OFFSET
638 typedef unsigned int sk_buff_data_t;
639 #else
640 typedef unsigned char *sk_buff_data_t;
641 #endif
642 
643 /**
644  *	struct sk_buff - socket buffer
645  *	@next: Next buffer in list
646  *	@prev: Previous buffer in list
647  *	@tstamp: Time we arrived/left
648  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
649  *		for retransmit timer
650  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
651  *	@list: queue head
652  *	@ll_node: anchor in an llist (eg socket defer_list)
653  *	@sk: Socket we are owned by
654  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
655  *		fragmentation management
656  *	@dev: Device we arrived on/are leaving by
657  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
658  *	@cb: Control buffer. Free for use by every layer. Put private vars here
659  *	@_skb_refdst: destination entry (with norefcount bit)
660  *	@sp: the security path, used for xfrm
661  *	@len: Length of actual data
662  *	@data_len: Data length
663  *	@mac_len: Length of link layer header
664  *	@hdr_len: writable header length of cloned skb
665  *	@csum: Checksum (must include start/offset pair)
666  *	@csum_start: Offset from skb->head where checksumming should start
667  *	@csum_offset: Offset from csum_start where checksum should be stored
668  *	@priority: Packet queueing priority
669  *	@ignore_df: allow local fragmentation
670  *	@cloned: Head may be cloned (check refcnt to be sure)
671  *	@ip_summed: Driver fed us an IP checksum
672  *	@nohdr: Payload reference only, must not modify header
673  *	@pkt_type: Packet class
674  *	@fclone: skbuff clone status
675  *	@ipvs_property: skbuff is owned by ipvs
676  *	@inner_protocol_type: whether the inner protocol is
677  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
678  *	@remcsum_offload: remote checksum offload is enabled
679  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
680  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
681  *	@tc_skip_classify: do not classify packet. set by IFB device
682  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
683  *	@redirected: packet was redirected by packet classifier
684  *	@from_ingress: packet was redirected from the ingress path
685  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
686  *	@peeked: this packet has been seen already, so stats have been
687  *		done for it, don't do them again
688  *	@nf_trace: netfilter packet trace flag
689  *	@protocol: Packet protocol from driver
690  *	@destructor: Destruct function
691  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
692  *	@_sk_redir: socket redirection information for skmsg
693  *	@_nfct: Associated connection, if any (with nfctinfo bits)
694  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
695  *	@skb_iif: ifindex of device we arrived on
696  *	@tc_index: Traffic control index
697  *	@hash: the packet hash
698  *	@queue_mapping: Queue mapping for multiqueue devices
699  *	@head_frag: skb was allocated from page fragments,
700  *		not allocated by kmalloc() or vmalloc().
701  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
702  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
703  *		page_pool support on driver)
704  *	@active_extensions: active extensions (skb_ext_id types)
705  *	@ndisc_nodetype: router type (from link layer)
706  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
707  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
708  *		ports.
709  *	@sw_hash: indicates hash was computed in software stack
710  *	@wifi_acked_valid: wifi_acked was set
711  *	@wifi_acked: whether frame was acked on wifi or not
712  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
713  *	@encapsulation: indicates the inner headers in the skbuff are valid
714  *	@encap_hdr_csum: software checksum is needed
715  *	@csum_valid: checksum is already valid
716  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
717  *	@csum_complete_sw: checksum was completed by software
718  *	@csum_level: indicates the number of consecutive checksums found in
719  *		the packet minus one that have been verified as
720  *		CHECKSUM_UNNECESSARY (max 3)
721  *	@dst_pending_confirm: need to confirm neighbour
722  *	@decrypted: Decrypted SKB
723  *	@slow_gro: state present at GRO time, slower prepare step required
724  *	@napi_id: id of the NAPI struct this skb came from
725  *	@sender_cpu: (aka @napi_id) source CPU in XPS
726  *	@secmark: security marking
727  *	@mark: Generic packet mark
728  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
729  *		at the tail of an sk_buff
730  *	@vlan_present: VLAN tag is present
731  *	@vlan_proto: vlan encapsulation protocol
732  *	@vlan_tci: vlan tag control information
733  *	@inner_protocol: Protocol (encapsulation)
734  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
735  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
736  *	@inner_transport_header: Inner transport layer header (encapsulation)
737  *	@inner_network_header: Network layer header (encapsulation)
738  *	@inner_mac_header: Link layer header (encapsulation)
739  *	@transport_header: Transport layer header
740  *	@network_header: Network layer header
741  *	@mac_header: Link layer header
742  *	@kcov_handle: KCOV remote handle for remote coverage collection
743  *	@tail: Tail pointer
744  *	@end: End pointer
745  *	@head: Head of buffer
746  *	@data: Data head pointer
747  *	@truesize: Buffer size
748  *	@users: User count - see {datagram,tcp}.c
749  *	@extensions: allocated extensions, valid if active_extensions is nonzero
750  */
751 
752 struct sk_buff {
753 	union {
754 		struct {
755 			/* These two members must be first to match sk_buff_head. */
756 			struct sk_buff		*next;
757 			struct sk_buff		*prev;
758 
759 			union {
760 				struct net_device	*dev;
761 				/* Some protocols might use this space to store information,
762 				 * while device pointer would be NULL.
763 				 * UDP receive path is one user.
764 				 */
765 				unsigned long		dev_scratch;
766 			};
767 		};
768 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
769 		struct list_head	list;
770 		struct llist_node	ll_node;
771 	};
772 
773 	union {
774 		struct sock		*sk;
775 		int			ip_defrag_offset;
776 	};
777 
778 	union {
779 		ktime_t		tstamp;
780 		u64		skb_mstamp_ns; /* earliest departure time */
781 	};
782 	/*
783 	 * This is the control buffer. It is free to use for every
784 	 * layer. Please put your private variables there. If you
785 	 * want to keep them across layers you have to do a skb_clone()
786 	 * first. This is owned by whoever has the skb queued ATM.
787 	 */
788 	char			cb[48] __aligned(8);
789 
790 	union {
791 		struct {
792 			unsigned long	_skb_refdst;
793 			void		(*destructor)(struct sk_buff *skb);
794 		};
795 		struct list_head	tcp_tsorted_anchor;
796 #ifdef CONFIG_NET_SOCK_MSG
797 		unsigned long		_sk_redir;
798 #endif
799 	};
800 
801 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
802 	unsigned long		 _nfct;
803 #endif
804 	unsigned int		len,
805 				data_len;
806 	__u16			mac_len,
807 				hdr_len;
808 
809 	/* Following fields are _not_ copied in __copy_skb_header()
810 	 * Note that queue_mapping is here mostly to fill a hole.
811 	 */
812 	__u16			queue_mapping;
813 
814 /* if you move cloned around you also must adapt those constants */
815 #ifdef __BIG_ENDIAN_BITFIELD
816 #define CLONED_MASK	(1 << 7)
817 #else
818 #define CLONED_MASK	1
819 #endif
820 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
821 
822 	/* private: */
823 	__u8			__cloned_offset[0];
824 	/* public: */
825 	__u8			cloned:1,
826 				nohdr:1,
827 				fclone:2,
828 				peeked:1,
829 				head_frag:1,
830 				pfmemalloc:1,
831 				pp_recycle:1; /* page_pool recycle indicator */
832 #ifdef CONFIG_SKB_EXTENSIONS
833 	__u8			active_extensions;
834 #endif
835 
836 	/* Fields enclosed in headers group are copied
837 	 * using a single memcpy() in __copy_skb_header()
838 	 */
839 	struct_group(headers,
840 
841 	/* private: */
842 	__u8			__pkt_type_offset[0];
843 	/* public: */
844 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
845 	__u8			ignore_df:1;
846 	__u8			nf_trace:1;
847 	__u8			ip_summed:2;
848 	__u8			ooo_okay:1;
849 
850 	__u8			l4_hash:1;
851 	__u8			sw_hash:1;
852 	__u8			wifi_acked_valid:1;
853 	__u8			wifi_acked:1;
854 	__u8			no_fcs:1;
855 	/* Indicates the inner headers are valid in the skbuff. */
856 	__u8			encapsulation:1;
857 	__u8			encap_hdr_csum:1;
858 	__u8			csum_valid:1;
859 
860 	/* private: */
861 	__u8			__pkt_vlan_present_offset[0];
862 	/* public: */
863 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
864 	__u8			csum_complete_sw:1;
865 	__u8			csum_level:2;
866 	__u8			csum_not_inet:1;
867 	__u8			dst_pending_confirm:1;
868 #ifdef CONFIG_IPV6_NDISC_NODETYPE
869 	__u8			ndisc_nodetype:2;
870 #endif
871 
872 	__u8			ipvs_property:1;
873 	__u8			inner_protocol_type:1;
874 	__u8			remcsum_offload:1;
875 #ifdef CONFIG_NET_SWITCHDEV
876 	__u8			offload_fwd_mark:1;
877 	__u8			offload_l3_fwd_mark:1;
878 #endif
879 #ifdef CONFIG_NET_CLS_ACT
880 	__u8			tc_skip_classify:1;
881 	__u8			tc_at_ingress:1;
882 #endif
883 	__u8			redirected:1;
884 #ifdef CONFIG_NET_REDIRECT
885 	__u8			from_ingress:1;
886 #endif
887 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
888 	__u8			nf_skip_egress:1;
889 #endif
890 #ifdef CONFIG_TLS_DEVICE
891 	__u8			decrypted:1;
892 #endif
893 	__u8			slow_gro:1;
894 
895 #ifdef CONFIG_NET_SCHED
896 	__u16			tc_index;	/* traffic control index */
897 #endif
898 
899 	union {
900 		__wsum		csum;
901 		struct {
902 			__u16	csum_start;
903 			__u16	csum_offset;
904 		};
905 	};
906 	__u32			priority;
907 	int			skb_iif;
908 	__u32			hash;
909 	__be16			vlan_proto;
910 	__u16			vlan_tci;
911 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
912 	union {
913 		unsigned int	napi_id;
914 		unsigned int	sender_cpu;
915 	};
916 #endif
917 #ifdef CONFIG_NETWORK_SECMARK
918 	__u32		secmark;
919 #endif
920 
921 	union {
922 		__u32		mark;
923 		__u32		reserved_tailroom;
924 	};
925 
926 	union {
927 		__be16		inner_protocol;
928 		__u8		inner_ipproto;
929 	};
930 
931 	__u16			inner_transport_header;
932 	__u16			inner_network_header;
933 	__u16			inner_mac_header;
934 
935 	__be16			protocol;
936 	__u16			transport_header;
937 	__u16			network_header;
938 	__u16			mac_header;
939 
940 #ifdef CONFIG_KCOV
941 	u64			kcov_handle;
942 #endif
943 
944 	); /* end headers group */
945 
946 	/* These elements must be at the end, see alloc_skb() for details.  */
947 	sk_buff_data_t		tail;
948 	sk_buff_data_t		end;
949 	unsigned char		*head,
950 				*data;
951 	unsigned int		truesize;
952 	refcount_t		users;
953 
954 #ifdef CONFIG_SKB_EXTENSIONS
955 	/* only useable after checking ->active_extensions != 0 */
956 	struct skb_ext		*extensions;
957 #endif
958 };
959 
960 /* if you move pkt_type around you also must adapt those constants */
961 #ifdef __BIG_ENDIAN_BITFIELD
962 #define PKT_TYPE_MAX	(7 << 5)
963 #else
964 #define PKT_TYPE_MAX	7
965 #endif
966 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
967 
968 /* if you move pkt_vlan_present around you also must adapt these constants */
969 #ifdef __BIG_ENDIAN_BITFIELD
970 #define PKT_VLAN_PRESENT_BIT	7
971 #else
972 #define PKT_VLAN_PRESENT_BIT	0
973 #endif
974 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
975 
976 #ifdef __KERNEL__
977 /*
978  *	Handling routines are only of interest to the kernel
979  */
980 
981 #define SKB_ALLOC_FCLONE	0x01
982 #define SKB_ALLOC_RX		0x02
983 #define SKB_ALLOC_NAPI		0x04
984 
985 /**
986  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
987  * @skb: buffer
988  */
989 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
990 {
991 	return unlikely(skb->pfmemalloc);
992 }
993 
994 /*
995  * skb might have a dst pointer attached, refcounted or not.
996  * _skb_refdst low order bit is set if refcount was _not_ taken
997  */
998 #define SKB_DST_NOREF	1UL
999 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1000 
1001 /**
1002  * skb_dst - returns skb dst_entry
1003  * @skb: buffer
1004  *
1005  * Returns skb dst_entry, regardless of reference taken or not.
1006  */
1007 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1008 {
1009 	/* If refdst was not refcounted, check we still are in a
1010 	 * rcu_read_lock section
1011 	 */
1012 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1013 		!rcu_read_lock_held() &&
1014 		!rcu_read_lock_bh_held());
1015 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1016 }
1017 
1018 /**
1019  * skb_dst_set - sets skb dst
1020  * @skb: buffer
1021  * @dst: dst entry
1022  *
1023  * Sets skb dst, assuming a reference was taken on dst and should
1024  * be released by skb_dst_drop()
1025  */
1026 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1027 {
1028 	skb->slow_gro |= !!dst;
1029 	skb->_skb_refdst = (unsigned long)dst;
1030 }
1031 
1032 /**
1033  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1034  * @skb: buffer
1035  * @dst: dst entry
1036  *
1037  * Sets skb dst, assuming a reference was not taken on dst.
1038  * If dst entry is cached, we do not take reference and dst_release
1039  * will be avoided by refdst_drop. If dst entry is not cached, we take
1040  * reference, so that last dst_release can destroy the dst immediately.
1041  */
1042 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1043 {
1044 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1045 	skb->slow_gro |= !!dst;
1046 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1047 }
1048 
1049 /**
1050  * skb_dst_is_noref - Test if skb dst isn't refcounted
1051  * @skb: buffer
1052  */
1053 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1054 {
1055 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1056 }
1057 
1058 /**
1059  * skb_rtable - Returns the skb &rtable
1060  * @skb: buffer
1061  */
1062 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1063 {
1064 	return (struct rtable *)skb_dst(skb);
1065 }
1066 
1067 /* For mangling skb->pkt_type from user space side from applications
1068  * such as nft, tc, etc, we only allow a conservative subset of
1069  * possible pkt_types to be set.
1070 */
1071 static inline bool skb_pkt_type_ok(u32 ptype)
1072 {
1073 	return ptype <= PACKET_OTHERHOST;
1074 }
1075 
1076 /**
1077  * skb_napi_id - Returns the skb's NAPI id
1078  * @skb: buffer
1079  */
1080 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1081 {
1082 #ifdef CONFIG_NET_RX_BUSY_POLL
1083 	return skb->napi_id;
1084 #else
1085 	return 0;
1086 #endif
1087 }
1088 
1089 /**
1090  * skb_unref - decrement the skb's reference count
1091  * @skb: buffer
1092  *
1093  * Returns true if we can free the skb.
1094  */
1095 static inline bool skb_unref(struct sk_buff *skb)
1096 {
1097 	if (unlikely(!skb))
1098 		return false;
1099 	if (likely(refcount_read(&skb->users) == 1))
1100 		smp_rmb();
1101 	else if (likely(!refcount_dec_and_test(&skb->users)))
1102 		return false;
1103 
1104 	return true;
1105 }
1106 
1107 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1108 
1109 /**
1110  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1111  *	@skb: buffer to free
1112  */
1113 static inline void kfree_skb(struct sk_buff *skb)
1114 {
1115 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1116 }
1117 
1118 void skb_release_head_state(struct sk_buff *skb);
1119 void kfree_skb_list(struct sk_buff *segs);
1120 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1121 void skb_tx_error(struct sk_buff *skb);
1122 
1123 #ifdef CONFIG_TRACEPOINTS
1124 void consume_skb(struct sk_buff *skb);
1125 #else
1126 static inline void consume_skb(struct sk_buff *skb)
1127 {
1128 	return kfree_skb(skb);
1129 }
1130 #endif
1131 
1132 void __consume_stateless_skb(struct sk_buff *skb);
1133 void  __kfree_skb(struct sk_buff *skb);
1134 extern struct kmem_cache *skbuff_head_cache;
1135 
1136 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1137 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1138 		      bool *fragstolen, int *delta_truesize);
1139 
1140 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1141 			    int node);
1142 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1143 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1144 struct sk_buff *build_skb_around(struct sk_buff *skb,
1145 				 void *data, unsigned int frag_size);
1146 
1147 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1148 
1149 /**
1150  * alloc_skb - allocate a network buffer
1151  * @size: size to allocate
1152  * @priority: allocation mask
1153  *
1154  * This function is a convenient wrapper around __alloc_skb().
1155  */
1156 static inline struct sk_buff *alloc_skb(unsigned int size,
1157 					gfp_t priority)
1158 {
1159 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1160 }
1161 
1162 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1163 				     unsigned long data_len,
1164 				     int max_page_order,
1165 				     int *errcode,
1166 				     gfp_t gfp_mask);
1167 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1168 
1169 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1170 struct sk_buff_fclones {
1171 	struct sk_buff	skb1;
1172 
1173 	struct sk_buff	skb2;
1174 
1175 	refcount_t	fclone_ref;
1176 };
1177 
1178 /**
1179  *	skb_fclone_busy - check if fclone is busy
1180  *	@sk: socket
1181  *	@skb: buffer
1182  *
1183  * Returns true if skb is a fast clone, and its clone is not freed.
1184  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1185  * so we also check that this didnt happen.
1186  */
1187 static inline bool skb_fclone_busy(const struct sock *sk,
1188 				   const struct sk_buff *skb)
1189 {
1190 	const struct sk_buff_fclones *fclones;
1191 
1192 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1193 
1194 	return skb->fclone == SKB_FCLONE_ORIG &&
1195 	       refcount_read(&fclones->fclone_ref) > 1 &&
1196 	       READ_ONCE(fclones->skb2.sk) == sk;
1197 }
1198 
1199 /**
1200  * alloc_skb_fclone - allocate a network buffer from fclone cache
1201  * @size: size to allocate
1202  * @priority: allocation mask
1203  *
1204  * This function is a convenient wrapper around __alloc_skb().
1205  */
1206 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1207 					       gfp_t priority)
1208 {
1209 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1210 }
1211 
1212 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1213 void skb_headers_offset_update(struct sk_buff *skb, int off);
1214 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1215 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1216 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1217 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1218 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1219 				   gfp_t gfp_mask, bool fclone);
1220 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1221 					  gfp_t gfp_mask)
1222 {
1223 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1224 }
1225 
1226 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1227 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1228 				     unsigned int headroom);
1229 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1230 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1231 				int newtailroom, gfp_t priority);
1232 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1233 				     int offset, int len);
1234 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1235 			      int offset, int len);
1236 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1237 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1238 
1239 /**
1240  *	skb_pad			-	zero pad the tail of an skb
1241  *	@skb: buffer to pad
1242  *	@pad: space to pad
1243  *
1244  *	Ensure that a buffer is followed by a padding area that is zero
1245  *	filled. Used by network drivers which may DMA or transfer data
1246  *	beyond the buffer end onto the wire.
1247  *
1248  *	May return error in out of memory cases. The skb is freed on error.
1249  */
1250 static inline int skb_pad(struct sk_buff *skb, int pad)
1251 {
1252 	return __skb_pad(skb, pad, true);
1253 }
1254 #define dev_kfree_skb(a)	consume_skb(a)
1255 
1256 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1257 			 int offset, size_t size);
1258 
1259 struct skb_seq_state {
1260 	__u32		lower_offset;
1261 	__u32		upper_offset;
1262 	__u32		frag_idx;
1263 	__u32		stepped_offset;
1264 	struct sk_buff	*root_skb;
1265 	struct sk_buff	*cur_skb;
1266 	__u8		*frag_data;
1267 	__u32		frag_off;
1268 };
1269 
1270 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1271 			  unsigned int to, struct skb_seq_state *st);
1272 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1273 			  struct skb_seq_state *st);
1274 void skb_abort_seq_read(struct skb_seq_state *st);
1275 
1276 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1277 			   unsigned int to, struct ts_config *config);
1278 
1279 /*
1280  * Packet hash types specify the type of hash in skb_set_hash.
1281  *
1282  * Hash types refer to the protocol layer addresses which are used to
1283  * construct a packet's hash. The hashes are used to differentiate or identify
1284  * flows of the protocol layer for the hash type. Hash types are either
1285  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1286  *
1287  * Properties of hashes:
1288  *
1289  * 1) Two packets in different flows have different hash values
1290  * 2) Two packets in the same flow should have the same hash value
1291  *
1292  * A hash at a higher layer is considered to be more specific. A driver should
1293  * set the most specific hash possible.
1294  *
1295  * A driver cannot indicate a more specific hash than the layer at which a hash
1296  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1297  *
1298  * A driver may indicate a hash level which is less specific than the
1299  * actual layer the hash was computed on. For instance, a hash computed
1300  * at L4 may be considered an L3 hash. This should only be done if the
1301  * driver can't unambiguously determine that the HW computed the hash at
1302  * the higher layer. Note that the "should" in the second property above
1303  * permits this.
1304  */
1305 enum pkt_hash_types {
1306 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1307 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1308 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1309 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1310 };
1311 
1312 static inline void skb_clear_hash(struct sk_buff *skb)
1313 {
1314 	skb->hash = 0;
1315 	skb->sw_hash = 0;
1316 	skb->l4_hash = 0;
1317 }
1318 
1319 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1320 {
1321 	if (!skb->l4_hash)
1322 		skb_clear_hash(skb);
1323 }
1324 
1325 static inline void
1326 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1327 {
1328 	skb->l4_hash = is_l4;
1329 	skb->sw_hash = is_sw;
1330 	skb->hash = hash;
1331 }
1332 
1333 static inline void
1334 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1335 {
1336 	/* Used by drivers to set hash from HW */
1337 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1338 }
1339 
1340 static inline void
1341 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1342 {
1343 	__skb_set_hash(skb, hash, true, is_l4);
1344 }
1345 
1346 void __skb_get_hash(struct sk_buff *skb);
1347 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1348 u32 skb_get_poff(const struct sk_buff *skb);
1349 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1350 		   const struct flow_keys_basic *keys, int hlen);
1351 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1352 			    const void *data, int hlen_proto);
1353 
1354 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1355 					int thoff, u8 ip_proto)
1356 {
1357 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1358 }
1359 
1360 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1361 			     const struct flow_dissector_key *key,
1362 			     unsigned int key_count);
1363 
1364 struct bpf_flow_dissector;
1365 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1366 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1367 
1368 bool __skb_flow_dissect(const struct net *net,
1369 			const struct sk_buff *skb,
1370 			struct flow_dissector *flow_dissector,
1371 			void *target_container, const void *data,
1372 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1373 
1374 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1375 				    struct flow_dissector *flow_dissector,
1376 				    void *target_container, unsigned int flags)
1377 {
1378 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1379 				  target_container, NULL, 0, 0, 0, flags);
1380 }
1381 
1382 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1383 					      struct flow_keys *flow,
1384 					      unsigned int flags)
1385 {
1386 	memset(flow, 0, sizeof(*flow));
1387 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1388 				  flow, NULL, 0, 0, 0, flags);
1389 }
1390 
1391 static inline bool
1392 skb_flow_dissect_flow_keys_basic(const struct net *net,
1393 				 const struct sk_buff *skb,
1394 				 struct flow_keys_basic *flow,
1395 				 const void *data, __be16 proto,
1396 				 int nhoff, int hlen, unsigned int flags)
1397 {
1398 	memset(flow, 0, sizeof(*flow));
1399 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1400 				  data, proto, nhoff, hlen, flags);
1401 }
1402 
1403 void skb_flow_dissect_meta(const struct sk_buff *skb,
1404 			   struct flow_dissector *flow_dissector,
1405 			   void *target_container);
1406 
1407 /* Gets a skb connection tracking info, ctinfo map should be a
1408  * map of mapsize to translate enum ip_conntrack_info states
1409  * to user states.
1410  */
1411 void
1412 skb_flow_dissect_ct(const struct sk_buff *skb,
1413 		    struct flow_dissector *flow_dissector,
1414 		    void *target_container,
1415 		    u16 *ctinfo_map, size_t mapsize,
1416 		    bool post_ct, u16 zone);
1417 void
1418 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1419 			     struct flow_dissector *flow_dissector,
1420 			     void *target_container);
1421 
1422 void skb_flow_dissect_hash(const struct sk_buff *skb,
1423 			   struct flow_dissector *flow_dissector,
1424 			   void *target_container);
1425 
1426 static inline __u32 skb_get_hash(struct sk_buff *skb)
1427 {
1428 	if (!skb->l4_hash && !skb->sw_hash)
1429 		__skb_get_hash(skb);
1430 
1431 	return skb->hash;
1432 }
1433 
1434 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1435 {
1436 	if (!skb->l4_hash && !skb->sw_hash) {
1437 		struct flow_keys keys;
1438 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1439 
1440 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1441 	}
1442 
1443 	return skb->hash;
1444 }
1445 
1446 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1447 			   const siphash_key_t *perturb);
1448 
1449 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1450 {
1451 	return skb->hash;
1452 }
1453 
1454 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1455 {
1456 	to->hash = from->hash;
1457 	to->sw_hash = from->sw_hash;
1458 	to->l4_hash = from->l4_hash;
1459 };
1460 
1461 static inline void skb_copy_decrypted(struct sk_buff *to,
1462 				      const struct sk_buff *from)
1463 {
1464 #ifdef CONFIG_TLS_DEVICE
1465 	to->decrypted = from->decrypted;
1466 #endif
1467 }
1468 
1469 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1470 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1471 {
1472 	return skb->head + skb->end;
1473 }
1474 
1475 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1476 {
1477 	return skb->end;
1478 }
1479 #else
1480 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1481 {
1482 	return skb->end;
1483 }
1484 
1485 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1486 {
1487 	return skb->end - skb->head;
1488 }
1489 #endif
1490 
1491 /* Internal */
1492 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1493 
1494 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1495 {
1496 	return &skb_shinfo(skb)->hwtstamps;
1497 }
1498 
1499 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1500 {
1501 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1502 
1503 	return is_zcopy ? skb_uarg(skb) : NULL;
1504 }
1505 
1506 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1507 {
1508 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1509 }
1510 
1511 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1512 				       const struct sk_buff *skb2)
1513 {
1514 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1515 }
1516 
1517 static inline void net_zcopy_get(struct ubuf_info *uarg)
1518 {
1519 	refcount_inc(&uarg->refcnt);
1520 }
1521 
1522 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1523 {
1524 	skb_shinfo(skb)->destructor_arg = uarg;
1525 	skb_shinfo(skb)->flags |= uarg->flags;
1526 }
1527 
1528 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1529 				 bool *have_ref)
1530 {
1531 	if (skb && uarg && !skb_zcopy(skb)) {
1532 		if (unlikely(have_ref && *have_ref))
1533 			*have_ref = false;
1534 		else
1535 			net_zcopy_get(uarg);
1536 		skb_zcopy_init(skb, uarg);
1537 	}
1538 }
1539 
1540 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1541 {
1542 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1543 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1544 }
1545 
1546 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1547 {
1548 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1549 }
1550 
1551 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1552 {
1553 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1554 }
1555 
1556 static inline void net_zcopy_put(struct ubuf_info *uarg)
1557 {
1558 	if (uarg)
1559 		uarg->callback(NULL, uarg, true);
1560 }
1561 
1562 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1563 {
1564 	if (uarg) {
1565 		if (uarg->callback == msg_zerocopy_callback)
1566 			msg_zerocopy_put_abort(uarg, have_uref);
1567 		else if (have_uref)
1568 			net_zcopy_put(uarg);
1569 	}
1570 }
1571 
1572 /* Release a reference on a zerocopy structure */
1573 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1574 {
1575 	struct ubuf_info *uarg = skb_zcopy(skb);
1576 
1577 	if (uarg) {
1578 		if (!skb_zcopy_is_nouarg(skb))
1579 			uarg->callback(skb, uarg, zerocopy_success);
1580 
1581 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1582 	}
1583 }
1584 
1585 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1586 {
1587 	skb->next = NULL;
1588 }
1589 
1590 /* Iterate through singly-linked GSO fragments of an skb. */
1591 #define skb_list_walk_safe(first, skb, next_skb)                               \
1592 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1593 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1594 
1595 static inline void skb_list_del_init(struct sk_buff *skb)
1596 {
1597 	__list_del_entry(&skb->list);
1598 	skb_mark_not_on_list(skb);
1599 }
1600 
1601 /**
1602  *	skb_queue_empty - check if a queue is empty
1603  *	@list: queue head
1604  *
1605  *	Returns true if the queue is empty, false otherwise.
1606  */
1607 static inline int skb_queue_empty(const struct sk_buff_head *list)
1608 {
1609 	return list->next == (const struct sk_buff *) list;
1610 }
1611 
1612 /**
1613  *	skb_queue_empty_lockless - check if a queue is empty
1614  *	@list: queue head
1615  *
1616  *	Returns true if the queue is empty, false otherwise.
1617  *	This variant can be used in lockless contexts.
1618  */
1619 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1620 {
1621 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1622 }
1623 
1624 
1625 /**
1626  *	skb_queue_is_last - check if skb is the last entry in the queue
1627  *	@list: queue head
1628  *	@skb: buffer
1629  *
1630  *	Returns true if @skb is the last buffer on the list.
1631  */
1632 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1633 				     const struct sk_buff *skb)
1634 {
1635 	return skb->next == (const struct sk_buff *) list;
1636 }
1637 
1638 /**
1639  *	skb_queue_is_first - check if skb is the first entry in the queue
1640  *	@list: queue head
1641  *	@skb: buffer
1642  *
1643  *	Returns true if @skb is the first buffer on the list.
1644  */
1645 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1646 				      const struct sk_buff *skb)
1647 {
1648 	return skb->prev == (const struct sk_buff *) list;
1649 }
1650 
1651 /**
1652  *	skb_queue_next - return the next packet in the queue
1653  *	@list: queue head
1654  *	@skb: current buffer
1655  *
1656  *	Return the next packet in @list after @skb.  It is only valid to
1657  *	call this if skb_queue_is_last() evaluates to false.
1658  */
1659 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1660 					     const struct sk_buff *skb)
1661 {
1662 	/* This BUG_ON may seem severe, but if we just return then we
1663 	 * are going to dereference garbage.
1664 	 */
1665 	BUG_ON(skb_queue_is_last(list, skb));
1666 	return skb->next;
1667 }
1668 
1669 /**
1670  *	skb_queue_prev - return the prev packet in the queue
1671  *	@list: queue head
1672  *	@skb: current buffer
1673  *
1674  *	Return the prev packet in @list before @skb.  It is only valid to
1675  *	call this if skb_queue_is_first() evaluates to false.
1676  */
1677 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1678 					     const struct sk_buff *skb)
1679 {
1680 	/* This BUG_ON may seem severe, but if we just return then we
1681 	 * are going to dereference garbage.
1682 	 */
1683 	BUG_ON(skb_queue_is_first(list, skb));
1684 	return skb->prev;
1685 }
1686 
1687 /**
1688  *	skb_get - reference buffer
1689  *	@skb: buffer to reference
1690  *
1691  *	Makes another reference to a socket buffer and returns a pointer
1692  *	to the buffer.
1693  */
1694 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1695 {
1696 	refcount_inc(&skb->users);
1697 	return skb;
1698 }
1699 
1700 /*
1701  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1702  */
1703 
1704 /**
1705  *	skb_cloned - is the buffer a clone
1706  *	@skb: buffer to check
1707  *
1708  *	Returns true if the buffer was generated with skb_clone() and is
1709  *	one of multiple shared copies of the buffer. Cloned buffers are
1710  *	shared data so must not be written to under normal circumstances.
1711  */
1712 static inline int skb_cloned(const struct sk_buff *skb)
1713 {
1714 	return skb->cloned &&
1715 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1716 }
1717 
1718 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1719 {
1720 	might_sleep_if(gfpflags_allow_blocking(pri));
1721 
1722 	if (skb_cloned(skb))
1723 		return pskb_expand_head(skb, 0, 0, pri);
1724 
1725 	return 0;
1726 }
1727 
1728 /* This variant of skb_unclone() makes sure skb->truesize is not changed */
1729 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1730 {
1731 	might_sleep_if(gfpflags_allow_blocking(pri));
1732 
1733 	if (skb_cloned(skb)) {
1734 		unsigned int save = skb->truesize;
1735 		int res;
1736 
1737 		res = pskb_expand_head(skb, 0, 0, pri);
1738 		skb->truesize = save;
1739 		return res;
1740 	}
1741 	return 0;
1742 }
1743 
1744 /**
1745  *	skb_header_cloned - is the header a clone
1746  *	@skb: buffer to check
1747  *
1748  *	Returns true if modifying the header part of the buffer requires
1749  *	the data to be copied.
1750  */
1751 static inline int skb_header_cloned(const struct sk_buff *skb)
1752 {
1753 	int dataref;
1754 
1755 	if (!skb->cloned)
1756 		return 0;
1757 
1758 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1759 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1760 	return dataref != 1;
1761 }
1762 
1763 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1764 {
1765 	might_sleep_if(gfpflags_allow_blocking(pri));
1766 
1767 	if (skb_header_cloned(skb))
1768 		return pskb_expand_head(skb, 0, 0, pri);
1769 
1770 	return 0;
1771 }
1772 
1773 /**
1774  *	__skb_header_release - release reference to header
1775  *	@skb: buffer to operate on
1776  */
1777 static inline void __skb_header_release(struct sk_buff *skb)
1778 {
1779 	skb->nohdr = 1;
1780 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1781 }
1782 
1783 
1784 /**
1785  *	skb_shared - is the buffer shared
1786  *	@skb: buffer to check
1787  *
1788  *	Returns true if more than one person has a reference to this
1789  *	buffer.
1790  */
1791 static inline int skb_shared(const struct sk_buff *skb)
1792 {
1793 	return refcount_read(&skb->users) != 1;
1794 }
1795 
1796 /**
1797  *	skb_share_check - check if buffer is shared and if so clone it
1798  *	@skb: buffer to check
1799  *	@pri: priority for memory allocation
1800  *
1801  *	If the buffer is shared the buffer is cloned and the old copy
1802  *	drops a reference. A new clone with a single reference is returned.
1803  *	If the buffer is not shared the original buffer is returned. When
1804  *	being called from interrupt status or with spinlocks held pri must
1805  *	be GFP_ATOMIC.
1806  *
1807  *	NULL is returned on a memory allocation failure.
1808  */
1809 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1810 {
1811 	might_sleep_if(gfpflags_allow_blocking(pri));
1812 	if (skb_shared(skb)) {
1813 		struct sk_buff *nskb = skb_clone(skb, pri);
1814 
1815 		if (likely(nskb))
1816 			consume_skb(skb);
1817 		else
1818 			kfree_skb(skb);
1819 		skb = nskb;
1820 	}
1821 	return skb;
1822 }
1823 
1824 /*
1825  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1826  *	packets to handle cases where we have a local reader and forward
1827  *	and a couple of other messy ones. The normal one is tcpdumping
1828  *	a packet thats being forwarded.
1829  */
1830 
1831 /**
1832  *	skb_unshare - make a copy of a shared buffer
1833  *	@skb: buffer to check
1834  *	@pri: priority for memory allocation
1835  *
1836  *	If the socket buffer is a clone then this function creates a new
1837  *	copy of the data, drops a reference count on the old copy and returns
1838  *	the new copy with the reference count at 1. If the buffer is not a clone
1839  *	the original buffer is returned. When called with a spinlock held or
1840  *	from interrupt state @pri must be %GFP_ATOMIC
1841  *
1842  *	%NULL is returned on a memory allocation failure.
1843  */
1844 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1845 					  gfp_t pri)
1846 {
1847 	might_sleep_if(gfpflags_allow_blocking(pri));
1848 	if (skb_cloned(skb)) {
1849 		struct sk_buff *nskb = skb_copy(skb, pri);
1850 
1851 		/* Free our shared copy */
1852 		if (likely(nskb))
1853 			consume_skb(skb);
1854 		else
1855 			kfree_skb(skb);
1856 		skb = nskb;
1857 	}
1858 	return skb;
1859 }
1860 
1861 /**
1862  *	skb_peek - peek at the head of an &sk_buff_head
1863  *	@list_: list to peek at
1864  *
1865  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1866  *	be careful with this one. A peek leaves the buffer on the
1867  *	list and someone else may run off with it. You must hold
1868  *	the appropriate locks or have a private queue to do this.
1869  *
1870  *	Returns %NULL for an empty list or a pointer to the head element.
1871  *	The reference count is not incremented and the reference is therefore
1872  *	volatile. Use with caution.
1873  */
1874 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1875 {
1876 	struct sk_buff *skb = list_->next;
1877 
1878 	if (skb == (struct sk_buff *)list_)
1879 		skb = NULL;
1880 	return skb;
1881 }
1882 
1883 /**
1884  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1885  *	@list_: list to peek at
1886  *
1887  *	Like skb_peek(), but the caller knows that the list is not empty.
1888  */
1889 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1890 {
1891 	return list_->next;
1892 }
1893 
1894 /**
1895  *	skb_peek_next - peek skb following the given one from a queue
1896  *	@skb: skb to start from
1897  *	@list_: list to peek at
1898  *
1899  *	Returns %NULL when the end of the list is met or a pointer to the
1900  *	next element. The reference count is not incremented and the
1901  *	reference is therefore volatile. Use with caution.
1902  */
1903 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1904 		const struct sk_buff_head *list_)
1905 {
1906 	struct sk_buff *next = skb->next;
1907 
1908 	if (next == (struct sk_buff *)list_)
1909 		next = NULL;
1910 	return next;
1911 }
1912 
1913 /**
1914  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1915  *	@list_: list to peek at
1916  *
1917  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1918  *	be careful with this one. A peek leaves the buffer on the
1919  *	list and someone else may run off with it. You must hold
1920  *	the appropriate locks or have a private queue to do this.
1921  *
1922  *	Returns %NULL for an empty list or a pointer to the tail element.
1923  *	The reference count is not incremented and the reference is therefore
1924  *	volatile. Use with caution.
1925  */
1926 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1927 {
1928 	struct sk_buff *skb = READ_ONCE(list_->prev);
1929 
1930 	if (skb == (struct sk_buff *)list_)
1931 		skb = NULL;
1932 	return skb;
1933 
1934 }
1935 
1936 /**
1937  *	skb_queue_len	- get queue length
1938  *	@list_: list to measure
1939  *
1940  *	Return the length of an &sk_buff queue.
1941  */
1942 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1943 {
1944 	return list_->qlen;
1945 }
1946 
1947 /**
1948  *	skb_queue_len_lockless	- get queue length
1949  *	@list_: list to measure
1950  *
1951  *	Return the length of an &sk_buff queue.
1952  *	This variant can be used in lockless contexts.
1953  */
1954 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1955 {
1956 	return READ_ONCE(list_->qlen);
1957 }
1958 
1959 /**
1960  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1961  *	@list: queue to initialize
1962  *
1963  *	This initializes only the list and queue length aspects of
1964  *	an sk_buff_head object.  This allows to initialize the list
1965  *	aspects of an sk_buff_head without reinitializing things like
1966  *	the spinlock.  It can also be used for on-stack sk_buff_head
1967  *	objects where the spinlock is known to not be used.
1968  */
1969 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1970 {
1971 	list->prev = list->next = (struct sk_buff *)list;
1972 	list->qlen = 0;
1973 }
1974 
1975 /*
1976  * This function creates a split out lock class for each invocation;
1977  * this is needed for now since a whole lot of users of the skb-queue
1978  * infrastructure in drivers have different locking usage (in hardirq)
1979  * than the networking core (in softirq only). In the long run either the
1980  * network layer or drivers should need annotation to consolidate the
1981  * main types of usage into 3 classes.
1982  */
1983 static inline void skb_queue_head_init(struct sk_buff_head *list)
1984 {
1985 	spin_lock_init(&list->lock);
1986 	__skb_queue_head_init(list);
1987 }
1988 
1989 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1990 		struct lock_class_key *class)
1991 {
1992 	skb_queue_head_init(list);
1993 	lockdep_set_class(&list->lock, class);
1994 }
1995 
1996 /*
1997  *	Insert an sk_buff on a list.
1998  *
1999  *	The "__skb_xxxx()" functions are the non-atomic ones that
2000  *	can only be called with interrupts disabled.
2001  */
2002 static inline void __skb_insert(struct sk_buff *newsk,
2003 				struct sk_buff *prev, struct sk_buff *next,
2004 				struct sk_buff_head *list)
2005 {
2006 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2007 	 * for the opposite READ_ONCE()
2008 	 */
2009 	WRITE_ONCE(newsk->next, next);
2010 	WRITE_ONCE(newsk->prev, prev);
2011 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2012 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2013 	WRITE_ONCE(list->qlen, list->qlen + 1);
2014 }
2015 
2016 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2017 				      struct sk_buff *prev,
2018 				      struct sk_buff *next)
2019 {
2020 	struct sk_buff *first = list->next;
2021 	struct sk_buff *last = list->prev;
2022 
2023 	WRITE_ONCE(first->prev, prev);
2024 	WRITE_ONCE(prev->next, first);
2025 
2026 	WRITE_ONCE(last->next, next);
2027 	WRITE_ONCE(next->prev, last);
2028 }
2029 
2030 /**
2031  *	skb_queue_splice - join two skb lists, this is designed for stacks
2032  *	@list: the new list to add
2033  *	@head: the place to add it in the first list
2034  */
2035 static inline void skb_queue_splice(const struct sk_buff_head *list,
2036 				    struct sk_buff_head *head)
2037 {
2038 	if (!skb_queue_empty(list)) {
2039 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2040 		head->qlen += list->qlen;
2041 	}
2042 }
2043 
2044 /**
2045  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2046  *	@list: the new list to add
2047  *	@head: the place to add it in the first list
2048  *
2049  *	The list at @list is reinitialised
2050  */
2051 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2052 					 struct sk_buff_head *head)
2053 {
2054 	if (!skb_queue_empty(list)) {
2055 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2056 		head->qlen += list->qlen;
2057 		__skb_queue_head_init(list);
2058 	}
2059 }
2060 
2061 /**
2062  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2063  *	@list: the new list to add
2064  *	@head: the place to add it in the first list
2065  */
2066 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2067 					 struct sk_buff_head *head)
2068 {
2069 	if (!skb_queue_empty(list)) {
2070 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2071 		head->qlen += list->qlen;
2072 	}
2073 }
2074 
2075 /**
2076  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2077  *	@list: the new list to add
2078  *	@head: the place to add it in the first list
2079  *
2080  *	Each of the lists is a queue.
2081  *	The list at @list is reinitialised
2082  */
2083 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2084 					      struct sk_buff_head *head)
2085 {
2086 	if (!skb_queue_empty(list)) {
2087 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2088 		head->qlen += list->qlen;
2089 		__skb_queue_head_init(list);
2090 	}
2091 }
2092 
2093 /**
2094  *	__skb_queue_after - queue a buffer at the list head
2095  *	@list: list to use
2096  *	@prev: place after this buffer
2097  *	@newsk: buffer to queue
2098  *
2099  *	Queue a buffer int the middle of a list. This function takes no locks
2100  *	and you must therefore hold required locks before calling it.
2101  *
2102  *	A buffer cannot be placed on two lists at the same time.
2103  */
2104 static inline void __skb_queue_after(struct sk_buff_head *list,
2105 				     struct sk_buff *prev,
2106 				     struct sk_buff *newsk)
2107 {
2108 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2109 }
2110 
2111 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2112 		struct sk_buff_head *list);
2113 
2114 static inline void __skb_queue_before(struct sk_buff_head *list,
2115 				      struct sk_buff *next,
2116 				      struct sk_buff *newsk)
2117 {
2118 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2119 }
2120 
2121 /**
2122  *	__skb_queue_head - queue a buffer at the list head
2123  *	@list: list to use
2124  *	@newsk: buffer to queue
2125  *
2126  *	Queue a buffer at the start of a list. This function takes no locks
2127  *	and you must therefore hold required locks before calling it.
2128  *
2129  *	A buffer cannot be placed on two lists at the same time.
2130  */
2131 static inline void __skb_queue_head(struct sk_buff_head *list,
2132 				    struct sk_buff *newsk)
2133 {
2134 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2135 }
2136 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2137 
2138 /**
2139  *	__skb_queue_tail - queue a buffer at the list tail
2140  *	@list: list to use
2141  *	@newsk: buffer to queue
2142  *
2143  *	Queue a buffer at the end of a list. This function takes no locks
2144  *	and you must therefore hold required locks before calling it.
2145  *
2146  *	A buffer cannot be placed on two lists at the same time.
2147  */
2148 static inline void __skb_queue_tail(struct sk_buff_head *list,
2149 				   struct sk_buff *newsk)
2150 {
2151 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2152 }
2153 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2154 
2155 /*
2156  * remove sk_buff from list. _Must_ be called atomically, and with
2157  * the list known..
2158  */
2159 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2160 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2161 {
2162 	struct sk_buff *next, *prev;
2163 
2164 	WRITE_ONCE(list->qlen, list->qlen - 1);
2165 	next	   = skb->next;
2166 	prev	   = skb->prev;
2167 	skb->next  = skb->prev = NULL;
2168 	WRITE_ONCE(next->prev, prev);
2169 	WRITE_ONCE(prev->next, next);
2170 }
2171 
2172 /**
2173  *	__skb_dequeue - remove from the head of the queue
2174  *	@list: list to dequeue from
2175  *
2176  *	Remove the head of the list. This function does not take any locks
2177  *	so must be used with appropriate locks held only. The head item is
2178  *	returned or %NULL if the list is empty.
2179  */
2180 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2181 {
2182 	struct sk_buff *skb = skb_peek(list);
2183 	if (skb)
2184 		__skb_unlink(skb, list);
2185 	return skb;
2186 }
2187 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2188 
2189 /**
2190  *	__skb_dequeue_tail - remove from the tail of the queue
2191  *	@list: list to dequeue from
2192  *
2193  *	Remove the tail of the list. This function does not take any locks
2194  *	so must be used with appropriate locks held only. The tail item is
2195  *	returned or %NULL if the list is empty.
2196  */
2197 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2198 {
2199 	struct sk_buff *skb = skb_peek_tail(list);
2200 	if (skb)
2201 		__skb_unlink(skb, list);
2202 	return skb;
2203 }
2204 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2205 
2206 
2207 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2208 {
2209 	return skb->data_len;
2210 }
2211 
2212 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2213 {
2214 	return skb->len - skb->data_len;
2215 }
2216 
2217 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2218 {
2219 	unsigned int i, len = 0;
2220 
2221 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2222 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2223 	return len;
2224 }
2225 
2226 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2227 {
2228 	return skb_headlen(skb) + __skb_pagelen(skb);
2229 }
2230 
2231 /**
2232  * __skb_fill_page_desc - initialise a paged fragment in an skb
2233  * @skb: buffer containing fragment to be initialised
2234  * @i: paged fragment index to initialise
2235  * @page: the page to use for this fragment
2236  * @off: the offset to the data with @page
2237  * @size: the length of the data
2238  *
2239  * Initialises the @i'th fragment of @skb to point to &size bytes at
2240  * offset @off within @page.
2241  *
2242  * Does not take any additional reference on the fragment.
2243  */
2244 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2245 					struct page *page, int off, int size)
2246 {
2247 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2248 
2249 	/*
2250 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2251 	 * that not all callers have unique ownership of the page but rely
2252 	 * on page_is_pfmemalloc doing the right thing(tm).
2253 	 */
2254 	frag->bv_page		  = page;
2255 	frag->bv_offset		  = off;
2256 	skb_frag_size_set(frag, size);
2257 
2258 	page = compound_head(page);
2259 	if (page_is_pfmemalloc(page))
2260 		skb->pfmemalloc	= true;
2261 }
2262 
2263 /**
2264  * skb_fill_page_desc - initialise a paged fragment in an skb
2265  * @skb: buffer containing fragment to be initialised
2266  * @i: paged fragment index to initialise
2267  * @page: the page to use for this fragment
2268  * @off: the offset to the data with @page
2269  * @size: the length of the data
2270  *
2271  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2272  * @skb to point to @size bytes at offset @off within @page. In
2273  * addition updates @skb such that @i is the last fragment.
2274  *
2275  * Does not take any additional reference on the fragment.
2276  */
2277 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2278 				      struct page *page, int off, int size)
2279 {
2280 	__skb_fill_page_desc(skb, i, page, off, size);
2281 	skb_shinfo(skb)->nr_frags = i + 1;
2282 }
2283 
2284 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2285 		     int size, unsigned int truesize);
2286 
2287 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2288 			  unsigned int truesize);
2289 
2290 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2291 
2292 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2293 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2294 {
2295 	return skb->head + skb->tail;
2296 }
2297 
2298 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2299 {
2300 	skb->tail = skb->data - skb->head;
2301 }
2302 
2303 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2304 {
2305 	skb_reset_tail_pointer(skb);
2306 	skb->tail += offset;
2307 }
2308 
2309 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2310 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2311 {
2312 	return skb->tail;
2313 }
2314 
2315 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2316 {
2317 	skb->tail = skb->data;
2318 }
2319 
2320 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2321 {
2322 	skb->tail = skb->data + offset;
2323 }
2324 
2325 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2326 
2327 /*
2328  *	Add data to an sk_buff
2329  */
2330 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2331 void *skb_put(struct sk_buff *skb, unsigned int len);
2332 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2333 {
2334 	void *tmp = skb_tail_pointer(skb);
2335 	SKB_LINEAR_ASSERT(skb);
2336 	skb->tail += len;
2337 	skb->len  += len;
2338 	return tmp;
2339 }
2340 
2341 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2342 {
2343 	void *tmp = __skb_put(skb, len);
2344 
2345 	memset(tmp, 0, len);
2346 	return tmp;
2347 }
2348 
2349 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2350 				   unsigned int len)
2351 {
2352 	void *tmp = __skb_put(skb, len);
2353 
2354 	memcpy(tmp, data, len);
2355 	return tmp;
2356 }
2357 
2358 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2359 {
2360 	*(u8 *)__skb_put(skb, 1) = val;
2361 }
2362 
2363 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2364 {
2365 	void *tmp = skb_put(skb, len);
2366 
2367 	memset(tmp, 0, len);
2368 
2369 	return tmp;
2370 }
2371 
2372 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2373 				 unsigned int len)
2374 {
2375 	void *tmp = skb_put(skb, len);
2376 
2377 	memcpy(tmp, data, len);
2378 
2379 	return tmp;
2380 }
2381 
2382 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2383 {
2384 	*(u8 *)skb_put(skb, 1) = val;
2385 }
2386 
2387 void *skb_push(struct sk_buff *skb, unsigned int len);
2388 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2389 {
2390 	skb->data -= len;
2391 	skb->len  += len;
2392 	return skb->data;
2393 }
2394 
2395 void *skb_pull(struct sk_buff *skb, unsigned int len);
2396 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2397 {
2398 	skb->len -= len;
2399 	BUG_ON(skb->len < skb->data_len);
2400 	return skb->data += len;
2401 }
2402 
2403 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2404 {
2405 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2406 }
2407 
2408 void *skb_pull_data(struct sk_buff *skb, size_t len);
2409 
2410 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2411 
2412 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2413 {
2414 	if (len > skb_headlen(skb) &&
2415 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2416 		return NULL;
2417 	skb->len -= len;
2418 	return skb->data += len;
2419 }
2420 
2421 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2422 {
2423 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2424 }
2425 
2426 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2427 {
2428 	if (likely(len <= skb_headlen(skb)))
2429 		return true;
2430 	if (unlikely(len > skb->len))
2431 		return false;
2432 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2433 }
2434 
2435 void skb_condense(struct sk_buff *skb);
2436 
2437 /**
2438  *	skb_headroom - bytes at buffer head
2439  *	@skb: buffer to check
2440  *
2441  *	Return the number of bytes of free space at the head of an &sk_buff.
2442  */
2443 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2444 {
2445 	return skb->data - skb->head;
2446 }
2447 
2448 /**
2449  *	skb_tailroom - bytes at buffer end
2450  *	@skb: buffer to check
2451  *
2452  *	Return the number of bytes of free space at the tail of an sk_buff
2453  */
2454 static inline int skb_tailroom(const struct sk_buff *skb)
2455 {
2456 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2457 }
2458 
2459 /**
2460  *	skb_availroom - bytes at buffer end
2461  *	@skb: buffer to check
2462  *
2463  *	Return the number of bytes of free space at the tail of an sk_buff
2464  *	allocated by sk_stream_alloc()
2465  */
2466 static inline int skb_availroom(const struct sk_buff *skb)
2467 {
2468 	if (skb_is_nonlinear(skb))
2469 		return 0;
2470 
2471 	return skb->end - skb->tail - skb->reserved_tailroom;
2472 }
2473 
2474 /**
2475  *	skb_reserve - adjust headroom
2476  *	@skb: buffer to alter
2477  *	@len: bytes to move
2478  *
2479  *	Increase the headroom of an empty &sk_buff by reducing the tail
2480  *	room. This is only allowed for an empty buffer.
2481  */
2482 static inline void skb_reserve(struct sk_buff *skb, int len)
2483 {
2484 	skb->data += len;
2485 	skb->tail += len;
2486 }
2487 
2488 /**
2489  *	skb_tailroom_reserve - adjust reserved_tailroom
2490  *	@skb: buffer to alter
2491  *	@mtu: maximum amount of headlen permitted
2492  *	@needed_tailroom: minimum amount of reserved_tailroom
2493  *
2494  *	Set reserved_tailroom so that headlen can be as large as possible but
2495  *	not larger than mtu and tailroom cannot be smaller than
2496  *	needed_tailroom.
2497  *	The required headroom should already have been reserved before using
2498  *	this function.
2499  */
2500 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2501 					unsigned int needed_tailroom)
2502 {
2503 	SKB_LINEAR_ASSERT(skb);
2504 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2505 		/* use at most mtu */
2506 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2507 	else
2508 		/* use up to all available space */
2509 		skb->reserved_tailroom = needed_tailroom;
2510 }
2511 
2512 #define ENCAP_TYPE_ETHER	0
2513 #define ENCAP_TYPE_IPPROTO	1
2514 
2515 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2516 					  __be16 protocol)
2517 {
2518 	skb->inner_protocol = protocol;
2519 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2520 }
2521 
2522 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2523 					 __u8 ipproto)
2524 {
2525 	skb->inner_ipproto = ipproto;
2526 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2527 }
2528 
2529 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2530 {
2531 	skb->inner_mac_header = skb->mac_header;
2532 	skb->inner_network_header = skb->network_header;
2533 	skb->inner_transport_header = skb->transport_header;
2534 }
2535 
2536 static inline void skb_reset_mac_len(struct sk_buff *skb)
2537 {
2538 	skb->mac_len = skb->network_header - skb->mac_header;
2539 }
2540 
2541 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2542 							*skb)
2543 {
2544 	return skb->head + skb->inner_transport_header;
2545 }
2546 
2547 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2548 {
2549 	return skb_inner_transport_header(skb) - skb->data;
2550 }
2551 
2552 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2553 {
2554 	skb->inner_transport_header = skb->data - skb->head;
2555 }
2556 
2557 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2558 						   const int offset)
2559 {
2560 	skb_reset_inner_transport_header(skb);
2561 	skb->inner_transport_header += offset;
2562 }
2563 
2564 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2565 {
2566 	return skb->head + skb->inner_network_header;
2567 }
2568 
2569 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2570 {
2571 	skb->inner_network_header = skb->data - skb->head;
2572 }
2573 
2574 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2575 						const int offset)
2576 {
2577 	skb_reset_inner_network_header(skb);
2578 	skb->inner_network_header += offset;
2579 }
2580 
2581 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2582 {
2583 	return skb->head + skb->inner_mac_header;
2584 }
2585 
2586 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2587 {
2588 	skb->inner_mac_header = skb->data - skb->head;
2589 }
2590 
2591 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2592 					    const int offset)
2593 {
2594 	skb_reset_inner_mac_header(skb);
2595 	skb->inner_mac_header += offset;
2596 }
2597 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2598 {
2599 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2600 }
2601 
2602 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2603 {
2604 	return skb->head + skb->transport_header;
2605 }
2606 
2607 static inline void skb_reset_transport_header(struct sk_buff *skb)
2608 {
2609 	skb->transport_header = skb->data - skb->head;
2610 }
2611 
2612 static inline void skb_set_transport_header(struct sk_buff *skb,
2613 					    const int offset)
2614 {
2615 	skb_reset_transport_header(skb);
2616 	skb->transport_header += offset;
2617 }
2618 
2619 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2620 {
2621 	return skb->head + skb->network_header;
2622 }
2623 
2624 static inline void skb_reset_network_header(struct sk_buff *skb)
2625 {
2626 	skb->network_header = skb->data - skb->head;
2627 }
2628 
2629 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2630 {
2631 	skb_reset_network_header(skb);
2632 	skb->network_header += offset;
2633 }
2634 
2635 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2636 {
2637 	return skb->head + skb->mac_header;
2638 }
2639 
2640 static inline int skb_mac_offset(const struct sk_buff *skb)
2641 {
2642 	return skb_mac_header(skb) - skb->data;
2643 }
2644 
2645 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2646 {
2647 	return skb->network_header - skb->mac_header;
2648 }
2649 
2650 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2651 {
2652 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2653 }
2654 
2655 static inline void skb_unset_mac_header(struct sk_buff *skb)
2656 {
2657 	skb->mac_header = (typeof(skb->mac_header))~0U;
2658 }
2659 
2660 static inline void skb_reset_mac_header(struct sk_buff *skb)
2661 {
2662 	skb->mac_header = skb->data - skb->head;
2663 }
2664 
2665 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2666 {
2667 	skb_reset_mac_header(skb);
2668 	skb->mac_header += offset;
2669 }
2670 
2671 static inline void skb_pop_mac_header(struct sk_buff *skb)
2672 {
2673 	skb->mac_header = skb->network_header;
2674 }
2675 
2676 static inline void skb_probe_transport_header(struct sk_buff *skb)
2677 {
2678 	struct flow_keys_basic keys;
2679 
2680 	if (skb_transport_header_was_set(skb))
2681 		return;
2682 
2683 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2684 					     NULL, 0, 0, 0, 0))
2685 		skb_set_transport_header(skb, keys.control.thoff);
2686 }
2687 
2688 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2689 {
2690 	if (skb_mac_header_was_set(skb)) {
2691 		const unsigned char *old_mac = skb_mac_header(skb);
2692 
2693 		skb_set_mac_header(skb, -skb->mac_len);
2694 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2695 	}
2696 }
2697 
2698 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2699 {
2700 	return skb->csum_start - skb_headroom(skb);
2701 }
2702 
2703 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2704 {
2705 	return skb->head + skb->csum_start;
2706 }
2707 
2708 static inline int skb_transport_offset(const struct sk_buff *skb)
2709 {
2710 	return skb_transport_header(skb) - skb->data;
2711 }
2712 
2713 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2714 {
2715 	return skb->transport_header - skb->network_header;
2716 }
2717 
2718 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2719 {
2720 	return skb->inner_transport_header - skb->inner_network_header;
2721 }
2722 
2723 static inline int skb_network_offset(const struct sk_buff *skb)
2724 {
2725 	return skb_network_header(skb) - skb->data;
2726 }
2727 
2728 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2729 {
2730 	return skb_inner_network_header(skb) - skb->data;
2731 }
2732 
2733 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2734 {
2735 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2736 }
2737 
2738 /*
2739  * CPUs often take a performance hit when accessing unaligned memory
2740  * locations. The actual performance hit varies, it can be small if the
2741  * hardware handles it or large if we have to take an exception and fix it
2742  * in software.
2743  *
2744  * Since an ethernet header is 14 bytes network drivers often end up with
2745  * the IP header at an unaligned offset. The IP header can be aligned by
2746  * shifting the start of the packet by 2 bytes. Drivers should do this
2747  * with:
2748  *
2749  * skb_reserve(skb, NET_IP_ALIGN);
2750  *
2751  * The downside to this alignment of the IP header is that the DMA is now
2752  * unaligned. On some architectures the cost of an unaligned DMA is high
2753  * and this cost outweighs the gains made by aligning the IP header.
2754  *
2755  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2756  * to be overridden.
2757  */
2758 #ifndef NET_IP_ALIGN
2759 #define NET_IP_ALIGN	2
2760 #endif
2761 
2762 /*
2763  * The networking layer reserves some headroom in skb data (via
2764  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2765  * the header has to grow. In the default case, if the header has to grow
2766  * 32 bytes or less we avoid the reallocation.
2767  *
2768  * Unfortunately this headroom changes the DMA alignment of the resulting
2769  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2770  * on some architectures. An architecture can override this value,
2771  * perhaps setting it to a cacheline in size (since that will maintain
2772  * cacheline alignment of the DMA). It must be a power of 2.
2773  *
2774  * Various parts of the networking layer expect at least 32 bytes of
2775  * headroom, you should not reduce this.
2776  *
2777  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2778  * to reduce average number of cache lines per packet.
2779  * get_rps_cpu() for example only access one 64 bytes aligned block :
2780  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2781  */
2782 #ifndef NET_SKB_PAD
2783 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2784 #endif
2785 
2786 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2787 
2788 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2789 {
2790 	if (WARN_ON(skb_is_nonlinear(skb)))
2791 		return;
2792 	skb->len = len;
2793 	skb_set_tail_pointer(skb, len);
2794 }
2795 
2796 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2797 {
2798 	__skb_set_length(skb, len);
2799 }
2800 
2801 void skb_trim(struct sk_buff *skb, unsigned int len);
2802 
2803 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2804 {
2805 	if (skb->data_len)
2806 		return ___pskb_trim(skb, len);
2807 	__skb_trim(skb, len);
2808 	return 0;
2809 }
2810 
2811 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2812 {
2813 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2814 }
2815 
2816 /**
2817  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2818  *	@skb: buffer to alter
2819  *	@len: new length
2820  *
2821  *	This is identical to pskb_trim except that the caller knows that
2822  *	the skb is not cloned so we should never get an error due to out-
2823  *	of-memory.
2824  */
2825 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2826 {
2827 	int err = pskb_trim(skb, len);
2828 	BUG_ON(err);
2829 }
2830 
2831 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2832 {
2833 	unsigned int diff = len - skb->len;
2834 
2835 	if (skb_tailroom(skb) < diff) {
2836 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2837 					   GFP_ATOMIC);
2838 		if (ret)
2839 			return ret;
2840 	}
2841 	__skb_set_length(skb, len);
2842 	return 0;
2843 }
2844 
2845 /**
2846  *	skb_orphan - orphan a buffer
2847  *	@skb: buffer to orphan
2848  *
2849  *	If a buffer currently has an owner then we call the owner's
2850  *	destructor function and make the @skb unowned. The buffer continues
2851  *	to exist but is no longer charged to its former owner.
2852  */
2853 static inline void skb_orphan(struct sk_buff *skb)
2854 {
2855 	if (skb->destructor) {
2856 		skb->destructor(skb);
2857 		skb->destructor = NULL;
2858 		skb->sk		= NULL;
2859 	} else {
2860 		BUG_ON(skb->sk);
2861 	}
2862 }
2863 
2864 /**
2865  *	skb_orphan_frags - orphan the frags contained in a buffer
2866  *	@skb: buffer to orphan frags from
2867  *	@gfp_mask: allocation mask for replacement pages
2868  *
2869  *	For each frag in the SKB which needs a destructor (i.e. has an
2870  *	owner) create a copy of that frag and release the original
2871  *	page by calling the destructor.
2872  */
2873 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2874 {
2875 	if (likely(!skb_zcopy(skb)))
2876 		return 0;
2877 	if (!skb_zcopy_is_nouarg(skb) &&
2878 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
2879 		return 0;
2880 	return skb_copy_ubufs(skb, gfp_mask);
2881 }
2882 
2883 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2884 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2885 {
2886 	if (likely(!skb_zcopy(skb)))
2887 		return 0;
2888 	return skb_copy_ubufs(skb, gfp_mask);
2889 }
2890 
2891 /**
2892  *	__skb_queue_purge - empty a list
2893  *	@list: list to empty
2894  *
2895  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2896  *	the list and one reference dropped. This function does not take the
2897  *	list lock and the caller must hold the relevant locks to use it.
2898  */
2899 static inline void __skb_queue_purge(struct sk_buff_head *list)
2900 {
2901 	struct sk_buff *skb;
2902 	while ((skb = __skb_dequeue(list)) != NULL)
2903 		kfree_skb(skb);
2904 }
2905 void skb_queue_purge(struct sk_buff_head *list);
2906 
2907 unsigned int skb_rbtree_purge(struct rb_root *root);
2908 
2909 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2910 
2911 /**
2912  * netdev_alloc_frag - allocate a page fragment
2913  * @fragsz: fragment size
2914  *
2915  * Allocates a frag from a page for receive buffer.
2916  * Uses GFP_ATOMIC allocations.
2917  */
2918 static inline void *netdev_alloc_frag(unsigned int fragsz)
2919 {
2920 	return __netdev_alloc_frag_align(fragsz, ~0u);
2921 }
2922 
2923 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2924 					    unsigned int align)
2925 {
2926 	WARN_ON_ONCE(!is_power_of_2(align));
2927 	return __netdev_alloc_frag_align(fragsz, -align);
2928 }
2929 
2930 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2931 				   gfp_t gfp_mask);
2932 
2933 /**
2934  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2935  *	@dev: network device to receive on
2936  *	@length: length to allocate
2937  *
2938  *	Allocate a new &sk_buff and assign it a usage count of one. The
2939  *	buffer has unspecified headroom built in. Users should allocate
2940  *	the headroom they think they need without accounting for the
2941  *	built in space. The built in space is used for optimisations.
2942  *
2943  *	%NULL is returned if there is no free memory. Although this function
2944  *	allocates memory it can be called from an interrupt.
2945  */
2946 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2947 					       unsigned int length)
2948 {
2949 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2950 }
2951 
2952 /* legacy helper around __netdev_alloc_skb() */
2953 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2954 					      gfp_t gfp_mask)
2955 {
2956 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2957 }
2958 
2959 /* legacy helper around netdev_alloc_skb() */
2960 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2961 {
2962 	return netdev_alloc_skb(NULL, length);
2963 }
2964 
2965 
2966 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2967 		unsigned int length, gfp_t gfp)
2968 {
2969 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2970 
2971 	if (NET_IP_ALIGN && skb)
2972 		skb_reserve(skb, NET_IP_ALIGN);
2973 	return skb;
2974 }
2975 
2976 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2977 		unsigned int length)
2978 {
2979 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2980 }
2981 
2982 static inline void skb_free_frag(void *addr)
2983 {
2984 	page_frag_free(addr);
2985 }
2986 
2987 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2988 
2989 static inline void *napi_alloc_frag(unsigned int fragsz)
2990 {
2991 	return __napi_alloc_frag_align(fragsz, ~0u);
2992 }
2993 
2994 static inline void *napi_alloc_frag_align(unsigned int fragsz,
2995 					  unsigned int align)
2996 {
2997 	WARN_ON_ONCE(!is_power_of_2(align));
2998 	return __napi_alloc_frag_align(fragsz, -align);
2999 }
3000 
3001 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3002 				 unsigned int length, gfp_t gfp_mask);
3003 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3004 					     unsigned int length)
3005 {
3006 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3007 }
3008 void napi_consume_skb(struct sk_buff *skb, int budget);
3009 
3010 void napi_skb_free_stolen_head(struct sk_buff *skb);
3011 void __kfree_skb_defer(struct sk_buff *skb);
3012 
3013 /**
3014  * __dev_alloc_pages - allocate page for network Rx
3015  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3016  * @order: size of the allocation
3017  *
3018  * Allocate a new page.
3019  *
3020  * %NULL is returned if there is no free memory.
3021 */
3022 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3023 					     unsigned int order)
3024 {
3025 	/* This piece of code contains several assumptions.
3026 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3027 	 * 2.  The expectation is the user wants a compound page.
3028 	 * 3.  If requesting a order 0 page it will not be compound
3029 	 *     due to the check to see if order has a value in prep_new_page
3030 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3031 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3032 	 */
3033 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3034 
3035 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3036 }
3037 
3038 static inline struct page *dev_alloc_pages(unsigned int order)
3039 {
3040 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3041 }
3042 
3043 /**
3044  * __dev_alloc_page - allocate a page for network Rx
3045  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3046  *
3047  * Allocate a new page.
3048  *
3049  * %NULL is returned if there is no free memory.
3050  */
3051 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3052 {
3053 	return __dev_alloc_pages(gfp_mask, 0);
3054 }
3055 
3056 static inline struct page *dev_alloc_page(void)
3057 {
3058 	return dev_alloc_pages(0);
3059 }
3060 
3061 /**
3062  * dev_page_is_reusable - check whether a page can be reused for network Rx
3063  * @page: the page to test
3064  *
3065  * A page shouldn't be considered for reusing/recycling if it was allocated
3066  * under memory pressure or at a distant memory node.
3067  *
3068  * Returns false if this page should be returned to page allocator, true
3069  * otherwise.
3070  */
3071 static inline bool dev_page_is_reusable(const struct page *page)
3072 {
3073 	return likely(page_to_nid(page) == numa_mem_id() &&
3074 		      !page_is_pfmemalloc(page));
3075 }
3076 
3077 /**
3078  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3079  *	@page: The page that was allocated from skb_alloc_page
3080  *	@skb: The skb that may need pfmemalloc set
3081  */
3082 static inline void skb_propagate_pfmemalloc(const struct page *page,
3083 					    struct sk_buff *skb)
3084 {
3085 	if (page_is_pfmemalloc(page))
3086 		skb->pfmemalloc = true;
3087 }
3088 
3089 /**
3090  * skb_frag_off() - Returns the offset of a skb fragment
3091  * @frag: the paged fragment
3092  */
3093 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3094 {
3095 	return frag->bv_offset;
3096 }
3097 
3098 /**
3099  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3100  * @frag: skb fragment
3101  * @delta: value to add
3102  */
3103 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3104 {
3105 	frag->bv_offset += delta;
3106 }
3107 
3108 /**
3109  * skb_frag_off_set() - Sets the offset of a skb fragment
3110  * @frag: skb fragment
3111  * @offset: offset of fragment
3112  */
3113 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3114 {
3115 	frag->bv_offset = offset;
3116 }
3117 
3118 /**
3119  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3120  * @fragto: skb fragment where offset is set
3121  * @fragfrom: skb fragment offset is copied from
3122  */
3123 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3124 				     const skb_frag_t *fragfrom)
3125 {
3126 	fragto->bv_offset = fragfrom->bv_offset;
3127 }
3128 
3129 /**
3130  * skb_frag_page - retrieve the page referred to by a paged fragment
3131  * @frag: the paged fragment
3132  *
3133  * Returns the &struct page associated with @frag.
3134  */
3135 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3136 {
3137 	return frag->bv_page;
3138 }
3139 
3140 /**
3141  * __skb_frag_ref - take an addition reference on a paged fragment.
3142  * @frag: the paged fragment
3143  *
3144  * Takes an additional reference on the paged fragment @frag.
3145  */
3146 static inline void __skb_frag_ref(skb_frag_t *frag)
3147 {
3148 	get_page(skb_frag_page(frag));
3149 }
3150 
3151 /**
3152  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3153  * @skb: the buffer
3154  * @f: the fragment offset.
3155  *
3156  * Takes an additional reference on the @f'th paged fragment of @skb.
3157  */
3158 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3159 {
3160 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3161 }
3162 
3163 /**
3164  * __skb_frag_unref - release a reference on a paged fragment.
3165  * @frag: the paged fragment
3166  * @recycle: recycle the page if allocated via page_pool
3167  *
3168  * Releases a reference on the paged fragment @frag
3169  * or recycles the page via the page_pool API.
3170  */
3171 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3172 {
3173 	struct page *page = skb_frag_page(frag);
3174 
3175 #ifdef CONFIG_PAGE_POOL
3176 	if (recycle && page_pool_return_skb_page(page))
3177 		return;
3178 #endif
3179 	put_page(page);
3180 }
3181 
3182 /**
3183  * skb_frag_unref - release a reference on a paged fragment of an skb.
3184  * @skb: the buffer
3185  * @f: the fragment offset
3186  *
3187  * Releases a reference on the @f'th paged fragment of @skb.
3188  */
3189 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3190 {
3191 	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3192 }
3193 
3194 /**
3195  * skb_frag_address - gets the address of the data contained in a paged fragment
3196  * @frag: the paged fragment buffer
3197  *
3198  * Returns the address of the data within @frag. The page must already
3199  * be mapped.
3200  */
3201 static inline void *skb_frag_address(const skb_frag_t *frag)
3202 {
3203 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3204 }
3205 
3206 /**
3207  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3208  * @frag: the paged fragment buffer
3209  *
3210  * Returns the address of the data within @frag. Checks that the page
3211  * is mapped and returns %NULL otherwise.
3212  */
3213 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3214 {
3215 	void *ptr = page_address(skb_frag_page(frag));
3216 	if (unlikely(!ptr))
3217 		return NULL;
3218 
3219 	return ptr + skb_frag_off(frag);
3220 }
3221 
3222 /**
3223  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3224  * @fragto: skb fragment where page is set
3225  * @fragfrom: skb fragment page is copied from
3226  */
3227 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3228 				      const skb_frag_t *fragfrom)
3229 {
3230 	fragto->bv_page = fragfrom->bv_page;
3231 }
3232 
3233 /**
3234  * __skb_frag_set_page - sets the page contained in a paged fragment
3235  * @frag: the paged fragment
3236  * @page: the page to set
3237  *
3238  * Sets the fragment @frag to contain @page.
3239  */
3240 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3241 {
3242 	frag->bv_page = page;
3243 }
3244 
3245 /**
3246  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3247  * @skb: the buffer
3248  * @f: the fragment offset
3249  * @page: the page to set
3250  *
3251  * Sets the @f'th fragment of @skb to contain @page.
3252  */
3253 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3254 				     struct page *page)
3255 {
3256 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3257 }
3258 
3259 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3260 
3261 /**
3262  * skb_frag_dma_map - maps a paged fragment via the DMA API
3263  * @dev: the device to map the fragment to
3264  * @frag: the paged fragment to map
3265  * @offset: the offset within the fragment (starting at the
3266  *          fragment's own offset)
3267  * @size: the number of bytes to map
3268  * @dir: the direction of the mapping (``PCI_DMA_*``)
3269  *
3270  * Maps the page associated with @frag to @device.
3271  */
3272 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3273 					  const skb_frag_t *frag,
3274 					  size_t offset, size_t size,
3275 					  enum dma_data_direction dir)
3276 {
3277 	return dma_map_page(dev, skb_frag_page(frag),
3278 			    skb_frag_off(frag) + offset, size, dir);
3279 }
3280 
3281 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3282 					gfp_t gfp_mask)
3283 {
3284 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3285 }
3286 
3287 
3288 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3289 						  gfp_t gfp_mask)
3290 {
3291 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3292 }
3293 
3294 
3295 /**
3296  *	skb_clone_writable - is the header of a clone writable
3297  *	@skb: buffer to check
3298  *	@len: length up to which to write
3299  *
3300  *	Returns true if modifying the header part of the cloned buffer
3301  *	does not requires the data to be copied.
3302  */
3303 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3304 {
3305 	return !skb_header_cloned(skb) &&
3306 	       skb_headroom(skb) + len <= skb->hdr_len;
3307 }
3308 
3309 static inline int skb_try_make_writable(struct sk_buff *skb,
3310 					unsigned int write_len)
3311 {
3312 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3313 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3314 }
3315 
3316 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3317 			    int cloned)
3318 {
3319 	int delta = 0;
3320 
3321 	if (headroom > skb_headroom(skb))
3322 		delta = headroom - skb_headroom(skb);
3323 
3324 	if (delta || cloned)
3325 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3326 					GFP_ATOMIC);
3327 	return 0;
3328 }
3329 
3330 /**
3331  *	skb_cow - copy header of skb when it is required
3332  *	@skb: buffer to cow
3333  *	@headroom: needed headroom
3334  *
3335  *	If the skb passed lacks sufficient headroom or its data part
3336  *	is shared, data is reallocated. If reallocation fails, an error
3337  *	is returned and original skb is not changed.
3338  *
3339  *	The result is skb with writable area skb->head...skb->tail
3340  *	and at least @headroom of space at head.
3341  */
3342 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3343 {
3344 	return __skb_cow(skb, headroom, skb_cloned(skb));
3345 }
3346 
3347 /**
3348  *	skb_cow_head - skb_cow but only making the head writable
3349  *	@skb: buffer to cow
3350  *	@headroom: needed headroom
3351  *
3352  *	This function is identical to skb_cow except that we replace the
3353  *	skb_cloned check by skb_header_cloned.  It should be used when
3354  *	you only need to push on some header and do not need to modify
3355  *	the data.
3356  */
3357 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3358 {
3359 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3360 }
3361 
3362 /**
3363  *	skb_padto	- pad an skbuff up to a minimal size
3364  *	@skb: buffer to pad
3365  *	@len: minimal length
3366  *
3367  *	Pads up a buffer to ensure the trailing bytes exist and are
3368  *	blanked. If the buffer already contains sufficient data it
3369  *	is untouched. Otherwise it is extended. Returns zero on
3370  *	success. The skb is freed on error.
3371  */
3372 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3373 {
3374 	unsigned int size = skb->len;
3375 	if (likely(size >= len))
3376 		return 0;
3377 	return skb_pad(skb, len - size);
3378 }
3379 
3380 /**
3381  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3382  *	@skb: buffer to pad
3383  *	@len: minimal length
3384  *	@free_on_error: free buffer on error
3385  *
3386  *	Pads up a buffer to ensure the trailing bytes exist and are
3387  *	blanked. If the buffer already contains sufficient data it
3388  *	is untouched. Otherwise it is extended. Returns zero on
3389  *	success. The skb is freed on error if @free_on_error is true.
3390  */
3391 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3392 					       unsigned int len,
3393 					       bool free_on_error)
3394 {
3395 	unsigned int size = skb->len;
3396 
3397 	if (unlikely(size < len)) {
3398 		len -= size;
3399 		if (__skb_pad(skb, len, free_on_error))
3400 			return -ENOMEM;
3401 		__skb_put(skb, len);
3402 	}
3403 	return 0;
3404 }
3405 
3406 /**
3407  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3408  *	@skb: buffer to pad
3409  *	@len: minimal length
3410  *
3411  *	Pads up a buffer to ensure the trailing bytes exist and are
3412  *	blanked. If the buffer already contains sufficient data it
3413  *	is untouched. Otherwise it is extended. Returns zero on
3414  *	success. The skb is freed on error.
3415  */
3416 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3417 {
3418 	return __skb_put_padto(skb, len, true);
3419 }
3420 
3421 static inline int skb_add_data(struct sk_buff *skb,
3422 			       struct iov_iter *from, int copy)
3423 {
3424 	const int off = skb->len;
3425 
3426 	if (skb->ip_summed == CHECKSUM_NONE) {
3427 		__wsum csum = 0;
3428 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3429 					         &csum, from)) {
3430 			skb->csum = csum_block_add(skb->csum, csum, off);
3431 			return 0;
3432 		}
3433 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3434 		return 0;
3435 
3436 	__skb_trim(skb, off);
3437 	return -EFAULT;
3438 }
3439 
3440 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3441 				    const struct page *page, int off)
3442 {
3443 	if (skb_zcopy(skb))
3444 		return false;
3445 	if (i) {
3446 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3447 
3448 		return page == skb_frag_page(frag) &&
3449 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3450 	}
3451 	return false;
3452 }
3453 
3454 static inline int __skb_linearize(struct sk_buff *skb)
3455 {
3456 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3457 }
3458 
3459 /**
3460  *	skb_linearize - convert paged skb to linear one
3461  *	@skb: buffer to linarize
3462  *
3463  *	If there is no free memory -ENOMEM is returned, otherwise zero
3464  *	is returned and the old skb data released.
3465  */
3466 static inline int skb_linearize(struct sk_buff *skb)
3467 {
3468 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3469 }
3470 
3471 /**
3472  * skb_has_shared_frag - can any frag be overwritten
3473  * @skb: buffer to test
3474  *
3475  * Return true if the skb has at least one frag that might be modified
3476  * by an external entity (as in vmsplice()/sendfile())
3477  */
3478 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3479 {
3480 	return skb_is_nonlinear(skb) &&
3481 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3482 }
3483 
3484 /**
3485  *	skb_linearize_cow - make sure skb is linear and writable
3486  *	@skb: buffer to process
3487  *
3488  *	If there is no free memory -ENOMEM is returned, otherwise zero
3489  *	is returned and the old skb data released.
3490  */
3491 static inline int skb_linearize_cow(struct sk_buff *skb)
3492 {
3493 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3494 	       __skb_linearize(skb) : 0;
3495 }
3496 
3497 static __always_inline void
3498 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3499 		     unsigned int off)
3500 {
3501 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3502 		skb->csum = csum_block_sub(skb->csum,
3503 					   csum_partial(start, len, 0), off);
3504 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3505 		 skb_checksum_start_offset(skb) < 0)
3506 		skb->ip_summed = CHECKSUM_NONE;
3507 }
3508 
3509 /**
3510  *	skb_postpull_rcsum - update checksum for received skb after pull
3511  *	@skb: buffer to update
3512  *	@start: start of data before pull
3513  *	@len: length of data pulled
3514  *
3515  *	After doing a pull on a received packet, you need to call this to
3516  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3517  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3518  */
3519 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3520 				      const void *start, unsigned int len)
3521 {
3522 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3523 		skb->csum = wsum_negate(csum_partial(start, len,
3524 						     wsum_negate(skb->csum)));
3525 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3526 		 skb_checksum_start_offset(skb) < 0)
3527 		skb->ip_summed = CHECKSUM_NONE;
3528 }
3529 
3530 static __always_inline void
3531 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3532 		     unsigned int off)
3533 {
3534 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3535 		skb->csum = csum_block_add(skb->csum,
3536 					   csum_partial(start, len, 0), off);
3537 }
3538 
3539 /**
3540  *	skb_postpush_rcsum - update checksum for received skb after push
3541  *	@skb: buffer to update
3542  *	@start: start of data after push
3543  *	@len: length of data pushed
3544  *
3545  *	After doing a push on a received packet, you need to call this to
3546  *	update the CHECKSUM_COMPLETE checksum.
3547  */
3548 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3549 				      const void *start, unsigned int len)
3550 {
3551 	__skb_postpush_rcsum(skb, start, len, 0);
3552 }
3553 
3554 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3555 
3556 /**
3557  *	skb_push_rcsum - push skb and update receive checksum
3558  *	@skb: buffer to update
3559  *	@len: length of data pulled
3560  *
3561  *	This function performs an skb_push on the packet and updates
3562  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3563  *	receive path processing instead of skb_push unless you know
3564  *	that the checksum difference is zero (e.g., a valid IP header)
3565  *	or you are setting ip_summed to CHECKSUM_NONE.
3566  */
3567 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3568 {
3569 	skb_push(skb, len);
3570 	skb_postpush_rcsum(skb, skb->data, len);
3571 	return skb->data;
3572 }
3573 
3574 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3575 /**
3576  *	pskb_trim_rcsum - trim received skb and update checksum
3577  *	@skb: buffer to trim
3578  *	@len: new length
3579  *
3580  *	This is exactly the same as pskb_trim except that it ensures the
3581  *	checksum of received packets are still valid after the operation.
3582  *	It can change skb pointers.
3583  */
3584 
3585 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3586 {
3587 	if (likely(len >= skb->len))
3588 		return 0;
3589 	return pskb_trim_rcsum_slow(skb, len);
3590 }
3591 
3592 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3593 {
3594 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3595 		skb->ip_summed = CHECKSUM_NONE;
3596 	__skb_trim(skb, len);
3597 	return 0;
3598 }
3599 
3600 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3601 {
3602 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3603 		skb->ip_summed = CHECKSUM_NONE;
3604 	return __skb_grow(skb, len);
3605 }
3606 
3607 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3608 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3609 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3610 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3611 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3612 
3613 #define skb_queue_walk(queue, skb) \
3614 		for (skb = (queue)->next;					\
3615 		     skb != (struct sk_buff *)(queue);				\
3616 		     skb = skb->next)
3617 
3618 #define skb_queue_walk_safe(queue, skb, tmp)					\
3619 		for (skb = (queue)->next, tmp = skb->next;			\
3620 		     skb != (struct sk_buff *)(queue);				\
3621 		     skb = tmp, tmp = skb->next)
3622 
3623 #define skb_queue_walk_from(queue, skb)						\
3624 		for (; skb != (struct sk_buff *)(queue);			\
3625 		     skb = skb->next)
3626 
3627 #define skb_rbtree_walk(skb, root)						\
3628 		for (skb = skb_rb_first(root); skb != NULL;			\
3629 		     skb = skb_rb_next(skb))
3630 
3631 #define skb_rbtree_walk_from(skb)						\
3632 		for (; skb != NULL;						\
3633 		     skb = skb_rb_next(skb))
3634 
3635 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3636 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3637 		     skb = tmp)
3638 
3639 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3640 		for (tmp = skb->next;						\
3641 		     skb != (struct sk_buff *)(queue);				\
3642 		     skb = tmp, tmp = skb->next)
3643 
3644 #define skb_queue_reverse_walk(queue, skb) \
3645 		for (skb = (queue)->prev;					\
3646 		     skb != (struct sk_buff *)(queue);				\
3647 		     skb = skb->prev)
3648 
3649 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3650 		for (skb = (queue)->prev, tmp = skb->prev;			\
3651 		     skb != (struct sk_buff *)(queue);				\
3652 		     skb = tmp, tmp = skb->prev)
3653 
3654 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3655 		for (tmp = skb->prev;						\
3656 		     skb != (struct sk_buff *)(queue);				\
3657 		     skb = tmp, tmp = skb->prev)
3658 
3659 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3660 {
3661 	return skb_shinfo(skb)->frag_list != NULL;
3662 }
3663 
3664 static inline void skb_frag_list_init(struct sk_buff *skb)
3665 {
3666 	skb_shinfo(skb)->frag_list = NULL;
3667 }
3668 
3669 #define skb_walk_frags(skb, iter)	\
3670 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3671 
3672 
3673 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3674 				int *err, long *timeo_p,
3675 				const struct sk_buff *skb);
3676 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3677 					  struct sk_buff_head *queue,
3678 					  unsigned int flags,
3679 					  int *off, int *err,
3680 					  struct sk_buff **last);
3681 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3682 					struct sk_buff_head *queue,
3683 					unsigned int flags, int *off, int *err,
3684 					struct sk_buff **last);
3685 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3686 				    struct sk_buff_head *sk_queue,
3687 				    unsigned int flags, int *off, int *err);
3688 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3689 				  int *err);
3690 __poll_t datagram_poll(struct file *file, struct socket *sock,
3691 			   struct poll_table_struct *wait);
3692 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3693 			   struct iov_iter *to, int size);
3694 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3695 					struct msghdr *msg, int size)
3696 {
3697 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3698 }
3699 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3700 				   struct msghdr *msg);
3701 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3702 			   struct iov_iter *to, int len,
3703 			   struct ahash_request *hash);
3704 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3705 				 struct iov_iter *from, int len);
3706 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3707 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3708 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3709 static inline void skb_free_datagram_locked(struct sock *sk,
3710 					    struct sk_buff *skb)
3711 {
3712 	__skb_free_datagram_locked(sk, skb, 0);
3713 }
3714 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3715 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3716 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3717 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3718 			      int len);
3719 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3720 		    struct pipe_inode_info *pipe, unsigned int len,
3721 		    unsigned int flags);
3722 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3723 			 int len);
3724 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3725 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3726 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3727 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3728 		 int len, int hlen);
3729 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3730 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3731 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3732 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3733 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3734 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3735 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3736 				 unsigned int offset);
3737 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3738 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3739 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3740 int skb_vlan_pop(struct sk_buff *skb);
3741 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3742 int skb_eth_pop(struct sk_buff *skb);
3743 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3744 		 const unsigned char *src);
3745 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3746 		  int mac_len, bool ethernet);
3747 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3748 		 bool ethernet);
3749 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3750 int skb_mpls_dec_ttl(struct sk_buff *skb);
3751 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3752 			     gfp_t gfp);
3753 
3754 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3755 {
3756 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3757 }
3758 
3759 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3760 {
3761 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3762 }
3763 
3764 struct skb_checksum_ops {
3765 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3766 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3767 };
3768 
3769 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3770 
3771 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3772 		      __wsum csum, const struct skb_checksum_ops *ops);
3773 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3774 		    __wsum csum);
3775 
3776 static inline void * __must_check
3777 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3778 		     const void *data, int hlen, void *buffer)
3779 {
3780 	if (likely(hlen - offset >= len))
3781 		return (void *)data + offset;
3782 
3783 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3784 		return NULL;
3785 
3786 	return buffer;
3787 }
3788 
3789 static inline void * __must_check
3790 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3791 {
3792 	return __skb_header_pointer(skb, offset, len, skb->data,
3793 				    skb_headlen(skb), buffer);
3794 }
3795 
3796 /**
3797  *	skb_needs_linearize - check if we need to linearize a given skb
3798  *			      depending on the given device features.
3799  *	@skb: socket buffer to check
3800  *	@features: net device features
3801  *
3802  *	Returns true if either:
3803  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3804  *	2. skb is fragmented and the device does not support SG.
3805  */
3806 static inline bool skb_needs_linearize(struct sk_buff *skb,
3807 				       netdev_features_t features)
3808 {
3809 	return skb_is_nonlinear(skb) &&
3810 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3811 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3812 }
3813 
3814 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3815 					     void *to,
3816 					     const unsigned int len)
3817 {
3818 	memcpy(to, skb->data, len);
3819 }
3820 
3821 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3822 						    const int offset, void *to,
3823 						    const unsigned int len)
3824 {
3825 	memcpy(to, skb->data + offset, len);
3826 }
3827 
3828 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3829 					   const void *from,
3830 					   const unsigned int len)
3831 {
3832 	memcpy(skb->data, from, len);
3833 }
3834 
3835 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3836 						  const int offset,
3837 						  const void *from,
3838 						  const unsigned int len)
3839 {
3840 	memcpy(skb->data + offset, from, len);
3841 }
3842 
3843 void skb_init(void);
3844 
3845 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3846 {
3847 	return skb->tstamp;
3848 }
3849 
3850 /**
3851  *	skb_get_timestamp - get timestamp from a skb
3852  *	@skb: skb to get stamp from
3853  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3854  *
3855  *	Timestamps are stored in the skb as offsets to a base timestamp.
3856  *	This function converts the offset back to a struct timeval and stores
3857  *	it in stamp.
3858  */
3859 static inline void skb_get_timestamp(const struct sk_buff *skb,
3860 				     struct __kernel_old_timeval *stamp)
3861 {
3862 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3863 }
3864 
3865 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3866 					 struct __kernel_sock_timeval *stamp)
3867 {
3868 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3869 
3870 	stamp->tv_sec = ts.tv_sec;
3871 	stamp->tv_usec = ts.tv_nsec / 1000;
3872 }
3873 
3874 static inline void skb_get_timestampns(const struct sk_buff *skb,
3875 				       struct __kernel_old_timespec *stamp)
3876 {
3877 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3878 
3879 	stamp->tv_sec = ts.tv_sec;
3880 	stamp->tv_nsec = ts.tv_nsec;
3881 }
3882 
3883 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3884 					   struct __kernel_timespec *stamp)
3885 {
3886 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3887 
3888 	stamp->tv_sec = ts.tv_sec;
3889 	stamp->tv_nsec = ts.tv_nsec;
3890 }
3891 
3892 static inline void __net_timestamp(struct sk_buff *skb)
3893 {
3894 	skb->tstamp = ktime_get_real();
3895 }
3896 
3897 static inline ktime_t net_timedelta(ktime_t t)
3898 {
3899 	return ktime_sub(ktime_get_real(), t);
3900 }
3901 
3902 static inline ktime_t net_invalid_timestamp(void)
3903 {
3904 	return 0;
3905 }
3906 
3907 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3908 {
3909 	return skb_shinfo(skb)->meta_len;
3910 }
3911 
3912 static inline void *skb_metadata_end(const struct sk_buff *skb)
3913 {
3914 	return skb_mac_header(skb);
3915 }
3916 
3917 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3918 					  const struct sk_buff *skb_b,
3919 					  u8 meta_len)
3920 {
3921 	const void *a = skb_metadata_end(skb_a);
3922 	const void *b = skb_metadata_end(skb_b);
3923 	/* Using more efficient varaiant than plain call to memcmp(). */
3924 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3925 	u64 diffs = 0;
3926 
3927 	switch (meta_len) {
3928 #define __it(x, op) (x -= sizeof(u##op))
3929 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3930 	case 32: diffs |= __it_diff(a, b, 64);
3931 		fallthrough;
3932 	case 24: diffs |= __it_diff(a, b, 64);
3933 		fallthrough;
3934 	case 16: diffs |= __it_diff(a, b, 64);
3935 		fallthrough;
3936 	case  8: diffs |= __it_diff(a, b, 64);
3937 		break;
3938 	case 28: diffs |= __it_diff(a, b, 64);
3939 		fallthrough;
3940 	case 20: diffs |= __it_diff(a, b, 64);
3941 		fallthrough;
3942 	case 12: diffs |= __it_diff(a, b, 64);
3943 		fallthrough;
3944 	case  4: diffs |= __it_diff(a, b, 32);
3945 		break;
3946 	}
3947 	return diffs;
3948 #else
3949 	return memcmp(a - meta_len, b - meta_len, meta_len);
3950 #endif
3951 }
3952 
3953 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3954 					const struct sk_buff *skb_b)
3955 {
3956 	u8 len_a = skb_metadata_len(skb_a);
3957 	u8 len_b = skb_metadata_len(skb_b);
3958 
3959 	if (!(len_a | len_b))
3960 		return false;
3961 
3962 	return len_a != len_b ?
3963 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3964 }
3965 
3966 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3967 {
3968 	skb_shinfo(skb)->meta_len = meta_len;
3969 }
3970 
3971 static inline void skb_metadata_clear(struct sk_buff *skb)
3972 {
3973 	skb_metadata_set(skb, 0);
3974 }
3975 
3976 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3977 
3978 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3979 
3980 void skb_clone_tx_timestamp(struct sk_buff *skb);
3981 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3982 
3983 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3984 
3985 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3986 {
3987 }
3988 
3989 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3990 {
3991 	return false;
3992 }
3993 
3994 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3995 
3996 /**
3997  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3998  *
3999  * PHY drivers may accept clones of transmitted packets for
4000  * timestamping via their phy_driver.txtstamp method. These drivers
4001  * must call this function to return the skb back to the stack with a
4002  * timestamp.
4003  *
4004  * @skb: clone of the original outgoing packet
4005  * @hwtstamps: hardware time stamps
4006  *
4007  */
4008 void skb_complete_tx_timestamp(struct sk_buff *skb,
4009 			       struct skb_shared_hwtstamps *hwtstamps);
4010 
4011 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4012 		     struct skb_shared_hwtstamps *hwtstamps,
4013 		     struct sock *sk, int tstype);
4014 
4015 /**
4016  * skb_tstamp_tx - queue clone of skb with send time stamps
4017  * @orig_skb:	the original outgoing packet
4018  * @hwtstamps:	hardware time stamps, may be NULL if not available
4019  *
4020  * If the skb has a socket associated, then this function clones the
4021  * skb (thus sharing the actual data and optional structures), stores
4022  * the optional hardware time stamping information (if non NULL) or
4023  * generates a software time stamp (otherwise), then queues the clone
4024  * to the error queue of the socket.  Errors are silently ignored.
4025  */
4026 void skb_tstamp_tx(struct sk_buff *orig_skb,
4027 		   struct skb_shared_hwtstamps *hwtstamps);
4028 
4029 /**
4030  * skb_tx_timestamp() - Driver hook for transmit timestamping
4031  *
4032  * Ethernet MAC Drivers should call this function in their hard_xmit()
4033  * function immediately before giving the sk_buff to the MAC hardware.
4034  *
4035  * Specifically, one should make absolutely sure that this function is
4036  * called before TX completion of this packet can trigger.  Otherwise
4037  * the packet could potentially already be freed.
4038  *
4039  * @skb: A socket buffer.
4040  */
4041 static inline void skb_tx_timestamp(struct sk_buff *skb)
4042 {
4043 	skb_clone_tx_timestamp(skb);
4044 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4045 		skb_tstamp_tx(skb, NULL);
4046 }
4047 
4048 /**
4049  * skb_complete_wifi_ack - deliver skb with wifi status
4050  *
4051  * @skb: the original outgoing packet
4052  * @acked: ack status
4053  *
4054  */
4055 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4056 
4057 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4058 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4059 
4060 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4061 {
4062 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4063 		skb->csum_valid ||
4064 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4065 		 skb_checksum_start_offset(skb) >= 0));
4066 }
4067 
4068 /**
4069  *	skb_checksum_complete - Calculate checksum of an entire packet
4070  *	@skb: packet to process
4071  *
4072  *	This function calculates the checksum over the entire packet plus
4073  *	the value of skb->csum.  The latter can be used to supply the
4074  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4075  *	checksum.
4076  *
4077  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4078  *	this function can be used to verify that checksum on received
4079  *	packets.  In that case the function should return zero if the
4080  *	checksum is correct.  In particular, this function will return zero
4081  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4082  *	hardware has already verified the correctness of the checksum.
4083  */
4084 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4085 {
4086 	return skb_csum_unnecessary(skb) ?
4087 	       0 : __skb_checksum_complete(skb);
4088 }
4089 
4090 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4091 {
4092 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4093 		if (skb->csum_level == 0)
4094 			skb->ip_summed = CHECKSUM_NONE;
4095 		else
4096 			skb->csum_level--;
4097 	}
4098 }
4099 
4100 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4101 {
4102 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4103 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4104 			skb->csum_level++;
4105 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4106 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4107 		skb->csum_level = 0;
4108 	}
4109 }
4110 
4111 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4112 {
4113 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4114 		skb->ip_summed = CHECKSUM_NONE;
4115 		skb->csum_level = 0;
4116 	}
4117 }
4118 
4119 /* Check if we need to perform checksum complete validation.
4120  *
4121  * Returns true if checksum complete is needed, false otherwise
4122  * (either checksum is unnecessary or zero checksum is allowed).
4123  */
4124 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4125 						  bool zero_okay,
4126 						  __sum16 check)
4127 {
4128 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4129 		skb->csum_valid = 1;
4130 		__skb_decr_checksum_unnecessary(skb);
4131 		return false;
4132 	}
4133 
4134 	return true;
4135 }
4136 
4137 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4138  * in checksum_init.
4139  */
4140 #define CHECKSUM_BREAK 76
4141 
4142 /* Unset checksum-complete
4143  *
4144  * Unset checksum complete can be done when packet is being modified
4145  * (uncompressed for instance) and checksum-complete value is
4146  * invalidated.
4147  */
4148 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4149 {
4150 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4151 		skb->ip_summed = CHECKSUM_NONE;
4152 }
4153 
4154 /* Validate (init) checksum based on checksum complete.
4155  *
4156  * Return values:
4157  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4158  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4159  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4160  *   non-zero: value of invalid checksum
4161  *
4162  */
4163 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4164 						       bool complete,
4165 						       __wsum psum)
4166 {
4167 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4168 		if (!csum_fold(csum_add(psum, skb->csum))) {
4169 			skb->csum_valid = 1;
4170 			return 0;
4171 		}
4172 	}
4173 
4174 	skb->csum = psum;
4175 
4176 	if (complete || skb->len <= CHECKSUM_BREAK) {
4177 		__sum16 csum;
4178 
4179 		csum = __skb_checksum_complete(skb);
4180 		skb->csum_valid = !csum;
4181 		return csum;
4182 	}
4183 
4184 	return 0;
4185 }
4186 
4187 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4188 {
4189 	return 0;
4190 }
4191 
4192 /* Perform checksum validate (init). Note that this is a macro since we only
4193  * want to calculate the pseudo header which is an input function if necessary.
4194  * First we try to validate without any computation (checksum unnecessary) and
4195  * then calculate based on checksum complete calling the function to compute
4196  * pseudo header.
4197  *
4198  * Return values:
4199  *   0: checksum is validated or try to in skb_checksum_complete
4200  *   non-zero: value of invalid checksum
4201  */
4202 #define __skb_checksum_validate(skb, proto, complete,			\
4203 				zero_okay, check, compute_pseudo)	\
4204 ({									\
4205 	__sum16 __ret = 0;						\
4206 	skb->csum_valid = 0;						\
4207 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4208 		__ret = __skb_checksum_validate_complete(skb,		\
4209 				complete, compute_pseudo(skb, proto));	\
4210 	__ret;								\
4211 })
4212 
4213 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4214 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4215 
4216 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4217 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4218 
4219 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4220 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4221 
4222 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4223 					 compute_pseudo)		\
4224 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4225 
4226 #define skb_checksum_simple_validate(skb)				\
4227 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4228 
4229 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4230 {
4231 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4232 }
4233 
4234 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4235 {
4236 	skb->csum = ~pseudo;
4237 	skb->ip_summed = CHECKSUM_COMPLETE;
4238 }
4239 
4240 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4241 do {									\
4242 	if (__skb_checksum_convert_check(skb))				\
4243 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4244 } while (0)
4245 
4246 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4247 					      u16 start, u16 offset)
4248 {
4249 	skb->ip_summed = CHECKSUM_PARTIAL;
4250 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4251 	skb->csum_offset = offset - start;
4252 }
4253 
4254 /* Update skbuf and packet to reflect the remote checksum offload operation.
4255  * When called, ptr indicates the starting point for skb->csum when
4256  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4257  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4258  */
4259 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4260 				       int start, int offset, bool nopartial)
4261 {
4262 	__wsum delta;
4263 
4264 	if (!nopartial) {
4265 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4266 		return;
4267 	}
4268 
4269 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4270 		__skb_checksum_complete(skb);
4271 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4272 	}
4273 
4274 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4275 
4276 	/* Adjust skb->csum since we changed the packet */
4277 	skb->csum = csum_add(skb->csum, delta);
4278 }
4279 
4280 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4281 {
4282 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4283 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4284 #else
4285 	return NULL;
4286 #endif
4287 }
4288 
4289 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4290 {
4291 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4292 	return skb->_nfct;
4293 #else
4294 	return 0UL;
4295 #endif
4296 }
4297 
4298 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4299 {
4300 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4301 	skb->slow_gro |= !!nfct;
4302 	skb->_nfct = nfct;
4303 #endif
4304 }
4305 
4306 #ifdef CONFIG_SKB_EXTENSIONS
4307 enum skb_ext_id {
4308 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4309 	SKB_EXT_BRIDGE_NF,
4310 #endif
4311 #ifdef CONFIG_XFRM
4312 	SKB_EXT_SEC_PATH,
4313 #endif
4314 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4315 	TC_SKB_EXT,
4316 #endif
4317 #if IS_ENABLED(CONFIG_MPTCP)
4318 	SKB_EXT_MPTCP,
4319 #endif
4320 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4321 	SKB_EXT_MCTP,
4322 #endif
4323 	SKB_EXT_NUM, /* must be last */
4324 };
4325 
4326 /**
4327  *	struct skb_ext - sk_buff extensions
4328  *	@refcnt: 1 on allocation, deallocated on 0
4329  *	@offset: offset to add to @data to obtain extension address
4330  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4331  *	@data: start of extension data, variable sized
4332  *
4333  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4334  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4335  */
4336 struct skb_ext {
4337 	refcount_t refcnt;
4338 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4339 	u8 chunks;		/* same */
4340 	char data[] __aligned(8);
4341 };
4342 
4343 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4344 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4345 		    struct skb_ext *ext);
4346 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4347 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4348 void __skb_ext_put(struct skb_ext *ext);
4349 
4350 static inline void skb_ext_put(struct sk_buff *skb)
4351 {
4352 	if (skb->active_extensions)
4353 		__skb_ext_put(skb->extensions);
4354 }
4355 
4356 static inline void __skb_ext_copy(struct sk_buff *dst,
4357 				  const struct sk_buff *src)
4358 {
4359 	dst->active_extensions = src->active_extensions;
4360 
4361 	if (src->active_extensions) {
4362 		struct skb_ext *ext = src->extensions;
4363 
4364 		refcount_inc(&ext->refcnt);
4365 		dst->extensions = ext;
4366 	}
4367 }
4368 
4369 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4370 {
4371 	skb_ext_put(dst);
4372 	__skb_ext_copy(dst, src);
4373 }
4374 
4375 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4376 {
4377 	return !!ext->offset[i];
4378 }
4379 
4380 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4381 {
4382 	return skb->active_extensions & (1 << id);
4383 }
4384 
4385 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4386 {
4387 	if (skb_ext_exist(skb, id))
4388 		__skb_ext_del(skb, id);
4389 }
4390 
4391 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4392 {
4393 	if (skb_ext_exist(skb, id)) {
4394 		struct skb_ext *ext = skb->extensions;
4395 
4396 		return (void *)ext + (ext->offset[id] << 3);
4397 	}
4398 
4399 	return NULL;
4400 }
4401 
4402 static inline void skb_ext_reset(struct sk_buff *skb)
4403 {
4404 	if (unlikely(skb->active_extensions)) {
4405 		__skb_ext_put(skb->extensions);
4406 		skb->active_extensions = 0;
4407 	}
4408 }
4409 
4410 static inline bool skb_has_extensions(struct sk_buff *skb)
4411 {
4412 	return unlikely(skb->active_extensions);
4413 }
4414 #else
4415 static inline void skb_ext_put(struct sk_buff *skb) {}
4416 static inline void skb_ext_reset(struct sk_buff *skb) {}
4417 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4418 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4419 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4420 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4421 #endif /* CONFIG_SKB_EXTENSIONS */
4422 
4423 static inline void nf_reset_ct(struct sk_buff *skb)
4424 {
4425 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4426 	nf_conntrack_put(skb_nfct(skb));
4427 	skb->_nfct = 0;
4428 #endif
4429 }
4430 
4431 static inline void nf_reset_trace(struct sk_buff *skb)
4432 {
4433 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4434 	skb->nf_trace = 0;
4435 #endif
4436 }
4437 
4438 static inline void ipvs_reset(struct sk_buff *skb)
4439 {
4440 #if IS_ENABLED(CONFIG_IP_VS)
4441 	skb->ipvs_property = 0;
4442 #endif
4443 }
4444 
4445 /* Note: This doesn't put any conntrack info in dst. */
4446 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4447 			     bool copy)
4448 {
4449 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4450 	dst->_nfct = src->_nfct;
4451 	nf_conntrack_get(skb_nfct(src));
4452 #endif
4453 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4454 	if (copy)
4455 		dst->nf_trace = src->nf_trace;
4456 #endif
4457 }
4458 
4459 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4460 {
4461 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4462 	nf_conntrack_put(skb_nfct(dst));
4463 #endif
4464 	dst->slow_gro = src->slow_gro;
4465 	__nf_copy(dst, src, true);
4466 }
4467 
4468 #ifdef CONFIG_NETWORK_SECMARK
4469 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4470 {
4471 	to->secmark = from->secmark;
4472 }
4473 
4474 static inline void skb_init_secmark(struct sk_buff *skb)
4475 {
4476 	skb->secmark = 0;
4477 }
4478 #else
4479 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4480 { }
4481 
4482 static inline void skb_init_secmark(struct sk_buff *skb)
4483 { }
4484 #endif
4485 
4486 static inline int secpath_exists(const struct sk_buff *skb)
4487 {
4488 #ifdef CONFIG_XFRM
4489 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4490 #else
4491 	return 0;
4492 #endif
4493 }
4494 
4495 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4496 {
4497 	return !skb->destructor &&
4498 		!secpath_exists(skb) &&
4499 		!skb_nfct(skb) &&
4500 		!skb->_skb_refdst &&
4501 		!skb_has_frag_list(skb);
4502 }
4503 
4504 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4505 {
4506 	skb->queue_mapping = queue_mapping;
4507 }
4508 
4509 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4510 {
4511 	return skb->queue_mapping;
4512 }
4513 
4514 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4515 {
4516 	to->queue_mapping = from->queue_mapping;
4517 }
4518 
4519 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4520 {
4521 	skb->queue_mapping = rx_queue + 1;
4522 }
4523 
4524 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4525 {
4526 	return skb->queue_mapping - 1;
4527 }
4528 
4529 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4530 {
4531 	return skb->queue_mapping != 0;
4532 }
4533 
4534 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4535 {
4536 	skb->dst_pending_confirm = val;
4537 }
4538 
4539 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4540 {
4541 	return skb->dst_pending_confirm != 0;
4542 }
4543 
4544 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4545 {
4546 #ifdef CONFIG_XFRM
4547 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4548 #else
4549 	return NULL;
4550 #endif
4551 }
4552 
4553 /* Keeps track of mac header offset relative to skb->head.
4554  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4555  * For non-tunnel skb it points to skb_mac_header() and for
4556  * tunnel skb it points to outer mac header.
4557  * Keeps track of level of encapsulation of network headers.
4558  */
4559 struct skb_gso_cb {
4560 	union {
4561 		int	mac_offset;
4562 		int	data_offset;
4563 	};
4564 	int	encap_level;
4565 	__wsum	csum;
4566 	__u16	csum_start;
4567 };
4568 #define SKB_GSO_CB_OFFSET	32
4569 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4570 
4571 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4572 {
4573 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4574 		SKB_GSO_CB(inner_skb)->mac_offset;
4575 }
4576 
4577 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4578 {
4579 	int new_headroom, headroom;
4580 	int ret;
4581 
4582 	headroom = skb_headroom(skb);
4583 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4584 	if (ret)
4585 		return ret;
4586 
4587 	new_headroom = skb_headroom(skb);
4588 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4589 	return 0;
4590 }
4591 
4592 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4593 {
4594 	/* Do not update partial checksums if remote checksum is enabled. */
4595 	if (skb->remcsum_offload)
4596 		return;
4597 
4598 	SKB_GSO_CB(skb)->csum = res;
4599 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4600 }
4601 
4602 /* Compute the checksum for a gso segment. First compute the checksum value
4603  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4604  * then add in skb->csum (checksum from csum_start to end of packet).
4605  * skb->csum and csum_start are then updated to reflect the checksum of the
4606  * resultant packet starting from the transport header-- the resultant checksum
4607  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4608  * header.
4609  */
4610 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4611 {
4612 	unsigned char *csum_start = skb_transport_header(skb);
4613 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4614 	__wsum partial = SKB_GSO_CB(skb)->csum;
4615 
4616 	SKB_GSO_CB(skb)->csum = res;
4617 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4618 
4619 	return csum_fold(csum_partial(csum_start, plen, partial));
4620 }
4621 
4622 static inline bool skb_is_gso(const struct sk_buff *skb)
4623 {
4624 	return skb_shinfo(skb)->gso_size;
4625 }
4626 
4627 /* Note: Should be called only if skb_is_gso(skb) is true */
4628 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4629 {
4630 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4631 }
4632 
4633 /* Note: Should be called only if skb_is_gso(skb) is true */
4634 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4635 {
4636 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4637 }
4638 
4639 /* Note: Should be called only if skb_is_gso(skb) is true */
4640 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4641 {
4642 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4643 }
4644 
4645 static inline void skb_gso_reset(struct sk_buff *skb)
4646 {
4647 	skb_shinfo(skb)->gso_size = 0;
4648 	skb_shinfo(skb)->gso_segs = 0;
4649 	skb_shinfo(skb)->gso_type = 0;
4650 }
4651 
4652 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4653 					 u16 increment)
4654 {
4655 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4656 		return;
4657 	shinfo->gso_size += increment;
4658 }
4659 
4660 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4661 					 u16 decrement)
4662 {
4663 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4664 		return;
4665 	shinfo->gso_size -= decrement;
4666 }
4667 
4668 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4669 
4670 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4671 {
4672 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4673 	 * wanted then gso_type will be set. */
4674 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4675 
4676 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4677 	    unlikely(shinfo->gso_type == 0)) {
4678 		__skb_warn_lro_forwarding(skb);
4679 		return true;
4680 	}
4681 	return false;
4682 }
4683 
4684 static inline void skb_forward_csum(struct sk_buff *skb)
4685 {
4686 	/* Unfortunately we don't support this one.  Any brave souls? */
4687 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4688 		skb->ip_summed = CHECKSUM_NONE;
4689 }
4690 
4691 /**
4692  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4693  * @skb: skb to check
4694  *
4695  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4696  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4697  * use this helper, to document places where we make this assertion.
4698  */
4699 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4700 {
4701 #ifdef DEBUG
4702 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4703 #endif
4704 }
4705 
4706 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4707 
4708 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4709 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4710 				     unsigned int transport_len,
4711 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4712 
4713 /**
4714  * skb_head_is_locked - Determine if the skb->head is locked down
4715  * @skb: skb to check
4716  *
4717  * The head on skbs build around a head frag can be removed if they are
4718  * not cloned.  This function returns true if the skb head is locked down
4719  * due to either being allocated via kmalloc, or by being a clone with
4720  * multiple references to the head.
4721  */
4722 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4723 {
4724 	return !skb->head_frag || skb_cloned(skb);
4725 }
4726 
4727 /* Local Checksum Offload.
4728  * Compute outer checksum based on the assumption that the
4729  * inner checksum will be offloaded later.
4730  * See Documentation/networking/checksum-offloads.rst for
4731  * explanation of how this works.
4732  * Fill in outer checksum adjustment (e.g. with sum of outer
4733  * pseudo-header) before calling.
4734  * Also ensure that inner checksum is in linear data area.
4735  */
4736 static inline __wsum lco_csum(struct sk_buff *skb)
4737 {
4738 	unsigned char *csum_start = skb_checksum_start(skb);
4739 	unsigned char *l4_hdr = skb_transport_header(skb);
4740 	__wsum partial;
4741 
4742 	/* Start with complement of inner checksum adjustment */
4743 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4744 						    skb->csum_offset));
4745 
4746 	/* Add in checksum of our headers (incl. outer checksum
4747 	 * adjustment filled in by caller) and return result.
4748 	 */
4749 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4750 }
4751 
4752 static inline bool skb_is_redirected(const struct sk_buff *skb)
4753 {
4754 	return skb->redirected;
4755 }
4756 
4757 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4758 {
4759 	skb->redirected = 1;
4760 #ifdef CONFIG_NET_REDIRECT
4761 	skb->from_ingress = from_ingress;
4762 	if (skb->from_ingress)
4763 		skb->tstamp = 0;
4764 #endif
4765 }
4766 
4767 static inline void skb_reset_redirect(struct sk_buff *skb)
4768 {
4769 	skb->redirected = 0;
4770 }
4771 
4772 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4773 {
4774 	return skb->csum_not_inet;
4775 }
4776 
4777 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4778 				       const u64 kcov_handle)
4779 {
4780 #ifdef CONFIG_KCOV
4781 	skb->kcov_handle = kcov_handle;
4782 #endif
4783 }
4784 
4785 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4786 {
4787 #ifdef CONFIG_KCOV
4788 	return skb->kcov_handle;
4789 #else
4790 	return 0;
4791 #endif
4792 }
4793 
4794 #ifdef CONFIG_PAGE_POOL
4795 static inline void skb_mark_for_recycle(struct sk_buff *skb)
4796 {
4797 	skb->pp_recycle = 1;
4798 }
4799 #endif
4800 
4801 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4802 {
4803 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4804 		return false;
4805 	return page_pool_return_skb_page(virt_to_page(data));
4806 }
4807 
4808 #endif	/* __KERNEL__ */
4809 #endif	/* _LINUX_SKBUFF_H */
4810