xref: /linux-6.15/include/linux/skbuff.h (revision 170aafe3)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40 #include <net/netmem.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	int			physinif;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334 };
335 #endif
336 
337 struct sk_buff_head {
338 	/* These two members must be first to match sk_buff. */
339 	struct_group_tagged(sk_buff_list, list,
340 		struct sk_buff	*next;
341 		struct sk_buff	*prev;
342 	);
343 
344 	__u32		qlen;
345 	spinlock_t	lock;
346 };
347 
348 struct sk_buff;
349 
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
352 #endif
353 
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 
356 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
357  * segment using its current segmentation instead.
358  */
359 #define GSO_BY_FRAGS	0xFFFF
360 
361 typedef struct skb_frag {
362 	netmem_ref netmem;
363 	unsigned int len;
364 	unsigned int offset;
365 } skb_frag_t;
366 
367 /**
368  * skb_frag_size() - Returns the size of a skb fragment
369  * @frag: skb fragment
370  */
371 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
372 {
373 	return frag->len;
374 }
375 
376 /**
377  * skb_frag_size_set() - Sets the size of a skb fragment
378  * @frag: skb fragment
379  * @size: size of fragment
380  */
381 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
382 {
383 	frag->len = size;
384 }
385 
386 /**
387  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
388  * @frag: skb fragment
389  * @delta: value to add
390  */
391 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
392 {
393 	frag->len += delta;
394 }
395 
396 /**
397  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
398  * @frag: skb fragment
399  * @delta: value to subtract
400  */
401 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
402 {
403 	frag->len -= delta;
404 }
405 
406 /**
407  * skb_frag_must_loop - Test if %p is a high memory page
408  * @p: fragment's page
409  */
410 static inline bool skb_frag_must_loop(struct page *p)
411 {
412 #if defined(CONFIG_HIGHMEM)
413 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
414 		return true;
415 #endif
416 	return false;
417 }
418 
419 /**
420  *	skb_frag_foreach_page - loop over pages in a fragment
421  *
422  *	@f:		skb frag to operate on
423  *	@f_off:		offset from start of f->netmem
424  *	@f_len:		length from f_off to loop over
425  *	@p:		(temp var) current page
426  *	@p_off:		(temp var) offset from start of current page,
427  *	                           non-zero only on first page.
428  *	@p_len:		(temp var) length in current page,
429  *				   < PAGE_SIZE only on first and last page.
430  *	@copied:	(temp var) length so far, excluding current p_len.
431  *
432  *	A fragment can hold a compound page, in which case per-page
433  *	operations, notably kmap_atomic, must be called for each
434  *	regular page.
435  */
436 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
437 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
438 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
439 	     p_len = skb_frag_must_loop(p) ?				\
440 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
441 	     copied = 0;						\
442 	     copied < f_len;						\
443 	     copied += p_len, p++, p_off = 0,				\
444 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
445 
446 /**
447  * struct skb_shared_hwtstamps - hardware time stamps
448  * @hwtstamp:		hardware time stamp transformed into duration
449  *			since arbitrary point in time
450  * @netdev_data:	address/cookie of network device driver used as
451  *			reference to actual hardware time stamp
452  *
453  * Software time stamps generated by ktime_get_real() are stored in
454  * skb->tstamp.
455  *
456  * hwtstamps can only be compared against other hwtstamps from
457  * the same device.
458  *
459  * This structure is attached to packets as part of the
460  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
461  */
462 struct skb_shared_hwtstamps {
463 	union {
464 		ktime_t	hwtstamp;
465 		void *netdev_data;
466 	};
467 };
468 
469 /* Definitions for tx_flags in struct skb_shared_info */
470 enum {
471 	/* generate hardware time stamp */
472 	SKBTX_HW_TSTAMP = 1 << 0,
473 
474 	/* generate software time stamp when queueing packet to NIC */
475 	SKBTX_SW_TSTAMP = 1 << 1,
476 
477 	/* device driver is going to provide hardware time stamp */
478 	SKBTX_IN_PROGRESS = 1 << 2,
479 
480 	/* generate hardware time stamp based on cycles if supported */
481 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
482 
483 	/* generate wifi status information (where possible) */
484 	SKBTX_WIFI_STATUS = 1 << 4,
485 
486 	/* determine hardware time stamp based on time or cycles */
487 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
488 
489 	/* generate software time stamp when entering packet scheduling */
490 	SKBTX_SCHED_TSTAMP = 1 << 6,
491 };
492 
493 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
494 				 SKBTX_SCHED_TSTAMP)
495 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
496 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
497 				 SKBTX_ANY_SW_TSTAMP)
498 
499 /* Definitions for flags in struct skb_shared_info */
500 enum {
501 	/* use zcopy routines */
502 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
503 
504 	/* This indicates at least one fragment might be overwritten
505 	 * (as in vmsplice(), sendfile() ...)
506 	 * If we need to compute a TX checksum, we'll need to copy
507 	 * all frags to avoid possible bad checksum
508 	 */
509 	SKBFL_SHARED_FRAG = BIT(1),
510 
511 	/* segment contains only zerocopy data and should not be
512 	 * charged to the kernel memory.
513 	 */
514 	SKBFL_PURE_ZEROCOPY = BIT(2),
515 
516 	SKBFL_DONT_ORPHAN = BIT(3),
517 
518 	/* page references are managed by the ubuf_info, so it's safe to
519 	 * use frags only up until ubuf_info is released
520 	 */
521 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
522 };
523 
524 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
525 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
526 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
527 
528 struct ubuf_info_ops {
529 	void (*complete)(struct sk_buff *, struct ubuf_info *,
530 			 bool zerocopy_success);
531 	/* has to be compatible with skb_zcopy_set() */
532 	int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
533 };
534 
535 /*
536  * The callback notifies userspace to release buffers when skb DMA is done in
537  * lower device, the skb last reference should be 0 when calling this.
538  * The zerocopy_success argument is true if zero copy transmit occurred,
539  * false on data copy or out of memory error caused by data copy attempt.
540  * The ctx field is used to track device context.
541  * The desc field is used to track userspace buffer index.
542  */
543 struct ubuf_info {
544 	const struct ubuf_info_ops *ops;
545 	refcount_t refcnt;
546 	u8 flags;
547 };
548 
549 struct ubuf_info_msgzc {
550 	struct ubuf_info ubuf;
551 
552 	union {
553 		struct {
554 			unsigned long desc;
555 			void *ctx;
556 		};
557 		struct {
558 			u32 id;
559 			u16 len;
560 			u16 zerocopy:1;
561 			u32 bytelen;
562 		};
563 	};
564 
565 	struct mmpin {
566 		struct user_struct *user;
567 		unsigned int num_pg;
568 	} mmp;
569 };
570 
571 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
572 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
573 					     ubuf)
574 
575 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
576 void mm_unaccount_pinned_pages(struct mmpin *mmp);
577 
578 /* Preserve some data across TX submission and completion.
579  *
580  * Note, this state is stored in the driver. Extending the layout
581  * might need some special care.
582  */
583 struct xsk_tx_metadata_compl {
584 	__u64 *tx_timestamp;
585 };
586 
587 /* This data is invariant across clones and lives at
588  * the end of the header data, ie. at skb->end.
589  */
590 struct skb_shared_info {
591 	__u8		flags;
592 	__u8		meta_len;
593 	__u8		nr_frags;
594 	__u8		tx_flags;
595 	unsigned short	gso_size;
596 	/* Warning: this field is not always filled in (UFO)! */
597 	unsigned short	gso_segs;
598 	struct sk_buff	*frag_list;
599 	union {
600 		struct skb_shared_hwtstamps hwtstamps;
601 		struct xsk_tx_metadata_compl xsk_meta;
602 	};
603 	unsigned int	gso_type;
604 	u32		tskey;
605 
606 	/*
607 	 * Warning : all fields before dataref are cleared in __alloc_skb()
608 	 */
609 	atomic_t	dataref;
610 	unsigned int	xdp_frags_size;
611 
612 	/* Intermediate layers must ensure that destructor_arg
613 	 * remains valid until skb destructor */
614 	void *		destructor_arg;
615 
616 	/* must be last field, see pskb_expand_head() */
617 	skb_frag_t	frags[MAX_SKB_FRAGS];
618 };
619 
620 /**
621  * DOC: dataref and headerless skbs
622  *
623  * Transport layers send out clones of payload skbs they hold for
624  * retransmissions. To allow lower layers of the stack to prepend their headers
625  * we split &skb_shared_info.dataref into two halves.
626  * The lower 16 bits count the overall number of references.
627  * The higher 16 bits indicate how many of the references are payload-only.
628  * skb_header_cloned() checks if skb is allowed to add / write the headers.
629  *
630  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
631  * (via __skb_header_release()). Any clone created from marked skb will get
632  * &sk_buff.hdr_len populated with the available headroom.
633  * If there's the only clone in existence it's able to modify the headroom
634  * at will. The sequence of calls inside the transport layer is::
635  *
636  *  <alloc skb>
637  *  skb_reserve()
638  *  __skb_header_release()
639  *  skb_clone()
640  *  // send the clone down the stack
641  *
642  * This is not a very generic construct and it depends on the transport layers
643  * doing the right thing. In practice there's usually only one payload-only skb.
644  * Having multiple payload-only skbs with different lengths of hdr_len is not
645  * possible. The payload-only skbs should never leave their owner.
646  */
647 #define SKB_DATAREF_SHIFT 16
648 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
649 
650 
651 enum {
652 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
653 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
654 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
655 };
656 
657 enum {
658 	SKB_GSO_TCPV4 = 1 << 0,
659 
660 	/* This indicates the skb is from an untrusted source. */
661 	SKB_GSO_DODGY = 1 << 1,
662 
663 	/* This indicates the tcp segment has CWR set. */
664 	SKB_GSO_TCP_ECN = 1 << 2,
665 
666 	SKB_GSO_TCP_FIXEDID = 1 << 3,
667 
668 	SKB_GSO_TCPV6 = 1 << 4,
669 
670 	SKB_GSO_FCOE = 1 << 5,
671 
672 	SKB_GSO_GRE = 1 << 6,
673 
674 	SKB_GSO_GRE_CSUM = 1 << 7,
675 
676 	SKB_GSO_IPXIP4 = 1 << 8,
677 
678 	SKB_GSO_IPXIP6 = 1 << 9,
679 
680 	SKB_GSO_UDP_TUNNEL = 1 << 10,
681 
682 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
683 
684 	SKB_GSO_PARTIAL = 1 << 12,
685 
686 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
687 
688 	SKB_GSO_SCTP = 1 << 14,
689 
690 	SKB_GSO_ESP = 1 << 15,
691 
692 	SKB_GSO_UDP = 1 << 16,
693 
694 	SKB_GSO_UDP_L4 = 1 << 17,
695 
696 	SKB_GSO_FRAGLIST = 1 << 18,
697 };
698 
699 #if BITS_PER_LONG > 32
700 #define NET_SKBUFF_DATA_USES_OFFSET 1
701 #endif
702 
703 #ifdef NET_SKBUFF_DATA_USES_OFFSET
704 typedef unsigned int sk_buff_data_t;
705 #else
706 typedef unsigned char *sk_buff_data_t;
707 #endif
708 
709 enum skb_tstamp_type {
710 	SKB_CLOCK_REALTIME,
711 	SKB_CLOCK_MONOTONIC,
712 	SKB_CLOCK_TAI,
713 	__SKB_CLOCK_MAX = SKB_CLOCK_TAI,
714 };
715 
716 /**
717  * DOC: Basic sk_buff geometry
718  *
719  * struct sk_buff itself is a metadata structure and does not hold any packet
720  * data. All the data is held in associated buffers.
721  *
722  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
723  * into two parts:
724  *
725  *  - data buffer, containing headers and sometimes payload;
726  *    this is the part of the skb operated on by the common helpers
727  *    such as skb_put() or skb_pull();
728  *  - shared info (struct skb_shared_info) which holds an array of pointers
729  *    to read-only data in the (page, offset, length) format.
730  *
731  * Optionally &skb_shared_info.frag_list may point to another skb.
732  *
733  * Basic diagram may look like this::
734  *
735  *                                  ---------------
736  *                                 | sk_buff       |
737  *                                  ---------------
738  *     ,---------------------------  + head
739  *    /          ,-----------------  + data
740  *   /          /      ,-----------  + tail
741  *  |          |      |            , + end
742  *  |          |      |           |
743  *  v          v      v           v
744  *   -----------------------------------------------
745  *  | headroom | data |  tailroom | skb_shared_info |
746  *   -----------------------------------------------
747  *                                 + [page frag]
748  *                                 + [page frag]
749  *                                 + [page frag]
750  *                                 + [page frag]       ---------
751  *                                 + frag_list    --> | sk_buff |
752  *                                                     ---------
753  *
754  */
755 
756 /**
757  *	struct sk_buff - socket buffer
758  *	@next: Next buffer in list
759  *	@prev: Previous buffer in list
760  *	@tstamp: Time we arrived/left
761  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
762  *		for retransmit timer
763  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
764  *	@list: queue head
765  *	@ll_node: anchor in an llist (eg socket defer_list)
766  *	@sk: Socket we are owned by
767  *	@dev: Device we arrived on/are leaving by
768  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
769  *	@cb: Control buffer. Free for use by every layer. Put private vars here
770  *	@_skb_refdst: destination entry (with norefcount bit)
771  *	@len: Length of actual data
772  *	@data_len: Data length
773  *	@mac_len: Length of link layer header
774  *	@hdr_len: writable header length of cloned skb
775  *	@csum: Checksum (must include start/offset pair)
776  *	@csum_start: Offset from skb->head where checksumming should start
777  *	@csum_offset: Offset from csum_start where checksum should be stored
778  *	@priority: Packet queueing priority
779  *	@ignore_df: allow local fragmentation
780  *	@cloned: Head may be cloned (check refcnt to be sure)
781  *	@ip_summed: Driver fed us an IP checksum
782  *	@nohdr: Payload reference only, must not modify header
783  *	@pkt_type: Packet class
784  *	@fclone: skbuff clone status
785  *	@ipvs_property: skbuff is owned by ipvs
786  *	@inner_protocol_type: whether the inner protocol is
787  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
788  *	@remcsum_offload: remote checksum offload is enabled
789  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
790  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
791  *	@tc_skip_classify: do not classify packet. set by IFB device
792  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
793  *	@redirected: packet was redirected by packet classifier
794  *	@from_ingress: packet was redirected from the ingress path
795  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
796  *	@peeked: this packet has been seen already, so stats have been
797  *		done for it, don't do them again
798  *	@nf_trace: netfilter packet trace flag
799  *	@protocol: Packet protocol from driver
800  *	@destructor: Destruct function
801  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
802  *	@_sk_redir: socket redirection information for skmsg
803  *	@_nfct: Associated connection, if any (with nfctinfo bits)
804  *	@skb_iif: ifindex of device we arrived on
805  *	@tc_index: Traffic control index
806  *	@hash: the packet hash
807  *	@queue_mapping: Queue mapping for multiqueue devices
808  *	@head_frag: skb was allocated from page fragments,
809  *		not allocated by kmalloc() or vmalloc().
810  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
811  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
812  *		page_pool support on driver)
813  *	@active_extensions: active extensions (skb_ext_id types)
814  *	@ndisc_nodetype: router type (from link layer)
815  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
816  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
817  *		ports.
818  *	@sw_hash: indicates hash was computed in software stack
819  *	@wifi_acked_valid: wifi_acked was set
820  *	@wifi_acked: whether frame was acked on wifi or not
821  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
822  *	@encapsulation: indicates the inner headers in the skbuff are valid
823  *	@encap_hdr_csum: software checksum is needed
824  *	@csum_valid: checksum is already valid
825  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
826  *	@csum_complete_sw: checksum was completed by software
827  *	@csum_level: indicates the number of consecutive checksums found in
828  *		the packet minus one that have been verified as
829  *		CHECKSUM_UNNECESSARY (max 3)
830  *	@dst_pending_confirm: need to confirm neighbour
831  *	@decrypted: Decrypted SKB
832  *	@slow_gro: state present at GRO time, slower prepare step required
833  *	@tstamp_type: When set, skb->tstamp has the
834  *		delivery_time clock base of skb->tstamp.
835  *	@napi_id: id of the NAPI struct this skb came from
836  *	@sender_cpu: (aka @napi_id) source CPU in XPS
837  *	@alloc_cpu: CPU which did the skb allocation.
838  *	@secmark: security marking
839  *	@mark: Generic packet mark
840  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
841  *		at the tail of an sk_buff
842  *	@vlan_all: vlan fields (proto & tci)
843  *	@vlan_proto: vlan encapsulation protocol
844  *	@vlan_tci: vlan tag control information
845  *	@inner_protocol: Protocol (encapsulation)
846  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
847  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
848  *	@inner_transport_header: Inner transport layer header (encapsulation)
849  *	@inner_network_header: Network layer header (encapsulation)
850  *	@inner_mac_header: Link layer header (encapsulation)
851  *	@transport_header: Transport layer header
852  *	@network_header: Network layer header
853  *	@mac_header: Link layer header
854  *	@kcov_handle: KCOV remote handle for remote coverage collection
855  *	@tail: Tail pointer
856  *	@end: End pointer
857  *	@head: Head of buffer
858  *	@data: Data head pointer
859  *	@truesize: Buffer size
860  *	@users: User count - see {datagram,tcp}.c
861  *	@extensions: allocated extensions, valid if active_extensions is nonzero
862  */
863 
864 struct sk_buff {
865 	union {
866 		struct {
867 			/* These two members must be first to match sk_buff_head. */
868 			struct sk_buff		*next;
869 			struct sk_buff		*prev;
870 
871 			union {
872 				struct net_device	*dev;
873 				/* Some protocols might use this space to store information,
874 				 * while device pointer would be NULL.
875 				 * UDP receive path is one user.
876 				 */
877 				unsigned long		dev_scratch;
878 			};
879 		};
880 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
881 		struct list_head	list;
882 		struct llist_node	ll_node;
883 	};
884 
885 	struct sock		*sk;
886 
887 	union {
888 		ktime_t		tstamp;
889 		u64		skb_mstamp_ns; /* earliest departure time */
890 	};
891 	/*
892 	 * This is the control buffer. It is free to use for every
893 	 * layer. Please put your private variables there. If you
894 	 * want to keep them across layers you have to do a skb_clone()
895 	 * first. This is owned by whoever has the skb queued ATM.
896 	 */
897 	char			cb[48] __aligned(8);
898 
899 	union {
900 		struct {
901 			unsigned long	_skb_refdst;
902 			void		(*destructor)(struct sk_buff *skb);
903 		};
904 		struct list_head	tcp_tsorted_anchor;
905 #ifdef CONFIG_NET_SOCK_MSG
906 		unsigned long		_sk_redir;
907 #endif
908 	};
909 
910 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
911 	unsigned long		 _nfct;
912 #endif
913 	unsigned int		len,
914 				data_len;
915 	__u16			mac_len,
916 				hdr_len;
917 
918 	/* Following fields are _not_ copied in __copy_skb_header()
919 	 * Note that queue_mapping is here mostly to fill a hole.
920 	 */
921 	__u16			queue_mapping;
922 
923 /* if you move cloned around you also must adapt those constants */
924 #ifdef __BIG_ENDIAN_BITFIELD
925 #define CLONED_MASK	(1 << 7)
926 #else
927 #define CLONED_MASK	1
928 #endif
929 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
930 
931 	/* private: */
932 	__u8			__cloned_offset[0];
933 	/* public: */
934 	__u8			cloned:1,
935 				nohdr:1,
936 				fclone:2,
937 				peeked:1,
938 				head_frag:1,
939 				pfmemalloc:1,
940 				pp_recycle:1; /* page_pool recycle indicator */
941 #ifdef CONFIG_SKB_EXTENSIONS
942 	__u8			active_extensions;
943 #endif
944 
945 	/* Fields enclosed in headers group are copied
946 	 * using a single memcpy() in __copy_skb_header()
947 	 */
948 	struct_group(headers,
949 
950 	/* private: */
951 	__u8			__pkt_type_offset[0];
952 	/* public: */
953 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
954 	__u8			ignore_df:1;
955 	__u8			dst_pending_confirm:1;
956 	__u8			ip_summed:2;
957 	__u8			ooo_okay:1;
958 
959 	/* private: */
960 	__u8			__mono_tc_offset[0];
961 	/* public: */
962 	__u8			tstamp_type:2;	/* See skb_tstamp_type */
963 #ifdef CONFIG_NET_XGRESS
964 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
965 	__u8			tc_skip_classify:1;
966 #endif
967 	__u8			remcsum_offload:1;
968 	__u8			csum_complete_sw:1;
969 	__u8			csum_level:2;
970 	__u8			inner_protocol_type:1;
971 
972 	__u8			l4_hash:1;
973 	__u8			sw_hash:1;
974 #ifdef CONFIG_WIRELESS
975 	__u8			wifi_acked_valid:1;
976 	__u8			wifi_acked:1;
977 #endif
978 	__u8			no_fcs:1;
979 	/* Indicates the inner headers are valid in the skbuff. */
980 	__u8			encapsulation:1;
981 	__u8			encap_hdr_csum:1;
982 	__u8			csum_valid:1;
983 #ifdef CONFIG_IPV6_NDISC_NODETYPE
984 	__u8			ndisc_nodetype:2;
985 #endif
986 
987 #if IS_ENABLED(CONFIG_IP_VS)
988 	__u8			ipvs_property:1;
989 #endif
990 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
991 	__u8			nf_trace:1;
992 #endif
993 #ifdef CONFIG_NET_SWITCHDEV
994 	__u8			offload_fwd_mark:1;
995 	__u8			offload_l3_fwd_mark:1;
996 #endif
997 	__u8			redirected:1;
998 #ifdef CONFIG_NET_REDIRECT
999 	__u8			from_ingress:1;
1000 #endif
1001 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1002 	__u8			nf_skip_egress:1;
1003 #endif
1004 #ifdef CONFIG_SKB_DECRYPTED
1005 	__u8			decrypted:1;
1006 #endif
1007 	__u8			slow_gro:1;
1008 #if IS_ENABLED(CONFIG_IP_SCTP)
1009 	__u8			csum_not_inet:1;
1010 #endif
1011 
1012 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1013 	__u16			tc_index;	/* traffic control index */
1014 #endif
1015 
1016 	u16			alloc_cpu;
1017 
1018 	union {
1019 		__wsum		csum;
1020 		struct {
1021 			__u16	csum_start;
1022 			__u16	csum_offset;
1023 		};
1024 	};
1025 	__u32			priority;
1026 	int			skb_iif;
1027 	__u32			hash;
1028 	union {
1029 		u32		vlan_all;
1030 		struct {
1031 			__be16	vlan_proto;
1032 			__u16	vlan_tci;
1033 		};
1034 	};
1035 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1036 	union {
1037 		unsigned int	napi_id;
1038 		unsigned int	sender_cpu;
1039 	};
1040 #endif
1041 #ifdef CONFIG_NETWORK_SECMARK
1042 	__u32		secmark;
1043 #endif
1044 
1045 	union {
1046 		__u32		mark;
1047 		__u32		reserved_tailroom;
1048 	};
1049 
1050 	union {
1051 		__be16		inner_protocol;
1052 		__u8		inner_ipproto;
1053 	};
1054 
1055 	__u16			inner_transport_header;
1056 	__u16			inner_network_header;
1057 	__u16			inner_mac_header;
1058 
1059 	__be16			protocol;
1060 	__u16			transport_header;
1061 	__u16			network_header;
1062 	__u16			mac_header;
1063 
1064 #ifdef CONFIG_KCOV
1065 	u64			kcov_handle;
1066 #endif
1067 
1068 	); /* end headers group */
1069 
1070 	/* These elements must be at the end, see alloc_skb() for details.  */
1071 	sk_buff_data_t		tail;
1072 	sk_buff_data_t		end;
1073 	unsigned char		*head,
1074 				*data;
1075 	unsigned int		truesize;
1076 	refcount_t		users;
1077 
1078 #ifdef CONFIG_SKB_EXTENSIONS
1079 	/* only usable after checking ->active_extensions != 0 */
1080 	struct skb_ext		*extensions;
1081 #endif
1082 };
1083 
1084 /* if you move pkt_type around you also must adapt those constants */
1085 #ifdef __BIG_ENDIAN_BITFIELD
1086 #define PKT_TYPE_MAX	(7 << 5)
1087 #else
1088 #define PKT_TYPE_MAX	7
1089 #endif
1090 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1091 
1092 /* if you move tc_at_ingress or tstamp_type
1093  * around, you also must adapt these constants.
1094  */
1095 #ifdef __BIG_ENDIAN_BITFIELD
1096 #define SKB_TSTAMP_TYPE_MASK		(3 << 6)
1097 #define SKB_TSTAMP_TYPE_RSHIFT		(6)
1098 #define TC_AT_INGRESS_MASK		(1 << 5)
1099 #else
1100 #define SKB_TSTAMP_TYPE_MASK		(3)
1101 #define TC_AT_INGRESS_MASK		(1 << 2)
1102 #endif
1103 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1104 
1105 #ifdef __KERNEL__
1106 /*
1107  *	Handling routines are only of interest to the kernel
1108  */
1109 
1110 #define SKB_ALLOC_FCLONE	0x01
1111 #define SKB_ALLOC_RX		0x02
1112 #define SKB_ALLOC_NAPI		0x04
1113 
1114 /**
1115  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1116  * @skb: buffer
1117  */
1118 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1119 {
1120 	return unlikely(skb->pfmemalloc);
1121 }
1122 
1123 /*
1124  * skb might have a dst pointer attached, refcounted or not.
1125  * _skb_refdst low order bit is set if refcount was _not_ taken
1126  */
1127 #define SKB_DST_NOREF	1UL
1128 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1129 
1130 /**
1131  * skb_dst - returns skb dst_entry
1132  * @skb: buffer
1133  *
1134  * Returns skb dst_entry, regardless of reference taken or not.
1135  */
1136 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1137 {
1138 	/* If refdst was not refcounted, check we still are in a
1139 	 * rcu_read_lock section
1140 	 */
1141 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1142 		!rcu_read_lock_held() &&
1143 		!rcu_read_lock_bh_held());
1144 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1145 }
1146 
1147 /**
1148  * skb_dst_set - sets skb dst
1149  * @skb: buffer
1150  * @dst: dst entry
1151  *
1152  * Sets skb dst, assuming a reference was taken on dst and should
1153  * be released by skb_dst_drop()
1154  */
1155 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1156 {
1157 	skb->slow_gro |= !!dst;
1158 	skb->_skb_refdst = (unsigned long)dst;
1159 }
1160 
1161 /**
1162  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1163  * @skb: buffer
1164  * @dst: dst entry
1165  *
1166  * Sets skb dst, assuming a reference was not taken on dst.
1167  * If dst entry is cached, we do not take reference and dst_release
1168  * will be avoided by refdst_drop. If dst entry is not cached, we take
1169  * reference, so that last dst_release can destroy the dst immediately.
1170  */
1171 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1172 {
1173 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1174 	skb->slow_gro |= !!dst;
1175 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1176 }
1177 
1178 /**
1179  * skb_dst_is_noref - Test if skb dst isn't refcounted
1180  * @skb: buffer
1181  */
1182 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1183 {
1184 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1185 }
1186 
1187 /* For mangling skb->pkt_type from user space side from applications
1188  * such as nft, tc, etc, we only allow a conservative subset of
1189  * possible pkt_types to be set.
1190 */
1191 static inline bool skb_pkt_type_ok(u32 ptype)
1192 {
1193 	return ptype <= PACKET_OTHERHOST;
1194 }
1195 
1196 /**
1197  * skb_napi_id - Returns the skb's NAPI id
1198  * @skb: buffer
1199  */
1200 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1201 {
1202 #ifdef CONFIG_NET_RX_BUSY_POLL
1203 	return skb->napi_id;
1204 #else
1205 	return 0;
1206 #endif
1207 }
1208 
1209 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1210 {
1211 #ifdef CONFIG_WIRELESS
1212 	return skb->wifi_acked_valid;
1213 #else
1214 	return 0;
1215 #endif
1216 }
1217 
1218 /**
1219  * skb_unref - decrement the skb's reference count
1220  * @skb: buffer
1221  *
1222  * Returns true if we can free the skb.
1223  */
1224 static inline bool skb_unref(struct sk_buff *skb)
1225 {
1226 	if (unlikely(!skb))
1227 		return false;
1228 	if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1))
1229 		smp_rmb();
1230 	else if (likely(!refcount_dec_and_test(&skb->users)))
1231 		return false;
1232 
1233 	return true;
1234 }
1235 
1236 static inline bool skb_data_unref(const struct sk_buff *skb,
1237 				  struct skb_shared_info *shinfo)
1238 {
1239 	int bias;
1240 
1241 	if (!skb->cloned)
1242 		return true;
1243 
1244 	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1245 
1246 	if (atomic_read(&shinfo->dataref) == bias)
1247 		smp_rmb();
1248 	else if (atomic_sub_return(bias, &shinfo->dataref))
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1255 				      enum skb_drop_reason reason);
1256 
1257 static inline void
1258 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1259 {
1260 	sk_skb_reason_drop(NULL, skb, reason);
1261 }
1262 
1263 /**
1264  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1265  *	@skb: buffer to free
1266  */
1267 static inline void kfree_skb(struct sk_buff *skb)
1268 {
1269 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1270 }
1271 
1272 void skb_release_head_state(struct sk_buff *skb);
1273 void kfree_skb_list_reason(struct sk_buff *segs,
1274 			   enum skb_drop_reason reason);
1275 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1276 void skb_tx_error(struct sk_buff *skb);
1277 
1278 static inline void kfree_skb_list(struct sk_buff *segs)
1279 {
1280 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1281 }
1282 
1283 #ifdef CONFIG_TRACEPOINTS
1284 void consume_skb(struct sk_buff *skb);
1285 #else
1286 static inline void consume_skb(struct sk_buff *skb)
1287 {
1288 	return kfree_skb(skb);
1289 }
1290 #endif
1291 
1292 void __consume_stateless_skb(struct sk_buff *skb);
1293 void  __kfree_skb(struct sk_buff *skb);
1294 
1295 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1296 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1297 		      bool *fragstolen, int *delta_truesize);
1298 
1299 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1300 			    int node);
1301 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1302 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1303 struct sk_buff *build_skb_around(struct sk_buff *skb,
1304 				 void *data, unsigned int frag_size);
1305 void skb_attempt_defer_free(struct sk_buff *skb);
1306 
1307 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1308 struct sk_buff *slab_build_skb(void *data);
1309 
1310 /**
1311  * alloc_skb - allocate a network buffer
1312  * @size: size to allocate
1313  * @priority: allocation mask
1314  *
1315  * This function is a convenient wrapper around __alloc_skb().
1316  */
1317 static inline struct sk_buff *alloc_skb(unsigned int size,
1318 					gfp_t priority)
1319 {
1320 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1321 }
1322 
1323 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1324 				     unsigned long data_len,
1325 				     int max_page_order,
1326 				     int *errcode,
1327 				     gfp_t gfp_mask);
1328 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1329 
1330 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1331 struct sk_buff_fclones {
1332 	struct sk_buff	skb1;
1333 
1334 	struct sk_buff	skb2;
1335 
1336 	refcount_t	fclone_ref;
1337 };
1338 
1339 /**
1340  *	skb_fclone_busy - check if fclone is busy
1341  *	@sk: socket
1342  *	@skb: buffer
1343  *
1344  * Returns true if skb is a fast clone, and its clone is not freed.
1345  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1346  * so we also check that didn't happen.
1347  */
1348 static inline bool skb_fclone_busy(const struct sock *sk,
1349 				   const struct sk_buff *skb)
1350 {
1351 	const struct sk_buff_fclones *fclones;
1352 
1353 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1354 
1355 	return skb->fclone == SKB_FCLONE_ORIG &&
1356 	       refcount_read(&fclones->fclone_ref) > 1 &&
1357 	       READ_ONCE(fclones->skb2.sk) == sk;
1358 }
1359 
1360 /**
1361  * alloc_skb_fclone - allocate a network buffer from fclone cache
1362  * @size: size to allocate
1363  * @priority: allocation mask
1364  *
1365  * This function is a convenient wrapper around __alloc_skb().
1366  */
1367 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1368 					       gfp_t priority)
1369 {
1370 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1371 }
1372 
1373 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1374 void skb_headers_offset_update(struct sk_buff *skb, int off);
1375 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1376 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1377 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1378 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1379 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1380 				   gfp_t gfp_mask, bool fclone);
1381 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1382 					  gfp_t gfp_mask)
1383 {
1384 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1385 }
1386 
1387 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1388 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1389 				     unsigned int headroom);
1390 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1391 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1392 				int newtailroom, gfp_t priority);
1393 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1394 				     int offset, int len);
1395 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1396 			      int offset, int len);
1397 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1398 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1399 
1400 /**
1401  *	skb_pad			-	zero pad the tail of an skb
1402  *	@skb: buffer to pad
1403  *	@pad: space to pad
1404  *
1405  *	Ensure that a buffer is followed by a padding area that is zero
1406  *	filled. Used by network drivers which may DMA or transfer data
1407  *	beyond the buffer end onto the wire.
1408  *
1409  *	May return error in out of memory cases. The skb is freed on error.
1410  */
1411 static inline int skb_pad(struct sk_buff *skb, int pad)
1412 {
1413 	return __skb_pad(skb, pad, true);
1414 }
1415 #define dev_kfree_skb(a)	consume_skb(a)
1416 
1417 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1418 			 int offset, size_t size, size_t max_frags);
1419 
1420 struct skb_seq_state {
1421 	__u32		lower_offset;
1422 	__u32		upper_offset;
1423 	__u32		frag_idx;
1424 	__u32		stepped_offset;
1425 	struct sk_buff	*root_skb;
1426 	struct sk_buff	*cur_skb;
1427 	__u8		*frag_data;
1428 	__u32		frag_off;
1429 };
1430 
1431 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1432 			  unsigned int to, struct skb_seq_state *st);
1433 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1434 			  struct skb_seq_state *st);
1435 void skb_abort_seq_read(struct skb_seq_state *st);
1436 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len);
1437 
1438 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1439 			   unsigned int to, struct ts_config *config);
1440 
1441 /*
1442  * Packet hash types specify the type of hash in skb_set_hash.
1443  *
1444  * Hash types refer to the protocol layer addresses which are used to
1445  * construct a packet's hash. The hashes are used to differentiate or identify
1446  * flows of the protocol layer for the hash type. Hash types are either
1447  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1448  *
1449  * Properties of hashes:
1450  *
1451  * 1) Two packets in different flows have different hash values
1452  * 2) Two packets in the same flow should have the same hash value
1453  *
1454  * A hash at a higher layer is considered to be more specific. A driver should
1455  * set the most specific hash possible.
1456  *
1457  * A driver cannot indicate a more specific hash than the layer at which a hash
1458  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1459  *
1460  * A driver may indicate a hash level which is less specific than the
1461  * actual layer the hash was computed on. For instance, a hash computed
1462  * at L4 may be considered an L3 hash. This should only be done if the
1463  * driver can't unambiguously determine that the HW computed the hash at
1464  * the higher layer. Note that the "should" in the second property above
1465  * permits this.
1466  */
1467 enum pkt_hash_types {
1468 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1469 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1470 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1471 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1472 };
1473 
1474 static inline void skb_clear_hash(struct sk_buff *skb)
1475 {
1476 	skb->hash = 0;
1477 	skb->sw_hash = 0;
1478 	skb->l4_hash = 0;
1479 }
1480 
1481 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1482 {
1483 	if (!skb->l4_hash)
1484 		skb_clear_hash(skb);
1485 }
1486 
1487 static inline void
1488 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1489 {
1490 	skb->l4_hash = is_l4;
1491 	skb->sw_hash = is_sw;
1492 	skb->hash = hash;
1493 }
1494 
1495 static inline void
1496 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1497 {
1498 	/* Used by drivers to set hash from HW */
1499 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1500 }
1501 
1502 static inline void
1503 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1504 {
1505 	__skb_set_hash(skb, hash, true, is_l4);
1506 }
1507 
1508 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb);
1509 
1510 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1511 {
1512 	return __skb_get_hash_symmetric_net(NULL, skb);
1513 }
1514 
1515 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb);
1516 u32 skb_get_poff(const struct sk_buff *skb);
1517 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1518 		   const struct flow_keys_basic *keys, int hlen);
1519 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1520 			    const void *data, int hlen_proto);
1521 
1522 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1523 					int thoff, u8 ip_proto)
1524 {
1525 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1526 }
1527 
1528 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1529 			     const struct flow_dissector_key *key,
1530 			     unsigned int key_count);
1531 
1532 struct bpf_flow_dissector;
1533 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1534 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1535 
1536 bool __skb_flow_dissect(const struct net *net,
1537 			const struct sk_buff *skb,
1538 			struct flow_dissector *flow_dissector,
1539 			void *target_container, const void *data,
1540 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1541 
1542 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1543 				    struct flow_dissector *flow_dissector,
1544 				    void *target_container, unsigned int flags)
1545 {
1546 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1547 				  target_container, NULL, 0, 0, 0, flags);
1548 }
1549 
1550 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1551 					      struct flow_keys *flow,
1552 					      unsigned int flags)
1553 {
1554 	memset(flow, 0, sizeof(*flow));
1555 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1556 				  flow, NULL, 0, 0, 0, flags);
1557 }
1558 
1559 static inline bool
1560 skb_flow_dissect_flow_keys_basic(const struct net *net,
1561 				 const struct sk_buff *skb,
1562 				 struct flow_keys_basic *flow,
1563 				 const void *data, __be16 proto,
1564 				 int nhoff, int hlen, unsigned int flags)
1565 {
1566 	memset(flow, 0, sizeof(*flow));
1567 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1568 				  data, proto, nhoff, hlen, flags);
1569 }
1570 
1571 void skb_flow_dissect_meta(const struct sk_buff *skb,
1572 			   struct flow_dissector *flow_dissector,
1573 			   void *target_container);
1574 
1575 /* Gets a skb connection tracking info, ctinfo map should be a
1576  * map of mapsize to translate enum ip_conntrack_info states
1577  * to user states.
1578  */
1579 void
1580 skb_flow_dissect_ct(const struct sk_buff *skb,
1581 		    struct flow_dissector *flow_dissector,
1582 		    void *target_container,
1583 		    u16 *ctinfo_map, size_t mapsize,
1584 		    bool post_ct, u16 zone);
1585 void
1586 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1587 			     struct flow_dissector *flow_dissector,
1588 			     void *target_container);
1589 
1590 void skb_flow_dissect_hash(const struct sk_buff *skb,
1591 			   struct flow_dissector *flow_dissector,
1592 			   void *target_container);
1593 
1594 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb)
1595 {
1596 	if (!skb->l4_hash && !skb->sw_hash)
1597 		__skb_get_hash_net(net, skb);
1598 
1599 	return skb->hash;
1600 }
1601 
1602 static inline __u32 skb_get_hash(struct sk_buff *skb)
1603 {
1604 	if (!skb->l4_hash && !skb->sw_hash)
1605 		__skb_get_hash_net(NULL, skb);
1606 
1607 	return skb->hash;
1608 }
1609 
1610 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1611 {
1612 	if (!skb->l4_hash && !skb->sw_hash) {
1613 		struct flow_keys keys;
1614 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1615 
1616 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1617 	}
1618 
1619 	return skb->hash;
1620 }
1621 
1622 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1623 			   const siphash_key_t *perturb);
1624 
1625 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1626 {
1627 	return skb->hash;
1628 }
1629 
1630 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1631 {
1632 	to->hash = from->hash;
1633 	to->sw_hash = from->sw_hash;
1634 	to->l4_hash = from->l4_hash;
1635 };
1636 
1637 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1638 				    const struct sk_buff *skb2)
1639 {
1640 #ifdef CONFIG_SKB_DECRYPTED
1641 	return skb2->decrypted - skb1->decrypted;
1642 #else
1643 	return 0;
1644 #endif
1645 }
1646 
1647 static inline bool skb_is_decrypted(const struct sk_buff *skb)
1648 {
1649 #ifdef CONFIG_SKB_DECRYPTED
1650 	return skb->decrypted;
1651 #else
1652 	return false;
1653 #endif
1654 }
1655 
1656 static inline void skb_copy_decrypted(struct sk_buff *to,
1657 				      const struct sk_buff *from)
1658 {
1659 #ifdef CONFIG_SKB_DECRYPTED
1660 	to->decrypted = from->decrypted;
1661 #endif
1662 }
1663 
1664 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1665 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1666 {
1667 	return skb->head + skb->end;
1668 }
1669 
1670 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1671 {
1672 	return skb->end;
1673 }
1674 
1675 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1676 {
1677 	skb->end = offset;
1678 }
1679 #else
1680 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1681 {
1682 	return skb->end;
1683 }
1684 
1685 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1686 {
1687 	return skb->end - skb->head;
1688 }
1689 
1690 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1691 {
1692 	skb->end = skb->head + offset;
1693 }
1694 #endif
1695 
1696 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1697 
1698 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1699 				       struct ubuf_info *uarg);
1700 
1701 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1702 
1703 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1704 			    struct sk_buff *skb, struct iov_iter *from,
1705 			    size_t length);
1706 
1707 int zerocopy_fill_skb_from_iter(struct sk_buff *skb,
1708 				struct iov_iter *from, size_t length);
1709 
1710 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1711 					  struct msghdr *msg, int len)
1712 {
1713 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1714 }
1715 
1716 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1717 			     struct msghdr *msg, int len,
1718 			     struct ubuf_info *uarg);
1719 
1720 /* Internal */
1721 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1722 
1723 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1724 {
1725 	return &skb_shinfo(skb)->hwtstamps;
1726 }
1727 
1728 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1729 {
1730 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1731 
1732 	return is_zcopy ? skb_uarg(skb) : NULL;
1733 }
1734 
1735 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1736 {
1737 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1738 }
1739 
1740 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1741 {
1742 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1743 }
1744 
1745 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1746 				       const struct sk_buff *skb2)
1747 {
1748 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1749 }
1750 
1751 static inline void net_zcopy_get(struct ubuf_info *uarg)
1752 {
1753 	refcount_inc(&uarg->refcnt);
1754 }
1755 
1756 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1757 {
1758 	skb_shinfo(skb)->destructor_arg = uarg;
1759 	skb_shinfo(skb)->flags |= uarg->flags;
1760 }
1761 
1762 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1763 				 bool *have_ref)
1764 {
1765 	if (skb && uarg && !skb_zcopy(skb)) {
1766 		if (unlikely(have_ref && *have_ref))
1767 			*have_ref = false;
1768 		else
1769 			net_zcopy_get(uarg);
1770 		skb_zcopy_init(skb, uarg);
1771 	}
1772 }
1773 
1774 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1775 {
1776 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1777 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1778 }
1779 
1780 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1781 {
1782 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1783 }
1784 
1785 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1786 {
1787 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1788 }
1789 
1790 static inline void net_zcopy_put(struct ubuf_info *uarg)
1791 {
1792 	if (uarg)
1793 		uarg->ops->complete(NULL, uarg, true);
1794 }
1795 
1796 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1797 {
1798 	if (uarg) {
1799 		if (uarg->ops == &msg_zerocopy_ubuf_ops)
1800 			msg_zerocopy_put_abort(uarg, have_uref);
1801 		else if (have_uref)
1802 			net_zcopy_put(uarg);
1803 	}
1804 }
1805 
1806 /* Release a reference on a zerocopy structure */
1807 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1808 {
1809 	struct ubuf_info *uarg = skb_zcopy(skb);
1810 
1811 	if (uarg) {
1812 		if (!skb_zcopy_is_nouarg(skb))
1813 			uarg->ops->complete(skb, uarg, zerocopy_success);
1814 
1815 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1816 	}
1817 }
1818 
1819 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1820 
1821 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1822 {
1823 	if (unlikely(skb_zcopy_managed(skb)))
1824 		__skb_zcopy_downgrade_managed(skb);
1825 }
1826 
1827 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1828 {
1829 	skb->next = NULL;
1830 }
1831 
1832 static inline void skb_poison_list(struct sk_buff *skb)
1833 {
1834 #ifdef CONFIG_DEBUG_NET
1835 	skb->next = SKB_LIST_POISON_NEXT;
1836 #endif
1837 }
1838 
1839 /* Iterate through singly-linked GSO fragments of an skb. */
1840 #define skb_list_walk_safe(first, skb, next_skb)                               \
1841 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1842 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1843 
1844 static inline void skb_list_del_init(struct sk_buff *skb)
1845 {
1846 	__list_del_entry(&skb->list);
1847 	skb_mark_not_on_list(skb);
1848 }
1849 
1850 /**
1851  *	skb_queue_empty - check if a queue is empty
1852  *	@list: queue head
1853  *
1854  *	Returns true if the queue is empty, false otherwise.
1855  */
1856 static inline int skb_queue_empty(const struct sk_buff_head *list)
1857 {
1858 	return list->next == (const struct sk_buff *) list;
1859 }
1860 
1861 /**
1862  *	skb_queue_empty_lockless - check if a queue is empty
1863  *	@list: queue head
1864  *
1865  *	Returns true if the queue is empty, false otherwise.
1866  *	This variant can be used in lockless contexts.
1867  */
1868 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1869 {
1870 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1871 }
1872 
1873 
1874 /**
1875  *	skb_queue_is_last - check if skb is the last entry in the queue
1876  *	@list: queue head
1877  *	@skb: buffer
1878  *
1879  *	Returns true if @skb is the last buffer on the list.
1880  */
1881 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1882 				     const struct sk_buff *skb)
1883 {
1884 	return skb->next == (const struct sk_buff *) list;
1885 }
1886 
1887 /**
1888  *	skb_queue_is_first - check if skb is the first entry in the queue
1889  *	@list: queue head
1890  *	@skb: buffer
1891  *
1892  *	Returns true if @skb is the first buffer on the list.
1893  */
1894 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1895 				      const struct sk_buff *skb)
1896 {
1897 	return skb->prev == (const struct sk_buff *) list;
1898 }
1899 
1900 /**
1901  *	skb_queue_next - return the next packet in the queue
1902  *	@list: queue head
1903  *	@skb: current buffer
1904  *
1905  *	Return the next packet in @list after @skb.  It is only valid to
1906  *	call this if skb_queue_is_last() evaluates to false.
1907  */
1908 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1909 					     const struct sk_buff *skb)
1910 {
1911 	/* This BUG_ON may seem severe, but if we just return then we
1912 	 * are going to dereference garbage.
1913 	 */
1914 	BUG_ON(skb_queue_is_last(list, skb));
1915 	return skb->next;
1916 }
1917 
1918 /**
1919  *	skb_queue_prev - return the prev packet in the queue
1920  *	@list: queue head
1921  *	@skb: current buffer
1922  *
1923  *	Return the prev packet in @list before @skb.  It is only valid to
1924  *	call this if skb_queue_is_first() evaluates to false.
1925  */
1926 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1927 					     const struct sk_buff *skb)
1928 {
1929 	/* This BUG_ON may seem severe, but if we just return then we
1930 	 * are going to dereference garbage.
1931 	 */
1932 	BUG_ON(skb_queue_is_first(list, skb));
1933 	return skb->prev;
1934 }
1935 
1936 /**
1937  *	skb_get - reference buffer
1938  *	@skb: buffer to reference
1939  *
1940  *	Makes another reference to a socket buffer and returns a pointer
1941  *	to the buffer.
1942  */
1943 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1944 {
1945 	refcount_inc(&skb->users);
1946 	return skb;
1947 }
1948 
1949 /*
1950  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1951  */
1952 
1953 /**
1954  *	skb_cloned - is the buffer a clone
1955  *	@skb: buffer to check
1956  *
1957  *	Returns true if the buffer was generated with skb_clone() and is
1958  *	one of multiple shared copies of the buffer. Cloned buffers are
1959  *	shared data so must not be written to under normal circumstances.
1960  */
1961 static inline int skb_cloned(const struct sk_buff *skb)
1962 {
1963 	return skb->cloned &&
1964 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1965 }
1966 
1967 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1968 {
1969 	might_sleep_if(gfpflags_allow_blocking(pri));
1970 
1971 	if (skb_cloned(skb))
1972 		return pskb_expand_head(skb, 0, 0, pri);
1973 
1974 	return 0;
1975 }
1976 
1977 /* This variant of skb_unclone() makes sure skb->truesize
1978  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1979  *
1980  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1981  * when various debugging features are in place.
1982  */
1983 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1984 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1985 {
1986 	might_sleep_if(gfpflags_allow_blocking(pri));
1987 
1988 	if (skb_cloned(skb))
1989 		return __skb_unclone_keeptruesize(skb, pri);
1990 	return 0;
1991 }
1992 
1993 /**
1994  *	skb_header_cloned - is the header a clone
1995  *	@skb: buffer to check
1996  *
1997  *	Returns true if modifying the header part of the buffer requires
1998  *	the data to be copied.
1999  */
2000 static inline int skb_header_cloned(const struct sk_buff *skb)
2001 {
2002 	int dataref;
2003 
2004 	if (!skb->cloned)
2005 		return 0;
2006 
2007 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
2008 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2009 	return dataref != 1;
2010 }
2011 
2012 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2013 {
2014 	might_sleep_if(gfpflags_allow_blocking(pri));
2015 
2016 	if (skb_header_cloned(skb))
2017 		return pskb_expand_head(skb, 0, 0, pri);
2018 
2019 	return 0;
2020 }
2021 
2022 /**
2023  * __skb_header_release() - allow clones to use the headroom
2024  * @skb: buffer to operate on
2025  *
2026  * See "DOC: dataref and headerless skbs".
2027  */
2028 static inline void __skb_header_release(struct sk_buff *skb)
2029 {
2030 	skb->nohdr = 1;
2031 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2032 }
2033 
2034 
2035 /**
2036  *	skb_shared - is the buffer shared
2037  *	@skb: buffer to check
2038  *
2039  *	Returns true if more than one person has a reference to this
2040  *	buffer.
2041  */
2042 static inline int skb_shared(const struct sk_buff *skb)
2043 {
2044 	return refcount_read(&skb->users) != 1;
2045 }
2046 
2047 /**
2048  *	skb_share_check - check if buffer is shared and if so clone it
2049  *	@skb: buffer to check
2050  *	@pri: priority for memory allocation
2051  *
2052  *	If the buffer is shared the buffer is cloned and the old copy
2053  *	drops a reference. A new clone with a single reference is returned.
2054  *	If the buffer is not shared the original buffer is returned. When
2055  *	being called from interrupt status or with spinlocks held pri must
2056  *	be GFP_ATOMIC.
2057  *
2058  *	NULL is returned on a memory allocation failure.
2059  */
2060 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2061 {
2062 	might_sleep_if(gfpflags_allow_blocking(pri));
2063 	if (skb_shared(skb)) {
2064 		struct sk_buff *nskb = skb_clone(skb, pri);
2065 
2066 		if (likely(nskb))
2067 			consume_skb(skb);
2068 		else
2069 			kfree_skb(skb);
2070 		skb = nskb;
2071 	}
2072 	return skb;
2073 }
2074 
2075 /*
2076  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2077  *	packets to handle cases where we have a local reader and forward
2078  *	and a couple of other messy ones. The normal one is tcpdumping
2079  *	a packet that's being forwarded.
2080  */
2081 
2082 /**
2083  *	skb_unshare - make a copy of a shared buffer
2084  *	@skb: buffer to check
2085  *	@pri: priority for memory allocation
2086  *
2087  *	If the socket buffer is a clone then this function creates a new
2088  *	copy of the data, drops a reference count on the old copy and returns
2089  *	the new copy with the reference count at 1. If the buffer is not a clone
2090  *	the original buffer is returned. When called with a spinlock held or
2091  *	from interrupt state @pri must be %GFP_ATOMIC
2092  *
2093  *	%NULL is returned on a memory allocation failure.
2094  */
2095 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2096 					  gfp_t pri)
2097 {
2098 	might_sleep_if(gfpflags_allow_blocking(pri));
2099 	if (skb_cloned(skb)) {
2100 		struct sk_buff *nskb = skb_copy(skb, pri);
2101 
2102 		/* Free our shared copy */
2103 		if (likely(nskb))
2104 			consume_skb(skb);
2105 		else
2106 			kfree_skb(skb);
2107 		skb = nskb;
2108 	}
2109 	return skb;
2110 }
2111 
2112 /**
2113  *	skb_peek - peek at the head of an &sk_buff_head
2114  *	@list_: list to peek at
2115  *
2116  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2117  *	be careful with this one. A peek leaves the buffer on the
2118  *	list and someone else may run off with it. You must hold
2119  *	the appropriate locks or have a private queue to do this.
2120  *
2121  *	Returns %NULL for an empty list or a pointer to the head element.
2122  *	The reference count is not incremented and the reference is therefore
2123  *	volatile. Use with caution.
2124  */
2125 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2126 {
2127 	struct sk_buff *skb = list_->next;
2128 
2129 	if (skb == (struct sk_buff *)list_)
2130 		skb = NULL;
2131 	return skb;
2132 }
2133 
2134 /**
2135  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2136  *	@list_: list to peek at
2137  *
2138  *	Like skb_peek(), but the caller knows that the list is not empty.
2139  */
2140 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2141 {
2142 	return list_->next;
2143 }
2144 
2145 /**
2146  *	skb_peek_next - peek skb following the given one from a queue
2147  *	@skb: skb to start from
2148  *	@list_: list to peek at
2149  *
2150  *	Returns %NULL when the end of the list is met or a pointer to the
2151  *	next element. The reference count is not incremented and the
2152  *	reference is therefore volatile. Use with caution.
2153  */
2154 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2155 		const struct sk_buff_head *list_)
2156 {
2157 	struct sk_buff *next = skb->next;
2158 
2159 	if (next == (struct sk_buff *)list_)
2160 		next = NULL;
2161 	return next;
2162 }
2163 
2164 /**
2165  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2166  *	@list_: list to peek at
2167  *
2168  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2169  *	be careful with this one. A peek leaves the buffer on the
2170  *	list and someone else may run off with it. You must hold
2171  *	the appropriate locks or have a private queue to do this.
2172  *
2173  *	Returns %NULL for an empty list or a pointer to the tail element.
2174  *	The reference count is not incremented and the reference is therefore
2175  *	volatile. Use with caution.
2176  */
2177 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2178 {
2179 	struct sk_buff *skb = READ_ONCE(list_->prev);
2180 
2181 	if (skb == (struct sk_buff *)list_)
2182 		skb = NULL;
2183 	return skb;
2184 
2185 }
2186 
2187 /**
2188  *	skb_queue_len	- get queue length
2189  *	@list_: list to measure
2190  *
2191  *	Return the length of an &sk_buff queue.
2192  */
2193 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2194 {
2195 	return list_->qlen;
2196 }
2197 
2198 /**
2199  *	skb_queue_len_lockless	- get queue length
2200  *	@list_: list to measure
2201  *
2202  *	Return the length of an &sk_buff queue.
2203  *	This variant can be used in lockless contexts.
2204  */
2205 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2206 {
2207 	return READ_ONCE(list_->qlen);
2208 }
2209 
2210 /**
2211  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2212  *	@list: queue to initialize
2213  *
2214  *	This initializes only the list and queue length aspects of
2215  *	an sk_buff_head object.  This allows to initialize the list
2216  *	aspects of an sk_buff_head without reinitializing things like
2217  *	the spinlock.  It can also be used for on-stack sk_buff_head
2218  *	objects where the spinlock is known to not be used.
2219  */
2220 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2221 {
2222 	list->prev = list->next = (struct sk_buff *)list;
2223 	list->qlen = 0;
2224 }
2225 
2226 /*
2227  * This function creates a split out lock class for each invocation;
2228  * this is needed for now since a whole lot of users of the skb-queue
2229  * infrastructure in drivers have different locking usage (in hardirq)
2230  * than the networking core (in softirq only). In the long run either the
2231  * network layer or drivers should need annotation to consolidate the
2232  * main types of usage into 3 classes.
2233  */
2234 static inline void skb_queue_head_init(struct sk_buff_head *list)
2235 {
2236 	spin_lock_init(&list->lock);
2237 	__skb_queue_head_init(list);
2238 }
2239 
2240 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2241 		struct lock_class_key *class)
2242 {
2243 	skb_queue_head_init(list);
2244 	lockdep_set_class(&list->lock, class);
2245 }
2246 
2247 /*
2248  *	Insert an sk_buff on a list.
2249  *
2250  *	The "__skb_xxxx()" functions are the non-atomic ones that
2251  *	can only be called with interrupts disabled.
2252  */
2253 static inline void __skb_insert(struct sk_buff *newsk,
2254 				struct sk_buff *prev, struct sk_buff *next,
2255 				struct sk_buff_head *list)
2256 {
2257 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2258 	 * for the opposite READ_ONCE()
2259 	 */
2260 	WRITE_ONCE(newsk->next, next);
2261 	WRITE_ONCE(newsk->prev, prev);
2262 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2263 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2264 	WRITE_ONCE(list->qlen, list->qlen + 1);
2265 }
2266 
2267 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2268 				      struct sk_buff *prev,
2269 				      struct sk_buff *next)
2270 {
2271 	struct sk_buff *first = list->next;
2272 	struct sk_buff *last = list->prev;
2273 
2274 	WRITE_ONCE(first->prev, prev);
2275 	WRITE_ONCE(prev->next, first);
2276 
2277 	WRITE_ONCE(last->next, next);
2278 	WRITE_ONCE(next->prev, last);
2279 }
2280 
2281 /**
2282  *	skb_queue_splice - join two skb lists, this is designed for stacks
2283  *	@list: the new list to add
2284  *	@head: the place to add it in the first list
2285  */
2286 static inline void skb_queue_splice(const struct sk_buff_head *list,
2287 				    struct sk_buff_head *head)
2288 {
2289 	if (!skb_queue_empty(list)) {
2290 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2291 		head->qlen += list->qlen;
2292 	}
2293 }
2294 
2295 /**
2296  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2297  *	@list: the new list to add
2298  *	@head: the place to add it in the first list
2299  *
2300  *	The list at @list is reinitialised
2301  */
2302 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2303 					 struct sk_buff_head *head)
2304 {
2305 	if (!skb_queue_empty(list)) {
2306 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2307 		head->qlen += list->qlen;
2308 		__skb_queue_head_init(list);
2309 	}
2310 }
2311 
2312 /**
2313  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2314  *	@list: the new list to add
2315  *	@head: the place to add it in the first list
2316  */
2317 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2318 					 struct sk_buff_head *head)
2319 {
2320 	if (!skb_queue_empty(list)) {
2321 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2322 		head->qlen += list->qlen;
2323 	}
2324 }
2325 
2326 /**
2327  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2328  *	@list: the new list to add
2329  *	@head: the place to add it in the first list
2330  *
2331  *	Each of the lists is a queue.
2332  *	The list at @list is reinitialised
2333  */
2334 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2335 					      struct sk_buff_head *head)
2336 {
2337 	if (!skb_queue_empty(list)) {
2338 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2339 		head->qlen += list->qlen;
2340 		__skb_queue_head_init(list);
2341 	}
2342 }
2343 
2344 /**
2345  *	__skb_queue_after - queue a buffer at the list head
2346  *	@list: list to use
2347  *	@prev: place after this buffer
2348  *	@newsk: buffer to queue
2349  *
2350  *	Queue a buffer int the middle of a list. This function takes no locks
2351  *	and you must therefore hold required locks before calling it.
2352  *
2353  *	A buffer cannot be placed on two lists at the same time.
2354  */
2355 static inline void __skb_queue_after(struct sk_buff_head *list,
2356 				     struct sk_buff *prev,
2357 				     struct sk_buff *newsk)
2358 {
2359 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2360 }
2361 
2362 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2363 		struct sk_buff_head *list);
2364 
2365 static inline void __skb_queue_before(struct sk_buff_head *list,
2366 				      struct sk_buff *next,
2367 				      struct sk_buff *newsk)
2368 {
2369 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2370 }
2371 
2372 /**
2373  *	__skb_queue_head - queue a buffer at the list head
2374  *	@list: list to use
2375  *	@newsk: buffer to queue
2376  *
2377  *	Queue a buffer at the start of a list. This function takes no locks
2378  *	and you must therefore hold required locks before calling it.
2379  *
2380  *	A buffer cannot be placed on two lists at the same time.
2381  */
2382 static inline void __skb_queue_head(struct sk_buff_head *list,
2383 				    struct sk_buff *newsk)
2384 {
2385 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2386 }
2387 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2388 
2389 /**
2390  *	__skb_queue_tail - queue a buffer at the list tail
2391  *	@list: list to use
2392  *	@newsk: buffer to queue
2393  *
2394  *	Queue a buffer at the end of a list. This function takes no locks
2395  *	and you must therefore hold required locks before calling it.
2396  *
2397  *	A buffer cannot be placed on two lists at the same time.
2398  */
2399 static inline void __skb_queue_tail(struct sk_buff_head *list,
2400 				   struct sk_buff *newsk)
2401 {
2402 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2403 }
2404 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2405 
2406 /*
2407  * remove sk_buff from list. _Must_ be called atomically, and with
2408  * the list known..
2409  */
2410 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2411 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2412 {
2413 	struct sk_buff *next, *prev;
2414 
2415 	WRITE_ONCE(list->qlen, list->qlen - 1);
2416 	next	   = skb->next;
2417 	prev	   = skb->prev;
2418 	skb->next  = skb->prev = NULL;
2419 	WRITE_ONCE(next->prev, prev);
2420 	WRITE_ONCE(prev->next, next);
2421 }
2422 
2423 /**
2424  *	__skb_dequeue - remove from the head of the queue
2425  *	@list: list to dequeue from
2426  *
2427  *	Remove the head of the list. This function does not take any locks
2428  *	so must be used with appropriate locks held only. The head item is
2429  *	returned or %NULL if the list is empty.
2430  */
2431 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2432 {
2433 	struct sk_buff *skb = skb_peek(list);
2434 	if (skb)
2435 		__skb_unlink(skb, list);
2436 	return skb;
2437 }
2438 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2439 
2440 /**
2441  *	__skb_dequeue_tail - remove from the tail of the queue
2442  *	@list: list to dequeue from
2443  *
2444  *	Remove the tail of the list. This function does not take any locks
2445  *	so must be used with appropriate locks held only. The tail item is
2446  *	returned or %NULL if the list is empty.
2447  */
2448 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2449 {
2450 	struct sk_buff *skb = skb_peek_tail(list);
2451 	if (skb)
2452 		__skb_unlink(skb, list);
2453 	return skb;
2454 }
2455 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2456 
2457 
2458 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2459 {
2460 	return skb->data_len;
2461 }
2462 
2463 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2464 {
2465 	return skb->len - skb->data_len;
2466 }
2467 
2468 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2469 {
2470 	unsigned int i, len = 0;
2471 
2472 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2473 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2474 	return len;
2475 }
2476 
2477 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2478 {
2479 	return skb_headlen(skb) + __skb_pagelen(skb);
2480 }
2481 
2482 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2483 					     netmem_ref netmem, int off,
2484 					     int size)
2485 {
2486 	frag->netmem = netmem;
2487 	frag->offset = off;
2488 	skb_frag_size_set(frag, size);
2489 }
2490 
2491 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2492 					   struct page *page,
2493 					   int off, int size)
2494 {
2495 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2496 }
2497 
2498 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2499 						int i, netmem_ref netmem,
2500 						int off, int size)
2501 {
2502 	skb_frag_t *frag = &shinfo->frags[i];
2503 
2504 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2505 }
2506 
2507 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2508 					      int i, struct page *page,
2509 					      int off, int size)
2510 {
2511 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2512 				     size);
2513 }
2514 
2515 /**
2516  * skb_len_add - adds a number to len fields of skb
2517  * @skb: buffer to add len to
2518  * @delta: number of bytes to add
2519  */
2520 static inline void skb_len_add(struct sk_buff *skb, int delta)
2521 {
2522 	skb->len += delta;
2523 	skb->data_len += delta;
2524 	skb->truesize += delta;
2525 }
2526 
2527 /**
2528  * __skb_fill_netmem_desc - initialise a fragment in an skb
2529  * @skb: buffer containing fragment to be initialised
2530  * @i: fragment index to initialise
2531  * @netmem: the netmem to use for this fragment
2532  * @off: the offset to the data with @page
2533  * @size: the length of the data
2534  *
2535  * Initialises the @i'th fragment of @skb to point to &size bytes at
2536  * offset @off within @page.
2537  *
2538  * Does not take any additional reference on the fragment.
2539  */
2540 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2541 					  netmem_ref netmem, int off, int size)
2542 {
2543 	struct page *page = netmem_to_page(netmem);
2544 
2545 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2546 
2547 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2548 	 * that not all callers have unique ownership of the page but rely
2549 	 * on page_is_pfmemalloc doing the right thing(tm).
2550 	 */
2551 	page = compound_head(page);
2552 	if (page_is_pfmemalloc(page))
2553 		skb->pfmemalloc = true;
2554 }
2555 
2556 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2557 					struct page *page, int off, int size)
2558 {
2559 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2560 }
2561 
2562 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2563 					netmem_ref netmem, int off, int size)
2564 {
2565 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2566 	skb_shinfo(skb)->nr_frags = i + 1;
2567 }
2568 
2569 /**
2570  * skb_fill_page_desc - initialise a paged fragment in an skb
2571  * @skb: buffer containing fragment to be initialised
2572  * @i: paged fragment index to initialise
2573  * @page: the page to use for this fragment
2574  * @off: the offset to the data with @page
2575  * @size: the length of the data
2576  *
2577  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2578  * @skb to point to @size bytes at offset @off within @page. In
2579  * addition updates @skb such that @i is the last fragment.
2580  *
2581  * Does not take any additional reference on the fragment.
2582  */
2583 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2584 				      struct page *page, int off, int size)
2585 {
2586 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2587 }
2588 
2589 /**
2590  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2591  * @skb: buffer containing fragment to be initialised
2592  * @i: paged fragment index to initialise
2593  * @page: the page to use for this fragment
2594  * @off: the offset to the data with @page
2595  * @size: the length of the data
2596  *
2597  * Variant of skb_fill_page_desc() which does not deal with
2598  * pfmemalloc, if page is not owned by us.
2599  */
2600 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2601 					    struct page *page, int off,
2602 					    int size)
2603 {
2604 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2605 
2606 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2607 	shinfo->nr_frags = i + 1;
2608 }
2609 
2610 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2611 			    int off, int size, unsigned int truesize);
2612 
2613 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2614 				   struct page *page, int off, int size,
2615 				   unsigned int truesize)
2616 {
2617 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2618 			       truesize);
2619 }
2620 
2621 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2622 			  unsigned int truesize);
2623 
2624 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2625 
2626 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2627 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2628 {
2629 	return skb->head + skb->tail;
2630 }
2631 
2632 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2633 {
2634 	skb->tail = skb->data - skb->head;
2635 }
2636 
2637 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2638 {
2639 	skb_reset_tail_pointer(skb);
2640 	skb->tail += offset;
2641 }
2642 
2643 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2644 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2645 {
2646 	return skb->tail;
2647 }
2648 
2649 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2650 {
2651 	skb->tail = skb->data;
2652 }
2653 
2654 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2655 {
2656 	skb->tail = skb->data + offset;
2657 }
2658 
2659 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2660 
2661 static inline void skb_assert_len(struct sk_buff *skb)
2662 {
2663 #ifdef CONFIG_DEBUG_NET
2664 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2665 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2666 #endif /* CONFIG_DEBUG_NET */
2667 }
2668 
2669 /*
2670  *	Add data to an sk_buff
2671  */
2672 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2673 void *skb_put(struct sk_buff *skb, unsigned int len);
2674 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2675 {
2676 	void *tmp = skb_tail_pointer(skb);
2677 	SKB_LINEAR_ASSERT(skb);
2678 	skb->tail += len;
2679 	skb->len  += len;
2680 	return tmp;
2681 }
2682 
2683 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2684 {
2685 	void *tmp = __skb_put(skb, len);
2686 
2687 	memset(tmp, 0, len);
2688 	return tmp;
2689 }
2690 
2691 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2692 				   unsigned int len)
2693 {
2694 	void *tmp = __skb_put(skb, len);
2695 
2696 	memcpy(tmp, data, len);
2697 	return tmp;
2698 }
2699 
2700 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2701 {
2702 	*(u8 *)__skb_put(skb, 1) = val;
2703 }
2704 
2705 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2706 {
2707 	void *tmp = skb_put(skb, len);
2708 
2709 	memset(tmp, 0, len);
2710 
2711 	return tmp;
2712 }
2713 
2714 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2715 				 unsigned int len)
2716 {
2717 	void *tmp = skb_put(skb, len);
2718 
2719 	memcpy(tmp, data, len);
2720 
2721 	return tmp;
2722 }
2723 
2724 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2725 {
2726 	*(u8 *)skb_put(skb, 1) = val;
2727 }
2728 
2729 void *skb_push(struct sk_buff *skb, unsigned int len);
2730 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2731 {
2732 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2733 
2734 	skb->data -= len;
2735 	skb->len  += len;
2736 	return skb->data;
2737 }
2738 
2739 void *skb_pull(struct sk_buff *skb, unsigned int len);
2740 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2741 {
2742 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2743 
2744 	skb->len -= len;
2745 	if (unlikely(skb->len < skb->data_len)) {
2746 #if defined(CONFIG_DEBUG_NET)
2747 		skb->len += len;
2748 		pr_err("__skb_pull(len=%u)\n", len);
2749 		skb_dump(KERN_ERR, skb, false);
2750 #endif
2751 		BUG();
2752 	}
2753 	return skb->data += len;
2754 }
2755 
2756 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2757 {
2758 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2759 }
2760 
2761 void *skb_pull_data(struct sk_buff *skb, size_t len);
2762 
2763 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2764 
2765 static inline enum skb_drop_reason
2766 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2767 {
2768 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2769 
2770 	if (likely(len <= skb_headlen(skb)))
2771 		return SKB_NOT_DROPPED_YET;
2772 
2773 	if (unlikely(len > skb->len))
2774 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2775 
2776 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2777 		return SKB_DROP_REASON_NOMEM;
2778 
2779 	return SKB_NOT_DROPPED_YET;
2780 }
2781 
2782 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2783 {
2784 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2785 }
2786 
2787 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2788 {
2789 	if (!pskb_may_pull(skb, len))
2790 		return NULL;
2791 
2792 	skb->len -= len;
2793 	return skb->data += len;
2794 }
2795 
2796 void skb_condense(struct sk_buff *skb);
2797 
2798 /**
2799  *	skb_headroom - bytes at buffer head
2800  *	@skb: buffer to check
2801  *
2802  *	Return the number of bytes of free space at the head of an &sk_buff.
2803  */
2804 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2805 {
2806 	return skb->data - skb->head;
2807 }
2808 
2809 /**
2810  *	skb_tailroom - bytes at buffer end
2811  *	@skb: buffer to check
2812  *
2813  *	Return the number of bytes of free space at the tail of an sk_buff
2814  */
2815 static inline int skb_tailroom(const struct sk_buff *skb)
2816 {
2817 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2818 }
2819 
2820 /**
2821  *	skb_availroom - bytes at buffer end
2822  *	@skb: buffer to check
2823  *
2824  *	Return the number of bytes of free space at the tail of an sk_buff
2825  *	allocated by sk_stream_alloc()
2826  */
2827 static inline int skb_availroom(const struct sk_buff *skb)
2828 {
2829 	if (skb_is_nonlinear(skb))
2830 		return 0;
2831 
2832 	return skb->end - skb->tail - skb->reserved_tailroom;
2833 }
2834 
2835 /**
2836  *	skb_reserve - adjust headroom
2837  *	@skb: buffer to alter
2838  *	@len: bytes to move
2839  *
2840  *	Increase the headroom of an empty &sk_buff by reducing the tail
2841  *	room. This is only allowed for an empty buffer.
2842  */
2843 static inline void skb_reserve(struct sk_buff *skb, int len)
2844 {
2845 	skb->data += len;
2846 	skb->tail += len;
2847 }
2848 
2849 /**
2850  *	skb_tailroom_reserve - adjust reserved_tailroom
2851  *	@skb: buffer to alter
2852  *	@mtu: maximum amount of headlen permitted
2853  *	@needed_tailroom: minimum amount of reserved_tailroom
2854  *
2855  *	Set reserved_tailroom so that headlen can be as large as possible but
2856  *	not larger than mtu and tailroom cannot be smaller than
2857  *	needed_tailroom.
2858  *	The required headroom should already have been reserved before using
2859  *	this function.
2860  */
2861 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2862 					unsigned int needed_tailroom)
2863 {
2864 	SKB_LINEAR_ASSERT(skb);
2865 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2866 		/* use at most mtu */
2867 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2868 	else
2869 		/* use up to all available space */
2870 		skb->reserved_tailroom = needed_tailroom;
2871 }
2872 
2873 #define ENCAP_TYPE_ETHER	0
2874 #define ENCAP_TYPE_IPPROTO	1
2875 
2876 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2877 					  __be16 protocol)
2878 {
2879 	skb->inner_protocol = protocol;
2880 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2881 }
2882 
2883 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2884 					 __u8 ipproto)
2885 {
2886 	skb->inner_ipproto = ipproto;
2887 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2888 }
2889 
2890 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2891 {
2892 	skb->inner_mac_header = skb->mac_header;
2893 	skb->inner_network_header = skb->network_header;
2894 	skb->inner_transport_header = skb->transport_header;
2895 }
2896 
2897 static inline void skb_reset_mac_len(struct sk_buff *skb)
2898 {
2899 	skb->mac_len = skb->network_header - skb->mac_header;
2900 }
2901 
2902 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2903 							*skb)
2904 {
2905 	return skb->head + skb->inner_transport_header;
2906 }
2907 
2908 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2909 {
2910 	return skb_inner_transport_header(skb) - skb->data;
2911 }
2912 
2913 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2914 {
2915 	skb->inner_transport_header = skb->data - skb->head;
2916 }
2917 
2918 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2919 						   const int offset)
2920 {
2921 	skb_reset_inner_transport_header(skb);
2922 	skb->inner_transport_header += offset;
2923 }
2924 
2925 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2926 {
2927 	return skb->head + skb->inner_network_header;
2928 }
2929 
2930 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2931 {
2932 	skb->inner_network_header = skb->data - skb->head;
2933 }
2934 
2935 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2936 						const int offset)
2937 {
2938 	skb_reset_inner_network_header(skb);
2939 	skb->inner_network_header += offset;
2940 }
2941 
2942 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2943 {
2944 	return skb->inner_network_header > 0;
2945 }
2946 
2947 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2948 {
2949 	return skb->head + skb->inner_mac_header;
2950 }
2951 
2952 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2953 {
2954 	skb->inner_mac_header = skb->data - skb->head;
2955 }
2956 
2957 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2958 					    const int offset)
2959 {
2960 	skb_reset_inner_mac_header(skb);
2961 	skb->inner_mac_header += offset;
2962 }
2963 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2964 {
2965 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2966 }
2967 
2968 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2969 {
2970 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2971 	return skb->head + skb->transport_header;
2972 }
2973 
2974 static inline void skb_reset_transport_header(struct sk_buff *skb)
2975 {
2976 	skb->transport_header = skb->data - skb->head;
2977 }
2978 
2979 static inline void skb_set_transport_header(struct sk_buff *skb,
2980 					    const int offset)
2981 {
2982 	skb_reset_transport_header(skb);
2983 	skb->transport_header += offset;
2984 }
2985 
2986 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2987 {
2988 	return skb->head + skb->network_header;
2989 }
2990 
2991 static inline void skb_reset_network_header(struct sk_buff *skb)
2992 {
2993 	skb->network_header = skb->data - skb->head;
2994 }
2995 
2996 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2997 {
2998 	skb_reset_network_header(skb);
2999 	skb->network_header += offset;
3000 }
3001 
3002 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
3003 {
3004 	return skb->mac_header != (typeof(skb->mac_header))~0U;
3005 }
3006 
3007 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
3008 {
3009 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3010 	return skb->head + skb->mac_header;
3011 }
3012 
3013 static inline int skb_mac_offset(const struct sk_buff *skb)
3014 {
3015 	return skb_mac_header(skb) - skb->data;
3016 }
3017 
3018 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
3019 {
3020 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3021 	return skb->network_header - skb->mac_header;
3022 }
3023 
3024 static inline void skb_unset_mac_header(struct sk_buff *skb)
3025 {
3026 	skb->mac_header = (typeof(skb->mac_header))~0U;
3027 }
3028 
3029 static inline void skb_reset_mac_header(struct sk_buff *skb)
3030 {
3031 	skb->mac_header = skb->data - skb->head;
3032 }
3033 
3034 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3035 {
3036 	skb_reset_mac_header(skb);
3037 	skb->mac_header += offset;
3038 }
3039 
3040 static inline void skb_pop_mac_header(struct sk_buff *skb)
3041 {
3042 	skb->mac_header = skb->network_header;
3043 }
3044 
3045 static inline void skb_probe_transport_header(struct sk_buff *skb)
3046 {
3047 	struct flow_keys_basic keys;
3048 
3049 	if (skb_transport_header_was_set(skb))
3050 		return;
3051 
3052 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3053 					     NULL, 0, 0, 0, 0))
3054 		skb_set_transport_header(skb, keys.control.thoff);
3055 }
3056 
3057 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3058 {
3059 	if (skb_mac_header_was_set(skb)) {
3060 		const unsigned char *old_mac = skb_mac_header(skb);
3061 
3062 		skb_set_mac_header(skb, -skb->mac_len);
3063 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3064 	}
3065 }
3066 
3067 /* Move the full mac header up to current network_header.
3068  * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3069  * Must be provided the complete mac header length.
3070  */
3071 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3072 {
3073 	if (skb_mac_header_was_set(skb)) {
3074 		const unsigned char *old_mac = skb_mac_header(skb);
3075 
3076 		skb_set_mac_header(skb, -full_mac_len);
3077 		memmove(skb_mac_header(skb), old_mac, full_mac_len);
3078 		__skb_push(skb, full_mac_len - skb->mac_len);
3079 	}
3080 }
3081 
3082 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3083 {
3084 	return skb->csum_start - skb_headroom(skb);
3085 }
3086 
3087 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3088 {
3089 	return skb->head + skb->csum_start;
3090 }
3091 
3092 static inline int skb_transport_offset(const struct sk_buff *skb)
3093 {
3094 	return skb_transport_header(skb) - skb->data;
3095 }
3096 
3097 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3098 {
3099 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3100 	return skb->transport_header - skb->network_header;
3101 }
3102 
3103 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3104 {
3105 	return skb->inner_transport_header - skb->inner_network_header;
3106 }
3107 
3108 static inline int skb_network_offset(const struct sk_buff *skb)
3109 {
3110 	return skb_network_header(skb) - skb->data;
3111 }
3112 
3113 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3114 {
3115 	return skb_inner_network_header(skb) - skb->data;
3116 }
3117 
3118 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3119 {
3120 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3121 }
3122 
3123 /*
3124  * CPUs often take a performance hit when accessing unaligned memory
3125  * locations. The actual performance hit varies, it can be small if the
3126  * hardware handles it or large if we have to take an exception and fix it
3127  * in software.
3128  *
3129  * Since an ethernet header is 14 bytes network drivers often end up with
3130  * the IP header at an unaligned offset. The IP header can be aligned by
3131  * shifting the start of the packet by 2 bytes. Drivers should do this
3132  * with:
3133  *
3134  * skb_reserve(skb, NET_IP_ALIGN);
3135  *
3136  * The downside to this alignment of the IP header is that the DMA is now
3137  * unaligned. On some architectures the cost of an unaligned DMA is high
3138  * and this cost outweighs the gains made by aligning the IP header.
3139  *
3140  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3141  * to be overridden.
3142  */
3143 #ifndef NET_IP_ALIGN
3144 #define NET_IP_ALIGN	2
3145 #endif
3146 
3147 /*
3148  * The networking layer reserves some headroom in skb data (via
3149  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3150  * the header has to grow. In the default case, if the header has to grow
3151  * 32 bytes or less we avoid the reallocation.
3152  *
3153  * Unfortunately this headroom changes the DMA alignment of the resulting
3154  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3155  * on some architectures. An architecture can override this value,
3156  * perhaps setting it to a cacheline in size (since that will maintain
3157  * cacheline alignment of the DMA). It must be a power of 2.
3158  *
3159  * Various parts of the networking layer expect at least 32 bytes of
3160  * headroom, you should not reduce this.
3161  *
3162  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3163  * to reduce average number of cache lines per packet.
3164  * get_rps_cpu() for example only access one 64 bytes aligned block :
3165  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3166  */
3167 #ifndef NET_SKB_PAD
3168 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3169 #endif
3170 
3171 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3172 
3173 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3174 {
3175 	if (WARN_ON(skb_is_nonlinear(skb)))
3176 		return;
3177 	skb->len = len;
3178 	skb_set_tail_pointer(skb, len);
3179 }
3180 
3181 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3182 {
3183 	__skb_set_length(skb, len);
3184 }
3185 
3186 void skb_trim(struct sk_buff *skb, unsigned int len);
3187 
3188 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3189 {
3190 	if (skb->data_len)
3191 		return ___pskb_trim(skb, len);
3192 	__skb_trim(skb, len);
3193 	return 0;
3194 }
3195 
3196 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3197 {
3198 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3199 }
3200 
3201 /**
3202  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3203  *	@skb: buffer to alter
3204  *	@len: new length
3205  *
3206  *	This is identical to pskb_trim except that the caller knows that
3207  *	the skb is not cloned so we should never get an error due to out-
3208  *	of-memory.
3209  */
3210 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3211 {
3212 	int err = pskb_trim(skb, len);
3213 	BUG_ON(err);
3214 }
3215 
3216 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3217 {
3218 	unsigned int diff = len - skb->len;
3219 
3220 	if (skb_tailroom(skb) < diff) {
3221 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3222 					   GFP_ATOMIC);
3223 		if (ret)
3224 			return ret;
3225 	}
3226 	__skb_set_length(skb, len);
3227 	return 0;
3228 }
3229 
3230 /**
3231  *	skb_orphan - orphan a buffer
3232  *	@skb: buffer to orphan
3233  *
3234  *	If a buffer currently has an owner then we call the owner's
3235  *	destructor function and make the @skb unowned. The buffer continues
3236  *	to exist but is no longer charged to its former owner.
3237  */
3238 static inline void skb_orphan(struct sk_buff *skb)
3239 {
3240 	if (skb->destructor) {
3241 		skb->destructor(skb);
3242 		skb->destructor = NULL;
3243 		skb->sk		= NULL;
3244 	} else {
3245 		BUG_ON(skb->sk);
3246 	}
3247 }
3248 
3249 /**
3250  *	skb_orphan_frags - orphan the frags contained in a buffer
3251  *	@skb: buffer to orphan frags from
3252  *	@gfp_mask: allocation mask for replacement pages
3253  *
3254  *	For each frag in the SKB which needs a destructor (i.e. has an
3255  *	owner) create a copy of that frag and release the original
3256  *	page by calling the destructor.
3257  */
3258 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3259 {
3260 	if (likely(!skb_zcopy(skb)))
3261 		return 0;
3262 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3263 		return 0;
3264 	return skb_copy_ubufs(skb, gfp_mask);
3265 }
3266 
3267 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3268 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3269 {
3270 	if (likely(!skb_zcopy(skb)))
3271 		return 0;
3272 	return skb_copy_ubufs(skb, gfp_mask);
3273 }
3274 
3275 /**
3276  *	__skb_queue_purge_reason - empty a list
3277  *	@list: list to empty
3278  *	@reason: drop reason
3279  *
3280  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3281  *	the list and one reference dropped. This function does not take the
3282  *	list lock and the caller must hold the relevant locks to use it.
3283  */
3284 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3285 					    enum skb_drop_reason reason)
3286 {
3287 	struct sk_buff *skb;
3288 
3289 	while ((skb = __skb_dequeue(list)) != NULL)
3290 		kfree_skb_reason(skb, reason);
3291 }
3292 
3293 static inline void __skb_queue_purge(struct sk_buff_head *list)
3294 {
3295 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3296 }
3297 
3298 void skb_queue_purge_reason(struct sk_buff_head *list,
3299 			    enum skb_drop_reason reason);
3300 
3301 static inline void skb_queue_purge(struct sk_buff_head *list)
3302 {
3303 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3304 }
3305 
3306 unsigned int skb_rbtree_purge(struct rb_root *root);
3307 void skb_errqueue_purge(struct sk_buff_head *list);
3308 
3309 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3310 
3311 /**
3312  * netdev_alloc_frag - allocate a page fragment
3313  * @fragsz: fragment size
3314  *
3315  * Allocates a frag from a page for receive buffer.
3316  * Uses GFP_ATOMIC allocations.
3317  */
3318 static inline void *netdev_alloc_frag(unsigned int fragsz)
3319 {
3320 	return __netdev_alloc_frag_align(fragsz, ~0u);
3321 }
3322 
3323 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3324 					    unsigned int align)
3325 {
3326 	WARN_ON_ONCE(!is_power_of_2(align));
3327 	return __netdev_alloc_frag_align(fragsz, -align);
3328 }
3329 
3330 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3331 				   gfp_t gfp_mask);
3332 
3333 /**
3334  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3335  *	@dev: network device to receive on
3336  *	@length: length to allocate
3337  *
3338  *	Allocate a new &sk_buff and assign it a usage count of one. The
3339  *	buffer has unspecified headroom built in. Users should allocate
3340  *	the headroom they think they need without accounting for the
3341  *	built in space. The built in space is used for optimisations.
3342  *
3343  *	%NULL is returned if there is no free memory. Although this function
3344  *	allocates memory it can be called from an interrupt.
3345  */
3346 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3347 					       unsigned int length)
3348 {
3349 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3350 }
3351 
3352 /* legacy helper around __netdev_alloc_skb() */
3353 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3354 					      gfp_t gfp_mask)
3355 {
3356 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3357 }
3358 
3359 /* legacy helper around netdev_alloc_skb() */
3360 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3361 {
3362 	return netdev_alloc_skb(NULL, length);
3363 }
3364 
3365 
3366 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3367 		unsigned int length, gfp_t gfp)
3368 {
3369 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3370 
3371 	if (NET_IP_ALIGN && skb)
3372 		skb_reserve(skb, NET_IP_ALIGN);
3373 	return skb;
3374 }
3375 
3376 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3377 		unsigned int length)
3378 {
3379 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3380 }
3381 
3382 static inline void skb_free_frag(void *addr)
3383 {
3384 	page_frag_free(addr);
3385 }
3386 
3387 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3388 
3389 static inline void *napi_alloc_frag(unsigned int fragsz)
3390 {
3391 	return __napi_alloc_frag_align(fragsz, ~0u);
3392 }
3393 
3394 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3395 					  unsigned int align)
3396 {
3397 	WARN_ON_ONCE(!is_power_of_2(align));
3398 	return __napi_alloc_frag_align(fragsz, -align);
3399 }
3400 
3401 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3402 void napi_consume_skb(struct sk_buff *skb, int budget);
3403 
3404 void napi_skb_free_stolen_head(struct sk_buff *skb);
3405 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3406 
3407 /**
3408  * __dev_alloc_pages - allocate page for network Rx
3409  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3410  * @order: size of the allocation
3411  *
3412  * Allocate a new page.
3413  *
3414  * %NULL is returned if there is no free memory.
3415 */
3416 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
3417 					     unsigned int order)
3418 {
3419 	/* This piece of code contains several assumptions.
3420 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3421 	 * 2.  The expectation is the user wants a compound page.
3422 	 * 3.  If requesting a order 0 page it will not be compound
3423 	 *     due to the check to see if order has a value in prep_new_page
3424 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3425 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3426 	 */
3427 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3428 
3429 	return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
3430 }
3431 #define __dev_alloc_pages(...)	alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
3432 
3433 /*
3434  * This specialized allocator has to be a macro for its allocations to be
3435  * accounted separately (to have a separate alloc_tag).
3436  */
3437 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
3438 
3439 /**
3440  * __dev_alloc_page - allocate a page for network Rx
3441  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3442  *
3443  * Allocate a new page.
3444  *
3445  * %NULL is returned if there is no free memory.
3446  */
3447 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
3448 {
3449 	return __dev_alloc_pages_noprof(gfp_mask, 0);
3450 }
3451 #define __dev_alloc_page(...)	alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
3452 
3453 /*
3454  * This specialized allocator has to be a macro for its allocations to be
3455  * accounted separately (to have a separate alloc_tag).
3456  */
3457 #define dev_alloc_page()	dev_alloc_pages(0)
3458 
3459 /**
3460  * dev_page_is_reusable - check whether a page can be reused for network Rx
3461  * @page: the page to test
3462  *
3463  * A page shouldn't be considered for reusing/recycling if it was allocated
3464  * under memory pressure or at a distant memory node.
3465  *
3466  * Returns false if this page should be returned to page allocator, true
3467  * otherwise.
3468  */
3469 static inline bool dev_page_is_reusable(const struct page *page)
3470 {
3471 	return likely(page_to_nid(page) == numa_mem_id() &&
3472 		      !page_is_pfmemalloc(page));
3473 }
3474 
3475 /**
3476  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3477  *	@page: The page that was allocated from skb_alloc_page
3478  *	@skb: The skb that may need pfmemalloc set
3479  */
3480 static inline void skb_propagate_pfmemalloc(const struct page *page,
3481 					    struct sk_buff *skb)
3482 {
3483 	if (page_is_pfmemalloc(page))
3484 		skb->pfmemalloc = true;
3485 }
3486 
3487 /**
3488  * skb_frag_off() - Returns the offset of a skb fragment
3489  * @frag: the paged fragment
3490  */
3491 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3492 {
3493 	return frag->offset;
3494 }
3495 
3496 /**
3497  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3498  * @frag: skb fragment
3499  * @delta: value to add
3500  */
3501 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3502 {
3503 	frag->offset += delta;
3504 }
3505 
3506 /**
3507  * skb_frag_off_set() - Sets the offset of a skb fragment
3508  * @frag: skb fragment
3509  * @offset: offset of fragment
3510  */
3511 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3512 {
3513 	frag->offset = offset;
3514 }
3515 
3516 /**
3517  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3518  * @fragto: skb fragment where offset is set
3519  * @fragfrom: skb fragment offset is copied from
3520  */
3521 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3522 				     const skb_frag_t *fragfrom)
3523 {
3524 	fragto->offset = fragfrom->offset;
3525 }
3526 
3527 /**
3528  * skb_frag_page - retrieve the page referred to by a paged fragment
3529  * @frag: the paged fragment
3530  *
3531  * Returns the &struct page associated with @frag.
3532  */
3533 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3534 {
3535 	return netmem_to_page(frag->netmem);
3536 }
3537 
3538 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3539 		    unsigned int headroom);
3540 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3541 			 struct bpf_prog *prog);
3542 /**
3543  * skb_frag_address - gets the address of the data contained in a paged fragment
3544  * @frag: the paged fragment buffer
3545  *
3546  * Returns the address of the data within @frag. The page must already
3547  * be mapped.
3548  */
3549 static inline void *skb_frag_address(const skb_frag_t *frag)
3550 {
3551 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3552 }
3553 
3554 /**
3555  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3556  * @frag: the paged fragment buffer
3557  *
3558  * Returns the address of the data within @frag. Checks that the page
3559  * is mapped and returns %NULL otherwise.
3560  */
3561 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3562 {
3563 	void *ptr = page_address(skb_frag_page(frag));
3564 	if (unlikely(!ptr))
3565 		return NULL;
3566 
3567 	return ptr + skb_frag_off(frag);
3568 }
3569 
3570 /**
3571  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3572  * @fragto: skb fragment where page is set
3573  * @fragfrom: skb fragment page is copied from
3574  */
3575 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3576 				      const skb_frag_t *fragfrom)
3577 {
3578 	fragto->netmem = fragfrom->netmem;
3579 }
3580 
3581 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3582 
3583 /**
3584  * skb_frag_dma_map - maps a paged fragment via the DMA API
3585  * @dev: the device to map the fragment to
3586  * @frag: the paged fragment to map
3587  * @offset: the offset within the fragment (starting at the
3588  *          fragment's own offset)
3589  * @size: the number of bytes to map
3590  * @dir: the direction of the mapping (``PCI_DMA_*``)
3591  *
3592  * Maps the page associated with @frag to @device.
3593  */
3594 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3595 					  const skb_frag_t *frag,
3596 					  size_t offset, size_t size,
3597 					  enum dma_data_direction dir)
3598 {
3599 	return dma_map_page(dev, skb_frag_page(frag),
3600 			    skb_frag_off(frag) + offset, size, dir);
3601 }
3602 
3603 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3604 					gfp_t gfp_mask)
3605 {
3606 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3607 }
3608 
3609 
3610 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3611 						  gfp_t gfp_mask)
3612 {
3613 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3614 }
3615 
3616 
3617 /**
3618  *	skb_clone_writable - is the header of a clone writable
3619  *	@skb: buffer to check
3620  *	@len: length up to which to write
3621  *
3622  *	Returns true if modifying the header part of the cloned buffer
3623  *	does not requires the data to be copied.
3624  */
3625 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3626 {
3627 	return !skb_header_cloned(skb) &&
3628 	       skb_headroom(skb) + len <= skb->hdr_len;
3629 }
3630 
3631 static inline int skb_try_make_writable(struct sk_buff *skb,
3632 					unsigned int write_len)
3633 {
3634 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3635 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3636 }
3637 
3638 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3639 			    int cloned)
3640 {
3641 	int delta = 0;
3642 
3643 	if (headroom > skb_headroom(skb))
3644 		delta = headroom - skb_headroom(skb);
3645 
3646 	if (delta || cloned)
3647 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3648 					GFP_ATOMIC);
3649 	return 0;
3650 }
3651 
3652 /**
3653  *	skb_cow - copy header of skb when it is required
3654  *	@skb: buffer to cow
3655  *	@headroom: needed headroom
3656  *
3657  *	If the skb passed lacks sufficient headroom or its data part
3658  *	is shared, data is reallocated. If reallocation fails, an error
3659  *	is returned and original skb is not changed.
3660  *
3661  *	The result is skb with writable area skb->head...skb->tail
3662  *	and at least @headroom of space at head.
3663  */
3664 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3665 {
3666 	return __skb_cow(skb, headroom, skb_cloned(skb));
3667 }
3668 
3669 /**
3670  *	skb_cow_head - skb_cow but only making the head writable
3671  *	@skb: buffer to cow
3672  *	@headroom: needed headroom
3673  *
3674  *	This function is identical to skb_cow except that we replace the
3675  *	skb_cloned check by skb_header_cloned.  It should be used when
3676  *	you only need to push on some header and do not need to modify
3677  *	the data.
3678  */
3679 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3680 {
3681 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3682 }
3683 
3684 /**
3685  *	skb_padto	- pad an skbuff up to a minimal size
3686  *	@skb: buffer to pad
3687  *	@len: minimal length
3688  *
3689  *	Pads up a buffer to ensure the trailing bytes exist and are
3690  *	blanked. If the buffer already contains sufficient data it
3691  *	is untouched. Otherwise it is extended. Returns zero on
3692  *	success. The skb is freed on error.
3693  */
3694 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3695 {
3696 	unsigned int size = skb->len;
3697 	if (likely(size >= len))
3698 		return 0;
3699 	return skb_pad(skb, len - size);
3700 }
3701 
3702 /**
3703  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3704  *	@skb: buffer to pad
3705  *	@len: minimal length
3706  *	@free_on_error: free buffer on error
3707  *
3708  *	Pads up a buffer to ensure the trailing bytes exist and are
3709  *	blanked. If the buffer already contains sufficient data it
3710  *	is untouched. Otherwise it is extended. Returns zero on
3711  *	success. The skb is freed on error if @free_on_error is true.
3712  */
3713 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3714 					       unsigned int len,
3715 					       bool free_on_error)
3716 {
3717 	unsigned int size = skb->len;
3718 
3719 	if (unlikely(size < len)) {
3720 		len -= size;
3721 		if (__skb_pad(skb, len, free_on_error))
3722 			return -ENOMEM;
3723 		__skb_put(skb, len);
3724 	}
3725 	return 0;
3726 }
3727 
3728 /**
3729  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3730  *	@skb: buffer to pad
3731  *	@len: minimal length
3732  *
3733  *	Pads up a buffer to ensure the trailing bytes exist and are
3734  *	blanked. If the buffer already contains sufficient data it
3735  *	is untouched. Otherwise it is extended. Returns zero on
3736  *	success. The skb is freed on error.
3737  */
3738 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3739 {
3740 	return __skb_put_padto(skb, len, true);
3741 }
3742 
3743 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3744 	__must_check;
3745 
3746 static inline int skb_add_data(struct sk_buff *skb,
3747 			       struct iov_iter *from, int copy)
3748 {
3749 	const int off = skb->len;
3750 
3751 	if (skb->ip_summed == CHECKSUM_NONE) {
3752 		__wsum csum = 0;
3753 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3754 					         &csum, from)) {
3755 			skb->csum = csum_block_add(skb->csum, csum, off);
3756 			return 0;
3757 		}
3758 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3759 		return 0;
3760 
3761 	__skb_trim(skb, off);
3762 	return -EFAULT;
3763 }
3764 
3765 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3766 				    const struct page *page, int off)
3767 {
3768 	if (skb_zcopy(skb))
3769 		return false;
3770 	if (i) {
3771 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3772 
3773 		return page == skb_frag_page(frag) &&
3774 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3775 	}
3776 	return false;
3777 }
3778 
3779 static inline int __skb_linearize(struct sk_buff *skb)
3780 {
3781 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3782 }
3783 
3784 /**
3785  *	skb_linearize - convert paged skb to linear one
3786  *	@skb: buffer to linarize
3787  *
3788  *	If there is no free memory -ENOMEM is returned, otherwise zero
3789  *	is returned and the old skb data released.
3790  */
3791 static inline int skb_linearize(struct sk_buff *skb)
3792 {
3793 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3794 }
3795 
3796 /**
3797  * skb_has_shared_frag - can any frag be overwritten
3798  * @skb: buffer to test
3799  *
3800  * Return true if the skb has at least one frag that might be modified
3801  * by an external entity (as in vmsplice()/sendfile())
3802  */
3803 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3804 {
3805 	return skb_is_nonlinear(skb) &&
3806 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3807 }
3808 
3809 /**
3810  *	skb_linearize_cow - make sure skb is linear and writable
3811  *	@skb: buffer to process
3812  *
3813  *	If there is no free memory -ENOMEM is returned, otherwise zero
3814  *	is returned and the old skb data released.
3815  */
3816 static inline int skb_linearize_cow(struct sk_buff *skb)
3817 {
3818 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3819 	       __skb_linearize(skb) : 0;
3820 }
3821 
3822 static __always_inline void
3823 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3824 		     unsigned int off)
3825 {
3826 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3827 		skb->csum = csum_block_sub(skb->csum,
3828 					   csum_partial(start, len, 0), off);
3829 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3830 		 skb_checksum_start_offset(skb) < 0)
3831 		skb->ip_summed = CHECKSUM_NONE;
3832 }
3833 
3834 /**
3835  *	skb_postpull_rcsum - update checksum for received skb after pull
3836  *	@skb: buffer to update
3837  *	@start: start of data before pull
3838  *	@len: length of data pulled
3839  *
3840  *	After doing a pull on a received packet, you need to call this to
3841  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3842  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3843  */
3844 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3845 				      const void *start, unsigned int len)
3846 {
3847 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3848 		skb->csum = wsum_negate(csum_partial(start, len,
3849 						     wsum_negate(skb->csum)));
3850 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3851 		 skb_checksum_start_offset(skb) < 0)
3852 		skb->ip_summed = CHECKSUM_NONE;
3853 }
3854 
3855 static __always_inline void
3856 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3857 		     unsigned int off)
3858 {
3859 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3860 		skb->csum = csum_block_add(skb->csum,
3861 					   csum_partial(start, len, 0), off);
3862 }
3863 
3864 /**
3865  *	skb_postpush_rcsum - update checksum for received skb after push
3866  *	@skb: buffer to update
3867  *	@start: start of data after push
3868  *	@len: length of data pushed
3869  *
3870  *	After doing a push on a received packet, you need to call this to
3871  *	update the CHECKSUM_COMPLETE checksum.
3872  */
3873 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3874 				      const void *start, unsigned int len)
3875 {
3876 	__skb_postpush_rcsum(skb, start, len, 0);
3877 }
3878 
3879 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3880 
3881 /**
3882  *	skb_push_rcsum - push skb and update receive checksum
3883  *	@skb: buffer to update
3884  *	@len: length of data pulled
3885  *
3886  *	This function performs an skb_push on the packet and updates
3887  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3888  *	receive path processing instead of skb_push unless you know
3889  *	that the checksum difference is zero (e.g., a valid IP header)
3890  *	or you are setting ip_summed to CHECKSUM_NONE.
3891  */
3892 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3893 {
3894 	skb_push(skb, len);
3895 	skb_postpush_rcsum(skb, skb->data, len);
3896 	return skb->data;
3897 }
3898 
3899 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3900 /**
3901  *	pskb_trim_rcsum - trim received skb and update checksum
3902  *	@skb: buffer to trim
3903  *	@len: new length
3904  *
3905  *	This is exactly the same as pskb_trim except that it ensures the
3906  *	checksum of received packets are still valid after the operation.
3907  *	It can change skb pointers.
3908  */
3909 
3910 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3911 {
3912 	if (likely(len >= skb->len))
3913 		return 0;
3914 	return pskb_trim_rcsum_slow(skb, len);
3915 }
3916 
3917 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3918 {
3919 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3920 		skb->ip_summed = CHECKSUM_NONE;
3921 	__skb_trim(skb, len);
3922 	return 0;
3923 }
3924 
3925 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3926 {
3927 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3928 		skb->ip_summed = CHECKSUM_NONE;
3929 	return __skb_grow(skb, len);
3930 }
3931 
3932 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3933 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3934 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3935 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3936 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3937 
3938 #define skb_queue_walk(queue, skb) \
3939 		for (skb = (queue)->next;					\
3940 		     skb != (struct sk_buff *)(queue);				\
3941 		     skb = skb->next)
3942 
3943 #define skb_queue_walk_safe(queue, skb, tmp)					\
3944 		for (skb = (queue)->next, tmp = skb->next;			\
3945 		     skb != (struct sk_buff *)(queue);				\
3946 		     skb = tmp, tmp = skb->next)
3947 
3948 #define skb_queue_walk_from(queue, skb)						\
3949 		for (; skb != (struct sk_buff *)(queue);			\
3950 		     skb = skb->next)
3951 
3952 #define skb_rbtree_walk(skb, root)						\
3953 		for (skb = skb_rb_first(root); skb != NULL;			\
3954 		     skb = skb_rb_next(skb))
3955 
3956 #define skb_rbtree_walk_from(skb)						\
3957 		for (; skb != NULL;						\
3958 		     skb = skb_rb_next(skb))
3959 
3960 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3961 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3962 		     skb = tmp)
3963 
3964 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3965 		for (tmp = skb->next;						\
3966 		     skb != (struct sk_buff *)(queue);				\
3967 		     skb = tmp, tmp = skb->next)
3968 
3969 #define skb_queue_reverse_walk(queue, skb) \
3970 		for (skb = (queue)->prev;					\
3971 		     skb != (struct sk_buff *)(queue);				\
3972 		     skb = skb->prev)
3973 
3974 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3975 		for (skb = (queue)->prev, tmp = skb->prev;			\
3976 		     skb != (struct sk_buff *)(queue);				\
3977 		     skb = tmp, tmp = skb->prev)
3978 
3979 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3980 		for (tmp = skb->prev;						\
3981 		     skb != (struct sk_buff *)(queue);				\
3982 		     skb = tmp, tmp = skb->prev)
3983 
3984 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3985 {
3986 	return skb_shinfo(skb)->frag_list != NULL;
3987 }
3988 
3989 static inline void skb_frag_list_init(struct sk_buff *skb)
3990 {
3991 	skb_shinfo(skb)->frag_list = NULL;
3992 }
3993 
3994 #define skb_walk_frags(skb, iter)	\
3995 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3996 
3997 
3998 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3999 				int *err, long *timeo_p,
4000 				const struct sk_buff *skb);
4001 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4002 					  struct sk_buff_head *queue,
4003 					  unsigned int flags,
4004 					  int *off, int *err,
4005 					  struct sk_buff **last);
4006 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4007 					struct sk_buff_head *queue,
4008 					unsigned int flags, int *off, int *err,
4009 					struct sk_buff **last);
4010 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4011 				    struct sk_buff_head *sk_queue,
4012 				    unsigned int flags, int *off, int *err);
4013 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4014 __poll_t datagram_poll(struct file *file, struct socket *sock,
4015 			   struct poll_table_struct *wait);
4016 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4017 			   struct iov_iter *to, int size);
4018 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4019 					struct msghdr *msg, int size)
4020 {
4021 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4022 }
4023 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4024 				   struct msghdr *msg);
4025 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4026 			   struct iov_iter *to, int len,
4027 			   struct ahash_request *hash);
4028 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4029 				 struct iov_iter *from, int len);
4030 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4031 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4032 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4033 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4034 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4035 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4036 			      int len);
4037 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4038 		    struct pipe_inode_info *pipe, unsigned int len,
4039 		    unsigned int flags);
4040 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4041 			 int len);
4042 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4043 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4044 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4045 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4046 		 int len, int hlen);
4047 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4048 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4049 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4050 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4051 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4052 				 unsigned int offset);
4053 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4054 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4055 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4056 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4057 int skb_vlan_pop(struct sk_buff *skb);
4058 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4059 int skb_eth_pop(struct sk_buff *skb);
4060 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4061 		 const unsigned char *src);
4062 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4063 		  int mac_len, bool ethernet);
4064 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4065 		 bool ethernet);
4066 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4067 int skb_mpls_dec_ttl(struct sk_buff *skb);
4068 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4069 			     gfp_t gfp);
4070 
4071 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4072 {
4073 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4074 }
4075 
4076 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4077 {
4078 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4079 }
4080 
4081 struct skb_checksum_ops {
4082 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4083 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4084 };
4085 
4086 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4087 
4088 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4089 		      __wsum csum, const struct skb_checksum_ops *ops);
4090 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4091 		    __wsum csum);
4092 
4093 static inline void * __must_check
4094 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4095 		     const void *data, int hlen, void *buffer)
4096 {
4097 	if (likely(hlen - offset >= len))
4098 		return (void *)data + offset;
4099 
4100 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4101 		return NULL;
4102 
4103 	return buffer;
4104 }
4105 
4106 static inline void * __must_check
4107 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4108 {
4109 	return __skb_header_pointer(skb, offset, len, skb->data,
4110 				    skb_headlen(skb), buffer);
4111 }
4112 
4113 static inline void * __must_check
4114 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4115 {
4116 	if (likely(skb_headlen(skb) - offset >= len))
4117 		return skb->data + offset;
4118 	return NULL;
4119 }
4120 
4121 /**
4122  *	skb_needs_linearize - check if we need to linearize a given skb
4123  *			      depending on the given device features.
4124  *	@skb: socket buffer to check
4125  *	@features: net device features
4126  *
4127  *	Returns true if either:
4128  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4129  *	2. skb is fragmented and the device does not support SG.
4130  */
4131 static inline bool skb_needs_linearize(struct sk_buff *skb,
4132 				       netdev_features_t features)
4133 {
4134 	return skb_is_nonlinear(skb) &&
4135 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4136 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4137 }
4138 
4139 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4140 					     void *to,
4141 					     const unsigned int len)
4142 {
4143 	memcpy(to, skb->data, len);
4144 }
4145 
4146 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4147 						    const int offset, void *to,
4148 						    const unsigned int len)
4149 {
4150 	memcpy(to, skb->data + offset, len);
4151 }
4152 
4153 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4154 					   const void *from,
4155 					   const unsigned int len)
4156 {
4157 	memcpy(skb->data, from, len);
4158 }
4159 
4160 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4161 						  const int offset,
4162 						  const void *from,
4163 						  const unsigned int len)
4164 {
4165 	memcpy(skb->data + offset, from, len);
4166 }
4167 
4168 void skb_init(void);
4169 
4170 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4171 {
4172 	return skb->tstamp;
4173 }
4174 
4175 /**
4176  *	skb_get_timestamp - get timestamp from a skb
4177  *	@skb: skb to get stamp from
4178  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4179  *
4180  *	Timestamps are stored in the skb as offsets to a base timestamp.
4181  *	This function converts the offset back to a struct timeval and stores
4182  *	it in stamp.
4183  */
4184 static inline void skb_get_timestamp(const struct sk_buff *skb,
4185 				     struct __kernel_old_timeval *stamp)
4186 {
4187 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4188 }
4189 
4190 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4191 					 struct __kernel_sock_timeval *stamp)
4192 {
4193 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4194 
4195 	stamp->tv_sec = ts.tv_sec;
4196 	stamp->tv_usec = ts.tv_nsec / 1000;
4197 }
4198 
4199 static inline void skb_get_timestampns(const struct sk_buff *skb,
4200 				       struct __kernel_old_timespec *stamp)
4201 {
4202 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4203 
4204 	stamp->tv_sec = ts.tv_sec;
4205 	stamp->tv_nsec = ts.tv_nsec;
4206 }
4207 
4208 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4209 					   struct __kernel_timespec *stamp)
4210 {
4211 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4212 
4213 	stamp->tv_sec = ts.tv_sec;
4214 	stamp->tv_nsec = ts.tv_nsec;
4215 }
4216 
4217 static inline void __net_timestamp(struct sk_buff *skb)
4218 {
4219 	skb->tstamp = ktime_get_real();
4220 	skb->tstamp_type = SKB_CLOCK_REALTIME;
4221 }
4222 
4223 static inline ktime_t net_timedelta(ktime_t t)
4224 {
4225 	return ktime_sub(ktime_get_real(), t);
4226 }
4227 
4228 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4229 					 u8 tstamp_type)
4230 {
4231 	skb->tstamp = kt;
4232 
4233 	if (kt)
4234 		skb->tstamp_type = tstamp_type;
4235 	else
4236 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4237 }
4238 
4239 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4240 						    ktime_t kt, clockid_t clockid)
4241 {
4242 	u8 tstamp_type = SKB_CLOCK_REALTIME;
4243 
4244 	switch (clockid) {
4245 	case CLOCK_REALTIME:
4246 		break;
4247 	case CLOCK_MONOTONIC:
4248 		tstamp_type = SKB_CLOCK_MONOTONIC;
4249 		break;
4250 	case CLOCK_TAI:
4251 		tstamp_type = SKB_CLOCK_TAI;
4252 		break;
4253 	default:
4254 		WARN_ON_ONCE(1);
4255 		kt = 0;
4256 	}
4257 
4258 	skb_set_delivery_time(skb, kt, tstamp_type);
4259 }
4260 
4261 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4262 
4263 /* It is used in the ingress path to clear the delivery_time.
4264  * If needed, set the skb->tstamp to the (rcv) timestamp.
4265  */
4266 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4267 {
4268 	if (skb->tstamp_type) {
4269 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4270 		if (static_branch_unlikely(&netstamp_needed_key))
4271 			skb->tstamp = ktime_get_real();
4272 		else
4273 			skb->tstamp = 0;
4274 	}
4275 }
4276 
4277 static inline void skb_clear_tstamp(struct sk_buff *skb)
4278 {
4279 	if (skb->tstamp_type)
4280 		return;
4281 
4282 	skb->tstamp = 0;
4283 }
4284 
4285 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4286 {
4287 	if (skb->tstamp_type)
4288 		return 0;
4289 
4290 	return skb->tstamp;
4291 }
4292 
4293 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4294 {
4295 	if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4296 		return skb->tstamp;
4297 
4298 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4299 		return ktime_get_real();
4300 
4301 	return 0;
4302 }
4303 
4304 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4305 {
4306 	return skb_shinfo(skb)->meta_len;
4307 }
4308 
4309 static inline void *skb_metadata_end(const struct sk_buff *skb)
4310 {
4311 	return skb_mac_header(skb);
4312 }
4313 
4314 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4315 					  const struct sk_buff *skb_b,
4316 					  u8 meta_len)
4317 {
4318 	const void *a = skb_metadata_end(skb_a);
4319 	const void *b = skb_metadata_end(skb_b);
4320 	u64 diffs = 0;
4321 
4322 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4323 	    BITS_PER_LONG != 64)
4324 		goto slow;
4325 
4326 	/* Using more efficient variant than plain call to memcmp(). */
4327 	switch (meta_len) {
4328 #define __it(x, op) (x -= sizeof(u##op))
4329 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4330 	case 32: diffs |= __it_diff(a, b, 64);
4331 		fallthrough;
4332 	case 24: diffs |= __it_diff(a, b, 64);
4333 		fallthrough;
4334 	case 16: diffs |= __it_diff(a, b, 64);
4335 		fallthrough;
4336 	case  8: diffs |= __it_diff(a, b, 64);
4337 		break;
4338 	case 28: diffs |= __it_diff(a, b, 64);
4339 		fallthrough;
4340 	case 20: diffs |= __it_diff(a, b, 64);
4341 		fallthrough;
4342 	case 12: diffs |= __it_diff(a, b, 64);
4343 		fallthrough;
4344 	case  4: diffs |= __it_diff(a, b, 32);
4345 		break;
4346 	default:
4347 slow:
4348 		return memcmp(a - meta_len, b - meta_len, meta_len);
4349 	}
4350 	return diffs;
4351 }
4352 
4353 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4354 					const struct sk_buff *skb_b)
4355 {
4356 	u8 len_a = skb_metadata_len(skb_a);
4357 	u8 len_b = skb_metadata_len(skb_b);
4358 
4359 	if (!(len_a | len_b))
4360 		return false;
4361 
4362 	return len_a != len_b ?
4363 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4364 }
4365 
4366 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4367 {
4368 	skb_shinfo(skb)->meta_len = meta_len;
4369 }
4370 
4371 static inline void skb_metadata_clear(struct sk_buff *skb)
4372 {
4373 	skb_metadata_set(skb, 0);
4374 }
4375 
4376 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4377 
4378 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4379 
4380 void skb_clone_tx_timestamp(struct sk_buff *skb);
4381 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4382 
4383 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4384 
4385 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4386 {
4387 }
4388 
4389 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4390 {
4391 	return false;
4392 }
4393 
4394 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4395 
4396 /**
4397  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4398  *
4399  * PHY drivers may accept clones of transmitted packets for
4400  * timestamping via their phy_driver.txtstamp method. These drivers
4401  * must call this function to return the skb back to the stack with a
4402  * timestamp.
4403  *
4404  * @skb: clone of the original outgoing packet
4405  * @hwtstamps: hardware time stamps
4406  *
4407  */
4408 void skb_complete_tx_timestamp(struct sk_buff *skb,
4409 			       struct skb_shared_hwtstamps *hwtstamps);
4410 
4411 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4412 		     struct skb_shared_hwtstamps *hwtstamps,
4413 		     struct sock *sk, int tstype);
4414 
4415 /**
4416  * skb_tstamp_tx - queue clone of skb with send time stamps
4417  * @orig_skb:	the original outgoing packet
4418  * @hwtstamps:	hardware time stamps, may be NULL if not available
4419  *
4420  * If the skb has a socket associated, then this function clones the
4421  * skb (thus sharing the actual data and optional structures), stores
4422  * the optional hardware time stamping information (if non NULL) or
4423  * generates a software time stamp (otherwise), then queues the clone
4424  * to the error queue of the socket.  Errors are silently ignored.
4425  */
4426 void skb_tstamp_tx(struct sk_buff *orig_skb,
4427 		   struct skb_shared_hwtstamps *hwtstamps);
4428 
4429 /**
4430  * skb_tx_timestamp() - Driver hook for transmit timestamping
4431  *
4432  * Ethernet MAC Drivers should call this function in their hard_xmit()
4433  * function immediately before giving the sk_buff to the MAC hardware.
4434  *
4435  * Specifically, one should make absolutely sure that this function is
4436  * called before TX completion of this packet can trigger.  Otherwise
4437  * the packet could potentially already be freed.
4438  *
4439  * @skb: A socket buffer.
4440  */
4441 static inline void skb_tx_timestamp(struct sk_buff *skb)
4442 {
4443 	skb_clone_tx_timestamp(skb);
4444 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4445 		skb_tstamp_tx(skb, NULL);
4446 }
4447 
4448 /**
4449  * skb_complete_wifi_ack - deliver skb with wifi status
4450  *
4451  * @skb: the original outgoing packet
4452  * @acked: ack status
4453  *
4454  */
4455 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4456 
4457 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4458 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4459 
4460 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4461 {
4462 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4463 		skb->csum_valid ||
4464 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4465 		 skb_checksum_start_offset(skb) >= 0));
4466 }
4467 
4468 /**
4469  *	skb_checksum_complete - Calculate checksum of an entire packet
4470  *	@skb: packet to process
4471  *
4472  *	This function calculates the checksum over the entire packet plus
4473  *	the value of skb->csum.  The latter can be used to supply the
4474  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4475  *	checksum.
4476  *
4477  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4478  *	this function can be used to verify that checksum on received
4479  *	packets.  In that case the function should return zero if the
4480  *	checksum is correct.  In particular, this function will return zero
4481  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4482  *	hardware has already verified the correctness of the checksum.
4483  */
4484 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4485 {
4486 	return skb_csum_unnecessary(skb) ?
4487 	       0 : __skb_checksum_complete(skb);
4488 }
4489 
4490 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4491 {
4492 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4493 		if (skb->csum_level == 0)
4494 			skb->ip_summed = CHECKSUM_NONE;
4495 		else
4496 			skb->csum_level--;
4497 	}
4498 }
4499 
4500 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4501 {
4502 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4503 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4504 			skb->csum_level++;
4505 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4506 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4507 		skb->csum_level = 0;
4508 	}
4509 }
4510 
4511 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4512 {
4513 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4514 		skb->ip_summed = CHECKSUM_NONE;
4515 		skb->csum_level = 0;
4516 	}
4517 }
4518 
4519 /* Check if we need to perform checksum complete validation.
4520  *
4521  * Returns true if checksum complete is needed, false otherwise
4522  * (either checksum is unnecessary or zero checksum is allowed).
4523  */
4524 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4525 						  bool zero_okay,
4526 						  __sum16 check)
4527 {
4528 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4529 		skb->csum_valid = 1;
4530 		__skb_decr_checksum_unnecessary(skb);
4531 		return false;
4532 	}
4533 
4534 	return true;
4535 }
4536 
4537 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4538  * in checksum_init.
4539  */
4540 #define CHECKSUM_BREAK 76
4541 
4542 /* Unset checksum-complete
4543  *
4544  * Unset checksum complete can be done when packet is being modified
4545  * (uncompressed for instance) and checksum-complete value is
4546  * invalidated.
4547  */
4548 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4549 {
4550 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4551 		skb->ip_summed = CHECKSUM_NONE;
4552 }
4553 
4554 /* Validate (init) checksum based on checksum complete.
4555  *
4556  * Return values:
4557  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4558  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4559  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4560  *   non-zero: value of invalid checksum
4561  *
4562  */
4563 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4564 						       bool complete,
4565 						       __wsum psum)
4566 {
4567 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4568 		if (!csum_fold(csum_add(psum, skb->csum))) {
4569 			skb->csum_valid = 1;
4570 			return 0;
4571 		}
4572 	}
4573 
4574 	skb->csum = psum;
4575 
4576 	if (complete || skb->len <= CHECKSUM_BREAK) {
4577 		__sum16 csum;
4578 
4579 		csum = __skb_checksum_complete(skb);
4580 		skb->csum_valid = !csum;
4581 		return csum;
4582 	}
4583 
4584 	return 0;
4585 }
4586 
4587 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4588 {
4589 	return 0;
4590 }
4591 
4592 /* Perform checksum validate (init). Note that this is a macro since we only
4593  * want to calculate the pseudo header which is an input function if necessary.
4594  * First we try to validate without any computation (checksum unnecessary) and
4595  * then calculate based on checksum complete calling the function to compute
4596  * pseudo header.
4597  *
4598  * Return values:
4599  *   0: checksum is validated or try to in skb_checksum_complete
4600  *   non-zero: value of invalid checksum
4601  */
4602 #define __skb_checksum_validate(skb, proto, complete,			\
4603 				zero_okay, check, compute_pseudo)	\
4604 ({									\
4605 	__sum16 __ret = 0;						\
4606 	skb->csum_valid = 0;						\
4607 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4608 		__ret = __skb_checksum_validate_complete(skb,		\
4609 				complete, compute_pseudo(skb, proto));	\
4610 	__ret;								\
4611 })
4612 
4613 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4614 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4615 
4616 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4617 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4618 
4619 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4620 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4621 
4622 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4623 					 compute_pseudo)		\
4624 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4625 
4626 #define skb_checksum_simple_validate(skb)				\
4627 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4628 
4629 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4630 {
4631 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4632 }
4633 
4634 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4635 {
4636 	skb->csum = ~pseudo;
4637 	skb->ip_summed = CHECKSUM_COMPLETE;
4638 }
4639 
4640 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4641 do {									\
4642 	if (__skb_checksum_convert_check(skb))				\
4643 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4644 } while (0)
4645 
4646 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4647 					      u16 start, u16 offset)
4648 {
4649 	skb->ip_summed = CHECKSUM_PARTIAL;
4650 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4651 	skb->csum_offset = offset - start;
4652 }
4653 
4654 /* Update skbuf and packet to reflect the remote checksum offload operation.
4655  * When called, ptr indicates the starting point for skb->csum when
4656  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4657  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4658  */
4659 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4660 				       int start, int offset, bool nopartial)
4661 {
4662 	__wsum delta;
4663 
4664 	if (!nopartial) {
4665 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4666 		return;
4667 	}
4668 
4669 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4670 		__skb_checksum_complete(skb);
4671 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4672 	}
4673 
4674 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4675 
4676 	/* Adjust skb->csum since we changed the packet */
4677 	skb->csum = csum_add(skb->csum, delta);
4678 }
4679 
4680 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4681 {
4682 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4683 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4684 #else
4685 	return NULL;
4686 #endif
4687 }
4688 
4689 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4690 {
4691 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4692 	return skb->_nfct;
4693 #else
4694 	return 0UL;
4695 #endif
4696 }
4697 
4698 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4699 {
4700 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4701 	skb->slow_gro |= !!nfct;
4702 	skb->_nfct = nfct;
4703 #endif
4704 }
4705 
4706 #ifdef CONFIG_SKB_EXTENSIONS
4707 enum skb_ext_id {
4708 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4709 	SKB_EXT_BRIDGE_NF,
4710 #endif
4711 #ifdef CONFIG_XFRM
4712 	SKB_EXT_SEC_PATH,
4713 #endif
4714 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4715 	TC_SKB_EXT,
4716 #endif
4717 #if IS_ENABLED(CONFIG_MPTCP)
4718 	SKB_EXT_MPTCP,
4719 #endif
4720 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4721 	SKB_EXT_MCTP,
4722 #endif
4723 	SKB_EXT_NUM, /* must be last */
4724 };
4725 
4726 /**
4727  *	struct skb_ext - sk_buff extensions
4728  *	@refcnt: 1 on allocation, deallocated on 0
4729  *	@offset: offset to add to @data to obtain extension address
4730  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4731  *	@data: start of extension data, variable sized
4732  *
4733  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4734  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4735  */
4736 struct skb_ext {
4737 	refcount_t refcnt;
4738 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4739 	u8 chunks;		/* same */
4740 	char data[] __aligned(8);
4741 };
4742 
4743 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4744 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4745 		    struct skb_ext *ext);
4746 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4747 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4748 void __skb_ext_put(struct skb_ext *ext);
4749 
4750 static inline void skb_ext_put(struct sk_buff *skb)
4751 {
4752 	if (skb->active_extensions)
4753 		__skb_ext_put(skb->extensions);
4754 }
4755 
4756 static inline void __skb_ext_copy(struct sk_buff *dst,
4757 				  const struct sk_buff *src)
4758 {
4759 	dst->active_extensions = src->active_extensions;
4760 
4761 	if (src->active_extensions) {
4762 		struct skb_ext *ext = src->extensions;
4763 
4764 		refcount_inc(&ext->refcnt);
4765 		dst->extensions = ext;
4766 	}
4767 }
4768 
4769 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4770 {
4771 	skb_ext_put(dst);
4772 	__skb_ext_copy(dst, src);
4773 }
4774 
4775 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4776 {
4777 	return !!ext->offset[i];
4778 }
4779 
4780 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4781 {
4782 	return skb->active_extensions & (1 << id);
4783 }
4784 
4785 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4786 {
4787 	if (skb_ext_exist(skb, id))
4788 		__skb_ext_del(skb, id);
4789 }
4790 
4791 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4792 {
4793 	if (skb_ext_exist(skb, id)) {
4794 		struct skb_ext *ext = skb->extensions;
4795 
4796 		return (void *)ext + (ext->offset[id] << 3);
4797 	}
4798 
4799 	return NULL;
4800 }
4801 
4802 static inline void skb_ext_reset(struct sk_buff *skb)
4803 {
4804 	if (unlikely(skb->active_extensions)) {
4805 		__skb_ext_put(skb->extensions);
4806 		skb->active_extensions = 0;
4807 	}
4808 }
4809 
4810 static inline bool skb_has_extensions(struct sk_buff *skb)
4811 {
4812 	return unlikely(skb->active_extensions);
4813 }
4814 #else
4815 static inline void skb_ext_put(struct sk_buff *skb) {}
4816 static inline void skb_ext_reset(struct sk_buff *skb) {}
4817 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4818 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4819 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4820 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4821 #endif /* CONFIG_SKB_EXTENSIONS */
4822 
4823 static inline void nf_reset_ct(struct sk_buff *skb)
4824 {
4825 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4826 	nf_conntrack_put(skb_nfct(skb));
4827 	skb->_nfct = 0;
4828 #endif
4829 }
4830 
4831 static inline void nf_reset_trace(struct sk_buff *skb)
4832 {
4833 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4834 	skb->nf_trace = 0;
4835 #endif
4836 }
4837 
4838 static inline void ipvs_reset(struct sk_buff *skb)
4839 {
4840 #if IS_ENABLED(CONFIG_IP_VS)
4841 	skb->ipvs_property = 0;
4842 #endif
4843 }
4844 
4845 /* Note: This doesn't put any conntrack info in dst. */
4846 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4847 			     bool copy)
4848 {
4849 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4850 	dst->_nfct = src->_nfct;
4851 	nf_conntrack_get(skb_nfct(src));
4852 #endif
4853 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4854 	if (copy)
4855 		dst->nf_trace = src->nf_trace;
4856 #endif
4857 }
4858 
4859 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4860 {
4861 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4862 	nf_conntrack_put(skb_nfct(dst));
4863 #endif
4864 	dst->slow_gro = src->slow_gro;
4865 	__nf_copy(dst, src, true);
4866 }
4867 
4868 #ifdef CONFIG_NETWORK_SECMARK
4869 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4870 {
4871 	to->secmark = from->secmark;
4872 }
4873 
4874 static inline void skb_init_secmark(struct sk_buff *skb)
4875 {
4876 	skb->secmark = 0;
4877 }
4878 #else
4879 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4880 { }
4881 
4882 static inline void skb_init_secmark(struct sk_buff *skb)
4883 { }
4884 #endif
4885 
4886 static inline int secpath_exists(const struct sk_buff *skb)
4887 {
4888 #ifdef CONFIG_XFRM
4889 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4890 #else
4891 	return 0;
4892 #endif
4893 }
4894 
4895 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4896 {
4897 	return !skb->destructor &&
4898 		!secpath_exists(skb) &&
4899 		!skb_nfct(skb) &&
4900 		!skb->_skb_refdst &&
4901 		!skb_has_frag_list(skb);
4902 }
4903 
4904 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4905 {
4906 	skb->queue_mapping = queue_mapping;
4907 }
4908 
4909 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4910 {
4911 	return skb->queue_mapping;
4912 }
4913 
4914 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4915 {
4916 	to->queue_mapping = from->queue_mapping;
4917 }
4918 
4919 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4920 {
4921 	skb->queue_mapping = rx_queue + 1;
4922 }
4923 
4924 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4925 {
4926 	return skb->queue_mapping - 1;
4927 }
4928 
4929 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4930 {
4931 	return skb->queue_mapping != 0;
4932 }
4933 
4934 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4935 {
4936 	skb->dst_pending_confirm = val;
4937 }
4938 
4939 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4940 {
4941 	return skb->dst_pending_confirm != 0;
4942 }
4943 
4944 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4945 {
4946 #ifdef CONFIG_XFRM
4947 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4948 #else
4949 	return NULL;
4950 #endif
4951 }
4952 
4953 static inline bool skb_is_gso(const struct sk_buff *skb)
4954 {
4955 	return skb_shinfo(skb)->gso_size;
4956 }
4957 
4958 /* Note: Should be called only if skb_is_gso(skb) is true */
4959 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4960 {
4961 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4962 }
4963 
4964 /* Note: Should be called only if skb_is_gso(skb) is true */
4965 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4966 {
4967 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4968 }
4969 
4970 /* Note: Should be called only if skb_is_gso(skb) is true */
4971 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4972 {
4973 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4974 }
4975 
4976 static inline void skb_gso_reset(struct sk_buff *skb)
4977 {
4978 	skb_shinfo(skb)->gso_size = 0;
4979 	skb_shinfo(skb)->gso_segs = 0;
4980 	skb_shinfo(skb)->gso_type = 0;
4981 }
4982 
4983 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4984 					 u16 increment)
4985 {
4986 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4987 		return;
4988 	shinfo->gso_size += increment;
4989 }
4990 
4991 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4992 					 u16 decrement)
4993 {
4994 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4995 		return;
4996 	shinfo->gso_size -= decrement;
4997 }
4998 
4999 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5000 
5001 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5002 {
5003 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5004 	 * wanted then gso_type will be set. */
5005 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5006 
5007 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5008 	    unlikely(shinfo->gso_type == 0)) {
5009 		__skb_warn_lro_forwarding(skb);
5010 		return true;
5011 	}
5012 	return false;
5013 }
5014 
5015 static inline void skb_forward_csum(struct sk_buff *skb)
5016 {
5017 	/* Unfortunately we don't support this one.  Any brave souls? */
5018 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5019 		skb->ip_summed = CHECKSUM_NONE;
5020 }
5021 
5022 /**
5023  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5024  * @skb: skb to check
5025  *
5026  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5027  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5028  * use this helper, to document places where we make this assertion.
5029  */
5030 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5031 {
5032 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5033 }
5034 
5035 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5036 
5037 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5038 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5039 				     unsigned int transport_len,
5040 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5041 
5042 /**
5043  * skb_head_is_locked - Determine if the skb->head is locked down
5044  * @skb: skb to check
5045  *
5046  * The head on skbs build around a head frag can be removed if they are
5047  * not cloned.  This function returns true if the skb head is locked down
5048  * due to either being allocated via kmalloc, or by being a clone with
5049  * multiple references to the head.
5050  */
5051 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5052 {
5053 	return !skb->head_frag || skb_cloned(skb);
5054 }
5055 
5056 /* Local Checksum Offload.
5057  * Compute outer checksum based on the assumption that the
5058  * inner checksum will be offloaded later.
5059  * See Documentation/networking/checksum-offloads.rst for
5060  * explanation of how this works.
5061  * Fill in outer checksum adjustment (e.g. with sum of outer
5062  * pseudo-header) before calling.
5063  * Also ensure that inner checksum is in linear data area.
5064  */
5065 static inline __wsum lco_csum(struct sk_buff *skb)
5066 {
5067 	unsigned char *csum_start = skb_checksum_start(skb);
5068 	unsigned char *l4_hdr = skb_transport_header(skb);
5069 	__wsum partial;
5070 
5071 	/* Start with complement of inner checksum adjustment */
5072 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5073 						    skb->csum_offset));
5074 
5075 	/* Add in checksum of our headers (incl. outer checksum
5076 	 * adjustment filled in by caller) and return result.
5077 	 */
5078 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5079 }
5080 
5081 static inline bool skb_is_redirected(const struct sk_buff *skb)
5082 {
5083 	return skb->redirected;
5084 }
5085 
5086 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5087 {
5088 	skb->redirected = 1;
5089 #ifdef CONFIG_NET_REDIRECT
5090 	skb->from_ingress = from_ingress;
5091 	if (skb->from_ingress)
5092 		skb_clear_tstamp(skb);
5093 #endif
5094 }
5095 
5096 static inline void skb_reset_redirect(struct sk_buff *skb)
5097 {
5098 	skb->redirected = 0;
5099 }
5100 
5101 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5102 					      bool from_ingress)
5103 {
5104 	skb->redirected = 1;
5105 #ifdef CONFIG_NET_REDIRECT
5106 	skb->from_ingress = from_ingress;
5107 #endif
5108 }
5109 
5110 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5111 {
5112 #if IS_ENABLED(CONFIG_IP_SCTP)
5113 	return skb->csum_not_inet;
5114 #else
5115 	return 0;
5116 #endif
5117 }
5118 
5119 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5120 {
5121 	skb->ip_summed = CHECKSUM_NONE;
5122 #if IS_ENABLED(CONFIG_IP_SCTP)
5123 	skb->csum_not_inet = 0;
5124 #endif
5125 }
5126 
5127 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5128 				       const u64 kcov_handle)
5129 {
5130 #ifdef CONFIG_KCOV
5131 	skb->kcov_handle = kcov_handle;
5132 #endif
5133 }
5134 
5135 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5136 {
5137 #ifdef CONFIG_KCOV
5138 	return skb->kcov_handle;
5139 #else
5140 	return 0;
5141 #endif
5142 }
5143 
5144 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5145 {
5146 #ifdef CONFIG_PAGE_POOL
5147 	skb->pp_recycle = 1;
5148 #endif
5149 }
5150 
5151 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5152 			     ssize_t maxsize, gfp_t gfp);
5153 
5154 #endif	/* __KERNEL__ */
5155 #endif	/* _LINUX_SKBUFF_H */
5156