xref: /linux-6.15/include/linux/skbuff.h (revision 18536722)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #include <net/page_pool.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	__u16			frag_max_size;
298 	struct net_device	*physindev;
299 
300 	/* always valid & non-NULL from FORWARD on, for physdev match */
301 	struct net_device	*physoutdev;
302 	union {
303 		/* prerouting: detect dnat in orig/reply direction */
304 		__be32          ipv4_daddr;
305 		struct in6_addr ipv6_daddr;
306 
307 		/* after prerouting + nat detected: store original source
308 		 * mac since neigh resolution overwrites it, only used while
309 		 * skb is out in neigh layer.
310 		 */
311 		char neigh_header[8];
312 	};
313 };
314 #endif
315 
316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
317 /* Chain in tc_skb_ext will be used to share the tc chain with
318  * ovs recirc_id. It will be set to the current chain by tc
319  * and read by ovs to recirc_id.
320  */
321 struct tc_skb_ext {
322 	union {
323 		u64 act_miss_cookie;
324 		__u32 chain;
325 	};
326 	__u16 mru;
327 	__u16 zone;
328 	u8 post_ct:1;
329 	u8 post_ct_snat:1;
330 	u8 post_ct_dnat:1;
331 	u8 act_miss:1; /* Set if act_miss_cookie is used */
332 };
333 #endif
334 
335 struct sk_buff_head {
336 	/* These two members must be first to match sk_buff. */
337 	struct_group_tagged(sk_buff_list, list,
338 		struct sk_buff	*next;
339 		struct sk_buff	*prev;
340 	);
341 
342 	__u32		qlen;
343 	spinlock_t	lock;
344 };
345 
346 struct sk_buff;
347 
348 #ifndef CONFIG_MAX_SKB_FRAGS
349 # define CONFIG_MAX_SKB_FRAGS 17
350 #endif
351 
352 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
353 
354 extern int sysctl_max_skb_frags;
355 
356 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
357  * segment using its current segmentation instead.
358  */
359 #define GSO_BY_FRAGS	0xFFFF
360 
361 typedef struct bio_vec skb_frag_t;
362 
363 /**
364  * skb_frag_size() - Returns the size of a skb fragment
365  * @frag: skb fragment
366  */
367 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
368 {
369 	return frag->bv_len;
370 }
371 
372 /**
373  * skb_frag_size_set() - Sets the size of a skb fragment
374  * @frag: skb fragment
375  * @size: size of fragment
376  */
377 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
378 {
379 	frag->bv_len = size;
380 }
381 
382 /**
383  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
384  * @frag: skb fragment
385  * @delta: value to add
386  */
387 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
388 {
389 	frag->bv_len += delta;
390 }
391 
392 /**
393  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
394  * @frag: skb fragment
395  * @delta: value to subtract
396  */
397 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
398 {
399 	frag->bv_len -= delta;
400 }
401 
402 /**
403  * skb_frag_must_loop - Test if %p is a high memory page
404  * @p: fragment's page
405  */
406 static inline bool skb_frag_must_loop(struct page *p)
407 {
408 #if defined(CONFIG_HIGHMEM)
409 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
410 		return true;
411 #endif
412 	return false;
413 }
414 
415 /**
416  *	skb_frag_foreach_page - loop over pages in a fragment
417  *
418  *	@f:		skb frag to operate on
419  *	@f_off:		offset from start of f->bv_page
420  *	@f_len:		length from f_off to loop over
421  *	@p:		(temp var) current page
422  *	@p_off:		(temp var) offset from start of current page,
423  *	                           non-zero only on first page.
424  *	@p_len:		(temp var) length in current page,
425  *				   < PAGE_SIZE only on first and last page.
426  *	@copied:	(temp var) length so far, excluding current p_len.
427  *
428  *	A fragment can hold a compound page, in which case per-page
429  *	operations, notably kmap_atomic, must be called for each
430  *	regular page.
431  */
432 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
433 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
434 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
435 	     p_len = skb_frag_must_loop(p) ?				\
436 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
437 	     copied = 0;						\
438 	     copied < f_len;						\
439 	     copied += p_len, p++, p_off = 0,				\
440 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
441 
442 #define HAVE_HW_TIME_STAMP
443 
444 /**
445  * struct skb_shared_hwtstamps - hardware time stamps
446  * @hwtstamp:		hardware time stamp transformed into duration
447  *			since arbitrary point in time
448  * @netdev_data:	address/cookie of network device driver used as
449  *			reference to actual hardware time stamp
450  *
451  * Software time stamps generated by ktime_get_real() are stored in
452  * skb->tstamp.
453  *
454  * hwtstamps can only be compared against other hwtstamps from
455  * the same device.
456  *
457  * This structure is attached to packets as part of the
458  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
459  */
460 struct skb_shared_hwtstamps {
461 	union {
462 		ktime_t	hwtstamp;
463 		void *netdev_data;
464 	};
465 };
466 
467 /* Definitions for tx_flags in struct skb_shared_info */
468 enum {
469 	/* generate hardware time stamp */
470 	SKBTX_HW_TSTAMP = 1 << 0,
471 
472 	/* generate software time stamp when queueing packet to NIC */
473 	SKBTX_SW_TSTAMP = 1 << 1,
474 
475 	/* device driver is going to provide hardware time stamp */
476 	SKBTX_IN_PROGRESS = 1 << 2,
477 
478 	/* generate hardware time stamp based on cycles if supported */
479 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
480 
481 	/* generate wifi status information (where possible) */
482 	SKBTX_WIFI_STATUS = 1 << 4,
483 
484 	/* determine hardware time stamp based on time or cycles */
485 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
486 
487 	/* generate software time stamp when entering packet scheduling */
488 	SKBTX_SCHED_TSTAMP = 1 << 6,
489 };
490 
491 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
492 				 SKBTX_SCHED_TSTAMP)
493 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
494 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
495 				 SKBTX_ANY_SW_TSTAMP)
496 
497 /* Definitions for flags in struct skb_shared_info */
498 enum {
499 	/* use zcopy routines */
500 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
501 
502 	/* This indicates at least one fragment might be overwritten
503 	 * (as in vmsplice(), sendfile() ...)
504 	 * If we need to compute a TX checksum, we'll need to copy
505 	 * all frags to avoid possible bad checksum
506 	 */
507 	SKBFL_SHARED_FRAG = BIT(1),
508 
509 	/* segment contains only zerocopy data and should not be
510 	 * charged to the kernel memory.
511 	 */
512 	SKBFL_PURE_ZEROCOPY = BIT(2),
513 
514 	SKBFL_DONT_ORPHAN = BIT(3),
515 
516 	/* page references are managed by the ubuf_info, so it's safe to
517 	 * use frags only up until ubuf_info is released
518 	 */
519 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
520 };
521 
522 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
523 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
524 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
525 
526 /*
527  * The callback notifies userspace to release buffers when skb DMA is done in
528  * lower device, the skb last reference should be 0 when calling this.
529  * The zerocopy_success argument is true if zero copy transmit occurred,
530  * false on data copy or out of memory error caused by data copy attempt.
531  * The ctx field is used to track device context.
532  * The desc field is used to track userspace buffer index.
533  */
534 struct ubuf_info {
535 	void (*callback)(struct sk_buff *, struct ubuf_info *,
536 			 bool zerocopy_success);
537 	refcount_t refcnt;
538 	u8 flags;
539 };
540 
541 struct ubuf_info_msgzc {
542 	struct ubuf_info ubuf;
543 
544 	union {
545 		struct {
546 			unsigned long desc;
547 			void *ctx;
548 		};
549 		struct {
550 			u32 id;
551 			u16 len;
552 			u16 zerocopy:1;
553 			u32 bytelen;
554 		};
555 	};
556 
557 	struct mmpin {
558 		struct user_struct *user;
559 		unsigned int num_pg;
560 	} mmp;
561 };
562 
563 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
564 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
565 					     ubuf)
566 
567 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
568 void mm_unaccount_pinned_pages(struct mmpin *mmp);
569 
570 /* This data is invariant across clones and lives at
571  * the end of the header data, ie. at skb->end.
572  */
573 struct skb_shared_info {
574 	__u8		flags;
575 	__u8		meta_len;
576 	__u8		nr_frags;
577 	__u8		tx_flags;
578 	unsigned short	gso_size;
579 	/* Warning: this field is not always filled in (UFO)! */
580 	unsigned short	gso_segs;
581 	struct sk_buff	*frag_list;
582 	struct skb_shared_hwtstamps hwtstamps;
583 	unsigned int	gso_type;
584 	u32		tskey;
585 
586 	/*
587 	 * Warning : all fields before dataref are cleared in __alloc_skb()
588 	 */
589 	atomic_t	dataref;
590 	unsigned int	xdp_frags_size;
591 
592 	/* Intermediate layers must ensure that destructor_arg
593 	 * remains valid until skb destructor */
594 	void *		destructor_arg;
595 
596 	/* must be last field, see pskb_expand_head() */
597 	skb_frag_t	frags[MAX_SKB_FRAGS];
598 };
599 
600 /**
601  * DOC: dataref and headerless skbs
602  *
603  * Transport layers send out clones of payload skbs they hold for
604  * retransmissions. To allow lower layers of the stack to prepend their headers
605  * we split &skb_shared_info.dataref into two halves.
606  * The lower 16 bits count the overall number of references.
607  * The higher 16 bits indicate how many of the references are payload-only.
608  * skb_header_cloned() checks if skb is allowed to add / write the headers.
609  *
610  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
611  * (via __skb_header_release()). Any clone created from marked skb will get
612  * &sk_buff.hdr_len populated with the available headroom.
613  * If there's the only clone in existence it's able to modify the headroom
614  * at will. The sequence of calls inside the transport layer is::
615  *
616  *  <alloc skb>
617  *  skb_reserve()
618  *  __skb_header_release()
619  *  skb_clone()
620  *  // send the clone down the stack
621  *
622  * This is not a very generic construct and it depends on the transport layers
623  * doing the right thing. In practice there's usually only one payload-only skb.
624  * Having multiple payload-only skbs with different lengths of hdr_len is not
625  * possible. The payload-only skbs should never leave their owner.
626  */
627 #define SKB_DATAREF_SHIFT 16
628 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
629 
630 
631 enum {
632 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
633 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
634 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
635 };
636 
637 enum {
638 	SKB_GSO_TCPV4 = 1 << 0,
639 
640 	/* This indicates the skb is from an untrusted source. */
641 	SKB_GSO_DODGY = 1 << 1,
642 
643 	/* This indicates the tcp segment has CWR set. */
644 	SKB_GSO_TCP_ECN = 1 << 2,
645 
646 	SKB_GSO_TCP_FIXEDID = 1 << 3,
647 
648 	SKB_GSO_TCPV6 = 1 << 4,
649 
650 	SKB_GSO_FCOE = 1 << 5,
651 
652 	SKB_GSO_GRE = 1 << 6,
653 
654 	SKB_GSO_GRE_CSUM = 1 << 7,
655 
656 	SKB_GSO_IPXIP4 = 1 << 8,
657 
658 	SKB_GSO_IPXIP6 = 1 << 9,
659 
660 	SKB_GSO_UDP_TUNNEL = 1 << 10,
661 
662 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
663 
664 	SKB_GSO_PARTIAL = 1 << 12,
665 
666 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
667 
668 	SKB_GSO_SCTP = 1 << 14,
669 
670 	SKB_GSO_ESP = 1 << 15,
671 
672 	SKB_GSO_UDP = 1 << 16,
673 
674 	SKB_GSO_UDP_L4 = 1 << 17,
675 
676 	SKB_GSO_FRAGLIST = 1 << 18,
677 };
678 
679 #if BITS_PER_LONG > 32
680 #define NET_SKBUFF_DATA_USES_OFFSET 1
681 #endif
682 
683 #ifdef NET_SKBUFF_DATA_USES_OFFSET
684 typedef unsigned int sk_buff_data_t;
685 #else
686 typedef unsigned char *sk_buff_data_t;
687 #endif
688 
689 /**
690  * DOC: Basic sk_buff geometry
691  *
692  * struct sk_buff itself is a metadata structure and does not hold any packet
693  * data. All the data is held in associated buffers.
694  *
695  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
696  * into two parts:
697  *
698  *  - data buffer, containing headers and sometimes payload;
699  *    this is the part of the skb operated on by the common helpers
700  *    such as skb_put() or skb_pull();
701  *  - shared info (struct skb_shared_info) which holds an array of pointers
702  *    to read-only data in the (page, offset, length) format.
703  *
704  * Optionally &skb_shared_info.frag_list may point to another skb.
705  *
706  * Basic diagram may look like this::
707  *
708  *                                  ---------------
709  *                                 | sk_buff       |
710  *                                  ---------------
711  *     ,---------------------------  + head
712  *    /          ,-----------------  + data
713  *   /          /      ,-----------  + tail
714  *  |          |      |            , + end
715  *  |          |      |           |
716  *  v          v      v           v
717  *   -----------------------------------------------
718  *  | headroom | data |  tailroom | skb_shared_info |
719  *   -----------------------------------------------
720  *                                 + [page frag]
721  *                                 + [page frag]
722  *                                 + [page frag]
723  *                                 + [page frag]       ---------
724  *                                 + frag_list    --> | sk_buff |
725  *                                                     ---------
726  *
727  */
728 
729 /**
730  *	struct sk_buff - socket buffer
731  *	@next: Next buffer in list
732  *	@prev: Previous buffer in list
733  *	@tstamp: Time we arrived/left
734  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
735  *		for retransmit timer
736  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
737  *	@list: queue head
738  *	@ll_node: anchor in an llist (eg socket defer_list)
739  *	@sk: Socket we are owned by
740  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
741  *		fragmentation management
742  *	@dev: Device we arrived on/are leaving by
743  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
744  *	@cb: Control buffer. Free for use by every layer. Put private vars here
745  *	@_skb_refdst: destination entry (with norefcount bit)
746  *	@sp: the security path, used for xfrm
747  *	@len: Length of actual data
748  *	@data_len: Data length
749  *	@mac_len: Length of link layer header
750  *	@hdr_len: writable header length of cloned skb
751  *	@csum: Checksum (must include start/offset pair)
752  *	@csum_start: Offset from skb->head where checksumming should start
753  *	@csum_offset: Offset from csum_start where checksum should be stored
754  *	@priority: Packet queueing priority
755  *	@ignore_df: allow local fragmentation
756  *	@cloned: Head may be cloned (check refcnt to be sure)
757  *	@ip_summed: Driver fed us an IP checksum
758  *	@nohdr: Payload reference only, must not modify header
759  *	@pkt_type: Packet class
760  *	@fclone: skbuff clone status
761  *	@ipvs_property: skbuff is owned by ipvs
762  *	@inner_protocol_type: whether the inner protocol is
763  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
764  *	@remcsum_offload: remote checksum offload is enabled
765  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
766  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
767  *	@tc_skip_classify: do not classify packet. set by IFB device
768  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
769  *	@redirected: packet was redirected by packet classifier
770  *	@from_ingress: packet was redirected from the ingress path
771  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
772  *	@peeked: this packet has been seen already, so stats have been
773  *		done for it, don't do them again
774  *	@nf_trace: netfilter packet trace flag
775  *	@protocol: Packet protocol from driver
776  *	@destructor: Destruct function
777  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
778  *	@_sk_redir: socket redirection information for skmsg
779  *	@_nfct: Associated connection, if any (with nfctinfo bits)
780  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
781  *	@skb_iif: ifindex of device we arrived on
782  *	@tc_index: Traffic control index
783  *	@hash: the packet hash
784  *	@queue_mapping: Queue mapping for multiqueue devices
785  *	@head_frag: skb was allocated from page fragments,
786  *		not allocated by kmalloc() or vmalloc().
787  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
788  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
789  *		page_pool support on driver)
790  *	@active_extensions: active extensions (skb_ext_id types)
791  *	@ndisc_nodetype: router type (from link layer)
792  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
793  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
794  *		ports.
795  *	@sw_hash: indicates hash was computed in software stack
796  *	@wifi_acked_valid: wifi_acked was set
797  *	@wifi_acked: whether frame was acked on wifi or not
798  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
799  *	@encapsulation: indicates the inner headers in the skbuff are valid
800  *	@encap_hdr_csum: software checksum is needed
801  *	@csum_valid: checksum is already valid
802  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
803  *	@csum_complete_sw: checksum was completed by software
804  *	@csum_level: indicates the number of consecutive checksums found in
805  *		the packet minus one that have been verified as
806  *		CHECKSUM_UNNECESSARY (max 3)
807  *	@dst_pending_confirm: need to confirm neighbour
808  *	@decrypted: Decrypted SKB
809  *	@slow_gro: state present at GRO time, slower prepare step required
810  *	@mono_delivery_time: When set, skb->tstamp has the
811  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
812  *		skb->tstamp has the (rcv) timestamp at ingress and
813  *		delivery_time at egress.
814  *	@napi_id: id of the NAPI struct this skb came from
815  *	@sender_cpu: (aka @napi_id) source CPU in XPS
816  *	@alloc_cpu: CPU which did the skb allocation.
817  *	@secmark: security marking
818  *	@mark: Generic packet mark
819  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
820  *		at the tail of an sk_buff
821  *	@vlan_all: vlan fields (proto & tci)
822  *	@vlan_proto: vlan encapsulation protocol
823  *	@vlan_tci: vlan tag control information
824  *	@inner_protocol: Protocol (encapsulation)
825  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
826  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
827  *	@inner_transport_header: Inner transport layer header (encapsulation)
828  *	@inner_network_header: Network layer header (encapsulation)
829  *	@inner_mac_header: Link layer header (encapsulation)
830  *	@transport_header: Transport layer header
831  *	@network_header: Network layer header
832  *	@mac_header: Link layer header
833  *	@kcov_handle: KCOV remote handle for remote coverage collection
834  *	@tail: Tail pointer
835  *	@end: End pointer
836  *	@head: Head of buffer
837  *	@data: Data head pointer
838  *	@truesize: Buffer size
839  *	@users: User count - see {datagram,tcp}.c
840  *	@extensions: allocated extensions, valid if active_extensions is nonzero
841  */
842 
843 struct sk_buff {
844 	union {
845 		struct {
846 			/* These two members must be first to match sk_buff_head. */
847 			struct sk_buff		*next;
848 			struct sk_buff		*prev;
849 
850 			union {
851 				struct net_device	*dev;
852 				/* Some protocols might use this space to store information,
853 				 * while device pointer would be NULL.
854 				 * UDP receive path is one user.
855 				 */
856 				unsigned long		dev_scratch;
857 			};
858 		};
859 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
860 		struct list_head	list;
861 		struct llist_node	ll_node;
862 	};
863 
864 	union {
865 		struct sock		*sk;
866 		int			ip_defrag_offset;
867 	};
868 
869 	union {
870 		ktime_t		tstamp;
871 		u64		skb_mstamp_ns; /* earliest departure time */
872 	};
873 	/*
874 	 * This is the control buffer. It is free to use for every
875 	 * layer. Please put your private variables there. If you
876 	 * want to keep them across layers you have to do a skb_clone()
877 	 * first. This is owned by whoever has the skb queued ATM.
878 	 */
879 	char			cb[48] __aligned(8);
880 
881 	union {
882 		struct {
883 			unsigned long	_skb_refdst;
884 			void		(*destructor)(struct sk_buff *skb);
885 		};
886 		struct list_head	tcp_tsorted_anchor;
887 #ifdef CONFIG_NET_SOCK_MSG
888 		unsigned long		_sk_redir;
889 #endif
890 	};
891 
892 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
893 	unsigned long		 _nfct;
894 #endif
895 	unsigned int		len,
896 				data_len;
897 	__u16			mac_len,
898 				hdr_len;
899 
900 	/* Following fields are _not_ copied in __copy_skb_header()
901 	 * Note that queue_mapping is here mostly to fill a hole.
902 	 */
903 	__u16			queue_mapping;
904 
905 /* if you move cloned around you also must adapt those constants */
906 #ifdef __BIG_ENDIAN_BITFIELD
907 #define CLONED_MASK	(1 << 7)
908 #else
909 #define CLONED_MASK	1
910 #endif
911 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
912 
913 	/* private: */
914 	__u8			__cloned_offset[0];
915 	/* public: */
916 	__u8			cloned:1,
917 				nohdr:1,
918 				fclone:2,
919 				peeked:1,
920 				head_frag:1,
921 				pfmemalloc:1,
922 				pp_recycle:1; /* page_pool recycle indicator */
923 #ifdef CONFIG_SKB_EXTENSIONS
924 	__u8			active_extensions;
925 #endif
926 
927 	/* Fields enclosed in headers group are copied
928 	 * using a single memcpy() in __copy_skb_header()
929 	 */
930 	struct_group(headers,
931 
932 	/* private: */
933 	__u8			__pkt_type_offset[0];
934 	/* public: */
935 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
936 	__u8			ignore_df:1;
937 	__u8			nf_trace:1;
938 	__u8			ip_summed:2;
939 	__u8			ooo_okay:1;
940 
941 	__u8			l4_hash:1;
942 	__u8			sw_hash:1;
943 	__u8			wifi_acked_valid:1;
944 	__u8			wifi_acked:1;
945 	__u8			no_fcs:1;
946 	/* Indicates the inner headers are valid in the skbuff. */
947 	__u8			encapsulation:1;
948 	__u8			encap_hdr_csum:1;
949 	__u8			csum_valid:1;
950 
951 	/* private: */
952 	__u8			__pkt_vlan_present_offset[0];
953 	/* public: */
954 	__u8			remcsum_offload:1;
955 	__u8			csum_complete_sw:1;
956 	__u8			csum_level:2;
957 	__u8			dst_pending_confirm:1;
958 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
959 #ifdef CONFIG_NET_CLS_ACT
960 	__u8			tc_skip_classify:1;
961 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
962 #endif
963 #ifdef CONFIG_IPV6_NDISC_NODETYPE
964 	__u8			ndisc_nodetype:2;
965 #endif
966 
967 	__u8			ipvs_property:1;
968 	__u8			inner_protocol_type:1;
969 #ifdef CONFIG_NET_SWITCHDEV
970 	__u8			offload_fwd_mark:1;
971 	__u8			offload_l3_fwd_mark:1;
972 #endif
973 	__u8			redirected:1;
974 #ifdef CONFIG_NET_REDIRECT
975 	__u8			from_ingress:1;
976 #endif
977 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
978 	__u8			nf_skip_egress:1;
979 #endif
980 #ifdef CONFIG_TLS_DEVICE
981 	__u8			decrypted:1;
982 #endif
983 	__u8			slow_gro:1;
984 	__u8			csum_not_inet:1;
985 
986 #ifdef CONFIG_NET_SCHED
987 	__u16			tc_index;	/* traffic control index */
988 #endif
989 
990 	union {
991 		__wsum		csum;
992 		struct {
993 			__u16	csum_start;
994 			__u16	csum_offset;
995 		};
996 	};
997 	__u32			priority;
998 	int			skb_iif;
999 	__u32			hash;
1000 	union {
1001 		u32		vlan_all;
1002 		struct {
1003 			__be16	vlan_proto;
1004 			__u16	vlan_tci;
1005 		};
1006 	};
1007 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1008 	union {
1009 		unsigned int	napi_id;
1010 		unsigned int	sender_cpu;
1011 	};
1012 #endif
1013 	u16			alloc_cpu;
1014 #ifdef CONFIG_NETWORK_SECMARK
1015 	__u32		secmark;
1016 #endif
1017 
1018 	union {
1019 		__u32		mark;
1020 		__u32		reserved_tailroom;
1021 	};
1022 
1023 	union {
1024 		__be16		inner_protocol;
1025 		__u8		inner_ipproto;
1026 	};
1027 
1028 	__u16			inner_transport_header;
1029 	__u16			inner_network_header;
1030 	__u16			inner_mac_header;
1031 
1032 	__be16			protocol;
1033 	__u16			transport_header;
1034 	__u16			network_header;
1035 	__u16			mac_header;
1036 
1037 #ifdef CONFIG_KCOV
1038 	u64			kcov_handle;
1039 #endif
1040 
1041 	); /* end headers group */
1042 
1043 	/* These elements must be at the end, see alloc_skb() for details.  */
1044 	sk_buff_data_t		tail;
1045 	sk_buff_data_t		end;
1046 	unsigned char		*head,
1047 				*data;
1048 	unsigned int		truesize;
1049 	refcount_t		users;
1050 
1051 #ifdef CONFIG_SKB_EXTENSIONS
1052 	/* only useable after checking ->active_extensions != 0 */
1053 	struct skb_ext		*extensions;
1054 #endif
1055 };
1056 
1057 /* if you move pkt_type around you also must adapt those constants */
1058 #ifdef __BIG_ENDIAN_BITFIELD
1059 #define PKT_TYPE_MAX	(7 << 5)
1060 #else
1061 #define PKT_TYPE_MAX	7
1062 #endif
1063 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1064 
1065 /* if you move tc_at_ingress or mono_delivery_time
1066  * around, you also must adapt these constants.
1067  */
1068 #ifdef __BIG_ENDIAN_BITFIELD
1069 #define TC_AT_INGRESS_MASK		(1 << 0)
1070 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1071 #else
1072 #define TC_AT_INGRESS_MASK		(1 << 7)
1073 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1074 #endif
1075 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1076 
1077 #ifdef __KERNEL__
1078 /*
1079  *	Handling routines are only of interest to the kernel
1080  */
1081 
1082 #define SKB_ALLOC_FCLONE	0x01
1083 #define SKB_ALLOC_RX		0x02
1084 #define SKB_ALLOC_NAPI		0x04
1085 
1086 /**
1087  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1088  * @skb: buffer
1089  */
1090 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1091 {
1092 	return unlikely(skb->pfmemalloc);
1093 }
1094 
1095 /*
1096  * skb might have a dst pointer attached, refcounted or not.
1097  * _skb_refdst low order bit is set if refcount was _not_ taken
1098  */
1099 #define SKB_DST_NOREF	1UL
1100 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1101 
1102 /**
1103  * skb_dst - returns skb dst_entry
1104  * @skb: buffer
1105  *
1106  * Returns skb dst_entry, regardless of reference taken or not.
1107  */
1108 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1109 {
1110 	/* If refdst was not refcounted, check we still are in a
1111 	 * rcu_read_lock section
1112 	 */
1113 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1114 		!rcu_read_lock_held() &&
1115 		!rcu_read_lock_bh_held());
1116 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1117 }
1118 
1119 /**
1120  * skb_dst_set - sets skb dst
1121  * @skb: buffer
1122  * @dst: dst entry
1123  *
1124  * Sets skb dst, assuming a reference was taken on dst and should
1125  * be released by skb_dst_drop()
1126  */
1127 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1128 {
1129 	skb->slow_gro |= !!dst;
1130 	skb->_skb_refdst = (unsigned long)dst;
1131 }
1132 
1133 /**
1134  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1135  * @skb: buffer
1136  * @dst: dst entry
1137  *
1138  * Sets skb dst, assuming a reference was not taken on dst.
1139  * If dst entry is cached, we do not take reference and dst_release
1140  * will be avoided by refdst_drop. If dst entry is not cached, we take
1141  * reference, so that last dst_release can destroy the dst immediately.
1142  */
1143 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1144 {
1145 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1146 	skb->slow_gro |= !!dst;
1147 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1148 }
1149 
1150 /**
1151  * skb_dst_is_noref - Test if skb dst isn't refcounted
1152  * @skb: buffer
1153  */
1154 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1155 {
1156 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1157 }
1158 
1159 /**
1160  * skb_rtable - Returns the skb &rtable
1161  * @skb: buffer
1162  */
1163 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1164 {
1165 	return (struct rtable *)skb_dst(skb);
1166 }
1167 
1168 /* For mangling skb->pkt_type from user space side from applications
1169  * such as nft, tc, etc, we only allow a conservative subset of
1170  * possible pkt_types to be set.
1171 */
1172 static inline bool skb_pkt_type_ok(u32 ptype)
1173 {
1174 	return ptype <= PACKET_OTHERHOST;
1175 }
1176 
1177 /**
1178  * skb_napi_id - Returns the skb's NAPI id
1179  * @skb: buffer
1180  */
1181 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1182 {
1183 #ifdef CONFIG_NET_RX_BUSY_POLL
1184 	return skb->napi_id;
1185 #else
1186 	return 0;
1187 #endif
1188 }
1189 
1190 /**
1191  * skb_unref - decrement the skb's reference count
1192  * @skb: buffer
1193  *
1194  * Returns true if we can free the skb.
1195  */
1196 static inline bool skb_unref(struct sk_buff *skb)
1197 {
1198 	if (unlikely(!skb))
1199 		return false;
1200 	if (likely(refcount_read(&skb->users) == 1))
1201 		smp_rmb();
1202 	else if (likely(!refcount_dec_and_test(&skb->users)))
1203 		return false;
1204 
1205 	return true;
1206 }
1207 
1208 void __fix_address
1209 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1210 
1211 /**
1212  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1213  *	@skb: buffer to free
1214  */
1215 static inline void kfree_skb(struct sk_buff *skb)
1216 {
1217 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1218 }
1219 
1220 void skb_release_head_state(struct sk_buff *skb);
1221 void kfree_skb_list_reason(struct sk_buff *segs,
1222 			   enum skb_drop_reason reason);
1223 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1224 void skb_tx_error(struct sk_buff *skb);
1225 
1226 static inline void kfree_skb_list(struct sk_buff *segs)
1227 {
1228 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1229 }
1230 
1231 #ifdef CONFIG_TRACEPOINTS
1232 void consume_skb(struct sk_buff *skb);
1233 #else
1234 static inline void consume_skb(struct sk_buff *skb)
1235 {
1236 	return kfree_skb(skb);
1237 }
1238 #endif
1239 
1240 void __consume_stateless_skb(struct sk_buff *skb);
1241 void  __kfree_skb(struct sk_buff *skb);
1242 extern struct kmem_cache *skbuff_cache;
1243 
1244 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1245 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1246 		      bool *fragstolen, int *delta_truesize);
1247 
1248 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1249 			    int node);
1250 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1251 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1252 struct sk_buff *build_skb_around(struct sk_buff *skb,
1253 				 void *data, unsigned int frag_size);
1254 void skb_attempt_defer_free(struct sk_buff *skb);
1255 
1256 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1257 struct sk_buff *slab_build_skb(void *data);
1258 
1259 /**
1260  * alloc_skb - allocate a network buffer
1261  * @size: size to allocate
1262  * @priority: allocation mask
1263  *
1264  * This function is a convenient wrapper around __alloc_skb().
1265  */
1266 static inline struct sk_buff *alloc_skb(unsigned int size,
1267 					gfp_t priority)
1268 {
1269 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1270 }
1271 
1272 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1273 				     unsigned long data_len,
1274 				     int max_page_order,
1275 				     int *errcode,
1276 				     gfp_t gfp_mask);
1277 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1278 
1279 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1280 struct sk_buff_fclones {
1281 	struct sk_buff	skb1;
1282 
1283 	struct sk_buff	skb2;
1284 
1285 	refcount_t	fclone_ref;
1286 };
1287 
1288 /**
1289  *	skb_fclone_busy - check if fclone is busy
1290  *	@sk: socket
1291  *	@skb: buffer
1292  *
1293  * Returns true if skb is a fast clone, and its clone is not freed.
1294  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1295  * so we also check that this didnt happen.
1296  */
1297 static inline bool skb_fclone_busy(const struct sock *sk,
1298 				   const struct sk_buff *skb)
1299 {
1300 	const struct sk_buff_fclones *fclones;
1301 
1302 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1303 
1304 	return skb->fclone == SKB_FCLONE_ORIG &&
1305 	       refcount_read(&fclones->fclone_ref) > 1 &&
1306 	       READ_ONCE(fclones->skb2.sk) == sk;
1307 }
1308 
1309 /**
1310  * alloc_skb_fclone - allocate a network buffer from fclone cache
1311  * @size: size to allocate
1312  * @priority: allocation mask
1313  *
1314  * This function is a convenient wrapper around __alloc_skb().
1315  */
1316 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1317 					       gfp_t priority)
1318 {
1319 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1320 }
1321 
1322 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1323 void skb_headers_offset_update(struct sk_buff *skb, int off);
1324 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1325 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1326 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1327 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1328 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1329 				   gfp_t gfp_mask, bool fclone);
1330 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1331 					  gfp_t gfp_mask)
1332 {
1333 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1334 }
1335 
1336 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1337 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1338 				     unsigned int headroom);
1339 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1340 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1341 				int newtailroom, gfp_t priority);
1342 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1343 				     int offset, int len);
1344 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1345 			      int offset, int len);
1346 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1347 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1348 
1349 /**
1350  *	skb_pad			-	zero pad the tail of an skb
1351  *	@skb: buffer to pad
1352  *	@pad: space to pad
1353  *
1354  *	Ensure that a buffer is followed by a padding area that is zero
1355  *	filled. Used by network drivers which may DMA or transfer data
1356  *	beyond the buffer end onto the wire.
1357  *
1358  *	May return error in out of memory cases. The skb is freed on error.
1359  */
1360 static inline int skb_pad(struct sk_buff *skb, int pad)
1361 {
1362 	return __skb_pad(skb, pad, true);
1363 }
1364 #define dev_kfree_skb(a)	consume_skb(a)
1365 
1366 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1367 			 int offset, size_t size);
1368 
1369 struct skb_seq_state {
1370 	__u32		lower_offset;
1371 	__u32		upper_offset;
1372 	__u32		frag_idx;
1373 	__u32		stepped_offset;
1374 	struct sk_buff	*root_skb;
1375 	struct sk_buff	*cur_skb;
1376 	__u8		*frag_data;
1377 	__u32		frag_off;
1378 };
1379 
1380 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1381 			  unsigned int to, struct skb_seq_state *st);
1382 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1383 			  struct skb_seq_state *st);
1384 void skb_abort_seq_read(struct skb_seq_state *st);
1385 
1386 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1387 			   unsigned int to, struct ts_config *config);
1388 
1389 /*
1390  * Packet hash types specify the type of hash in skb_set_hash.
1391  *
1392  * Hash types refer to the protocol layer addresses which are used to
1393  * construct a packet's hash. The hashes are used to differentiate or identify
1394  * flows of the protocol layer for the hash type. Hash types are either
1395  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1396  *
1397  * Properties of hashes:
1398  *
1399  * 1) Two packets in different flows have different hash values
1400  * 2) Two packets in the same flow should have the same hash value
1401  *
1402  * A hash at a higher layer is considered to be more specific. A driver should
1403  * set the most specific hash possible.
1404  *
1405  * A driver cannot indicate a more specific hash than the layer at which a hash
1406  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1407  *
1408  * A driver may indicate a hash level which is less specific than the
1409  * actual layer the hash was computed on. For instance, a hash computed
1410  * at L4 may be considered an L3 hash. This should only be done if the
1411  * driver can't unambiguously determine that the HW computed the hash at
1412  * the higher layer. Note that the "should" in the second property above
1413  * permits this.
1414  */
1415 enum pkt_hash_types {
1416 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1417 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1418 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1419 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1420 };
1421 
1422 static inline void skb_clear_hash(struct sk_buff *skb)
1423 {
1424 	skb->hash = 0;
1425 	skb->sw_hash = 0;
1426 	skb->l4_hash = 0;
1427 }
1428 
1429 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1430 {
1431 	if (!skb->l4_hash)
1432 		skb_clear_hash(skb);
1433 }
1434 
1435 static inline void
1436 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1437 {
1438 	skb->l4_hash = is_l4;
1439 	skb->sw_hash = is_sw;
1440 	skb->hash = hash;
1441 }
1442 
1443 static inline void
1444 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1445 {
1446 	/* Used by drivers to set hash from HW */
1447 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1448 }
1449 
1450 static inline void
1451 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1452 {
1453 	__skb_set_hash(skb, hash, true, is_l4);
1454 }
1455 
1456 void __skb_get_hash(struct sk_buff *skb);
1457 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1458 u32 skb_get_poff(const struct sk_buff *skb);
1459 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1460 		   const struct flow_keys_basic *keys, int hlen);
1461 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1462 			    const void *data, int hlen_proto);
1463 
1464 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1465 					int thoff, u8 ip_proto)
1466 {
1467 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1468 }
1469 
1470 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1471 			     const struct flow_dissector_key *key,
1472 			     unsigned int key_count);
1473 
1474 struct bpf_flow_dissector;
1475 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1476 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1477 
1478 bool __skb_flow_dissect(const struct net *net,
1479 			const struct sk_buff *skb,
1480 			struct flow_dissector *flow_dissector,
1481 			void *target_container, const void *data,
1482 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1483 
1484 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1485 				    struct flow_dissector *flow_dissector,
1486 				    void *target_container, unsigned int flags)
1487 {
1488 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1489 				  target_container, NULL, 0, 0, 0, flags);
1490 }
1491 
1492 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1493 					      struct flow_keys *flow,
1494 					      unsigned int flags)
1495 {
1496 	memset(flow, 0, sizeof(*flow));
1497 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1498 				  flow, NULL, 0, 0, 0, flags);
1499 }
1500 
1501 static inline bool
1502 skb_flow_dissect_flow_keys_basic(const struct net *net,
1503 				 const struct sk_buff *skb,
1504 				 struct flow_keys_basic *flow,
1505 				 const void *data, __be16 proto,
1506 				 int nhoff, int hlen, unsigned int flags)
1507 {
1508 	memset(flow, 0, sizeof(*flow));
1509 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1510 				  data, proto, nhoff, hlen, flags);
1511 }
1512 
1513 void skb_flow_dissect_meta(const struct sk_buff *skb,
1514 			   struct flow_dissector *flow_dissector,
1515 			   void *target_container);
1516 
1517 /* Gets a skb connection tracking info, ctinfo map should be a
1518  * map of mapsize to translate enum ip_conntrack_info states
1519  * to user states.
1520  */
1521 void
1522 skb_flow_dissect_ct(const struct sk_buff *skb,
1523 		    struct flow_dissector *flow_dissector,
1524 		    void *target_container,
1525 		    u16 *ctinfo_map, size_t mapsize,
1526 		    bool post_ct, u16 zone);
1527 void
1528 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1529 			     struct flow_dissector *flow_dissector,
1530 			     void *target_container);
1531 
1532 void skb_flow_dissect_hash(const struct sk_buff *skb,
1533 			   struct flow_dissector *flow_dissector,
1534 			   void *target_container);
1535 
1536 static inline __u32 skb_get_hash(struct sk_buff *skb)
1537 {
1538 	if (!skb->l4_hash && !skb->sw_hash)
1539 		__skb_get_hash(skb);
1540 
1541 	return skb->hash;
1542 }
1543 
1544 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1545 {
1546 	if (!skb->l4_hash && !skb->sw_hash) {
1547 		struct flow_keys keys;
1548 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1549 
1550 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1551 	}
1552 
1553 	return skb->hash;
1554 }
1555 
1556 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1557 			   const siphash_key_t *perturb);
1558 
1559 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1560 {
1561 	return skb->hash;
1562 }
1563 
1564 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1565 {
1566 	to->hash = from->hash;
1567 	to->sw_hash = from->sw_hash;
1568 	to->l4_hash = from->l4_hash;
1569 };
1570 
1571 static inline void skb_copy_decrypted(struct sk_buff *to,
1572 				      const struct sk_buff *from)
1573 {
1574 #ifdef CONFIG_TLS_DEVICE
1575 	to->decrypted = from->decrypted;
1576 #endif
1577 }
1578 
1579 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1580 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1581 {
1582 	return skb->head + skb->end;
1583 }
1584 
1585 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1586 {
1587 	return skb->end;
1588 }
1589 
1590 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1591 {
1592 	skb->end = offset;
1593 }
1594 #else
1595 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1596 {
1597 	return skb->end;
1598 }
1599 
1600 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1601 {
1602 	return skb->end - skb->head;
1603 }
1604 
1605 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1606 {
1607 	skb->end = skb->head + offset;
1608 }
1609 #endif
1610 
1611 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1612 				       struct ubuf_info *uarg);
1613 
1614 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1615 
1616 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1617 			   bool success);
1618 
1619 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1620 			    struct sk_buff *skb, struct iov_iter *from,
1621 			    size_t length);
1622 
1623 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1624 					  struct msghdr *msg, int len)
1625 {
1626 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1627 }
1628 
1629 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1630 			     struct msghdr *msg, int len,
1631 			     struct ubuf_info *uarg);
1632 
1633 /* Internal */
1634 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1635 
1636 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1637 {
1638 	return &skb_shinfo(skb)->hwtstamps;
1639 }
1640 
1641 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1642 {
1643 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1644 
1645 	return is_zcopy ? skb_uarg(skb) : NULL;
1646 }
1647 
1648 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1649 {
1650 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1651 }
1652 
1653 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1654 {
1655 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1656 }
1657 
1658 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1659 				       const struct sk_buff *skb2)
1660 {
1661 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1662 }
1663 
1664 static inline void net_zcopy_get(struct ubuf_info *uarg)
1665 {
1666 	refcount_inc(&uarg->refcnt);
1667 }
1668 
1669 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1670 {
1671 	skb_shinfo(skb)->destructor_arg = uarg;
1672 	skb_shinfo(skb)->flags |= uarg->flags;
1673 }
1674 
1675 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1676 				 bool *have_ref)
1677 {
1678 	if (skb && uarg && !skb_zcopy(skb)) {
1679 		if (unlikely(have_ref && *have_ref))
1680 			*have_ref = false;
1681 		else
1682 			net_zcopy_get(uarg);
1683 		skb_zcopy_init(skb, uarg);
1684 	}
1685 }
1686 
1687 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1688 {
1689 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1690 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1691 }
1692 
1693 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1694 {
1695 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1696 }
1697 
1698 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1699 {
1700 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1701 }
1702 
1703 static inline void net_zcopy_put(struct ubuf_info *uarg)
1704 {
1705 	if (uarg)
1706 		uarg->callback(NULL, uarg, true);
1707 }
1708 
1709 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1710 {
1711 	if (uarg) {
1712 		if (uarg->callback == msg_zerocopy_callback)
1713 			msg_zerocopy_put_abort(uarg, have_uref);
1714 		else if (have_uref)
1715 			net_zcopy_put(uarg);
1716 	}
1717 }
1718 
1719 /* Release a reference on a zerocopy structure */
1720 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1721 {
1722 	struct ubuf_info *uarg = skb_zcopy(skb);
1723 
1724 	if (uarg) {
1725 		if (!skb_zcopy_is_nouarg(skb))
1726 			uarg->callback(skb, uarg, zerocopy_success);
1727 
1728 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1729 	}
1730 }
1731 
1732 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1733 
1734 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1735 {
1736 	if (unlikely(skb_zcopy_managed(skb)))
1737 		__skb_zcopy_downgrade_managed(skb);
1738 }
1739 
1740 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1741 {
1742 	skb->next = NULL;
1743 }
1744 
1745 static inline void skb_poison_list(struct sk_buff *skb)
1746 {
1747 #ifdef CONFIG_DEBUG_NET
1748 	skb->next = SKB_LIST_POISON_NEXT;
1749 #endif
1750 }
1751 
1752 /* Iterate through singly-linked GSO fragments of an skb. */
1753 #define skb_list_walk_safe(first, skb, next_skb)                               \
1754 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1755 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1756 
1757 static inline void skb_list_del_init(struct sk_buff *skb)
1758 {
1759 	__list_del_entry(&skb->list);
1760 	skb_mark_not_on_list(skb);
1761 }
1762 
1763 /**
1764  *	skb_queue_empty - check if a queue is empty
1765  *	@list: queue head
1766  *
1767  *	Returns true if the queue is empty, false otherwise.
1768  */
1769 static inline int skb_queue_empty(const struct sk_buff_head *list)
1770 {
1771 	return list->next == (const struct sk_buff *) list;
1772 }
1773 
1774 /**
1775  *	skb_queue_empty_lockless - check if a queue is empty
1776  *	@list: queue head
1777  *
1778  *	Returns true if the queue is empty, false otherwise.
1779  *	This variant can be used in lockless contexts.
1780  */
1781 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1782 {
1783 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1784 }
1785 
1786 
1787 /**
1788  *	skb_queue_is_last - check if skb is the last entry in the queue
1789  *	@list: queue head
1790  *	@skb: buffer
1791  *
1792  *	Returns true if @skb is the last buffer on the list.
1793  */
1794 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1795 				     const struct sk_buff *skb)
1796 {
1797 	return skb->next == (const struct sk_buff *) list;
1798 }
1799 
1800 /**
1801  *	skb_queue_is_first - check if skb is the first entry in the queue
1802  *	@list: queue head
1803  *	@skb: buffer
1804  *
1805  *	Returns true if @skb is the first buffer on the list.
1806  */
1807 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1808 				      const struct sk_buff *skb)
1809 {
1810 	return skb->prev == (const struct sk_buff *) list;
1811 }
1812 
1813 /**
1814  *	skb_queue_next - return the next packet in the queue
1815  *	@list: queue head
1816  *	@skb: current buffer
1817  *
1818  *	Return the next packet in @list after @skb.  It is only valid to
1819  *	call this if skb_queue_is_last() evaluates to false.
1820  */
1821 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1822 					     const struct sk_buff *skb)
1823 {
1824 	/* This BUG_ON may seem severe, but if we just return then we
1825 	 * are going to dereference garbage.
1826 	 */
1827 	BUG_ON(skb_queue_is_last(list, skb));
1828 	return skb->next;
1829 }
1830 
1831 /**
1832  *	skb_queue_prev - return the prev packet in the queue
1833  *	@list: queue head
1834  *	@skb: current buffer
1835  *
1836  *	Return the prev packet in @list before @skb.  It is only valid to
1837  *	call this if skb_queue_is_first() evaluates to false.
1838  */
1839 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1840 					     const struct sk_buff *skb)
1841 {
1842 	/* This BUG_ON may seem severe, but if we just return then we
1843 	 * are going to dereference garbage.
1844 	 */
1845 	BUG_ON(skb_queue_is_first(list, skb));
1846 	return skb->prev;
1847 }
1848 
1849 /**
1850  *	skb_get - reference buffer
1851  *	@skb: buffer to reference
1852  *
1853  *	Makes another reference to a socket buffer and returns a pointer
1854  *	to the buffer.
1855  */
1856 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1857 {
1858 	refcount_inc(&skb->users);
1859 	return skb;
1860 }
1861 
1862 /*
1863  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1864  */
1865 
1866 /**
1867  *	skb_cloned - is the buffer a clone
1868  *	@skb: buffer to check
1869  *
1870  *	Returns true if the buffer was generated with skb_clone() and is
1871  *	one of multiple shared copies of the buffer. Cloned buffers are
1872  *	shared data so must not be written to under normal circumstances.
1873  */
1874 static inline int skb_cloned(const struct sk_buff *skb)
1875 {
1876 	return skb->cloned &&
1877 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1878 }
1879 
1880 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1881 {
1882 	might_sleep_if(gfpflags_allow_blocking(pri));
1883 
1884 	if (skb_cloned(skb))
1885 		return pskb_expand_head(skb, 0, 0, pri);
1886 
1887 	return 0;
1888 }
1889 
1890 /* This variant of skb_unclone() makes sure skb->truesize
1891  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1892  *
1893  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1894  * when various debugging features are in place.
1895  */
1896 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1897 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1898 {
1899 	might_sleep_if(gfpflags_allow_blocking(pri));
1900 
1901 	if (skb_cloned(skb))
1902 		return __skb_unclone_keeptruesize(skb, pri);
1903 	return 0;
1904 }
1905 
1906 /**
1907  *	skb_header_cloned - is the header a clone
1908  *	@skb: buffer to check
1909  *
1910  *	Returns true if modifying the header part of the buffer requires
1911  *	the data to be copied.
1912  */
1913 static inline int skb_header_cloned(const struct sk_buff *skb)
1914 {
1915 	int dataref;
1916 
1917 	if (!skb->cloned)
1918 		return 0;
1919 
1920 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1921 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1922 	return dataref != 1;
1923 }
1924 
1925 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1926 {
1927 	might_sleep_if(gfpflags_allow_blocking(pri));
1928 
1929 	if (skb_header_cloned(skb))
1930 		return pskb_expand_head(skb, 0, 0, pri);
1931 
1932 	return 0;
1933 }
1934 
1935 /**
1936  * __skb_header_release() - allow clones to use the headroom
1937  * @skb: buffer to operate on
1938  *
1939  * See "DOC: dataref and headerless skbs".
1940  */
1941 static inline void __skb_header_release(struct sk_buff *skb)
1942 {
1943 	skb->nohdr = 1;
1944 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1945 }
1946 
1947 
1948 /**
1949  *	skb_shared - is the buffer shared
1950  *	@skb: buffer to check
1951  *
1952  *	Returns true if more than one person has a reference to this
1953  *	buffer.
1954  */
1955 static inline int skb_shared(const struct sk_buff *skb)
1956 {
1957 	return refcount_read(&skb->users) != 1;
1958 }
1959 
1960 /**
1961  *	skb_share_check - check if buffer is shared and if so clone it
1962  *	@skb: buffer to check
1963  *	@pri: priority for memory allocation
1964  *
1965  *	If the buffer is shared the buffer is cloned and the old copy
1966  *	drops a reference. A new clone with a single reference is returned.
1967  *	If the buffer is not shared the original buffer is returned. When
1968  *	being called from interrupt status or with spinlocks held pri must
1969  *	be GFP_ATOMIC.
1970  *
1971  *	NULL is returned on a memory allocation failure.
1972  */
1973 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1974 {
1975 	might_sleep_if(gfpflags_allow_blocking(pri));
1976 	if (skb_shared(skb)) {
1977 		struct sk_buff *nskb = skb_clone(skb, pri);
1978 
1979 		if (likely(nskb))
1980 			consume_skb(skb);
1981 		else
1982 			kfree_skb(skb);
1983 		skb = nskb;
1984 	}
1985 	return skb;
1986 }
1987 
1988 /*
1989  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1990  *	packets to handle cases where we have a local reader and forward
1991  *	and a couple of other messy ones. The normal one is tcpdumping
1992  *	a packet thats being forwarded.
1993  */
1994 
1995 /**
1996  *	skb_unshare - make a copy of a shared buffer
1997  *	@skb: buffer to check
1998  *	@pri: priority for memory allocation
1999  *
2000  *	If the socket buffer is a clone then this function creates a new
2001  *	copy of the data, drops a reference count on the old copy and returns
2002  *	the new copy with the reference count at 1. If the buffer is not a clone
2003  *	the original buffer is returned. When called with a spinlock held or
2004  *	from interrupt state @pri must be %GFP_ATOMIC
2005  *
2006  *	%NULL is returned on a memory allocation failure.
2007  */
2008 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2009 					  gfp_t pri)
2010 {
2011 	might_sleep_if(gfpflags_allow_blocking(pri));
2012 	if (skb_cloned(skb)) {
2013 		struct sk_buff *nskb = skb_copy(skb, pri);
2014 
2015 		/* Free our shared copy */
2016 		if (likely(nskb))
2017 			consume_skb(skb);
2018 		else
2019 			kfree_skb(skb);
2020 		skb = nskb;
2021 	}
2022 	return skb;
2023 }
2024 
2025 /**
2026  *	skb_peek - peek at the head of an &sk_buff_head
2027  *	@list_: list to peek at
2028  *
2029  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2030  *	be careful with this one. A peek leaves the buffer on the
2031  *	list and someone else may run off with it. You must hold
2032  *	the appropriate locks or have a private queue to do this.
2033  *
2034  *	Returns %NULL for an empty list or a pointer to the head element.
2035  *	The reference count is not incremented and the reference is therefore
2036  *	volatile. Use with caution.
2037  */
2038 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2039 {
2040 	struct sk_buff *skb = list_->next;
2041 
2042 	if (skb == (struct sk_buff *)list_)
2043 		skb = NULL;
2044 	return skb;
2045 }
2046 
2047 /**
2048  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2049  *	@list_: list to peek at
2050  *
2051  *	Like skb_peek(), but the caller knows that the list is not empty.
2052  */
2053 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2054 {
2055 	return list_->next;
2056 }
2057 
2058 /**
2059  *	skb_peek_next - peek skb following the given one from a queue
2060  *	@skb: skb to start from
2061  *	@list_: list to peek at
2062  *
2063  *	Returns %NULL when the end of the list is met or a pointer to the
2064  *	next element. The reference count is not incremented and the
2065  *	reference is therefore volatile. Use with caution.
2066  */
2067 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2068 		const struct sk_buff_head *list_)
2069 {
2070 	struct sk_buff *next = skb->next;
2071 
2072 	if (next == (struct sk_buff *)list_)
2073 		next = NULL;
2074 	return next;
2075 }
2076 
2077 /**
2078  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2079  *	@list_: list to peek at
2080  *
2081  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2082  *	be careful with this one. A peek leaves the buffer on the
2083  *	list and someone else may run off with it. You must hold
2084  *	the appropriate locks or have a private queue to do this.
2085  *
2086  *	Returns %NULL for an empty list or a pointer to the tail element.
2087  *	The reference count is not incremented and the reference is therefore
2088  *	volatile. Use with caution.
2089  */
2090 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2091 {
2092 	struct sk_buff *skb = READ_ONCE(list_->prev);
2093 
2094 	if (skb == (struct sk_buff *)list_)
2095 		skb = NULL;
2096 	return skb;
2097 
2098 }
2099 
2100 /**
2101  *	skb_queue_len	- get queue length
2102  *	@list_: list to measure
2103  *
2104  *	Return the length of an &sk_buff queue.
2105  */
2106 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2107 {
2108 	return list_->qlen;
2109 }
2110 
2111 /**
2112  *	skb_queue_len_lockless	- get queue length
2113  *	@list_: list to measure
2114  *
2115  *	Return the length of an &sk_buff queue.
2116  *	This variant can be used in lockless contexts.
2117  */
2118 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2119 {
2120 	return READ_ONCE(list_->qlen);
2121 }
2122 
2123 /**
2124  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2125  *	@list: queue to initialize
2126  *
2127  *	This initializes only the list and queue length aspects of
2128  *	an sk_buff_head object.  This allows to initialize the list
2129  *	aspects of an sk_buff_head without reinitializing things like
2130  *	the spinlock.  It can also be used for on-stack sk_buff_head
2131  *	objects where the spinlock is known to not be used.
2132  */
2133 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2134 {
2135 	list->prev = list->next = (struct sk_buff *)list;
2136 	list->qlen = 0;
2137 }
2138 
2139 /*
2140  * This function creates a split out lock class for each invocation;
2141  * this is needed for now since a whole lot of users of the skb-queue
2142  * infrastructure in drivers have different locking usage (in hardirq)
2143  * than the networking core (in softirq only). In the long run either the
2144  * network layer or drivers should need annotation to consolidate the
2145  * main types of usage into 3 classes.
2146  */
2147 static inline void skb_queue_head_init(struct sk_buff_head *list)
2148 {
2149 	spin_lock_init(&list->lock);
2150 	__skb_queue_head_init(list);
2151 }
2152 
2153 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2154 		struct lock_class_key *class)
2155 {
2156 	skb_queue_head_init(list);
2157 	lockdep_set_class(&list->lock, class);
2158 }
2159 
2160 /*
2161  *	Insert an sk_buff on a list.
2162  *
2163  *	The "__skb_xxxx()" functions are the non-atomic ones that
2164  *	can only be called with interrupts disabled.
2165  */
2166 static inline void __skb_insert(struct sk_buff *newsk,
2167 				struct sk_buff *prev, struct sk_buff *next,
2168 				struct sk_buff_head *list)
2169 {
2170 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2171 	 * for the opposite READ_ONCE()
2172 	 */
2173 	WRITE_ONCE(newsk->next, next);
2174 	WRITE_ONCE(newsk->prev, prev);
2175 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2176 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2177 	WRITE_ONCE(list->qlen, list->qlen + 1);
2178 }
2179 
2180 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2181 				      struct sk_buff *prev,
2182 				      struct sk_buff *next)
2183 {
2184 	struct sk_buff *first = list->next;
2185 	struct sk_buff *last = list->prev;
2186 
2187 	WRITE_ONCE(first->prev, prev);
2188 	WRITE_ONCE(prev->next, first);
2189 
2190 	WRITE_ONCE(last->next, next);
2191 	WRITE_ONCE(next->prev, last);
2192 }
2193 
2194 /**
2195  *	skb_queue_splice - join two skb lists, this is designed for stacks
2196  *	@list: the new list to add
2197  *	@head: the place to add it in the first list
2198  */
2199 static inline void skb_queue_splice(const struct sk_buff_head *list,
2200 				    struct sk_buff_head *head)
2201 {
2202 	if (!skb_queue_empty(list)) {
2203 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2204 		head->qlen += list->qlen;
2205 	}
2206 }
2207 
2208 /**
2209  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2210  *	@list: the new list to add
2211  *	@head: the place to add it in the first list
2212  *
2213  *	The list at @list is reinitialised
2214  */
2215 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2216 					 struct sk_buff_head *head)
2217 {
2218 	if (!skb_queue_empty(list)) {
2219 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2220 		head->qlen += list->qlen;
2221 		__skb_queue_head_init(list);
2222 	}
2223 }
2224 
2225 /**
2226  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2227  *	@list: the new list to add
2228  *	@head: the place to add it in the first list
2229  */
2230 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2231 					 struct sk_buff_head *head)
2232 {
2233 	if (!skb_queue_empty(list)) {
2234 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2235 		head->qlen += list->qlen;
2236 	}
2237 }
2238 
2239 /**
2240  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2241  *	@list: the new list to add
2242  *	@head: the place to add it in the first list
2243  *
2244  *	Each of the lists is a queue.
2245  *	The list at @list is reinitialised
2246  */
2247 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2248 					      struct sk_buff_head *head)
2249 {
2250 	if (!skb_queue_empty(list)) {
2251 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2252 		head->qlen += list->qlen;
2253 		__skb_queue_head_init(list);
2254 	}
2255 }
2256 
2257 /**
2258  *	__skb_queue_after - queue a buffer at the list head
2259  *	@list: list to use
2260  *	@prev: place after this buffer
2261  *	@newsk: buffer to queue
2262  *
2263  *	Queue a buffer int the middle of a list. This function takes no locks
2264  *	and you must therefore hold required locks before calling it.
2265  *
2266  *	A buffer cannot be placed on two lists at the same time.
2267  */
2268 static inline void __skb_queue_after(struct sk_buff_head *list,
2269 				     struct sk_buff *prev,
2270 				     struct sk_buff *newsk)
2271 {
2272 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2273 }
2274 
2275 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2276 		struct sk_buff_head *list);
2277 
2278 static inline void __skb_queue_before(struct sk_buff_head *list,
2279 				      struct sk_buff *next,
2280 				      struct sk_buff *newsk)
2281 {
2282 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2283 }
2284 
2285 /**
2286  *	__skb_queue_head - queue a buffer at the list head
2287  *	@list: list to use
2288  *	@newsk: buffer to queue
2289  *
2290  *	Queue a buffer at the start of a list. This function takes no locks
2291  *	and you must therefore hold required locks before calling it.
2292  *
2293  *	A buffer cannot be placed on two lists at the same time.
2294  */
2295 static inline void __skb_queue_head(struct sk_buff_head *list,
2296 				    struct sk_buff *newsk)
2297 {
2298 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2299 }
2300 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2301 
2302 /**
2303  *	__skb_queue_tail - queue a buffer at the list tail
2304  *	@list: list to use
2305  *	@newsk: buffer to queue
2306  *
2307  *	Queue a buffer at the end of a list. This function takes no locks
2308  *	and you must therefore hold required locks before calling it.
2309  *
2310  *	A buffer cannot be placed on two lists at the same time.
2311  */
2312 static inline void __skb_queue_tail(struct sk_buff_head *list,
2313 				   struct sk_buff *newsk)
2314 {
2315 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2316 }
2317 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2318 
2319 /*
2320  * remove sk_buff from list. _Must_ be called atomically, and with
2321  * the list known..
2322  */
2323 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2324 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2325 {
2326 	struct sk_buff *next, *prev;
2327 
2328 	WRITE_ONCE(list->qlen, list->qlen - 1);
2329 	next	   = skb->next;
2330 	prev	   = skb->prev;
2331 	skb->next  = skb->prev = NULL;
2332 	WRITE_ONCE(next->prev, prev);
2333 	WRITE_ONCE(prev->next, next);
2334 }
2335 
2336 /**
2337  *	__skb_dequeue - remove from the head of the queue
2338  *	@list: list to dequeue from
2339  *
2340  *	Remove the head of the list. This function does not take any locks
2341  *	so must be used with appropriate locks held only. The head item is
2342  *	returned or %NULL if the list is empty.
2343  */
2344 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2345 {
2346 	struct sk_buff *skb = skb_peek(list);
2347 	if (skb)
2348 		__skb_unlink(skb, list);
2349 	return skb;
2350 }
2351 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2352 
2353 /**
2354  *	__skb_dequeue_tail - remove from the tail of the queue
2355  *	@list: list to dequeue from
2356  *
2357  *	Remove the tail of the list. This function does not take any locks
2358  *	so must be used with appropriate locks held only. The tail item is
2359  *	returned or %NULL if the list is empty.
2360  */
2361 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2362 {
2363 	struct sk_buff *skb = skb_peek_tail(list);
2364 	if (skb)
2365 		__skb_unlink(skb, list);
2366 	return skb;
2367 }
2368 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2369 
2370 
2371 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2372 {
2373 	return skb->data_len;
2374 }
2375 
2376 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2377 {
2378 	return skb->len - skb->data_len;
2379 }
2380 
2381 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2382 {
2383 	unsigned int i, len = 0;
2384 
2385 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2386 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2387 	return len;
2388 }
2389 
2390 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2391 {
2392 	return skb_headlen(skb) + __skb_pagelen(skb);
2393 }
2394 
2395 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2396 					      int i, struct page *page,
2397 					      int off, int size)
2398 {
2399 	skb_frag_t *frag = &shinfo->frags[i];
2400 
2401 	/*
2402 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2403 	 * that not all callers have unique ownership of the page but rely
2404 	 * on page_is_pfmemalloc doing the right thing(tm).
2405 	 */
2406 	frag->bv_page		  = page;
2407 	frag->bv_offset		  = off;
2408 	skb_frag_size_set(frag, size);
2409 }
2410 
2411 /**
2412  * skb_len_add - adds a number to len fields of skb
2413  * @skb: buffer to add len to
2414  * @delta: number of bytes to add
2415  */
2416 static inline void skb_len_add(struct sk_buff *skb, int delta)
2417 {
2418 	skb->len += delta;
2419 	skb->data_len += delta;
2420 	skb->truesize += delta;
2421 }
2422 
2423 /**
2424  * __skb_fill_page_desc - initialise a paged fragment in an skb
2425  * @skb: buffer containing fragment to be initialised
2426  * @i: paged fragment index to initialise
2427  * @page: the page to use for this fragment
2428  * @off: the offset to the data with @page
2429  * @size: the length of the data
2430  *
2431  * Initialises the @i'th fragment of @skb to point to &size bytes at
2432  * offset @off within @page.
2433  *
2434  * Does not take any additional reference on the fragment.
2435  */
2436 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2437 					struct page *page, int off, int size)
2438 {
2439 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2440 	page = compound_head(page);
2441 	if (page_is_pfmemalloc(page))
2442 		skb->pfmemalloc	= true;
2443 }
2444 
2445 /**
2446  * skb_fill_page_desc - initialise a paged fragment in an skb
2447  * @skb: buffer containing fragment to be initialised
2448  * @i: paged fragment index to initialise
2449  * @page: the page to use for this fragment
2450  * @off: the offset to the data with @page
2451  * @size: the length of the data
2452  *
2453  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2454  * @skb to point to @size bytes at offset @off within @page. In
2455  * addition updates @skb such that @i is the last fragment.
2456  *
2457  * Does not take any additional reference on the fragment.
2458  */
2459 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2460 				      struct page *page, int off, int size)
2461 {
2462 	__skb_fill_page_desc(skb, i, page, off, size);
2463 	skb_shinfo(skb)->nr_frags = i + 1;
2464 }
2465 
2466 /**
2467  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2468  * @skb: buffer containing fragment to be initialised
2469  * @i: paged fragment index to initialise
2470  * @page: the page to use for this fragment
2471  * @off: the offset to the data with @page
2472  * @size: the length of the data
2473  *
2474  * Variant of skb_fill_page_desc() which does not deal with
2475  * pfmemalloc, if page is not owned by us.
2476  */
2477 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2478 					    struct page *page, int off,
2479 					    int size)
2480 {
2481 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2482 
2483 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2484 	shinfo->nr_frags = i + 1;
2485 }
2486 
2487 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2488 		     int size, unsigned int truesize);
2489 
2490 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2491 			  unsigned int truesize);
2492 
2493 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2494 
2495 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2496 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2497 {
2498 	return skb->head + skb->tail;
2499 }
2500 
2501 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2502 {
2503 	skb->tail = skb->data - skb->head;
2504 }
2505 
2506 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2507 {
2508 	skb_reset_tail_pointer(skb);
2509 	skb->tail += offset;
2510 }
2511 
2512 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2513 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2514 {
2515 	return skb->tail;
2516 }
2517 
2518 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2519 {
2520 	skb->tail = skb->data;
2521 }
2522 
2523 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2524 {
2525 	skb->tail = skb->data + offset;
2526 }
2527 
2528 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2529 
2530 static inline void skb_assert_len(struct sk_buff *skb)
2531 {
2532 #ifdef CONFIG_DEBUG_NET
2533 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2534 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2535 #endif /* CONFIG_DEBUG_NET */
2536 }
2537 
2538 /*
2539  *	Add data to an sk_buff
2540  */
2541 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2542 void *skb_put(struct sk_buff *skb, unsigned int len);
2543 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2544 {
2545 	void *tmp = skb_tail_pointer(skb);
2546 	SKB_LINEAR_ASSERT(skb);
2547 	skb->tail += len;
2548 	skb->len  += len;
2549 	return tmp;
2550 }
2551 
2552 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2553 {
2554 	void *tmp = __skb_put(skb, len);
2555 
2556 	memset(tmp, 0, len);
2557 	return tmp;
2558 }
2559 
2560 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2561 				   unsigned int len)
2562 {
2563 	void *tmp = __skb_put(skb, len);
2564 
2565 	memcpy(tmp, data, len);
2566 	return tmp;
2567 }
2568 
2569 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2570 {
2571 	*(u8 *)__skb_put(skb, 1) = val;
2572 }
2573 
2574 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2575 {
2576 	void *tmp = skb_put(skb, len);
2577 
2578 	memset(tmp, 0, len);
2579 
2580 	return tmp;
2581 }
2582 
2583 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2584 				 unsigned int len)
2585 {
2586 	void *tmp = skb_put(skb, len);
2587 
2588 	memcpy(tmp, data, len);
2589 
2590 	return tmp;
2591 }
2592 
2593 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2594 {
2595 	*(u8 *)skb_put(skb, 1) = val;
2596 }
2597 
2598 void *skb_push(struct sk_buff *skb, unsigned int len);
2599 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2600 {
2601 	skb->data -= len;
2602 	skb->len  += len;
2603 	return skb->data;
2604 }
2605 
2606 void *skb_pull(struct sk_buff *skb, unsigned int len);
2607 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2608 {
2609 	skb->len -= len;
2610 	if (unlikely(skb->len < skb->data_len)) {
2611 #if defined(CONFIG_DEBUG_NET)
2612 		skb->len += len;
2613 		pr_err("__skb_pull(len=%u)\n", len);
2614 		skb_dump(KERN_ERR, skb, false);
2615 #endif
2616 		BUG();
2617 	}
2618 	return skb->data += len;
2619 }
2620 
2621 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2622 {
2623 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2624 }
2625 
2626 void *skb_pull_data(struct sk_buff *skb, size_t len);
2627 
2628 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2629 
2630 static inline enum skb_drop_reason
2631 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2632 {
2633 	if (likely(len <= skb_headlen(skb)))
2634 		return SKB_NOT_DROPPED_YET;
2635 
2636 	if (unlikely(len > skb->len))
2637 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2638 
2639 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2640 		return SKB_DROP_REASON_NOMEM;
2641 
2642 	return SKB_NOT_DROPPED_YET;
2643 }
2644 
2645 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2646 {
2647 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2648 }
2649 
2650 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2651 {
2652 	if (!pskb_may_pull(skb, len))
2653 		return NULL;
2654 
2655 	skb->len -= len;
2656 	return skb->data += len;
2657 }
2658 
2659 void skb_condense(struct sk_buff *skb);
2660 
2661 /**
2662  *	skb_headroom - bytes at buffer head
2663  *	@skb: buffer to check
2664  *
2665  *	Return the number of bytes of free space at the head of an &sk_buff.
2666  */
2667 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2668 {
2669 	return skb->data - skb->head;
2670 }
2671 
2672 /**
2673  *	skb_tailroom - bytes at buffer end
2674  *	@skb: buffer to check
2675  *
2676  *	Return the number of bytes of free space at the tail of an sk_buff
2677  */
2678 static inline int skb_tailroom(const struct sk_buff *skb)
2679 {
2680 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2681 }
2682 
2683 /**
2684  *	skb_availroom - bytes at buffer end
2685  *	@skb: buffer to check
2686  *
2687  *	Return the number of bytes of free space at the tail of an sk_buff
2688  *	allocated by sk_stream_alloc()
2689  */
2690 static inline int skb_availroom(const struct sk_buff *skb)
2691 {
2692 	if (skb_is_nonlinear(skb))
2693 		return 0;
2694 
2695 	return skb->end - skb->tail - skb->reserved_tailroom;
2696 }
2697 
2698 /**
2699  *	skb_reserve - adjust headroom
2700  *	@skb: buffer to alter
2701  *	@len: bytes to move
2702  *
2703  *	Increase the headroom of an empty &sk_buff by reducing the tail
2704  *	room. This is only allowed for an empty buffer.
2705  */
2706 static inline void skb_reserve(struct sk_buff *skb, int len)
2707 {
2708 	skb->data += len;
2709 	skb->tail += len;
2710 }
2711 
2712 /**
2713  *	skb_tailroom_reserve - adjust reserved_tailroom
2714  *	@skb: buffer to alter
2715  *	@mtu: maximum amount of headlen permitted
2716  *	@needed_tailroom: minimum amount of reserved_tailroom
2717  *
2718  *	Set reserved_tailroom so that headlen can be as large as possible but
2719  *	not larger than mtu and tailroom cannot be smaller than
2720  *	needed_tailroom.
2721  *	The required headroom should already have been reserved before using
2722  *	this function.
2723  */
2724 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2725 					unsigned int needed_tailroom)
2726 {
2727 	SKB_LINEAR_ASSERT(skb);
2728 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2729 		/* use at most mtu */
2730 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2731 	else
2732 		/* use up to all available space */
2733 		skb->reserved_tailroom = needed_tailroom;
2734 }
2735 
2736 #define ENCAP_TYPE_ETHER	0
2737 #define ENCAP_TYPE_IPPROTO	1
2738 
2739 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2740 					  __be16 protocol)
2741 {
2742 	skb->inner_protocol = protocol;
2743 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2744 }
2745 
2746 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2747 					 __u8 ipproto)
2748 {
2749 	skb->inner_ipproto = ipproto;
2750 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2751 }
2752 
2753 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2754 {
2755 	skb->inner_mac_header = skb->mac_header;
2756 	skb->inner_network_header = skb->network_header;
2757 	skb->inner_transport_header = skb->transport_header;
2758 }
2759 
2760 static inline void skb_reset_mac_len(struct sk_buff *skb)
2761 {
2762 	skb->mac_len = skb->network_header - skb->mac_header;
2763 }
2764 
2765 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2766 							*skb)
2767 {
2768 	return skb->head + skb->inner_transport_header;
2769 }
2770 
2771 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2772 {
2773 	return skb_inner_transport_header(skb) - skb->data;
2774 }
2775 
2776 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2777 {
2778 	skb->inner_transport_header = skb->data - skb->head;
2779 }
2780 
2781 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2782 						   const int offset)
2783 {
2784 	skb_reset_inner_transport_header(skb);
2785 	skb->inner_transport_header += offset;
2786 }
2787 
2788 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2789 {
2790 	return skb->head + skb->inner_network_header;
2791 }
2792 
2793 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2794 {
2795 	skb->inner_network_header = skb->data - skb->head;
2796 }
2797 
2798 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2799 						const int offset)
2800 {
2801 	skb_reset_inner_network_header(skb);
2802 	skb->inner_network_header += offset;
2803 }
2804 
2805 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2806 {
2807 	return skb->head + skb->inner_mac_header;
2808 }
2809 
2810 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2811 {
2812 	skb->inner_mac_header = skb->data - skb->head;
2813 }
2814 
2815 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2816 					    const int offset)
2817 {
2818 	skb_reset_inner_mac_header(skb);
2819 	skb->inner_mac_header += offset;
2820 }
2821 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2822 {
2823 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2824 }
2825 
2826 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2827 {
2828 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2829 	return skb->head + skb->transport_header;
2830 }
2831 
2832 static inline void skb_reset_transport_header(struct sk_buff *skb)
2833 {
2834 	skb->transport_header = skb->data - skb->head;
2835 }
2836 
2837 static inline void skb_set_transport_header(struct sk_buff *skb,
2838 					    const int offset)
2839 {
2840 	skb_reset_transport_header(skb);
2841 	skb->transport_header += offset;
2842 }
2843 
2844 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2845 {
2846 	return skb->head + skb->network_header;
2847 }
2848 
2849 static inline void skb_reset_network_header(struct sk_buff *skb)
2850 {
2851 	skb->network_header = skb->data - skb->head;
2852 }
2853 
2854 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2855 {
2856 	skb_reset_network_header(skb);
2857 	skb->network_header += offset;
2858 }
2859 
2860 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2861 {
2862 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2863 }
2864 
2865 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2866 {
2867 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2868 	return skb->head + skb->mac_header;
2869 }
2870 
2871 static inline int skb_mac_offset(const struct sk_buff *skb)
2872 {
2873 	return skb_mac_header(skb) - skb->data;
2874 }
2875 
2876 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2877 {
2878 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2879 	return skb->network_header - skb->mac_header;
2880 }
2881 
2882 static inline void skb_unset_mac_header(struct sk_buff *skb)
2883 {
2884 	skb->mac_header = (typeof(skb->mac_header))~0U;
2885 }
2886 
2887 static inline void skb_reset_mac_header(struct sk_buff *skb)
2888 {
2889 	skb->mac_header = skb->data - skb->head;
2890 }
2891 
2892 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2893 {
2894 	skb_reset_mac_header(skb);
2895 	skb->mac_header += offset;
2896 }
2897 
2898 static inline void skb_pop_mac_header(struct sk_buff *skb)
2899 {
2900 	skb->mac_header = skb->network_header;
2901 }
2902 
2903 static inline void skb_probe_transport_header(struct sk_buff *skb)
2904 {
2905 	struct flow_keys_basic keys;
2906 
2907 	if (skb_transport_header_was_set(skb))
2908 		return;
2909 
2910 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2911 					     NULL, 0, 0, 0, 0))
2912 		skb_set_transport_header(skb, keys.control.thoff);
2913 }
2914 
2915 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2916 {
2917 	if (skb_mac_header_was_set(skb)) {
2918 		const unsigned char *old_mac = skb_mac_header(skb);
2919 
2920 		skb_set_mac_header(skb, -skb->mac_len);
2921 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2922 	}
2923 }
2924 
2925 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2926 {
2927 	return skb->csum_start - skb_headroom(skb);
2928 }
2929 
2930 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2931 {
2932 	return skb->head + skb->csum_start;
2933 }
2934 
2935 static inline int skb_transport_offset(const struct sk_buff *skb)
2936 {
2937 	return skb_transport_header(skb) - skb->data;
2938 }
2939 
2940 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2941 {
2942 	return skb->transport_header - skb->network_header;
2943 }
2944 
2945 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2946 {
2947 	return skb->inner_transport_header - skb->inner_network_header;
2948 }
2949 
2950 static inline int skb_network_offset(const struct sk_buff *skb)
2951 {
2952 	return skb_network_header(skb) - skb->data;
2953 }
2954 
2955 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2956 {
2957 	return skb_inner_network_header(skb) - skb->data;
2958 }
2959 
2960 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2961 {
2962 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2963 }
2964 
2965 /*
2966  * CPUs often take a performance hit when accessing unaligned memory
2967  * locations. The actual performance hit varies, it can be small if the
2968  * hardware handles it or large if we have to take an exception and fix it
2969  * in software.
2970  *
2971  * Since an ethernet header is 14 bytes network drivers often end up with
2972  * the IP header at an unaligned offset. The IP header can be aligned by
2973  * shifting the start of the packet by 2 bytes. Drivers should do this
2974  * with:
2975  *
2976  * skb_reserve(skb, NET_IP_ALIGN);
2977  *
2978  * The downside to this alignment of the IP header is that the DMA is now
2979  * unaligned. On some architectures the cost of an unaligned DMA is high
2980  * and this cost outweighs the gains made by aligning the IP header.
2981  *
2982  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2983  * to be overridden.
2984  */
2985 #ifndef NET_IP_ALIGN
2986 #define NET_IP_ALIGN	2
2987 #endif
2988 
2989 /*
2990  * The networking layer reserves some headroom in skb data (via
2991  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2992  * the header has to grow. In the default case, if the header has to grow
2993  * 32 bytes or less we avoid the reallocation.
2994  *
2995  * Unfortunately this headroom changes the DMA alignment of the resulting
2996  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2997  * on some architectures. An architecture can override this value,
2998  * perhaps setting it to a cacheline in size (since that will maintain
2999  * cacheline alignment of the DMA). It must be a power of 2.
3000  *
3001  * Various parts of the networking layer expect at least 32 bytes of
3002  * headroom, you should not reduce this.
3003  *
3004  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3005  * to reduce average number of cache lines per packet.
3006  * get_rps_cpu() for example only access one 64 bytes aligned block :
3007  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3008  */
3009 #ifndef NET_SKB_PAD
3010 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3011 #endif
3012 
3013 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3014 
3015 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3016 {
3017 	if (WARN_ON(skb_is_nonlinear(skb)))
3018 		return;
3019 	skb->len = len;
3020 	skb_set_tail_pointer(skb, len);
3021 }
3022 
3023 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3024 {
3025 	__skb_set_length(skb, len);
3026 }
3027 
3028 void skb_trim(struct sk_buff *skb, unsigned int len);
3029 
3030 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3031 {
3032 	if (skb->data_len)
3033 		return ___pskb_trim(skb, len);
3034 	__skb_trim(skb, len);
3035 	return 0;
3036 }
3037 
3038 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3039 {
3040 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3041 }
3042 
3043 /**
3044  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3045  *	@skb: buffer to alter
3046  *	@len: new length
3047  *
3048  *	This is identical to pskb_trim except that the caller knows that
3049  *	the skb is not cloned so we should never get an error due to out-
3050  *	of-memory.
3051  */
3052 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3053 {
3054 	int err = pskb_trim(skb, len);
3055 	BUG_ON(err);
3056 }
3057 
3058 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3059 {
3060 	unsigned int diff = len - skb->len;
3061 
3062 	if (skb_tailroom(skb) < diff) {
3063 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3064 					   GFP_ATOMIC);
3065 		if (ret)
3066 			return ret;
3067 	}
3068 	__skb_set_length(skb, len);
3069 	return 0;
3070 }
3071 
3072 /**
3073  *	skb_orphan - orphan a buffer
3074  *	@skb: buffer to orphan
3075  *
3076  *	If a buffer currently has an owner then we call the owner's
3077  *	destructor function and make the @skb unowned. The buffer continues
3078  *	to exist but is no longer charged to its former owner.
3079  */
3080 static inline void skb_orphan(struct sk_buff *skb)
3081 {
3082 	if (skb->destructor) {
3083 		skb->destructor(skb);
3084 		skb->destructor = NULL;
3085 		skb->sk		= NULL;
3086 	} else {
3087 		BUG_ON(skb->sk);
3088 	}
3089 }
3090 
3091 /**
3092  *	skb_orphan_frags - orphan the frags contained in a buffer
3093  *	@skb: buffer to orphan frags from
3094  *	@gfp_mask: allocation mask for replacement pages
3095  *
3096  *	For each frag in the SKB which needs a destructor (i.e. has an
3097  *	owner) create a copy of that frag and release the original
3098  *	page by calling the destructor.
3099  */
3100 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3101 {
3102 	if (likely(!skb_zcopy(skb)))
3103 		return 0;
3104 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3105 		return 0;
3106 	return skb_copy_ubufs(skb, gfp_mask);
3107 }
3108 
3109 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3110 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3111 {
3112 	if (likely(!skb_zcopy(skb)))
3113 		return 0;
3114 	return skb_copy_ubufs(skb, gfp_mask);
3115 }
3116 
3117 /**
3118  *	__skb_queue_purge - empty a list
3119  *	@list: list to empty
3120  *
3121  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3122  *	the list and one reference dropped. This function does not take the
3123  *	list lock and the caller must hold the relevant locks to use it.
3124  */
3125 static inline void __skb_queue_purge(struct sk_buff_head *list)
3126 {
3127 	struct sk_buff *skb;
3128 	while ((skb = __skb_dequeue(list)) != NULL)
3129 		kfree_skb(skb);
3130 }
3131 void skb_queue_purge(struct sk_buff_head *list);
3132 
3133 unsigned int skb_rbtree_purge(struct rb_root *root);
3134 
3135 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3136 
3137 /**
3138  * netdev_alloc_frag - allocate a page fragment
3139  * @fragsz: fragment size
3140  *
3141  * Allocates a frag from a page for receive buffer.
3142  * Uses GFP_ATOMIC allocations.
3143  */
3144 static inline void *netdev_alloc_frag(unsigned int fragsz)
3145 {
3146 	return __netdev_alloc_frag_align(fragsz, ~0u);
3147 }
3148 
3149 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3150 					    unsigned int align)
3151 {
3152 	WARN_ON_ONCE(!is_power_of_2(align));
3153 	return __netdev_alloc_frag_align(fragsz, -align);
3154 }
3155 
3156 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3157 				   gfp_t gfp_mask);
3158 
3159 /**
3160  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3161  *	@dev: network device to receive on
3162  *	@length: length to allocate
3163  *
3164  *	Allocate a new &sk_buff and assign it a usage count of one. The
3165  *	buffer has unspecified headroom built in. Users should allocate
3166  *	the headroom they think they need without accounting for the
3167  *	built in space. The built in space is used for optimisations.
3168  *
3169  *	%NULL is returned if there is no free memory. Although this function
3170  *	allocates memory it can be called from an interrupt.
3171  */
3172 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3173 					       unsigned int length)
3174 {
3175 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3176 }
3177 
3178 /* legacy helper around __netdev_alloc_skb() */
3179 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3180 					      gfp_t gfp_mask)
3181 {
3182 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3183 }
3184 
3185 /* legacy helper around netdev_alloc_skb() */
3186 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3187 {
3188 	return netdev_alloc_skb(NULL, length);
3189 }
3190 
3191 
3192 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3193 		unsigned int length, gfp_t gfp)
3194 {
3195 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3196 
3197 	if (NET_IP_ALIGN && skb)
3198 		skb_reserve(skb, NET_IP_ALIGN);
3199 	return skb;
3200 }
3201 
3202 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3203 		unsigned int length)
3204 {
3205 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3206 }
3207 
3208 static inline void skb_free_frag(void *addr)
3209 {
3210 	page_frag_free(addr);
3211 }
3212 
3213 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3214 
3215 static inline void *napi_alloc_frag(unsigned int fragsz)
3216 {
3217 	return __napi_alloc_frag_align(fragsz, ~0u);
3218 }
3219 
3220 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3221 					  unsigned int align)
3222 {
3223 	WARN_ON_ONCE(!is_power_of_2(align));
3224 	return __napi_alloc_frag_align(fragsz, -align);
3225 }
3226 
3227 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3228 				 unsigned int length, gfp_t gfp_mask);
3229 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3230 					     unsigned int length)
3231 {
3232 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3233 }
3234 void napi_consume_skb(struct sk_buff *skb, int budget);
3235 
3236 void napi_skb_free_stolen_head(struct sk_buff *skb);
3237 void __kfree_skb_defer(struct sk_buff *skb);
3238 
3239 /**
3240  * __dev_alloc_pages - allocate page for network Rx
3241  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3242  * @order: size of the allocation
3243  *
3244  * Allocate a new page.
3245  *
3246  * %NULL is returned if there is no free memory.
3247 */
3248 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3249 					     unsigned int order)
3250 {
3251 	/* This piece of code contains several assumptions.
3252 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3253 	 * 2.  The expectation is the user wants a compound page.
3254 	 * 3.  If requesting a order 0 page it will not be compound
3255 	 *     due to the check to see if order has a value in prep_new_page
3256 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3257 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3258 	 */
3259 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3260 
3261 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3262 }
3263 
3264 static inline struct page *dev_alloc_pages(unsigned int order)
3265 {
3266 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3267 }
3268 
3269 /**
3270  * __dev_alloc_page - allocate a page for network Rx
3271  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3272  *
3273  * Allocate a new page.
3274  *
3275  * %NULL is returned if there is no free memory.
3276  */
3277 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3278 {
3279 	return __dev_alloc_pages(gfp_mask, 0);
3280 }
3281 
3282 static inline struct page *dev_alloc_page(void)
3283 {
3284 	return dev_alloc_pages(0);
3285 }
3286 
3287 /**
3288  * dev_page_is_reusable - check whether a page can be reused for network Rx
3289  * @page: the page to test
3290  *
3291  * A page shouldn't be considered for reusing/recycling if it was allocated
3292  * under memory pressure or at a distant memory node.
3293  *
3294  * Returns false if this page should be returned to page allocator, true
3295  * otherwise.
3296  */
3297 static inline bool dev_page_is_reusable(const struct page *page)
3298 {
3299 	return likely(page_to_nid(page) == numa_mem_id() &&
3300 		      !page_is_pfmemalloc(page));
3301 }
3302 
3303 /**
3304  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3305  *	@page: The page that was allocated from skb_alloc_page
3306  *	@skb: The skb that may need pfmemalloc set
3307  */
3308 static inline void skb_propagate_pfmemalloc(const struct page *page,
3309 					    struct sk_buff *skb)
3310 {
3311 	if (page_is_pfmemalloc(page))
3312 		skb->pfmemalloc = true;
3313 }
3314 
3315 /**
3316  * skb_frag_off() - Returns the offset of a skb fragment
3317  * @frag: the paged fragment
3318  */
3319 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3320 {
3321 	return frag->bv_offset;
3322 }
3323 
3324 /**
3325  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3326  * @frag: skb fragment
3327  * @delta: value to add
3328  */
3329 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3330 {
3331 	frag->bv_offset += delta;
3332 }
3333 
3334 /**
3335  * skb_frag_off_set() - Sets the offset of a skb fragment
3336  * @frag: skb fragment
3337  * @offset: offset of fragment
3338  */
3339 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3340 {
3341 	frag->bv_offset = offset;
3342 }
3343 
3344 /**
3345  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3346  * @fragto: skb fragment where offset is set
3347  * @fragfrom: skb fragment offset is copied from
3348  */
3349 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3350 				     const skb_frag_t *fragfrom)
3351 {
3352 	fragto->bv_offset = fragfrom->bv_offset;
3353 }
3354 
3355 /**
3356  * skb_frag_page - retrieve the page referred to by a paged fragment
3357  * @frag: the paged fragment
3358  *
3359  * Returns the &struct page associated with @frag.
3360  */
3361 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3362 {
3363 	return frag->bv_page;
3364 }
3365 
3366 /**
3367  * __skb_frag_ref - take an addition reference on a paged fragment.
3368  * @frag: the paged fragment
3369  *
3370  * Takes an additional reference on the paged fragment @frag.
3371  */
3372 static inline void __skb_frag_ref(skb_frag_t *frag)
3373 {
3374 	get_page(skb_frag_page(frag));
3375 }
3376 
3377 /**
3378  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3379  * @skb: the buffer
3380  * @f: the fragment offset.
3381  *
3382  * Takes an additional reference on the @f'th paged fragment of @skb.
3383  */
3384 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3385 {
3386 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3387 }
3388 
3389 /**
3390  * __skb_frag_unref - release a reference on a paged fragment.
3391  * @frag: the paged fragment
3392  * @recycle: recycle the page if allocated via page_pool
3393  *
3394  * Releases a reference on the paged fragment @frag
3395  * or recycles the page via the page_pool API.
3396  */
3397 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3398 {
3399 	struct page *page = skb_frag_page(frag);
3400 
3401 #ifdef CONFIG_PAGE_POOL
3402 	if (recycle && page_pool_return_skb_page(page))
3403 		return;
3404 #endif
3405 	put_page(page);
3406 }
3407 
3408 /**
3409  * skb_frag_unref - release a reference on a paged fragment of an skb.
3410  * @skb: the buffer
3411  * @f: the fragment offset
3412  *
3413  * Releases a reference on the @f'th paged fragment of @skb.
3414  */
3415 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3416 {
3417 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3418 
3419 	if (!skb_zcopy_managed(skb))
3420 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3421 }
3422 
3423 /**
3424  * skb_frag_address - gets the address of the data contained in a paged fragment
3425  * @frag: the paged fragment buffer
3426  *
3427  * Returns the address of the data within @frag. The page must already
3428  * be mapped.
3429  */
3430 static inline void *skb_frag_address(const skb_frag_t *frag)
3431 {
3432 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3433 }
3434 
3435 /**
3436  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3437  * @frag: the paged fragment buffer
3438  *
3439  * Returns the address of the data within @frag. Checks that the page
3440  * is mapped and returns %NULL otherwise.
3441  */
3442 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3443 {
3444 	void *ptr = page_address(skb_frag_page(frag));
3445 	if (unlikely(!ptr))
3446 		return NULL;
3447 
3448 	return ptr + skb_frag_off(frag);
3449 }
3450 
3451 /**
3452  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3453  * @fragto: skb fragment where page is set
3454  * @fragfrom: skb fragment page is copied from
3455  */
3456 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3457 				      const skb_frag_t *fragfrom)
3458 {
3459 	fragto->bv_page = fragfrom->bv_page;
3460 }
3461 
3462 /**
3463  * __skb_frag_set_page - sets the page contained in a paged fragment
3464  * @frag: the paged fragment
3465  * @page: the page to set
3466  *
3467  * Sets the fragment @frag to contain @page.
3468  */
3469 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3470 {
3471 	frag->bv_page = page;
3472 }
3473 
3474 /**
3475  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3476  * @skb: the buffer
3477  * @f: the fragment offset
3478  * @page: the page to set
3479  *
3480  * Sets the @f'th fragment of @skb to contain @page.
3481  */
3482 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3483 				     struct page *page)
3484 {
3485 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3486 }
3487 
3488 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3489 
3490 /**
3491  * skb_frag_dma_map - maps a paged fragment via the DMA API
3492  * @dev: the device to map the fragment to
3493  * @frag: the paged fragment to map
3494  * @offset: the offset within the fragment (starting at the
3495  *          fragment's own offset)
3496  * @size: the number of bytes to map
3497  * @dir: the direction of the mapping (``PCI_DMA_*``)
3498  *
3499  * Maps the page associated with @frag to @device.
3500  */
3501 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3502 					  const skb_frag_t *frag,
3503 					  size_t offset, size_t size,
3504 					  enum dma_data_direction dir)
3505 {
3506 	return dma_map_page(dev, skb_frag_page(frag),
3507 			    skb_frag_off(frag) + offset, size, dir);
3508 }
3509 
3510 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3511 					gfp_t gfp_mask)
3512 {
3513 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3514 }
3515 
3516 
3517 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3518 						  gfp_t gfp_mask)
3519 {
3520 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3521 }
3522 
3523 
3524 /**
3525  *	skb_clone_writable - is the header of a clone writable
3526  *	@skb: buffer to check
3527  *	@len: length up to which to write
3528  *
3529  *	Returns true if modifying the header part of the cloned buffer
3530  *	does not requires the data to be copied.
3531  */
3532 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3533 {
3534 	return !skb_header_cloned(skb) &&
3535 	       skb_headroom(skb) + len <= skb->hdr_len;
3536 }
3537 
3538 static inline int skb_try_make_writable(struct sk_buff *skb,
3539 					unsigned int write_len)
3540 {
3541 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3542 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3543 }
3544 
3545 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3546 			    int cloned)
3547 {
3548 	int delta = 0;
3549 
3550 	if (headroom > skb_headroom(skb))
3551 		delta = headroom - skb_headroom(skb);
3552 
3553 	if (delta || cloned)
3554 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3555 					GFP_ATOMIC);
3556 	return 0;
3557 }
3558 
3559 /**
3560  *	skb_cow - copy header of skb when it is required
3561  *	@skb: buffer to cow
3562  *	@headroom: needed headroom
3563  *
3564  *	If the skb passed lacks sufficient headroom or its data part
3565  *	is shared, data is reallocated. If reallocation fails, an error
3566  *	is returned and original skb is not changed.
3567  *
3568  *	The result is skb with writable area skb->head...skb->tail
3569  *	and at least @headroom of space at head.
3570  */
3571 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3572 {
3573 	return __skb_cow(skb, headroom, skb_cloned(skb));
3574 }
3575 
3576 /**
3577  *	skb_cow_head - skb_cow but only making the head writable
3578  *	@skb: buffer to cow
3579  *	@headroom: needed headroom
3580  *
3581  *	This function is identical to skb_cow except that we replace the
3582  *	skb_cloned check by skb_header_cloned.  It should be used when
3583  *	you only need to push on some header and do not need to modify
3584  *	the data.
3585  */
3586 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3587 {
3588 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3589 }
3590 
3591 /**
3592  *	skb_padto	- pad an skbuff up to a minimal size
3593  *	@skb: buffer to pad
3594  *	@len: minimal length
3595  *
3596  *	Pads up a buffer to ensure the trailing bytes exist and are
3597  *	blanked. If the buffer already contains sufficient data it
3598  *	is untouched. Otherwise it is extended. Returns zero on
3599  *	success. The skb is freed on error.
3600  */
3601 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3602 {
3603 	unsigned int size = skb->len;
3604 	if (likely(size >= len))
3605 		return 0;
3606 	return skb_pad(skb, len - size);
3607 }
3608 
3609 /**
3610  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3611  *	@skb: buffer to pad
3612  *	@len: minimal length
3613  *	@free_on_error: free buffer on error
3614  *
3615  *	Pads up a buffer to ensure the trailing bytes exist and are
3616  *	blanked. If the buffer already contains sufficient data it
3617  *	is untouched. Otherwise it is extended. Returns zero on
3618  *	success. The skb is freed on error if @free_on_error is true.
3619  */
3620 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3621 					       unsigned int len,
3622 					       bool free_on_error)
3623 {
3624 	unsigned int size = skb->len;
3625 
3626 	if (unlikely(size < len)) {
3627 		len -= size;
3628 		if (__skb_pad(skb, len, free_on_error))
3629 			return -ENOMEM;
3630 		__skb_put(skb, len);
3631 	}
3632 	return 0;
3633 }
3634 
3635 /**
3636  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3637  *	@skb: buffer to pad
3638  *	@len: minimal length
3639  *
3640  *	Pads up a buffer to ensure the trailing bytes exist and are
3641  *	blanked. If the buffer already contains sufficient data it
3642  *	is untouched. Otherwise it is extended. Returns zero on
3643  *	success. The skb is freed on error.
3644  */
3645 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3646 {
3647 	return __skb_put_padto(skb, len, true);
3648 }
3649 
3650 static inline int skb_add_data(struct sk_buff *skb,
3651 			       struct iov_iter *from, int copy)
3652 {
3653 	const int off = skb->len;
3654 
3655 	if (skb->ip_summed == CHECKSUM_NONE) {
3656 		__wsum csum = 0;
3657 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3658 					         &csum, from)) {
3659 			skb->csum = csum_block_add(skb->csum, csum, off);
3660 			return 0;
3661 		}
3662 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3663 		return 0;
3664 
3665 	__skb_trim(skb, off);
3666 	return -EFAULT;
3667 }
3668 
3669 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3670 				    const struct page *page, int off)
3671 {
3672 	if (skb_zcopy(skb))
3673 		return false;
3674 	if (i) {
3675 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3676 
3677 		return page == skb_frag_page(frag) &&
3678 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3679 	}
3680 	return false;
3681 }
3682 
3683 static inline int __skb_linearize(struct sk_buff *skb)
3684 {
3685 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3686 }
3687 
3688 /**
3689  *	skb_linearize - convert paged skb to linear one
3690  *	@skb: buffer to linarize
3691  *
3692  *	If there is no free memory -ENOMEM is returned, otherwise zero
3693  *	is returned and the old skb data released.
3694  */
3695 static inline int skb_linearize(struct sk_buff *skb)
3696 {
3697 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3698 }
3699 
3700 /**
3701  * skb_has_shared_frag - can any frag be overwritten
3702  * @skb: buffer to test
3703  *
3704  * Return true if the skb has at least one frag that might be modified
3705  * by an external entity (as in vmsplice()/sendfile())
3706  */
3707 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3708 {
3709 	return skb_is_nonlinear(skb) &&
3710 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3711 }
3712 
3713 /**
3714  *	skb_linearize_cow - make sure skb is linear and writable
3715  *	@skb: buffer to process
3716  *
3717  *	If there is no free memory -ENOMEM is returned, otherwise zero
3718  *	is returned and the old skb data released.
3719  */
3720 static inline int skb_linearize_cow(struct sk_buff *skb)
3721 {
3722 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3723 	       __skb_linearize(skb) : 0;
3724 }
3725 
3726 static __always_inline void
3727 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3728 		     unsigned int off)
3729 {
3730 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3731 		skb->csum = csum_block_sub(skb->csum,
3732 					   csum_partial(start, len, 0), off);
3733 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3734 		 skb_checksum_start_offset(skb) < 0)
3735 		skb->ip_summed = CHECKSUM_NONE;
3736 }
3737 
3738 /**
3739  *	skb_postpull_rcsum - update checksum for received skb after pull
3740  *	@skb: buffer to update
3741  *	@start: start of data before pull
3742  *	@len: length of data pulled
3743  *
3744  *	After doing a pull on a received packet, you need to call this to
3745  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3746  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3747  */
3748 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3749 				      const void *start, unsigned int len)
3750 {
3751 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3752 		skb->csum = wsum_negate(csum_partial(start, len,
3753 						     wsum_negate(skb->csum)));
3754 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3755 		 skb_checksum_start_offset(skb) < 0)
3756 		skb->ip_summed = CHECKSUM_NONE;
3757 }
3758 
3759 static __always_inline void
3760 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3761 		     unsigned int off)
3762 {
3763 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3764 		skb->csum = csum_block_add(skb->csum,
3765 					   csum_partial(start, len, 0), off);
3766 }
3767 
3768 /**
3769  *	skb_postpush_rcsum - update checksum for received skb after push
3770  *	@skb: buffer to update
3771  *	@start: start of data after push
3772  *	@len: length of data pushed
3773  *
3774  *	After doing a push on a received packet, you need to call this to
3775  *	update the CHECKSUM_COMPLETE checksum.
3776  */
3777 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3778 				      const void *start, unsigned int len)
3779 {
3780 	__skb_postpush_rcsum(skb, start, len, 0);
3781 }
3782 
3783 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3784 
3785 /**
3786  *	skb_push_rcsum - push skb and update receive checksum
3787  *	@skb: buffer to update
3788  *	@len: length of data pulled
3789  *
3790  *	This function performs an skb_push on the packet and updates
3791  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3792  *	receive path processing instead of skb_push unless you know
3793  *	that the checksum difference is zero (e.g., a valid IP header)
3794  *	or you are setting ip_summed to CHECKSUM_NONE.
3795  */
3796 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3797 {
3798 	skb_push(skb, len);
3799 	skb_postpush_rcsum(skb, skb->data, len);
3800 	return skb->data;
3801 }
3802 
3803 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3804 /**
3805  *	pskb_trim_rcsum - trim received skb and update checksum
3806  *	@skb: buffer to trim
3807  *	@len: new length
3808  *
3809  *	This is exactly the same as pskb_trim except that it ensures the
3810  *	checksum of received packets are still valid after the operation.
3811  *	It can change skb pointers.
3812  */
3813 
3814 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3815 {
3816 	if (likely(len >= skb->len))
3817 		return 0;
3818 	return pskb_trim_rcsum_slow(skb, len);
3819 }
3820 
3821 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3822 {
3823 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3824 		skb->ip_summed = CHECKSUM_NONE;
3825 	__skb_trim(skb, len);
3826 	return 0;
3827 }
3828 
3829 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3830 {
3831 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3832 		skb->ip_summed = CHECKSUM_NONE;
3833 	return __skb_grow(skb, len);
3834 }
3835 
3836 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3837 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3838 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3839 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3840 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3841 
3842 #define skb_queue_walk(queue, skb) \
3843 		for (skb = (queue)->next;					\
3844 		     skb != (struct sk_buff *)(queue);				\
3845 		     skb = skb->next)
3846 
3847 #define skb_queue_walk_safe(queue, skb, tmp)					\
3848 		for (skb = (queue)->next, tmp = skb->next;			\
3849 		     skb != (struct sk_buff *)(queue);				\
3850 		     skb = tmp, tmp = skb->next)
3851 
3852 #define skb_queue_walk_from(queue, skb)						\
3853 		for (; skb != (struct sk_buff *)(queue);			\
3854 		     skb = skb->next)
3855 
3856 #define skb_rbtree_walk(skb, root)						\
3857 		for (skb = skb_rb_first(root); skb != NULL;			\
3858 		     skb = skb_rb_next(skb))
3859 
3860 #define skb_rbtree_walk_from(skb)						\
3861 		for (; skb != NULL;						\
3862 		     skb = skb_rb_next(skb))
3863 
3864 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3865 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3866 		     skb = tmp)
3867 
3868 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3869 		for (tmp = skb->next;						\
3870 		     skb != (struct sk_buff *)(queue);				\
3871 		     skb = tmp, tmp = skb->next)
3872 
3873 #define skb_queue_reverse_walk(queue, skb) \
3874 		for (skb = (queue)->prev;					\
3875 		     skb != (struct sk_buff *)(queue);				\
3876 		     skb = skb->prev)
3877 
3878 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3879 		for (skb = (queue)->prev, tmp = skb->prev;			\
3880 		     skb != (struct sk_buff *)(queue);				\
3881 		     skb = tmp, tmp = skb->prev)
3882 
3883 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3884 		for (tmp = skb->prev;						\
3885 		     skb != (struct sk_buff *)(queue);				\
3886 		     skb = tmp, tmp = skb->prev)
3887 
3888 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3889 {
3890 	return skb_shinfo(skb)->frag_list != NULL;
3891 }
3892 
3893 static inline void skb_frag_list_init(struct sk_buff *skb)
3894 {
3895 	skb_shinfo(skb)->frag_list = NULL;
3896 }
3897 
3898 #define skb_walk_frags(skb, iter)	\
3899 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3900 
3901 
3902 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3903 				int *err, long *timeo_p,
3904 				const struct sk_buff *skb);
3905 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3906 					  struct sk_buff_head *queue,
3907 					  unsigned int flags,
3908 					  int *off, int *err,
3909 					  struct sk_buff **last);
3910 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3911 					struct sk_buff_head *queue,
3912 					unsigned int flags, int *off, int *err,
3913 					struct sk_buff **last);
3914 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3915 				    struct sk_buff_head *sk_queue,
3916 				    unsigned int flags, int *off, int *err);
3917 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3918 __poll_t datagram_poll(struct file *file, struct socket *sock,
3919 			   struct poll_table_struct *wait);
3920 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3921 			   struct iov_iter *to, int size);
3922 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3923 					struct msghdr *msg, int size)
3924 {
3925 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3926 }
3927 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3928 				   struct msghdr *msg);
3929 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3930 			   struct iov_iter *to, int len,
3931 			   struct ahash_request *hash);
3932 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3933 				 struct iov_iter *from, int len);
3934 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3935 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3936 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3937 static inline void skb_free_datagram_locked(struct sock *sk,
3938 					    struct sk_buff *skb)
3939 {
3940 	__skb_free_datagram_locked(sk, skb, 0);
3941 }
3942 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3943 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3944 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3945 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3946 			      int len);
3947 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3948 		    struct pipe_inode_info *pipe, unsigned int len,
3949 		    unsigned int flags);
3950 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3951 			 int len);
3952 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3953 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3954 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3955 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3956 		 int len, int hlen);
3957 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3958 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3959 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3960 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3961 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3962 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3963 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3964 				 unsigned int offset);
3965 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3966 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3967 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3968 int skb_vlan_pop(struct sk_buff *skb);
3969 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3970 int skb_eth_pop(struct sk_buff *skb);
3971 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3972 		 const unsigned char *src);
3973 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3974 		  int mac_len, bool ethernet);
3975 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3976 		 bool ethernet);
3977 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3978 int skb_mpls_dec_ttl(struct sk_buff *skb);
3979 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3980 			     gfp_t gfp);
3981 
3982 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3983 {
3984 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3985 }
3986 
3987 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3988 {
3989 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3990 }
3991 
3992 struct skb_checksum_ops {
3993 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3994 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3995 };
3996 
3997 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3998 
3999 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4000 		      __wsum csum, const struct skb_checksum_ops *ops);
4001 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4002 		    __wsum csum);
4003 
4004 static inline void * __must_check
4005 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4006 		     const void *data, int hlen, void *buffer)
4007 {
4008 	if (likely(hlen - offset >= len))
4009 		return (void *)data + offset;
4010 
4011 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4012 		return NULL;
4013 
4014 	return buffer;
4015 }
4016 
4017 static inline void * __must_check
4018 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4019 {
4020 	return __skb_header_pointer(skb, offset, len, skb->data,
4021 				    skb_headlen(skb), buffer);
4022 }
4023 
4024 /**
4025  *	skb_needs_linearize - check if we need to linearize a given skb
4026  *			      depending on the given device features.
4027  *	@skb: socket buffer to check
4028  *	@features: net device features
4029  *
4030  *	Returns true if either:
4031  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4032  *	2. skb is fragmented and the device does not support SG.
4033  */
4034 static inline bool skb_needs_linearize(struct sk_buff *skb,
4035 				       netdev_features_t features)
4036 {
4037 	return skb_is_nonlinear(skb) &&
4038 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4039 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4040 }
4041 
4042 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4043 					     void *to,
4044 					     const unsigned int len)
4045 {
4046 	memcpy(to, skb->data, len);
4047 }
4048 
4049 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4050 						    const int offset, void *to,
4051 						    const unsigned int len)
4052 {
4053 	memcpy(to, skb->data + offset, len);
4054 }
4055 
4056 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4057 					   const void *from,
4058 					   const unsigned int len)
4059 {
4060 	memcpy(skb->data, from, len);
4061 }
4062 
4063 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4064 						  const int offset,
4065 						  const void *from,
4066 						  const unsigned int len)
4067 {
4068 	memcpy(skb->data + offset, from, len);
4069 }
4070 
4071 void skb_init(void);
4072 
4073 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4074 {
4075 	return skb->tstamp;
4076 }
4077 
4078 /**
4079  *	skb_get_timestamp - get timestamp from a skb
4080  *	@skb: skb to get stamp from
4081  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4082  *
4083  *	Timestamps are stored in the skb as offsets to a base timestamp.
4084  *	This function converts the offset back to a struct timeval and stores
4085  *	it in stamp.
4086  */
4087 static inline void skb_get_timestamp(const struct sk_buff *skb,
4088 				     struct __kernel_old_timeval *stamp)
4089 {
4090 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4091 }
4092 
4093 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4094 					 struct __kernel_sock_timeval *stamp)
4095 {
4096 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4097 
4098 	stamp->tv_sec = ts.tv_sec;
4099 	stamp->tv_usec = ts.tv_nsec / 1000;
4100 }
4101 
4102 static inline void skb_get_timestampns(const struct sk_buff *skb,
4103 				       struct __kernel_old_timespec *stamp)
4104 {
4105 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4106 
4107 	stamp->tv_sec = ts.tv_sec;
4108 	stamp->tv_nsec = ts.tv_nsec;
4109 }
4110 
4111 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4112 					   struct __kernel_timespec *stamp)
4113 {
4114 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4115 
4116 	stamp->tv_sec = ts.tv_sec;
4117 	stamp->tv_nsec = ts.tv_nsec;
4118 }
4119 
4120 static inline void __net_timestamp(struct sk_buff *skb)
4121 {
4122 	skb->tstamp = ktime_get_real();
4123 	skb->mono_delivery_time = 0;
4124 }
4125 
4126 static inline ktime_t net_timedelta(ktime_t t)
4127 {
4128 	return ktime_sub(ktime_get_real(), t);
4129 }
4130 
4131 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4132 					 bool mono)
4133 {
4134 	skb->tstamp = kt;
4135 	skb->mono_delivery_time = kt && mono;
4136 }
4137 
4138 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4139 
4140 /* It is used in the ingress path to clear the delivery_time.
4141  * If needed, set the skb->tstamp to the (rcv) timestamp.
4142  */
4143 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4144 {
4145 	if (skb->mono_delivery_time) {
4146 		skb->mono_delivery_time = 0;
4147 		if (static_branch_unlikely(&netstamp_needed_key))
4148 			skb->tstamp = ktime_get_real();
4149 		else
4150 			skb->tstamp = 0;
4151 	}
4152 }
4153 
4154 static inline void skb_clear_tstamp(struct sk_buff *skb)
4155 {
4156 	if (skb->mono_delivery_time)
4157 		return;
4158 
4159 	skb->tstamp = 0;
4160 }
4161 
4162 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4163 {
4164 	if (skb->mono_delivery_time)
4165 		return 0;
4166 
4167 	return skb->tstamp;
4168 }
4169 
4170 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4171 {
4172 	if (!skb->mono_delivery_time && skb->tstamp)
4173 		return skb->tstamp;
4174 
4175 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4176 		return ktime_get_real();
4177 
4178 	return 0;
4179 }
4180 
4181 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4182 {
4183 	return skb_shinfo(skb)->meta_len;
4184 }
4185 
4186 static inline void *skb_metadata_end(const struct sk_buff *skb)
4187 {
4188 	return skb_mac_header(skb);
4189 }
4190 
4191 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4192 					  const struct sk_buff *skb_b,
4193 					  u8 meta_len)
4194 {
4195 	const void *a = skb_metadata_end(skb_a);
4196 	const void *b = skb_metadata_end(skb_b);
4197 	/* Using more efficient varaiant than plain call to memcmp(). */
4198 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4199 	u64 diffs = 0;
4200 
4201 	switch (meta_len) {
4202 #define __it(x, op) (x -= sizeof(u##op))
4203 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4204 	case 32: diffs |= __it_diff(a, b, 64);
4205 		fallthrough;
4206 	case 24: diffs |= __it_diff(a, b, 64);
4207 		fallthrough;
4208 	case 16: diffs |= __it_diff(a, b, 64);
4209 		fallthrough;
4210 	case  8: diffs |= __it_diff(a, b, 64);
4211 		break;
4212 	case 28: diffs |= __it_diff(a, b, 64);
4213 		fallthrough;
4214 	case 20: diffs |= __it_diff(a, b, 64);
4215 		fallthrough;
4216 	case 12: diffs |= __it_diff(a, b, 64);
4217 		fallthrough;
4218 	case  4: diffs |= __it_diff(a, b, 32);
4219 		break;
4220 	}
4221 	return diffs;
4222 #else
4223 	return memcmp(a - meta_len, b - meta_len, meta_len);
4224 #endif
4225 }
4226 
4227 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4228 					const struct sk_buff *skb_b)
4229 {
4230 	u8 len_a = skb_metadata_len(skb_a);
4231 	u8 len_b = skb_metadata_len(skb_b);
4232 
4233 	if (!(len_a | len_b))
4234 		return false;
4235 
4236 	return len_a != len_b ?
4237 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4238 }
4239 
4240 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4241 {
4242 	skb_shinfo(skb)->meta_len = meta_len;
4243 }
4244 
4245 static inline void skb_metadata_clear(struct sk_buff *skb)
4246 {
4247 	skb_metadata_set(skb, 0);
4248 }
4249 
4250 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4251 
4252 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4253 
4254 void skb_clone_tx_timestamp(struct sk_buff *skb);
4255 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4256 
4257 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4258 
4259 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4260 {
4261 }
4262 
4263 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4264 {
4265 	return false;
4266 }
4267 
4268 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4269 
4270 /**
4271  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4272  *
4273  * PHY drivers may accept clones of transmitted packets for
4274  * timestamping via their phy_driver.txtstamp method. These drivers
4275  * must call this function to return the skb back to the stack with a
4276  * timestamp.
4277  *
4278  * @skb: clone of the original outgoing packet
4279  * @hwtstamps: hardware time stamps
4280  *
4281  */
4282 void skb_complete_tx_timestamp(struct sk_buff *skb,
4283 			       struct skb_shared_hwtstamps *hwtstamps);
4284 
4285 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4286 		     struct skb_shared_hwtstamps *hwtstamps,
4287 		     struct sock *sk, int tstype);
4288 
4289 /**
4290  * skb_tstamp_tx - queue clone of skb with send time stamps
4291  * @orig_skb:	the original outgoing packet
4292  * @hwtstamps:	hardware time stamps, may be NULL if not available
4293  *
4294  * If the skb has a socket associated, then this function clones the
4295  * skb (thus sharing the actual data and optional structures), stores
4296  * the optional hardware time stamping information (if non NULL) or
4297  * generates a software time stamp (otherwise), then queues the clone
4298  * to the error queue of the socket.  Errors are silently ignored.
4299  */
4300 void skb_tstamp_tx(struct sk_buff *orig_skb,
4301 		   struct skb_shared_hwtstamps *hwtstamps);
4302 
4303 /**
4304  * skb_tx_timestamp() - Driver hook for transmit timestamping
4305  *
4306  * Ethernet MAC Drivers should call this function in their hard_xmit()
4307  * function immediately before giving the sk_buff to the MAC hardware.
4308  *
4309  * Specifically, one should make absolutely sure that this function is
4310  * called before TX completion of this packet can trigger.  Otherwise
4311  * the packet could potentially already be freed.
4312  *
4313  * @skb: A socket buffer.
4314  */
4315 static inline void skb_tx_timestamp(struct sk_buff *skb)
4316 {
4317 	skb_clone_tx_timestamp(skb);
4318 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4319 		skb_tstamp_tx(skb, NULL);
4320 }
4321 
4322 /**
4323  * skb_complete_wifi_ack - deliver skb with wifi status
4324  *
4325  * @skb: the original outgoing packet
4326  * @acked: ack status
4327  *
4328  */
4329 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4330 
4331 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4332 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4333 
4334 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4335 {
4336 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4337 		skb->csum_valid ||
4338 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4339 		 skb_checksum_start_offset(skb) >= 0));
4340 }
4341 
4342 /**
4343  *	skb_checksum_complete - Calculate checksum of an entire packet
4344  *	@skb: packet to process
4345  *
4346  *	This function calculates the checksum over the entire packet plus
4347  *	the value of skb->csum.  The latter can be used to supply the
4348  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4349  *	checksum.
4350  *
4351  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4352  *	this function can be used to verify that checksum on received
4353  *	packets.  In that case the function should return zero if the
4354  *	checksum is correct.  In particular, this function will return zero
4355  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4356  *	hardware has already verified the correctness of the checksum.
4357  */
4358 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4359 {
4360 	return skb_csum_unnecessary(skb) ?
4361 	       0 : __skb_checksum_complete(skb);
4362 }
4363 
4364 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4365 {
4366 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4367 		if (skb->csum_level == 0)
4368 			skb->ip_summed = CHECKSUM_NONE;
4369 		else
4370 			skb->csum_level--;
4371 	}
4372 }
4373 
4374 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4375 {
4376 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4377 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4378 			skb->csum_level++;
4379 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4380 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4381 		skb->csum_level = 0;
4382 	}
4383 }
4384 
4385 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4386 {
4387 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4388 		skb->ip_summed = CHECKSUM_NONE;
4389 		skb->csum_level = 0;
4390 	}
4391 }
4392 
4393 /* Check if we need to perform checksum complete validation.
4394  *
4395  * Returns true if checksum complete is needed, false otherwise
4396  * (either checksum is unnecessary or zero checksum is allowed).
4397  */
4398 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4399 						  bool zero_okay,
4400 						  __sum16 check)
4401 {
4402 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4403 		skb->csum_valid = 1;
4404 		__skb_decr_checksum_unnecessary(skb);
4405 		return false;
4406 	}
4407 
4408 	return true;
4409 }
4410 
4411 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4412  * in checksum_init.
4413  */
4414 #define CHECKSUM_BREAK 76
4415 
4416 /* Unset checksum-complete
4417  *
4418  * Unset checksum complete can be done when packet is being modified
4419  * (uncompressed for instance) and checksum-complete value is
4420  * invalidated.
4421  */
4422 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4423 {
4424 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4425 		skb->ip_summed = CHECKSUM_NONE;
4426 }
4427 
4428 /* Validate (init) checksum based on checksum complete.
4429  *
4430  * Return values:
4431  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4432  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4433  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4434  *   non-zero: value of invalid checksum
4435  *
4436  */
4437 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4438 						       bool complete,
4439 						       __wsum psum)
4440 {
4441 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4442 		if (!csum_fold(csum_add(psum, skb->csum))) {
4443 			skb->csum_valid = 1;
4444 			return 0;
4445 		}
4446 	}
4447 
4448 	skb->csum = psum;
4449 
4450 	if (complete || skb->len <= CHECKSUM_BREAK) {
4451 		__sum16 csum;
4452 
4453 		csum = __skb_checksum_complete(skb);
4454 		skb->csum_valid = !csum;
4455 		return csum;
4456 	}
4457 
4458 	return 0;
4459 }
4460 
4461 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4462 {
4463 	return 0;
4464 }
4465 
4466 /* Perform checksum validate (init). Note that this is a macro since we only
4467  * want to calculate the pseudo header which is an input function if necessary.
4468  * First we try to validate without any computation (checksum unnecessary) and
4469  * then calculate based on checksum complete calling the function to compute
4470  * pseudo header.
4471  *
4472  * Return values:
4473  *   0: checksum is validated or try to in skb_checksum_complete
4474  *   non-zero: value of invalid checksum
4475  */
4476 #define __skb_checksum_validate(skb, proto, complete,			\
4477 				zero_okay, check, compute_pseudo)	\
4478 ({									\
4479 	__sum16 __ret = 0;						\
4480 	skb->csum_valid = 0;						\
4481 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4482 		__ret = __skb_checksum_validate_complete(skb,		\
4483 				complete, compute_pseudo(skb, proto));	\
4484 	__ret;								\
4485 })
4486 
4487 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4488 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4489 
4490 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4491 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4492 
4493 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4494 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4495 
4496 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4497 					 compute_pseudo)		\
4498 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4499 
4500 #define skb_checksum_simple_validate(skb)				\
4501 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4502 
4503 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4504 {
4505 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4506 }
4507 
4508 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4509 {
4510 	skb->csum = ~pseudo;
4511 	skb->ip_summed = CHECKSUM_COMPLETE;
4512 }
4513 
4514 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4515 do {									\
4516 	if (__skb_checksum_convert_check(skb))				\
4517 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4518 } while (0)
4519 
4520 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4521 					      u16 start, u16 offset)
4522 {
4523 	skb->ip_summed = CHECKSUM_PARTIAL;
4524 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4525 	skb->csum_offset = offset - start;
4526 }
4527 
4528 /* Update skbuf and packet to reflect the remote checksum offload operation.
4529  * When called, ptr indicates the starting point for skb->csum when
4530  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4531  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4532  */
4533 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4534 				       int start, int offset, bool nopartial)
4535 {
4536 	__wsum delta;
4537 
4538 	if (!nopartial) {
4539 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4540 		return;
4541 	}
4542 
4543 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4544 		__skb_checksum_complete(skb);
4545 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4546 	}
4547 
4548 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4549 
4550 	/* Adjust skb->csum since we changed the packet */
4551 	skb->csum = csum_add(skb->csum, delta);
4552 }
4553 
4554 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4555 {
4556 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4557 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4558 #else
4559 	return NULL;
4560 #endif
4561 }
4562 
4563 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4564 {
4565 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4566 	return skb->_nfct;
4567 #else
4568 	return 0UL;
4569 #endif
4570 }
4571 
4572 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4573 {
4574 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4575 	skb->slow_gro |= !!nfct;
4576 	skb->_nfct = nfct;
4577 #endif
4578 }
4579 
4580 #ifdef CONFIG_SKB_EXTENSIONS
4581 enum skb_ext_id {
4582 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4583 	SKB_EXT_BRIDGE_NF,
4584 #endif
4585 #ifdef CONFIG_XFRM
4586 	SKB_EXT_SEC_PATH,
4587 #endif
4588 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4589 	TC_SKB_EXT,
4590 #endif
4591 #if IS_ENABLED(CONFIG_MPTCP)
4592 	SKB_EXT_MPTCP,
4593 #endif
4594 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4595 	SKB_EXT_MCTP,
4596 #endif
4597 	SKB_EXT_NUM, /* must be last */
4598 };
4599 
4600 /**
4601  *	struct skb_ext - sk_buff extensions
4602  *	@refcnt: 1 on allocation, deallocated on 0
4603  *	@offset: offset to add to @data to obtain extension address
4604  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4605  *	@data: start of extension data, variable sized
4606  *
4607  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4608  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4609  */
4610 struct skb_ext {
4611 	refcount_t refcnt;
4612 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4613 	u8 chunks;		/* same */
4614 	char data[] __aligned(8);
4615 };
4616 
4617 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4618 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4619 		    struct skb_ext *ext);
4620 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4621 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4622 void __skb_ext_put(struct skb_ext *ext);
4623 
4624 static inline void skb_ext_put(struct sk_buff *skb)
4625 {
4626 	if (skb->active_extensions)
4627 		__skb_ext_put(skb->extensions);
4628 }
4629 
4630 static inline void __skb_ext_copy(struct sk_buff *dst,
4631 				  const struct sk_buff *src)
4632 {
4633 	dst->active_extensions = src->active_extensions;
4634 
4635 	if (src->active_extensions) {
4636 		struct skb_ext *ext = src->extensions;
4637 
4638 		refcount_inc(&ext->refcnt);
4639 		dst->extensions = ext;
4640 	}
4641 }
4642 
4643 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4644 {
4645 	skb_ext_put(dst);
4646 	__skb_ext_copy(dst, src);
4647 }
4648 
4649 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4650 {
4651 	return !!ext->offset[i];
4652 }
4653 
4654 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4655 {
4656 	return skb->active_extensions & (1 << id);
4657 }
4658 
4659 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4660 {
4661 	if (skb_ext_exist(skb, id))
4662 		__skb_ext_del(skb, id);
4663 }
4664 
4665 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4666 {
4667 	if (skb_ext_exist(skb, id)) {
4668 		struct skb_ext *ext = skb->extensions;
4669 
4670 		return (void *)ext + (ext->offset[id] << 3);
4671 	}
4672 
4673 	return NULL;
4674 }
4675 
4676 static inline void skb_ext_reset(struct sk_buff *skb)
4677 {
4678 	if (unlikely(skb->active_extensions)) {
4679 		__skb_ext_put(skb->extensions);
4680 		skb->active_extensions = 0;
4681 	}
4682 }
4683 
4684 static inline bool skb_has_extensions(struct sk_buff *skb)
4685 {
4686 	return unlikely(skb->active_extensions);
4687 }
4688 #else
4689 static inline void skb_ext_put(struct sk_buff *skb) {}
4690 static inline void skb_ext_reset(struct sk_buff *skb) {}
4691 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4692 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4693 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4694 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4695 #endif /* CONFIG_SKB_EXTENSIONS */
4696 
4697 static inline void nf_reset_ct(struct sk_buff *skb)
4698 {
4699 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4700 	nf_conntrack_put(skb_nfct(skb));
4701 	skb->_nfct = 0;
4702 #endif
4703 }
4704 
4705 static inline void nf_reset_trace(struct sk_buff *skb)
4706 {
4707 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4708 	skb->nf_trace = 0;
4709 #endif
4710 }
4711 
4712 static inline void ipvs_reset(struct sk_buff *skb)
4713 {
4714 #if IS_ENABLED(CONFIG_IP_VS)
4715 	skb->ipvs_property = 0;
4716 #endif
4717 }
4718 
4719 /* Note: This doesn't put any conntrack info in dst. */
4720 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4721 			     bool copy)
4722 {
4723 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4724 	dst->_nfct = src->_nfct;
4725 	nf_conntrack_get(skb_nfct(src));
4726 #endif
4727 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4728 	if (copy)
4729 		dst->nf_trace = src->nf_trace;
4730 #endif
4731 }
4732 
4733 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4734 {
4735 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4736 	nf_conntrack_put(skb_nfct(dst));
4737 #endif
4738 	dst->slow_gro = src->slow_gro;
4739 	__nf_copy(dst, src, true);
4740 }
4741 
4742 #ifdef CONFIG_NETWORK_SECMARK
4743 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4744 {
4745 	to->secmark = from->secmark;
4746 }
4747 
4748 static inline void skb_init_secmark(struct sk_buff *skb)
4749 {
4750 	skb->secmark = 0;
4751 }
4752 #else
4753 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4754 { }
4755 
4756 static inline void skb_init_secmark(struct sk_buff *skb)
4757 { }
4758 #endif
4759 
4760 static inline int secpath_exists(const struct sk_buff *skb)
4761 {
4762 #ifdef CONFIG_XFRM
4763 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4764 #else
4765 	return 0;
4766 #endif
4767 }
4768 
4769 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4770 {
4771 	return !skb->destructor &&
4772 		!secpath_exists(skb) &&
4773 		!skb_nfct(skb) &&
4774 		!skb->_skb_refdst &&
4775 		!skb_has_frag_list(skb);
4776 }
4777 
4778 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4779 {
4780 	skb->queue_mapping = queue_mapping;
4781 }
4782 
4783 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4784 {
4785 	return skb->queue_mapping;
4786 }
4787 
4788 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4789 {
4790 	to->queue_mapping = from->queue_mapping;
4791 }
4792 
4793 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4794 {
4795 	skb->queue_mapping = rx_queue + 1;
4796 }
4797 
4798 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4799 {
4800 	return skb->queue_mapping - 1;
4801 }
4802 
4803 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4804 {
4805 	return skb->queue_mapping != 0;
4806 }
4807 
4808 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4809 {
4810 	skb->dst_pending_confirm = val;
4811 }
4812 
4813 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4814 {
4815 	return skb->dst_pending_confirm != 0;
4816 }
4817 
4818 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4819 {
4820 #ifdef CONFIG_XFRM
4821 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4822 #else
4823 	return NULL;
4824 #endif
4825 }
4826 
4827 /* Keeps track of mac header offset relative to skb->head.
4828  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4829  * For non-tunnel skb it points to skb_mac_header() and for
4830  * tunnel skb it points to outer mac header.
4831  * Keeps track of level of encapsulation of network headers.
4832  */
4833 struct skb_gso_cb {
4834 	union {
4835 		int	mac_offset;
4836 		int	data_offset;
4837 	};
4838 	int	encap_level;
4839 	__wsum	csum;
4840 	__u16	csum_start;
4841 };
4842 #define SKB_GSO_CB_OFFSET	32
4843 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4844 
4845 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4846 {
4847 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4848 		SKB_GSO_CB(inner_skb)->mac_offset;
4849 }
4850 
4851 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4852 {
4853 	int new_headroom, headroom;
4854 	int ret;
4855 
4856 	headroom = skb_headroom(skb);
4857 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4858 	if (ret)
4859 		return ret;
4860 
4861 	new_headroom = skb_headroom(skb);
4862 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4863 	return 0;
4864 }
4865 
4866 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4867 {
4868 	/* Do not update partial checksums if remote checksum is enabled. */
4869 	if (skb->remcsum_offload)
4870 		return;
4871 
4872 	SKB_GSO_CB(skb)->csum = res;
4873 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4874 }
4875 
4876 /* Compute the checksum for a gso segment. First compute the checksum value
4877  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4878  * then add in skb->csum (checksum from csum_start to end of packet).
4879  * skb->csum and csum_start are then updated to reflect the checksum of the
4880  * resultant packet starting from the transport header-- the resultant checksum
4881  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4882  * header.
4883  */
4884 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4885 {
4886 	unsigned char *csum_start = skb_transport_header(skb);
4887 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4888 	__wsum partial = SKB_GSO_CB(skb)->csum;
4889 
4890 	SKB_GSO_CB(skb)->csum = res;
4891 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4892 
4893 	return csum_fold(csum_partial(csum_start, plen, partial));
4894 }
4895 
4896 static inline bool skb_is_gso(const struct sk_buff *skb)
4897 {
4898 	return skb_shinfo(skb)->gso_size;
4899 }
4900 
4901 /* Note: Should be called only if skb_is_gso(skb) is true */
4902 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4903 {
4904 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4905 }
4906 
4907 /* Note: Should be called only if skb_is_gso(skb) is true */
4908 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4909 {
4910 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4911 }
4912 
4913 /* Note: Should be called only if skb_is_gso(skb) is true */
4914 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4915 {
4916 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4917 }
4918 
4919 static inline void skb_gso_reset(struct sk_buff *skb)
4920 {
4921 	skb_shinfo(skb)->gso_size = 0;
4922 	skb_shinfo(skb)->gso_segs = 0;
4923 	skb_shinfo(skb)->gso_type = 0;
4924 }
4925 
4926 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4927 					 u16 increment)
4928 {
4929 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4930 		return;
4931 	shinfo->gso_size += increment;
4932 }
4933 
4934 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4935 					 u16 decrement)
4936 {
4937 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4938 		return;
4939 	shinfo->gso_size -= decrement;
4940 }
4941 
4942 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4943 
4944 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4945 {
4946 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4947 	 * wanted then gso_type will be set. */
4948 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4949 
4950 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4951 	    unlikely(shinfo->gso_type == 0)) {
4952 		__skb_warn_lro_forwarding(skb);
4953 		return true;
4954 	}
4955 	return false;
4956 }
4957 
4958 static inline void skb_forward_csum(struct sk_buff *skb)
4959 {
4960 	/* Unfortunately we don't support this one.  Any brave souls? */
4961 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4962 		skb->ip_summed = CHECKSUM_NONE;
4963 }
4964 
4965 /**
4966  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4967  * @skb: skb to check
4968  *
4969  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4970  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4971  * use this helper, to document places where we make this assertion.
4972  */
4973 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4974 {
4975 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4976 }
4977 
4978 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4979 
4980 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4981 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4982 				     unsigned int transport_len,
4983 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4984 
4985 /**
4986  * skb_head_is_locked - Determine if the skb->head is locked down
4987  * @skb: skb to check
4988  *
4989  * The head on skbs build around a head frag can be removed if they are
4990  * not cloned.  This function returns true if the skb head is locked down
4991  * due to either being allocated via kmalloc, or by being a clone with
4992  * multiple references to the head.
4993  */
4994 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4995 {
4996 	return !skb->head_frag || skb_cloned(skb);
4997 }
4998 
4999 /* Local Checksum Offload.
5000  * Compute outer checksum based on the assumption that the
5001  * inner checksum will be offloaded later.
5002  * See Documentation/networking/checksum-offloads.rst for
5003  * explanation of how this works.
5004  * Fill in outer checksum adjustment (e.g. with sum of outer
5005  * pseudo-header) before calling.
5006  * Also ensure that inner checksum is in linear data area.
5007  */
5008 static inline __wsum lco_csum(struct sk_buff *skb)
5009 {
5010 	unsigned char *csum_start = skb_checksum_start(skb);
5011 	unsigned char *l4_hdr = skb_transport_header(skb);
5012 	__wsum partial;
5013 
5014 	/* Start with complement of inner checksum adjustment */
5015 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5016 						    skb->csum_offset));
5017 
5018 	/* Add in checksum of our headers (incl. outer checksum
5019 	 * adjustment filled in by caller) and return result.
5020 	 */
5021 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5022 }
5023 
5024 static inline bool skb_is_redirected(const struct sk_buff *skb)
5025 {
5026 	return skb->redirected;
5027 }
5028 
5029 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5030 {
5031 	skb->redirected = 1;
5032 #ifdef CONFIG_NET_REDIRECT
5033 	skb->from_ingress = from_ingress;
5034 	if (skb->from_ingress)
5035 		skb_clear_tstamp(skb);
5036 #endif
5037 }
5038 
5039 static inline void skb_reset_redirect(struct sk_buff *skb)
5040 {
5041 	skb->redirected = 0;
5042 }
5043 
5044 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5045 {
5046 	return skb->csum_not_inet;
5047 }
5048 
5049 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5050 				       const u64 kcov_handle)
5051 {
5052 #ifdef CONFIG_KCOV
5053 	skb->kcov_handle = kcov_handle;
5054 #endif
5055 }
5056 
5057 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5058 {
5059 #ifdef CONFIG_KCOV
5060 	return skb->kcov_handle;
5061 #else
5062 	return 0;
5063 #endif
5064 }
5065 
5066 #ifdef CONFIG_PAGE_POOL
5067 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5068 {
5069 	skb->pp_recycle = 1;
5070 }
5071 #endif
5072 
5073 #endif	/* __KERNEL__ */
5074 #endif	/* _LINUX_SKBUFF_H */
5075