1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/hrtimer.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/netdev_features.h> 33 #include <linux/sched.h> 34 #include <linux/sched/clock.h> 35 #include <net/flow_dissector.h> 36 #include <linux/splice.h> 37 #include <linux/in6.h> 38 #include <linux/if_packet.h> 39 #include <linux/llist.h> 40 #include <net/flow.h> 41 #include <net/page_pool.h> 42 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 43 #include <linux/netfilter/nf_conntrack_common.h> 44 #endif 45 #include <net/net_debug.h> 46 #include <net/dropreason.h> 47 48 /** 49 * DOC: skb checksums 50 * 51 * The interface for checksum offload between the stack and networking drivers 52 * is as follows... 53 * 54 * IP checksum related features 55 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 56 * 57 * Drivers advertise checksum offload capabilities in the features of a device. 58 * From the stack's point of view these are capabilities offered by the driver. 59 * A driver typically only advertises features that it is capable of offloading 60 * to its device. 61 * 62 * .. flat-table:: Checksum related device features 63 * :widths: 1 10 64 * 65 * * - %NETIF_F_HW_CSUM 66 * - The driver (or its device) is able to compute one 67 * IP (one's complement) checksum for any combination 68 * of protocols or protocol layering. The checksum is 69 * computed and set in a packet per the CHECKSUM_PARTIAL 70 * interface (see below). 71 * 72 * * - %NETIF_F_IP_CSUM 73 * - Driver (device) is only able to checksum plain 74 * TCP or UDP packets over IPv4. These are specifically 75 * unencapsulated packets of the form IPv4|TCP or 76 * IPv4|UDP where the Protocol field in the IPv4 header 77 * is TCP or UDP. The IPv4 header may contain IP options. 78 * This feature cannot be set in features for a device 79 * with NETIF_F_HW_CSUM also set. This feature is being 80 * DEPRECATED (see below). 81 * 82 * * - %NETIF_F_IPV6_CSUM 83 * - Driver (device) is only able to checksum plain 84 * TCP or UDP packets over IPv6. These are specifically 85 * unencapsulated packets of the form IPv6|TCP or 86 * IPv6|UDP where the Next Header field in the IPv6 87 * header is either TCP or UDP. IPv6 extension headers 88 * are not supported with this feature. This feature 89 * cannot be set in features for a device with 90 * NETIF_F_HW_CSUM also set. This feature is being 91 * DEPRECATED (see below). 92 * 93 * * - %NETIF_F_RXCSUM 94 * - Driver (device) performs receive checksum offload. 95 * This flag is only used to disable the RX checksum 96 * feature for a device. The stack will accept receive 97 * checksum indication in packets received on a device 98 * regardless of whether NETIF_F_RXCSUM is set. 99 * 100 * Checksumming of received packets by device 101 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 102 * 103 * Indication of checksum verification is set in &sk_buff.ip_summed. 104 * Possible values are: 105 * 106 * - %CHECKSUM_NONE 107 * 108 * Device did not checksum this packet e.g. due to lack of capabilities. 109 * The packet contains full (though not verified) checksum in packet but 110 * not in skb->csum. Thus, skb->csum is undefined in this case. 111 * 112 * - %CHECKSUM_UNNECESSARY 113 * 114 * The hardware you're dealing with doesn't calculate the full checksum 115 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 116 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 117 * if their checksums are okay. &sk_buff.csum is still undefined in this case 118 * though. A driver or device must never modify the checksum field in the 119 * packet even if checksum is verified. 120 * 121 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 122 * 123 * - TCP: IPv6 and IPv4. 124 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 125 * zero UDP checksum for either IPv4 or IPv6, the networking stack 126 * may perform further validation in this case. 127 * - GRE: only if the checksum is present in the header. 128 * - SCTP: indicates the CRC in SCTP header has been validated. 129 * - FCOE: indicates the CRC in FC frame has been validated. 130 * 131 * &sk_buff.csum_level indicates the number of consecutive checksums found in 132 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 133 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 134 * and a device is able to verify the checksums for UDP (possibly zero), 135 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 136 * two. If the device were only able to verify the UDP checksum and not 137 * GRE, either because it doesn't support GRE checksum or because GRE 138 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 139 * not considered in this case). 140 * 141 * - %CHECKSUM_COMPLETE 142 * 143 * This is the most generic way. The device supplied checksum of the _whole_ 144 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 145 * hardware doesn't need to parse L3/L4 headers to implement this. 146 * 147 * Notes: 148 * 149 * - Even if device supports only some protocols, but is able to produce 150 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 151 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 152 * 153 * - %CHECKSUM_PARTIAL 154 * 155 * A checksum is set up to be offloaded to a device as described in the 156 * output description for CHECKSUM_PARTIAL. This may occur on a packet 157 * received directly from another Linux OS, e.g., a virtualized Linux kernel 158 * on the same host, or it may be set in the input path in GRO or remote 159 * checksum offload. For the purposes of checksum verification, the checksum 160 * referred to by skb->csum_start + skb->csum_offset and any preceding 161 * checksums in the packet are considered verified. Any checksums in the 162 * packet that are after the checksum being offloaded are not considered to 163 * be verified. 164 * 165 * Checksumming on transmit for non-GSO 166 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 167 * 168 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 169 * Values are: 170 * 171 * - %CHECKSUM_PARTIAL 172 * 173 * The driver is required to checksum the packet as seen by hard_start_xmit() 174 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 175 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 176 * A driver may verify that the 177 * csum_start and csum_offset values are valid values given the length and 178 * offset of the packet, but it should not attempt to validate that the 179 * checksum refers to a legitimate transport layer checksum -- it is the 180 * purview of the stack to validate that csum_start and csum_offset are set 181 * correctly. 182 * 183 * When the stack requests checksum offload for a packet, the driver MUST 184 * ensure that the checksum is set correctly. A driver can either offload the 185 * checksum calculation to the device, or call skb_checksum_help (in the case 186 * that the device does not support offload for a particular checksum). 187 * 188 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 189 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 190 * checksum offload capability. 191 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 192 * on network device checksumming capabilities: if a packet does not match 193 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 194 * &sk_buff.csum_not_inet, see :ref:`crc`) 195 * is called to resolve the checksum. 196 * 197 * - %CHECKSUM_NONE 198 * 199 * The skb was already checksummed by the protocol, or a checksum is not 200 * required. 201 * 202 * - %CHECKSUM_UNNECESSARY 203 * 204 * This has the same meaning as CHECKSUM_NONE for checksum offload on 205 * output. 206 * 207 * - %CHECKSUM_COMPLETE 208 * 209 * Not used in checksum output. If a driver observes a packet with this value 210 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 211 * 212 * .. _crc: 213 * 214 * Non-IP checksum (CRC) offloads 215 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 216 * 217 * .. flat-table:: 218 * :widths: 1 10 219 * 220 * * - %NETIF_F_SCTP_CRC 221 * - This feature indicates that a device is capable of 222 * offloading the SCTP CRC in a packet. To perform this offload the stack 223 * will set csum_start and csum_offset accordingly, set ip_summed to 224 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 225 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 226 * A driver that supports both IP checksum offload and SCTP CRC32c offload 227 * must verify which offload is configured for a packet by testing the 228 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 229 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 230 * 231 * * - %NETIF_F_FCOE_CRC 232 * - This feature indicates that a device is capable of offloading the FCOE 233 * CRC in a packet. To perform this offload the stack will set ip_summed 234 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 235 * accordingly. Note that there is no indication in the skbuff that the 236 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 237 * both IP checksum offload and FCOE CRC offload must verify which offload 238 * is configured for a packet, presumably by inspecting packet headers. 239 * 240 * Checksumming on output with GSO 241 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 242 * 243 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 244 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 245 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 246 * part of the GSO operation is implied. If a checksum is being offloaded 247 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 248 * csum_offset are set to refer to the outermost checksum being offloaded 249 * (two offloaded checksums are possible with UDP encapsulation). 250 */ 251 252 /* Don't change this without changing skb_csum_unnecessary! */ 253 #define CHECKSUM_NONE 0 254 #define CHECKSUM_UNNECESSARY 1 255 #define CHECKSUM_COMPLETE 2 256 #define CHECKSUM_PARTIAL 3 257 258 /* Maximum value in skb->csum_level */ 259 #define SKB_MAX_CSUM_LEVEL 3 260 261 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 262 #define SKB_WITH_OVERHEAD(X) \ 263 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 264 #define SKB_MAX_ORDER(X, ORDER) \ 265 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 266 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 267 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 268 269 /* return minimum truesize of one skb containing X bytes of data */ 270 #define SKB_TRUESIZE(X) ((X) + \ 271 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 272 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 273 274 struct ahash_request; 275 struct net_device; 276 struct scatterlist; 277 struct pipe_inode_info; 278 struct iov_iter; 279 struct napi_struct; 280 struct bpf_prog; 281 union bpf_attr; 282 struct skb_ext; 283 284 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 285 struct nf_bridge_info { 286 enum { 287 BRNF_PROTO_UNCHANGED, 288 BRNF_PROTO_8021Q, 289 BRNF_PROTO_PPPOE 290 } orig_proto:8; 291 u8 pkt_otherhost:1; 292 u8 in_prerouting:1; 293 u8 bridged_dnat:1; 294 __u16 frag_max_size; 295 struct net_device *physindev; 296 297 /* always valid & non-NULL from FORWARD on, for physdev match */ 298 struct net_device *physoutdev; 299 union { 300 /* prerouting: detect dnat in orig/reply direction */ 301 __be32 ipv4_daddr; 302 struct in6_addr ipv6_daddr; 303 304 /* after prerouting + nat detected: store original source 305 * mac since neigh resolution overwrites it, only used while 306 * skb is out in neigh layer. 307 */ 308 char neigh_header[8]; 309 }; 310 }; 311 #endif 312 313 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 314 /* Chain in tc_skb_ext will be used to share the tc chain with 315 * ovs recirc_id. It will be set to the current chain by tc 316 * and read by ovs to recirc_id. 317 */ 318 struct tc_skb_ext { 319 __u32 chain; 320 __u16 mru; 321 __u16 zone; 322 u8 post_ct:1; 323 u8 post_ct_snat:1; 324 u8 post_ct_dnat:1; 325 }; 326 #endif 327 328 struct sk_buff_head { 329 /* These two members must be first to match sk_buff. */ 330 struct_group_tagged(sk_buff_list, list, 331 struct sk_buff *next; 332 struct sk_buff *prev; 333 ); 334 335 __u32 qlen; 336 spinlock_t lock; 337 }; 338 339 struct sk_buff; 340 341 /* To allow 64K frame to be packed as single skb without frag_list we 342 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 343 * buffers which do not start on a page boundary. 344 * 345 * Since GRO uses frags we allocate at least 16 regardless of page 346 * size. 347 */ 348 #if (65536/PAGE_SIZE + 1) < 16 349 #define MAX_SKB_FRAGS 16UL 350 #else 351 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 352 #endif 353 extern int sysctl_max_skb_frags; 354 355 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 356 * segment using its current segmentation instead. 357 */ 358 #define GSO_BY_FRAGS 0xFFFF 359 360 typedef struct bio_vec skb_frag_t; 361 362 /** 363 * skb_frag_size() - Returns the size of a skb fragment 364 * @frag: skb fragment 365 */ 366 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 367 { 368 return frag->bv_len; 369 } 370 371 /** 372 * skb_frag_size_set() - Sets the size of a skb fragment 373 * @frag: skb fragment 374 * @size: size of fragment 375 */ 376 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 377 { 378 frag->bv_len = size; 379 } 380 381 /** 382 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 383 * @frag: skb fragment 384 * @delta: value to add 385 */ 386 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 387 { 388 frag->bv_len += delta; 389 } 390 391 /** 392 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 393 * @frag: skb fragment 394 * @delta: value to subtract 395 */ 396 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 397 { 398 frag->bv_len -= delta; 399 } 400 401 /** 402 * skb_frag_must_loop - Test if %p is a high memory page 403 * @p: fragment's page 404 */ 405 static inline bool skb_frag_must_loop(struct page *p) 406 { 407 #if defined(CONFIG_HIGHMEM) 408 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 409 return true; 410 #endif 411 return false; 412 } 413 414 /** 415 * skb_frag_foreach_page - loop over pages in a fragment 416 * 417 * @f: skb frag to operate on 418 * @f_off: offset from start of f->bv_page 419 * @f_len: length from f_off to loop over 420 * @p: (temp var) current page 421 * @p_off: (temp var) offset from start of current page, 422 * non-zero only on first page. 423 * @p_len: (temp var) length in current page, 424 * < PAGE_SIZE only on first and last page. 425 * @copied: (temp var) length so far, excluding current p_len. 426 * 427 * A fragment can hold a compound page, in which case per-page 428 * operations, notably kmap_atomic, must be called for each 429 * regular page. 430 */ 431 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 432 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 433 p_off = (f_off) & (PAGE_SIZE - 1), \ 434 p_len = skb_frag_must_loop(p) ? \ 435 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 436 copied = 0; \ 437 copied < f_len; \ 438 copied += p_len, p++, p_off = 0, \ 439 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 440 441 #define HAVE_HW_TIME_STAMP 442 443 /** 444 * struct skb_shared_hwtstamps - hardware time stamps 445 * @hwtstamp: hardware time stamp transformed into duration 446 * since arbitrary point in time 447 * @netdev_data: address/cookie of network device driver used as 448 * reference to actual hardware time stamp 449 * 450 * Software time stamps generated by ktime_get_real() are stored in 451 * skb->tstamp. 452 * 453 * hwtstamps can only be compared against other hwtstamps from 454 * the same device. 455 * 456 * This structure is attached to packets as part of the 457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 458 */ 459 struct skb_shared_hwtstamps { 460 union { 461 ktime_t hwtstamp; 462 void *netdev_data; 463 }; 464 }; 465 466 /* Definitions for tx_flags in struct skb_shared_info */ 467 enum { 468 /* generate hardware time stamp */ 469 SKBTX_HW_TSTAMP = 1 << 0, 470 471 /* generate software time stamp when queueing packet to NIC */ 472 SKBTX_SW_TSTAMP = 1 << 1, 473 474 /* device driver is going to provide hardware time stamp */ 475 SKBTX_IN_PROGRESS = 1 << 2, 476 477 /* generate hardware time stamp based on cycles if supported */ 478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 479 480 /* generate wifi status information (where possible) */ 481 SKBTX_WIFI_STATUS = 1 << 4, 482 483 /* determine hardware time stamp based on time or cycles */ 484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 485 486 /* generate software time stamp when entering packet scheduling */ 487 SKBTX_SCHED_TSTAMP = 1 << 6, 488 }; 489 490 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 491 SKBTX_SCHED_TSTAMP) 492 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 493 SKBTX_HW_TSTAMP_USE_CYCLES | \ 494 SKBTX_ANY_SW_TSTAMP) 495 496 /* Definitions for flags in struct skb_shared_info */ 497 enum { 498 /* use zcopy routines */ 499 SKBFL_ZEROCOPY_ENABLE = BIT(0), 500 501 /* This indicates at least one fragment might be overwritten 502 * (as in vmsplice(), sendfile() ...) 503 * If we need to compute a TX checksum, we'll need to copy 504 * all frags to avoid possible bad checksum 505 */ 506 SKBFL_SHARED_FRAG = BIT(1), 507 508 /* segment contains only zerocopy data and should not be 509 * charged to the kernel memory. 510 */ 511 SKBFL_PURE_ZEROCOPY = BIT(2), 512 513 SKBFL_DONT_ORPHAN = BIT(3), 514 515 /* page references are managed by the ubuf_info, so it's safe to 516 * use frags only up until ubuf_info is released 517 */ 518 SKBFL_MANAGED_FRAG_REFS = BIT(4), 519 }; 520 521 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 522 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 523 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 524 525 /* 526 * The callback notifies userspace to release buffers when skb DMA is done in 527 * lower device, the skb last reference should be 0 when calling this. 528 * The zerocopy_success argument is true if zero copy transmit occurred, 529 * false on data copy or out of memory error caused by data copy attempt. 530 * The ctx field is used to track device context. 531 * The desc field is used to track userspace buffer index. 532 */ 533 struct ubuf_info { 534 void (*callback)(struct sk_buff *, struct ubuf_info *, 535 bool zerocopy_success); 536 refcount_t refcnt; 537 u8 flags; 538 }; 539 540 struct ubuf_info_msgzc { 541 struct ubuf_info ubuf; 542 543 union { 544 struct { 545 unsigned long desc; 546 void *ctx; 547 }; 548 struct { 549 u32 id; 550 u16 len; 551 u16 zerocopy:1; 552 u32 bytelen; 553 }; 554 }; 555 556 struct mmpin { 557 struct user_struct *user; 558 unsigned int num_pg; 559 } mmp; 560 }; 561 562 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 563 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 564 ubuf) 565 566 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 567 void mm_unaccount_pinned_pages(struct mmpin *mmp); 568 569 /* This data is invariant across clones and lives at 570 * the end of the header data, ie. at skb->end. 571 */ 572 struct skb_shared_info { 573 __u8 flags; 574 __u8 meta_len; 575 __u8 nr_frags; 576 __u8 tx_flags; 577 unsigned short gso_size; 578 /* Warning: this field is not always filled in (UFO)! */ 579 unsigned short gso_segs; 580 struct sk_buff *frag_list; 581 struct skb_shared_hwtstamps hwtstamps; 582 unsigned int gso_type; 583 u32 tskey; 584 585 /* 586 * Warning : all fields before dataref are cleared in __alloc_skb() 587 */ 588 atomic_t dataref; 589 unsigned int xdp_frags_size; 590 591 /* Intermediate layers must ensure that destructor_arg 592 * remains valid until skb destructor */ 593 void * destructor_arg; 594 595 /* must be last field, see pskb_expand_head() */ 596 skb_frag_t frags[MAX_SKB_FRAGS]; 597 }; 598 599 /** 600 * DOC: dataref and headerless skbs 601 * 602 * Transport layers send out clones of payload skbs they hold for 603 * retransmissions. To allow lower layers of the stack to prepend their headers 604 * we split &skb_shared_info.dataref into two halves. 605 * The lower 16 bits count the overall number of references. 606 * The higher 16 bits indicate how many of the references are payload-only. 607 * skb_header_cloned() checks if skb is allowed to add / write the headers. 608 * 609 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 610 * (via __skb_header_release()). Any clone created from marked skb will get 611 * &sk_buff.hdr_len populated with the available headroom. 612 * If there's the only clone in existence it's able to modify the headroom 613 * at will. The sequence of calls inside the transport layer is:: 614 * 615 * <alloc skb> 616 * skb_reserve() 617 * __skb_header_release() 618 * skb_clone() 619 * // send the clone down the stack 620 * 621 * This is not a very generic construct and it depends on the transport layers 622 * doing the right thing. In practice there's usually only one payload-only skb. 623 * Having multiple payload-only skbs with different lengths of hdr_len is not 624 * possible. The payload-only skbs should never leave their owner. 625 */ 626 #define SKB_DATAREF_SHIFT 16 627 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 628 629 630 enum { 631 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 632 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 633 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 634 }; 635 636 enum { 637 SKB_GSO_TCPV4 = 1 << 0, 638 639 /* This indicates the skb is from an untrusted source. */ 640 SKB_GSO_DODGY = 1 << 1, 641 642 /* This indicates the tcp segment has CWR set. */ 643 SKB_GSO_TCP_ECN = 1 << 2, 644 645 SKB_GSO_TCP_FIXEDID = 1 << 3, 646 647 SKB_GSO_TCPV6 = 1 << 4, 648 649 SKB_GSO_FCOE = 1 << 5, 650 651 SKB_GSO_GRE = 1 << 6, 652 653 SKB_GSO_GRE_CSUM = 1 << 7, 654 655 SKB_GSO_IPXIP4 = 1 << 8, 656 657 SKB_GSO_IPXIP6 = 1 << 9, 658 659 SKB_GSO_UDP_TUNNEL = 1 << 10, 660 661 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 662 663 SKB_GSO_PARTIAL = 1 << 12, 664 665 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 666 667 SKB_GSO_SCTP = 1 << 14, 668 669 SKB_GSO_ESP = 1 << 15, 670 671 SKB_GSO_UDP = 1 << 16, 672 673 SKB_GSO_UDP_L4 = 1 << 17, 674 675 SKB_GSO_FRAGLIST = 1 << 18, 676 }; 677 678 #if BITS_PER_LONG > 32 679 #define NET_SKBUFF_DATA_USES_OFFSET 1 680 #endif 681 682 #ifdef NET_SKBUFF_DATA_USES_OFFSET 683 typedef unsigned int sk_buff_data_t; 684 #else 685 typedef unsigned char *sk_buff_data_t; 686 #endif 687 688 /** 689 * DOC: Basic sk_buff geometry 690 * 691 * struct sk_buff itself is a metadata structure and does not hold any packet 692 * data. All the data is held in associated buffers. 693 * 694 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 695 * into two parts: 696 * 697 * - data buffer, containing headers and sometimes payload; 698 * this is the part of the skb operated on by the common helpers 699 * such as skb_put() or skb_pull(); 700 * - shared info (struct skb_shared_info) which holds an array of pointers 701 * to read-only data in the (page, offset, length) format. 702 * 703 * Optionally &skb_shared_info.frag_list may point to another skb. 704 * 705 * Basic diagram may look like this:: 706 * 707 * --------------- 708 * | sk_buff | 709 * --------------- 710 * ,--------------------------- + head 711 * / ,----------------- + data 712 * / / ,----------- + tail 713 * | | | , + end 714 * | | | | 715 * v v v v 716 * ----------------------------------------------- 717 * | headroom | data | tailroom | skb_shared_info | 718 * ----------------------------------------------- 719 * + [page frag] 720 * + [page frag] 721 * + [page frag] 722 * + [page frag] --------- 723 * + frag_list --> | sk_buff | 724 * --------- 725 * 726 */ 727 728 /** 729 * struct sk_buff - socket buffer 730 * @next: Next buffer in list 731 * @prev: Previous buffer in list 732 * @tstamp: Time we arrived/left 733 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 734 * for retransmit timer 735 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 736 * @list: queue head 737 * @ll_node: anchor in an llist (eg socket defer_list) 738 * @sk: Socket we are owned by 739 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 740 * fragmentation management 741 * @dev: Device we arrived on/are leaving by 742 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 743 * @cb: Control buffer. Free for use by every layer. Put private vars here 744 * @_skb_refdst: destination entry (with norefcount bit) 745 * @sp: the security path, used for xfrm 746 * @len: Length of actual data 747 * @data_len: Data length 748 * @mac_len: Length of link layer header 749 * @hdr_len: writable header length of cloned skb 750 * @csum: Checksum (must include start/offset pair) 751 * @csum_start: Offset from skb->head where checksumming should start 752 * @csum_offset: Offset from csum_start where checksum should be stored 753 * @priority: Packet queueing priority 754 * @ignore_df: allow local fragmentation 755 * @cloned: Head may be cloned (check refcnt to be sure) 756 * @ip_summed: Driver fed us an IP checksum 757 * @nohdr: Payload reference only, must not modify header 758 * @pkt_type: Packet class 759 * @fclone: skbuff clone status 760 * @ipvs_property: skbuff is owned by ipvs 761 * @inner_protocol_type: whether the inner protocol is 762 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 763 * @remcsum_offload: remote checksum offload is enabled 764 * @offload_fwd_mark: Packet was L2-forwarded in hardware 765 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 766 * @tc_skip_classify: do not classify packet. set by IFB device 767 * @tc_at_ingress: used within tc_classify to distinguish in/egress 768 * @redirected: packet was redirected by packet classifier 769 * @from_ingress: packet was redirected from the ingress path 770 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 771 * @peeked: this packet has been seen already, so stats have been 772 * done for it, don't do them again 773 * @nf_trace: netfilter packet trace flag 774 * @protocol: Packet protocol from driver 775 * @destructor: Destruct function 776 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 777 * @_sk_redir: socket redirection information for skmsg 778 * @_nfct: Associated connection, if any (with nfctinfo bits) 779 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 780 * @skb_iif: ifindex of device we arrived on 781 * @tc_index: Traffic control index 782 * @hash: the packet hash 783 * @queue_mapping: Queue mapping for multiqueue devices 784 * @head_frag: skb was allocated from page fragments, 785 * not allocated by kmalloc() or vmalloc(). 786 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 787 * @pp_recycle: mark the packet for recycling instead of freeing (implies 788 * page_pool support on driver) 789 * @active_extensions: active extensions (skb_ext_id types) 790 * @ndisc_nodetype: router type (from link layer) 791 * @ooo_okay: allow the mapping of a socket to a queue to be changed 792 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 793 * ports. 794 * @sw_hash: indicates hash was computed in software stack 795 * @wifi_acked_valid: wifi_acked was set 796 * @wifi_acked: whether frame was acked on wifi or not 797 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 798 * @encapsulation: indicates the inner headers in the skbuff are valid 799 * @encap_hdr_csum: software checksum is needed 800 * @csum_valid: checksum is already valid 801 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 802 * @csum_complete_sw: checksum was completed by software 803 * @csum_level: indicates the number of consecutive checksums found in 804 * the packet minus one that have been verified as 805 * CHECKSUM_UNNECESSARY (max 3) 806 * @scm_io_uring: SKB holds io_uring registered files 807 * @dst_pending_confirm: need to confirm neighbour 808 * @decrypted: Decrypted SKB 809 * @slow_gro: state present at GRO time, slower prepare step required 810 * @mono_delivery_time: When set, skb->tstamp has the 811 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 812 * skb->tstamp has the (rcv) timestamp at ingress and 813 * delivery_time at egress. 814 * @napi_id: id of the NAPI struct this skb came from 815 * @sender_cpu: (aka @napi_id) source CPU in XPS 816 * @alloc_cpu: CPU which did the skb allocation. 817 * @secmark: security marking 818 * @mark: Generic packet mark 819 * @reserved_tailroom: (aka @mark) number of bytes of free space available 820 * at the tail of an sk_buff 821 * @vlan_all: vlan fields (proto & tci) 822 * @vlan_proto: vlan encapsulation protocol 823 * @vlan_tci: vlan tag control information 824 * @inner_protocol: Protocol (encapsulation) 825 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 826 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 827 * @inner_transport_header: Inner transport layer header (encapsulation) 828 * @inner_network_header: Network layer header (encapsulation) 829 * @inner_mac_header: Link layer header (encapsulation) 830 * @transport_header: Transport layer header 831 * @network_header: Network layer header 832 * @mac_header: Link layer header 833 * @kcov_handle: KCOV remote handle for remote coverage collection 834 * @tail: Tail pointer 835 * @end: End pointer 836 * @head: Head of buffer 837 * @data: Data head pointer 838 * @truesize: Buffer size 839 * @users: User count - see {datagram,tcp}.c 840 * @extensions: allocated extensions, valid if active_extensions is nonzero 841 */ 842 843 struct sk_buff { 844 union { 845 struct { 846 /* These two members must be first to match sk_buff_head. */ 847 struct sk_buff *next; 848 struct sk_buff *prev; 849 850 union { 851 struct net_device *dev; 852 /* Some protocols might use this space to store information, 853 * while device pointer would be NULL. 854 * UDP receive path is one user. 855 */ 856 unsigned long dev_scratch; 857 }; 858 }; 859 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 860 struct list_head list; 861 struct llist_node ll_node; 862 }; 863 864 union { 865 struct sock *sk; 866 int ip_defrag_offset; 867 }; 868 869 union { 870 ktime_t tstamp; 871 u64 skb_mstamp_ns; /* earliest departure time */ 872 }; 873 /* 874 * This is the control buffer. It is free to use for every 875 * layer. Please put your private variables there. If you 876 * want to keep them across layers you have to do a skb_clone() 877 * first. This is owned by whoever has the skb queued ATM. 878 */ 879 char cb[48] __aligned(8); 880 881 union { 882 struct { 883 unsigned long _skb_refdst; 884 void (*destructor)(struct sk_buff *skb); 885 }; 886 struct list_head tcp_tsorted_anchor; 887 #ifdef CONFIG_NET_SOCK_MSG 888 unsigned long _sk_redir; 889 #endif 890 }; 891 892 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 893 unsigned long _nfct; 894 #endif 895 unsigned int len, 896 data_len; 897 __u16 mac_len, 898 hdr_len; 899 900 /* Following fields are _not_ copied in __copy_skb_header() 901 * Note that queue_mapping is here mostly to fill a hole. 902 */ 903 __u16 queue_mapping; 904 905 /* if you move cloned around you also must adapt those constants */ 906 #ifdef __BIG_ENDIAN_BITFIELD 907 #define CLONED_MASK (1 << 7) 908 #else 909 #define CLONED_MASK 1 910 #endif 911 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 912 913 /* private: */ 914 __u8 __cloned_offset[0]; 915 /* public: */ 916 __u8 cloned:1, 917 nohdr:1, 918 fclone:2, 919 peeked:1, 920 head_frag:1, 921 pfmemalloc:1, 922 pp_recycle:1; /* page_pool recycle indicator */ 923 #ifdef CONFIG_SKB_EXTENSIONS 924 __u8 active_extensions; 925 #endif 926 927 /* Fields enclosed in headers group are copied 928 * using a single memcpy() in __copy_skb_header() 929 */ 930 struct_group(headers, 931 932 /* private: */ 933 __u8 __pkt_type_offset[0]; 934 /* public: */ 935 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 936 __u8 ignore_df:1; 937 __u8 nf_trace:1; 938 __u8 ip_summed:2; 939 __u8 ooo_okay:1; 940 941 __u8 l4_hash:1; 942 __u8 sw_hash:1; 943 __u8 wifi_acked_valid:1; 944 __u8 wifi_acked:1; 945 __u8 no_fcs:1; 946 /* Indicates the inner headers are valid in the skbuff. */ 947 __u8 encapsulation:1; 948 __u8 encap_hdr_csum:1; 949 __u8 csum_valid:1; 950 951 /* private: */ 952 __u8 __pkt_vlan_present_offset[0]; 953 /* public: */ 954 __u8 remcsum_offload:1; 955 __u8 csum_complete_sw:1; 956 __u8 csum_level:2; 957 __u8 dst_pending_confirm:1; 958 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 959 #ifdef CONFIG_NET_CLS_ACT 960 __u8 tc_skip_classify:1; 961 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 962 #endif 963 #ifdef CONFIG_IPV6_NDISC_NODETYPE 964 __u8 ndisc_nodetype:2; 965 #endif 966 967 __u8 ipvs_property:1; 968 __u8 inner_protocol_type:1; 969 #ifdef CONFIG_NET_SWITCHDEV 970 __u8 offload_fwd_mark:1; 971 __u8 offload_l3_fwd_mark:1; 972 #endif 973 __u8 redirected:1; 974 #ifdef CONFIG_NET_REDIRECT 975 __u8 from_ingress:1; 976 #endif 977 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 978 __u8 nf_skip_egress:1; 979 #endif 980 #ifdef CONFIG_TLS_DEVICE 981 __u8 decrypted:1; 982 #endif 983 __u8 slow_gro:1; 984 __u8 csum_not_inet:1; 985 __u8 scm_io_uring:1; 986 987 #ifdef CONFIG_NET_SCHED 988 __u16 tc_index; /* traffic control index */ 989 #endif 990 991 union { 992 __wsum csum; 993 struct { 994 __u16 csum_start; 995 __u16 csum_offset; 996 }; 997 }; 998 __u32 priority; 999 int skb_iif; 1000 __u32 hash; 1001 union { 1002 u32 vlan_all; 1003 struct { 1004 __be16 vlan_proto; 1005 __u16 vlan_tci; 1006 }; 1007 }; 1008 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1009 union { 1010 unsigned int napi_id; 1011 unsigned int sender_cpu; 1012 }; 1013 #endif 1014 u16 alloc_cpu; 1015 #ifdef CONFIG_NETWORK_SECMARK 1016 __u32 secmark; 1017 #endif 1018 1019 union { 1020 __u32 mark; 1021 __u32 reserved_tailroom; 1022 }; 1023 1024 union { 1025 __be16 inner_protocol; 1026 __u8 inner_ipproto; 1027 }; 1028 1029 __u16 inner_transport_header; 1030 __u16 inner_network_header; 1031 __u16 inner_mac_header; 1032 1033 __be16 protocol; 1034 __u16 transport_header; 1035 __u16 network_header; 1036 __u16 mac_header; 1037 1038 #ifdef CONFIG_KCOV 1039 u64 kcov_handle; 1040 #endif 1041 1042 ); /* end headers group */ 1043 1044 /* These elements must be at the end, see alloc_skb() for details. */ 1045 sk_buff_data_t tail; 1046 sk_buff_data_t end; 1047 unsigned char *head, 1048 *data; 1049 unsigned int truesize; 1050 refcount_t users; 1051 1052 #ifdef CONFIG_SKB_EXTENSIONS 1053 /* only useable after checking ->active_extensions != 0 */ 1054 struct skb_ext *extensions; 1055 #endif 1056 }; 1057 1058 /* if you move pkt_type around you also must adapt those constants */ 1059 #ifdef __BIG_ENDIAN_BITFIELD 1060 #define PKT_TYPE_MAX (7 << 5) 1061 #else 1062 #define PKT_TYPE_MAX 7 1063 #endif 1064 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1065 1066 /* if you move tc_at_ingress or mono_delivery_time 1067 * around, you also must adapt these constants. 1068 */ 1069 #ifdef __BIG_ENDIAN_BITFIELD 1070 #define TC_AT_INGRESS_MASK (1 << 0) 1071 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2) 1072 #else 1073 #define TC_AT_INGRESS_MASK (1 << 7) 1074 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5) 1075 #endif 1076 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 1077 1078 #ifdef __KERNEL__ 1079 /* 1080 * Handling routines are only of interest to the kernel 1081 */ 1082 1083 #define SKB_ALLOC_FCLONE 0x01 1084 #define SKB_ALLOC_RX 0x02 1085 #define SKB_ALLOC_NAPI 0x04 1086 1087 /** 1088 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1089 * @skb: buffer 1090 */ 1091 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1092 { 1093 return unlikely(skb->pfmemalloc); 1094 } 1095 1096 /* 1097 * skb might have a dst pointer attached, refcounted or not. 1098 * _skb_refdst low order bit is set if refcount was _not_ taken 1099 */ 1100 #define SKB_DST_NOREF 1UL 1101 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1102 1103 /** 1104 * skb_dst - returns skb dst_entry 1105 * @skb: buffer 1106 * 1107 * Returns skb dst_entry, regardless of reference taken or not. 1108 */ 1109 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1110 { 1111 /* If refdst was not refcounted, check we still are in a 1112 * rcu_read_lock section 1113 */ 1114 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1115 !rcu_read_lock_held() && 1116 !rcu_read_lock_bh_held()); 1117 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1118 } 1119 1120 /** 1121 * skb_dst_set - sets skb dst 1122 * @skb: buffer 1123 * @dst: dst entry 1124 * 1125 * Sets skb dst, assuming a reference was taken on dst and should 1126 * be released by skb_dst_drop() 1127 */ 1128 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1129 { 1130 skb->slow_gro |= !!dst; 1131 skb->_skb_refdst = (unsigned long)dst; 1132 } 1133 1134 /** 1135 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1136 * @skb: buffer 1137 * @dst: dst entry 1138 * 1139 * Sets skb dst, assuming a reference was not taken on dst. 1140 * If dst entry is cached, we do not take reference and dst_release 1141 * will be avoided by refdst_drop. If dst entry is not cached, we take 1142 * reference, so that last dst_release can destroy the dst immediately. 1143 */ 1144 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1145 { 1146 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1147 skb->slow_gro |= !!dst; 1148 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1149 } 1150 1151 /** 1152 * skb_dst_is_noref - Test if skb dst isn't refcounted 1153 * @skb: buffer 1154 */ 1155 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1156 { 1157 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1158 } 1159 1160 /** 1161 * skb_rtable - Returns the skb &rtable 1162 * @skb: buffer 1163 */ 1164 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1165 { 1166 return (struct rtable *)skb_dst(skb); 1167 } 1168 1169 /* For mangling skb->pkt_type from user space side from applications 1170 * such as nft, tc, etc, we only allow a conservative subset of 1171 * possible pkt_types to be set. 1172 */ 1173 static inline bool skb_pkt_type_ok(u32 ptype) 1174 { 1175 return ptype <= PACKET_OTHERHOST; 1176 } 1177 1178 /** 1179 * skb_napi_id - Returns the skb's NAPI id 1180 * @skb: buffer 1181 */ 1182 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1183 { 1184 #ifdef CONFIG_NET_RX_BUSY_POLL 1185 return skb->napi_id; 1186 #else 1187 return 0; 1188 #endif 1189 } 1190 1191 /** 1192 * skb_unref - decrement the skb's reference count 1193 * @skb: buffer 1194 * 1195 * Returns true if we can free the skb. 1196 */ 1197 static inline bool skb_unref(struct sk_buff *skb) 1198 { 1199 if (unlikely(!skb)) 1200 return false; 1201 if (likely(refcount_read(&skb->users) == 1)) 1202 smp_rmb(); 1203 else if (likely(!refcount_dec_and_test(&skb->users))) 1204 return false; 1205 1206 return true; 1207 } 1208 1209 void __fix_address 1210 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1211 1212 /** 1213 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1214 * @skb: buffer to free 1215 */ 1216 static inline void kfree_skb(struct sk_buff *skb) 1217 { 1218 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1219 } 1220 1221 void skb_release_head_state(struct sk_buff *skb); 1222 void kfree_skb_list_reason(struct sk_buff *segs, 1223 enum skb_drop_reason reason); 1224 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1225 void skb_tx_error(struct sk_buff *skb); 1226 1227 static inline void kfree_skb_list(struct sk_buff *segs) 1228 { 1229 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1230 } 1231 1232 #ifdef CONFIG_TRACEPOINTS 1233 void consume_skb(struct sk_buff *skb); 1234 #else 1235 static inline void consume_skb(struct sk_buff *skb) 1236 { 1237 return kfree_skb(skb); 1238 } 1239 #endif 1240 1241 void __consume_stateless_skb(struct sk_buff *skb); 1242 void __kfree_skb(struct sk_buff *skb); 1243 extern struct kmem_cache *skbuff_head_cache; 1244 1245 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1246 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1247 bool *fragstolen, int *delta_truesize); 1248 1249 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1250 int node); 1251 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1252 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1253 struct sk_buff *build_skb_around(struct sk_buff *skb, 1254 void *data, unsigned int frag_size); 1255 void skb_attempt_defer_free(struct sk_buff *skb); 1256 1257 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1258 struct sk_buff *slab_build_skb(void *data); 1259 1260 /** 1261 * alloc_skb - allocate a network buffer 1262 * @size: size to allocate 1263 * @priority: allocation mask 1264 * 1265 * This function is a convenient wrapper around __alloc_skb(). 1266 */ 1267 static inline struct sk_buff *alloc_skb(unsigned int size, 1268 gfp_t priority) 1269 { 1270 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1271 } 1272 1273 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1274 unsigned long data_len, 1275 int max_page_order, 1276 int *errcode, 1277 gfp_t gfp_mask); 1278 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1279 1280 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1281 struct sk_buff_fclones { 1282 struct sk_buff skb1; 1283 1284 struct sk_buff skb2; 1285 1286 refcount_t fclone_ref; 1287 }; 1288 1289 /** 1290 * skb_fclone_busy - check if fclone is busy 1291 * @sk: socket 1292 * @skb: buffer 1293 * 1294 * Returns true if skb is a fast clone, and its clone is not freed. 1295 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1296 * so we also check that this didnt happen. 1297 */ 1298 static inline bool skb_fclone_busy(const struct sock *sk, 1299 const struct sk_buff *skb) 1300 { 1301 const struct sk_buff_fclones *fclones; 1302 1303 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1304 1305 return skb->fclone == SKB_FCLONE_ORIG && 1306 refcount_read(&fclones->fclone_ref) > 1 && 1307 READ_ONCE(fclones->skb2.sk) == sk; 1308 } 1309 1310 /** 1311 * alloc_skb_fclone - allocate a network buffer from fclone cache 1312 * @size: size to allocate 1313 * @priority: allocation mask 1314 * 1315 * This function is a convenient wrapper around __alloc_skb(). 1316 */ 1317 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1318 gfp_t priority) 1319 { 1320 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1321 } 1322 1323 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1324 void skb_headers_offset_update(struct sk_buff *skb, int off); 1325 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1326 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1327 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1328 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1329 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1330 gfp_t gfp_mask, bool fclone); 1331 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1332 gfp_t gfp_mask) 1333 { 1334 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1335 } 1336 1337 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1338 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1339 unsigned int headroom); 1340 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1341 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1342 int newtailroom, gfp_t priority); 1343 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1344 int offset, int len); 1345 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1346 int offset, int len); 1347 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1348 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1349 1350 /** 1351 * skb_pad - zero pad the tail of an skb 1352 * @skb: buffer to pad 1353 * @pad: space to pad 1354 * 1355 * Ensure that a buffer is followed by a padding area that is zero 1356 * filled. Used by network drivers which may DMA or transfer data 1357 * beyond the buffer end onto the wire. 1358 * 1359 * May return error in out of memory cases. The skb is freed on error. 1360 */ 1361 static inline int skb_pad(struct sk_buff *skb, int pad) 1362 { 1363 return __skb_pad(skb, pad, true); 1364 } 1365 #define dev_kfree_skb(a) consume_skb(a) 1366 1367 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1368 int offset, size_t size); 1369 1370 struct skb_seq_state { 1371 __u32 lower_offset; 1372 __u32 upper_offset; 1373 __u32 frag_idx; 1374 __u32 stepped_offset; 1375 struct sk_buff *root_skb; 1376 struct sk_buff *cur_skb; 1377 __u8 *frag_data; 1378 __u32 frag_off; 1379 }; 1380 1381 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1382 unsigned int to, struct skb_seq_state *st); 1383 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1384 struct skb_seq_state *st); 1385 void skb_abort_seq_read(struct skb_seq_state *st); 1386 1387 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1388 unsigned int to, struct ts_config *config); 1389 1390 /* 1391 * Packet hash types specify the type of hash in skb_set_hash. 1392 * 1393 * Hash types refer to the protocol layer addresses which are used to 1394 * construct a packet's hash. The hashes are used to differentiate or identify 1395 * flows of the protocol layer for the hash type. Hash types are either 1396 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1397 * 1398 * Properties of hashes: 1399 * 1400 * 1) Two packets in different flows have different hash values 1401 * 2) Two packets in the same flow should have the same hash value 1402 * 1403 * A hash at a higher layer is considered to be more specific. A driver should 1404 * set the most specific hash possible. 1405 * 1406 * A driver cannot indicate a more specific hash than the layer at which a hash 1407 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1408 * 1409 * A driver may indicate a hash level which is less specific than the 1410 * actual layer the hash was computed on. For instance, a hash computed 1411 * at L4 may be considered an L3 hash. This should only be done if the 1412 * driver can't unambiguously determine that the HW computed the hash at 1413 * the higher layer. Note that the "should" in the second property above 1414 * permits this. 1415 */ 1416 enum pkt_hash_types { 1417 PKT_HASH_TYPE_NONE, /* Undefined type */ 1418 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1419 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1420 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1421 }; 1422 1423 static inline void skb_clear_hash(struct sk_buff *skb) 1424 { 1425 skb->hash = 0; 1426 skb->sw_hash = 0; 1427 skb->l4_hash = 0; 1428 } 1429 1430 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1431 { 1432 if (!skb->l4_hash) 1433 skb_clear_hash(skb); 1434 } 1435 1436 static inline void 1437 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1438 { 1439 skb->l4_hash = is_l4; 1440 skb->sw_hash = is_sw; 1441 skb->hash = hash; 1442 } 1443 1444 static inline void 1445 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1446 { 1447 /* Used by drivers to set hash from HW */ 1448 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1449 } 1450 1451 static inline void 1452 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1453 { 1454 __skb_set_hash(skb, hash, true, is_l4); 1455 } 1456 1457 void __skb_get_hash(struct sk_buff *skb); 1458 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1459 u32 skb_get_poff(const struct sk_buff *skb); 1460 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1461 const struct flow_keys_basic *keys, int hlen); 1462 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1463 const void *data, int hlen_proto); 1464 1465 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1466 int thoff, u8 ip_proto) 1467 { 1468 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1469 } 1470 1471 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1472 const struct flow_dissector_key *key, 1473 unsigned int key_count); 1474 1475 struct bpf_flow_dissector; 1476 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1477 __be16 proto, int nhoff, int hlen, unsigned int flags); 1478 1479 bool __skb_flow_dissect(const struct net *net, 1480 const struct sk_buff *skb, 1481 struct flow_dissector *flow_dissector, 1482 void *target_container, const void *data, 1483 __be16 proto, int nhoff, int hlen, unsigned int flags); 1484 1485 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1486 struct flow_dissector *flow_dissector, 1487 void *target_container, unsigned int flags) 1488 { 1489 return __skb_flow_dissect(NULL, skb, flow_dissector, 1490 target_container, NULL, 0, 0, 0, flags); 1491 } 1492 1493 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1494 struct flow_keys *flow, 1495 unsigned int flags) 1496 { 1497 memset(flow, 0, sizeof(*flow)); 1498 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1499 flow, NULL, 0, 0, 0, flags); 1500 } 1501 1502 static inline bool 1503 skb_flow_dissect_flow_keys_basic(const struct net *net, 1504 const struct sk_buff *skb, 1505 struct flow_keys_basic *flow, 1506 const void *data, __be16 proto, 1507 int nhoff, int hlen, unsigned int flags) 1508 { 1509 memset(flow, 0, sizeof(*flow)); 1510 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1511 data, proto, nhoff, hlen, flags); 1512 } 1513 1514 void skb_flow_dissect_meta(const struct sk_buff *skb, 1515 struct flow_dissector *flow_dissector, 1516 void *target_container); 1517 1518 /* Gets a skb connection tracking info, ctinfo map should be a 1519 * map of mapsize to translate enum ip_conntrack_info states 1520 * to user states. 1521 */ 1522 void 1523 skb_flow_dissect_ct(const struct sk_buff *skb, 1524 struct flow_dissector *flow_dissector, 1525 void *target_container, 1526 u16 *ctinfo_map, size_t mapsize, 1527 bool post_ct, u16 zone); 1528 void 1529 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1530 struct flow_dissector *flow_dissector, 1531 void *target_container); 1532 1533 void skb_flow_dissect_hash(const struct sk_buff *skb, 1534 struct flow_dissector *flow_dissector, 1535 void *target_container); 1536 1537 static inline __u32 skb_get_hash(struct sk_buff *skb) 1538 { 1539 if (!skb->l4_hash && !skb->sw_hash) 1540 __skb_get_hash(skb); 1541 1542 return skb->hash; 1543 } 1544 1545 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1546 { 1547 if (!skb->l4_hash && !skb->sw_hash) { 1548 struct flow_keys keys; 1549 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1550 1551 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1552 } 1553 1554 return skb->hash; 1555 } 1556 1557 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1558 const siphash_key_t *perturb); 1559 1560 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1561 { 1562 return skb->hash; 1563 } 1564 1565 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1566 { 1567 to->hash = from->hash; 1568 to->sw_hash = from->sw_hash; 1569 to->l4_hash = from->l4_hash; 1570 }; 1571 1572 static inline void skb_copy_decrypted(struct sk_buff *to, 1573 const struct sk_buff *from) 1574 { 1575 #ifdef CONFIG_TLS_DEVICE 1576 to->decrypted = from->decrypted; 1577 #endif 1578 } 1579 1580 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1581 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1582 { 1583 return skb->head + skb->end; 1584 } 1585 1586 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1587 { 1588 return skb->end; 1589 } 1590 1591 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1592 { 1593 skb->end = offset; 1594 } 1595 #else 1596 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1597 { 1598 return skb->end; 1599 } 1600 1601 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1602 { 1603 return skb->end - skb->head; 1604 } 1605 1606 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1607 { 1608 skb->end = skb->head + offset; 1609 } 1610 #endif 1611 1612 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1613 struct ubuf_info *uarg); 1614 1615 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1616 1617 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1618 bool success); 1619 1620 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1621 struct sk_buff *skb, struct iov_iter *from, 1622 size_t length); 1623 1624 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1625 struct msghdr *msg, int len) 1626 { 1627 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1628 } 1629 1630 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1631 struct msghdr *msg, int len, 1632 struct ubuf_info *uarg); 1633 1634 /* Internal */ 1635 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1636 1637 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1638 { 1639 return &skb_shinfo(skb)->hwtstamps; 1640 } 1641 1642 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1643 { 1644 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1645 1646 return is_zcopy ? skb_uarg(skb) : NULL; 1647 } 1648 1649 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1650 { 1651 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1652 } 1653 1654 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1655 { 1656 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1657 } 1658 1659 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1660 const struct sk_buff *skb2) 1661 { 1662 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1663 } 1664 1665 static inline void net_zcopy_get(struct ubuf_info *uarg) 1666 { 1667 refcount_inc(&uarg->refcnt); 1668 } 1669 1670 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1671 { 1672 skb_shinfo(skb)->destructor_arg = uarg; 1673 skb_shinfo(skb)->flags |= uarg->flags; 1674 } 1675 1676 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1677 bool *have_ref) 1678 { 1679 if (skb && uarg && !skb_zcopy(skb)) { 1680 if (unlikely(have_ref && *have_ref)) 1681 *have_ref = false; 1682 else 1683 net_zcopy_get(uarg); 1684 skb_zcopy_init(skb, uarg); 1685 } 1686 } 1687 1688 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1689 { 1690 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1691 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1692 } 1693 1694 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1695 { 1696 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1697 } 1698 1699 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1700 { 1701 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1702 } 1703 1704 static inline void net_zcopy_put(struct ubuf_info *uarg) 1705 { 1706 if (uarg) 1707 uarg->callback(NULL, uarg, true); 1708 } 1709 1710 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1711 { 1712 if (uarg) { 1713 if (uarg->callback == msg_zerocopy_callback) 1714 msg_zerocopy_put_abort(uarg, have_uref); 1715 else if (have_uref) 1716 net_zcopy_put(uarg); 1717 } 1718 } 1719 1720 /* Release a reference on a zerocopy structure */ 1721 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1722 { 1723 struct ubuf_info *uarg = skb_zcopy(skb); 1724 1725 if (uarg) { 1726 if (!skb_zcopy_is_nouarg(skb)) 1727 uarg->callback(skb, uarg, zerocopy_success); 1728 1729 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1730 } 1731 } 1732 1733 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1734 1735 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1736 { 1737 if (unlikely(skb_zcopy_managed(skb))) 1738 __skb_zcopy_downgrade_managed(skb); 1739 } 1740 1741 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1742 { 1743 skb->next = NULL; 1744 } 1745 1746 /* Iterate through singly-linked GSO fragments of an skb. */ 1747 #define skb_list_walk_safe(first, skb, next_skb) \ 1748 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1749 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1750 1751 static inline void skb_list_del_init(struct sk_buff *skb) 1752 { 1753 __list_del_entry(&skb->list); 1754 skb_mark_not_on_list(skb); 1755 } 1756 1757 /** 1758 * skb_queue_empty - check if a queue is empty 1759 * @list: queue head 1760 * 1761 * Returns true if the queue is empty, false otherwise. 1762 */ 1763 static inline int skb_queue_empty(const struct sk_buff_head *list) 1764 { 1765 return list->next == (const struct sk_buff *) list; 1766 } 1767 1768 /** 1769 * skb_queue_empty_lockless - check if a queue is empty 1770 * @list: queue head 1771 * 1772 * Returns true if the queue is empty, false otherwise. 1773 * This variant can be used in lockless contexts. 1774 */ 1775 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1776 { 1777 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1778 } 1779 1780 1781 /** 1782 * skb_queue_is_last - check if skb is the last entry in the queue 1783 * @list: queue head 1784 * @skb: buffer 1785 * 1786 * Returns true if @skb is the last buffer on the list. 1787 */ 1788 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1789 const struct sk_buff *skb) 1790 { 1791 return skb->next == (const struct sk_buff *) list; 1792 } 1793 1794 /** 1795 * skb_queue_is_first - check if skb is the first entry in the queue 1796 * @list: queue head 1797 * @skb: buffer 1798 * 1799 * Returns true if @skb is the first buffer on the list. 1800 */ 1801 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1802 const struct sk_buff *skb) 1803 { 1804 return skb->prev == (const struct sk_buff *) list; 1805 } 1806 1807 /** 1808 * skb_queue_next - return the next packet in the queue 1809 * @list: queue head 1810 * @skb: current buffer 1811 * 1812 * Return the next packet in @list after @skb. It is only valid to 1813 * call this if skb_queue_is_last() evaluates to false. 1814 */ 1815 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1816 const struct sk_buff *skb) 1817 { 1818 /* This BUG_ON may seem severe, but if we just return then we 1819 * are going to dereference garbage. 1820 */ 1821 BUG_ON(skb_queue_is_last(list, skb)); 1822 return skb->next; 1823 } 1824 1825 /** 1826 * skb_queue_prev - return the prev packet in the queue 1827 * @list: queue head 1828 * @skb: current buffer 1829 * 1830 * Return the prev packet in @list before @skb. It is only valid to 1831 * call this if skb_queue_is_first() evaluates to false. 1832 */ 1833 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1834 const struct sk_buff *skb) 1835 { 1836 /* This BUG_ON may seem severe, but if we just return then we 1837 * are going to dereference garbage. 1838 */ 1839 BUG_ON(skb_queue_is_first(list, skb)); 1840 return skb->prev; 1841 } 1842 1843 /** 1844 * skb_get - reference buffer 1845 * @skb: buffer to reference 1846 * 1847 * Makes another reference to a socket buffer and returns a pointer 1848 * to the buffer. 1849 */ 1850 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1851 { 1852 refcount_inc(&skb->users); 1853 return skb; 1854 } 1855 1856 /* 1857 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1858 */ 1859 1860 /** 1861 * skb_cloned - is the buffer a clone 1862 * @skb: buffer to check 1863 * 1864 * Returns true if the buffer was generated with skb_clone() and is 1865 * one of multiple shared copies of the buffer. Cloned buffers are 1866 * shared data so must not be written to under normal circumstances. 1867 */ 1868 static inline int skb_cloned(const struct sk_buff *skb) 1869 { 1870 return skb->cloned && 1871 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1872 } 1873 1874 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1875 { 1876 might_sleep_if(gfpflags_allow_blocking(pri)); 1877 1878 if (skb_cloned(skb)) 1879 return pskb_expand_head(skb, 0, 0, pri); 1880 1881 return 0; 1882 } 1883 1884 /* This variant of skb_unclone() makes sure skb->truesize 1885 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1886 * 1887 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1888 * when various debugging features are in place. 1889 */ 1890 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1891 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1892 { 1893 might_sleep_if(gfpflags_allow_blocking(pri)); 1894 1895 if (skb_cloned(skb)) 1896 return __skb_unclone_keeptruesize(skb, pri); 1897 return 0; 1898 } 1899 1900 /** 1901 * skb_header_cloned - is the header a clone 1902 * @skb: buffer to check 1903 * 1904 * Returns true if modifying the header part of the buffer requires 1905 * the data to be copied. 1906 */ 1907 static inline int skb_header_cloned(const struct sk_buff *skb) 1908 { 1909 int dataref; 1910 1911 if (!skb->cloned) 1912 return 0; 1913 1914 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1915 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1916 return dataref != 1; 1917 } 1918 1919 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1920 { 1921 might_sleep_if(gfpflags_allow_blocking(pri)); 1922 1923 if (skb_header_cloned(skb)) 1924 return pskb_expand_head(skb, 0, 0, pri); 1925 1926 return 0; 1927 } 1928 1929 /** 1930 * __skb_header_release() - allow clones to use the headroom 1931 * @skb: buffer to operate on 1932 * 1933 * See "DOC: dataref and headerless skbs". 1934 */ 1935 static inline void __skb_header_release(struct sk_buff *skb) 1936 { 1937 skb->nohdr = 1; 1938 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1939 } 1940 1941 1942 /** 1943 * skb_shared - is the buffer shared 1944 * @skb: buffer to check 1945 * 1946 * Returns true if more than one person has a reference to this 1947 * buffer. 1948 */ 1949 static inline int skb_shared(const struct sk_buff *skb) 1950 { 1951 return refcount_read(&skb->users) != 1; 1952 } 1953 1954 /** 1955 * skb_share_check - check if buffer is shared and if so clone it 1956 * @skb: buffer to check 1957 * @pri: priority for memory allocation 1958 * 1959 * If the buffer is shared the buffer is cloned and the old copy 1960 * drops a reference. A new clone with a single reference is returned. 1961 * If the buffer is not shared the original buffer is returned. When 1962 * being called from interrupt status or with spinlocks held pri must 1963 * be GFP_ATOMIC. 1964 * 1965 * NULL is returned on a memory allocation failure. 1966 */ 1967 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1968 { 1969 might_sleep_if(gfpflags_allow_blocking(pri)); 1970 if (skb_shared(skb)) { 1971 struct sk_buff *nskb = skb_clone(skb, pri); 1972 1973 if (likely(nskb)) 1974 consume_skb(skb); 1975 else 1976 kfree_skb(skb); 1977 skb = nskb; 1978 } 1979 return skb; 1980 } 1981 1982 /* 1983 * Copy shared buffers into a new sk_buff. We effectively do COW on 1984 * packets to handle cases where we have a local reader and forward 1985 * and a couple of other messy ones. The normal one is tcpdumping 1986 * a packet thats being forwarded. 1987 */ 1988 1989 /** 1990 * skb_unshare - make a copy of a shared buffer 1991 * @skb: buffer to check 1992 * @pri: priority for memory allocation 1993 * 1994 * If the socket buffer is a clone then this function creates a new 1995 * copy of the data, drops a reference count on the old copy and returns 1996 * the new copy with the reference count at 1. If the buffer is not a clone 1997 * the original buffer is returned. When called with a spinlock held or 1998 * from interrupt state @pri must be %GFP_ATOMIC 1999 * 2000 * %NULL is returned on a memory allocation failure. 2001 */ 2002 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2003 gfp_t pri) 2004 { 2005 might_sleep_if(gfpflags_allow_blocking(pri)); 2006 if (skb_cloned(skb)) { 2007 struct sk_buff *nskb = skb_copy(skb, pri); 2008 2009 /* Free our shared copy */ 2010 if (likely(nskb)) 2011 consume_skb(skb); 2012 else 2013 kfree_skb(skb); 2014 skb = nskb; 2015 } 2016 return skb; 2017 } 2018 2019 /** 2020 * skb_peek - peek at the head of an &sk_buff_head 2021 * @list_: list to peek at 2022 * 2023 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2024 * be careful with this one. A peek leaves the buffer on the 2025 * list and someone else may run off with it. You must hold 2026 * the appropriate locks or have a private queue to do this. 2027 * 2028 * Returns %NULL for an empty list or a pointer to the head element. 2029 * The reference count is not incremented and the reference is therefore 2030 * volatile. Use with caution. 2031 */ 2032 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2033 { 2034 struct sk_buff *skb = list_->next; 2035 2036 if (skb == (struct sk_buff *)list_) 2037 skb = NULL; 2038 return skb; 2039 } 2040 2041 /** 2042 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2043 * @list_: list to peek at 2044 * 2045 * Like skb_peek(), but the caller knows that the list is not empty. 2046 */ 2047 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2048 { 2049 return list_->next; 2050 } 2051 2052 /** 2053 * skb_peek_next - peek skb following the given one from a queue 2054 * @skb: skb to start from 2055 * @list_: list to peek at 2056 * 2057 * Returns %NULL when the end of the list is met or a pointer to the 2058 * next element. The reference count is not incremented and the 2059 * reference is therefore volatile. Use with caution. 2060 */ 2061 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2062 const struct sk_buff_head *list_) 2063 { 2064 struct sk_buff *next = skb->next; 2065 2066 if (next == (struct sk_buff *)list_) 2067 next = NULL; 2068 return next; 2069 } 2070 2071 /** 2072 * skb_peek_tail - peek at the tail of an &sk_buff_head 2073 * @list_: list to peek at 2074 * 2075 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2076 * be careful with this one. A peek leaves the buffer on the 2077 * list and someone else may run off with it. You must hold 2078 * the appropriate locks or have a private queue to do this. 2079 * 2080 * Returns %NULL for an empty list or a pointer to the tail element. 2081 * The reference count is not incremented and the reference is therefore 2082 * volatile. Use with caution. 2083 */ 2084 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2085 { 2086 struct sk_buff *skb = READ_ONCE(list_->prev); 2087 2088 if (skb == (struct sk_buff *)list_) 2089 skb = NULL; 2090 return skb; 2091 2092 } 2093 2094 /** 2095 * skb_queue_len - get queue length 2096 * @list_: list to measure 2097 * 2098 * Return the length of an &sk_buff queue. 2099 */ 2100 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2101 { 2102 return list_->qlen; 2103 } 2104 2105 /** 2106 * skb_queue_len_lockless - get queue length 2107 * @list_: list to measure 2108 * 2109 * Return the length of an &sk_buff queue. 2110 * This variant can be used in lockless contexts. 2111 */ 2112 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2113 { 2114 return READ_ONCE(list_->qlen); 2115 } 2116 2117 /** 2118 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2119 * @list: queue to initialize 2120 * 2121 * This initializes only the list and queue length aspects of 2122 * an sk_buff_head object. This allows to initialize the list 2123 * aspects of an sk_buff_head without reinitializing things like 2124 * the spinlock. It can also be used for on-stack sk_buff_head 2125 * objects where the spinlock is known to not be used. 2126 */ 2127 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2128 { 2129 list->prev = list->next = (struct sk_buff *)list; 2130 list->qlen = 0; 2131 } 2132 2133 /* 2134 * This function creates a split out lock class for each invocation; 2135 * this is needed for now since a whole lot of users of the skb-queue 2136 * infrastructure in drivers have different locking usage (in hardirq) 2137 * than the networking core (in softirq only). In the long run either the 2138 * network layer or drivers should need annotation to consolidate the 2139 * main types of usage into 3 classes. 2140 */ 2141 static inline void skb_queue_head_init(struct sk_buff_head *list) 2142 { 2143 spin_lock_init(&list->lock); 2144 __skb_queue_head_init(list); 2145 } 2146 2147 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2148 struct lock_class_key *class) 2149 { 2150 skb_queue_head_init(list); 2151 lockdep_set_class(&list->lock, class); 2152 } 2153 2154 /* 2155 * Insert an sk_buff on a list. 2156 * 2157 * The "__skb_xxxx()" functions are the non-atomic ones that 2158 * can only be called with interrupts disabled. 2159 */ 2160 static inline void __skb_insert(struct sk_buff *newsk, 2161 struct sk_buff *prev, struct sk_buff *next, 2162 struct sk_buff_head *list) 2163 { 2164 /* See skb_queue_empty_lockless() and skb_peek_tail() 2165 * for the opposite READ_ONCE() 2166 */ 2167 WRITE_ONCE(newsk->next, next); 2168 WRITE_ONCE(newsk->prev, prev); 2169 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2170 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2171 WRITE_ONCE(list->qlen, list->qlen + 1); 2172 } 2173 2174 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2175 struct sk_buff *prev, 2176 struct sk_buff *next) 2177 { 2178 struct sk_buff *first = list->next; 2179 struct sk_buff *last = list->prev; 2180 2181 WRITE_ONCE(first->prev, prev); 2182 WRITE_ONCE(prev->next, first); 2183 2184 WRITE_ONCE(last->next, next); 2185 WRITE_ONCE(next->prev, last); 2186 } 2187 2188 /** 2189 * skb_queue_splice - join two skb lists, this is designed for stacks 2190 * @list: the new list to add 2191 * @head: the place to add it in the first list 2192 */ 2193 static inline void skb_queue_splice(const struct sk_buff_head *list, 2194 struct sk_buff_head *head) 2195 { 2196 if (!skb_queue_empty(list)) { 2197 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2198 head->qlen += list->qlen; 2199 } 2200 } 2201 2202 /** 2203 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2204 * @list: the new list to add 2205 * @head: the place to add it in the first list 2206 * 2207 * The list at @list is reinitialised 2208 */ 2209 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2210 struct sk_buff_head *head) 2211 { 2212 if (!skb_queue_empty(list)) { 2213 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2214 head->qlen += list->qlen; 2215 __skb_queue_head_init(list); 2216 } 2217 } 2218 2219 /** 2220 * skb_queue_splice_tail - join two skb lists, each list being a queue 2221 * @list: the new list to add 2222 * @head: the place to add it in the first list 2223 */ 2224 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2225 struct sk_buff_head *head) 2226 { 2227 if (!skb_queue_empty(list)) { 2228 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2229 head->qlen += list->qlen; 2230 } 2231 } 2232 2233 /** 2234 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2235 * @list: the new list to add 2236 * @head: the place to add it in the first list 2237 * 2238 * Each of the lists is a queue. 2239 * The list at @list is reinitialised 2240 */ 2241 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2242 struct sk_buff_head *head) 2243 { 2244 if (!skb_queue_empty(list)) { 2245 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2246 head->qlen += list->qlen; 2247 __skb_queue_head_init(list); 2248 } 2249 } 2250 2251 /** 2252 * __skb_queue_after - queue a buffer at the list head 2253 * @list: list to use 2254 * @prev: place after this buffer 2255 * @newsk: buffer to queue 2256 * 2257 * Queue a buffer int the middle of a list. This function takes no locks 2258 * and you must therefore hold required locks before calling it. 2259 * 2260 * A buffer cannot be placed on two lists at the same time. 2261 */ 2262 static inline void __skb_queue_after(struct sk_buff_head *list, 2263 struct sk_buff *prev, 2264 struct sk_buff *newsk) 2265 { 2266 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2267 } 2268 2269 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2270 struct sk_buff_head *list); 2271 2272 static inline void __skb_queue_before(struct sk_buff_head *list, 2273 struct sk_buff *next, 2274 struct sk_buff *newsk) 2275 { 2276 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2277 } 2278 2279 /** 2280 * __skb_queue_head - queue a buffer at the list head 2281 * @list: list to use 2282 * @newsk: buffer to queue 2283 * 2284 * Queue a buffer at the start of a list. This function takes no locks 2285 * and you must therefore hold required locks before calling it. 2286 * 2287 * A buffer cannot be placed on two lists at the same time. 2288 */ 2289 static inline void __skb_queue_head(struct sk_buff_head *list, 2290 struct sk_buff *newsk) 2291 { 2292 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2293 } 2294 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2295 2296 /** 2297 * __skb_queue_tail - queue a buffer at the list tail 2298 * @list: list to use 2299 * @newsk: buffer to queue 2300 * 2301 * Queue a buffer at the end of a list. This function takes no locks 2302 * and you must therefore hold required locks before calling it. 2303 * 2304 * A buffer cannot be placed on two lists at the same time. 2305 */ 2306 static inline void __skb_queue_tail(struct sk_buff_head *list, 2307 struct sk_buff *newsk) 2308 { 2309 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2310 } 2311 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2312 2313 /* 2314 * remove sk_buff from list. _Must_ be called atomically, and with 2315 * the list known.. 2316 */ 2317 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2318 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2319 { 2320 struct sk_buff *next, *prev; 2321 2322 WRITE_ONCE(list->qlen, list->qlen - 1); 2323 next = skb->next; 2324 prev = skb->prev; 2325 skb->next = skb->prev = NULL; 2326 WRITE_ONCE(next->prev, prev); 2327 WRITE_ONCE(prev->next, next); 2328 } 2329 2330 /** 2331 * __skb_dequeue - remove from the head of the queue 2332 * @list: list to dequeue from 2333 * 2334 * Remove the head of the list. This function does not take any locks 2335 * so must be used with appropriate locks held only. The head item is 2336 * returned or %NULL if the list is empty. 2337 */ 2338 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2339 { 2340 struct sk_buff *skb = skb_peek(list); 2341 if (skb) 2342 __skb_unlink(skb, list); 2343 return skb; 2344 } 2345 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2346 2347 /** 2348 * __skb_dequeue_tail - remove from the tail of the queue 2349 * @list: list to dequeue from 2350 * 2351 * Remove the tail of the list. This function does not take any locks 2352 * so must be used with appropriate locks held only. The tail item is 2353 * returned or %NULL if the list is empty. 2354 */ 2355 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2356 { 2357 struct sk_buff *skb = skb_peek_tail(list); 2358 if (skb) 2359 __skb_unlink(skb, list); 2360 return skb; 2361 } 2362 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2363 2364 2365 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2366 { 2367 return skb->data_len; 2368 } 2369 2370 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2371 { 2372 return skb->len - skb->data_len; 2373 } 2374 2375 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2376 { 2377 unsigned int i, len = 0; 2378 2379 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2380 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2381 return len; 2382 } 2383 2384 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2385 { 2386 return skb_headlen(skb) + __skb_pagelen(skb); 2387 } 2388 2389 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2390 int i, struct page *page, 2391 int off, int size) 2392 { 2393 skb_frag_t *frag = &shinfo->frags[i]; 2394 2395 /* 2396 * Propagate page pfmemalloc to the skb if we can. The problem is 2397 * that not all callers have unique ownership of the page but rely 2398 * on page_is_pfmemalloc doing the right thing(tm). 2399 */ 2400 frag->bv_page = page; 2401 frag->bv_offset = off; 2402 skb_frag_size_set(frag, size); 2403 } 2404 2405 /** 2406 * skb_len_add - adds a number to len fields of skb 2407 * @skb: buffer to add len to 2408 * @delta: number of bytes to add 2409 */ 2410 static inline void skb_len_add(struct sk_buff *skb, int delta) 2411 { 2412 skb->len += delta; 2413 skb->data_len += delta; 2414 skb->truesize += delta; 2415 } 2416 2417 /** 2418 * __skb_fill_page_desc - initialise a paged fragment in an skb 2419 * @skb: buffer containing fragment to be initialised 2420 * @i: paged fragment index to initialise 2421 * @page: the page to use for this fragment 2422 * @off: the offset to the data with @page 2423 * @size: the length of the data 2424 * 2425 * Initialises the @i'th fragment of @skb to point to &size bytes at 2426 * offset @off within @page. 2427 * 2428 * Does not take any additional reference on the fragment. 2429 */ 2430 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2431 struct page *page, int off, int size) 2432 { 2433 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size); 2434 page = compound_head(page); 2435 if (page_is_pfmemalloc(page)) 2436 skb->pfmemalloc = true; 2437 } 2438 2439 /** 2440 * skb_fill_page_desc - initialise a paged fragment in an skb 2441 * @skb: buffer containing fragment to be initialised 2442 * @i: paged fragment index to initialise 2443 * @page: the page to use for this fragment 2444 * @off: the offset to the data with @page 2445 * @size: the length of the data 2446 * 2447 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2448 * @skb to point to @size bytes at offset @off within @page. In 2449 * addition updates @skb such that @i is the last fragment. 2450 * 2451 * Does not take any additional reference on the fragment. 2452 */ 2453 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2454 struct page *page, int off, int size) 2455 { 2456 __skb_fill_page_desc(skb, i, page, off, size); 2457 skb_shinfo(skb)->nr_frags = i + 1; 2458 } 2459 2460 /** 2461 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2462 * @skb: buffer containing fragment to be initialised 2463 * @i: paged fragment index to initialise 2464 * @page: the page to use for this fragment 2465 * @off: the offset to the data with @page 2466 * @size: the length of the data 2467 * 2468 * Variant of skb_fill_page_desc() which does not deal with 2469 * pfmemalloc, if page is not owned by us. 2470 */ 2471 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2472 struct page *page, int off, 2473 int size) 2474 { 2475 struct skb_shared_info *shinfo = skb_shinfo(skb); 2476 2477 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2478 shinfo->nr_frags = i + 1; 2479 } 2480 2481 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2482 int size, unsigned int truesize); 2483 2484 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2485 unsigned int truesize); 2486 2487 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2488 2489 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2490 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2491 { 2492 return skb->head + skb->tail; 2493 } 2494 2495 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2496 { 2497 skb->tail = skb->data - skb->head; 2498 } 2499 2500 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2501 { 2502 skb_reset_tail_pointer(skb); 2503 skb->tail += offset; 2504 } 2505 2506 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2507 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2508 { 2509 return skb->tail; 2510 } 2511 2512 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2513 { 2514 skb->tail = skb->data; 2515 } 2516 2517 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2518 { 2519 skb->tail = skb->data + offset; 2520 } 2521 2522 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2523 2524 static inline void skb_assert_len(struct sk_buff *skb) 2525 { 2526 #ifdef CONFIG_DEBUG_NET 2527 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2528 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2529 #endif /* CONFIG_DEBUG_NET */ 2530 } 2531 2532 /* 2533 * Add data to an sk_buff 2534 */ 2535 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2536 void *skb_put(struct sk_buff *skb, unsigned int len); 2537 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2538 { 2539 void *tmp = skb_tail_pointer(skb); 2540 SKB_LINEAR_ASSERT(skb); 2541 skb->tail += len; 2542 skb->len += len; 2543 return tmp; 2544 } 2545 2546 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2547 { 2548 void *tmp = __skb_put(skb, len); 2549 2550 memset(tmp, 0, len); 2551 return tmp; 2552 } 2553 2554 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2555 unsigned int len) 2556 { 2557 void *tmp = __skb_put(skb, len); 2558 2559 memcpy(tmp, data, len); 2560 return tmp; 2561 } 2562 2563 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2564 { 2565 *(u8 *)__skb_put(skb, 1) = val; 2566 } 2567 2568 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2569 { 2570 void *tmp = skb_put(skb, len); 2571 2572 memset(tmp, 0, len); 2573 2574 return tmp; 2575 } 2576 2577 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2578 unsigned int len) 2579 { 2580 void *tmp = skb_put(skb, len); 2581 2582 memcpy(tmp, data, len); 2583 2584 return tmp; 2585 } 2586 2587 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2588 { 2589 *(u8 *)skb_put(skb, 1) = val; 2590 } 2591 2592 void *skb_push(struct sk_buff *skb, unsigned int len); 2593 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2594 { 2595 skb->data -= len; 2596 skb->len += len; 2597 return skb->data; 2598 } 2599 2600 void *skb_pull(struct sk_buff *skb, unsigned int len); 2601 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2602 { 2603 skb->len -= len; 2604 if (unlikely(skb->len < skb->data_len)) { 2605 #if defined(CONFIG_DEBUG_NET) 2606 skb->len += len; 2607 pr_err("__skb_pull(len=%u)\n", len); 2608 skb_dump(KERN_ERR, skb, false); 2609 #endif 2610 BUG(); 2611 } 2612 return skb->data += len; 2613 } 2614 2615 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2616 { 2617 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2618 } 2619 2620 void *skb_pull_data(struct sk_buff *skb, size_t len); 2621 2622 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2623 2624 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2625 { 2626 if (likely(len <= skb_headlen(skb))) 2627 return true; 2628 if (unlikely(len > skb->len)) 2629 return false; 2630 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2631 } 2632 2633 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2634 { 2635 if (!pskb_may_pull(skb, len)) 2636 return NULL; 2637 2638 skb->len -= len; 2639 return skb->data += len; 2640 } 2641 2642 void skb_condense(struct sk_buff *skb); 2643 2644 /** 2645 * skb_headroom - bytes at buffer head 2646 * @skb: buffer to check 2647 * 2648 * Return the number of bytes of free space at the head of an &sk_buff. 2649 */ 2650 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2651 { 2652 return skb->data - skb->head; 2653 } 2654 2655 /** 2656 * skb_tailroom - bytes at buffer end 2657 * @skb: buffer to check 2658 * 2659 * Return the number of bytes of free space at the tail of an sk_buff 2660 */ 2661 static inline int skb_tailroom(const struct sk_buff *skb) 2662 { 2663 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2664 } 2665 2666 /** 2667 * skb_availroom - bytes at buffer end 2668 * @skb: buffer to check 2669 * 2670 * Return the number of bytes of free space at the tail of an sk_buff 2671 * allocated by sk_stream_alloc() 2672 */ 2673 static inline int skb_availroom(const struct sk_buff *skb) 2674 { 2675 if (skb_is_nonlinear(skb)) 2676 return 0; 2677 2678 return skb->end - skb->tail - skb->reserved_tailroom; 2679 } 2680 2681 /** 2682 * skb_reserve - adjust headroom 2683 * @skb: buffer to alter 2684 * @len: bytes to move 2685 * 2686 * Increase the headroom of an empty &sk_buff by reducing the tail 2687 * room. This is only allowed for an empty buffer. 2688 */ 2689 static inline void skb_reserve(struct sk_buff *skb, int len) 2690 { 2691 skb->data += len; 2692 skb->tail += len; 2693 } 2694 2695 /** 2696 * skb_tailroom_reserve - adjust reserved_tailroom 2697 * @skb: buffer to alter 2698 * @mtu: maximum amount of headlen permitted 2699 * @needed_tailroom: minimum amount of reserved_tailroom 2700 * 2701 * Set reserved_tailroom so that headlen can be as large as possible but 2702 * not larger than mtu and tailroom cannot be smaller than 2703 * needed_tailroom. 2704 * The required headroom should already have been reserved before using 2705 * this function. 2706 */ 2707 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2708 unsigned int needed_tailroom) 2709 { 2710 SKB_LINEAR_ASSERT(skb); 2711 if (mtu < skb_tailroom(skb) - needed_tailroom) 2712 /* use at most mtu */ 2713 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2714 else 2715 /* use up to all available space */ 2716 skb->reserved_tailroom = needed_tailroom; 2717 } 2718 2719 #define ENCAP_TYPE_ETHER 0 2720 #define ENCAP_TYPE_IPPROTO 1 2721 2722 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2723 __be16 protocol) 2724 { 2725 skb->inner_protocol = protocol; 2726 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2727 } 2728 2729 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2730 __u8 ipproto) 2731 { 2732 skb->inner_ipproto = ipproto; 2733 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2734 } 2735 2736 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2737 { 2738 skb->inner_mac_header = skb->mac_header; 2739 skb->inner_network_header = skb->network_header; 2740 skb->inner_transport_header = skb->transport_header; 2741 } 2742 2743 static inline void skb_reset_mac_len(struct sk_buff *skb) 2744 { 2745 skb->mac_len = skb->network_header - skb->mac_header; 2746 } 2747 2748 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2749 *skb) 2750 { 2751 return skb->head + skb->inner_transport_header; 2752 } 2753 2754 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2755 { 2756 return skb_inner_transport_header(skb) - skb->data; 2757 } 2758 2759 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2760 { 2761 skb->inner_transport_header = skb->data - skb->head; 2762 } 2763 2764 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2765 const int offset) 2766 { 2767 skb_reset_inner_transport_header(skb); 2768 skb->inner_transport_header += offset; 2769 } 2770 2771 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2772 { 2773 return skb->head + skb->inner_network_header; 2774 } 2775 2776 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2777 { 2778 skb->inner_network_header = skb->data - skb->head; 2779 } 2780 2781 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2782 const int offset) 2783 { 2784 skb_reset_inner_network_header(skb); 2785 skb->inner_network_header += offset; 2786 } 2787 2788 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2789 { 2790 return skb->head + skb->inner_mac_header; 2791 } 2792 2793 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2794 { 2795 skb->inner_mac_header = skb->data - skb->head; 2796 } 2797 2798 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2799 const int offset) 2800 { 2801 skb_reset_inner_mac_header(skb); 2802 skb->inner_mac_header += offset; 2803 } 2804 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2805 { 2806 return skb->transport_header != (typeof(skb->transport_header))~0U; 2807 } 2808 2809 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2810 { 2811 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2812 return skb->head + skb->transport_header; 2813 } 2814 2815 static inline void skb_reset_transport_header(struct sk_buff *skb) 2816 { 2817 skb->transport_header = skb->data - skb->head; 2818 } 2819 2820 static inline void skb_set_transport_header(struct sk_buff *skb, 2821 const int offset) 2822 { 2823 skb_reset_transport_header(skb); 2824 skb->transport_header += offset; 2825 } 2826 2827 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2828 { 2829 return skb->head + skb->network_header; 2830 } 2831 2832 static inline void skb_reset_network_header(struct sk_buff *skb) 2833 { 2834 skb->network_header = skb->data - skb->head; 2835 } 2836 2837 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2838 { 2839 skb_reset_network_header(skb); 2840 skb->network_header += offset; 2841 } 2842 2843 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2844 { 2845 return skb->mac_header != (typeof(skb->mac_header))~0U; 2846 } 2847 2848 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2849 { 2850 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2851 return skb->head + skb->mac_header; 2852 } 2853 2854 static inline int skb_mac_offset(const struct sk_buff *skb) 2855 { 2856 return skb_mac_header(skb) - skb->data; 2857 } 2858 2859 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2860 { 2861 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2862 return skb->network_header - skb->mac_header; 2863 } 2864 2865 static inline void skb_unset_mac_header(struct sk_buff *skb) 2866 { 2867 skb->mac_header = (typeof(skb->mac_header))~0U; 2868 } 2869 2870 static inline void skb_reset_mac_header(struct sk_buff *skb) 2871 { 2872 skb->mac_header = skb->data - skb->head; 2873 } 2874 2875 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2876 { 2877 skb_reset_mac_header(skb); 2878 skb->mac_header += offset; 2879 } 2880 2881 static inline void skb_pop_mac_header(struct sk_buff *skb) 2882 { 2883 skb->mac_header = skb->network_header; 2884 } 2885 2886 static inline void skb_probe_transport_header(struct sk_buff *skb) 2887 { 2888 struct flow_keys_basic keys; 2889 2890 if (skb_transport_header_was_set(skb)) 2891 return; 2892 2893 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2894 NULL, 0, 0, 0, 0)) 2895 skb_set_transport_header(skb, keys.control.thoff); 2896 } 2897 2898 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2899 { 2900 if (skb_mac_header_was_set(skb)) { 2901 const unsigned char *old_mac = skb_mac_header(skb); 2902 2903 skb_set_mac_header(skb, -skb->mac_len); 2904 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2905 } 2906 } 2907 2908 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2909 { 2910 return skb->csum_start - skb_headroom(skb); 2911 } 2912 2913 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2914 { 2915 return skb->head + skb->csum_start; 2916 } 2917 2918 static inline int skb_transport_offset(const struct sk_buff *skb) 2919 { 2920 return skb_transport_header(skb) - skb->data; 2921 } 2922 2923 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2924 { 2925 return skb->transport_header - skb->network_header; 2926 } 2927 2928 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2929 { 2930 return skb->inner_transport_header - skb->inner_network_header; 2931 } 2932 2933 static inline int skb_network_offset(const struct sk_buff *skb) 2934 { 2935 return skb_network_header(skb) - skb->data; 2936 } 2937 2938 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2939 { 2940 return skb_inner_network_header(skb) - skb->data; 2941 } 2942 2943 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2944 { 2945 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2946 } 2947 2948 /* 2949 * CPUs often take a performance hit when accessing unaligned memory 2950 * locations. The actual performance hit varies, it can be small if the 2951 * hardware handles it or large if we have to take an exception and fix it 2952 * in software. 2953 * 2954 * Since an ethernet header is 14 bytes network drivers often end up with 2955 * the IP header at an unaligned offset. The IP header can be aligned by 2956 * shifting the start of the packet by 2 bytes. Drivers should do this 2957 * with: 2958 * 2959 * skb_reserve(skb, NET_IP_ALIGN); 2960 * 2961 * The downside to this alignment of the IP header is that the DMA is now 2962 * unaligned. On some architectures the cost of an unaligned DMA is high 2963 * and this cost outweighs the gains made by aligning the IP header. 2964 * 2965 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2966 * to be overridden. 2967 */ 2968 #ifndef NET_IP_ALIGN 2969 #define NET_IP_ALIGN 2 2970 #endif 2971 2972 /* 2973 * The networking layer reserves some headroom in skb data (via 2974 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2975 * the header has to grow. In the default case, if the header has to grow 2976 * 32 bytes or less we avoid the reallocation. 2977 * 2978 * Unfortunately this headroom changes the DMA alignment of the resulting 2979 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2980 * on some architectures. An architecture can override this value, 2981 * perhaps setting it to a cacheline in size (since that will maintain 2982 * cacheline alignment of the DMA). It must be a power of 2. 2983 * 2984 * Various parts of the networking layer expect at least 32 bytes of 2985 * headroom, you should not reduce this. 2986 * 2987 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2988 * to reduce average number of cache lines per packet. 2989 * get_rps_cpu() for example only access one 64 bytes aligned block : 2990 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2991 */ 2992 #ifndef NET_SKB_PAD 2993 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2994 #endif 2995 2996 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2997 2998 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2999 { 3000 if (WARN_ON(skb_is_nonlinear(skb))) 3001 return; 3002 skb->len = len; 3003 skb_set_tail_pointer(skb, len); 3004 } 3005 3006 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3007 { 3008 __skb_set_length(skb, len); 3009 } 3010 3011 void skb_trim(struct sk_buff *skb, unsigned int len); 3012 3013 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3014 { 3015 if (skb->data_len) 3016 return ___pskb_trim(skb, len); 3017 __skb_trim(skb, len); 3018 return 0; 3019 } 3020 3021 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3022 { 3023 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3024 } 3025 3026 /** 3027 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3028 * @skb: buffer to alter 3029 * @len: new length 3030 * 3031 * This is identical to pskb_trim except that the caller knows that 3032 * the skb is not cloned so we should never get an error due to out- 3033 * of-memory. 3034 */ 3035 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3036 { 3037 int err = pskb_trim(skb, len); 3038 BUG_ON(err); 3039 } 3040 3041 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3042 { 3043 unsigned int diff = len - skb->len; 3044 3045 if (skb_tailroom(skb) < diff) { 3046 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3047 GFP_ATOMIC); 3048 if (ret) 3049 return ret; 3050 } 3051 __skb_set_length(skb, len); 3052 return 0; 3053 } 3054 3055 /** 3056 * skb_orphan - orphan a buffer 3057 * @skb: buffer to orphan 3058 * 3059 * If a buffer currently has an owner then we call the owner's 3060 * destructor function and make the @skb unowned. The buffer continues 3061 * to exist but is no longer charged to its former owner. 3062 */ 3063 static inline void skb_orphan(struct sk_buff *skb) 3064 { 3065 if (skb->destructor) { 3066 skb->destructor(skb); 3067 skb->destructor = NULL; 3068 skb->sk = NULL; 3069 } else { 3070 BUG_ON(skb->sk); 3071 } 3072 } 3073 3074 /** 3075 * skb_orphan_frags - orphan the frags contained in a buffer 3076 * @skb: buffer to orphan frags from 3077 * @gfp_mask: allocation mask for replacement pages 3078 * 3079 * For each frag in the SKB which needs a destructor (i.e. has an 3080 * owner) create a copy of that frag and release the original 3081 * page by calling the destructor. 3082 */ 3083 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3084 { 3085 if (likely(!skb_zcopy(skb))) 3086 return 0; 3087 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3088 return 0; 3089 return skb_copy_ubufs(skb, gfp_mask); 3090 } 3091 3092 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3093 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3094 { 3095 if (likely(!skb_zcopy(skb))) 3096 return 0; 3097 return skb_copy_ubufs(skb, gfp_mask); 3098 } 3099 3100 /** 3101 * __skb_queue_purge - empty a list 3102 * @list: list to empty 3103 * 3104 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3105 * the list and one reference dropped. This function does not take the 3106 * list lock and the caller must hold the relevant locks to use it. 3107 */ 3108 static inline void __skb_queue_purge(struct sk_buff_head *list) 3109 { 3110 struct sk_buff *skb; 3111 while ((skb = __skb_dequeue(list)) != NULL) 3112 kfree_skb(skb); 3113 } 3114 void skb_queue_purge(struct sk_buff_head *list); 3115 3116 unsigned int skb_rbtree_purge(struct rb_root *root); 3117 3118 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3119 3120 /** 3121 * netdev_alloc_frag - allocate a page fragment 3122 * @fragsz: fragment size 3123 * 3124 * Allocates a frag from a page for receive buffer. 3125 * Uses GFP_ATOMIC allocations. 3126 */ 3127 static inline void *netdev_alloc_frag(unsigned int fragsz) 3128 { 3129 return __netdev_alloc_frag_align(fragsz, ~0u); 3130 } 3131 3132 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3133 unsigned int align) 3134 { 3135 WARN_ON_ONCE(!is_power_of_2(align)); 3136 return __netdev_alloc_frag_align(fragsz, -align); 3137 } 3138 3139 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3140 gfp_t gfp_mask); 3141 3142 /** 3143 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3144 * @dev: network device to receive on 3145 * @length: length to allocate 3146 * 3147 * Allocate a new &sk_buff and assign it a usage count of one. The 3148 * buffer has unspecified headroom built in. Users should allocate 3149 * the headroom they think they need without accounting for the 3150 * built in space. The built in space is used for optimisations. 3151 * 3152 * %NULL is returned if there is no free memory. Although this function 3153 * allocates memory it can be called from an interrupt. 3154 */ 3155 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3156 unsigned int length) 3157 { 3158 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3159 } 3160 3161 /* legacy helper around __netdev_alloc_skb() */ 3162 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3163 gfp_t gfp_mask) 3164 { 3165 return __netdev_alloc_skb(NULL, length, gfp_mask); 3166 } 3167 3168 /* legacy helper around netdev_alloc_skb() */ 3169 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3170 { 3171 return netdev_alloc_skb(NULL, length); 3172 } 3173 3174 3175 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3176 unsigned int length, gfp_t gfp) 3177 { 3178 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3179 3180 if (NET_IP_ALIGN && skb) 3181 skb_reserve(skb, NET_IP_ALIGN); 3182 return skb; 3183 } 3184 3185 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3186 unsigned int length) 3187 { 3188 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3189 } 3190 3191 static inline void skb_free_frag(void *addr) 3192 { 3193 page_frag_free(addr); 3194 } 3195 3196 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3197 3198 static inline void *napi_alloc_frag(unsigned int fragsz) 3199 { 3200 return __napi_alloc_frag_align(fragsz, ~0u); 3201 } 3202 3203 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3204 unsigned int align) 3205 { 3206 WARN_ON_ONCE(!is_power_of_2(align)); 3207 return __napi_alloc_frag_align(fragsz, -align); 3208 } 3209 3210 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3211 unsigned int length, gfp_t gfp_mask); 3212 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3213 unsigned int length) 3214 { 3215 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3216 } 3217 void napi_consume_skb(struct sk_buff *skb, int budget); 3218 3219 void napi_skb_free_stolen_head(struct sk_buff *skb); 3220 void __kfree_skb_defer(struct sk_buff *skb); 3221 3222 /** 3223 * __dev_alloc_pages - allocate page for network Rx 3224 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3225 * @order: size of the allocation 3226 * 3227 * Allocate a new page. 3228 * 3229 * %NULL is returned if there is no free memory. 3230 */ 3231 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3232 unsigned int order) 3233 { 3234 /* This piece of code contains several assumptions. 3235 * 1. This is for device Rx, therefor a cold page is preferred. 3236 * 2. The expectation is the user wants a compound page. 3237 * 3. If requesting a order 0 page it will not be compound 3238 * due to the check to see if order has a value in prep_new_page 3239 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3240 * code in gfp_to_alloc_flags that should be enforcing this. 3241 */ 3242 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3243 3244 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3245 } 3246 3247 static inline struct page *dev_alloc_pages(unsigned int order) 3248 { 3249 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3250 } 3251 3252 /** 3253 * __dev_alloc_page - allocate a page for network Rx 3254 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3255 * 3256 * Allocate a new page. 3257 * 3258 * %NULL is returned if there is no free memory. 3259 */ 3260 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3261 { 3262 return __dev_alloc_pages(gfp_mask, 0); 3263 } 3264 3265 static inline struct page *dev_alloc_page(void) 3266 { 3267 return dev_alloc_pages(0); 3268 } 3269 3270 /** 3271 * dev_page_is_reusable - check whether a page can be reused for network Rx 3272 * @page: the page to test 3273 * 3274 * A page shouldn't be considered for reusing/recycling if it was allocated 3275 * under memory pressure or at a distant memory node. 3276 * 3277 * Returns false if this page should be returned to page allocator, true 3278 * otherwise. 3279 */ 3280 static inline bool dev_page_is_reusable(const struct page *page) 3281 { 3282 return likely(page_to_nid(page) == numa_mem_id() && 3283 !page_is_pfmemalloc(page)); 3284 } 3285 3286 /** 3287 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3288 * @page: The page that was allocated from skb_alloc_page 3289 * @skb: The skb that may need pfmemalloc set 3290 */ 3291 static inline void skb_propagate_pfmemalloc(const struct page *page, 3292 struct sk_buff *skb) 3293 { 3294 if (page_is_pfmemalloc(page)) 3295 skb->pfmemalloc = true; 3296 } 3297 3298 /** 3299 * skb_frag_off() - Returns the offset of a skb fragment 3300 * @frag: the paged fragment 3301 */ 3302 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3303 { 3304 return frag->bv_offset; 3305 } 3306 3307 /** 3308 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3309 * @frag: skb fragment 3310 * @delta: value to add 3311 */ 3312 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3313 { 3314 frag->bv_offset += delta; 3315 } 3316 3317 /** 3318 * skb_frag_off_set() - Sets the offset of a skb fragment 3319 * @frag: skb fragment 3320 * @offset: offset of fragment 3321 */ 3322 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3323 { 3324 frag->bv_offset = offset; 3325 } 3326 3327 /** 3328 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3329 * @fragto: skb fragment where offset is set 3330 * @fragfrom: skb fragment offset is copied from 3331 */ 3332 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3333 const skb_frag_t *fragfrom) 3334 { 3335 fragto->bv_offset = fragfrom->bv_offset; 3336 } 3337 3338 /** 3339 * skb_frag_page - retrieve the page referred to by a paged fragment 3340 * @frag: the paged fragment 3341 * 3342 * Returns the &struct page associated with @frag. 3343 */ 3344 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3345 { 3346 return frag->bv_page; 3347 } 3348 3349 /** 3350 * __skb_frag_ref - take an addition reference on a paged fragment. 3351 * @frag: the paged fragment 3352 * 3353 * Takes an additional reference on the paged fragment @frag. 3354 */ 3355 static inline void __skb_frag_ref(skb_frag_t *frag) 3356 { 3357 get_page(skb_frag_page(frag)); 3358 } 3359 3360 /** 3361 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3362 * @skb: the buffer 3363 * @f: the fragment offset. 3364 * 3365 * Takes an additional reference on the @f'th paged fragment of @skb. 3366 */ 3367 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3368 { 3369 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3370 } 3371 3372 /** 3373 * __skb_frag_unref - release a reference on a paged fragment. 3374 * @frag: the paged fragment 3375 * @recycle: recycle the page if allocated via page_pool 3376 * 3377 * Releases a reference on the paged fragment @frag 3378 * or recycles the page via the page_pool API. 3379 */ 3380 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3381 { 3382 struct page *page = skb_frag_page(frag); 3383 3384 #ifdef CONFIG_PAGE_POOL 3385 if (recycle && page_pool_return_skb_page(page)) 3386 return; 3387 #endif 3388 put_page(page); 3389 } 3390 3391 /** 3392 * skb_frag_unref - release a reference on a paged fragment of an skb. 3393 * @skb: the buffer 3394 * @f: the fragment offset 3395 * 3396 * Releases a reference on the @f'th paged fragment of @skb. 3397 */ 3398 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3399 { 3400 struct skb_shared_info *shinfo = skb_shinfo(skb); 3401 3402 if (!skb_zcopy_managed(skb)) 3403 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); 3404 } 3405 3406 /** 3407 * skb_frag_address - gets the address of the data contained in a paged fragment 3408 * @frag: the paged fragment buffer 3409 * 3410 * Returns the address of the data within @frag. The page must already 3411 * be mapped. 3412 */ 3413 static inline void *skb_frag_address(const skb_frag_t *frag) 3414 { 3415 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3416 } 3417 3418 /** 3419 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3420 * @frag: the paged fragment buffer 3421 * 3422 * Returns the address of the data within @frag. Checks that the page 3423 * is mapped and returns %NULL otherwise. 3424 */ 3425 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3426 { 3427 void *ptr = page_address(skb_frag_page(frag)); 3428 if (unlikely(!ptr)) 3429 return NULL; 3430 3431 return ptr + skb_frag_off(frag); 3432 } 3433 3434 /** 3435 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3436 * @fragto: skb fragment where page is set 3437 * @fragfrom: skb fragment page is copied from 3438 */ 3439 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3440 const skb_frag_t *fragfrom) 3441 { 3442 fragto->bv_page = fragfrom->bv_page; 3443 } 3444 3445 /** 3446 * __skb_frag_set_page - sets the page contained in a paged fragment 3447 * @frag: the paged fragment 3448 * @page: the page to set 3449 * 3450 * Sets the fragment @frag to contain @page. 3451 */ 3452 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3453 { 3454 frag->bv_page = page; 3455 } 3456 3457 /** 3458 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3459 * @skb: the buffer 3460 * @f: the fragment offset 3461 * @page: the page to set 3462 * 3463 * Sets the @f'th fragment of @skb to contain @page. 3464 */ 3465 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3466 struct page *page) 3467 { 3468 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3469 } 3470 3471 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3472 3473 /** 3474 * skb_frag_dma_map - maps a paged fragment via the DMA API 3475 * @dev: the device to map the fragment to 3476 * @frag: the paged fragment to map 3477 * @offset: the offset within the fragment (starting at the 3478 * fragment's own offset) 3479 * @size: the number of bytes to map 3480 * @dir: the direction of the mapping (``PCI_DMA_*``) 3481 * 3482 * Maps the page associated with @frag to @device. 3483 */ 3484 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3485 const skb_frag_t *frag, 3486 size_t offset, size_t size, 3487 enum dma_data_direction dir) 3488 { 3489 return dma_map_page(dev, skb_frag_page(frag), 3490 skb_frag_off(frag) + offset, size, dir); 3491 } 3492 3493 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3494 gfp_t gfp_mask) 3495 { 3496 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3497 } 3498 3499 3500 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3501 gfp_t gfp_mask) 3502 { 3503 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3504 } 3505 3506 3507 /** 3508 * skb_clone_writable - is the header of a clone writable 3509 * @skb: buffer to check 3510 * @len: length up to which to write 3511 * 3512 * Returns true if modifying the header part of the cloned buffer 3513 * does not requires the data to be copied. 3514 */ 3515 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3516 { 3517 return !skb_header_cloned(skb) && 3518 skb_headroom(skb) + len <= skb->hdr_len; 3519 } 3520 3521 static inline int skb_try_make_writable(struct sk_buff *skb, 3522 unsigned int write_len) 3523 { 3524 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3525 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3526 } 3527 3528 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3529 int cloned) 3530 { 3531 int delta = 0; 3532 3533 if (headroom > skb_headroom(skb)) 3534 delta = headroom - skb_headroom(skb); 3535 3536 if (delta || cloned) 3537 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3538 GFP_ATOMIC); 3539 return 0; 3540 } 3541 3542 /** 3543 * skb_cow - copy header of skb when it is required 3544 * @skb: buffer to cow 3545 * @headroom: needed headroom 3546 * 3547 * If the skb passed lacks sufficient headroom or its data part 3548 * is shared, data is reallocated. If reallocation fails, an error 3549 * is returned and original skb is not changed. 3550 * 3551 * The result is skb with writable area skb->head...skb->tail 3552 * and at least @headroom of space at head. 3553 */ 3554 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3555 { 3556 return __skb_cow(skb, headroom, skb_cloned(skb)); 3557 } 3558 3559 /** 3560 * skb_cow_head - skb_cow but only making the head writable 3561 * @skb: buffer to cow 3562 * @headroom: needed headroom 3563 * 3564 * This function is identical to skb_cow except that we replace the 3565 * skb_cloned check by skb_header_cloned. It should be used when 3566 * you only need to push on some header and do not need to modify 3567 * the data. 3568 */ 3569 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3570 { 3571 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3572 } 3573 3574 /** 3575 * skb_padto - pad an skbuff up to a minimal size 3576 * @skb: buffer to pad 3577 * @len: minimal length 3578 * 3579 * Pads up a buffer to ensure the trailing bytes exist and are 3580 * blanked. If the buffer already contains sufficient data it 3581 * is untouched. Otherwise it is extended. Returns zero on 3582 * success. The skb is freed on error. 3583 */ 3584 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3585 { 3586 unsigned int size = skb->len; 3587 if (likely(size >= len)) 3588 return 0; 3589 return skb_pad(skb, len - size); 3590 } 3591 3592 /** 3593 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3594 * @skb: buffer to pad 3595 * @len: minimal length 3596 * @free_on_error: free buffer on error 3597 * 3598 * Pads up a buffer to ensure the trailing bytes exist and are 3599 * blanked. If the buffer already contains sufficient data it 3600 * is untouched. Otherwise it is extended. Returns zero on 3601 * success. The skb is freed on error if @free_on_error is true. 3602 */ 3603 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3604 unsigned int len, 3605 bool free_on_error) 3606 { 3607 unsigned int size = skb->len; 3608 3609 if (unlikely(size < len)) { 3610 len -= size; 3611 if (__skb_pad(skb, len, free_on_error)) 3612 return -ENOMEM; 3613 __skb_put(skb, len); 3614 } 3615 return 0; 3616 } 3617 3618 /** 3619 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3620 * @skb: buffer to pad 3621 * @len: minimal length 3622 * 3623 * Pads up a buffer to ensure the trailing bytes exist and are 3624 * blanked. If the buffer already contains sufficient data it 3625 * is untouched. Otherwise it is extended. Returns zero on 3626 * success. The skb is freed on error. 3627 */ 3628 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3629 { 3630 return __skb_put_padto(skb, len, true); 3631 } 3632 3633 static inline int skb_add_data(struct sk_buff *skb, 3634 struct iov_iter *from, int copy) 3635 { 3636 const int off = skb->len; 3637 3638 if (skb->ip_summed == CHECKSUM_NONE) { 3639 __wsum csum = 0; 3640 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3641 &csum, from)) { 3642 skb->csum = csum_block_add(skb->csum, csum, off); 3643 return 0; 3644 } 3645 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3646 return 0; 3647 3648 __skb_trim(skb, off); 3649 return -EFAULT; 3650 } 3651 3652 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3653 const struct page *page, int off) 3654 { 3655 if (skb_zcopy(skb)) 3656 return false; 3657 if (i) { 3658 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3659 3660 return page == skb_frag_page(frag) && 3661 off == skb_frag_off(frag) + skb_frag_size(frag); 3662 } 3663 return false; 3664 } 3665 3666 static inline int __skb_linearize(struct sk_buff *skb) 3667 { 3668 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3669 } 3670 3671 /** 3672 * skb_linearize - convert paged skb to linear one 3673 * @skb: buffer to linarize 3674 * 3675 * If there is no free memory -ENOMEM is returned, otherwise zero 3676 * is returned and the old skb data released. 3677 */ 3678 static inline int skb_linearize(struct sk_buff *skb) 3679 { 3680 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3681 } 3682 3683 /** 3684 * skb_has_shared_frag - can any frag be overwritten 3685 * @skb: buffer to test 3686 * 3687 * Return true if the skb has at least one frag that might be modified 3688 * by an external entity (as in vmsplice()/sendfile()) 3689 */ 3690 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3691 { 3692 return skb_is_nonlinear(skb) && 3693 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3694 } 3695 3696 /** 3697 * skb_linearize_cow - make sure skb is linear and writable 3698 * @skb: buffer to process 3699 * 3700 * If there is no free memory -ENOMEM is returned, otherwise zero 3701 * is returned and the old skb data released. 3702 */ 3703 static inline int skb_linearize_cow(struct sk_buff *skb) 3704 { 3705 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3706 __skb_linearize(skb) : 0; 3707 } 3708 3709 static __always_inline void 3710 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3711 unsigned int off) 3712 { 3713 if (skb->ip_summed == CHECKSUM_COMPLETE) 3714 skb->csum = csum_block_sub(skb->csum, 3715 csum_partial(start, len, 0), off); 3716 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3717 skb_checksum_start_offset(skb) < 0) 3718 skb->ip_summed = CHECKSUM_NONE; 3719 } 3720 3721 /** 3722 * skb_postpull_rcsum - update checksum for received skb after pull 3723 * @skb: buffer to update 3724 * @start: start of data before pull 3725 * @len: length of data pulled 3726 * 3727 * After doing a pull on a received packet, you need to call this to 3728 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3729 * CHECKSUM_NONE so that it can be recomputed from scratch. 3730 */ 3731 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3732 const void *start, unsigned int len) 3733 { 3734 if (skb->ip_summed == CHECKSUM_COMPLETE) 3735 skb->csum = wsum_negate(csum_partial(start, len, 3736 wsum_negate(skb->csum))); 3737 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3738 skb_checksum_start_offset(skb) < 0) 3739 skb->ip_summed = CHECKSUM_NONE; 3740 } 3741 3742 static __always_inline void 3743 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3744 unsigned int off) 3745 { 3746 if (skb->ip_summed == CHECKSUM_COMPLETE) 3747 skb->csum = csum_block_add(skb->csum, 3748 csum_partial(start, len, 0), off); 3749 } 3750 3751 /** 3752 * skb_postpush_rcsum - update checksum for received skb after push 3753 * @skb: buffer to update 3754 * @start: start of data after push 3755 * @len: length of data pushed 3756 * 3757 * After doing a push on a received packet, you need to call this to 3758 * update the CHECKSUM_COMPLETE checksum. 3759 */ 3760 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3761 const void *start, unsigned int len) 3762 { 3763 __skb_postpush_rcsum(skb, start, len, 0); 3764 } 3765 3766 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3767 3768 /** 3769 * skb_push_rcsum - push skb and update receive checksum 3770 * @skb: buffer to update 3771 * @len: length of data pulled 3772 * 3773 * This function performs an skb_push on the packet and updates 3774 * the CHECKSUM_COMPLETE checksum. It should be used on 3775 * receive path processing instead of skb_push unless you know 3776 * that the checksum difference is zero (e.g., a valid IP header) 3777 * or you are setting ip_summed to CHECKSUM_NONE. 3778 */ 3779 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3780 { 3781 skb_push(skb, len); 3782 skb_postpush_rcsum(skb, skb->data, len); 3783 return skb->data; 3784 } 3785 3786 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3787 /** 3788 * pskb_trim_rcsum - trim received skb and update checksum 3789 * @skb: buffer to trim 3790 * @len: new length 3791 * 3792 * This is exactly the same as pskb_trim except that it ensures the 3793 * checksum of received packets are still valid after the operation. 3794 * It can change skb pointers. 3795 */ 3796 3797 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3798 { 3799 if (likely(len >= skb->len)) 3800 return 0; 3801 return pskb_trim_rcsum_slow(skb, len); 3802 } 3803 3804 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3805 { 3806 if (skb->ip_summed == CHECKSUM_COMPLETE) 3807 skb->ip_summed = CHECKSUM_NONE; 3808 __skb_trim(skb, len); 3809 return 0; 3810 } 3811 3812 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3813 { 3814 if (skb->ip_summed == CHECKSUM_COMPLETE) 3815 skb->ip_summed = CHECKSUM_NONE; 3816 return __skb_grow(skb, len); 3817 } 3818 3819 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3820 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3821 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3822 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3823 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3824 3825 #define skb_queue_walk(queue, skb) \ 3826 for (skb = (queue)->next; \ 3827 skb != (struct sk_buff *)(queue); \ 3828 skb = skb->next) 3829 3830 #define skb_queue_walk_safe(queue, skb, tmp) \ 3831 for (skb = (queue)->next, tmp = skb->next; \ 3832 skb != (struct sk_buff *)(queue); \ 3833 skb = tmp, tmp = skb->next) 3834 3835 #define skb_queue_walk_from(queue, skb) \ 3836 for (; skb != (struct sk_buff *)(queue); \ 3837 skb = skb->next) 3838 3839 #define skb_rbtree_walk(skb, root) \ 3840 for (skb = skb_rb_first(root); skb != NULL; \ 3841 skb = skb_rb_next(skb)) 3842 3843 #define skb_rbtree_walk_from(skb) \ 3844 for (; skb != NULL; \ 3845 skb = skb_rb_next(skb)) 3846 3847 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3848 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3849 skb = tmp) 3850 3851 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3852 for (tmp = skb->next; \ 3853 skb != (struct sk_buff *)(queue); \ 3854 skb = tmp, tmp = skb->next) 3855 3856 #define skb_queue_reverse_walk(queue, skb) \ 3857 for (skb = (queue)->prev; \ 3858 skb != (struct sk_buff *)(queue); \ 3859 skb = skb->prev) 3860 3861 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3862 for (skb = (queue)->prev, tmp = skb->prev; \ 3863 skb != (struct sk_buff *)(queue); \ 3864 skb = tmp, tmp = skb->prev) 3865 3866 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3867 for (tmp = skb->prev; \ 3868 skb != (struct sk_buff *)(queue); \ 3869 skb = tmp, tmp = skb->prev) 3870 3871 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3872 { 3873 return skb_shinfo(skb)->frag_list != NULL; 3874 } 3875 3876 static inline void skb_frag_list_init(struct sk_buff *skb) 3877 { 3878 skb_shinfo(skb)->frag_list = NULL; 3879 } 3880 3881 #define skb_walk_frags(skb, iter) \ 3882 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3883 3884 3885 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3886 int *err, long *timeo_p, 3887 const struct sk_buff *skb); 3888 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3889 struct sk_buff_head *queue, 3890 unsigned int flags, 3891 int *off, int *err, 3892 struct sk_buff **last); 3893 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3894 struct sk_buff_head *queue, 3895 unsigned int flags, int *off, int *err, 3896 struct sk_buff **last); 3897 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3898 struct sk_buff_head *sk_queue, 3899 unsigned int flags, int *off, int *err); 3900 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3901 __poll_t datagram_poll(struct file *file, struct socket *sock, 3902 struct poll_table_struct *wait); 3903 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3904 struct iov_iter *to, int size); 3905 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3906 struct msghdr *msg, int size) 3907 { 3908 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3909 } 3910 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3911 struct msghdr *msg); 3912 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3913 struct iov_iter *to, int len, 3914 struct ahash_request *hash); 3915 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3916 struct iov_iter *from, int len); 3917 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3918 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3919 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3920 static inline void skb_free_datagram_locked(struct sock *sk, 3921 struct sk_buff *skb) 3922 { 3923 __skb_free_datagram_locked(sk, skb, 0); 3924 } 3925 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3926 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3927 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3928 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3929 int len); 3930 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3931 struct pipe_inode_info *pipe, unsigned int len, 3932 unsigned int flags); 3933 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3934 int len); 3935 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3936 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3937 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3938 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3939 int len, int hlen); 3940 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3941 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3942 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3943 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3944 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3945 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3946 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3947 unsigned int offset); 3948 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3949 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 3950 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3951 int skb_vlan_pop(struct sk_buff *skb); 3952 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3953 int skb_eth_pop(struct sk_buff *skb); 3954 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3955 const unsigned char *src); 3956 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3957 int mac_len, bool ethernet); 3958 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3959 bool ethernet); 3960 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3961 int skb_mpls_dec_ttl(struct sk_buff *skb); 3962 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3963 gfp_t gfp); 3964 3965 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3966 { 3967 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3968 } 3969 3970 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3971 { 3972 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3973 } 3974 3975 struct skb_checksum_ops { 3976 __wsum (*update)(const void *mem, int len, __wsum wsum); 3977 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3978 }; 3979 3980 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3981 3982 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3983 __wsum csum, const struct skb_checksum_ops *ops); 3984 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3985 __wsum csum); 3986 3987 static inline void * __must_check 3988 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 3989 const void *data, int hlen, void *buffer) 3990 { 3991 if (likely(hlen - offset >= len)) 3992 return (void *)data + offset; 3993 3994 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 3995 return NULL; 3996 3997 return buffer; 3998 } 3999 4000 static inline void * __must_check 4001 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4002 { 4003 return __skb_header_pointer(skb, offset, len, skb->data, 4004 skb_headlen(skb), buffer); 4005 } 4006 4007 /** 4008 * skb_needs_linearize - check if we need to linearize a given skb 4009 * depending on the given device features. 4010 * @skb: socket buffer to check 4011 * @features: net device features 4012 * 4013 * Returns true if either: 4014 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4015 * 2. skb is fragmented and the device does not support SG. 4016 */ 4017 static inline bool skb_needs_linearize(struct sk_buff *skb, 4018 netdev_features_t features) 4019 { 4020 return skb_is_nonlinear(skb) && 4021 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4022 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4023 } 4024 4025 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4026 void *to, 4027 const unsigned int len) 4028 { 4029 memcpy(to, skb->data, len); 4030 } 4031 4032 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4033 const int offset, void *to, 4034 const unsigned int len) 4035 { 4036 memcpy(to, skb->data + offset, len); 4037 } 4038 4039 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4040 const void *from, 4041 const unsigned int len) 4042 { 4043 memcpy(skb->data, from, len); 4044 } 4045 4046 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4047 const int offset, 4048 const void *from, 4049 const unsigned int len) 4050 { 4051 memcpy(skb->data + offset, from, len); 4052 } 4053 4054 void skb_init(void); 4055 4056 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4057 { 4058 return skb->tstamp; 4059 } 4060 4061 /** 4062 * skb_get_timestamp - get timestamp from a skb 4063 * @skb: skb to get stamp from 4064 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4065 * 4066 * Timestamps are stored in the skb as offsets to a base timestamp. 4067 * This function converts the offset back to a struct timeval and stores 4068 * it in stamp. 4069 */ 4070 static inline void skb_get_timestamp(const struct sk_buff *skb, 4071 struct __kernel_old_timeval *stamp) 4072 { 4073 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4074 } 4075 4076 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4077 struct __kernel_sock_timeval *stamp) 4078 { 4079 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4080 4081 stamp->tv_sec = ts.tv_sec; 4082 stamp->tv_usec = ts.tv_nsec / 1000; 4083 } 4084 4085 static inline void skb_get_timestampns(const struct sk_buff *skb, 4086 struct __kernel_old_timespec *stamp) 4087 { 4088 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4089 4090 stamp->tv_sec = ts.tv_sec; 4091 stamp->tv_nsec = ts.tv_nsec; 4092 } 4093 4094 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4095 struct __kernel_timespec *stamp) 4096 { 4097 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4098 4099 stamp->tv_sec = ts.tv_sec; 4100 stamp->tv_nsec = ts.tv_nsec; 4101 } 4102 4103 static inline void __net_timestamp(struct sk_buff *skb) 4104 { 4105 skb->tstamp = ktime_get_real(); 4106 skb->mono_delivery_time = 0; 4107 } 4108 4109 static inline ktime_t net_timedelta(ktime_t t) 4110 { 4111 return ktime_sub(ktime_get_real(), t); 4112 } 4113 4114 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4115 bool mono) 4116 { 4117 skb->tstamp = kt; 4118 skb->mono_delivery_time = kt && mono; 4119 } 4120 4121 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4122 4123 /* It is used in the ingress path to clear the delivery_time. 4124 * If needed, set the skb->tstamp to the (rcv) timestamp. 4125 */ 4126 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4127 { 4128 if (skb->mono_delivery_time) { 4129 skb->mono_delivery_time = 0; 4130 if (static_branch_unlikely(&netstamp_needed_key)) 4131 skb->tstamp = ktime_get_real(); 4132 else 4133 skb->tstamp = 0; 4134 } 4135 } 4136 4137 static inline void skb_clear_tstamp(struct sk_buff *skb) 4138 { 4139 if (skb->mono_delivery_time) 4140 return; 4141 4142 skb->tstamp = 0; 4143 } 4144 4145 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4146 { 4147 if (skb->mono_delivery_time) 4148 return 0; 4149 4150 return skb->tstamp; 4151 } 4152 4153 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4154 { 4155 if (!skb->mono_delivery_time && skb->tstamp) 4156 return skb->tstamp; 4157 4158 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4159 return ktime_get_real(); 4160 4161 return 0; 4162 } 4163 4164 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4165 { 4166 return skb_shinfo(skb)->meta_len; 4167 } 4168 4169 static inline void *skb_metadata_end(const struct sk_buff *skb) 4170 { 4171 return skb_mac_header(skb); 4172 } 4173 4174 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4175 const struct sk_buff *skb_b, 4176 u8 meta_len) 4177 { 4178 const void *a = skb_metadata_end(skb_a); 4179 const void *b = skb_metadata_end(skb_b); 4180 /* Using more efficient varaiant than plain call to memcmp(). */ 4181 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4182 u64 diffs = 0; 4183 4184 switch (meta_len) { 4185 #define __it(x, op) (x -= sizeof(u##op)) 4186 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4187 case 32: diffs |= __it_diff(a, b, 64); 4188 fallthrough; 4189 case 24: diffs |= __it_diff(a, b, 64); 4190 fallthrough; 4191 case 16: diffs |= __it_diff(a, b, 64); 4192 fallthrough; 4193 case 8: diffs |= __it_diff(a, b, 64); 4194 break; 4195 case 28: diffs |= __it_diff(a, b, 64); 4196 fallthrough; 4197 case 20: diffs |= __it_diff(a, b, 64); 4198 fallthrough; 4199 case 12: diffs |= __it_diff(a, b, 64); 4200 fallthrough; 4201 case 4: diffs |= __it_diff(a, b, 32); 4202 break; 4203 } 4204 return diffs; 4205 #else 4206 return memcmp(a - meta_len, b - meta_len, meta_len); 4207 #endif 4208 } 4209 4210 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4211 const struct sk_buff *skb_b) 4212 { 4213 u8 len_a = skb_metadata_len(skb_a); 4214 u8 len_b = skb_metadata_len(skb_b); 4215 4216 if (!(len_a | len_b)) 4217 return false; 4218 4219 return len_a != len_b ? 4220 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4221 } 4222 4223 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4224 { 4225 skb_shinfo(skb)->meta_len = meta_len; 4226 } 4227 4228 static inline void skb_metadata_clear(struct sk_buff *skb) 4229 { 4230 skb_metadata_set(skb, 0); 4231 } 4232 4233 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4234 4235 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4236 4237 void skb_clone_tx_timestamp(struct sk_buff *skb); 4238 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4239 4240 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4241 4242 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4243 { 4244 } 4245 4246 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4247 { 4248 return false; 4249 } 4250 4251 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4252 4253 /** 4254 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4255 * 4256 * PHY drivers may accept clones of transmitted packets for 4257 * timestamping via their phy_driver.txtstamp method. These drivers 4258 * must call this function to return the skb back to the stack with a 4259 * timestamp. 4260 * 4261 * @skb: clone of the original outgoing packet 4262 * @hwtstamps: hardware time stamps 4263 * 4264 */ 4265 void skb_complete_tx_timestamp(struct sk_buff *skb, 4266 struct skb_shared_hwtstamps *hwtstamps); 4267 4268 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4269 struct skb_shared_hwtstamps *hwtstamps, 4270 struct sock *sk, int tstype); 4271 4272 /** 4273 * skb_tstamp_tx - queue clone of skb with send time stamps 4274 * @orig_skb: the original outgoing packet 4275 * @hwtstamps: hardware time stamps, may be NULL if not available 4276 * 4277 * If the skb has a socket associated, then this function clones the 4278 * skb (thus sharing the actual data and optional structures), stores 4279 * the optional hardware time stamping information (if non NULL) or 4280 * generates a software time stamp (otherwise), then queues the clone 4281 * to the error queue of the socket. Errors are silently ignored. 4282 */ 4283 void skb_tstamp_tx(struct sk_buff *orig_skb, 4284 struct skb_shared_hwtstamps *hwtstamps); 4285 4286 /** 4287 * skb_tx_timestamp() - Driver hook for transmit timestamping 4288 * 4289 * Ethernet MAC Drivers should call this function in their hard_xmit() 4290 * function immediately before giving the sk_buff to the MAC hardware. 4291 * 4292 * Specifically, one should make absolutely sure that this function is 4293 * called before TX completion of this packet can trigger. Otherwise 4294 * the packet could potentially already be freed. 4295 * 4296 * @skb: A socket buffer. 4297 */ 4298 static inline void skb_tx_timestamp(struct sk_buff *skb) 4299 { 4300 skb_clone_tx_timestamp(skb); 4301 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4302 skb_tstamp_tx(skb, NULL); 4303 } 4304 4305 /** 4306 * skb_complete_wifi_ack - deliver skb with wifi status 4307 * 4308 * @skb: the original outgoing packet 4309 * @acked: ack status 4310 * 4311 */ 4312 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4313 4314 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4315 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4316 4317 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4318 { 4319 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4320 skb->csum_valid || 4321 (skb->ip_summed == CHECKSUM_PARTIAL && 4322 skb_checksum_start_offset(skb) >= 0)); 4323 } 4324 4325 /** 4326 * skb_checksum_complete - Calculate checksum of an entire packet 4327 * @skb: packet to process 4328 * 4329 * This function calculates the checksum over the entire packet plus 4330 * the value of skb->csum. The latter can be used to supply the 4331 * checksum of a pseudo header as used by TCP/UDP. It returns the 4332 * checksum. 4333 * 4334 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4335 * this function can be used to verify that checksum on received 4336 * packets. In that case the function should return zero if the 4337 * checksum is correct. In particular, this function will return zero 4338 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4339 * hardware has already verified the correctness of the checksum. 4340 */ 4341 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4342 { 4343 return skb_csum_unnecessary(skb) ? 4344 0 : __skb_checksum_complete(skb); 4345 } 4346 4347 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4348 { 4349 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4350 if (skb->csum_level == 0) 4351 skb->ip_summed = CHECKSUM_NONE; 4352 else 4353 skb->csum_level--; 4354 } 4355 } 4356 4357 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4358 { 4359 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4360 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4361 skb->csum_level++; 4362 } else if (skb->ip_summed == CHECKSUM_NONE) { 4363 skb->ip_summed = CHECKSUM_UNNECESSARY; 4364 skb->csum_level = 0; 4365 } 4366 } 4367 4368 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4369 { 4370 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4371 skb->ip_summed = CHECKSUM_NONE; 4372 skb->csum_level = 0; 4373 } 4374 } 4375 4376 /* Check if we need to perform checksum complete validation. 4377 * 4378 * Returns true if checksum complete is needed, false otherwise 4379 * (either checksum is unnecessary or zero checksum is allowed). 4380 */ 4381 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4382 bool zero_okay, 4383 __sum16 check) 4384 { 4385 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4386 skb->csum_valid = 1; 4387 __skb_decr_checksum_unnecessary(skb); 4388 return false; 4389 } 4390 4391 return true; 4392 } 4393 4394 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4395 * in checksum_init. 4396 */ 4397 #define CHECKSUM_BREAK 76 4398 4399 /* Unset checksum-complete 4400 * 4401 * Unset checksum complete can be done when packet is being modified 4402 * (uncompressed for instance) and checksum-complete value is 4403 * invalidated. 4404 */ 4405 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4406 { 4407 if (skb->ip_summed == CHECKSUM_COMPLETE) 4408 skb->ip_summed = CHECKSUM_NONE; 4409 } 4410 4411 /* Validate (init) checksum based on checksum complete. 4412 * 4413 * Return values: 4414 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4415 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4416 * checksum is stored in skb->csum for use in __skb_checksum_complete 4417 * non-zero: value of invalid checksum 4418 * 4419 */ 4420 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4421 bool complete, 4422 __wsum psum) 4423 { 4424 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4425 if (!csum_fold(csum_add(psum, skb->csum))) { 4426 skb->csum_valid = 1; 4427 return 0; 4428 } 4429 } 4430 4431 skb->csum = psum; 4432 4433 if (complete || skb->len <= CHECKSUM_BREAK) { 4434 __sum16 csum; 4435 4436 csum = __skb_checksum_complete(skb); 4437 skb->csum_valid = !csum; 4438 return csum; 4439 } 4440 4441 return 0; 4442 } 4443 4444 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4445 { 4446 return 0; 4447 } 4448 4449 /* Perform checksum validate (init). Note that this is a macro since we only 4450 * want to calculate the pseudo header which is an input function if necessary. 4451 * First we try to validate without any computation (checksum unnecessary) and 4452 * then calculate based on checksum complete calling the function to compute 4453 * pseudo header. 4454 * 4455 * Return values: 4456 * 0: checksum is validated or try to in skb_checksum_complete 4457 * non-zero: value of invalid checksum 4458 */ 4459 #define __skb_checksum_validate(skb, proto, complete, \ 4460 zero_okay, check, compute_pseudo) \ 4461 ({ \ 4462 __sum16 __ret = 0; \ 4463 skb->csum_valid = 0; \ 4464 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4465 __ret = __skb_checksum_validate_complete(skb, \ 4466 complete, compute_pseudo(skb, proto)); \ 4467 __ret; \ 4468 }) 4469 4470 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4471 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4472 4473 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4474 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4475 4476 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4477 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4478 4479 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4480 compute_pseudo) \ 4481 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4482 4483 #define skb_checksum_simple_validate(skb) \ 4484 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4485 4486 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4487 { 4488 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4489 } 4490 4491 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4492 { 4493 skb->csum = ~pseudo; 4494 skb->ip_summed = CHECKSUM_COMPLETE; 4495 } 4496 4497 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4498 do { \ 4499 if (__skb_checksum_convert_check(skb)) \ 4500 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4501 } while (0) 4502 4503 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4504 u16 start, u16 offset) 4505 { 4506 skb->ip_summed = CHECKSUM_PARTIAL; 4507 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4508 skb->csum_offset = offset - start; 4509 } 4510 4511 /* Update skbuf and packet to reflect the remote checksum offload operation. 4512 * When called, ptr indicates the starting point for skb->csum when 4513 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4514 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4515 */ 4516 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4517 int start, int offset, bool nopartial) 4518 { 4519 __wsum delta; 4520 4521 if (!nopartial) { 4522 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4523 return; 4524 } 4525 4526 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4527 __skb_checksum_complete(skb); 4528 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4529 } 4530 4531 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4532 4533 /* Adjust skb->csum since we changed the packet */ 4534 skb->csum = csum_add(skb->csum, delta); 4535 } 4536 4537 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4538 { 4539 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4540 return (void *)(skb->_nfct & NFCT_PTRMASK); 4541 #else 4542 return NULL; 4543 #endif 4544 } 4545 4546 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4547 { 4548 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4549 return skb->_nfct; 4550 #else 4551 return 0UL; 4552 #endif 4553 } 4554 4555 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4556 { 4557 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4558 skb->slow_gro |= !!nfct; 4559 skb->_nfct = nfct; 4560 #endif 4561 } 4562 4563 #ifdef CONFIG_SKB_EXTENSIONS 4564 enum skb_ext_id { 4565 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4566 SKB_EXT_BRIDGE_NF, 4567 #endif 4568 #ifdef CONFIG_XFRM 4569 SKB_EXT_SEC_PATH, 4570 #endif 4571 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4572 TC_SKB_EXT, 4573 #endif 4574 #if IS_ENABLED(CONFIG_MPTCP) 4575 SKB_EXT_MPTCP, 4576 #endif 4577 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4578 SKB_EXT_MCTP, 4579 #endif 4580 SKB_EXT_NUM, /* must be last */ 4581 }; 4582 4583 /** 4584 * struct skb_ext - sk_buff extensions 4585 * @refcnt: 1 on allocation, deallocated on 0 4586 * @offset: offset to add to @data to obtain extension address 4587 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4588 * @data: start of extension data, variable sized 4589 * 4590 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4591 * to use 'u8' types while allowing up to 2kb worth of extension data. 4592 */ 4593 struct skb_ext { 4594 refcount_t refcnt; 4595 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4596 u8 chunks; /* same */ 4597 char data[] __aligned(8); 4598 }; 4599 4600 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4601 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4602 struct skb_ext *ext); 4603 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4604 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4605 void __skb_ext_put(struct skb_ext *ext); 4606 4607 static inline void skb_ext_put(struct sk_buff *skb) 4608 { 4609 if (skb->active_extensions) 4610 __skb_ext_put(skb->extensions); 4611 } 4612 4613 static inline void __skb_ext_copy(struct sk_buff *dst, 4614 const struct sk_buff *src) 4615 { 4616 dst->active_extensions = src->active_extensions; 4617 4618 if (src->active_extensions) { 4619 struct skb_ext *ext = src->extensions; 4620 4621 refcount_inc(&ext->refcnt); 4622 dst->extensions = ext; 4623 } 4624 } 4625 4626 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4627 { 4628 skb_ext_put(dst); 4629 __skb_ext_copy(dst, src); 4630 } 4631 4632 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4633 { 4634 return !!ext->offset[i]; 4635 } 4636 4637 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4638 { 4639 return skb->active_extensions & (1 << id); 4640 } 4641 4642 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4643 { 4644 if (skb_ext_exist(skb, id)) 4645 __skb_ext_del(skb, id); 4646 } 4647 4648 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4649 { 4650 if (skb_ext_exist(skb, id)) { 4651 struct skb_ext *ext = skb->extensions; 4652 4653 return (void *)ext + (ext->offset[id] << 3); 4654 } 4655 4656 return NULL; 4657 } 4658 4659 static inline void skb_ext_reset(struct sk_buff *skb) 4660 { 4661 if (unlikely(skb->active_extensions)) { 4662 __skb_ext_put(skb->extensions); 4663 skb->active_extensions = 0; 4664 } 4665 } 4666 4667 static inline bool skb_has_extensions(struct sk_buff *skb) 4668 { 4669 return unlikely(skb->active_extensions); 4670 } 4671 #else 4672 static inline void skb_ext_put(struct sk_buff *skb) {} 4673 static inline void skb_ext_reset(struct sk_buff *skb) {} 4674 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4675 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4676 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4677 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4678 #endif /* CONFIG_SKB_EXTENSIONS */ 4679 4680 static inline void nf_reset_ct(struct sk_buff *skb) 4681 { 4682 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4683 nf_conntrack_put(skb_nfct(skb)); 4684 skb->_nfct = 0; 4685 #endif 4686 } 4687 4688 static inline void nf_reset_trace(struct sk_buff *skb) 4689 { 4690 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4691 skb->nf_trace = 0; 4692 #endif 4693 } 4694 4695 static inline void ipvs_reset(struct sk_buff *skb) 4696 { 4697 #if IS_ENABLED(CONFIG_IP_VS) 4698 skb->ipvs_property = 0; 4699 #endif 4700 } 4701 4702 /* Note: This doesn't put any conntrack info in dst. */ 4703 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4704 bool copy) 4705 { 4706 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4707 dst->_nfct = src->_nfct; 4708 nf_conntrack_get(skb_nfct(src)); 4709 #endif 4710 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4711 if (copy) 4712 dst->nf_trace = src->nf_trace; 4713 #endif 4714 } 4715 4716 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4717 { 4718 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4719 nf_conntrack_put(skb_nfct(dst)); 4720 #endif 4721 dst->slow_gro = src->slow_gro; 4722 __nf_copy(dst, src, true); 4723 } 4724 4725 #ifdef CONFIG_NETWORK_SECMARK 4726 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4727 { 4728 to->secmark = from->secmark; 4729 } 4730 4731 static inline void skb_init_secmark(struct sk_buff *skb) 4732 { 4733 skb->secmark = 0; 4734 } 4735 #else 4736 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4737 { } 4738 4739 static inline void skb_init_secmark(struct sk_buff *skb) 4740 { } 4741 #endif 4742 4743 static inline int secpath_exists(const struct sk_buff *skb) 4744 { 4745 #ifdef CONFIG_XFRM 4746 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4747 #else 4748 return 0; 4749 #endif 4750 } 4751 4752 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4753 { 4754 return !skb->destructor && 4755 !secpath_exists(skb) && 4756 !skb_nfct(skb) && 4757 !skb->_skb_refdst && 4758 !skb_has_frag_list(skb); 4759 } 4760 4761 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4762 { 4763 skb->queue_mapping = queue_mapping; 4764 } 4765 4766 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4767 { 4768 return skb->queue_mapping; 4769 } 4770 4771 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4772 { 4773 to->queue_mapping = from->queue_mapping; 4774 } 4775 4776 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4777 { 4778 skb->queue_mapping = rx_queue + 1; 4779 } 4780 4781 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4782 { 4783 return skb->queue_mapping - 1; 4784 } 4785 4786 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4787 { 4788 return skb->queue_mapping != 0; 4789 } 4790 4791 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4792 { 4793 skb->dst_pending_confirm = val; 4794 } 4795 4796 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4797 { 4798 return skb->dst_pending_confirm != 0; 4799 } 4800 4801 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4802 { 4803 #ifdef CONFIG_XFRM 4804 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4805 #else 4806 return NULL; 4807 #endif 4808 } 4809 4810 /* Keeps track of mac header offset relative to skb->head. 4811 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4812 * For non-tunnel skb it points to skb_mac_header() and for 4813 * tunnel skb it points to outer mac header. 4814 * Keeps track of level of encapsulation of network headers. 4815 */ 4816 struct skb_gso_cb { 4817 union { 4818 int mac_offset; 4819 int data_offset; 4820 }; 4821 int encap_level; 4822 __wsum csum; 4823 __u16 csum_start; 4824 }; 4825 #define SKB_GSO_CB_OFFSET 32 4826 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4827 4828 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4829 { 4830 return (skb_mac_header(inner_skb) - inner_skb->head) - 4831 SKB_GSO_CB(inner_skb)->mac_offset; 4832 } 4833 4834 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4835 { 4836 int new_headroom, headroom; 4837 int ret; 4838 4839 headroom = skb_headroom(skb); 4840 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4841 if (ret) 4842 return ret; 4843 4844 new_headroom = skb_headroom(skb); 4845 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4846 return 0; 4847 } 4848 4849 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4850 { 4851 /* Do not update partial checksums if remote checksum is enabled. */ 4852 if (skb->remcsum_offload) 4853 return; 4854 4855 SKB_GSO_CB(skb)->csum = res; 4856 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4857 } 4858 4859 /* Compute the checksum for a gso segment. First compute the checksum value 4860 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4861 * then add in skb->csum (checksum from csum_start to end of packet). 4862 * skb->csum and csum_start are then updated to reflect the checksum of the 4863 * resultant packet starting from the transport header-- the resultant checksum 4864 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4865 * header. 4866 */ 4867 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4868 { 4869 unsigned char *csum_start = skb_transport_header(skb); 4870 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4871 __wsum partial = SKB_GSO_CB(skb)->csum; 4872 4873 SKB_GSO_CB(skb)->csum = res; 4874 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4875 4876 return csum_fold(csum_partial(csum_start, plen, partial)); 4877 } 4878 4879 static inline bool skb_is_gso(const struct sk_buff *skb) 4880 { 4881 return skb_shinfo(skb)->gso_size; 4882 } 4883 4884 /* Note: Should be called only if skb_is_gso(skb) is true */ 4885 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4886 { 4887 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4888 } 4889 4890 /* Note: Should be called only if skb_is_gso(skb) is true */ 4891 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4892 { 4893 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4894 } 4895 4896 /* Note: Should be called only if skb_is_gso(skb) is true */ 4897 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4898 { 4899 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4900 } 4901 4902 static inline void skb_gso_reset(struct sk_buff *skb) 4903 { 4904 skb_shinfo(skb)->gso_size = 0; 4905 skb_shinfo(skb)->gso_segs = 0; 4906 skb_shinfo(skb)->gso_type = 0; 4907 } 4908 4909 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4910 u16 increment) 4911 { 4912 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4913 return; 4914 shinfo->gso_size += increment; 4915 } 4916 4917 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4918 u16 decrement) 4919 { 4920 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4921 return; 4922 shinfo->gso_size -= decrement; 4923 } 4924 4925 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4926 4927 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4928 { 4929 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4930 * wanted then gso_type will be set. */ 4931 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4932 4933 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4934 unlikely(shinfo->gso_type == 0)) { 4935 __skb_warn_lro_forwarding(skb); 4936 return true; 4937 } 4938 return false; 4939 } 4940 4941 static inline void skb_forward_csum(struct sk_buff *skb) 4942 { 4943 /* Unfortunately we don't support this one. Any brave souls? */ 4944 if (skb->ip_summed == CHECKSUM_COMPLETE) 4945 skb->ip_summed = CHECKSUM_NONE; 4946 } 4947 4948 /** 4949 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4950 * @skb: skb to check 4951 * 4952 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4953 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4954 * use this helper, to document places where we make this assertion. 4955 */ 4956 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4957 { 4958 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 4959 } 4960 4961 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4962 4963 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4964 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4965 unsigned int transport_len, 4966 __sum16(*skb_chkf)(struct sk_buff *skb)); 4967 4968 /** 4969 * skb_head_is_locked - Determine if the skb->head is locked down 4970 * @skb: skb to check 4971 * 4972 * The head on skbs build around a head frag can be removed if they are 4973 * not cloned. This function returns true if the skb head is locked down 4974 * due to either being allocated via kmalloc, or by being a clone with 4975 * multiple references to the head. 4976 */ 4977 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4978 { 4979 return !skb->head_frag || skb_cloned(skb); 4980 } 4981 4982 /* Local Checksum Offload. 4983 * Compute outer checksum based on the assumption that the 4984 * inner checksum will be offloaded later. 4985 * See Documentation/networking/checksum-offloads.rst for 4986 * explanation of how this works. 4987 * Fill in outer checksum adjustment (e.g. with sum of outer 4988 * pseudo-header) before calling. 4989 * Also ensure that inner checksum is in linear data area. 4990 */ 4991 static inline __wsum lco_csum(struct sk_buff *skb) 4992 { 4993 unsigned char *csum_start = skb_checksum_start(skb); 4994 unsigned char *l4_hdr = skb_transport_header(skb); 4995 __wsum partial; 4996 4997 /* Start with complement of inner checksum adjustment */ 4998 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4999 skb->csum_offset)); 5000 5001 /* Add in checksum of our headers (incl. outer checksum 5002 * adjustment filled in by caller) and return result. 5003 */ 5004 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5005 } 5006 5007 static inline bool skb_is_redirected(const struct sk_buff *skb) 5008 { 5009 return skb->redirected; 5010 } 5011 5012 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5013 { 5014 skb->redirected = 1; 5015 #ifdef CONFIG_NET_REDIRECT 5016 skb->from_ingress = from_ingress; 5017 if (skb->from_ingress) 5018 skb_clear_tstamp(skb); 5019 #endif 5020 } 5021 5022 static inline void skb_reset_redirect(struct sk_buff *skb) 5023 { 5024 skb->redirected = 0; 5025 } 5026 5027 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5028 { 5029 return skb->csum_not_inet; 5030 } 5031 5032 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5033 const u64 kcov_handle) 5034 { 5035 #ifdef CONFIG_KCOV 5036 skb->kcov_handle = kcov_handle; 5037 #endif 5038 } 5039 5040 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5041 { 5042 #ifdef CONFIG_KCOV 5043 return skb->kcov_handle; 5044 #else 5045 return 0; 5046 #endif 5047 } 5048 5049 #ifdef CONFIG_PAGE_POOL 5050 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5051 { 5052 skb->pp_recycle = 1; 5053 } 5054 #endif 5055 5056 #endif /* __KERNEL__ */ 5057 #endif /* _LINUX_SKBUFF_H */ 5058