1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <net/checksum.h> 27 #include <linux/rcupdate.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/netdev_features.h> 30 #include <net/flow_dissector.h> 31 #include <linux/in6.h> 32 #include <linux/if_packet.h> 33 #include <linux/llist.h> 34 #include <net/flow.h> 35 #include <net/page_pool.h> 36 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 37 #include <linux/netfilter/nf_conntrack_common.h> 38 #endif 39 #include <net/net_debug.h> 40 #include <net/dropreason.h> 41 42 /** 43 * DOC: skb checksums 44 * 45 * The interface for checksum offload between the stack and networking drivers 46 * is as follows... 47 * 48 * IP checksum related features 49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * .. flat-table:: Checksum related device features 57 * :widths: 1 10 58 * 59 * * - %NETIF_F_HW_CSUM 60 * - The driver (or its device) is able to compute one 61 * IP (one's complement) checksum for any combination 62 * of protocols or protocol layering. The checksum is 63 * computed and set in a packet per the CHECKSUM_PARTIAL 64 * interface (see below). 65 * 66 * * - %NETIF_F_IP_CSUM 67 * - Driver (device) is only able to checksum plain 68 * TCP or UDP packets over IPv4. These are specifically 69 * unencapsulated packets of the form IPv4|TCP or 70 * IPv4|UDP where the Protocol field in the IPv4 header 71 * is TCP or UDP. The IPv4 header may contain IP options. 72 * This feature cannot be set in features for a device 73 * with NETIF_F_HW_CSUM also set. This feature is being 74 * DEPRECATED (see below). 75 * 76 * * - %NETIF_F_IPV6_CSUM 77 * - Driver (device) is only able to checksum plain 78 * TCP or UDP packets over IPv6. These are specifically 79 * unencapsulated packets of the form IPv6|TCP or 80 * IPv6|UDP where the Next Header field in the IPv6 81 * header is either TCP or UDP. IPv6 extension headers 82 * are not supported with this feature. This feature 83 * cannot be set in features for a device with 84 * NETIF_F_HW_CSUM also set. This feature is being 85 * DEPRECATED (see below). 86 * 87 * * - %NETIF_F_RXCSUM 88 * - Driver (device) performs receive checksum offload. 89 * This flag is only used to disable the RX checksum 90 * feature for a device. The stack will accept receive 91 * checksum indication in packets received on a device 92 * regardless of whether NETIF_F_RXCSUM is set. 93 * 94 * Checksumming of received packets by device 95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 96 * 97 * Indication of checksum verification is set in &sk_buff.ip_summed. 98 * Possible values are: 99 * 100 * - %CHECKSUM_NONE 101 * 102 * Device did not checksum this packet e.g. due to lack of capabilities. 103 * The packet contains full (though not verified) checksum in packet but 104 * not in skb->csum. Thus, skb->csum is undefined in this case. 105 * 106 * - %CHECKSUM_UNNECESSARY 107 * 108 * The hardware you're dealing with doesn't calculate the full checksum 109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 111 * if their checksums are okay. &sk_buff.csum is still undefined in this case 112 * though. A driver or device must never modify the checksum field in the 113 * packet even if checksum is verified. 114 * 115 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 116 * 117 * - TCP: IPv6 and IPv4. 118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 119 * zero UDP checksum for either IPv4 or IPv6, the networking stack 120 * may perform further validation in this case. 121 * - GRE: only if the checksum is present in the header. 122 * - SCTP: indicates the CRC in SCTP header has been validated. 123 * - FCOE: indicates the CRC in FC frame has been validated. 124 * 125 * &sk_buff.csum_level indicates the number of consecutive checksums found in 126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 128 * and a device is able to verify the checksums for UDP (possibly zero), 129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 130 * two. If the device were only able to verify the UDP checksum and not 131 * GRE, either because it doesn't support GRE checksum or because GRE 132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 133 * not considered in this case). 134 * 135 * - %CHECKSUM_COMPLETE 136 * 137 * This is the most generic way. The device supplied checksum of the _whole_ 138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 139 * hardware doesn't need to parse L3/L4 headers to implement this. 140 * 141 * Notes: 142 * 143 * - Even if device supports only some protocols, but is able to produce 144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 146 * 147 * - %CHECKSUM_PARTIAL 148 * 149 * A checksum is set up to be offloaded to a device as described in the 150 * output description for CHECKSUM_PARTIAL. This may occur on a packet 151 * received directly from another Linux OS, e.g., a virtualized Linux kernel 152 * on the same host, or it may be set in the input path in GRO or remote 153 * checksum offload. For the purposes of checksum verification, the checksum 154 * referred to by skb->csum_start + skb->csum_offset and any preceding 155 * checksums in the packet are considered verified. Any checksums in the 156 * packet that are after the checksum being offloaded are not considered to 157 * be verified. 158 * 159 * Checksumming on transmit for non-GSO 160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 161 * 162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 163 * Values are: 164 * 165 * - %CHECKSUM_PARTIAL 166 * 167 * The driver is required to checksum the packet as seen by hard_start_xmit() 168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 169 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 170 * A driver may verify that the 171 * csum_start and csum_offset values are valid values given the length and 172 * offset of the packet, but it should not attempt to validate that the 173 * checksum refers to a legitimate transport layer checksum -- it is the 174 * purview of the stack to validate that csum_start and csum_offset are set 175 * correctly. 176 * 177 * When the stack requests checksum offload for a packet, the driver MUST 178 * ensure that the checksum is set correctly. A driver can either offload the 179 * checksum calculation to the device, or call skb_checksum_help (in the case 180 * that the device does not support offload for a particular checksum). 181 * 182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 184 * checksum offload capability. 185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 186 * on network device checksumming capabilities: if a packet does not match 187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 188 * &sk_buff.csum_not_inet, see :ref:`crc`) 189 * is called to resolve the checksum. 190 * 191 * - %CHECKSUM_NONE 192 * 193 * The skb was already checksummed by the protocol, or a checksum is not 194 * required. 195 * 196 * - %CHECKSUM_UNNECESSARY 197 * 198 * This has the same meaning as CHECKSUM_NONE for checksum offload on 199 * output. 200 * 201 * - %CHECKSUM_COMPLETE 202 * 203 * Not used in checksum output. If a driver observes a packet with this value 204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 205 * 206 * .. _crc: 207 * 208 * Non-IP checksum (CRC) offloads 209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 210 * 211 * .. flat-table:: 212 * :widths: 1 10 213 * 214 * * - %NETIF_F_SCTP_CRC 215 * - This feature indicates that a device is capable of 216 * offloading the SCTP CRC in a packet. To perform this offload the stack 217 * will set csum_start and csum_offset accordingly, set ip_summed to 218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 220 * A driver that supports both IP checksum offload and SCTP CRC32c offload 221 * must verify which offload is configured for a packet by testing the 222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 224 * 225 * * - %NETIF_F_FCOE_CRC 226 * - This feature indicates that a device is capable of offloading the FCOE 227 * CRC in a packet. To perform this offload the stack will set ip_summed 228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 229 * accordingly. Note that there is no indication in the skbuff that the 230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 231 * both IP checksum offload and FCOE CRC offload must verify which offload 232 * is configured for a packet, presumably by inspecting packet headers. 233 * 234 * Checksumming on output with GSO 235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 236 * 237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 240 * part of the GSO operation is implied. If a checksum is being offloaded 241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 242 * csum_offset are set to refer to the outermost checksum being offloaded 243 * (two offloaded checksums are possible with UDP encapsulation). 244 */ 245 246 /* Don't change this without changing skb_csum_unnecessary! */ 247 #define CHECKSUM_NONE 0 248 #define CHECKSUM_UNNECESSARY 1 249 #define CHECKSUM_COMPLETE 2 250 #define CHECKSUM_PARTIAL 3 251 252 /* Maximum value in skb->csum_level */ 253 #define SKB_MAX_CSUM_LEVEL 3 254 255 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 256 #define SKB_WITH_OVERHEAD(X) \ 257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 258 259 /* For X bytes available in skb->head, what is the minimal 260 * allocation needed, knowing struct skb_shared_info needs 261 * to be aligned. 262 */ 263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 265 266 #define SKB_MAX_ORDER(X, ORDER) \ 267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 268 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 269 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 270 271 /* return minimum truesize of one skb containing X bytes of data */ 272 #define SKB_TRUESIZE(X) ((X) + \ 273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 275 276 struct ahash_request; 277 struct net_device; 278 struct scatterlist; 279 struct pipe_inode_info; 280 struct iov_iter; 281 struct napi_struct; 282 struct bpf_prog; 283 union bpf_attr; 284 struct skb_ext; 285 struct ts_config; 286 287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 288 struct nf_bridge_info { 289 enum { 290 BRNF_PROTO_UNCHANGED, 291 BRNF_PROTO_8021Q, 292 BRNF_PROTO_PPPOE 293 } orig_proto:8; 294 u8 pkt_otherhost:1; 295 u8 in_prerouting:1; 296 u8 bridged_dnat:1; 297 __u16 frag_max_size; 298 struct net_device *physindev; 299 300 /* always valid & non-NULL from FORWARD on, for physdev match */ 301 struct net_device *physoutdev; 302 union { 303 /* prerouting: detect dnat in orig/reply direction */ 304 __be32 ipv4_daddr; 305 struct in6_addr ipv6_daddr; 306 307 /* after prerouting + nat detected: store original source 308 * mac since neigh resolution overwrites it, only used while 309 * skb is out in neigh layer. 310 */ 311 char neigh_header[8]; 312 }; 313 }; 314 #endif 315 316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 317 /* Chain in tc_skb_ext will be used to share the tc chain with 318 * ovs recirc_id. It will be set to the current chain by tc 319 * and read by ovs to recirc_id. 320 */ 321 struct tc_skb_ext { 322 union { 323 u64 act_miss_cookie; 324 __u32 chain; 325 }; 326 __u16 mru; 327 __u16 zone; 328 u8 post_ct:1; 329 u8 post_ct_snat:1; 330 u8 post_ct_dnat:1; 331 u8 act_miss:1; /* Set if act_miss_cookie is used */ 332 }; 333 #endif 334 335 struct sk_buff_head { 336 /* These two members must be first to match sk_buff. */ 337 struct_group_tagged(sk_buff_list, list, 338 struct sk_buff *next; 339 struct sk_buff *prev; 340 ); 341 342 __u32 qlen; 343 spinlock_t lock; 344 }; 345 346 struct sk_buff; 347 348 #ifndef CONFIG_MAX_SKB_FRAGS 349 # define CONFIG_MAX_SKB_FRAGS 17 350 #endif 351 352 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 353 354 extern int sysctl_max_skb_frags; 355 356 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 357 * segment using its current segmentation instead. 358 */ 359 #define GSO_BY_FRAGS 0xFFFF 360 361 typedef struct bio_vec skb_frag_t; 362 363 /** 364 * skb_frag_size() - Returns the size of a skb fragment 365 * @frag: skb fragment 366 */ 367 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 368 { 369 return frag->bv_len; 370 } 371 372 /** 373 * skb_frag_size_set() - Sets the size of a skb fragment 374 * @frag: skb fragment 375 * @size: size of fragment 376 */ 377 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 378 { 379 frag->bv_len = size; 380 } 381 382 /** 383 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 384 * @frag: skb fragment 385 * @delta: value to add 386 */ 387 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 388 { 389 frag->bv_len += delta; 390 } 391 392 /** 393 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 394 * @frag: skb fragment 395 * @delta: value to subtract 396 */ 397 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 398 { 399 frag->bv_len -= delta; 400 } 401 402 /** 403 * skb_frag_must_loop - Test if %p is a high memory page 404 * @p: fragment's page 405 */ 406 static inline bool skb_frag_must_loop(struct page *p) 407 { 408 #if defined(CONFIG_HIGHMEM) 409 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 410 return true; 411 #endif 412 return false; 413 } 414 415 /** 416 * skb_frag_foreach_page - loop over pages in a fragment 417 * 418 * @f: skb frag to operate on 419 * @f_off: offset from start of f->bv_page 420 * @f_len: length from f_off to loop over 421 * @p: (temp var) current page 422 * @p_off: (temp var) offset from start of current page, 423 * non-zero only on first page. 424 * @p_len: (temp var) length in current page, 425 * < PAGE_SIZE only on first and last page. 426 * @copied: (temp var) length so far, excluding current p_len. 427 * 428 * A fragment can hold a compound page, in which case per-page 429 * operations, notably kmap_atomic, must be called for each 430 * regular page. 431 */ 432 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 433 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 434 p_off = (f_off) & (PAGE_SIZE - 1), \ 435 p_len = skb_frag_must_loop(p) ? \ 436 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 437 copied = 0; \ 438 copied < f_len; \ 439 copied += p_len, p++, p_off = 0, \ 440 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 441 442 #define HAVE_HW_TIME_STAMP 443 444 /** 445 * struct skb_shared_hwtstamps - hardware time stamps 446 * @hwtstamp: hardware time stamp transformed into duration 447 * since arbitrary point in time 448 * @netdev_data: address/cookie of network device driver used as 449 * reference to actual hardware time stamp 450 * 451 * Software time stamps generated by ktime_get_real() are stored in 452 * skb->tstamp. 453 * 454 * hwtstamps can only be compared against other hwtstamps from 455 * the same device. 456 * 457 * This structure is attached to packets as part of the 458 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 459 */ 460 struct skb_shared_hwtstamps { 461 union { 462 ktime_t hwtstamp; 463 void *netdev_data; 464 }; 465 }; 466 467 /* Definitions for tx_flags in struct skb_shared_info */ 468 enum { 469 /* generate hardware time stamp */ 470 SKBTX_HW_TSTAMP = 1 << 0, 471 472 /* generate software time stamp when queueing packet to NIC */ 473 SKBTX_SW_TSTAMP = 1 << 1, 474 475 /* device driver is going to provide hardware time stamp */ 476 SKBTX_IN_PROGRESS = 1 << 2, 477 478 /* generate hardware time stamp based on cycles if supported */ 479 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 480 481 /* generate wifi status information (where possible) */ 482 SKBTX_WIFI_STATUS = 1 << 4, 483 484 /* determine hardware time stamp based on time or cycles */ 485 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 486 487 /* generate software time stamp when entering packet scheduling */ 488 SKBTX_SCHED_TSTAMP = 1 << 6, 489 }; 490 491 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 492 SKBTX_SCHED_TSTAMP) 493 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 494 SKBTX_HW_TSTAMP_USE_CYCLES | \ 495 SKBTX_ANY_SW_TSTAMP) 496 497 /* Definitions for flags in struct skb_shared_info */ 498 enum { 499 /* use zcopy routines */ 500 SKBFL_ZEROCOPY_ENABLE = BIT(0), 501 502 /* This indicates at least one fragment might be overwritten 503 * (as in vmsplice(), sendfile() ...) 504 * If we need to compute a TX checksum, we'll need to copy 505 * all frags to avoid possible bad checksum 506 */ 507 SKBFL_SHARED_FRAG = BIT(1), 508 509 /* segment contains only zerocopy data and should not be 510 * charged to the kernel memory. 511 */ 512 SKBFL_PURE_ZEROCOPY = BIT(2), 513 514 SKBFL_DONT_ORPHAN = BIT(3), 515 516 /* page references are managed by the ubuf_info, so it's safe to 517 * use frags only up until ubuf_info is released 518 */ 519 SKBFL_MANAGED_FRAG_REFS = BIT(4), 520 }; 521 522 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 523 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 524 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 525 526 /* 527 * The callback notifies userspace to release buffers when skb DMA is done in 528 * lower device, the skb last reference should be 0 when calling this. 529 * The zerocopy_success argument is true if zero copy transmit occurred, 530 * false on data copy or out of memory error caused by data copy attempt. 531 * The ctx field is used to track device context. 532 * The desc field is used to track userspace buffer index. 533 */ 534 struct ubuf_info { 535 void (*callback)(struct sk_buff *, struct ubuf_info *, 536 bool zerocopy_success); 537 refcount_t refcnt; 538 u8 flags; 539 }; 540 541 struct ubuf_info_msgzc { 542 struct ubuf_info ubuf; 543 544 union { 545 struct { 546 unsigned long desc; 547 void *ctx; 548 }; 549 struct { 550 u32 id; 551 u16 len; 552 u16 zerocopy:1; 553 u32 bytelen; 554 }; 555 }; 556 557 struct mmpin { 558 struct user_struct *user; 559 unsigned int num_pg; 560 } mmp; 561 }; 562 563 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 564 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 565 ubuf) 566 567 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 568 void mm_unaccount_pinned_pages(struct mmpin *mmp); 569 570 /* This data is invariant across clones and lives at 571 * the end of the header data, ie. at skb->end. 572 */ 573 struct skb_shared_info { 574 __u8 flags; 575 __u8 meta_len; 576 __u8 nr_frags; 577 __u8 tx_flags; 578 unsigned short gso_size; 579 /* Warning: this field is not always filled in (UFO)! */ 580 unsigned short gso_segs; 581 struct sk_buff *frag_list; 582 struct skb_shared_hwtstamps hwtstamps; 583 unsigned int gso_type; 584 u32 tskey; 585 586 /* 587 * Warning : all fields before dataref are cleared in __alloc_skb() 588 */ 589 atomic_t dataref; 590 unsigned int xdp_frags_size; 591 592 /* Intermediate layers must ensure that destructor_arg 593 * remains valid until skb destructor */ 594 void * destructor_arg; 595 596 /* must be last field, see pskb_expand_head() */ 597 skb_frag_t frags[MAX_SKB_FRAGS]; 598 }; 599 600 /** 601 * DOC: dataref and headerless skbs 602 * 603 * Transport layers send out clones of payload skbs they hold for 604 * retransmissions. To allow lower layers of the stack to prepend their headers 605 * we split &skb_shared_info.dataref into two halves. 606 * The lower 16 bits count the overall number of references. 607 * The higher 16 bits indicate how many of the references are payload-only. 608 * skb_header_cloned() checks if skb is allowed to add / write the headers. 609 * 610 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 611 * (via __skb_header_release()). Any clone created from marked skb will get 612 * &sk_buff.hdr_len populated with the available headroom. 613 * If there's the only clone in existence it's able to modify the headroom 614 * at will. The sequence of calls inside the transport layer is:: 615 * 616 * <alloc skb> 617 * skb_reserve() 618 * __skb_header_release() 619 * skb_clone() 620 * // send the clone down the stack 621 * 622 * This is not a very generic construct and it depends on the transport layers 623 * doing the right thing. In practice there's usually only one payload-only skb. 624 * Having multiple payload-only skbs with different lengths of hdr_len is not 625 * possible. The payload-only skbs should never leave their owner. 626 */ 627 #define SKB_DATAREF_SHIFT 16 628 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 629 630 631 enum { 632 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 633 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 634 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 635 }; 636 637 enum { 638 SKB_GSO_TCPV4 = 1 << 0, 639 640 /* This indicates the skb is from an untrusted source. */ 641 SKB_GSO_DODGY = 1 << 1, 642 643 /* This indicates the tcp segment has CWR set. */ 644 SKB_GSO_TCP_ECN = 1 << 2, 645 646 SKB_GSO_TCP_FIXEDID = 1 << 3, 647 648 SKB_GSO_TCPV6 = 1 << 4, 649 650 SKB_GSO_FCOE = 1 << 5, 651 652 SKB_GSO_GRE = 1 << 6, 653 654 SKB_GSO_GRE_CSUM = 1 << 7, 655 656 SKB_GSO_IPXIP4 = 1 << 8, 657 658 SKB_GSO_IPXIP6 = 1 << 9, 659 660 SKB_GSO_UDP_TUNNEL = 1 << 10, 661 662 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 663 664 SKB_GSO_PARTIAL = 1 << 12, 665 666 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 667 668 SKB_GSO_SCTP = 1 << 14, 669 670 SKB_GSO_ESP = 1 << 15, 671 672 SKB_GSO_UDP = 1 << 16, 673 674 SKB_GSO_UDP_L4 = 1 << 17, 675 676 SKB_GSO_FRAGLIST = 1 << 18, 677 }; 678 679 #if BITS_PER_LONG > 32 680 #define NET_SKBUFF_DATA_USES_OFFSET 1 681 #endif 682 683 #ifdef NET_SKBUFF_DATA_USES_OFFSET 684 typedef unsigned int sk_buff_data_t; 685 #else 686 typedef unsigned char *sk_buff_data_t; 687 #endif 688 689 /** 690 * DOC: Basic sk_buff geometry 691 * 692 * struct sk_buff itself is a metadata structure and does not hold any packet 693 * data. All the data is held in associated buffers. 694 * 695 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 696 * into two parts: 697 * 698 * - data buffer, containing headers and sometimes payload; 699 * this is the part of the skb operated on by the common helpers 700 * such as skb_put() or skb_pull(); 701 * - shared info (struct skb_shared_info) which holds an array of pointers 702 * to read-only data in the (page, offset, length) format. 703 * 704 * Optionally &skb_shared_info.frag_list may point to another skb. 705 * 706 * Basic diagram may look like this:: 707 * 708 * --------------- 709 * | sk_buff | 710 * --------------- 711 * ,--------------------------- + head 712 * / ,----------------- + data 713 * / / ,----------- + tail 714 * | | | , + end 715 * | | | | 716 * v v v v 717 * ----------------------------------------------- 718 * | headroom | data | tailroom | skb_shared_info | 719 * ----------------------------------------------- 720 * + [page frag] 721 * + [page frag] 722 * + [page frag] 723 * + [page frag] --------- 724 * + frag_list --> | sk_buff | 725 * --------- 726 * 727 */ 728 729 /** 730 * struct sk_buff - socket buffer 731 * @next: Next buffer in list 732 * @prev: Previous buffer in list 733 * @tstamp: Time we arrived/left 734 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 735 * for retransmit timer 736 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 737 * @list: queue head 738 * @ll_node: anchor in an llist (eg socket defer_list) 739 * @sk: Socket we are owned by 740 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 741 * fragmentation management 742 * @dev: Device we arrived on/are leaving by 743 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 744 * @cb: Control buffer. Free for use by every layer. Put private vars here 745 * @_skb_refdst: destination entry (with norefcount bit) 746 * @sp: the security path, used for xfrm 747 * @len: Length of actual data 748 * @data_len: Data length 749 * @mac_len: Length of link layer header 750 * @hdr_len: writable header length of cloned skb 751 * @csum: Checksum (must include start/offset pair) 752 * @csum_start: Offset from skb->head where checksumming should start 753 * @csum_offset: Offset from csum_start where checksum should be stored 754 * @priority: Packet queueing priority 755 * @ignore_df: allow local fragmentation 756 * @cloned: Head may be cloned (check refcnt to be sure) 757 * @ip_summed: Driver fed us an IP checksum 758 * @nohdr: Payload reference only, must not modify header 759 * @pkt_type: Packet class 760 * @fclone: skbuff clone status 761 * @ipvs_property: skbuff is owned by ipvs 762 * @inner_protocol_type: whether the inner protocol is 763 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 764 * @remcsum_offload: remote checksum offload is enabled 765 * @offload_fwd_mark: Packet was L2-forwarded in hardware 766 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 767 * @tc_skip_classify: do not classify packet. set by IFB device 768 * @tc_at_ingress: used within tc_classify to distinguish in/egress 769 * @redirected: packet was redirected by packet classifier 770 * @from_ingress: packet was redirected from the ingress path 771 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 772 * @peeked: this packet has been seen already, so stats have been 773 * done for it, don't do them again 774 * @nf_trace: netfilter packet trace flag 775 * @protocol: Packet protocol from driver 776 * @destructor: Destruct function 777 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 778 * @_sk_redir: socket redirection information for skmsg 779 * @_nfct: Associated connection, if any (with nfctinfo bits) 780 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 781 * @skb_iif: ifindex of device we arrived on 782 * @tc_index: Traffic control index 783 * @hash: the packet hash 784 * @queue_mapping: Queue mapping for multiqueue devices 785 * @head_frag: skb was allocated from page fragments, 786 * not allocated by kmalloc() or vmalloc(). 787 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 788 * @pp_recycle: mark the packet for recycling instead of freeing (implies 789 * page_pool support on driver) 790 * @active_extensions: active extensions (skb_ext_id types) 791 * @ndisc_nodetype: router type (from link layer) 792 * @ooo_okay: allow the mapping of a socket to a queue to be changed 793 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 794 * ports. 795 * @sw_hash: indicates hash was computed in software stack 796 * @wifi_acked_valid: wifi_acked was set 797 * @wifi_acked: whether frame was acked on wifi or not 798 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 799 * @encapsulation: indicates the inner headers in the skbuff are valid 800 * @encap_hdr_csum: software checksum is needed 801 * @csum_valid: checksum is already valid 802 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 803 * @csum_complete_sw: checksum was completed by software 804 * @csum_level: indicates the number of consecutive checksums found in 805 * the packet minus one that have been verified as 806 * CHECKSUM_UNNECESSARY (max 3) 807 * @dst_pending_confirm: need to confirm neighbour 808 * @decrypted: Decrypted SKB 809 * @slow_gro: state present at GRO time, slower prepare step required 810 * @mono_delivery_time: When set, skb->tstamp has the 811 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 812 * skb->tstamp has the (rcv) timestamp at ingress and 813 * delivery_time at egress. 814 * @napi_id: id of the NAPI struct this skb came from 815 * @sender_cpu: (aka @napi_id) source CPU in XPS 816 * @alloc_cpu: CPU which did the skb allocation. 817 * @secmark: security marking 818 * @mark: Generic packet mark 819 * @reserved_tailroom: (aka @mark) number of bytes of free space available 820 * at the tail of an sk_buff 821 * @vlan_all: vlan fields (proto & tci) 822 * @vlan_proto: vlan encapsulation protocol 823 * @vlan_tci: vlan tag control information 824 * @inner_protocol: Protocol (encapsulation) 825 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 826 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 827 * @inner_transport_header: Inner transport layer header (encapsulation) 828 * @inner_network_header: Network layer header (encapsulation) 829 * @inner_mac_header: Link layer header (encapsulation) 830 * @transport_header: Transport layer header 831 * @network_header: Network layer header 832 * @mac_header: Link layer header 833 * @kcov_handle: KCOV remote handle for remote coverage collection 834 * @tail: Tail pointer 835 * @end: End pointer 836 * @head: Head of buffer 837 * @data: Data head pointer 838 * @truesize: Buffer size 839 * @users: User count - see {datagram,tcp}.c 840 * @extensions: allocated extensions, valid if active_extensions is nonzero 841 */ 842 843 struct sk_buff { 844 union { 845 struct { 846 /* These two members must be first to match sk_buff_head. */ 847 struct sk_buff *next; 848 struct sk_buff *prev; 849 850 union { 851 struct net_device *dev; 852 /* Some protocols might use this space to store information, 853 * while device pointer would be NULL. 854 * UDP receive path is one user. 855 */ 856 unsigned long dev_scratch; 857 }; 858 }; 859 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 860 struct list_head list; 861 struct llist_node ll_node; 862 }; 863 864 union { 865 struct sock *sk; 866 int ip_defrag_offset; 867 }; 868 869 union { 870 ktime_t tstamp; 871 u64 skb_mstamp_ns; /* earliest departure time */ 872 }; 873 /* 874 * This is the control buffer. It is free to use for every 875 * layer. Please put your private variables there. If you 876 * want to keep them across layers you have to do a skb_clone() 877 * first. This is owned by whoever has the skb queued ATM. 878 */ 879 char cb[48] __aligned(8); 880 881 union { 882 struct { 883 unsigned long _skb_refdst; 884 void (*destructor)(struct sk_buff *skb); 885 }; 886 struct list_head tcp_tsorted_anchor; 887 #ifdef CONFIG_NET_SOCK_MSG 888 unsigned long _sk_redir; 889 #endif 890 }; 891 892 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 893 unsigned long _nfct; 894 #endif 895 unsigned int len, 896 data_len; 897 __u16 mac_len, 898 hdr_len; 899 900 /* Following fields are _not_ copied in __copy_skb_header() 901 * Note that queue_mapping is here mostly to fill a hole. 902 */ 903 __u16 queue_mapping; 904 905 /* if you move cloned around you also must adapt those constants */ 906 #ifdef __BIG_ENDIAN_BITFIELD 907 #define CLONED_MASK (1 << 7) 908 #else 909 #define CLONED_MASK 1 910 #endif 911 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 912 913 /* private: */ 914 __u8 __cloned_offset[0]; 915 /* public: */ 916 __u8 cloned:1, 917 nohdr:1, 918 fclone:2, 919 peeked:1, 920 head_frag:1, 921 pfmemalloc:1, 922 pp_recycle:1; /* page_pool recycle indicator */ 923 #ifdef CONFIG_SKB_EXTENSIONS 924 __u8 active_extensions; 925 #endif 926 927 /* Fields enclosed in headers group are copied 928 * using a single memcpy() in __copy_skb_header() 929 */ 930 struct_group(headers, 931 932 /* private: */ 933 __u8 __pkt_type_offset[0]; 934 /* public: */ 935 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 936 __u8 ignore_df:1; 937 __u8 nf_trace:1; 938 __u8 ip_summed:2; 939 __u8 ooo_okay:1; 940 941 __u8 l4_hash:1; 942 __u8 sw_hash:1; 943 __u8 wifi_acked_valid:1; 944 __u8 wifi_acked:1; 945 __u8 no_fcs:1; 946 /* Indicates the inner headers are valid in the skbuff. */ 947 __u8 encapsulation:1; 948 __u8 encap_hdr_csum:1; 949 __u8 csum_valid:1; 950 951 /* private: */ 952 __u8 __pkt_vlan_present_offset[0]; 953 /* public: */ 954 __u8 remcsum_offload:1; 955 __u8 csum_complete_sw:1; 956 __u8 csum_level:2; 957 __u8 dst_pending_confirm:1; 958 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 959 #ifdef CONFIG_NET_CLS_ACT 960 __u8 tc_skip_classify:1; 961 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 962 #endif 963 #ifdef CONFIG_IPV6_NDISC_NODETYPE 964 __u8 ndisc_nodetype:2; 965 #endif 966 967 __u8 ipvs_property:1; 968 __u8 inner_protocol_type:1; 969 #ifdef CONFIG_NET_SWITCHDEV 970 __u8 offload_fwd_mark:1; 971 __u8 offload_l3_fwd_mark:1; 972 #endif 973 __u8 redirected:1; 974 #ifdef CONFIG_NET_REDIRECT 975 __u8 from_ingress:1; 976 #endif 977 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 978 __u8 nf_skip_egress:1; 979 #endif 980 #ifdef CONFIG_TLS_DEVICE 981 __u8 decrypted:1; 982 #endif 983 __u8 slow_gro:1; 984 __u8 csum_not_inet:1; 985 986 #ifdef CONFIG_NET_SCHED 987 __u16 tc_index; /* traffic control index */ 988 #endif 989 990 union { 991 __wsum csum; 992 struct { 993 __u16 csum_start; 994 __u16 csum_offset; 995 }; 996 }; 997 __u32 priority; 998 int skb_iif; 999 __u32 hash; 1000 union { 1001 u32 vlan_all; 1002 struct { 1003 __be16 vlan_proto; 1004 __u16 vlan_tci; 1005 }; 1006 }; 1007 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1008 union { 1009 unsigned int napi_id; 1010 unsigned int sender_cpu; 1011 }; 1012 #endif 1013 u16 alloc_cpu; 1014 #ifdef CONFIG_NETWORK_SECMARK 1015 __u32 secmark; 1016 #endif 1017 1018 union { 1019 __u32 mark; 1020 __u32 reserved_tailroom; 1021 }; 1022 1023 union { 1024 __be16 inner_protocol; 1025 __u8 inner_ipproto; 1026 }; 1027 1028 __u16 inner_transport_header; 1029 __u16 inner_network_header; 1030 __u16 inner_mac_header; 1031 1032 __be16 protocol; 1033 __u16 transport_header; 1034 __u16 network_header; 1035 __u16 mac_header; 1036 1037 #ifdef CONFIG_KCOV 1038 u64 kcov_handle; 1039 #endif 1040 1041 ); /* end headers group */ 1042 1043 /* These elements must be at the end, see alloc_skb() for details. */ 1044 sk_buff_data_t tail; 1045 sk_buff_data_t end; 1046 unsigned char *head, 1047 *data; 1048 unsigned int truesize; 1049 refcount_t users; 1050 1051 #ifdef CONFIG_SKB_EXTENSIONS 1052 /* only useable after checking ->active_extensions != 0 */ 1053 struct skb_ext *extensions; 1054 #endif 1055 }; 1056 1057 /* if you move pkt_type around you also must adapt those constants */ 1058 #ifdef __BIG_ENDIAN_BITFIELD 1059 #define PKT_TYPE_MAX (7 << 5) 1060 #else 1061 #define PKT_TYPE_MAX 7 1062 #endif 1063 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1064 1065 /* if you move tc_at_ingress or mono_delivery_time 1066 * around, you also must adapt these constants. 1067 */ 1068 #ifdef __BIG_ENDIAN_BITFIELD 1069 #define TC_AT_INGRESS_MASK (1 << 0) 1070 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2) 1071 #else 1072 #define TC_AT_INGRESS_MASK (1 << 7) 1073 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5) 1074 #endif 1075 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 1076 1077 #ifdef __KERNEL__ 1078 /* 1079 * Handling routines are only of interest to the kernel 1080 */ 1081 1082 #define SKB_ALLOC_FCLONE 0x01 1083 #define SKB_ALLOC_RX 0x02 1084 #define SKB_ALLOC_NAPI 0x04 1085 1086 /** 1087 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1088 * @skb: buffer 1089 */ 1090 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1091 { 1092 return unlikely(skb->pfmemalloc); 1093 } 1094 1095 /* 1096 * skb might have a dst pointer attached, refcounted or not. 1097 * _skb_refdst low order bit is set if refcount was _not_ taken 1098 */ 1099 #define SKB_DST_NOREF 1UL 1100 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1101 1102 /** 1103 * skb_dst - returns skb dst_entry 1104 * @skb: buffer 1105 * 1106 * Returns skb dst_entry, regardless of reference taken or not. 1107 */ 1108 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1109 { 1110 /* If refdst was not refcounted, check we still are in a 1111 * rcu_read_lock section 1112 */ 1113 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1114 !rcu_read_lock_held() && 1115 !rcu_read_lock_bh_held()); 1116 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1117 } 1118 1119 /** 1120 * skb_dst_set - sets skb dst 1121 * @skb: buffer 1122 * @dst: dst entry 1123 * 1124 * Sets skb dst, assuming a reference was taken on dst and should 1125 * be released by skb_dst_drop() 1126 */ 1127 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1128 { 1129 skb->slow_gro |= !!dst; 1130 skb->_skb_refdst = (unsigned long)dst; 1131 } 1132 1133 /** 1134 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1135 * @skb: buffer 1136 * @dst: dst entry 1137 * 1138 * Sets skb dst, assuming a reference was not taken on dst. 1139 * If dst entry is cached, we do not take reference and dst_release 1140 * will be avoided by refdst_drop. If dst entry is not cached, we take 1141 * reference, so that last dst_release can destroy the dst immediately. 1142 */ 1143 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1144 { 1145 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1146 skb->slow_gro |= !!dst; 1147 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1148 } 1149 1150 /** 1151 * skb_dst_is_noref - Test if skb dst isn't refcounted 1152 * @skb: buffer 1153 */ 1154 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1155 { 1156 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1157 } 1158 1159 /** 1160 * skb_rtable - Returns the skb &rtable 1161 * @skb: buffer 1162 */ 1163 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1164 { 1165 return (struct rtable *)skb_dst(skb); 1166 } 1167 1168 /* For mangling skb->pkt_type from user space side from applications 1169 * such as nft, tc, etc, we only allow a conservative subset of 1170 * possible pkt_types to be set. 1171 */ 1172 static inline bool skb_pkt_type_ok(u32 ptype) 1173 { 1174 return ptype <= PACKET_OTHERHOST; 1175 } 1176 1177 /** 1178 * skb_napi_id - Returns the skb's NAPI id 1179 * @skb: buffer 1180 */ 1181 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1182 { 1183 #ifdef CONFIG_NET_RX_BUSY_POLL 1184 return skb->napi_id; 1185 #else 1186 return 0; 1187 #endif 1188 } 1189 1190 /** 1191 * skb_unref - decrement the skb's reference count 1192 * @skb: buffer 1193 * 1194 * Returns true if we can free the skb. 1195 */ 1196 static inline bool skb_unref(struct sk_buff *skb) 1197 { 1198 if (unlikely(!skb)) 1199 return false; 1200 if (likely(refcount_read(&skb->users) == 1)) 1201 smp_rmb(); 1202 else if (likely(!refcount_dec_and_test(&skb->users))) 1203 return false; 1204 1205 return true; 1206 } 1207 1208 void __fix_address 1209 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1210 1211 /** 1212 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1213 * @skb: buffer to free 1214 */ 1215 static inline void kfree_skb(struct sk_buff *skb) 1216 { 1217 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1218 } 1219 1220 void skb_release_head_state(struct sk_buff *skb); 1221 void kfree_skb_list_reason(struct sk_buff *segs, 1222 enum skb_drop_reason reason); 1223 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1224 void skb_tx_error(struct sk_buff *skb); 1225 1226 static inline void kfree_skb_list(struct sk_buff *segs) 1227 { 1228 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1229 } 1230 1231 #ifdef CONFIG_TRACEPOINTS 1232 void consume_skb(struct sk_buff *skb); 1233 #else 1234 static inline void consume_skb(struct sk_buff *skb) 1235 { 1236 return kfree_skb(skb); 1237 } 1238 #endif 1239 1240 void __consume_stateless_skb(struct sk_buff *skb); 1241 void __kfree_skb(struct sk_buff *skb); 1242 extern struct kmem_cache *skbuff_cache; 1243 1244 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1245 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1246 bool *fragstolen, int *delta_truesize); 1247 1248 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1249 int node); 1250 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1251 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1252 struct sk_buff *build_skb_around(struct sk_buff *skb, 1253 void *data, unsigned int frag_size); 1254 void skb_attempt_defer_free(struct sk_buff *skb); 1255 1256 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1257 struct sk_buff *slab_build_skb(void *data); 1258 1259 /** 1260 * alloc_skb - allocate a network buffer 1261 * @size: size to allocate 1262 * @priority: allocation mask 1263 * 1264 * This function is a convenient wrapper around __alloc_skb(). 1265 */ 1266 static inline struct sk_buff *alloc_skb(unsigned int size, 1267 gfp_t priority) 1268 { 1269 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1270 } 1271 1272 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1273 unsigned long data_len, 1274 int max_page_order, 1275 int *errcode, 1276 gfp_t gfp_mask); 1277 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1278 1279 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1280 struct sk_buff_fclones { 1281 struct sk_buff skb1; 1282 1283 struct sk_buff skb2; 1284 1285 refcount_t fclone_ref; 1286 }; 1287 1288 /** 1289 * skb_fclone_busy - check if fclone is busy 1290 * @sk: socket 1291 * @skb: buffer 1292 * 1293 * Returns true if skb is a fast clone, and its clone is not freed. 1294 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1295 * so we also check that this didnt happen. 1296 */ 1297 static inline bool skb_fclone_busy(const struct sock *sk, 1298 const struct sk_buff *skb) 1299 { 1300 const struct sk_buff_fclones *fclones; 1301 1302 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1303 1304 return skb->fclone == SKB_FCLONE_ORIG && 1305 refcount_read(&fclones->fclone_ref) > 1 && 1306 READ_ONCE(fclones->skb2.sk) == sk; 1307 } 1308 1309 /** 1310 * alloc_skb_fclone - allocate a network buffer from fclone cache 1311 * @size: size to allocate 1312 * @priority: allocation mask 1313 * 1314 * This function is a convenient wrapper around __alloc_skb(). 1315 */ 1316 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1317 gfp_t priority) 1318 { 1319 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1320 } 1321 1322 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1323 void skb_headers_offset_update(struct sk_buff *skb, int off); 1324 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1325 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1326 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1327 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1328 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1329 gfp_t gfp_mask, bool fclone); 1330 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1331 gfp_t gfp_mask) 1332 { 1333 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1334 } 1335 1336 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1337 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1338 unsigned int headroom); 1339 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1340 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1341 int newtailroom, gfp_t priority); 1342 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1343 int offset, int len); 1344 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1345 int offset, int len); 1346 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1347 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1348 1349 /** 1350 * skb_pad - zero pad the tail of an skb 1351 * @skb: buffer to pad 1352 * @pad: space to pad 1353 * 1354 * Ensure that a buffer is followed by a padding area that is zero 1355 * filled. Used by network drivers which may DMA or transfer data 1356 * beyond the buffer end onto the wire. 1357 * 1358 * May return error in out of memory cases. The skb is freed on error. 1359 */ 1360 static inline int skb_pad(struct sk_buff *skb, int pad) 1361 { 1362 return __skb_pad(skb, pad, true); 1363 } 1364 #define dev_kfree_skb(a) consume_skb(a) 1365 1366 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1367 int offset, size_t size); 1368 1369 struct skb_seq_state { 1370 __u32 lower_offset; 1371 __u32 upper_offset; 1372 __u32 frag_idx; 1373 __u32 stepped_offset; 1374 struct sk_buff *root_skb; 1375 struct sk_buff *cur_skb; 1376 __u8 *frag_data; 1377 __u32 frag_off; 1378 }; 1379 1380 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1381 unsigned int to, struct skb_seq_state *st); 1382 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1383 struct skb_seq_state *st); 1384 void skb_abort_seq_read(struct skb_seq_state *st); 1385 1386 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1387 unsigned int to, struct ts_config *config); 1388 1389 /* 1390 * Packet hash types specify the type of hash in skb_set_hash. 1391 * 1392 * Hash types refer to the protocol layer addresses which are used to 1393 * construct a packet's hash. The hashes are used to differentiate or identify 1394 * flows of the protocol layer for the hash type. Hash types are either 1395 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1396 * 1397 * Properties of hashes: 1398 * 1399 * 1) Two packets in different flows have different hash values 1400 * 2) Two packets in the same flow should have the same hash value 1401 * 1402 * A hash at a higher layer is considered to be more specific. A driver should 1403 * set the most specific hash possible. 1404 * 1405 * A driver cannot indicate a more specific hash than the layer at which a hash 1406 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1407 * 1408 * A driver may indicate a hash level which is less specific than the 1409 * actual layer the hash was computed on. For instance, a hash computed 1410 * at L4 may be considered an L3 hash. This should only be done if the 1411 * driver can't unambiguously determine that the HW computed the hash at 1412 * the higher layer. Note that the "should" in the second property above 1413 * permits this. 1414 */ 1415 enum pkt_hash_types { 1416 PKT_HASH_TYPE_NONE, /* Undefined type */ 1417 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1418 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1419 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1420 }; 1421 1422 static inline void skb_clear_hash(struct sk_buff *skb) 1423 { 1424 skb->hash = 0; 1425 skb->sw_hash = 0; 1426 skb->l4_hash = 0; 1427 } 1428 1429 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1430 { 1431 if (!skb->l4_hash) 1432 skb_clear_hash(skb); 1433 } 1434 1435 static inline void 1436 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1437 { 1438 skb->l4_hash = is_l4; 1439 skb->sw_hash = is_sw; 1440 skb->hash = hash; 1441 } 1442 1443 static inline void 1444 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1445 { 1446 /* Used by drivers to set hash from HW */ 1447 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1448 } 1449 1450 static inline void 1451 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1452 { 1453 __skb_set_hash(skb, hash, true, is_l4); 1454 } 1455 1456 void __skb_get_hash(struct sk_buff *skb); 1457 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1458 u32 skb_get_poff(const struct sk_buff *skb); 1459 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1460 const struct flow_keys_basic *keys, int hlen); 1461 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1462 const void *data, int hlen_proto); 1463 1464 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1465 int thoff, u8 ip_proto) 1466 { 1467 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1468 } 1469 1470 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1471 const struct flow_dissector_key *key, 1472 unsigned int key_count); 1473 1474 struct bpf_flow_dissector; 1475 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1476 __be16 proto, int nhoff, int hlen, unsigned int flags); 1477 1478 bool __skb_flow_dissect(const struct net *net, 1479 const struct sk_buff *skb, 1480 struct flow_dissector *flow_dissector, 1481 void *target_container, const void *data, 1482 __be16 proto, int nhoff, int hlen, unsigned int flags); 1483 1484 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1485 struct flow_dissector *flow_dissector, 1486 void *target_container, unsigned int flags) 1487 { 1488 return __skb_flow_dissect(NULL, skb, flow_dissector, 1489 target_container, NULL, 0, 0, 0, flags); 1490 } 1491 1492 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1493 struct flow_keys *flow, 1494 unsigned int flags) 1495 { 1496 memset(flow, 0, sizeof(*flow)); 1497 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1498 flow, NULL, 0, 0, 0, flags); 1499 } 1500 1501 static inline bool 1502 skb_flow_dissect_flow_keys_basic(const struct net *net, 1503 const struct sk_buff *skb, 1504 struct flow_keys_basic *flow, 1505 const void *data, __be16 proto, 1506 int nhoff, int hlen, unsigned int flags) 1507 { 1508 memset(flow, 0, sizeof(*flow)); 1509 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1510 data, proto, nhoff, hlen, flags); 1511 } 1512 1513 void skb_flow_dissect_meta(const struct sk_buff *skb, 1514 struct flow_dissector *flow_dissector, 1515 void *target_container); 1516 1517 /* Gets a skb connection tracking info, ctinfo map should be a 1518 * map of mapsize to translate enum ip_conntrack_info states 1519 * to user states. 1520 */ 1521 void 1522 skb_flow_dissect_ct(const struct sk_buff *skb, 1523 struct flow_dissector *flow_dissector, 1524 void *target_container, 1525 u16 *ctinfo_map, size_t mapsize, 1526 bool post_ct, u16 zone); 1527 void 1528 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1529 struct flow_dissector *flow_dissector, 1530 void *target_container); 1531 1532 void skb_flow_dissect_hash(const struct sk_buff *skb, 1533 struct flow_dissector *flow_dissector, 1534 void *target_container); 1535 1536 static inline __u32 skb_get_hash(struct sk_buff *skb) 1537 { 1538 if (!skb->l4_hash && !skb->sw_hash) 1539 __skb_get_hash(skb); 1540 1541 return skb->hash; 1542 } 1543 1544 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1545 { 1546 if (!skb->l4_hash && !skb->sw_hash) { 1547 struct flow_keys keys; 1548 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1549 1550 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1551 } 1552 1553 return skb->hash; 1554 } 1555 1556 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1557 const siphash_key_t *perturb); 1558 1559 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1560 { 1561 return skb->hash; 1562 } 1563 1564 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1565 { 1566 to->hash = from->hash; 1567 to->sw_hash = from->sw_hash; 1568 to->l4_hash = from->l4_hash; 1569 }; 1570 1571 static inline void skb_copy_decrypted(struct sk_buff *to, 1572 const struct sk_buff *from) 1573 { 1574 #ifdef CONFIG_TLS_DEVICE 1575 to->decrypted = from->decrypted; 1576 #endif 1577 } 1578 1579 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1580 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1581 { 1582 return skb->head + skb->end; 1583 } 1584 1585 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1586 { 1587 return skb->end; 1588 } 1589 1590 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1591 { 1592 skb->end = offset; 1593 } 1594 #else 1595 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1596 { 1597 return skb->end; 1598 } 1599 1600 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1601 { 1602 return skb->end - skb->head; 1603 } 1604 1605 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1606 { 1607 skb->end = skb->head + offset; 1608 } 1609 #endif 1610 1611 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1612 struct ubuf_info *uarg); 1613 1614 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1615 1616 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1617 bool success); 1618 1619 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1620 struct sk_buff *skb, struct iov_iter *from, 1621 size_t length); 1622 1623 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1624 struct msghdr *msg, int len) 1625 { 1626 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1627 } 1628 1629 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1630 struct msghdr *msg, int len, 1631 struct ubuf_info *uarg); 1632 1633 /* Internal */ 1634 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1635 1636 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1637 { 1638 return &skb_shinfo(skb)->hwtstamps; 1639 } 1640 1641 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1642 { 1643 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1644 1645 return is_zcopy ? skb_uarg(skb) : NULL; 1646 } 1647 1648 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1649 { 1650 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1651 } 1652 1653 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1654 { 1655 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1656 } 1657 1658 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1659 const struct sk_buff *skb2) 1660 { 1661 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1662 } 1663 1664 static inline void net_zcopy_get(struct ubuf_info *uarg) 1665 { 1666 refcount_inc(&uarg->refcnt); 1667 } 1668 1669 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1670 { 1671 skb_shinfo(skb)->destructor_arg = uarg; 1672 skb_shinfo(skb)->flags |= uarg->flags; 1673 } 1674 1675 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1676 bool *have_ref) 1677 { 1678 if (skb && uarg && !skb_zcopy(skb)) { 1679 if (unlikely(have_ref && *have_ref)) 1680 *have_ref = false; 1681 else 1682 net_zcopy_get(uarg); 1683 skb_zcopy_init(skb, uarg); 1684 } 1685 } 1686 1687 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1688 { 1689 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1690 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1691 } 1692 1693 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1694 { 1695 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1696 } 1697 1698 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1699 { 1700 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1701 } 1702 1703 static inline void net_zcopy_put(struct ubuf_info *uarg) 1704 { 1705 if (uarg) 1706 uarg->callback(NULL, uarg, true); 1707 } 1708 1709 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1710 { 1711 if (uarg) { 1712 if (uarg->callback == msg_zerocopy_callback) 1713 msg_zerocopy_put_abort(uarg, have_uref); 1714 else if (have_uref) 1715 net_zcopy_put(uarg); 1716 } 1717 } 1718 1719 /* Release a reference on a zerocopy structure */ 1720 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1721 { 1722 struct ubuf_info *uarg = skb_zcopy(skb); 1723 1724 if (uarg) { 1725 if (!skb_zcopy_is_nouarg(skb)) 1726 uarg->callback(skb, uarg, zerocopy_success); 1727 1728 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1729 } 1730 } 1731 1732 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1733 1734 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1735 { 1736 if (unlikely(skb_zcopy_managed(skb))) 1737 __skb_zcopy_downgrade_managed(skb); 1738 } 1739 1740 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1741 { 1742 skb->next = NULL; 1743 } 1744 1745 static inline void skb_poison_list(struct sk_buff *skb) 1746 { 1747 #ifdef CONFIG_DEBUG_NET 1748 skb->next = SKB_LIST_POISON_NEXT; 1749 #endif 1750 } 1751 1752 /* Iterate through singly-linked GSO fragments of an skb. */ 1753 #define skb_list_walk_safe(first, skb, next_skb) \ 1754 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1755 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1756 1757 static inline void skb_list_del_init(struct sk_buff *skb) 1758 { 1759 __list_del_entry(&skb->list); 1760 skb_mark_not_on_list(skb); 1761 } 1762 1763 /** 1764 * skb_queue_empty - check if a queue is empty 1765 * @list: queue head 1766 * 1767 * Returns true if the queue is empty, false otherwise. 1768 */ 1769 static inline int skb_queue_empty(const struct sk_buff_head *list) 1770 { 1771 return list->next == (const struct sk_buff *) list; 1772 } 1773 1774 /** 1775 * skb_queue_empty_lockless - check if a queue is empty 1776 * @list: queue head 1777 * 1778 * Returns true if the queue is empty, false otherwise. 1779 * This variant can be used in lockless contexts. 1780 */ 1781 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1782 { 1783 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1784 } 1785 1786 1787 /** 1788 * skb_queue_is_last - check if skb is the last entry in the queue 1789 * @list: queue head 1790 * @skb: buffer 1791 * 1792 * Returns true if @skb is the last buffer on the list. 1793 */ 1794 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1795 const struct sk_buff *skb) 1796 { 1797 return skb->next == (const struct sk_buff *) list; 1798 } 1799 1800 /** 1801 * skb_queue_is_first - check if skb is the first entry in the queue 1802 * @list: queue head 1803 * @skb: buffer 1804 * 1805 * Returns true if @skb is the first buffer on the list. 1806 */ 1807 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1808 const struct sk_buff *skb) 1809 { 1810 return skb->prev == (const struct sk_buff *) list; 1811 } 1812 1813 /** 1814 * skb_queue_next - return the next packet in the queue 1815 * @list: queue head 1816 * @skb: current buffer 1817 * 1818 * Return the next packet in @list after @skb. It is only valid to 1819 * call this if skb_queue_is_last() evaluates to false. 1820 */ 1821 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1822 const struct sk_buff *skb) 1823 { 1824 /* This BUG_ON may seem severe, but if we just return then we 1825 * are going to dereference garbage. 1826 */ 1827 BUG_ON(skb_queue_is_last(list, skb)); 1828 return skb->next; 1829 } 1830 1831 /** 1832 * skb_queue_prev - return the prev packet in the queue 1833 * @list: queue head 1834 * @skb: current buffer 1835 * 1836 * Return the prev packet in @list before @skb. It is only valid to 1837 * call this if skb_queue_is_first() evaluates to false. 1838 */ 1839 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1840 const struct sk_buff *skb) 1841 { 1842 /* This BUG_ON may seem severe, but if we just return then we 1843 * are going to dereference garbage. 1844 */ 1845 BUG_ON(skb_queue_is_first(list, skb)); 1846 return skb->prev; 1847 } 1848 1849 /** 1850 * skb_get - reference buffer 1851 * @skb: buffer to reference 1852 * 1853 * Makes another reference to a socket buffer and returns a pointer 1854 * to the buffer. 1855 */ 1856 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1857 { 1858 refcount_inc(&skb->users); 1859 return skb; 1860 } 1861 1862 /* 1863 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1864 */ 1865 1866 /** 1867 * skb_cloned - is the buffer a clone 1868 * @skb: buffer to check 1869 * 1870 * Returns true if the buffer was generated with skb_clone() and is 1871 * one of multiple shared copies of the buffer. Cloned buffers are 1872 * shared data so must not be written to under normal circumstances. 1873 */ 1874 static inline int skb_cloned(const struct sk_buff *skb) 1875 { 1876 return skb->cloned && 1877 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1878 } 1879 1880 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1881 { 1882 might_sleep_if(gfpflags_allow_blocking(pri)); 1883 1884 if (skb_cloned(skb)) 1885 return pskb_expand_head(skb, 0, 0, pri); 1886 1887 return 0; 1888 } 1889 1890 /* This variant of skb_unclone() makes sure skb->truesize 1891 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1892 * 1893 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1894 * when various debugging features are in place. 1895 */ 1896 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1897 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1898 { 1899 might_sleep_if(gfpflags_allow_blocking(pri)); 1900 1901 if (skb_cloned(skb)) 1902 return __skb_unclone_keeptruesize(skb, pri); 1903 return 0; 1904 } 1905 1906 /** 1907 * skb_header_cloned - is the header a clone 1908 * @skb: buffer to check 1909 * 1910 * Returns true if modifying the header part of the buffer requires 1911 * the data to be copied. 1912 */ 1913 static inline int skb_header_cloned(const struct sk_buff *skb) 1914 { 1915 int dataref; 1916 1917 if (!skb->cloned) 1918 return 0; 1919 1920 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1921 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1922 return dataref != 1; 1923 } 1924 1925 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1926 { 1927 might_sleep_if(gfpflags_allow_blocking(pri)); 1928 1929 if (skb_header_cloned(skb)) 1930 return pskb_expand_head(skb, 0, 0, pri); 1931 1932 return 0; 1933 } 1934 1935 /** 1936 * __skb_header_release() - allow clones to use the headroom 1937 * @skb: buffer to operate on 1938 * 1939 * See "DOC: dataref and headerless skbs". 1940 */ 1941 static inline void __skb_header_release(struct sk_buff *skb) 1942 { 1943 skb->nohdr = 1; 1944 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1945 } 1946 1947 1948 /** 1949 * skb_shared - is the buffer shared 1950 * @skb: buffer to check 1951 * 1952 * Returns true if more than one person has a reference to this 1953 * buffer. 1954 */ 1955 static inline int skb_shared(const struct sk_buff *skb) 1956 { 1957 return refcount_read(&skb->users) != 1; 1958 } 1959 1960 /** 1961 * skb_share_check - check if buffer is shared and if so clone it 1962 * @skb: buffer to check 1963 * @pri: priority for memory allocation 1964 * 1965 * If the buffer is shared the buffer is cloned and the old copy 1966 * drops a reference. A new clone with a single reference is returned. 1967 * If the buffer is not shared the original buffer is returned. When 1968 * being called from interrupt status or with spinlocks held pri must 1969 * be GFP_ATOMIC. 1970 * 1971 * NULL is returned on a memory allocation failure. 1972 */ 1973 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1974 { 1975 might_sleep_if(gfpflags_allow_blocking(pri)); 1976 if (skb_shared(skb)) { 1977 struct sk_buff *nskb = skb_clone(skb, pri); 1978 1979 if (likely(nskb)) 1980 consume_skb(skb); 1981 else 1982 kfree_skb(skb); 1983 skb = nskb; 1984 } 1985 return skb; 1986 } 1987 1988 /* 1989 * Copy shared buffers into a new sk_buff. We effectively do COW on 1990 * packets to handle cases where we have a local reader and forward 1991 * and a couple of other messy ones. The normal one is tcpdumping 1992 * a packet thats being forwarded. 1993 */ 1994 1995 /** 1996 * skb_unshare - make a copy of a shared buffer 1997 * @skb: buffer to check 1998 * @pri: priority for memory allocation 1999 * 2000 * If the socket buffer is a clone then this function creates a new 2001 * copy of the data, drops a reference count on the old copy and returns 2002 * the new copy with the reference count at 1. If the buffer is not a clone 2003 * the original buffer is returned. When called with a spinlock held or 2004 * from interrupt state @pri must be %GFP_ATOMIC 2005 * 2006 * %NULL is returned on a memory allocation failure. 2007 */ 2008 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2009 gfp_t pri) 2010 { 2011 might_sleep_if(gfpflags_allow_blocking(pri)); 2012 if (skb_cloned(skb)) { 2013 struct sk_buff *nskb = skb_copy(skb, pri); 2014 2015 /* Free our shared copy */ 2016 if (likely(nskb)) 2017 consume_skb(skb); 2018 else 2019 kfree_skb(skb); 2020 skb = nskb; 2021 } 2022 return skb; 2023 } 2024 2025 /** 2026 * skb_peek - peek at the head of an &sk_buff_head 2027 * @list_: list to peek at 2028 * 2029 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2030 * be careful with this one. A peek leaves the buffer on the 2031 * list and someone else may run off with it. You must hold 2032 * the appropriate locks or have a private queue to do this. 2033 * 2034 * Returns %NULL for an empty list or a pointer to the head element. 2035 * The reference count is not incremented and the reference is therefore 2036 * volatile. Use with caution. 2037 */ 2038 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2039 { 2040 struct sk_buff *skb = list_->next; 2041 2042 if (skb == (struct sk_buff *)list_) 2043 skb = NULL; 2044 return skb; 2045 } 2046 2047 /** 2048 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2049 * @list_: list to peek at 2050 * 2051 * Like skb_peek(), but the caller knows that the list is not empty. 2052 */ 2053 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2054 { 2055 return list_->next; 2056 } 2057 2058 /** 2059 * skb_peek_next - peek skb following the given one from a queue 2060 * @skb: skb to start from 2061 * @list_: list to peek at 2062 * 2063 * Returns %NULL when the end of the list is met or a pointer to the 2064 * next element. The reference count is not incremented and the 2065 * reference is therefore volatile. Use with caution. 2066 */ 2067 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2068 const struct sk_buff_head *list_) 2069 { 2070 struct sk_buff *next = skb->next; 2071 2072 if (next == (struct sk_buff *)list_) 2073 next = NULL; 2074 return next; 2075 } 2076 2077 /** 2078 * skb_peek_tail - peek at the tail of an &sk_buff_head 2079 * @list_: list to peek at 2080 * 2081 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2082 * be careful with this one. A peek leaves the buffer on the 2083 * list and someone else may run off with it. You must hold 2084 * the appropriate locks or have a private queue to do this. 2085 * 2086 * Returns %NULL for an empty list or a pointer to the tail element. 2087 * The reference count is not incremented and the reference is therefore 2088 * volatile. Use with caution. 2089 */ 2090 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2091 { 2092 struct sk_buff *skb = READ_ONCE(list_->prev); 2093 2094 if (skb == (struct sk_buff *)list_) 2095 skb = NULL; 2096 return skb; 2097 2098 } 2099 2100 /** 2101 * skb_queue_len - get queue length 2102 * @list_: list to measure 2103 * 2104 * Return the length of an &sk_buff queue. 2105 */ 2106 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2107 { 2108 return list_->qlen; 2109 } 2110 2111 /** 2112 * skb_queue_len_lockless - get queue length 2113 * @list_: list to measure 2114 * 2115 * Return the length of an &sk_buff queue. 2116 * This variant can be used in lockless contexts. 2117 */ 2118 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2119 { 2120 return READ_ONCE(list_->qlen); 2121 } 2122 2123 /** 2124 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2125 * @list: queue to initialize 2126 * 2127 * This initializes only the list and queue length aspects of 2128 * an sk_buff_head object. This allows to initialize the list 2129 * aspects of an sk_buff_head without reinitializing things like 2130 * the spinlock. It can also be used for on-stack sk_buff_head 2131 * objects where the spinlock is known to not be used. 2132 */ 2133 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2134 { 2135 list->prev = list->next = (struct sk_buff *)list; 2136 list->qlen = 0; 2137 } 2138 2139 /* 2140 * This function creates a split out lock class for each invocation; 2141 * this is needed for now since a whole lot of users of the skb-queue 2142 * infrastructure in drivers have different locking usage (in hardirq) 2143 * than the networking core (in softirq only). In the long run either the 2144 * network layer or drivers should need annotation to consolidate the 2145 * main types of usage into 3 classes. 2146 */ 2147 static inline void skb_queue_head_init(struct sk_buff_head *list) 2148 { 2149 spin_lock_init(&list->lock); 2150 __skb_queue_head_init(list); 2151 } 2152 2153 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2154 struct lock_class_key *class) 2155 { 2156 skb_queue_head_init(list); 2157 lockdep_set_class(&list->lock, class); 2158 } 2159 2160 /* 2161 * Insert an sk_buff on a list. 2162 * 2163 * The "__skb_xxxx()" functions are the non-atomic ones that 2164 * can only be called with interrupts disabled. 2165 */ 2166 static inline void __skb_insert(struct sk_buff *newsk, 2167 struct sk_buff *prev, struct sk_buff *next, 2168 struct sk_buff_head *list) 2169 { 2170 /* See skb_queue_empty_lockless() and skb_peek_tail() 2171 * for the opposite READ_ONCE() 2172 */ 2173 WRITE_ONCE(newsk->next, next); 2174 WRITE_ONCE(newsk->prev, prev); 2175 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2176 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2177 WRITE_ONCE(list->qlen, list->qlen + 1); 2178 } 2179 2180 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2181 struct sk_buff *prev, 2182 struct sk_buff *next) 2183 { 2184 struct sk_buff *first = list->next; 2185 struct sk_buff *last = list->prev; 2186 2187 WRITE_ONCE(first->prev, prev); 2188 WRITE_ONCE(prev->next, first); 2189 2190 WRITE_ONCE(last->next, next); 2191 WRITE_ONCE(next->prev, last); 2192 } 2193 2194 /** 2195 * skb_queue_splice - join two skb lists, this is designed for stacks 2196 * @list: the new list to add 2197 * @head: the place to add it in the first list 2198 */ 2199 static inline void skb_queue_splice(const struct sk_buff_head *list, 2200 struct sk_buff_head *head) 2201 { 2202 if (!skb_queue_empty(list)) { 2203 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2204 head->qlen += list->qlen; 2205 } 2206 } 2207 2208 /** 2209 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2210 * @list: the new list to add 2211 * @head: the place to add it in the first list 2212 * 2213 * The list at @list is reinitialised 2214 */ 2215 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2216 struct sk_buff_head *head) 2217 { 2218 if (!skb_queue_empty(list)) { 2219 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2220 head->qlen += list->qlen; 2221 __skb_queue_head_init(list); 2222 } 2223 } 2224 2225 /** 2226 * skb_queue_splice_tail - join two skb lists, each list being a queue 2227 * @list: the new list to add 2228 * @head: the place to add it in the first list 2229 */ 2230 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2231 struct sk_buff_head *head) 2232 { 2233 if (!skb_queue_empty(list)) { 2234 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2235 head->qlen += list->qlen; 2236 } 2237 } 2238 2239 /** 2240 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2241 * @list: the new list to add 2242 * @head: the place to add it in the first list 2243 * 2244 * Each of the lists is a queue. 2245 * The list at @list is reinitialised 2246 */ 2247 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2248 struct sk_buff_head *head) 2249 { 2250 if (!skb_queue_empty(list)) { 2251 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2252 head->qlen += list->qlen; 2253 __skb_queue_head_init(list); 2254 } 2255 } 2256 2257 /** 2258 * __skb_queue_after - queue a buffer at the list head 2259 * @list: list to use 2260 * @prev: place after this buffer 2261 * @newsk: buffer to queue 2262 * 2263 * Queue a buffer int the middle of a list. This function takes no locks 2264 * and you must therefore hold required locks before calling it. 2265 * 2266 * A buffer cannot be placed on two lists at the same time. 2267 */ 2268 static inline void __skb_queue_after(struct sk_buff_head *list, 2269 struct sk_buff *prev, 2270 struct sk_buff *newsk) 2271 { 2272 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2273 } 2274 2275 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2276 struct sk_buff_head *list); 2277 2278 static inline void __skb_queue_before(struct sk_buff_head *list, 2279 struct sk_buff *next, 2280 struct sk_buff *newsk) 2281 { 2282 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2283 } 2284 2285 /** 2286 * __skb_queue_head - queue a buffer at the list head 2287 * @list: list to use 2288 * @newsk: buffer to queue 2289 * 2290 * Queue a buffer at the start of a list. This function takes no locks 2291 * and you must therefore hold required locks before calling it. 2292 * 2293 * A buffer cannot be placed on two lists at the same time. 2294 */ 2295 static inline void __skb_queue_head(struct sk_buff_head *list, 2296 struct sk_buff *newsk) 2297 { 2298 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2299 } 2300 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2301 2302 /** 2303 * __skb_queue_tail - queue a buffer at the list tail 2304 * @list: list to use 2305 * @newsk: buffer to queue 2306 * 2307 * Queue a buffer at the end of a list. This function takes no locks 2308 * and you must therefore hold required locks before calling it. 2309 * 2310 * A buffer cannot be placed on two lists at the same time. 2311 */ 2312 static inline void __skb_queue_tail(struct sk_buff_head *list, 2313 struct sk_buff *newsk) 2314 { 2315 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2316 } 2317 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2318 2319 /* 2320 * remove sk_buff from list. _Must_ be called atomically, and with 2321 * the list known.. 2322 */ 2323 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2324 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2325 { 2326 struct sk_buff *next, *prev; 2327 2328 WRITE_ONCE(list->qlen, list->qlen - 1); 2329 next = skb->next; 2330 prev = skb->prev; 2331 skb->next = skb->prev = NULL; 2332 WRITE_ONCE(next->prev, prev); 2333 WRITE_ONCE(prev->next, next); 2334 } 2335 2336 /** 2337 * __skb_dequeue - remove from the head of the queue 2338 * @list: list to dequeue from 2339 * 2340 * Remove the head of the list. This function does not take any locks 2341 * so must be used with appropriate locks held only. The head item is 2342 * returned or %NULL if the list is empty. 2343 */ 2344 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2345 { 2346 struct sk_buff *skb = skb_peek(list); 2347 if (skb) 2348 __skb_unlink(skb, list); 2349 return skb; 2350 } 2351 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2352 2353 /** 2354 * __skb_dequeue_tail - remove from the tail of the queue 2355 * @list: list to dequeue from 2356 * 2357 * Remove the tail of the list. This function does not take any locks 2358 * so must be used with appropriate locks held only. The tail item is 2359 * returned or %NULL if the list is empty. 2360 */ 2361 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2362 { 2363 struct sk_buff *skb = skb_peek_tail(list); 2364 if (skb) 2365 __skb_unlink(skb, list); 2366 return skb; 2367 } 2368 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2369 2370 2371 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2372 { 2373 return skb->data_len; 2374 } 2375 2376 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2377 { 2378 return skb->len - skb->data_len; 2379 } 2380 2381 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2382 { 2383 unsigned int i, len = 0; 2384 2385 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2386 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2387 return len; 2388 } 2389 2390 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2391 { 2392 return skb_headlen(skb) + __skb_pagelen(skb); 2393 } 2394 2395 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2396 int i, struct page *page, 2397 int off, int size) 2398 { 2399 skb_frag_t *frag = &shinfo->frags[i]; 2400 2401 /* 2402 * Propagate page pfmemalloc to the skb if we can. The problem is 2403 * that not all callers have unique ownership of the page but rely 2404 * on page_is_pfmemalloc doing the right thing(tm). 2405 */ 2406 frag->bv_page = page; 2407 frag->bv_offset = off; 2408 skb_frag_size_set(frag, size); 2409 } 2410 2411 /** 2412 * skb_len_add - adds a number to len fields of skb 2413 * @skb: buffer to add len to 2414 * @delta: number of bytes to add 2415 */ 2416 static inline void skb_len_add(struct sk_buff *skb, int delta) 2417 { 2418 skb->len += delta; 2419 skb->data_len += delta; 2420 skb->truesize += delta; 2421 } 2422 2423 /** 2424 * __skb_fill_page_desc - initialise a paged fragment in an skb 2425 * @skb: buffer containing fragment to be initialised 2426 * @i: paged fragment index to initialise 2427 * @page: the page to use for this fragment 2428 * @off: the offset to the data with @page 2429 * @size: the length of the data 2430 * 2431 * Initialises the @i'th fragment of @skb to point to &size bytes at 2432 * offset @off within @page. 2433 * 2434 * Does not take any additional reference on the fragment. 2435 */ 2436 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2437 struct page *page, int off, int size) 2438 { 2439 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size); 2440 page = compound_head(page); 2441 if (page_is_pfmemalloc(page)) 2442 skb->pfmemalloc = true; 2443 } 2444 2445 /** 2446 * skb_fill_page_desc - initialise a paged fragment in an skb 2447 * @skb: buffer containing fragment to be initialised 2448 * @i: paged fragment index to initialise 2449 * @page: the page to use for this fragment 2450 * @off: the offset to the data with @page 2451 * @size: the length of the data 2452 * 2453 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2454 * @skb to point to @size bytes at offset @off within @page. In 2455 * addition updates @skb such that @i is the last fragment. 2456 * 2457 * Does not take any additional reference on the fragment. 2458 */ 2459 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2460 struct page *page, int off, int size) 2461 { 2462 __skb_fill_page_desc(skb, i, page, off, size); 2463 skb_shinfo(skb)->nr_frags = i + 1; 2464 } 2465 2466 /** 2467 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2468 * @skb: buffer containing fragment to be initialised 2469 * @i: paged fragment index to initialise 2470 * @page: the page to use for this fragment 2471 * @off: the offset to the data with @page 2472 * @size: the length of the data 2473 * 2474 * Variant of skb_fill_page_desc() which does not deal with 2475 * pfmemalloc, if page is not owned by us. 2476 */ 2477 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2478 struct page *page, int off, 2479 int size) 2480 { 2481 struct skb_shared_info *shinfo = skb_shinfo(skb); 2482 2483 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2484 shinfo->nr_frags = i + 1; 2485 } 2486 2487 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2488 int size, unsigned int truesize); 2489 2490 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2491 unsigned int truesize); 2492 2493 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2494 2495 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2496 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2497 { 2498 return skb->head + skb->tail; 2499 } 2500 2501 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2502 { 2503 skb->tail = skb->data - skb->head; 2504 } 2505 2506 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2507 { 2508 skb_reset_tail_pointer(skb); 2509 skb->tail += offset; 2510 } 2511 2512 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2513 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2514 { 2515 return skb->tail; 2516 } 2517 2518 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2519 { 2520 skb->tail = skb->data; 2521 } 2522 2523 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2524 { 2525 skb->tail = skb->data + offset; 2526 } 2527 2528 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2529 2530 static inline void skb_assert_len(struct sk_buff *skb) 2531 { 2532 #ifdef CONFIG_DEBUG_NET 2533 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2534 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2535 #endif /* CONFIG_DEBUG_NET */ 2536 } 2537 2538 /* 2539 * Add data to an sk_buff 2540 */ 2541 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2542 void *skb_put(struct sk_buff *skb, unsigned int len); 2543 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2544 { 2545 void *tmp = skb_tail_pointer(skb); 2546 SKB_LINEAR_ASSERT(skb); 2547 skb->tail += len; 2548 skb->len += len; 2549 return tmp; 2550 } 2551 2552 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2553 { 2554 void *tmp = __skb_put(skb, len); 2555 2556 memset(tmp, 0, len); 2557 return tmp; 2558 } 2559 2560 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2561 unsigned int len) 2562 { 2563 void *tmp = __skb_put(skb, len); 2564 2565 memcpy(tmp, data, len); 2566 return tmp; 2567 } 2568 2569 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2570 { 2571 *(u8 *)__skb_put(skb, 1) = val; 2572 } 2573 2574 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2575 { 2576 void *tmp = skb_put(skb, len); 2577 2578 memset(tmp, 0, len); 2579 2580 return tmp; 2581 } 2582 2583 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2584 unsigned int len) 2585 { 2586 void *tmp = skb_put(skb, len); 2587 2588 memcpy(tmp, data, len); 2589 2590 return tmp; 2591 } 2592 2593 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2594 { 2595 *(u8 *)skb_put(skb, 1) = val; 2596 } 2597 2598 void *skb_push(struct sk_buff *skb, unsigned int len); 2599 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2600 { 2601 skb->data -= len; 2602 skb->len += len; 2603 return skb->data; 2604 } 2605 2606 void *skb_pull(struct sk_buff *skb, unsigned int len); 2607 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2608 { 2609 skb->len -= len; 2610 if (unlikely(skb->len < skb->data_len)) { 2611 #if defined(CONFIG_DEBUG_NET) 2612 skb->len += len; 2613 pr_err("__skb_pull(len=%u)\n", len); 2614 skb_dump(KERN_ERR, skb, false); 2615 #endif 2616 BUG(); 2617 } 2618 return skb->data += len; 2619 } 2620 2621 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2622 { 2623 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2624 } 2625 2626 void *skb_pull_data(struct sk_buff *skb, size_t len); 2627 2628 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2629 2630 static inline enum skb_drop_reason 2631 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2632 { 2633 if (likely(len <= skb_headlen(skb))) 2634 return SKB_NOT_DROPPED_YET; 2635 2636 if (unlikely(len > skb->len)) 2637 return SKB_DROP_REASON_PKT_TOO_SMALL; 2638 2639 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2640 return SKB_DROP_REASON_NOMEM; 2641 2642 return SKB_NOT_DROPPED_YET; 2643 } 2644 2645 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2646 { 2647 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2648 } 2649 2650 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2651 { 2652 if (!pskb_may_pull(skb, len)) 2653 return NULL; 2654 2655 skb->len -= len; 2656 return skb->data += len; 2657 } 2658 2659 void skb_condense(struct sk_buff *skb); 2660 2661 /** 2662 * skb_headroom - bytes at buffer head 2663 * @skb: buffer to check 2664 * 2665 * Return the number of bytes of free space at the head of an &sk_buff. 2666 */ 2667 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2668 { 2669 return skb->data - skb->head; 2670 } 2671 2672 /** 2673 * skb_tailroom - bytes at buffer end 2674 * @skb: buffer to check 2675 * 2676 * Return the number of bytes of free space at the tail of an sk_buff 2677 */ 2678 static inline int skb_tailroom(const struct sk_buff *skb) 2679 { 2680 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2681 } 2682 2683 /** 2684 * skb_availroom - bytes at buffer end 2685 * @skb: buffer to check 2686 * 2687 * Return the number of bytes of free space at the tail of an sk_buff 2688 * allocated by sk_stream_alloc() 2689 */ 2690 static inline int skb_availroom(const struct sk_buff *skb) 2691 { 2692 if (skb_is_nonlinear(skb)) 2693 return 0; 2694 2695 return skb->end - skb->tail - skb->reserved_tailroom; 2696 } 2697 2698 /** 2699 * skb_reserve - adjust headroom 2700 * @skb: buffer to alter 2701 * @len: bytes to move 2702 * 2703 * Increase the headroom of an empty &sk_buff by reducing the tail 2704 * room. This is only allowed for an empty buffer. 2705 */ 2706 static inline void skb_reserve(struct sk_buff *skb, int len) 2707 { 2708 skb->data += len; 2709 skb->tail += len; 2710 } 2711 2712 /** 2713 * skb_tailroom_reserve - adjust reserved_tailroom 2714 * @skb: buffer to alter 2715 * @mtu: maximum amount of headlen permitted 2716 * @needed_tailroom: minimum amount of reserved_tailroom 2717 * 2718 * Set reserved_tailroom so that headlen can be as large as possible but 2719 * not larger than mtu and tailroom cannot be smaller than 2720 * needed_tailroom. 2721 * The required headroom should already have been reserved before using 2722 * this function. 2723 */ 2724 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2725 unsigned int needed_tailroom) 2726 { 2727 SKB_LINEAR_ASSERT(skb); 2728 if (mtu < skb_tailroom(skb) - needed_tailroom) 2729 /* use at most mtu */ 2730 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2731 else 2732 /* use up to all available space */ 2733 skb->reserved_tailroom = needed_tailroom; 2734 } 2735 2736 #define ENCAP_TYPE_ETHER 0 2737 #define ENCAP_TYPE_IPPROTO 1 2738 2739 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2740 __be16 protocol) 2741 { 2742 skb->inner_protocol = protocol; 2743 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2744 } 2745 2746 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2747 __u8 ipproto) 2748 { 2749 skb->inner_ipproto = ipproto; 2750 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2751 } 2752 2753 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2754 { 2755 skb->inner_mac_header = skb->mac_header; 2756 skb->inner_network_header = skb->network_header; 2757 skb->inner_transport_header = skb->transport_header; 2758 } 2759 2760 static inline void skb_reset_mac_len(struct sk_buff *skb) 2761 { 2762 skb->mac_len = skb->network_header - skb->mac_header; 2763 } 2764 2765 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2766 *skb) 2767 { 2768 return skb->head + skb->inner_transport_header; 2769 } 2770 2771 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2772 { 2773 return skb_inner_transport_header(skb) - skb->data; 2774 } 2775 2776 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2777 { 2778 skb->inner_transport_header = skb->data - skb->head; 2779 } 2780 2781 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2782 const int offset) 2783 { 2784 skb_reset_inner_transport_header(skb); 2785 skb->inner_transport_header += offset; 2786 } 2787 2788 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2789 { 2790 return skb->head + skb->inner_network_header; 2791 } 2792 2793 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2794 { 2795 skb->inner_network_header = skb->data - skb->head; 2796 } 2797 2798 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2799 const int offset) 2800 { 2801 skb_reset_inner_network_header(skb); 2802 skb->inner_network_header += offset; 2803 } 2804 2805 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2806 { 2807 return skb->head + skb->inner_mac_header; 2808 } 2809 2810 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2811 { 2812 skb->inner_mac_header = skb->data - skb->head; 2813 } 2814 2815 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2816 const int offset) 2817 { 2818 skb_reset_inner_mac_header(skb); 2819 skb->inner_mac_header += offset; 2820 } 2821 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2822 { 2823 return skb->transport_header != (typeof(skb->transport_header))~0U; 2824 } 2825 2826 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2827 { 2828 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2829 return skb->head + skb->transport_header; 2830 } 2831 2832 static inline void skb_reset_transport_header(struct sk_buff *skb) 2833 { 2834 skb->transport_header = skb->data - skb->head; 2835 } 2836 2837 static inline void skb_set_transport_header(struct sk_buff *skb, 2838 const int offset) 2839 { 2840 skb_reset_transport_header(skb); 2841 skb->transport_header += offset; 2842 } 2843 2844 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2845 { 2846 return skb->head + skb->network_header; 2847 } 2848 2849 static inline void skb_reset_network_header(struct sk_buff *skb) 2850 { 2851 skb->network_header = skb->data - skb->head; 2852 } 2853 2854 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2855 { 2856 skb_reset_network_header(skb); 2857 skb->network_header += offset; 2858 } 2859 2860 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2861 { 2862 return skb->mac_header != (typeof(skb->mac_header))~0U; 2863 } 2864 2865 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2866 { 2867 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2868 return skb->head + skb->mac_header; 2869 } 2870 2871 static inline int skb_mac_offset(const struct sk_buff *skb) 2872 { 2873 return skb_mac_header(skb) - skb->data; 2874 } 2875 2876 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2877 { 2878 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2879 return skb->network_header - skb->mac_header; 2880 } 2881 2882 static inline void skb_unset_mac_header(struct sk_buff *skb) 2883 { 2884 skb->mac_header = (typeof(skb->mac_header))~0U; 2885 } 2886 2887 static inline void skb_reset_mac_header(struct sk_buff *skb) 2888 { 2889 skb->mac_header = skb->data - skb->head; 2890 } 2891 2892 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2893 { 2894 skb_reset_mac_header(skb); 2895 skb->mac_header += offset; 2896 } 2897 2898 static inline void skb_pop_mac_header(struct sk_buff *skb) 2899 { 2900 skb->mac_header = skb->network_header; 2901 } 2902 2903 static inline void skb_probe_transport_header(struct sk_buff *skb) 2904 { 2905 struct flow_keys_basic keys; 2906 2907 if (skb_transport_header_was_set(skb)) 2908 return; 2909 2910 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2911 NULL, 0, 0, 0, 0)) 2912 skb_set_transport_header(skb, keys.control.thoff); 2913 } 2914 2915 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2916 { 2917 if (skb_mac_header_was_set(skb)) { 2918 const unsigned char *old_mac = skb_mac_header(skb); 2919 2920 skb_set_mac_header(skb, -skb->mac_len); 2921 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2922 } 2923 } 2924 2925 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2926 { 2927 return skb->csum_start - skb_headroom(skb); 2928 } 2929 2930 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2931 { 2932 return skb->head + skb->csum_start; 2933 } 2934 2935 static inline int skb_transport_offset(const struct sk_buff *skb) 2936 { 2937 return skb_transport_header(skb) - skb->data; 2938 } 2939 2940 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2941 { 2942 return skb->transport_header - skb->network_header; 2943 } 2944 2945 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2946 { 2947 return skb->inner_transport_header - skb->inner_network_header; 2948 } 2949 2950 static inline int skb_network_offset(const struct sk_buff *skb) 2951 { 2952 return skb_network_header(skb) - skb->data; 2953 } 2954 2955 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2956 { 2957 return skb_inner_network_header(skb) - skb->data; 2958 } 2959 2960 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2961 { 2962 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2963 } 2964 2965 /* 2966 * CPUs often take a performance hit when accessing unaligned memory 2967 * locations. The actual performance hit varies, it can be small if the 2968 * hardware handles it or large if we have to take an exception and fix it 2969 * in software. 2970 * 2971 * Since an ethernet header is 14 bytes network drivers often end up with 2972 * the IP header at an unaligned offset. The IP header can be aligned by 2973 * shifting the start of the packet by 2 bytes. Drivers should do this 2974 * with: 2975 * 2976 * skb_reserve(skb, NET_IP_ALIGN); 2977 * 2978 * The downside to this alignment of the IP header is that the DMA is now 2979 * unaligned. On some architectures the cost of an unaligned DMA is high 2980 * and this cost outweighs the gains made by aligning the IP header. 2981 * 2982 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2983 * to be overridden. 2984 */ 2985 #ifndef NET_IP_ALIGN 2986 #define NET_IP_ALIGN 2 2987 #endif 2988 2989 /* 2990 * The networking layer reserves some headroom in skb data (via 2991 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2992 * the header has to grow. In the default case, if the header has to grow 2993 * 32 bytes or less we avoid the reallocation. 2994 * 2995 * Unfortunately this headroom changes the DMA alignment of the resulting 2996 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2997 * on some architectures. An architecture can override this value, 2998 * perhaps setting it to a cacheline in size (since that will maintain 2999 * cacheline alignment of the DMA). It must be a power of 2. 3000 * 3001 * Various parts of the networking layer expect at least 32 bytes of 3002 * headroom, you should not reduce this. 3003 * 3004 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3005 * to reduce average number of cache lines per packet. 3006 * get_rps_cpu() for example only access one 64 bytes aligned block : 3007 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3008 */ 3009 #ifndef NET_SKB_PAD 3010 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3011 #endif 3012 3013 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3014 3015 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3016 { 3017 if (WARN_ON(skb_is_nonlinear(skb))) 3018 return; 3019 skb->len = len; 3020 skb_set_tail_pointer(skb, len); 3021 } 3022 3023 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3024 { 3025 __skb_set_length(skb, len); 3026 } 3027 3028 void skb_trim(struct sk_buff *skb, unsigned int len); 3029 3030 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3031 { 3032 if (skb->data_len) 3033 return ___pskb_trim(skb, len); 3034 __skb_trim(skb, len); 3035 return 0; 3036 } 3037 3038 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3039 { 3040 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3041 } 3042 3043 /** 3044 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3045 * @skb: buffer to alter 3046 * @len: new length 3047 * 3048 * This is identical to pskb_trim except that the caller knows that 3049 * the skb is not cloned so we should never get an error due to out- 3050 * of-memory. 3051 */ 3052 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3053 { 3054 int err = pskb_trim(skb, len); 3055 BUG_ON(err); 3056 } 3057 3058 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3059 { 3060 unsigned int diff = len - skb->len; 3061 3062 if (skb_tailroom(skb) < diff) { 3063 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3064 GFP_ATOMIC); 3065 if (ret) 3066 return ret; 3067 } 3068 __skb_set_length(skb, len); 3069 return 0; 3070 } 3071 3072 /** 3073 * skb_orphan - orphan a buffer 3074 * @skb: buffer to orphan 3075 * 3076 * If a buffer currently has an owner then we call the owner's 3077 * destructor function and make the @skb unowned. The buffer continues 3078 * to exist but is no longer charged to its former owner. 3079 */ 3080 static inline void skb_orphan(struct sk_buff *skb) 3081 { 3082 if (skb->destructor) { 3083 skb->destructor(skb); 3084 skb->destructor = NULL; 3085 skb->sk = NULL; 3086 } else { 3087 BUG_ON(skb->sk); 3088 } 3089 } 3090 3091 /** 3092 * skb_orphan_frags - orphan the frags contained in a buffer 3093 * @skb: buffer to orphan frags from 3094 * @gfp_mask: allocation mask for replacement pages 3095 * 3096 * For each frag in the SKB which needs a destructor (i.e. has an 3097 * owner) create a copy of that frag and release the original 3098 * page by calling the destructor. 3099 */ 3100 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3101 { 3102 if (likely(!skb_zcopy(skb))) 3103 return 0; 3104 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3105 return 0; 3106 return skb_copy_ubufs(skb, gfp_mask); 3107 } 3108 3109 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3110 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3111 { 3112 if (likely(!skb_zcopy(skb))) 3113 return 0; 3114 return skb_copy_ubufs(skb, gfp_mask); 3115 } 3116 3117 /** 3118 * __skb_queue_purge - empty a list 3119 * @list: list to empty 3120 * 3121 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3122 * the list and one reference dropped. This function does not take the 3123 * list lock and the caller must hold the relevant locks to use it. 3124 */ 3125 static inline void __skb_queue_purge(struct sk_buff_head *list) 3126 { 3127 struct sk_buff *skb; 3128 while ((skb = __skb_dequeue(list)) != NULL) 3129 kfree_skb(skb); 3130 } 3131 void skb_queue_purge(struct sk_buff_head *list); 3132 3133 unsigned int skb_rbtree_purge(struct rb_root *root); 3134 3135 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3136 3137 /** 3138 * netdev_alloc_frag - allocate a page fragment 3139 * @fragsz: fragment size 3140 * 3141 * Allocates a frag from a page for receive buffer. 3142 * Uses GFP_ATOMIC allocations. 3143 */ 3144 static inline void *netdev_alloc_frag(unsigned int fragsz) 3145 { 3146 return __netdev_alloc_frag_align(fragsz, ~0u); 3147 } 3148 3149 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3150 unsigned int align) 3151 { 3152 WARN_ON_ONCE(!is_power_of_2(align)); 3153 return __netdev_alloc_frag_align(fragsz, -align); 3154 } 3155 3156 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3157 gfp_t gfp_mask); 3158 3159 /** 3160 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3161 * @dev: network device to receive on 3162 * @length: length to allocate 3163 * 3164 * Allocate a new &sk_buff and assign it a usage count of one. The 3165 * buffer has unspecified headroom built in. Users should allocate 3166 * the headroom they think they need without accounting for the 3167 * built in space. The built in space is used for optimisations. 3168 * 3169 * %NULL is returned if there is no free memory. Although this function 3170 * allocates memory it can be called from an interrupt. 3171 */ 3172 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3173 unsigned int length) 3174 { 3175 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3176 } 3177 3178 /* legacy helper around __netdev_alloc_skb() */ 3179 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3180 gfp_t gfp_mask) 3181 { 3182 return __netdev_alloc_skb(NULL, length, gfp_mask); 3183 } 3184 3185 /* legacy helper around netdev_alloc_skb() */ 3186 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3187 { 3188 return netdev_alloc_skb(NULL, length); 3189 } 3190 3191 3192 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3193 unsigned int length, gfp_t gfp) 3194 { 3195 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3196 3197 if (NET_IP_ALIGN && skb) 3198 skb_reserve(skb, NET_IP_ALIGN); 3199 return skb; 3200 } 3201 3202 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3203 unsigned int length) 3204 { 3205 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3206 } 3207 3208 static inline void skb_free_frag(void *addr) 3209 { 3210 page_frag_free(addr); 3211 } 3212 3213 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3214 3215 static inline void *napi_alloc_frag(unsigned int fragsz) 3216 { 3217 return __napi_alloc_frag_align(fragsz, ~0u); 3218 } 3219 3220 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3221 unsigned int align) 3222 { 3223 WARN_ON_ONCE(!is_power_of_2(align)); 3224 return __napi_alloc_frag_align(fragsz, -align); 3225 } 3226 3227 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3228 unsigned int length, gfp_t gfp_mask); 3229 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3230 unsigned int length) 3231 { 3232 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3233 } 3234 void napi_consume_skb(struct sk_buff *skb, int budget); 3235 3236 void napi_skb_free_stolen_head(struct sk_buff *skb); 3237 void __kfree_skb_defer(struct sk_buff *skb); 3238 3239 /** 3240 * __dev_alloc_pages - allocate page for network Rx 3241 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3242 * @order: size of the allocation 3243 * 3244 * Allocate a new page. 3245 * 3246 * %NULL is returned if there is no free memory. 3247 */ 3248 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3249 unsigned int order) 3250 { 3251 /* This piece of code contains several assumptions. 3252 * 1. This is for device Rx, therefor a cold page is preferred. 3253 * 2. The expectation is the user wants a compound page. 3254 * 3. If requesting a order 0 page it will not be compound 3255 * due to the check to see if order has a value in prep_new_page 3256 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3257 * code in gfp_to_alloc_flags that should be enforcing this. 3258 */ 3259 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3260 3261 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3262 } 3263 3264 static inline struct page *dev_alloc_pages(unsigned int order) 3265 { 3266 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3267 } 3268 3269 /** 3270 * __dev_alloc_page - allocate a page for network Rx 3271 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3272 * 3273 * Allocate a new page. 3274 * 3275 * %NULL is returned if there is no free memory. 3276 */ 3277 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3278 { 3279 return __dev_alloc_pages(gfp_mask, 0); 3280 } 3281 3282 static inline struct page *dev_alloc_page(void) 3283 { 3284 return dev_alloc_pages(0); 3285 } 3286 3287 /** 3288 * dev_page_is_reusable - check whether a page can be reused for network Rx 3289 * @page: the page to test 3290 * 3291 * A page shouldn't be considered for reusing/recycling if it was allocated 3292 * under memory pressure or at a distant memory node. 3293 * 3294 * Returns false if this page should be returned to page allocator, true 3295 * otherwise. 3296 */ 3297 static inline bool dev_page_is_reusable(const struct page *page) 3298 { 3299 return likely(page_to_nid(page) == numa_mem_id() && 3300 !page_is_pfmemalloc(page)); 3301 } 3302 3303 /** 3304 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3305 * @page: The page that was allocated from skb_alloc_page 3306 * @skb: The skb that may need pfmemalloc set 3307 */ 3308 static inline void skb_propagate_pfmemalloc(const struct page *page, 3309 struct sk_buff *skb) 3310 { 3311 if (page_is_pfmemalloc(page)) 3312 skb->pfmemalloc = true; 3313 } 3314 3315 /** 3316 * skb_frag_off() - Returns the offset of a skb fragment 3317 * @frag: the paged fragment 3318 */ 3319 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3320 { 3321 return frag->bv_offset; 3322 } 3323 3324 /** 3325 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3326 * @frag: skb fragment 3327 * @delta: value to add 3328 */ 3329 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3330 { 3331 frag->bv_offset += delta; 3332 } 3333 3334 /** 3335 * skb_frag_off_set() - Sets the offset of a skb fragment 3336 * @frag: skb fragment 3337 * @offset: offset of fragment 3338 */ 3339 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3340 { 3341 frag->bv_offset = offset; 3342 } 3343 3344 /** 3345 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3346 * @fragto: skb fragment where offset is set 3347 * @fragfrom: skb fragment offset is copied from 3348 */ 3349 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3350 const skb_frag_t *fragfrom) 3351 { 3352 fragto->bv_offset = fragfrom->bv_offset; 3353 } 3354 3355 /** 3356 * skb_frag_page - retrieve the page referred to by a paged fragment 3357 * @frag: the paged fragment 3358 * 3359 * Returns the &struct page associated with @frag. 3360 */ 3361 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3362 { 3363 return frag->bv_page; 3364 } 3365 3366 /** 3367 * __skb_frag_ref - take an addition reference on a paged fragment. 3368 * @frag: the paged fragment 3369 * 3370 * Takes an additional reference on the paged fragment @frag. 3371 */ 3372 static inline void __skb_frag_ref(skb_frag_t *frag) 3373 { 3374 get_page(skb_frag_page(frag)); 3375 } 3376 3377 /** 3378 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3379 * @skb: the buffer 3380 * @f: the fragment offset. 3381 * 3382 * Takes an additional reference on the @f'th paged fragment of @skb. 3383 */ 3384 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3385 { 3386 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3387 } 3388 3389 /** 3390 * __skb_frag_unref - release a reference on a paged fragment. 3391 * @frag: the paged fragment 3392 * @recycle: recycle the page if allocated via page_pool 3393 * 3394 * Releases a reference on the paged fragment @frag 3395 * or recycles the page via the page_pool API. 3396 */ 3397 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3398 { 3399 struct page *page = skb_frag_page(frag); 3400 3401 #ifdef CONFIG_PAGE_POOL 3402 if (recycle && page_pool_return_skb_page(page)) 3403 return; 3404 #endif 3405 put_page(page); 3406 } 3407 3408 /** 3409 * skb_frag_unref - release a reference on a paged fragment of an skb. 3410 * @skb: the buffer 3411 * @f: the fragment offset 3412 * 3413 * Releases a reference on the @f'th paged fragment of @skb. 3414 */ 3415 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3416 { 3417 struct skb_shared_info *shinfo = skb_shinfo(skb); 3418 3419 if (!skb_zcopy_managed(skb)) 3420 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); 3421 } 3422 3423 /** 3424 * skb_frag_address - gets the address of the data contained in a paged fragment 3425 * @frag: the paged fragment buffer 3426 * 3427 * Returns the address of the data within @frag. The page must already 3428 * be mapped. 3429 */ 3430 static inline void *skb_frag_address(const skb_frag_t *frag) 3431 { 3432 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3433 } 3434 3435 /** 3436 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3437 * @frag: the paged fragment buffer 3438 * 3439 * Returns the address of the data within @frag. Checks that the page 3440 * is mapped and returns %NULL otherwise. 3441 */ 3442 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3443 { 3444 void *ptr = page_address(skb_frag_page(frag)); 3445 if (unlikely(!ptr)) 3446 return NULL; 3447 3448 return ptr + skb_frag_off(frag); 3449 } 3450 3451 /** 3452 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3453 * @fragto: skb fragment where page is set 3454 * @fragfrom: skb fragment page is copied from 3455 */ 3456 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3457 const skb_frag_t *fragfrom) 3458 { 3459 fragto->bv_page = fragfrom->bv_page; 3460 } 3461 3462 /** 3463 * __skb_frag_set_page - sets the page contained in a paged fragment 3464 * @frag: the paged fragment 3465 * @page: the page to set 3466 * 3467 * Sets the fragment @frag to contain @page. 3468 */ 3469 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3470 { 3471 frag->bv_page = page; 3472 } 3473 3474 /** 3475 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3476 * @skb: the buffer 3477 * @f: the fragment offset 3478 * @page: the page to set 3479 * 3480 * Sets the @f'th fragment of @skb to contain @page. 3481 */ 3482 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3483 struct page *page) 3484 { 3485 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3486 } 3487 3488 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3489 3490 /** 3491 * skb_frag_dma_map - maps a paged fragment via the DMA API 3492 * @dev: the device to map the fragment to 3493 * @frag: the paged fragment to map 3494 * @offset: the offset within the fragment (starting at the 3495 * fragment's own offset) 3496 * @size: the number of bytes to map 3497 * @dir: the direction of the mapping (``PCI_DMA_*``) 3498 * 3499 * Maps the page associated with @frag to @device. 3500 */ 3501 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3502 const skb_frag_t *frag, 3503 size_t offset, size_t size, 3504 enum dma_data_direction dir) 3505 { 3506 return dma_map_page(dev, skb_frag_page(frag), 3507 skb_frag_off(frag) + offset, size, dir); 3508 } 3509 3510 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3511 gfp_t gfp_mask) 3512 { 3513 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3514 } 3515 3516 3517 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3518 gfp_t gfp_mask) 3519 { 3520 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3521 } 3522 3523 3524 /** 3525 * skb_clone_writable - is the header of a clone writable 3526 * @skb: buffer to check 3527 * @len: length up to which to write 3528 * 3529 * Returns true if modifying the header part of the cloned buffer 3530 * does not requires the data to be copied. 3531 */ 3532 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3533 { 3534 return !skb_header_cloned(skb) && 3535 skb_headroom(skb) + len <= skb->hdr_len; 3536 } 3537 3538 static inline int skb_try_make_writable(struct sk_buff *skb, 3539 unsigned int write_len) 3540 { 3541 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3542 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3543 } 3544 3545 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3546 int cloned) 3547 { 3548 int delta = 0; 3549 3550 if (headroom > skb_headroom(skb)) 3551 delta = headroom - skb_headroom(skb); 3552 3553 if (delta || cloned) 3554 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3555 GFP_ATOMIC); 3556 return 0; 3557 } 3558 3559 /** 3560 * skb_cow - copy header of skb when it is required 3561 * @skb: buffer to cow 3562 * @headroom: needed headroom 3563 * 3564 * If the skb passed lacks sufficient headroom or its data part 3565 * is shared, data is reallocated. If reallocation fails, an error 3566 * is returned and original skb is not changed. 3567 * 3568 * The result is skb with writable area skb->head...skb->tail 3569 * and at least @headroom of space at head. 3570 */ 3571 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3572 { 3573 return __skb_cow(skb, headroom, skb_cloned(skb)); 3574 } 3575 3576 /** 3577 * skb_cow_head - skb_cow but only making the head writable 3578 * @skb: buffer to cow 3579 * @headroom: needed headroom 3580 * 3581 * This function is identical to skb_cow except that we replace the 3582 * skb_cloned check by skb_header_cloned. It should be used when 3583 * you only need to push on some header and do not need to modify 3584 * the data. 3585 */ 3586 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3587 { 3588 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3589 } 3590 3591 /** 3592 * skb_padto - pad an skbuff up to a minimal size 3593 * @skb: buffer to pad 3594 * @len: minimal length 3595 * 3596 * Pads up a buffer to ensure the trailing bytes exist and are 3597 * blanked. If the buffer already contains sufficient data it 3598 * is untouched. Otherwise it is extended. Returns zero on 3599 * success. The skb is freed on error. 3600 */ 3601 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3602 { 3603 unsigned int size = skb->len; 3604 if (likely(size >= len)) 3605 return 0; 3606 return skb_pad(skb, len - size); 3607 } 3608 3609 /** 3610 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3611 * @skb: buffer to pad 3612 * @len: minimal length 3613 * @free_on_error: free buffer on error 3614 * 3615 * Pads up a buffer to ensure the trailing bytes exist and are 3616 * blanked. If the buffer already contains sufficient data it 3617 * is untouched. Otherwise it is extended. Returns zero on 3618 * success. The skb is freed on error if @free_on_error is true. 3619 */ 3620 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3621 unsigned int len, 3622 bool free_on_error) 3623 { 3624 unsigned int size = skb->len; 3625 3626 if (unlikely(size < len)) { 3627 len -= size; 3628 if (__skb_pad(skb, len, free_on_error)) 3629 return -ENOMEM; 3630 __skb_put(skb, len); 3631 } 3632 return 0; 3633 } 3634 3635 /** 3636 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3637 * @skb: buffer to pad 3638 * @len: minimal length 3639 * 3640 * Pads up a buffer to ensure the trailing bytes exist and are 3641 * blanked. If the buffer already contains sufficient data it 3642 * is untouched. Otherwise it is extended. Returns zero on 3643 * success. The skb is freed on error. 3644 */ 3645 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3646 { 3647 return __skb_put_padto(skb, len, true); 3648 } 3649 3650 static inline int skb_add_data(struct sk_buff *skb, 3651 struct iov_iter *from, int copy) 3652 { 3653 const int off = skb->len; 3654 3655 if (skb->ip_summed == CHECKSUM_NONE) { 3656 __wsum csum = 0; 3657 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3658 &csum, from)) { 3659 skb->csum = csum_block_add(skb->csum, csum, off); 3660 return 0; 3661 } 3662 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3663 return 0; 3664 3665 __skb_trim(skb, off); 3666 return -EFAULT; 3667 } 3668 3669 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3670 const struct page *page, int off) 3671 { 3672 if (skb_zcopy(skb)) 3673 return false; 3674 if (i) { 3675 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3676 3677 return page == skb_frag_page(frag) && 3678 off == skb_frag_off(frag) + skb_frag_size(frag); 3679 } 3680 return false; 3681 } 3682 3683 static inline int __skb_linearize(struct sk_buff *skb) 3684 { 3685 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3686 } 3687 3688 /** 3689 * skb_linearize - convert paged skb to linear one 3690 * @skb: buffer to linarize 3691 * 3692 * If there is no free memory -ENOMEM is returned, otherwise zero 3693 * is returned and the old skb data released. 3694 */ 3695 static inline int skb_linearize(struct sk_buff *skb) 3696 { 3697 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3698 } 3699 3700 /** 3701 * skb_has_shared_frag - can any frag be overwritten 3702 * @skb: buffer to test 3703 * 3704 * Return true if the skb has at least one frag that might be modified 3705 * by an external entity (as in vmsplice()/sendfile()) 3706 */ 3707 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3708 { 3709 return skb_is_nonlinear(skb) && 3710 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3711 } 3712 3713 /** 3714 * skb_linearize_cow - make sure skb is linear and writable 3715 * @skb: buffer to process 3716 * 3717 * If there is no free memory -ENOMEM is returned, otherwise zero 3718 * is returned and the old skb data released. 3719 */ 3720 static inline int skb_linearize_cow(struct sk_buff *skb) 3721 { 3722 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3723 __skb_linearize(skb) : 0; 3724 } 3725 3726 static __always_inline void 3727 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3728 unsigned int off) 3729 { 3730 if (skb->ip_summed == CHECKSUM_COMPLETE) 3731 skb->csum = csum_block_sub(skb->csum, 3732 csum_partial(start, len, 0), off); 3733 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3734 skb_checksum_start_offset(skb) < 0) 3735 skb->ip_summed = CHECKSUM_NONE; 3736 } 3737 3738 /** 3739 * skb_postpull_rcsum - update checksum for received skb after pull 3740 * @skb: buffer to update 3741 * @start: start of data before pull 3742 * @len: length of data pulled 3743 * 3744 * After doing a pull on a received packet, you need to call this to 3745 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3746 * CHECKSUM_NONE so that it can be recomputed from scratch. 3747 */ 3748 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3749 const void *start, unsigned int len) 3750 { 3751 if (skb->ip_summed == CHECKSUM_COMPLETE) 3752 skb->csum = wsum_negate(csum_partial(start, len, 3753 wsum_negate(skb->csum))); 3754 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3755 skb_checksum_start_offset(skb) < 0) 3756 skb->ip_summed = CHECKSUM_NONE; 3757 } 3758 3759 static __always_inline void 3760 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3761 unsigned int off) 3762 { 3763 if (skb->ip_summed == CHECKSUM_COMPLETE) 3764 skb->csum = csum_block_add(skb->csum, 3765 csum_partial(start, len, 0), off); 3766 } 3767 3768 /** 3769 * skb_postpush_rcsum - update checksum for received skb after push 3770 * @skb: buffer to update 3771 * @start: start of data after push 3772 * @len: length of data pushed 3773 * 3774 * After doing a push on a received packet, you need to call this to 3775 * update the CHECKSUM_COMPLETE checksum. 3776 */ 3777 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3778 const void *start, unsigned int len) 3779 { 3780 __skb_postpush_rcsum(skb, start, len, 0); 3781 } 3782 3783 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3784 3785 /** 3786 * skb_push_rcsum - push skb and update receive checksum 3787 * @skb: buffer to update 3788 * @len: length of data pulled 3789 * 3790 * This function performs an skb_push on the packet and updates 3791 * the CHECKSUM_COMPLETE checksum. It should be used on 3792 * receive path processing instead of skb_push unless you know 3793 * that the checksum difference is zero (e.g., a valid IP header) 3794 * or you are setting ip_summed to CHECKSUM_NONE. 3795 */ 3796 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3797 { 3798 skb_push(skb, len); 3799 skb_postpush_rcsum(skb, skb->data, len); 3800 return skb->data; 3801 } 3802 3803 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3804 /** 3805 * pskb_trim_rcsum - trim received skb and update checksum 3806 * @skb: buffer to trim 3807 * @len: new length 3808 * 3809 * This is exactly the same as pskb_trim except that it ensures the 3810 * checksum of received packets are still valid after the operation. 3811 * It can change skb pointers. 3812 */ 3813 3814 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3815 { 3816 if (likely(len >= skb->len)) 3817 return 0; 3818 return pskb_trim_rcsum_slow(skb, len); 3819 } 3820 3821 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3822 { 3823 if (skb->ip_summed == CHECKSUM_COMPLETE) 3824 skb->ip_summed = CHECKSUM_NONE; 3825 __skb_trim(skb, len); 3826 return 0; 3827 } 3828 3829 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3830 { 3831 if (skb->ip_summed == CHECKSUM_COMPLETE) 3832 skb->ip_summed = CHECKSUM_NONE; 3833 return __skb_grow(skb, len); 3834 } 3835 3836 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3837 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3838 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3839 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3840 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3841 3842 #define skb_queue_walk(queue, skb) \ 3843 for (skb = (queue)->next; \ 3844 skb != (struct sk_buff *)(queue); \ 3845 skb = skb->next) 3846 3847 #define skb_queue_walk_safe(queue, skb, tmp) \ 3848 for (skb = (queue)->next, tmp = skb->next; \ 3849 skb != (struct sk_buff *)(queue); \ 3850 skb = tmp, tmp = skb->next) 3851 3852 #define skb_queue_walk_from(queue, skb) \ 3853 for (; skb != (struct sk_buff *)(queue); \ 3854 skb = skb->next) 3855 3856 #define skb_rbtree_walk(skb, root) \ 3857 for (skb = skb_rb_first(root); skb != NULL; \ 3858 skb = skb_rb_next(skb)) 3859 3860 #define skb_rbtree_walk_from(skb) \ 3861 for (; skb != NULL; \ 3862 skb = skb_rb_next(skb)) 3863 3864 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3865 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3866 skb = tmp) 3867 3868 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3869 for (tmp = skb->next; \ 3870 skb != (struct sk_buff *)(queue); \ 3871 skb = tmp, tmp = skb->next) 3872 3873 #define skb_queue_reverse_walk(queue, skb) \ 3874 for (skb = (queue)->prev; \ 3875 skb != (struct sk_buff *)(queue); \ 3876 skb = skb->prev) 3877 3878 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3879 for (skb = (queue)->prev, tmp = skb->prev; \ 3880 skb != (struct sk_buff *)(queue); \ 3881 skb = tmp, tmp = skb->prev) 3882 3883 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3884 for (tmp = skb->prev; \ 3885 skb != (struct sk_buff *)(queue); \ 3886 skb = tmp, tmp = skb->prev) 3887 3888 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3889 { 3890 return skb_shinfo(skb)->frag_list != NULL; 3891 } 3892 3893 static inline void skb_frag_list_init(struct sk_buff *skb) 3894 { 3895 skb_shinfo(skb)->frag_list = NULL; 3896 } 3897 3898 #define skb_walk_frags(skb, iter) \ 3899 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3900 3901 3902 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3903 int *err, long *timeo_p, 3904 const struct sk_buff *skb); 3905 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3906 struct sk_buff_head *queue, 3907 unsigned int flags, 3908 int *off, int *err, 3909 struct sk_buff **last); 3910 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3911 struct sk_buff_head *queue, 3912 unsigned int flags, int *off, int *err, 3913 struct sk_buff **last); 3914 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3915 struct sk_buff_head *sk_queue, 3916 unsigned int flags, int *off, int *err); 3917 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3918 __poll_t datagram_poll(struct file *file, struct socket *sock, 3919 struct poll_table_struct *wait); 3920 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3921 struct iov_iter *to, int size); 3922 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3923 struct msghdr *msg, int size) 3924 { 3925 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3926 } 3927 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3928 struct msghdr *msg); 3929 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3930 struct iov_iter *to, int len, 3931 struct ahash_request *hash); 3932 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3933 struct iov_iter *from, int len); 3934 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3935 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3936 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3937 static inline void skb_free_datagram_locked(struct sock *sk, 3938 struct sk_buff *skb) 3939 { 3940 __skb_free_datagram_locked(sk, skb, 0); 3941 } 3942 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3943 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3944 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3945 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3946 int len); 3947 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3948 struct pipe_inode_info *pipe, unsigned int len, 3949 unsigned int flags); 3950 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3951 int len); 3952 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3953 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3954 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3955 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3956 int len, int hlen); 3957 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3958 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3959 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3960 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3961 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3962 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3963 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3964 unsigned int offset); 3965 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3966 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 3967 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3968 int skb_vlan_pop(struct sk_buff *skb); 3969 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3970 int skb_eth_pop(struct sk_buff *skb); 3971 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3972 const unsigned char *src); 3973 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3974 int mac_len, bool ethernet); 3975 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3976 bool ethernet); 3977 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3978 int skb_mpls_dec_ttl(struct sk_buff *skb); 3979 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3980 gfp_t gfp); 3981 3982 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3983 { 3984 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3985 } 3986 3987 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3988 { 3989 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3990 } 3991 3992 struct skb_checksum_ops { 3993 __wsum (*update)(const void *mem, int len, __wsum wsum); 3994 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3995 }; 3996 3997 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3998 3999 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4000 __wsum csum, const struct skb_checksum_ops *ops); 4001 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4002 __wsum csum); 4003 4004 static inline void * __must_check 4005 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4006 const void *data, int hlen, void *buffer) 4007 { 4008 if (likely(hlen - offset >= len)) 4009 return (void *)data + offset; 4010 4011 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4012 return NULL; 4013 4014 return buffer; 4015 } 4016 4017 static inline void * __must_check 4018 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4019 { 4020 return __skb_header_pointer(skb, offset, len, skb->data, 4021 skb_headlen(skb), buffer); 4022 } 4023 4024 /** 4025 * skb_needs_linearize - check if we need to linearize a given skb 4026 * depending on the given device features. 4027 * @skb: socket buffer to check 4028 * @features: net device features 4029 * 4030 * Returns true if either: 4031 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4032 * 2. skb is fragmented and the device does not support SG. 4033 */ 4034 static inline bool skb_needs_linearize(struct sk_buff *skb, 4035 netdev_features_t features) 4036 { 4037 return skb_is_nonlinear(skb) && 4038 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4039 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4040 } 4041 4042 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4043 void *to, 4044 const unsigned int len) 4045 { 4046 memcpy(to, skb->data, len); 4047 } 4048 4049 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4050 const int offset, void *to, 4051 const unsigned int len) 4052 { 4053 memcpy(to, skb->data + offset, len); 4054 } 4055 4056 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4057 const void *from, 4058 const unsigned int len) 4059 { 4060 memcpy(skb->data, from, len); 4061 } 4062 4063 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4064 const int offset, 4065 const void *from, 4066 const unsigned int len) 4067 { 4068 memcpy(skb->data + offset, from, len); 4069 } 4070 4071 void skb_init(void); 4072 4073 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4074 { 4075 return skb->tstamp; 4076 } 4077 4078 /** 4079 * skb_get_timestamp - get timestamp from a skb 4080 * @skb: skb to get stamp from 4081 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4082 * 4083 * Timestamps are stored in the skb as offsets to a base timestamp. 4084 * This function converts the offset back to a struct timeval and stores 4085 * it in stamp. 4086 */ 4087 static inline void skb_get_timestamp(const struct sk_buff *skb, 4088 struct __kernel_old_timeval *stamp) 4089 { 4090 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4091 } 4092 4093 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4094 struct __kernel_sock_timeval *stamp) 4095 { 4096 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4097 4098 stamp->tv_sec = ts.tv_sec; 4099 stamp->tv_usec = ts.tv_nsec / 1000; 4100 } 4101 4102 static inline void skb_get_timestampns(const struct sk_buff *skb, 4103 struct __kernel_old_timespec *stamp) 4104 { 4105 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4106 4107 stamp->tv_sec = ts.tv_sec; 4108 stamp->tv_nsec = ts.tv_nsec; 4109 } 4110 4111 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4112 struct __kernel_timespec *stamp) 4113 { 4114 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4115 4116 stamp->tv_sec = ts.tv_sec; 4117 stamp->tv_nsec = ts.tv_nsec; 4118 } 4119 4120 static inline void __net_timestamp(struct sk_buff *skb) 4121 { 4122 skb->tstamp = ktime_get_real(); 4123 skb->mono_delivery_time = 0; 4124 } 4125 4126 static inline ktime_t net_timedelta(ktime_t t) 4127 { 4128 return ktime_sub(ktime_get_real(), t); 4129 } 4130 4131 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4132 bool mono) 4133 { 4134 skb->tstamp = kt; 4135 skb->mono_delivery_time = kt && mono; 4136 } 4137 4138 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4139 4140 /* It is used in the ingress path to clear the delivery_time. 4141 * If needed, set the skb->tstamp to the (rcv) timestamp. 4142 */ 4143 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4144 { 4145 if (skb->mono_delivery_time) { 4146 skb->mono_delivery_time = 0; 4147 if (static_branch_unlikely(&netstamp_needed_key)) 4148 skb->tstamp = ktime_get_real(); 4149 else 4150 skb->tstamp = 0; 4151 } 4152 } 4153 4154 static inline void skb_clear_tstamp(struct sk_buff *skb) 4155 { 4156 if (skb->mono_delivery_time) 4157 return; 4158 4159 skb->tstamp = 0; 4160 } 4161 4162 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4163 { 4164 if (skb->mono_delivery_time) 4165 return 0; 4166 4167 return skb->tstamp; 4168 } 4169 4170 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4171 { 4172 if (!skb->mono_delivery_time && skb->tstamp) 4173 return skb->tstamp; 4174 4175 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4176 return ktime_get_real(); 4177 4178 return 0; 4179 } 4180 4181 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4182 { 4183 return skb_shinfo(skb)->meta_len; 4184 } 4185 4186 static inline void *skb_metadata_end(const struct sk_buff *skb) 4187 { 4188 return skb_mac_header(skb); 4189 } 4190 4191 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4192 const struct sk_buff *skb_b, 4193 u8 meta_len) 4194 { 4195 const void *a = skb_metadata_end(skb_a); 4196 const void *b = skb_metadata_end(skb_b); 4197 /* Using more efficient varaiant than plain call to memcmp(). */ 4198 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4199 u64 diffs = 0; 4200 4201 switch (meta_len) { 4202 #define __it(x, op) (x -= sizeof(u##op)) 4203 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4204 case 32: diffs |= __it_diff(a, b, 64); 4205 fallthrough; 4206 case 24: diffs |= __it_diff(a, b, 64); 4207 fallthrough; 4208 case 16: diffs |= __it_diff(a, b, 64); 4209 fallthrough; 4210 case 8: diffs |= __it_diff(a, b, 64); 4211 break; 4212 case 28: diffs |= __it_diff(a, b, 64); 4213 fallthrough; 4214 case 20: diffs |= __it_diff(a, b, 64); 4215 fallthrough; 4216 case 12: diffs |= __it_diff(a, b, 64); 4217 fallthrough; 4218 case 4: diffs |= __it_diff(a, b, 32); 4219 break; 4220 } 4221 return diffs; 4222 #else 4223 return memcmp(a - meta_len, b - meta_len, meta_len); 4224 #endif 4225 } 4226 4227 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4228 const struct sk_buff *skb_b) 4229 { 4230 u8 len_a = skb_metadata_len(skb_a); 4231 u8 len_b = skb_metadata_len(skb_b); 4232 4233 if (!(len_a | len_b)) 4234 return false; 4235 4236 return len_a != len_b ? 4237 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4238 } 4239 4240 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4241 { 4242 skb_shinfo(skb)->meta_len = meta_len; 4243 } 4244 4245 static inline void skb_metadata_clear(struct sk_buff *skb) 4246 { 4247 skb_metadata_set(skb, 0); 4248 } 4249 4250 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4251 4252 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4253 4254 void skb_clone_tx_timestamp(struct sk_buff *skb); 4255 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4256 4257 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4258 4259 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4260 { 4261 } 4262 4263 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4264 { 4265 return false; 4266 } 4267 4268 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4269 4270 /** 4271 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4272 * 4273 * PHY drivers may accept clones of transmitted packets for 4274 * timestamping via their phy_driver.txtstamp method. These drivers 4275 * must call this function to return the skb back to the stack with a 4276 * timestamp. 4277 * 4278 * @skb: clone of the original outgoing packet 4279 * @hwtstamps: hardware time stamps 4280 * 4281 */ 4282 void skb_complete_tx_timestamp(struct sk_buff *skb, 4283 struct skb_shared_hwtstamps *hwtstamps); 4284 4285 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4286 struct skb_shared_hwtstamps *hwtstamps, 4287 struct sock *sk, int tstype); 4288 4289 /** 4290 * skb_tstamp_tx - queue clone of skb with send time stamps 4291 * @orig_skb: the original outgoing packet 4292 * @hwtstamps: hardware time stamps, may be NULL if not available 4293 * 4294 * If the skb has a socket associated, then this function clones the 4295 * skb (thus sharing the actual data and optional structures), stores 4296 * the optional hardware time stamping information (if non NULL) or 4297 * generates a software time stamp (otherwise), then queues the clone 4298 * to the error queue of the socket. Errors are silently ignored. 4299 */ 4300 void skb_tstamp_tx(struct sk_buff *orig_skb, 4301 struct skb_shared_hwtstamps *hwtstamps); 4302 4303 /** 4304 * skb_tx_timestamp() - Driver hook for transmit timestamping 4305 * 4306 * Ethernet MAC Drivers should call this function in their hard_xmit() 4307 * function immediately before giving the sk_buff to the MAC hardware. 4308 * 4309 * Specifically, one should make absolutely sure that this function is 4310 * called before TX completion of this packet can trigger. Otherwise 4311 * the packet could potentially already be freed. 4312 * 4313 * @skb: A socket buffer. 4314 */ 4315 static inline void skb_tx_timestamp(struct sk_buff *skb) 4316 { 4317 skb_clone_tx_timestamp(skb); 4318 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4319 skb_tstamp_tx(skb, NULL); 4320 } 4321 4322 /** 4323 * skb_complete_wifi_ack - deliver skb with wifi status 4324 * 4325 * @skb: the original outgoing packet 4326 * @acked: ack status 4327 * 4328 */ 4329 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4330 4331 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4332 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4333 4334 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4335 { 4336 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4337 skb->csum_valid || 4338 (skb->ip_summed == CHECKSUM_PARTIAL && 4339 skb_checksum_start_offset(skb) >= 0)); 4340 } 4341 4342 /** 4343 * skb_checksum_complete - Calculate checksum of an entire packet 4344 * @skb: packet to process 4345 * 4346 * This function calculates the checksum over the entire packet plus 4347 * the value of skb->csum. The latter can be used to supply the 4348 * checksum of a pseudo header as used by TCP/UDP. It returns the 4349 * checksum. 4350 * 4351 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4352 * this function can be used to verify that checksum on received 4353 * packets. In that case the function should return zero if the 4354 * checksum is correct. In particular, this function will return zero 4355 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4356 * hardware has already verified the correctness of the checksum. 4357 */ 4358 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4359 { 4360 return skb_csum_unnecessary(skb) ? 4361 0 : __skb_checksum_complete(skb); 4362 } 4363 4364 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4365 { 4366 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4367 if (skb->csum_level == 0) 4368 skb->ip_summed = CHECKSUM_NONE; 4369 else 4370 skb->csum_level--; 4371 } 4372 } 4373 4374 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4375 { 4376 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4377 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4378 skb->csum_level++; 4379 } else if (skb->ip_summed == CHECKSUM_NONE) { 4380 skb->ip_summed = CHECKSUM_UNNECESSARY; 4381 skb->csum_level = 0; 4382 } 4383 } 4384 4385 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4386 { 4387 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4388 skb->ip_summed = CHECKSUM_NONE; 4389 skb->csum_level = 0; 4390 } 4391 } 4392 4393 /* Check if we need to perform checksum complete validation. 4394 * 4395 * Returns true if checksum complete is needed, false otherwise 4396 * (either checksum is unnecessary or zero checksum is allowed). 4397 */ 4398 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4399 bool zero_okay, 4400 __sum16 check) 4401 { 4402 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4403 skb->csum_valid = 1; 4404 __skb_decr_checksum_unnecessary(skb); 4405 return false; 4406 } 4407 4408 return true; 4409 } 4410 4411 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4412 * in checksum_init. 4413 */ 4414 #define CHECKSUM_BREAK 76 4415 4416 /* Unset checksum-complete 4417 * 4418 * Unset checksum complete can be done when packet is being modified 4419 * (uncompressed for instance) and checksum-complete value is 4420 * invalidated. 4421 */ 4422 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4423 { 4424 if (skb->ip_summed == CHECKSUM_COMPLETE) 4425 skb->ip_summed = CHECKSUM_NONE; 4426 } 4427 4428 /* Validate (init) checksum based on checksum complete. 4429 * 4430 * Return values: 4431 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4432 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4433 * checksum is stored in skb->csum for use in __skb_checksum_complete 4434 * non-zero: value of invalid checksum 4435 * 4436 */ 4437 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4438 bool complete, 4439 __wsum psum) 4440 { 4441 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4442 if (!csum_fold(csum_add(psum, skb->csum))) { 4443 skb->csum_valid = 1; 4444 return 0; 4445 } 4446 } 4447 4448 skb->csum = psum; 4449 4450 if (complete || skb->len <= CHECKSUM_BREAK) { 4451 __sum16 csum; 4452 4453 csum = __skb_checksum_complete(skb); 4454 skb->csum_valid = !csum; 4455 return csum; 4456 } 4457 4458 return 0; 4459 } 4460 4461 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4462 { 4463 return 0; 4464 } 4465 4466 /* Perform checksum validate (init). Note that this is a macro since we only 4467 * want to calculate the pseudo header which is an input function if necessary. 4468 * First we try to validate without any computation (checksum unnecessary) and 4469 * then calculate based on checksum complete calling the function to compute 4470 * pseudo header. 4471 * 4472 * Return values: 4473 * 0: checksum is validated or try to in skb_checksum_complete 4474 * non-zero: value of invalid checksum 4475 */ 4476 #define __skb_checksum_validate(skb, proto, complete, \ 4477 zero_okay, check, compute_pseudo) \ 4478 ({ \ 4479 __sum16 __ret = 0; \ 4480 skb->csum_valid = 0; \ 4481 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4482 __ret = __skb_checksum_validate_complete(skb, \ 4483 complete, compute_pseudo(skb, proto)); \ 4484 __ret; \ 4485 }) 4486 4487 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4488 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4489 4490 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4491 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4492 4493 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4494 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4495 4496 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4497 compute_pseudo) \ 4498 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4499 4500 #define skb_checksum_simple_validate(skb) \ 4501 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4502 4503 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4504 { 4505 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4506 } 4507 4508 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4509 { 4510 skb->csum = ~pseudo; 4511 skb->ip_summed = CHECKSUM_COMPLETE; 4512 } 4513 4514 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4515 do { \ 4516 if (__skb_checksum_convert_check(skb)) \ 4517 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4518 } while (0) 4519 4520 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4521 u16 start, u16 offset) 4522 { 4523 skb->ip_summed = CHECKSUM_PARTIAL; 4524 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4525 skb->csum_offset = offset - start; 4526 } 4527 4528 /* Update skbuf and packet to reflect the remote checksum offload operation. 4529 * When called, ptr indicates the starting point for skb->csum when 4530 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4531 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4532 */ 4533 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4534 int start, int offset, bool nopartial) 4535 { 4536 __wsum delta; 4537 4538 if (!nopartial) { 4539 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4540 return; 4541 } 4542 4543 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4544 __skb_checksum_complete(skb); 4545 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4546 } 4547 4548 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4549 4550 /* Adjust skb->csum since we changed the packet */ 4551 skb->csum = csum_add(skb->csum, delta); 4552 } 4553 4554 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4555 { 4556 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4557 return (void *)(skb->_nfct & NFCT_PTRMASK); 4558 #else 4559 return NULL; 4560 #endif 4561 } 4562 4563 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4564 { 4565 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4566 return skb->_nfct; 4567 #else 4568 return 0UL; 4569 #endif 4570 } 4571 4572 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4573 { 4574 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4575 skb->slow_gro |= !!nfct; 4576 skb->_nfct = nfct; 4577 #endif 4578 } 4579 4580 #ifdef CONFIG_SKB_EXTENSIONS 4581 enum skb_ext_id { 4582 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4583 SKB_EXT_BRIDGE_NF, 4584 #endif 4585 #ifdef CONFIG_XFRM 4586 SKB_EXT_SEC_PATH, 4587 #endif 4588 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4589 TC_SKB_EXT, 4590 #endif 4591 #if IS_ENABLED(CONFIG_MPTCP) 4592 SKB_EXT_MPTCP, 4593 #endif 4594 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4595 SKB_EXT_MCTP, 4596 #endif 4597 SKB_EXT_NUM, /* must be last */ 4598 }; 4599 4600 /** 4601 * struct skb_ext - sk_buff extensions 4602 * @refcnt: 1 on allocation, deallocated on 0 4603 * @offset: offset to add to @data to obtain extension address 4604 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4605 * @data: start of extension data, variable sized 4606 * 4607 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4608 * to use 'u8' types while allowing up to 2kb worth of extension data. 4609 */ 4610 struct skb_ext { 4611 refcount_t refcnt; 4612 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4613 u8 chunks; /* same */ 4614 char data[] __aligned(8); 4615 }; 4616 4617 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4618 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4619 struct skb_ext *ext); 4620 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4621 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4622 void __skb_ext_put(struct skb_ext *ext); 4623 4624 static inline void skb_ext_put(struct sk_buff *skb) 4625 { 4626 if (skb->active_extensions) 4627 __skb_ext_put(skb->extensions); 4628 } 4629 4630 static inline void __skb_ext_copy(struct sk_buff *dst, 4631 const struct sk_buff *src) 4632 { 4633 dst->active_extensions = src->active_extensions; 4634 4635 if (src->active_extensions) { 4636 struct skb_ext *ext = src->extensions; 4637 4638 refcount_inc(&ext->refcnt); 4639 dst->extensions = ext; 4640 } 4641 } 4642 4643 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4644 { 4645 skb_ext_put(dst); 4646 __skb_ext_copy(dst, src); 4647 } 4648 4649 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4650 { 4651 return !!ext->offset[i]; 4652 } 4653 4654 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4655 { 4656 return skb->active_extensions & (1 << id); 4657 } 4658 4659 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4660 { 4661 if (skb_ext_exist(skb, id)) 4662 __skb_ext_del(skb, id); 4663 } 4664 4665 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4666 { 4667 if (skb_ext_exist(skb, id)) { 4668 struct skb_ext *ext = skb->extensions; 4669 4670 return (void *)ext + (ext->offset[id] << 3); 4671 } 4672 4673 return NULL; 4674 } 4675 4676 static inline void skb_ext_reset(struct sk_buff *skb) 4677 { 4678 if (unlikely(skb->active_extensions)) { 4679 __skb_ext_put(skb->extensions); 4680 skb->active_extensions = 0; 4681 } 4682 } 4683 4684 static inline bool skb_has_extensions(struct sk_buff *skb) 4685 { 4686 return unlikely(skb->active_extensions); 4687 } 4688 #else 4689 static inline void skb_ext_put(struct sk_buff *skb) {} 4690 static inline void skb_ext_reset(struct sk_buff *skb) {} 4691 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4692 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4693 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4694 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4695 #endif /* CONFIG_SKB_EXTENSIONS */ 4696 4697 static inline void nf_reset_ct(struct sk_buff *skb) 4698 { 4699 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4700 nf_conntrack_put(skb_nfct(skb)); 4701 skb->_nfct = 0; 4702 #endif 4703 } 4704 4705 static inline void nf_reset_trace(struct sk_buff *skb) 4706 { 4707 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4708 skb->nf_trace = 0; 4709 #endif 4710 } 4711 4712 static inline void ipvs_reset(struct sk_buff *skb) 4713 { 4714 #if IS_ENABLED(CONFIG_IP_VS) 4715 skb->ipvs_property = 0; 4716 #endif 4717 } 4718 4719 /* Note: This doesn't put any conntrack info in dst. */ 4720 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4721 bool copy) 4722 { 4723 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4724 dst->_nfct = src->_nfct; 4725 nf_conntrack_get(skb_nfct(src)); 4726 #endif 4727 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4728 if (copy) 4729 dst->nf_trace = src->nf_trace; 4730 #endif 4731 } 4732 4733 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4734 { 4735 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4736 nf_conntrack_put(skb_nfct(dst)); 4737 #endif 4738 dst->slow_gro = src->slow_gro; 4739 __nf_copy(dst, src, true); 4740 } 4741 4742 #ifdef CONFIG_NETWORK_SECMARK 4743 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4744 { 4745 to->secmark = from->secmark; 4746 } 4747 4748 static inline void skb_init_secmark(struct sk_buff *skb) 4749 { 4750 skb->secmark = 0; 4751 } 4752 #else 4753 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4754 { } 4755 4756 static inline void skb_init_secmark(struct sk_buff *skb) 4757 { } 4758 #endif 4759 4760 static inline int secpath_exists(const struct sk_buff *skb) 4761 { 4762 #ifdef CONFIG_XFRM 4763 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4764 #else 4765 return 0; 4766 #endif 4767 } 4768 4769 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4770 { 4771 return !skb->destructor && 4772 !secpath_exists(skb) && 4773 !skb_nfct(skb) && 4774 !skb->_skb_refdst && 4775 !skb_has_frag_list(skb); 4776 } 4777 4778 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4779 { 4780 skb->queue_mapping = queue_mapping; 4781 } 4782 4783 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4784 { 4785 return skb->queue_mapping; 4786 } 4787 4788 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4789 { 4790 to->queue_mapping = from->queue_mapping; 4791 } 4792 4793 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4794 { 4795 skb->queue_mapping = rx_queue + 1; 4796 } 4797 4798 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4799 { 4800 return skb->queue_mapping - 1; 4801 } 4802 4803 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4804 { 4805 return skb->queue_mapping != 0; 4806 } 4807 4808 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4809 { 4810 skb->dst_pending_confirm = val; 4811 } 4812 4813 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4814 { 4815 return skb->dst_pending_confirm != 0; 4816 } 4817 4818 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4819 { 4820 #ifdef CONFIG_XFRM 4821 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4822 #else 4823 return NULL; 4824 #endif 4825 } 4826 4827 /* Keeps track of mac header offset relative to skb->head. 4828 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4829 * For non-tunnel skb it points to skb_mac_header() and for 4830 * tunnel skb it points to outer mac header. 4831 * Keeps track of level of encapsulation of network headers. 4832 */ 4833 struct skb_gso_cb { 4834 union { 4835 int mac_offset; 4836 int data_offset; 4837 }; 4838 int encap_level; 4839 __wsum csum; 4840 __u16 csum_start; 4841 }; 4842 #define SKB_GSO_CB_OFFSET 32 4843 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4844 4845 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4846 { 4847 return (skb_mac_header(inner_skb) - inner_skb->head) - 4848 SKB_GSO_CB(inner_skb)->mac_offset; 4849 } 4850 4851 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4852 { 4853 int new_headroom, headroom; 4854 int ret; 4855 4856 headroom = skb_headroom(skb); 4857 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4858 if (ret) 4859 return ret; 4860 4861 new_headroom = skb_headroom(skb); 4862 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4863 return 0; 4864 } 4865 4866 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4867 { 4868 /* Do not update partial checksums if remote checksum is enabled. */ 4869 if (skb->remcsum_offload) 4870 return; 4871 4872 SKB_GSO_CB(skb)->csum = res; 4873 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4874 } 4875 4876 /* Compute the checksum for a gso segment. First compute the checksum value 4877 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4878 * then add in skb->csum (checksum from csum_start to end of packet). 4879 * skb->csum and csum_start are then updated to reflect the checksum of the 4880 * resultant packet starting from the transport header-- the resultant checksum 4881 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4882 * header. 4883 */ 4884 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4885 { 4886 unsigned char *csum_start = skb_transport_header(skb); 4887 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4888 __wsum partial = SKB_GSO_CB(skb)->csum; 4889 4890 SKB_GSO_CB(skb)->csum = res; 4891 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4892 4893 return csum_fold(csum_partial(csum_start, plen, partial)); 4894 } 4895 4896 static inline bool skb_is_gso(const struct sk_buff *skb) 4897 { 4898 return skb_shinfo(skb)->gso_size; 4899 } 4900 4901 /* Note: Should be called only if skb_is_gso(skb) is true */ 4902 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4903 { 4904 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4905 } 4906 4907 /* Note: Should be called only if skb_is_gso(skb) is true */ 4908 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4909 { 4910 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4911 } 4912 4913 /* Note: Should be called only if skb_is_gso(skb) is true */ 4914 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4915 { 4916 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4917 } 4918 4919 static inline void skb_gso_reset(struct sk_buff *skb) 4920 { 4921 skb_shinfo(skb)->gso_size = 0; 4922 skb_shinfo(skb)->gso_segs = 0; 4923 skb_shinfo(skb)->gso_type = 0; 4924 } 4925 4926 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4927 u16 increment) 4928 { 4929 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4930 return; 4931 shinfo->gso_size += increment; 4932 } 4933 4934 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4935 u16 decrement) 4936 { 4937 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4938 return; 4939 shinfo->gso_size -= decrement; 4940 } 4941 4942 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4943 4944 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4945 { 4946 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4947 * wanted then gso_type will be set. */ 4948 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4949 4950 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4951 unlikely(shinfo->gso_type == 0)) { 4952 __skb_warn_lro_forwarding(skb); 4953 return true; 4954 } 4955 return false; 4956 } 4957 4958 static inline void skb_forward_csum(struct sk_buff *skb) 4959 { 4960 /* Unfortunately we don't support this one. Any brave souls? */ 4961 if (skb->ip_summed == CHECKSUM_COMPLETE) 4962 skb->ip_summed = CHECKSUM_NONE; 4963 } 4964 4965 /** 4966 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4967 * @skb: skb to check 4968 * 4969 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4970 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4971 * use this helper, to document places where we make this assertion. 4972 */ 4973 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4974 { 4975 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 4976 } 4977 4978 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4979 4980 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4981 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4982 unsigned int transport_len, 4983 __sum16(*skb_chkf)(struct sk_buff *skb)); 4984 4985 /** 4986 * skb_head_is_locked - Determine if the skb->head is locked down 4987 * @skb: skb to check 4988 * 4989 * The head on skbs build around a head frag can be removed if they are 4990 * not cloned. This function returns true if the skb head is locked down 4991 * due to either being allocated via kmalloc, or by being a clone with 4992 * multiple references to the head. 4993 */ 4994 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4995 { 4996 return !skb->head_frag || skb_cloned(skb); 4997 } 4998 4999 /* Local Checksum Offload. 5000 * Compute outer checksum based on the assumption that the 5001 * inner checksum will be offloaded later. 5002 * See Documentation/networking/checksum-offloads.rst for 5003 * explanation of how this works. 5004 * Fill in outer checksum adjustment (e.g. with sum of outer 5005 * pseudo-header) before calling. 5006 * Also ensure that inner checksum is in linear data area. 5007 */ 5008 static inline __wsum lco_csum(struct sk_buff *skb) 5009 { 5010 unsigned char *csum_start = skb_checksum_start(skb); 5011 unsigned char *l4_hdr = skb_transport_header(skb); 5012 __wsum partial; 5013 5014 /* Start with complement of inner checksum adjustment */ 5015 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5016 skb->csum_offset)); 5017 5018 /* Add in checksum of our headers (incl. outer checksum 5019 * adjustment filled in by caller) and return result. 5020 */ 5021 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5022 } 5023 5024 static inline bool skb_is_redirected(const struct sk_buff *skb) 5025 { 5026 return skb->redirected; 5027 } 5028 5029 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5030 { 5031 skb->redirected = 1; 5032 #ifdef CONFIG_NET_REDIRECT 5033 skb->from_ingress = from_ingress; 5034 if (skb->from_ingress) 5035 skb_clear_tstamp(skb); 5036 #endif 5037 } 5038 5039 static inline void skb_reset_redirect(struct sk_buff *skb) 5040 { 5041 skb->redirected = 0; 5042 } 5043 5044 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5045 { 5046 return skb->csum_not_inet; 5047 } 5048 5049 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5050 const u64 kcov_handle) 5051 { 5052 #ifdef CONFIG_KCOV 5053 skb->kcov_handle = kcov_handle; 5054 #endif 5055 } 5056 5057 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5058 { 5059 #ifdef CONFIG_KCOV 5060 return skb->kcov_handle; 5061 #else 5062 return 0; 5063 #endif 5064 } 5065 5066 #ifdef CONFIG_PAGE_POOL 5067 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5068 { 5069 skb->pp_recycle = 1; 5070 } 5071 #endif 5072 5073 #endif /* __KERNEL__ */ 5074 #endif /* _LINUX_SKBUFF_H */ 5075