xref: /linux-6.15/include/linux/skbuff.h (revision 145df2fd)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46 #include <net/dropreason.h>
47 
48 /**
49  * DOC: skb checksums
50  *
51  * The interface for checksum offload between the stack and networking drivers
52  * is as follows...
53  *
54  * IP checksum related features
55  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56  *
57  * Drivers advertise checksum offload capabilities in the features of a device.
58  * From the stack's point of view these are capabilities offered by the driver.
59  * A driver typically only advertises features that it is capable of offloading
60  * to its device.
61  *
62  * .. flat-table:: Checksum related device features
63  *   :widths: 1 10
64  *
65  *   * - %NETIF_F_HW_CSUM
66  *     - The driver (or its device) is able to compute one
67  *	 IP (one's complement) checksum for any combination
68  *	 of protocols or protocol layering. The checksum is
69  *	 computed and set in a packet per the CHECKSUM_PARTIAL
70  *	 interface (see below).
71  *
72  *   * - %NETIF_F_IP_CSUM
73  *     - Driver (device) is only able to checksum plain
74  *	 TCP or UDP packets over IPv4. These are specifically
75  *	 unencapsulated packets of the form IPv4|TCP or
76  *	 IPv4|UDP where the Protocol field in the IPv4 header
77  *	 is TCP or UDP. The IPv4 header may contain IP options.
78  *	 This feature cannot be set in features for a device
79  *	 with NETIF_F_HW_CSUM also set. This feature is being
80  *	 DEPRECATED (see below).
81  *
82  *   * - %NETIF_F_IPV6_CSUM
83  *     - Driver (device) is only able to checksum plain
84  *	 TCP or UDP packets over IPv6. These are specifically
85  *	 unencapsulated packets of the form IPv6|TCP or
86  *	 IPv6|UDP where the Next Header field in the IPv6
87  *	 header is either TCP or UDP. IPv6 extension headers
88  *	 are not supported with this feature. This feature
89  *	 cannot be set in features for a device with
90  *	 NETIF_F_HW_CSUM also set. This feature is being
91  *	 DEPRECATED (see below).
92  *
93  *   * - %NETIF_F_RXCSUM
94  *     - Driver (device) performs receive checksum offload.
95  *	 This flag is only used to disable the RX checksum
96  *	 feature for a device. The stack will accept receive
97  *	 checksum indication in packets received on a device
98  *	 regardless of whether NETIF_F_RXCSUM is set.
99  *
100  * Checksumming of received packets by device
101  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
102  *
103  * Indication of checksum verification is set in &sk_buff.ip_summed.
104  * Possible values are:
105  *
106  * - %CHECKSUM_NONE
107  *
108  *   Device did not checksum this packet e.g. due to lack of capabilities.
109  *   The packet contains full (though not verified) checksum in packet but
110  *   not in skb->csum. Thus, skb->csum is undefined in this case.
111  *
112  * - %CHECKSUM_UNNECESSARY
113  *
114  *   The hardware you're dealing with doesn't calculate the full checksum
115  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
116  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
117  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
118  *   though. A driver or device must never modify the checksum field in the
119  *   packet even if checksum is verified.
120  *
121  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
122  *
123  *     - TCP: IPv6 and IPv4.
124  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
125  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
126  *       may perform further validation in this case.
127  *     - GRE: only if the checksum is present in the header.
128  *     - SCTP: indicates the CRC in SCTP header has been validated.
129  *     - FCOE: indicates the CRC in FC frame has been validated.
130  *
131  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
132  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
133  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
134  *   and a device is able to verify the checksums for UDP (possibly zero),
135  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
136  *   two. If the device were only able to verify the UDP checksum and not
137  *   GRE, either because it doesn't support GRE checksum or because GRE
138  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
139  *   not considered in this case).
140  *
141  * - %CHECKSUM_COMPLETE
142  *
143  *   This is the most generic way. The device supplied checksum of the _whole_
144  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
145  *   hardware doesn't need to parse L3/L4 headers to implement this.
146  *
147  *   Notes:
148  *
149  *   - Even if device supports only some protocols, but is able to produce
150  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
151  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
152  *
153  * - %CHECKSUM_PARTIAL
154  *
155  *   A checksum is set up to be offloaded to a device as described in the
156  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
157  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
158  *   on the same host, or it may be set in the input path in GRO or remote
159  *   checksum offload. For the purposes of checksum verification, the checksum
160  *   referred to by skb->csum_start + skb->csum_offset and any preceding
161  *   checksums in the packet are considered verified. Any checksums in the
162  *   packet that are after the checksum being offloaded are not considered to
163  *   be verified.
164  *
165  * Checksumming on transmit for non-GSO
166  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
167  *
168  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
169  * Values are:
170  *
171  * - %CHECKSUM_PARTIAL
172  *
173  *   The driver is required to checksum the packet as seen by hard_start_xmit()
174  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
175  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
176  *   A driver may verify that the
177  *   csum_start and csum_offset values are valid values given the length and
178  *   offset of the packet, but it should not attempt to validate that the
179  *   checksum refers to a legitimate transport layer checksum -- it is the
180  *   purview of the stack to validate that csum_start and csum_offset are set
181  *   correctly.
182  *
183  *   When the stack requests checksum offload for a packet, the driver MUST
184  *   ensure that the checksum is set correctly. A driver can either offload the
185  *   checksum calculation to the device, or call skb_checksum_help (in the case
186  *   that the device does not support offload for a particular checksum).
187  *
188  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
189  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
190  *   checksum offload capability.
191  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
192  *   on network device checksumming capabilities: if a packet does not match
193  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
194  *   &sk_buff.csum_not_inet, see :ref:`crc`)
195  *   is called to resolve the checksum.
196  *
197  * - %CHECKSUM_NONE
198  *
199  *   The skb was already checksummed by the protocol, or a checksum is not
200  *   required.
201  *
202  * - %CHECKSUM_UNNECESSARY
203  *
204  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
205  *   output.
206  *
207  * - %CHECKSUM_COMPLETE
208  *
209  *   Not used in checksum output. If a driver observes a packet with this value
210  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
211  *
212  * .. _crc:
213  *
214  * Non-IP checksum (CRC) offloads
215  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
216  *
217  * .. flat-table::
218  *   :widths: 1 10
219  *
220  *   * - %NETIF_F_SCTP_CRC
221  *     - This feature indicates that a device is capable of
222  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
223  *	 will set csum_start and csum_offset accordingly, set ip_summed to
224  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
225  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
226  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
227  *	 must verify which offload is configured for a packet by testing the
228  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
229  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
230  *
231  *   * - %NETIF_F_FCOE_CRC
232  *     - This feature indicates that a device is capable of offloading the FCOE
233  *	 CRC in a packet. To perform this offload the stack will set ip_summed
234  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
235  *	 accordingly. Note that there is no indication in the skbuff that the
236  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
237  *	 both IP checksum offload and FCOE CRC offload must verify which offload
238  *	 is configured for a packet, presumably by inspecting packet headers.
239  *
240  * Checksumming on output with GSO
241  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
242  *
243  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
244  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
245  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
246  * part of the GSO operation is implied. If a checksum is being offloaded
247  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
248  * csum_offset are set to refer to the outermost checksum being offloaded
249  * (two offloaded checksums are possible with UDP encapsulation).
250  */
251 
252 /* Don't change this without changing skb_csum_unnecessary! */
253 #define CHECKSUM_NONE		0
254 #define CHECKSUM_UNNECESSARY	1
255 #define CHECKSUM_COMPLETE	2
256 #define CHECKSUM_PARTIAL	3
257 
258 /* Maximum value in skb->csum_level */
259 #define SKB_MAX_CSUM_LEVEL	3
260 
261 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
262 #define SKB_WITH_OVERHEAD(X)	\
263 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264 #define SKB_MAX_ORDER(X, ORDER) \
265 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
266 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
267 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
268 
269 /* return minimum truesize of one skb containing X bytes of data */
270 #define SKB_TRUESIZE(X) ((X) +						\
271 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
272 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
273 
274 struct ahash_request;
275 struct net_device;
276 struct scatterlist;
277 struct pipe_inode_info;
278 struct iov_iter;
279 struct napi_struct;
280 struct bpf_prog;
281 union bpf_attr;
282 struct skb_ext;
283 
284 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
285 struct nf_bridge_info {
286 	enum {
287 		BRNF_PROTO_UNCHANGED,
288 		BRNF_PROTO_8021Q,
289 		BRNF_PROTO_PPPOE
290 	} orig_proto:8;
291 	u8			pkt_otherhost:1;
292 	u8			in_prerouting:1;
293 	u8			bridged_dnat:1;
294 	__u16			frag_max_size;
295 	struct net_device	*physindev;
296 
297 	/* always valid & non-NULL from FORWARD on, for physdev match */
298 	struct net_device	*physoutdev;
299 	union {
300 		/* prerouting: detect dnat in orig/reply direction */
301 		__be32          ipv4_daddr;
302 		struct in6_addr ipv6_daddr;
303 
304 		/* after prerouting + nat detected: store original source
305 		 * mac since neigh resolution overwrites it, only used while
306 		 * skb is out in neigh layer.
307 		 */
308 		char neigh_header[8];
309 	};
310 };
311 #endif
312 
313 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
314 /* Chain in tc_skb_ext will be used to share the tc chain with
315  * ovs recirc_id. It will be set to the current chain by tc
316  * and read by ovs to recirc_id.
317  */
318 struct tc_skb_ext {
319 	__u32 chain;
320 	__u16 mru;
321 	__u16 zone;
322 	u8 post_ct:1;
323 	u8 post_ct_snat:1;
324 	u8 post_ct_dnat:1;
325 };
326 #endif
327 
328 struct sk_buff_head {
329 	/* These two members must be first to match sk_buff. */
330 	struct_group_tagged(sk_buff_list, list,
331 		struct sk_buff	*next;
332 		struct sk_buff	*prev;
333 	);
334 
335 	__u32		qlen;
336 	spinlock_t	lock;
337 };
338 
339 struct sk_buff;
340 
341 /* To allow 64K frame to be packed as single skb without frag_list we
342  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
343  * buffers which do not start on a page boundary.
344  *
345  * Since GRO uses frags we allocate at least 16 regardless of page
346  * size.
347  */
348 #if (65536/PAGE_SIZE + 1) < 16
349 #define MAX_SKB_FRAGS 16UL
350 #else
351 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
352 #endif
353 extern int sysctl_max_skb_frags;
354 
355 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
356  * segment using its current segmentation instead.
357  */
358 #define GSO_BY_FRAGS	0xFFFF
359 
360 typedef struct bio_vec skb_frag_t;
361 
362 /**
363  * skb_frag_size() - Returns the size of a skb fragment
364  * @frag: skb fragment
365  */
366 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
367 {
368 	return frag->bv_len;
369 }
370 
371 /**
372  * skb_frag_size_set() - Sets the size of a skb fragment
373  * @frag: skb fragment
374  * @size: size of fragment
375  */
376 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
377 {
378 	frag->bv_len = size;
379 }
380 
381 /**
382  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
383  * @frag: skb fragment
384  * @delta: value to add
385  */
386 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
387 {
388 	frag->bv_len += delta;
389 }
390 
391 /**
392  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
393  * @frag: skb fragment
394  * @delta: value to subtract
395  */
396 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
397 {
398 	frag->bv_len -= delta;
399 }
400 
401 /**
402  * skb_frag_must_loop - Test if %p is a high memory page
403  * @p: fragment's page
404  */
405 static inline bool skb_frag_must_loop(struct page *p)
406 {
407 #if defined(CONFIG_HIGHMEM)
408 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
409 		return true;
410 #endif
411 	return false;
412 }
413 
414 /**
415  *	skb_frag_foreach_page - loop over pages in a fragment
416  *
417  *	@f:		skb frag to operate on
418  *	@f_off:		offset from start of f->bv_page
419  *	@f_len:		length from f_off to loop over
420  *	@p:		(temp var) current page
421  *	@p_off:		(temp var) offset from start of current page,
422  *	                           non-zero only on first page.
423  *	@p_len:		(temp var) length in current page,
424  *				   < PAGE_SIZE only on first and last page.
425  *	@copied:	(temp var) length so far, excluding current p_len.
426  *
427  *	A fragment can hold a compound page, in which case per-page
428  *	operations, notably kmap_atomic, must be called for each
429  *	regular page.
430  */
431 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
432 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
433 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
434 	     p_len = skb_frag_must_loop(p) ?				\
435 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
436 	     copied = 0;						\
437 	     copied < f_len;						\
438 	     copied += p_len, p++, p_off = 0,				\
439 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
440 
441 #define HAVE_HW_TIME_STAMP
442 
443 /**
444  * struct skb_shared_hwtstamps - hardware time stamps
445  * @hwtstamp:		hardware time stamp transformed into duration
446  *			since arbitrary point in time
447  * @netdev_data:	address/cookie of network device driver used as
448  *			reference to actual hardware time stamp
449  *
450  * Software time stamps generated by ktime_get_real() are stored in
451  * skb->tstamp.
452  *
453  * hwtstamps can only be compared against other hwtstamps from
454  * the same device.
455  *
456  * This structure is attached to packets as part of the
457  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458  */
459 struct skb_shared_hwtstamps {
460 	union {
461 		ktime_t	hwtstamp;
462 		void *netdev_data;
463 	};
464 };
465 
466 /* Definitions for tx_flags in struct skb_shared_info */
467 enum {
468 	/* generate hardware time stamp */
469 	SKBTX_HW_TSTAMP = 1 << 0,
470 
471 	/* generate software time stamp when queueing packet to NIC */
472 	SKBTX_SW_TSTAMP = 1 << 1,
473 
474 	/* device driver is going to provide hardware time stamp */
475 	SKBTX_IN_PROGRESS = 1 << 2,
476 
477 	/* generate hardware time stamp based on cycles if supported */
478 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479 
480 	/* generate wifi status information (where possible) */
481 	SKBTX_WIFI_STATUS = 1 << 4,
482 
483 	/* determine hardware time stamp based on time or cycles */
484 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485 
486 	/* generate software time stamp when entering packet scheduling */
487 	SKBTX_SCHED_TSTAMP = 1 << 6,
488 };
489 
490 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
491 				 SKBTX_SCHED_TSTAMP)
492 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
493 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
494 				 SKBTX_ANY_SW_TSTAMP)
495 
496 /* Definitions for flags in struct skb_shared_info */
497 enum {
498 	/* use zcopy routines */
499 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
500 
501 	/* This indicates at least one fragment might be overwritten
502 	 * (as in vmsplice(), sendfile() ...)
503 	 * If we need to compute a TX checksum, we'll need to copy
504 	 * all frags to avoid possible bad checksum
505 	 */
506 	SKBFL_SHARED_FRAG = BIT(1),
507 
508 	/* segment contains only zerocopy data and should not be
509 	 * charged to the kernel memory.
510 	 */
511 	SKBFL_PURE_ZEROCOPY = BIT(2),
512 
513 	SKBFL_DONT_ORPHAN = BIT(3),
514 
515 	/* page references are managed by the ubuf_info, so it's safe to
516 	 * use frags only up until ubuf_info is released
517 	 */
518 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
519 };
520 
521 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
524 
525 /*
526  * The callback notifies userspace to release buffers when skb DMA is done in
527  * lower device, the skb last reference should be 0 when calling this.
528  * The zerocopy_success argument is true if zero copy transmit occurred,
529  * false on data copy or out of memory error caused by data copy attempt.
530  * The ctx field is used to track device context.
531  * The desc field is used to track userspace buffer index.
532  */
533 struct ubuf_info {
534 	void (*callback)(struct sk_buff *, struct ubuf_info *,
535 			 bool zerocopy_success);
536 	refcount_t refcnt;
537 	u8 flags;
538 };
539 
540 struct ubuf_info_msgzc {
541 	struct ubuf_info ubuf;
542 
543 	union {
544 		struct {
545 			unsigned long desc;
546 			void *ctx;
547 		};
548 		struct {
549 			u32 id;
550 			u16 len;
551 			u16 zerocopy:1;
552 			u32 bytelen;
553 		};
554 	};
555 
556 	struct mmpin {
557 		struct user_struct *user;
558 		unsigned int num_pg;
559 	} mmp;
560 };
561 
562 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
563 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
564 					     ubuf)
565 
566 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
567 void mm_unaccount_pinned_pages(struct mmpin *mmp);
568 
569 /* This data is invariant across clones and lives at
570  * the end of the header data, ie. at skb->end.
571  */
572 struct skb_shared_info {
573 	__u8		flags;
574 	__u8		meta_len;
575 	__u8		nr_frags;
576 	__u8		tx_flags;
577 	unsigned short	gso_size;
578 	/* Warning: this field is not always filled in (UFO)! */
579 	unsigned short	gso_segs;
580 	struct sk_buff	*frag_list;
581 	struct skb_shared_hwtstamps hwtstamps;
582 	unsigned int	gso_type;
583 	u32		tskey;
584 
585 	/*
586 	 * Warning : all fields before dataref are cleared in __alloc_skb()
587 	 */
588 	atomic_t	dataref;
589 	unsigned int	xdp_frags_size;
590 
591 	/* Intermediate layers must ensure that destructor_arg
592 	 * remains valid until skb destructor */
593 	void *		destructor_arg;
594 
595 	/* must be last field, see pskb_expand_head() */
596 	skb_frag_t	frags[MAX_SKB_FRAGS];
597 };
598 
599 /**
600  * DOC: dataref and headerless skbs
601  *
602  * Transport layers send out clones of payload skbs they hold for
603  * retransmissions. To allow lower layers of the stack to prepend their headers
604  * we split &skb_shared_info.dataref into two halves.
605  * The lower 16 bits count the overall number of references.
606  * The higher 16 bits indicate how many of the references are payload-only.
607  * skb_header_cloned() checks if skb is allowed to add / write the headers.
608  *
609  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
610  * (via __skb_header_release()). Any clone created from marked skb will get
611  * &sk_buff.hdr_len populated with the available headroom.
612  * If there's the only clone in existence it's able to modify the headroom
613  * at will. The sequence of calls inside the transport layer is::
614  *
615  *  <alloc skb>
616  *  skb_reserve()
617  *  __skb_header_release()
618  *  skb_clone()
619  *  // send the clone down the stack
620  *
621  * This is not a very generic construct and it depends on the transport layers
622  * doing the right thing. In practice there's usually only one payload-only skb.
623  * Having multiple payload-only skbs with different lengths of hdr_len is not
624  * possible. The payload-only skbs should never leave their owner.
625  */
626 #define SKB_DATAREF_SHIFT 16
627 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
628 
629 
630 enum {
631 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
632 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
633 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
634 };
635 
636 enum {
637 	SKB_GSO_TCPV4 = 1 << 0,
638 
639 	/* This indicates the skb is from an untrusted source. */
640 	SKB_GSO_DODGY = 1 << 1,
641 
642 	/* This indicates the tcp segment has CWR set. */
643 	SKB_GSO_TCP_ECN = 1 << 2,
644 
645 	SKB_GSO_TCP_FIXEDID = 1 << 3,
646 
647 	SKB_GSO_TCPV6 = 1 << 4,
648 
649 	SKB_GSO_FCOE = 1 << 5,
650 
651 	SKB_GSO_GRE = 1 << 6,
652 
653 	SKB_GSO_GRE_CSUM = 1 << 7,
654 
655 	SKB_GSO_IPXIP4 = 1 << 8,
656 
657 	SKB_GSO_IPXIP6 = 1 << 9,
658 
659 	SKB_GSO_UDP_TUNNEL = 1 << 10,
660 
661 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
662 
663 	SKB_GSO_PARTIAL = 1 << 12,
664 
665 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
666 
667 	SKB_GSO_SCTP = 1 << 14,
668 
669 	SKB_GSO_ESP = 1 << 15,
670 
671 	SKB_GSO_UDP = 1 << 16,
672 
673 	SKB_GSO_UDP_L4 = 1 << 17,
674 
675 	SKB_GSO_FRAGLIST = 1 << 18,
676 };
677 
678 #if BITS_PER_LONG > 32
679 #define NET_SKBUFF_DATA_USES_OFFSET 1
680 #endif
681 
682 #ifdef NET_SKBUFF_DATA_USES_OFFSET
683 typedef unsigned int sk_buff_data_t;
684 #else
685 typedef unsigned char *sk_buff_data_t;
686 #endif
687 
688 /**
689  * DOC: Basic sk_buff geometry
690  *
691  * struct sk_buff itself is a metadata structure and does not hold any packet
692  * data. All the data is held in associated buffers.
693  *
694  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
695  * into two parts:
696  *
697  *  - data buffer, containing headers and sometimes payload;
698  *    this is the part of the skb operated on by the common helpers
699  *    such as skb_put() or skb_pull();
700  *  - shared info (struct skb_shared_info) which holds an array of pointers
701  *    to read-only data in the (page, offset, length) format.
702  *
703  * Optionally &skb_shared_info.frag_list may point to another skb.
704  *
705  * Basic diagram may look like this::
706  *
707  *                                  ---------------
708  *                                 | sk_buff       |
709  *                                  ---------------
710  *     ,---------------------------  + head
711  *    /          ,-----------------  + data
712  *   /          /      ,-----------  + tail
713  *  |          |      |            , + end
714  *  |          |      |           |
715  *  v          v      v           v
716  *   -----------------------------------------------
717  *  | headroom | data |  tailroom | skb_shared_info |
718  *   -----------------------------------------------
719  *                                 + [page frag]
720  *                                 + [page frag]
721  *                                 + [page frag]
722  *                                 + [page frag]       ---------
723  *                                 + frag_list    --> | sk_buff |
724  *                                                     ---------
725  *
726  */
727 
728 /**
729  *	struct sk_buff - socket buffer
730  *	@next: Next buffer in list
731  *	@prev: Previous buffer in list
732  *	@tstamp: Time we arrived/left
733  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
734  *		for retransmit timer
735  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
736  *	@list: queue head
737  *	@ll_node: anchor in an llist (eg socket defer_list)
738  *	@sk: Socket we are owned by
739  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
740  *		fragmentation management
741  *	@dev: Device we arrived on/are leaving by
742  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
743  *	@cb: Control buffer. Free for use by every layer. Put private vars here
744  *	@_skb_refdst: destination entry (with norefcount bit)
745  *	@sp: the security path, used for xfrm
746  *	@len: Length of actual data
747  *	@data_len: Data length
748  *	@mac_len: Length of link layer header
749  *	@hdr_len: writable header length of cloned skb
750  *	@csum: Checksum (must include start/offset pair)
751  *	@csum_start: Offset from skb->head where checksumming should start
752  *	@csum_offset: Offset from csum_start where checksum should be stored
753  *	@priority: Packet queueing priority
754  *	@ignore_df: allow local fragmentation
755  *	@cloned: Head may be cloned (check refcnt to be sure)
756  *	@ip_summed: Driver fed us an IP checksum
757  *	@nohdr: Payload reference only, must not modify header
758  *	@pkt_type: Packet class
759  *	@fclone: skbuff clone status
760  *	@ipvs_property: skbuff is owned by ipvs
761  *	@inner_protocol_type: whether the inner protocol is
762  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
763  *	@remcsum_offload: remote checksum offload is enabled
764  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
765  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
766  *	@tc_skip_classify: do not classify packet. set by IFB device
767  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
768  *	@redirected: packet was redirected by packet classifier
769  *	@from_ingress: packet was redirected from the ingress path
770  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
771  *	@peeked: this packet has been seen already, so stats have been
772  *		done for it, don't do them again
773  *	@nf_trace: netfilter packet trace flag
774  *	@protocol: Packet protocol from driver
775  *	@destructor: Destruct function
776  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
777  *	@_sk_redir: socket redirection information for skmsg
778  *	@_nfct: Associated connection, if any (with nfctinfo bits)
779  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
780  *	@skb_iif: ifindex of device we arrived on
781  *	@tc_index: Traffic control index
782  *	@hash: the packet hash
783  *	@queue_mapping: Queue mapping for multiqueue devices
784  *	@head_frag: skb was allocated from page fragments,
785  *		not allocated by kmalloc() or vmalloc().
786  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
787  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
788  *		page_pool support on driver)
789  *	@active_extensions: active extensions (skb_ext_id types)
790  *	@ndisc_nodetype: router type (from link layer)
791  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
792  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
793  *		ports.
794  *	@sw_hash: indicates hash was computed in software stack
795  *	@wifi_acked_valid: wifi_acked was set
796  *	@wifi_acked: whether frame was acked on wifi or not
797  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
798  *	@encapsulation: indicates the inner headers in the skbuff are valid
799  *	@encap_hdr_csum: software checksum is needed
800  *	@csum_valid: checksum is already valid
801  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
802  *	@csum_complete_sw: checksum was completed by software
803  *	@csum_level: indicates the number of consecutive checksums found in
804  *		the packet minus one that have been verified as
805  *		CHECKSUM_UNNECESSARY (max 3)
806  *	@scm_io_uring: SKB holds io_uring registered files
807  *	@dst_pending_confirm: need to confirm neighbour
808  *	@decrypted: Decrypted SKB
809  *	@slow_gro: state present at GRO time, slower prepare step required
810  *	@mono_delivery_time: When set, skb->tstamp has the
811  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
812  *		skb->tstamp has the (rcv) timestamp at ingress and
813  *		delivery_time at egress.
814  *	@napi_id: id of the NAPI struct this skb came from
815  *	@sender_cpu: (aka @napi_id) source CPU in XPS
816  *	@alloc_cpu: CPU which did the skb allocation.
817  *	@secmark: security marking
818  *	@mark: Generic packet mark
819  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
820  *		at the tail of an sk_buff
821  *	@vlan_all: vlan fields (proto & tci)
822  *	@vlan_proto: vlan encapsulation protocol
823  *	@vlan_tci: vlan tag control information
824  *	@inner_protocol: Protocol (encapsulation)
825  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
826  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
827  *	@inner_transport_header: Inner transport layer header (encapsulation)
828  *	@inner_network_header: Network layer header (encapsulation)
829  *	@inner_mac_header: Link layer header (encapsulation)
830  *	@transport_header: Transport layer header
831  *	@network_header: Network layer header
832  *	@mac_header: Link layer header
833  *	@kcov_handle: KCOV remote handle for remote coverage collection
834  *	@tail: Tail pointer
835  *	@end: End pointer
836  *	@head: Head of buffer
837  *	@data: Data head pointer
838  *	@truesize: Buffer size
839  *	@users: User count - see {datagram,tcp}.c
840  *	@extensions: allocated extensions, valid if active_extensions is nonzero
841  */
842 
843 struct sk_buff {
844 	union {
845 		struct {
846 			/* These two members must be first to match sk_buff_head. */
847 			struct sk_buff		*next;
848 			struct sk_buff		*prev;
849 
850 			union {
851 				struct net_device	*dev;
852 				/* Some protocols might use this space to store information,
853 				 * while device pointer would be NULL.
854 				 * UDP receive path is one user.
855 				 */
856 				unsigned long		dev_scratch;
857 			};
858 		};
859 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
860 		struct list_head	list;
861 		struct llist_node	ll_node;
862 	};
863 
864 	union {
865 		struct sock		*sk;
866 		int			ip_defrag_offset;
867 	};
868 
869 	union {
870 		ktime_t		tstamp;
871 		u64		skb_mstamp_ns; /* earliest departure time */
872 	};
873 	/*
874 	 * This is the control buffer. It is free to use for every
875 	 * layer. Please put your private variables there. If you
876 	 * want to keep them across layers you have to do a skb_clone()
877 	 * first. This is owned by whoever has the skb queued ATM.
878 	 */
879 	char			cb[48] __aligned(8);
880 
881 	union {
882 		struct {
883 			unsigned long	_skb_refdst;
884 			void		(*destructor)(struct sk_buff *skb);
885 		};
886 		struct list_head	tcp_tsorted_anchor;
887 #ifdef CONFIG_NET_SOCK_MSG
888 		unsigned long		_sk_redir;
889 #endif
890 	};
891 
892 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
893 	unsigned long		 _nfct;
894 #endif
895 	unsigned int		len,
896 				data_len;
897 	__u16			mac_len,
898 				hdr_len;
899 
900 	/* Following fields are _not_ copied in __copy_skb_header()
901 	 * Note that queue_mapping is here mostly to fill a hole.
902 	 */
903 	__u16			queue_mapping;
904 
905 /* if you move cloned around you also must adapt those constants */
906 #ifdef __BIG_ENDIAN_BITFIELD
907 #define CLONED_MASK	(1 << 7)
908 #else
909 #define CLONED_MASK	1
910 #endif
911 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
912 
913 	/* private: */
914 	__u8			__cloned_offset[0];
915 	/* public: */
916 	__u8			cloned:1,
917 				nohdr:1,
918 				fclone:2,
919 				peeked:1,
920 				head_frag:1,
921 				pfmemalloc:1,
922 				pp_recycle:1; /* page_pool recycle indicator */
923 #ifdef CONFIG_SKB_EXTENSIONS
924 	__u8			active_extensions;
925 #endif
926 
927 	/* Fields enclosed in headers group are copied
928 	 * using a single memcpy() in __copy_skb_header()
929 	 */
930 	struct_group(headers,
931 
932 	/* private: */
933 	__u8			__pkt_type_offset[0];
934 	/* public: */
935 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
936 	__u8			ignore_df:1;
937 	__u8			nf_trace:1;
938 	__u8			ip_summed:2;
939 	__u8			ooo_okay:1;
940 
941 	__u8			l4_hash:1;
942 	__u8			sw_hash:1;
943 	__u8			wifi_acked_valid:1;
944 	__u8			wifi_acked:1;
945 	__u8			no_fcs:1;
946 	/* Indicates the inner headers are valid in the skbuff. */
947 	__u8			encapsulation:1;
948 	__u8			encap_hdr_csum:1;
949 	__u8			csum_valid:1;
950 
951 	/* private: */
952 	__u8			__pkt_vlan_present_offset[0];
953 	/* public: */
954 	__u8			remcsum_offload:1;
955 	__u8			csum_complete_sw:1;
956 	__u8			csum_level:2;
957 	__u8			dst_pending_confirm:1;
958 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
959 #ifdef CONFIG_NET_CLS_ACT
960 	__u8			tc_skip_classify:1;
961 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
962 #endif
963 #ifdef CONFIG_IPV6_NDISC_NODETYPE
964 	__u8			ndisc_nodetype:2;
965 #endif
966 
967 	__u8			ipvs_property:1;
968 	__u8			inner_protocol_type:1;
969 #ifdef CONFIG_NET_SWITCHDEV
970 	__u8			offload_fwd_mark:1;
971 	__u8			offload_l3_fwd_mark:1;
972 #endif
973 	__u8			redirected:1;
974 #ifdef CONFIG_NET_REDIRECT
975 	__u8			from_ingress:1;
976 #endif
977 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
978 	__u8			nf_skip_egress:1;
979 #endif
980 #ifdef CONFIG_TLS_DEVICE
981 	__u8			decrypted:1;
982 #endif
983 	__u8			slow_gro:1;
984 	__u8			csum_not_inet:1;
985 	__u8			scm_io_uring:1;
986 
987 #ifdef CONFIG_NET_SCHED
988 	__u16			tc_index;	/* traffic control index */
989 #endif
990 
991 	union {
992 		__wsum		csum;
993 		struct {
994 			__u16	csum_start;
995 			__u16	csum_offset;
996 		};
997 	};
998 	__u32			priority;
999 	int			skb_iif;
1000 	__u32			hash;
1001 	union {
1002 		u32		vlan_all;
1003 		struct {
1004 			__be16	vlan_proto;
1005 			__u16	vlan_tci;
1006 		};
1007 	};
1008 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1009 	union {
1010 		unsigned int	napi_id;
1011 		unsigned int	sender_cpu;
1012 	};
1013 #endif
1014 	u16			alloc_cpu;
1015 #ifdef CONFIG_NETWORK_SECMARK
1016 	__u32		secmark;
1017 #endif
1018 
1019 	union {
1020 		__u32		mark;
1021 		__u32		reserved_tailroom;
1022 	};
1023 
1024 	union {
1025 		__be16		inner_protocol;
1026 		__u8		inner_ipproto;
1027 	};
1028 
1029 	__u16			inner_transport_header;
1030 	__u16			inner_network_header;
1031 	__u16			inner_mac_header;
1032 
1033 	__be16			protocol;
1034 	__u16			transport_header;
1035 	__u16			network_header;
1036 	__u16			mac_header;
1037 
1038 #ifdef CONFIG_KCOV
1039 	u64			kcov_handle;
1040 #endif
1041 
1042 	); /* end headers group */
1043 
1044 	/* These elements must be at the end, see alloc_skb() for details.  */
1045 	sk_buff_data_t		tail;
1046 	sk_buff_data_t		end;
1047 	unsigned char		*head,
1048 				*data;
1049 	unsigned int		truesize;
1050 	refcount_t		users;
1051 
1052 #ifdef CONFIG_SKB_EXTENSIONS
1053 	/* only useable after checking ->active_extensions != 0 */
1054 	struct skb_ext		*extensions;
1055 #endif
1056 };
1057 
1058 /* if you move pkt_type around you also must adapt those constants */
1059 #ifdef __BIG_ENDIAN_BITFIELD
1060 #define PKT_TYPE_MAX	(7 << 5)
1061 #else
1062 #define PKT_TYPE_MAX	7
1063 #endif
1064 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1065 
1066 /* if you move tc_at_ingress or mono_delivery_time
1067  * around, you also must adapt these constants.
1068  */
1069 #ifdef __BIG_ENDIAN_BITFIELD
1070 #define TC_AT_INGRESS_MASK		(1 << 0)
1071 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1072 #else
1073 #define TC_AT_INGRESS_MASK		(1 << 7)
1074 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1075 #endif
1076 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1077 
1078 #ifdef __KERNEL__
1079 /*
1080  *	Handling routines are only of interest to the kernel
1081  */
1082 
1083 #define SKB_ALLOC_FCLONE	0x01
1084 #define SKB_ALLOC_RX		0x02
1085 #define SKB_ALLOC_NAPI		0x04
1086 
1087 /**
1088  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1089  * @skb: buffer
1090  */
1091 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1092 {
1093 	return unlikely(skb->pfmemalloc);
1094 }
1095 
1096 /*
1097  * skb might have a dst pointer attached, refcounted or not.
1098  * _skb_refdst low order bit is set if refcount was _not_ taken
1099  */
1100 #define SKB_DST_NOREF	1UL
1101 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1102 
1103 /**
1104  * skb_dst - returns skb dst_entry
1105  * @skb: buffer
1106  *
1107  * Returns skb dst_entry, regardless of reference taken or not.
1108  */
1109 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1110 {
1111 	/* If refdst was not refcounted, check we still are in a
1112 	 * rcu_read_lock section
1113 	 */
1114 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1115 		!rcu_read_lock_held() &&
1116 		!rcu_read_lock_bh_held());
1117 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1118 }
1119 
1120 /**
1121  * skb_dst_set - sets skb dst
1122  * @skb: buffer
1123  * @dst: dst entry
1124  *
1125  * Sets skb dst, assuming a reference was taken on dst and should
1126  * be released by skb_dst_drop()
1127  */
1128 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1129 {
1130 	skb->slow_gro |= !!dst;
1131 	skb->_skb_refdst = (unsigned long)dst;
1132 }
1133 
1134 /**
1135  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1136  * @skb: buffer
1137  * @dst: dst entry
1138  *
1139  * Sets skb dst, assuming a reference was not taken on dst.
1140  * If dst entry is cached, we do not take reference and dst_release
1141  * will be avoided by refdst_drop. If dst entry is not cached, we take
1142  * reference, so that last dst_release can destroy the dst immediately.
1143  */
1144 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1145 {
1146 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1147 	skb->slow_gro |= !!dst;
1148 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1149 }
1150 
1151 /**
1152  * skb_dst_is_noref - Test if skb dst isn't refcounted
1153  * @skb: buffer
1154  */
1155 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1156 {
1157 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1158 }
1159 
1160 /**
1161  * skb_rtable - Returns the skb &rtable
1162  * @skb: buffer
1163  */
1164 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1165 {
1166 	return (struct rtable *)skb_dst(skb);
1167 }
1168 
1169 /* For mangling skb->pkt_type from user space side from applications
1170  * such as nft, tc, etc, we only allow a conservative subset of
1171  * possible pkt_types to be set.
1172 */
1173 static inline bool skb_pkt_type_ok(u32 ptype)
1174 {
1175 	return ptype <= PACKET_OTHERHOST;
1176 }
1177 
1178 /**
1179  * skb_napi_id - Returns the skb's NAPI id
1180  * @skb: buffer
1181  */
1182 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1183 {
1184 #ifdef CONFIG_NET_RX_BUSY_POLL
1185 	return skb->napi_id;
1186 #else
1187 	return 0;
1188 #endif
1189 }
1190 
1191 /**
1192  * skb_unref - decrement the skb's reference count
1193  * @skb: buffer
1194  *
1195  * Returns true if we can free the skb.
1196  */
1197 static inline bool skb_unref(struct sk_buff *skb)
1198 {
1199 	if (unlikely(!skb))
1200 		return false;
1201 	if (likely(refcount_read(&skb->users) == 1))
1202 		smp_rmb();
1203 	else if (likely(!refcount_dec_and_test(&skb->users)))
1204 		return false;
1205 
1206 	return true;
1207 }
1208 
1209 void __fix_address
1210 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1211 
1212 /**
1213  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1214  *	@skb: buffer to free
1215  */
1216 static inline void kfree_skb(struct sk_buff *skb)
1217 {
1218 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1219 }
1220 
1221 void skb_release_head_state(struct sk_buff *skb);
1222 void kfree_skb_list_reason(struct sk_buff *segs,
1223 			   enum skb_drop_reason reason);
1224 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1225 void skb_tx_error(struct sk_buff *skb);
1226 
1227 static inline void kfree_skb_list(struct sk_buff *segs)
1228 {
1229 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1230 }
1231 
1232 #ifdef CONFIG_TRACEPOINTS
1233 void consume_skb(struct sk_buff *skb);
1234 #else
1235 static inline void consume_skb(struct sk_buff *skb)
1236 {
1237 	return kfree_skb(skb);
1238 }
1239 #endif
1240 
1241 void __consume_stateless_skb(struct sk_buff *skb);
1242 void  __kfree_skb(struct sk_buff *skb);
1243 extern struct kmem_cache *skbuff_head_cache;
1244 
1245 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1246 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1247 		      bool *fragstolen, int *delta_truesize);
1248 
1249 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1250 			    int node);
1251 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1252 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1253 struct sk_buff *build_skb_around(struct sk_buff *skb,
1254 				 void *data, unsigned int frag_size);
1255 void skb_attempt_defer_free(struct sk_buff *skb);
1256 
1257 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1258 struct sk_buff *slab_build_skb(void *data);
1259 
1260 /**
1261  * alloc_skb - allocate a network buffer
1262  * @size: size to allocate
1263  * @priority: allocation mask
1264  *
1265  * This function is a convenient wrapper around __alloc_skb().
1266  */
1267 static inline struct sk_buff *alloc_skb(unsigned int size,
1268 					gfp_t priority)
1269 {
1270 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1271 }
1272 
1273 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1274 				     unsigned long data_len,
1275 				     int max_page_order,
1276 				     int *errcode,
1277 				     gfp_t gfp_mask);
1278 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1279 
1280 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1281 struct sk_buff_fclones {
1282 	struct sk_buff	skb1;
1283 
1284 	struct sk_buff	skb2;
1285 
1286 	refcount_t	fclone_ref;
1287 };
1288 
1289 /**
1290  *	skb_fclone_busy - check if fclone is busy
1291  *	@sk: socket
1292  *	@skb: buffer
1293  *
1294  * Returns true if skb is a fast clone, and its clone is not freed.
1295  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1296  * so we also check that this didnt happen.
1297  */
1298 static inline bool skb_fclone_busy(const struct sock *sk,
1299 				   const struct sk_buff *skb)
1300 {
1301 	const struct sk_buff_fclones *fclones;
1302 
1303 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1304 
1305 	return skb->fclone == SKB_FCLONE_ORIG &&
1306 	       refcount_read(&fclones->fclone_ref) > 1 &&
1307 	       READ_ONCE(fclones->skb2.sk) == sk;
1308 }
1309 
1310 /**
1311  * alloc_skb_fclone - allocate a network buffer from fclone cache
1312  * @size: size to allocate
1313  * @priority: allocation mask
1314  *
1315  * This function is a convenient wrapper around __alloc_skb().
1316  */
1317 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1318 					       gfp_t priority)
1319 {
1320 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1321 }
1322 
1323 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1324 void skb_headers_offset_update(struct sk_buff *skb, int off);
1325 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1326 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1327 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1328 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1329 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1330 				   gfp_t gfp_mask, bool fclone);
1331 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1332 					  gfp_t gfp_mask)
1333 {
1334 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1335 }
1336 
1337 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1338 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1339 				     unsigned int headroom);
1340 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1341 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1342 				int newtailroom, gfp_t priority);
1343 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1344 				     int offset, int len);
1345 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1346 			      int offset, int len);
1347 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1348 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1349 
1350 /**
1351  *	skb_pad			-	zero pad the tail of an skb
1352  *	@skb: buffer to pad
1353  *	@pad: space to pad
1354  *
1355  *	Ensure that a buffer is followed by a padding area that is zero
1356  *	filled. Used by network drivers which may DMA or transfer data
1357  *	beyond the buffer end onto the wire.
1358  *
1359  *	May return error in out of memory cases. The skb is freed on error.
1360  */
1361 static inline int skb_pad(struct sk_buff *skb, int pad)
1362 {
1363 	return __skb_pad(skb, pad, true);
1364 }
1365 #define dev_kfree_skb(a)	consume_skb(a)
1366 
1367 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1368 			 int offset, size_t size);
1369 
1370 struct skb_seq_state {
1371 	__u32		lower_offset;
1372 	__u32		upper_offset;
1373 	__u32		frag_idx;
1374 	__u32		stepped_offset;
1375 	struct sk_buff	*root_skb;
1376 	struct sk_buff	*cur_skb;
1377 	__u8		*frag_data;
1378 	__u32		frag_off;
1379 };
1380 
1381 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1382 			  unsigned int to, struct skb_seq_state *st);
1383 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1384 			  struct skb_seq_state *st);
1385 void skb_abort_seq_read(struct skb_seq_state *st);
1386 
1387 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1388 			   unsigned int to, struct ts_config *config);
1389 
1390 /*
1391  * Packet hash types specify the type of hash in skb_set_hash.
1392  *
1393  * Hash types refer to the protocol layer addresses which are used to
1394  * construct a packet's hash. The hashes are used to differentiate or identify
1395  * flows of the protocol layer for the hash type. Hash types are either
1396  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1397  *
1398  * Properties of hashes:
1399  *
1400  * 1) Two packets in different flows have different hash values
1401  * 2) Two packets in the same flow should have the same hash value
1402  *
1403  * A hash at a higher layer is considered to be more specific. A driver should
1404  * set the most specific hash possible.
1405  *
1406  * A driver cannot indicate a more specific hash than the layer at which a hash
1407  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1408  *
1409  * A driver may indicate a hash level which is less specific than the
1410  * actual layer the hash was computed on. For instance, a hash computed
1411  * at L4 may be considered an L3 hash. This should only be done if the
1412  * driver can't unambiguously determine that the HW computed the hash at
1413  * the higher layer. Note that the "should" in the second property above
1414  * permits this.
1415  */
1416 enum pkt_hash_types {
1417 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1418 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1419 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1420 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1421 };
1422 
1423 static inline void skb_clear_hash(struct sk_buff *skb)
1424 {
1425 	skb->hash = 0;
1426 	skb->sw_hash = 0;
1427 	skb->l4_hash = 0;
1428 }
1429 
1430 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1431 {
1432 	if (!skb->l4_hash)
1433 		skb_clear_hash(skb);
1434 }
1435 
1436 static inline void
1437 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1438 {
1439 	skb->l4_hash = is_l4;
1440 	skb->sw_hash = is_sw;
1441 	skb->hash = hash;
1442 }
1443 
1444 static inline void
1445 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1446 {
1447 	/* Used by drivers to set hash from HW */
1448 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1449 }
1450 
1451 static inline void
1452 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1453 {
1454 	__skb_set_hash(skb, hash, true, is_l4);
1455 }
1456 
1457 void __skb_get_hash(struct sk_buff *skb);
1458 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1459 u32 skb_get_poff(const struct sk_buff *skb);
1460 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1461 		   const struct flow_keys_basic *keys, int hlen);
1462 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1463 			    const void *data, int hlen_proto);
1464 
1465 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1466 					int thoff, u8 ip_proto)
1467 {
1468 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1469 }
1470 
1471 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1472 			     const struct flow_dissector_key *key,
1473 			     unsigned int key_count);
1474 
1475 struct bpf_flow_dissector;
1476 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1477 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1478 
1479 bool __skb_flow_dissect(const struct net *net,
1480 			const struct sk_buff *skb,
1481 			struct flow_dissector *flow_dissector,
1482 			void *target_container, const void *data,
1483 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1484 
1485 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1486 				    struct flow_dissector *flow_dissector,
1487 				    void *target_container, unsigned int flags)
1488 {
1489 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1490 				  target_container, NULL, 0, 0, 0, flags);
1491 }
1492 
1493 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1494 					      struct flow_keys *flow,
1495 					      unsigned int flags)
1496 {
1497 	memset(flow, 0, sizeof(*flow));
1498 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1499 				  flow, NULL, 0, 0, 0, flags);
1500 }
1501 
1502 static inline bool
1503 skb_flow_dissect_flow_keys_basic(const struct net *net,
1504 				 const struct sk_buff *skb,
1505 				 struct flow_keys_basic *flow,
1506 				 const void *data, __be16 proto,
1507 				 int nhoff, int hlen, unsigned int flags)
1508 {
1509 	memset(flow, 0, sizeof(*flow));
1510 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1511 				  data, proto, nhoff, hlen, flags);
1512 }
1513 
1514 void skb_flow_dissect_meta(const struct sk_buff *skb,
1515 			   struct flow_dissector *flow_dissector,
1516 			   void *target_container);
1517 
1518 /* Gets a skb connection tracking info, ctinfo map should be a
1519  * map of mapsize to translate enum ip_conntrack_info states
1520  * to user states.
1521  */
1522 void
1523 skb_flow_dissect_ct(const struct sk_buff *skb,
1524 		    struct flow_dissector *flow_dissector,
1525 		    void *target_container,
1526 		    u16 *ctinfo_map, size_t mapsize,
1527 		    bool post_ct, u16 zone);
1528 void
1529 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1530 			     struct flow_dissector *flow_dissector,
1531 			     void *target_container);
1532 
1533 void skb_flow_dissect_hash(const struct sk_buff *skb,
1534 			   struct flow_dissector *flow_dissector,
1535 			   void *target_container);
1536 
1537 static inline __u32 skb_get_hash(struct sk_buff *skb)
1538 {
1539 	if (!skb->l4_hash && !skb->sw_hash)
1540 		__skb_get_hash(skb);
1541 
1542 	return skb->hash;
1543 }
1544 
1545 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1546 {
1547 	if (!skb->l4_hash && !skb->sw_hash) {
1548 		struct flow_keys keys;
1549 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1550 
1551 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1552 	}
1553 
1554 	return skb->hash;
1555 }
1556 
1557 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1558 			   const siphash_key_t *perturb);
1559 
1560 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1561 {
1562 	return skb->hash;
1563 }
1564 
1565 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1566 {
1567 	to->hash = from->hash;
1568 	to->sw_hash = from->sw_hash;
1569 	to->l4_hash = from->l4_hash;
1570 };
1571 
1572 static inline void skb_copy_decrypted(struct sk_buff *to,
1573 				      const struct sk_buff *from)
1574 {
1575 #ifdef CONFIG_TLS_DEVICE
1576 	to->decrypted = from->decrypted;
1577 #endif
1578 }
1579 
1580 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1581 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1582 {
1583 	return skb->head + skb->end;
1584 }
1585 
1586 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1587 {
1588 	return skb->end;
1589 }
1590 
1591 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1592 {
1593 	skb->end = offset;
1594 }
1595 #else
1596 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1597 {
1598 	return skb->end;
1599 }
1600 
1601 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1602 {
1603 	return skb->end - skb->head;
1604 }
1605 
1606 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1607 {
1608 	skb->end = skb->head + offset;
1609 }
1610 #endif
1611 
1612 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1613 				       struct ubuf_info *uarg);
1614 
1615 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1616 
1617 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1618 			   bool success);
1619 
1620 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1621 			    struct sk_buff *skb, struct iov_iter *from,
1622 			    size_t length);
1623 
1624 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1625 					  struct msghdr *msg, int len)
1626 {
1627 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1628 }
1629 
1630 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1631 			     struct msghdr *msg, int len,
1632 			     struct ubuf_info *uarg);
1633 
1634 /* Internal */
1635 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1636 
1637 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1638 {
1639 	return &skb_shinfo(skb)->hwtstamps;
1640 }
1641 
1642 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1643 {
1644 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1645 
1646 	return is_zcopy ? skb_uarg(skb) : NULL;
1647 }
1648 
1649 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1650 {
1651 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1652 }
1653 
1654 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1655 {
1656 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1657 }
1658 
1659 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1660 				       const struct sk_buff *skb2)
1661 {
1662 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1663 }
1664 
1665 static inline void net_zcopy_get(struct ubuf_info *uarg)
1666 {
1667 	refcount_inc(&uarg->refcnt);
1668 }
1669 
1670 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1671 {
1672 	skb_shinfo(skb)->destructor_arg = uarg;
1673 	skb_shinfo(skb)->flags |= uarg->flags;
1674 }
1675 
1676 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1677 				 bool *have_ref)
1678 {
1679 	if (skb && uarg && !skb_zcopy(skb)) {
1680 		if (unlikely(have_ref && *have_ref))
1681 			*have_ref = false;
1682 		else
1683 			net_zcopy_get(uarg);
1684 		skb_zcopy_init(skb, uarg);
1685 	}
1686 }
1687 
1688 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1689 {
1690 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1691 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1692 }
1693 
1694 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1695 {
1696 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1697 }
1698 
1699 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1700 {
1701 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1702 }
1703 
1704 static inline void net_zcopy_put(struct ubuf_info *uarg)
1705 {
1706 	if (uarg)
1707 		uarg->callback(NULL, uarg, true);
1708 }
1709 
1710 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1711 {
1712 	if (uarg) {
1713 		if (uarg->callback == msg_zerocopy_callback)
1714 			msg_zerocopy_put_abort(uarg, have_uref);
1715 		else if (have_uref)
1716 			net_zcopy_put(uarg);
1717 	}
1718 }
1719 
1720 /* Release a reference on a zerocopy structure */
1721 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1722 {
1723 	struct ubuf_info *uarg = skb_zcopy(skb);
1724 
1725 	if (uarg) {
1726 		if (!skb_zcopy_is_nouarg(skb))
1727 			uarg->callback(skb, uarg, zerocopy_success);
1728 
1729 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1730 	}
1731 }
1732 
1733 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1734 
1735 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1736 {
1737 	if (unlikely(skb_zcopy_managed(skb)))
1738 		__skb_zcopy_downgrade_managed(skb);
1739 }
1740 
1741 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1742 {
1743 	skb->next = NULL;
1744 }
1745 
1746 /* Iterate through singly-linked GSO fragments of an skb. */
1747 #define skb_list_walk_safe(first, skb, next_skb)                               \
1748 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1749 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1750 
1751 static inline void skb_list_del_init(struct sk_buff *skb)
1752 {
1753 	__list_del_entry(&skb->list);
1754 	skb_mark_not_on_list(skb);
1755 }
1756 
1757 /**
1758  *	skb_queue_empty - check if a queue is empty
1759  *	@list: queue head
1760  *
1761  *	Returns true if the queue is empty, false otherwise.
1762  */
1763 static inline int skb_queue_empty(const struct sk_buff_head *list)
1764 {
1765 	return list->next == (const struct sk_buff *) list;
1766 }
1767 
1768 /**
1769  *	skb_queue_empty_lockless - check if a queue is empty
1770  *	@list: queue head
1771  *
1772  *	Returns true if the queue is empty, false otherwise.
1773  *	This variant can be used in lockless contexts.
1774  */
1775 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1776 {
1777 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1778 }
1779 
1780 
1781 /**
1782  *	skb_queue_is_last - check if skb is the last entry in the queue
1783  *	@list: queue head
1784  *	@skb: buffer
1785  *
1786  *	Returns true if @skb is the last buffer on the list.
1787  */
1788 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1789 				     const struct sk_buff *skb)
1790 {
1791 	return skb->next == (const struct sk_buff *) list;
1792 }
1793 
1794 /**
1795  *	skb_queue_is_first - check if skb is the first entry in the queue
1796  *	@list: queue head
1797  *	@skb: buffer
1798  *
1799  *	Returns true if @skb is the first buffer on the list.
1800  */
1801 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1802 				      const struct sk_buff *skb)
1803 {
1804 	return skb->prev == (const struct sk_buff *) list;
1805 }
1806 
1807 /**
1808  *	skb_queue_next - return the next packet in the queue
1809  *	@list: queue head
1810  *	@skb: current buffer
1811  *
1812  *	Return the next packet in @list after @skb.  It is only valid to
1813  *	call this if skb_queue_is_last() evaluates to false.
1814  */
1815 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1816 					     const struct sk_buff *skb)
1817 {
1818 	/* This BUG_ON may seem severe, but if we just return then we
1819 	 * are going to dereference garbage.
1820 	 */
1821 	BUG_ON(skb_queue_is_last(list, skb));
1822 	return skb->next;
1823 }
1824 
1825 /**
1826  *	skb_queue_prev - return the prev packet in the queue
1827  *	@list: queue head
1828  *	@skb: current buffer
1829  *
1830  *	Return the prev packet in @list before @skb.  It is only valid to
1831  *	call this if skb_queue_is_first() evaluates to false.
1832  */
1833 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1834 					     const struct sk_buff *skb)
1835 {
1836 	/* This BUG_ON may seem severe, but if we just return then we
1837 	 * are going to dereference garbage.
1838 	 */
1839 	BUG_ON(skb_queue_is_first(list, skb));
1840 	return skb->prev;
1841 }
1842 
1843 /**
1844  *	skb_get - reference buffer
1845  *	@skb: buffer to reference
1846  *
1847  *	Makes another reference to a socket buffer and returns a pointer
1848  *	to the buffer.
1849  */
1850 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1851 {
1852 	refcount_inc(&skb->users);
1853 	return skb;
1854 }
1855 
1856 /*
1857  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1858  */
1859 
1860 /**
1861  *	skb_cloned - is the buffer a clone
1862  *	@skb: buffer to check
1863  *
1864  *	Returns true if the buffer was generated with skb_clone() and is
1865  *	one of multiple shared copies of the buffer. Cloned buffers are
1866  *	shared data so must not be written to under normal circumstances.
1867  */
1868 static inline int skb_cloned(const struct sk_buff *skb)
1869 {
1870 	return skb->cloned &&
1871 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1872 }
1873 
1874 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1875 {
1876 	might_sleep_if(gfpflags_allow_blocking(pri));
1877 
1878 	if (skb_cloned(skb))
1879 		return pskb_expand_head(skb, 0, 0, pri);
1880 
1881 	return 0;
1882 }
1883 
1884 /* This variant of skb_unclone() makes sure skb->truesize
1885  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1886  *
1887  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1888  * when various debugging features are in place.
1889  */
1890 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1891 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1892 {
1893 	might_sleep_if(gfpflags_allow_blocking(pri));
1894 
1895 	if (skb_cloned(skb))
1896 		return __skb_unclone_keeptruesize(skb, pri);
1897 	return 0;
1898 }
1899 
1900 /**
1901  *	skb_header_cloned - is the header a clone
1902  *	@skb: buffer to check
1903  *
1904  *	Returns true if modifying the header part of the buffer requires
1905  *	the data to be copied.
1906  */
1907 static inline int skb_header_cloned(const struct sk_buff *skb)
1908 {
1909 	int dataref;
1910 
1911 	if (!skb->cloned)
1912 		return 0;
1913 
1914 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1915 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1916 	return dataref != 1;
1917 }
1918 
1919 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1920 {
1921 	might_sleep_if(gfpflags_allow_blocking(pri));
1922 
1923 	if (skb_header_cloned(skb))
1924 		return pskb_expand_head(skb, 0, 0, pri);
1925 
1926 	return 0;
1927 }
1928 
1929 /**
1930  * __skb_header_release() - allow clones to use the headroom
1931  * @skb: buffer to operate on
1932  *
1933  * See "DOC: dataref and headerless skbs".
1934  */
1935 static inline void __skb_header_release(struct sk_buff *skb)
1936 {
1937 	skb->nohdr = 1;
1938 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1939 }
1940 
1941 
1942 /**
1943  *	skb_shared - is the buffer shared
1944  *	@skb: buffer to check
1945  *
1946  *	Returns true if more than one person has a reference to this
1947  *	buffer.
1948  */
1949 static inline int skb_shared(const struct sk_buff *skb)
1950 {
1951 	return refcount_read(&skb->users) != 1;
1952 }
1953 
1954 /**
1955  *	skb_share_check - check if buffer is shared and if so clone it
1956  *	@skb: buffer to check
1957  *	@pri: priority for memory allocation
1958  *
1959  *	If the buffer is shared the buffer is cloned and the old copy
1960  *	drops a reference. A new clone with a single reference is returned.
1961  *	If the buffer is not shared the original buffer is returned. When
1962  *	being called from interrupt status or with spinlocks held pri must
1963  *	be GFP_ATOMIC.
1964  *
1965  *	NULL is returned on a memory allocation failure.
1966  */
1967 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1968 {
1969 	might_sleep_if(gfpflags_allow_blocking(pri));
1970 	if (skb_shared(skb)) {
1971 		struct sk_buff *nskb = skb_clone(skb, pri);
1972 
1973 		if (likely(nskb))
1974 			consume_skb(skb);
1975 		else
1976 			kfree_skb(skb);
1977 		skb = nskb;
1978 	}
1979 	return skb;
1980 }
1981 
1982 /*
1983  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1984  *	packets to handle cases where we have a local reader and forward
1985  *	and a couple of other messy ones. The normal one is tcpdumping
1986  *	a packet thats being forwarded.
1987  */
1988 
1989 /**
1990  *	skb_unshare - make a copy of a shared buffer
1991  *	@skb: buffer to check
1992  *	@pri: priority for memory allocation
1993  *
1994  *	If the socket buffer is a clone then this function creates a new
1995  *	copy of the data, drops a reference count on the old copy and returns
1996  *	the new copy with the reference count at 1. If the buffer is not a clone
1997  *	the original buffer is returned. When called with a spinlock held or
1998  *	from interrupt state @pri must be %GFP_ATOMIC
1999  *
2000  *	%NULL is returned on a memory allocation failure.
2001  */
2002 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2003 					  gfp_t pri)
2004 {
2005 	might_sleep_if(gfpflags_allow_blocking(pri));
2006 	if (skb_cloned(skb)) {
2007 		struct sk_buff *nskb = skb_copy(skb, pri);
2008 
2009 		/* Free our shared copy */
2010 		if (likely(nskb))
2011 			consume_skb(skb);
2012 		else
2013 			kfree_skb(skb);
2014 		skb = nskb;
2015 	}
2016 	return skb;
2017 }
2018 
2019 /**
2020  *	skb_peek - peek at the head of an &sk_buff_head
2021  *	@list_: list to peek at
2022  *
2023  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2024  *	be careful with this one. A peek leaves the buffer on the
2025  *	list and someone else may run off with it. You must hold
2026  *	the appropriate locks or have a private queue to do this.
2027  *
2028  *	Returns %NULL for an empty list or a pointer to the head element.
2029  *	The reference count is not incremented and the reference is therefore
2030  *	volatile. Use with caution.
2031  */
2032 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2033 {
2034 	struct sk_buff *skb = list_->next;
2035 
2036 	if (skb == (struct sk_buff *)list_)
2037 		skb = NULL;
2038 	return skb;
2039 }
2040 
2041 /**
2042  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2043  *	@list_: list to peek at
2044  *
2045  *	Like skb_peek(), but the caller knows that the list is not empty.
2046  */
2047 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2048 {
2049 	return list_->next;
2050 }
2051 
2052 /**
2053  *	skb_peek_next - peek skb following the given one from a queue
2054  *	@skb: skb to start from
2055  *	@list_: list to peek at
2056  *
2057  *	Returns %NULL when the end of the list is met or a pointer to the
2058  *	next element. The reference count is not incremented and the
2059  *	reference is therefore volatile. Use with caution.
2060  */
2061 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2062 		const struct sk_buff_head *list_)
2063 {
2064 	struct sk_buff *next = skb->next;
2065 
2066 	if (next == (struct sk_buff *)list_)
2067 		next = NULL;
2068 	return next;
2069 }
2070 
2071 /**
2072  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2073  *	@list_: list to peek at
2074  *
2075  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2076  *	be careful with this one. A peek leaves the buffer on the
2077  *	list and someone else may run off with it. You must hold
2078  *	the appropriate locks or have a private queue to do this.
2079  *
2080  *	Returns %NULL for an empty list or a pointer to the tail element.
2081  *	The reference count is not incremented and the reference is therefore
2082  *	volatile. Use with caution.
2083  */
2084 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2085 {
2086 	struct sk_buff *skb = READ_ONCE(list_->prev);
2087 
2088 	if (skb == (struct sk_buff *)list_)
2089 		skb = NULL;
2090 	return skb;
2091 
2092 }
2093 
2094 /**
2095  *	skb_queue_len	- get queue length
2096  *	@list_: list to measure
2097  *
2098  *	Return the length of an &sk_buff queue.
2099  */
2100 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2101 {
2102 	return list_->qlen;
2103 }
2104 
2105 /**
2106  *	skb_queue_len_lockless	- get queue length
2107  *	@list_: list to measure
2108  *
2109  *	Return the length of an &sk_buff queue.
2110  *	This variant can be used in lockless contexts.
2111  */
2112 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2113 {
2114 	return READ_ONCE(list_->qlen);
2115 }
2116 
2117 /**
2118  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2119  *	@list: queue to initialize
2120  *
2121  *	This initializes only the list and queue length aspects of
2122  *	an sk_buff_head object.  This allows to initialize the list
2123  *	aspects of an sk_buff_head without reinitializing things like
2124  *	the spinlock.  It can also be used for on-stack sk_buff_head
2125  *	objects where the spinlock is known to not be used.
2126  */
2127 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2128 {
2129 	list->prev = list->next = (struct sk_buff *)list;
2130 	list->qlen = 0;
2131 }
2132 
2133 /*
2134  * This function creates a split out lock class for each invocation;
2135  * this is needed for now since a whole lot of users of the skb-queue
2136  * infrastructure in drivers have different locking usage (in hardirq)
2137  * than the networking core (in softirq only). In the long run either the
2138  * network layer or drivers should need annotation to consolidate the
2139  * main types of usage into 3 classes.
2140  */
2141 static inline void skb_queue_head_init(struct sk_buff_head *list)
2142 {
2143 	spin_lock_init(&list->lock);
2144 	__skb_queue_head_init(list);
2145 }
2146 
2147 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2148 		struct lock_class_key *class)
2149 {
2150 	skb_queue_head_init(list);
2151 	lockdep_set_class(&list->lock, class);
2152 }
2153 
2154 /*
2155  *	Insert an sk_buff on a list.
2156  *
2157  *	The "__skb_xxxx()" functions are the non-atomic ones that
2158  *	can only be called with interrupts disabled.
2159  */
2160 static inline void __skb_insert(struct sk_buff *newsk,
2161 				struct sk_buff *prev, struct sk_buff *next,
2162 				struct sk_buff_head *list)
2163 {
2164 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2165 	 * for the opposite READ_ONCE()
2166 	 */
2167 	WRITE_ONCE(newsk->next, next);
2168 	WRITE_ONCE(newsk->prev, prev);
2169 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2170 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2171 	WRITE_ONCE(list->qlen, list->qlen + 1);
2172 }
2173 
2174 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2175 				      struct sk_buff *prev,
2176 				      struct sk_buff *next)
2177 {
2178 	struct sk_buff *first = list->next;
2179 	struct sk_buff *last = list->prev;
2180 
2181 	WRITE_ONCE(first->prev, prev);
2182 	WRITE_ONCE(prev->next, first);
2183 
2184 	WRITE_ONCE(last->next, next);
2185 	WRITE_ONCE(next->prev, last);
2186 }
2187 
2188 /**
2189  *	skb_queue_splice - join two skb lists, this is designed for stacks
2190  *	@list: the new list to add
2191  *	@head: the place to add it in the first list
2192  */
2193 static inline void skb_queue_splice(const struct sk_buff_head *list,
2194 				    struct sk_buff_head *head)
2195 {
2196 	if (!skb_queue_empty(list)) {
2197 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2198 		head->qlen += list->qlen;
2199 	}
2200 }
2201 
2202 /**
2203  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2204  *	@list: the new list to add
2205  *	@head: the place to add it in the first list
2206  *
2207  *	The list at @list is reinitialised
2208  */
2209 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2210 					 struct sk_buff_head *head)
2211 {
2212 	if (!skb_queue_empty(list)) {
2213 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2214 		head->qlen += list->qlen;
2215 		__skb_queue_head_init(list);
2216 	}
2217 }
2218 
2219 /**
2220  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2221  *	@list: the new list to add
2222  *	@head: the place to add it in the first list
2223  */
2224 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2225 					 struct sk_buff_head *head)
2226 {
2227 	if (!skb_queue_empty(list)) {
2228 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2229 		head->qlen += list->qlen;
2230 	}
2231 }
2232 
2233 /**
2234  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2235  *	@list: the new list to add
2236  *	@head: the place to add it in the first list
2237  *
2238  *	Each of the lists is a queue.
2239  *	The list at @list is reinitialised
2240  */
2241 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2242 					      struct sk_buff_head *head)
2243 {
2244 	if (!skb_queue_empty(list)) {
2245 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2246 		head->qlen += list->qlen;
2247 		__skb_queue_head_init(list);
2248 	}
2249 }
2250 
2251 /**
2252  *	__skb_queue_after - queue a buffer at the list head
2253  *	@list: list to use
2254  *	@prev: place after this buffer
2255  *	@newsk: buffer to queue
2256  *
2257  *	Queue a buffer int the middle of a list. This function takes no locks
2258  *	and you must therefore hold required locks before calling it.
2259  *
2260  *	A buffer cannot be placed on two lists at the same time.
2261  */
2262 static inline void __skb_queue_after(struct sk_buff_head *list,
2263 				     struct sk_buff *prev,
2264 				     struct sk_buff *newsk)
2265 {
2266 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2267 }
2268 
2269 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2270 		struct sk_buff_head *list);
2271 
2272 static inline void __skb_queue_before(struct sk_buff_head *list,
2273 				      struct sk_buff *next,
2274 				      struct sk_buff *newsk)
2275 {
2276 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2277 }
2278 
2279 /**
2280  *	__skb_queue_head - queue a buffer at the list head
2281  *	@list: list to use
2282  *	@newsk: buffer to queue
2283  *
2284  *	Queue a buffer at the start of a list. This function takes no locks
2285  *	and you must therefore hold required locks before calling it.
2286  *
2287  *	A buffer cannot be placed on two lists at the same time.
2288  */
2289 static inline void __skb_queue_head(struct sk_buff_head *list,
2290 				    struct sk_buff *newsk)
2291 {
2292 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2293 }
2294 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2295 
2296 /**
2297  *	__skb_queue_tail - queue a buffer at the list tail
2298  *	@list: list to use
2299  *	@newsk: buffer to queue
2300  *
2301  *	Queue a buffer at the end of a list. This function takes no locks
2302  *	and you must therefore hold required locks before calling it.
2303  *
2304  *	A buffer cannot be placed on two lists at the same time.
2305  */
2306 static inline void __skb_queue_tail(struct sk_buff_head *list,
2307 				   struct sk_buff *newsk)
2308 {
2309 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2310 }
2311 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2312 
2313 /*
2314  * remove sk_buff from list. _Must_ be called atomically, and with
2315  * the list known..
2316  */
2317 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2318 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2319 {
2320 	struct sk_buff *next, *prev;
2321 
2322 	WRITE_ONCE(list->qlen, list->qlen - 1);
2323 	next	   = skb->next;
2324 	prev	   = skb->prev;
2325 	skb->next  = skb->prev = NULL;
2326 	WRITE_ONCE(next->prev, prev);
2327 	WRITE_ONCE(prev->next, next);
2328 }
2329 
2330 /**
2331  *	__skb_dequeue - remove from the head of the queue
2332  *	@list: list to dequeue from
2333  *
2334  *	Remove the head of the list. This function does not take any locks
2335  *	so must be used with appropriate locks held only. The head item is
2336  *	returned or %NULL if the list is empty.
2337  */
2338 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2339 {
2340 	struct sk_buff *skb = skb_peek(list);
2341 	if (skb)
2342 		__skb_unlink(skb, list);
2343 	return skb;
2344 }
2345 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2346 
2347 /**
2348  *	__skb_dequeue_tail - remove from the tail of the queue
2349  *	@list: list to dequeue from
2350  *
2351  *	Remove the tail of the list. This function does not take any locks
2352  *	so must be used with appropriate locks held only. The tail item is
2353  *	returned or %NULL if the list is empty.
2354  */
2355 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2356 {
2357 	struct sk_buff *skb = skb_peek_tail(list);
2358 	if (skb)
2359 		__skb_unlink(skb, list);
2360 	return skb;
2361 }
2362 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2363 
2364 
2365 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2366 {
2367 	return skb->data_len;
2368 }
2369 
2370 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2371 {
2372 	return skb->len - skb->data_len;
2373 }
2374 
2375 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2376 {
2377 	unsigned int i, len = 0;
2378 
2379 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2380 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2381 	return len;
2382 }
2383 
2384 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2385 {
2386 	return skb_headlen(skb) + __skb_pagelen(skb);
2387 }
2388 
2389 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2390 					      int i, struct page *page,
2391 					      int off, int size)
2392 {
2393 	skb_frag_t *frag = &shinfo->frags[i];
2394 
2395 	/*
2396 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2397 	 * that not all callers have unique ownership of the page but rely
2398 	 * on page_is_pfmemalloc doing the right thing(tm).
2399 	 */
2400 	frag->bv_page		  = page;
2401 	frag->bv_offset		  = off;
2402 	skb_frag_size_set(frag, size);
2403 }
2404 
2405 /**
2406  * skb_len_add - adds a number to len fields of skb
2407  * @skb: buffer to add len to
2408  * @delta: number of bytes to add
2409  */
2410 static inline void skb_len_add(struct sk_buff *skb, int delta)
2411 {
2412 	skb->len += delta;
2413 	skb->data_len += delta;
2414 	skb->truesize += delta;
2415 }
2416 
2417 /**
2418  * __skb_fill_page_desc - initialise a paged fragment in an skb
2419  * @skb: buffer containing fragment to be initialised
2420  * @i: paged fragment index to initialise
2421  * @page: the page to use for this fragment
2422  * @off: the offset to the data with @page
2423  * @size: the length of the data
2424  *
2425  * Initialises the @i'th fragment of @skb to point to &size bytes at
2426  * offset @off within @page.
2427  *
2428  * Does not take any additional reference on the fragment.
2429  */
2430 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2431 					struct page *page, int off, int size)
2432 {
2433 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2434 	page = compound_head(page);
2435 	if (page_is_pfmemalloc(page))
2436 		skb->pfmemalloc	= true;
2437 }
2438 
2439 /**
2440  * skb_fill_page_desc - initialise a paged fragment in an skb
2441  * @skb: buffer containing fragment to be initialised
2442  * @i: paged fragment index to initialise
2443  * @page: the page to use for this fragment
2444  * @off: the offset to the data with @page
2445  * @size: the length of the data
2446  *
2447  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2448  * @skb to point to @size bytes at offset @off within @page. In
2449  * addition updates @skb such that @i is the last fragment.
2450  *
2451  * Does not take any additional reference on the fragment.
2452  */
2453 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2454 				      struct page *page, int off, int size)
2455 {
2456 	__skb_fill_page_desc(skb, i, page, off, size);
2457 	skb_shinfo(skb)->nr_frags = i + 1;
2458 }
2459 
2460 /**
2461  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2462  * @skb: buffer containing fragment to be initialised
2463  * @i: paged fragment index to initialise
2464  * @page: the page to use for this fragment
2465  * @off: the offset to the data with @page
2466  * @size: the length of the data
2467  *
2468  * Variant of skb_fill_page_desc() which does not deal with
2469  * pfmemalloc, if page is not owned by us.
2470  */
2471 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2472 					    struct page *page, int off,
2473 					    int size)
2474 {
2475 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2476 
2477 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2478 	shinfo->nr_frags = i + 1;
2479 }
2480 
2481 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2482 		     int size, unsigned int truesize);
2483 
2484 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2485 			  unsigned int truesize);
2486 
2487 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2488 
2489 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2490 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2491 {
2492 	return skb->head + skb->tail;
2493 }
2494 
2495 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2496 {
2497 	skb->tail = skb->data - skb->head;
2498 }
2499 
2500 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2501 {
2502 	skb_reset_tail_pointer(skb);
2503 	skb->tail += offset;
2504 }
2505 
2506 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2507 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2508 {
2509 	return skb->tail;
2510 }
2511 
2512 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2513 {
2514 	skb->tail = skb->data;
2515 }
2516 
2517 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2518 {
2519 	skb->tail = skb->data + offset;
2520 }
2521 
2522 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2523 
2524 static inline void skb_assert_len(struct sk_buff *skb)
2525 {
2526 #ifdef CONFIG_DEBUG_NET
2527 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2528 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2529 #endif /* CONFIG_DEBUG_NET */
2530 }
2531 
2532 /*
2533  *	Add data to an sk_buff
2534  */
2535 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2536 void *skb_put(struct sk_buff *skb, unsigned int len);
2537 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2538 {
2539 	void *tmp = skb_tail_pointer(skb);
2540 	SKB_LINEAR_ASSERT(skb);
2541 	skb->tail += len;
2542 	skb->len  += len;
2543 	return tmp;
2544 }
2545 
2546 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2547 {
2548 	void *tmp = __skb_put(skb, len);
2549 
2550 	memset(tmp, 0, len);
2551 	return tmp;
2552 }
2553 
2554 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2555 				   unsigned int len)
2556 {
2557 	void *tmp = __skb_put(skb, len);
2558 
2559 	memcpy(tmp, data, len);
2560 	return tmp;
2561 }
2562 
2563 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2564 {
2565 	*(u8 *)__skb_put(skb, 1) = val;
2566 }
2567 
2568 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2569 {
2570 	void *tmp = skb_put(skb, len);
2571 
2572 	memset(tmp, 0, len);
2573 
2574 	return tmp;
2575 }
2576 
2577 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2578 				 unsigned int len)
2579 {
2580 	void *tmp = skb_put(skb, len);
2581 
2582 	memcpy(tmp, data, len);
2583 
2584 	return tmp;
2585 }
2586 
2587 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2588 {
2589 	*(u8 *)skb_put(skb, 1) = val;
2590 }
2591 
2592 void *skb_push(struct sk_buff *skb, unsigned int len);
2593 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2594 {
2595 	skb->data -= len;
2596 	skb->len  += len;
2597 	return skb->data;
2598 }
2599 
2600 void *skb_pull(struct sk_buff *skb, unsigned int len);
2601 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2602 {
2603 	skb->len -= len;
2604 	if (unlikely(skb->len < skb->data_len)) {
2605 #if defined(CONFIG_DEBUG_NET)
2606 		skb->len += len;
2607 		pr_err("__skb_pull(len=%u)\n", len);
2608 		skb_dump(KERN_ERR, skb, false);
2609 #endif
2610 		BUG();
2611 	}
2612 	return skb->data += len;
2613 }
2614 
2615 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2616 {
2617 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2618 }
2619 
2620 void *skb_pull_data(struct sk_buff *skb, size_t len);
2621 
2622 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2623 
2624 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2625 {
2626 	if (likely(len <= skb_headlen(skb)))
2627 		return true;
2628 	if (unlikely(len > skb->len))
2629 		return false;
2630 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2631 }
2632 
2633 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2634 {
2635 	if (!pskb_may_pull(skb, len))
2636 		return NULL;
2637 
2638 	skb->len -= len;
2639 	return skb->data += len;
2640 }
2641 
2642 void skb_condense(struct sk_buff *skb);
2643 
2644 /**
2645  *	skb_headroom - bytes at buffer head
2646  *	@skb: buffer to check
2647  *
2648  *	Return the number of bytes of free space at the head of an &sk_buff.
2649  */
2650 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2651 {
2652 	return skb->data - skb->head;
2653 }
2654 
2655 /**
2656  *	skb_tailroom - bytes at buffer end
2657  *	@skb: buffer to check
2658  *
2659  *	Return the number of bytes of free space at the tail of an sk_buff
2660  */
2661 static inline int skb_tailroom(const struct sk_buff *skb)
2662 {
2663 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2664 }
2665 
2666 /**
2667  *	skb_availroom - bytes at buffer end
2668  *	@skb: buffer to check
2669  *
2670  *	Return the number of bytes of free space at the tail of an sk_buff
2671  *	allocated by sk_stream_alloc()
2672  */
2673 static inline int skb_availroom(const struct sk_buff *skb)
2674 {
2675 	if (skb_is_nonlinear(skb))
2676 		return 0;
2677 
2678 	return skb->end - skb->tail - skb->reserved_tailroom;
2679 }
2680 
2681 /**
2682  *	skb_reserve - adjust headroom
2683  *	@skb: buffer to alter
2684  *	@len: bytes to move
2685  *
2686  *	Increase the headroom of an empty &sk_buff by reducing the tail
2687  *	room. This is only allowed for an empty buffer.
2688  */
2689 static inline void skb_reserve(struct sk_buff *skb, int len)
2690 {
2691 	skb->data += len;
2692 	skb->tail += len;
2693 }
2694 
2695 /**
2696  *	skb_tailroom_reserve - adjust reserved_tailroom
2697  *	@skb: buffer to alter
2698  *	@mtu: maximum amount of headlen permitted
2699  *	@needed_tailroom: minimum amount of reserved_tailroom
2700  *
2701  *	Set reserved_tailroom so that headlen can be as large as possible but
2702  *	not larger than mtu and tailroom cannot be smaller than
2703  *	needed_tailroom.
2704  *	The required headroom should already have been reserved before using
2705  *	this function.
2706  */
2707 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2708 					unsigned int needed_tailroom)
2709 {
2710 	SKB_LINEAR_ASSERT(skb);
2711 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2712 		/* use at most mtu */
2713 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2714 	else
2715 		/* use up to all available space */
2716 		skb->reserved_tailroom = needed_tailroom;
2717 }
2718 
2719 #define ENCAP_TYPE_ETHER	0
2720 #define ENCAP_TYPE_IPPROTO	1
2721 
2722 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2723 					  __be16 protocol)
2724 {
2725 	skb->inner_protocol = protocol;
2726 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2727 }
2728 
2729 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2730 					 __u8 ipproto)
2731 {
2732 	skb->inner_ipproto = ipproto;
2733 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2734 }
2735 
2736 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2737 {
2738 	skb->inner_mac_header = skb->mac_header;
2739 	skb->inner_network_header = skb->network_header;
2740 	skb->inner_transport_header = skb->transport_header;
2741 }
2742 
2743 static inline void skb_reset_mac_len(struct sk_buff *skb)
2744 {
2745 	skb->mac_len = skb->network_header - skb->mac_header;
2746 }
2747 
2748 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2749 							*skb)
2750 {
2751 	return skb->head + skb->inner_transport_header;
2752 }
2753 
2754 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2755 {
2756 	return skb_inner_transport_header(skb) - skb->data;
2757 }
2758 
2759 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2760 {
2761 	skb->inner_transport_header = skb->data - skb->head;
2762 }
2763 
2764 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2765 						   const int offset)
2766 {
2767 	skb_reset_inner_transport_header(skb);
2768 	skb->inner_transport_header += offset;
2769 }
2770 
2771 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2772 {
2773 	return skb->head + skb->inner_network_header;
2774 }
2775 
2776 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2777 {
2778 	skb->inner_network_header = skb->data - skb->head;
2779 }
2780 
2781 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2782 						const int offset)
2783 {
2784 	skb_reset_inner_network_header(skb);
2785 	skb->inner_network_header += offset;
2786 }
2787 
2788 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2789 {
2790 	return skb->head + skb->inner_mac_header;
2791 }
2792 
2793 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2794 {
2795 	skb->inner_mac_header = skb->data - skb->head;
2796 }
2797 
2798 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2799 					    const int offset)
2800 {
2801 	skb_reset_inner_mac_header(skb);
2802 	skb->inner_mac_header += offset;
2803 }
2804 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2805 {
2806 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2807 }
2808 
2809 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2810 {
2811 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2812 	return skb->head + skb->transport_header;
2813 }
2814 
2815 static inline void skb_reset_transport_header(struct sk_buff *skb)
2816 {
2817 	skb->transport_header = skb->data - skb->head;
2818 }
2819 
2820 static inline void skb_set_transport_header(struct sk_buff *skb,
2821 					    const int offset)
2822 {
2823 	skb_reset_transport_header(skb);
2824 	skb->transport_header += offset;
2825 }
2826 
2827 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2828 {
2829 	return skb->head + skb->network_header;
2830 }
2831 
2832 static inline void skb_reset_network_header(struct sk_buff *skb)
2833 {
2834 	skb->network_header = skb->data - skb->head;
2835 }
2836 
2837 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2838 {
2839 	skb_reset_network_header(skb);
2840 	skb->network_header += offset;
2841 }
2842 
2843 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2844 {
2845 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2846 }
2847 
2848 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2849 {
2850 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2851 	return skb->head + skb->mac_header;
2852 }
2853 
2854 static inline int skb_mac_offset(const struct sk_buff *skb)
2855 {
2856 	return skb_mac_header(skb) - skb->data;
2857 }
2858 
2859 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2860 {
2861 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2862 	return skb->network_header - skb->mac_header;
2863 }
2864 
2865 static inline void skb_unset_mac_header(struct sk_buff *skb)
2866 {
2867 	skb->mac_header = (typeof(skb->mac_header))~0U;
2868 }
2869 
2870 static inline void skb_reset_mac_header(struct sk_buff *skb)
2871 {
2872 	skb->mac_header = skb->data - skb->head;
2873 }
2874 
2875 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2876 {
2877 	skb_reset_mac_header(skb);
2878 	skb->mac_header += offset;
2879 }
2880 
2881 static inline void skb_pop_mac_header(struct sk_buff *skb)
2882 {
2883 	skb->mac_header = skb->network_header;
2884 }
2885 
2886 static inline void skb_probe_transport_header(struct sk_buff *skb)
2887 {
2888 	struct flow_keys_basic keys;
2889 
2890 	if (skb_transport_header_was_set(skb))
2891 		return;
2892 
2893 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2894 					     NULL, 0, 0, 0, 0))
2895 		skb_set_transport_header(skb, keys.control.thoff);
2896 }
2897 
2898 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2899 {
2900 	if (skb_mac_header_was_set(skb)) {
2901 		const unsigned char *old_mac = skb_mac_header(skb);
2902 
2903 		skb_set_mac_header(skb, -skb->mac_len);
2904 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2905 	}
2906 }
2907 
2908 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2909 {
2910 	return skb->csum_start - skb_headroom(skb);
2911 }
2912 
2913 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2914 {
2915 	return skb->head + skb->csum_start;
2916 }
2917 
2918 static inline int skb_transport_offset(const struct sk_buff *skb)
2919 {
2920 	return skb_transport_header(skb) - skb->data;
2921 }
2922 
2923 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2924 {
2925 	return skb->transport_header - skb->network_header;
2926 }
2927 
2928 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2929 {
2930 	return skb->inner_transport_header - skb->inner_network_header;
2931 }
2932 
2933 static inline int skb_network_offset(const struct sk_buff *skb)
2934 {
2935 	return skb_network_header(skb) - skb->data;
2936 }
2937 
2938 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2939 {
2940 	return skb_inner_network_header(skb) - skb->data;
2941 }
2942 
2943 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2944 {
2945 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2946 }
2947 
2948 /*
2949  * CPUs often take a performance hit when accessing unaligned memory
2950  * locations. The actual performance hit varies, it can be small if the
2951  * hardware handles it or large if we have to take an exception and fix it
2952  * in software.
2953  *
2954  * Since an ethernet header is 14 bytes network drivers often end up with
2955  * the IP header at an unaligned offset. The IP header can be aligned by
2956  * shifting the start of the packet by 2 bytes. Drivers should do this
2957  * with:
2958  *
2959  * skb_reserve(skb, NET_IP_ALIGN);
2960  *
2961  * The downside to this alignment of the IP header is that the DMA is now
2962  * unaligned. On some architectures the cost of an unaligned DMA is high
2963  * and this cost outweighs the gains made by aligning the IP header.
2964  *
2965  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2966  * to be overridden.
2967  */
2968 #ifndef NET_IP_ALIGN
2969 #define NET_IP_ALIGN	2
2970 #endif
2971 
2972 /*
2973  * The networking layer reserves some headroom in skb data (via
2974  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2975  * the header has to grow. In the default case, if the header has to grow
2976  * 32 bytes or less we avoid the reallocation.
2977  *
2978  * Unfortunately this headroom changes the DMA alignment of the resulting
2979  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2980  * on some architectures. An architecture can override this value,
2981  * perhaps setting it to a cacheline in size (since that will maintain
2982  * cacheline alignment of the DMA). It must be a power of 2.
2983  *
2984  * Various parts of the networking layer expect at least 32 bytes of
2985  * headroom, you should not reduce this.
2986  *
2987  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2988  * to reduce average number of cache lines per packet.
2989  * get_rps_cpu() for example only access one 64 bytes aligned block :
2990  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2991  */
2992 #ifndef NET_SKB_PAD
2993 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2994 #endif
2995 
2996 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2997 
2998 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2999 {
3000 	if (WARN_ON(skb_is_nonlinear(skb)))
3001 		return;
3002 	skb->len = len;
3003 	skb_set_tail_pointer(skb, len);
3004 }
3005 
3006 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3007 {
3008 	__skb_set_length(skb, len);
3009 }
3010 
3011 void skb_trim(struct sk_buff *skb, unsigned int len);
3012 
3013 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3014 {
3015 	if (skb->data_len)
3016 		return ___pskb_trim(skb, len);
3017 	__skb_trim(skb, len);
3018 	return 0;
3019 }
3020 
3021 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3022 {
3023 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3024 }
3025 
3026 /**
3027  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3028  *	@skb: buffer to alter
3029  *	@len: new length
3030  *
3031  *	This is identical to pskb_trim except that the caller knows that
3032  *	the skb is not cloned so we should never get an error due to out-
3033  *	of-memory.
3034  */
3035 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3036 {
3037 	int err = pskb_trim(skb, len);
3038 	BUG_ON(err);
3039 }
3040 
3041 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3042 {
3043 	unsigned int diff = len - skb->len;
3044 
3045 	if (skb_tailroom(skb) < diff) {
3046 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3047 					   GFP_ATOMIC);
3048 		if (ret)
3049 			return ret;
3050 	}
3051 	__skb_set_length(skb, len);
3052 	return 0;
3053 }
3054 
3055 /**
3056  *	skb_orphan - orphan a buffer
3057  *	@skb: buffer to orphan
3058  *
3059  *	If a buffer currently has an owner then we call the owner's
3060  *	destructor function and make the @skb unowned. The buffer continues
3061  *	to exist but is no longer charged to its former owner.
3062  */
3063 static inline void skb_orphan(struct sk_buff *skb)
3064 {
3065 	if (skb->destructor) {
3066 		skb->destructor(skb);
3067 		skb->destructor = NULL;
3068 		skb->sk		= NULL;
3069 	} else {
3070 		BUG_ON(skb->sk);
3071 	}
3072 }
3073 
3074 /**
3075  *	skb_orphan_frags - orphan the frags contained in a buffer
3076  *	@skb: buffer to orphan frags from
3077  *	@gfp_mask: allocation mask for replacement pages
3078  *
3079  *	For each frag in the SKB which needs a destructor (i.e. has an
3080  *	owner) create a copy of that frag and release the original
3081  *	page by calling the destructor.
3082  */
3083 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3084 {
3085 	if (likely(!skb_zcopy(skb)))
3086 		return 0;
3087 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3088 		return 0;
3089 	return skb_copy_ubufs(skb, gfp_mask);
3090 }
3091 
3092 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3093 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3094 {
3095 	if (likely(!skb_zcopy(skb)))
3096 		return 0;
3097 	return skb_copy_ubufs(skb, gfp_mask);
3098 }
3099 
3100 /**
3101  *	__skb_queue_purge - empty a list
3102  *	@list: list to empty
3103  *
3104  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3105  *	the list and one reference dropped. This function does not take the
3106  *	list lock and the caller must hold the relevant locks to use it.
3107  */
3108 static inline void __skb_queue_purge(struct sk_buff_head *list)
3109 {
3110 	struct sk_buff *skb;
3111 	while ((skb = __skb_dequeue(list)) != NULL)
3112 		kfree_skb(skb);
3113 }
3114 void skb_queue_purge(struct sk_buff_head *list);
3115 
3116 unsigned int skb_rbtree_purge(struct rb_root *root);
3117 
3118 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3119 
3120 /**
3121  * netdev_alloc_frag - allocate a page fragment
3122  * @fragsz: fragment size
3123  *
3124  * Allocates a frag from a page for receive buffer.
3125  * Uses GFP_ATOMIC allocations.
3126  */
3127 static inline void *netdev_alloc_frag(unsigned int fragsz)
3128 {
3129 	return __netdev_alloc_frag_align(fragsz, ~0u);
3130 }
3131 
3132 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3133 					    unsigned int align)
3134 {
3135 	WARN_ON_ONCE(!is_power_of_2(align));
3136 	return __netdev_alloc_frag_align(fragsz, -align);
3137 }
3138 
3139 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3140 				   gfp_t gfp_mask);
3141 
3142 /**
3143  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3144  *	@dev: network device to receive on
3145  *	@length: length to allocate
3146  *
3147  *	Allocate a new &sk_buff and assign it a usage count of one. The
3148  *	buffer has unspecified headroom built in. Users should allocate
3149  *	the headroom they think they need without accounting for the
3150  *	built in space. The built in space is used for optimisations.
3151  *
3152  *	%NULL is returned if there is no free memory. Although this function
3153  *	allocates memory it can be called from an interrupt.
3154  */
3155 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3156 					       unsigned int length)
3157 {
3158 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3159 }
3160 
3161 /* legacy helper around __netdev_alloc_skb() */
3162 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3163 					      gfp_t gfp_mask)
3164 {
3165 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3166 }
3167 
3168 /* legacy helper around netdev_alloc_skb() */
3169 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3170 {
3171 	return netdev_alloc_skb(NULL, length);
3172 }
3173 
3174 
3175 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3176 		unsigned int length, gfp_t gfp)
3177 {
3178 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3179 
3180 	if (NET_IP_ALIGN && skb)
3181 		skb_reserve(skb, NET_IP_ALIGN);
3182 	return skb;
3183 }
3184 
3185 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3186 		unsigned int length)
3187 {
3188 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3189 }
3190 
3191 static inline void skb_free_frag(void *addr)
3192 {
3193 	page_frag_free(addr);
3194 }
3195 
3196 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3197 
3198 static inline void *napi_alloc_frag(unsigned int fragsz)
3199 {
3200 	return __napi_alloc_frag_align(fragsz, ~0u);
3201 }
3202 
3203 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3204 					  unsigned int align)
3205 {
3206 	WARN_ON_ONCE(!is_power_of_2(align));
3207 	return __napi_alloc_frag_align(fragsz, -align);
3208 }
3209 
3210 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3211 				 unsigned int length, gfp_t gfp_mask);
3212 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3213 					     unsigned int length)
3214 {
3215 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3216 }
3217 void napi_consume_skb(struct sk_buff *skb, int budget);
3218 
3219 void napi_skb_free_stolen_head(struct sk_buff *skb);
3220 void __kfree_skb_defer(struct sk_buff *skb);
3221 
3222 /**
3223  * __dev_alloc_pages - allocate page for network Rx
3224  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3225  * @order: size of the allocation
3226  *
3227  * Allocate a new page.
3228  *
3229  * %NULL is returned if there is no free memory.
3230 */
3231 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3232 					     unsigned int order)
3233 {
3234 	/* This piece of code contains several assumptions.
3235 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3236 	 * 2.  The expectation is the user wants a compound page.
3237 	 * 3.  If requesting a order 0 page it will not be compound
3238 	 *     due to the check to see if order has a value in prep_new_page
3239 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3240 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3241 	 */
3242 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3243 
3244 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3245 }
3246 
3247 static inline struct page *dev_alloc_pages(unsigned int order)
3248 {
3249 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3250 }
3251 
3252 /**
3253  * __dev_alloc_page - allocate a page for network Rx
3254  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3255  *
3256  * Allocate a new page.
3257  *
3258  * %NULL is returned if there is no free memory.
3259  */
3260 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3261 {
3262 	return __dev_alloc_pages(gfp_mask, 0);
3263 }
3264 
3265 static inline struct page *dev_alloc_page(void)
3266 {
3267 	return dev_alloc_pages(0);
3268 }
3269 
3270 /**
3271  * dev_page_is_reusable - check whether a page can be reused for network Rx
3272  * @page: the page to test
3273  *
3274  * A page shouldn't be considered for reusing/recycling if it was allocated
3275  * under memory pressure or at a distant memory node.
3276  *
3277  * Returns false if this page should be returned to page allocator, true
3278  * otherwise.
3279  */
3280 static inline bool dev_page_is_reusable(const struct page *page)
3281 {
3282 	return likely(page_to_nid(page) == numa_mem_id() &&
3283 		      !page_is_pfmemalloc(page));
3284 }
3285 
3286 /**
3287  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3288  *	@page: The page that was allocated from skb_alloc_page
3289  *	@skb: The skb that may need pfmemalloc set
3290  */
3291 static inline void skb_propagate_pfmemalloc(const struct page *page,
3292 					    struct sk_buff *skb)
3293 {
3294 	if (page_is_pfmemalloc(page))
3295 		skb->pfmemalloc = true;
3296 }
3297 
3298 /**
3299  * skb_frag_off() - Returns the offset of a skb fragment
3300  * @frag: the paged fragment
3301  */
3302 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3303 {
3304 	return frag->bv_offset;
3305 }
3306 
3307 /**
3308  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3309  * @frag: skb fragment
3310  * @delta: value to add
3311  */
3312 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3313 {
3314 	frag->bv_offset += delta;
3315 }
3316 
3317 /**
3318  * skb_frag_off_set() - Sets the offset of a skb fragment
3319  * @frag: skb fragment
3320  * @offset: offset of fragment
3321  */
3322 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3323 {
3324 	frag->bv_offset = offset;
3325 }
3326 
3327 /**
3328  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3329  * @fragto: skb fragment where offset is set
3330  * @fragfrom: skb fragment offset is copied from
3331  */
3332 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3333 				     const skb_frag_t *fragfrom)
3334 {
3335 	fragto->bv_offset = fragfrom->bv_offset;
3336 }
3337 
3338 /**
3339  * skb_frag_page - retrieve the page referred to by a paged fragment
3340  * @frag: the paged fragment
3341  *
3342  * Returns the &struct page associated with @frag.
3343  */
3344 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3345 {
3346 	return frag->bv_page;
3347 }
3348 
3349 /**
3350  * __skb_frag_ref - take an addition reference on a paged fragment.
3351  * @frag: the paged fragment
3352  *
3353  * Takes an additional reference on the paged fragment @frag.
3354  */
3355 static inline void __skb_frag_ref(skb_frag_t *frag)
3356 {
3357 	get_page(skb_frag_page(frag));
3358 }
3359 
3360 /**
3361  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3362  * @skb: the buffer
3363  * @f: the fragment offset.
3364  *
3365  * Takes an additional reference on the @f'th paged fragment of @skb.
3366  */
3367 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3368 {
3369 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3370 }
3371 
3372 /**
3373  * __skb_frag_unref - release a reference on a paged fragment.
3374  * @frag: the paged fragment
3375  * @recycle: recycle the page if allocated via page_pool
3376  *
3377  * Releases a reference on the paged fragment @frag
3378  * or recycles the page via the page_pool API.
3379  */
3380 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3381 {
3382 	struct page *page = skb_frag_page(frag);
3383 
3384 #ifdef CONFIG_PAGE_POOL
3385 	if (recycle && page_pool_return_skb_page(page))
3386 		return;
3387 #endif
3388 	put_page(page);
3389 }
3390 
3391 /**
3392  * skb_frag_unref - release a reference on a paged fragment of an skb.
3393  * @skb: the buffer
3394  * @f: the fragment offset
3395  *
3396  * Releases a reference on the @f'th paged fragment of @skb.
3397  */
3398 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3399 {
3400 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3401 
3402 	if (!skb_zcopy_managed(skb))
3403 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3404 }
3405 
3406 /**
3407  * skb_frag_address - gets the address of the data contained in a paged fragment
3408  * @frag: the paged fragment buffer
3409  *
3410  * Returns the address of the data within @frag. The page must already
3411  * be mapped.
3412  */
3413 static inline void *skb_frag_address(const skb_frag_t *frag)
3414 {
3415 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3416 }
3417 
3418 /**
3419  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3420  * @frag: the paged fragment buffer
3421  *
3422  * Returns the address of the data within @frag. Checks that the page
3423  * is mapped and returns %NULL otherwise.
3424  */
3425 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3426 {
3427 	void *ptr = page_address(skb_frag_page(frag));
3428 	if (unlikely(!ptr))
3429 		return NULL;
3430 
3431 	return ptr + skb_frag_off(frag);
3432 }
3433 
3434 /**
3435  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3436  * @fragto: skb fragment where page is set
3437  * @fragfrom: skb fragment page is copied from
3438  */
3439 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3440 				      const skb_frag_t *fragfrom)
3441 {
3442 	fragto->bv_page = fragfrom->bv_page;
3443 }
3444 
3445 /**
3446  * __skb_frag_set_page - sets the page contained in a paged fragment
3447  * @frag: the paged fragment
3448  * @page: the page to set
3449  *
3450  * Sets the fragment @frag to contain @page.
3451  */
3452 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3453 {
3454 	frag->bv_page = page;
3455 }
3456 
3457 /**
3458  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3459  * @skb: the buffer
3460  * @f: the fragment offset
3461  * @page: the page to set
3462  *
3463  * Sets the @f'th fragment of @skb to contain @page.
3464  */
3465 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3466 				     struct page *page)
3467 {
3468 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3469 }
3470 
3471 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3472 
3473 /**
3474  * skb_frag_dma_map - maps a paged fragment via the DMA API
3475  * @dev: the device to map the fragment to
3476  * @frag: the paged fragment to map
3477  * @offset: the offset within the fragment (starting at the
3478  *          fragment's own offset)
3479  * @size: the number of bytes to map
3480  * @dir: the direction of the mapping (``PCI_DMA_*``)
3481  *
3482  * Maps the page associated with @frag to @device.
3483  */
3484 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3485 					  const skb_frag_t *frag,
3486 					  size_t offset, size_t size,
3487 					  enum dma_data_direction dir)
3488 {
3489 	return dma_map_page(dev, skb_frag_page(frag),
3490 			    skb_frag_off(frag) + offset, size, dir);
3491 }
3492 
3493 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3494 					gfp_t gfp_mask)
3495 {
3496 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3497 }
3498 
3499 
3500 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3501 						  gfp_t gfp_mask)
3502 {
3503 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3504 }
3505 
3506 
3507 /**
3508  *	skb_clone_writable - is the header of a clone writable
3509  *	@skb: buffer to check
3510  *	@len: length up to which to write
3511  *
3512  *	Returns true if modifying the header part of the cloned buffer
3513  *	does not requires the data to be copied.
3514  */
3515 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3516 {
3517 	return !skb_header_cloned(skb) &&
3518 	       skb_headroom(skb) + len <= skb->hdr_len;
3519 }
3520 
3521 static inline int skb_try_make_writable(struct sk_buff *skb,
3522 					unsigned int write_len)
3523 {
3524 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3525 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3526 }
3527 
3528 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3529 			    int cloned)
3530 {
3531 	int delta = 0;
3532 
3533 	if (headroom > skb_headroom(skb))
3534 		delta = headroom - skb_headroom(skb);
3535 
3536 	if (delta || cloned)
3537 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3538 					GFP_ATOMIC);
3539 	return 0;
3540 }
3541 
3542 /**
3543  *	skb_cow - copy header of skb when it is required
3544  *	@skb: buffer to cow
3545  *	@headroom: needed headroom
3546  *
3547  *	If the skb passed lacks sufficient headroom or its data part
3548  *	is shared, data is reallocated. If reallocation fails, an error
3549  *	is returned and original skb is not changed.
3550  *
3551  *	The result is skb with writable area skb->head...skb->tail
3552  *	and at least @headroom of space at head.
3553  */
3554 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3555 {
3556 	return __skb_cow(skb, headroom, skb_cloned(skb));
3557 }
3558 
3559 /**
3560  *	skb_cow_head - skb_cow but only making the head writable
3561  *	@skb: buffer to cow
3562  *	@headroom: needed headroom
3563  *
3564  *	This function is identical to skb_cow except that we replace the
3565  *	skb_cloned check by skb_header_cloned.  It should be used when
3566  *	you only need to push on some header and do not need to modify
3567  *	the data.
3568  */
3569 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3570 {
3571 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3572 }
3573 
3574 /**
3575  *	skb_padto	- pad an skbuff up to a minimal size
3576  *	@skb: buffer to pad
3577  *	@len: minimal length
3578  *
3579  *	Pads up a buffer to ensure the trailing bytes exist and are
3580  *	blanked. If the buffer already contains sufficient data it
3581  *	is untouched. Otherwise it is extended. Returns zero on
3582  *	success. The skb is freed on error.
3583  */
3584 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3585 {
3586 	unsigned int size = skb->len;
3587 	if (likely(size >= len))
3588 		return 0;
3589 	return skb_pad(skb, len - size);
3590 }
3591 
3592 /**
3593  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3594  *	@skb: buffer to pad
3595  *	@len: minimal length
3596  *	@free_on_error: free buffer on error
3597  *
3598  *	Pads up a buffer to ensure the trailing bytes exist and are
3599  *	blanked. If the buffer already contains sufficient data it
3600  *	is untouched. Otherwise it is extended. Returns zero on
3601  *	success. The skb is freed on error if @free_on_error is true.
3602  */
3603 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3604 					       unsigned int len,
3605 					       bool free_on_error)
3606 {
3607 	unsigned int size = skb->len;
3608 
3609 	if (unlikely(size < len)) {
3610 		len -= size;
3611 		if (__skb_pad(skb, len, free_on_error))
3612 			return -ENOMEM;
3613 		__skb_put(skb, len);
3614 	}
3615 	return 0;
3616 }
3617 
3618 /**
3619  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3620  *	@skb: buffer to pad
3621  *	@len: minimal length
3622  *
3623  *	Pads up a buffer to ensure the trailing bytes exist and are
3624  *	blanked. If the buffer already contains sufficient data it
3625  *	is untouched. Otherwise it is extended. Returns zero on
3626  *	success. The skb is freed on error.
3627  */
3628 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3629 {
3630 	return __skb_put_padto(skb, len, true);
3631 }
3632 
3633 static inline int skb_add_data(struct sk_buff *skb,
3634 			       struct iov_iter *from, int copy)
3635 {
3636 	const int off = skb->len;
3637 
3638 	if (skb->ip_summed == CHECKSUM_NONE) {
3639 		__wsum csum = 0;
3640 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3641 					         &csum, from)) {
3642 			skb->csum = csum_block_add(skb->csum, csum, off);
3643 			return 0;
3644 		}
3645 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3646 		return 0;
3647 
3648 	__skb_trim(skb, off);
3649 	return -EFAULT;
3650 }
3651 
3652 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3653 				    const struct page *page, int off)
3654 {
3655 	if (skb_zcopy(skb))
3656 		return false;
3657 	if (i) {
3658 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3659 
3660 		return page == skb_frag_page(frag) &&
3661 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3662 	}
3663 	return false;
3664 }
3665 
3666 static inline int __skb_linearize(struct sk_buff *skb)
3667 {
3668 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3669 }
3670 
3671 /**
3672  *	skb_linearize - convert paged skb to linear one
3673  *	@skb: buffer to linarize
3674  *
3675  *	If there is no free memory -ENOMEM is returned, otherwise zero
3676  *	is returned and the old skb data released.
3677  */
3678 static inline int skb_linearize(struct sk_buff *skb)
3679 {
3680 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3681 }
3682 
3683 /**
3684  * skb_has_shared_frag - can any frag be overwritten
3685  * @skb: buffer to test
3686  *
3687  * Return true if the skb has at least one frag that might be modified
3688  * by an external entity (as in vmsplice()/sendfile())
3689  */
3690 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3691 {
3692 	return skb_is_nonlinear(skb) &&
3693 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3694 }
3695 
3696 /**
3697  *	skb_linearize_cow - make sure skb is linear and writable
3698  *	@skb: buffer to process
3699  *
3700  *	If there is no free memory -ENOMEM is returned, otherwise zero
3701  *	is returned and the old skb data released.
3702  */
3703 static inline int skb_linearize_cow(struct sk_buff *skb)
3704 {
3705 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3706 	       __skb_linearize(skb) : 0;
3707 }
3708 
3709 static __always_inline void
3710 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3711 		     unsigned int off)
3712 {
3713 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3714 		skb->csum = csum_block_sub(skb->csum,
3715 					   csum_partial(start, len, 0), off);
3716 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3717 		 skb_checksum_start_offset(skb) < 0)
3718 		skb->ip_summed = CHECKSUM_NONE;
3719 }
3720 
3721 /**
3722  *	skb_postpull_rcsum - update checksum for received skb after pull
3723  *	@skb: buffer to update
3724  *	@start: start of data before pull
3725  *	@len: length of data pulled
3726  *
3727  *	After doing a pull on a received packet, you need to call this to
3728  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3729  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3730  */
3731 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3732 				      const void *start, unsigned int len)
3733 {
3734 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3735 		skb->csum = wsum_negate(csum_partial(start, len,
3736 						     wsum_negate(skb->csum)));
3737 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3738 		 skb_checksum_start_offset(skb) < 0)
3739 		skb->ip_summed = CHECKSUM_NONE;
3740 }
3741 
3742 static __always_inline void
3743 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3744 		     unsigned int off)
3745 {
3746 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3747 		skb->csum = csum_block_add(skb->csum,
3748 					   csum_partial(start, len, 0), off);
3749 }
3750 
3751 /**
3752  *	skb_postpush_rcsum - update checksum for received skb after push
3753  *	@skb: buffer to update
3754  *	@start: start of data after push
3755  *	@len: length of data pushed
3756  *
3757  *	After doing a push on a received packet, you need to call this to
3758  *	update the CHECKSUM_COMPLETE checksum.
3759  */
3760 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3761 				      const void *start, unsigned int len)
3762 {
3763 	__skb_postpush_rcsum(skb, start, len, 0);
3764 }
3765 
3766 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3767 
3768 /**
3769  *	skb_push_rcsum - push skb and update receive checksum
3770  *	@skb: buffer to update
3771  *	@len: length of data pulled
3772  *
3773  *	This function performs an skb_push on the packet and updates
3774  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3775  *	receive path processing instead of skb_push unless you know
3776  *	that the checksum difference is zero (e.g., a valid IP header)
3777  *	or you are setting ip_summed to CHECKSUM_NONE.
3778  */
3779 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3780 {
3781 	skb_push(skb, len);
3782 	skb_postpush_rcsum(skb, skb->data, len);
3783 	return skb->data;
3784 }
3785 
3786 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3787 /**
3788  *	pskb_trim_rcsum - trim received skb and update checksum
3789  *	@skb: buffer to trim
3790  *	@len: new length
3791  *
3792  *	This is exactly the same as pskb_trim except that it ensures the
3793  *	checksum of received packets are still valid after the operation.
3794  *	It can change skb pointers.
3795  */
3796 
3797 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3798 {
3799 	if (likely(len >= skb->len))
3800 		return 0;
3801 	return pskb_trim_rcsum_slow(skb, len);
3802 }
3803 
3804 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3805 {
3806 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3807 		skb->ip_summed = CHECKSUM_NONE;
3808 	__skb_trim(skb, len);
3809 	return 0;
3810 }
3811 
3812 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3813 {
3814 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3815 		skb->ip_summed = CHECKSUM_NONE;
3816 	return __skb_grow(skb, len);
3817 }
3818 
3819 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3820 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3821 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3822 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3823 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3824 
3825 #define skb_queue_walk(queue, skb) \
3826 		for (skb = (queue)->next;					\
3827 		     skb != (struct sk_buff *)(queue);				\
3828 		     skb = skb->next)
3829 
3830 #define skb_queue_walk_safe(queue, skb, tmp)					\
3831 		for (skb = (queue)->next, tmp = skb->next;			\
3832 		     skb != (struct sk_buff *)(queue);				\
3833 		     skb = tmp, tmp = skb->next)
3834 
3835 #define skb_queue_walk_from(queue, skb)						\
3836 		for (; skb != (struct sk_buff *)(queue);			\
3837 		     skb = skb->next)
3838 
3839 #define skb_rbtree_walk(skb, root)						\
3840 		for (skb = skb_rb_first(root); skb != NULL;			\
3841 		     skb = skb_rb_next(skb))
3842 
3843 #define skb_rbtree_walk_from(skb)						\
3844 		for (; skb != NULL;						\
3845 		     skb = skb_rb_next(skb))
3846 
3847 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3848 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3849 		     skb = tmp)
3850 
3851 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3852 		for (tmp = skb->next;						\
3853 		     skb != (struct sk_buff *)(queue);				\
3854 		     skb = tmp, tmp = skb->next)
3855 
3856 #define skb_queue_reverse_walk(queue, skb) \
3857 		for (skb = (queue)->prev;					\
3858 		     skb != (struct sk_buff *)(queue);				\
3859 		     skb = skb->prev)
3860 
3861 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3862 		for (skb = (queue)->prev, tmp = skb->prev;			\
3863 		     skb != (struct sk_buff *)(queue);				\
3864 		     skb = tmp, tmp = skb->prev)
3865 
3866 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3867 		for (tmp = skb->prev;						\
3868 		     skb != (struct sk_buff *)(queue);				\
3869 		     skb = tmp, tmp = skb->prev)
3870 
3871 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3872 {
3873 	return skb_shinfo(skb)->frag_list != NULL;
3874 }
3875 
3876 static inline void skb_frag_list_init(struct sk_buff *skb)
3877 {
3878 	skb_shinfo(skb)->frag_list = NULL;
3879 }
3880 
3881 #define skb_walk_frags(skb, iter)	\
3882 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3883 
3884 
3885 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3886 				int *err, long *timeo_p,
3887 				const struct sk_buff *skb);
3888 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3889 					  struct sk_buff_head *queue,
3890 					  unsigned int flags,
3891 					  int *off, int *err,
3892 					  struct sk_buff **last);
3893 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3894 					struct sk_buff_head *queue,
3895 					unsigned int flags, int *off, int *err,
3896 					struct sk_buff **last);
3897 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3898 				    struct sk_buff_head *sk_queue,
3899 				    unsigned int flags, int *off, int *err);
3900 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3901 __poll_t datagram_poll(struct file *file, struct socket *sock,
3902 			   struct poll_table_struct *wait);
3903 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3904 			   struct iov_iter *to, int size);
3905 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3906 					struct msghdr *msg, int size)
3907 {
3908 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3909 }
3910 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3911 				   struct msghdr *msg);
3912 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3913 			   struct iov_iter *to, int len,
3914 			   struct ahash_request *hash);
3915 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3916 				 struct iov_iter *from, int len);
3917 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3918 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3919 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3920 static inline void skb_free_datagram_locked(struct sock *sk,
3921 					    struct sk_buff *skb)
3922 {
3923 	__skb_free_datagram_locked(sk, skb, 0);
3924 }
3925 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3926 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3927 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3928 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3929 			      int len);
3930 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3931 		    struct pipe_inode_info *pipe, unsigned int len,
3932 		    unsigned int flags);
3933 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3934 			 int len);
3935 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3936 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3937 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3938 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3939 		 int len, int hlen);
3940 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3941 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3942 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3943 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3944 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3945 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3946 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3947 				 unsigned int offset);
3948 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3949 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3950 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3951 int skb_vlan_pop(struct sk_buff *skb);
3952 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3953 int skb_eth_pop(struct sk_buff *skb);
3954 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3955 		 const unsigned char *src);
3956 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3957 		  int mac_len, bool ethernet);
3958 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3959 		 bool ethernet);
3960 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3961 int skb_mpls_dec_ttl(struct sk_buff *skb);
3962 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3963 			     gfp_t gfp);
3964 
3965 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3966 {
3967 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3968 }
3969 
3970 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3971 {
3972 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3973 }
3974 
3975 struct skb_checksum_ops {
3976 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3977 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3978 };
3979 
3980 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3981 
3982 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3983 		      __wsum csum, const struct skb_checksum_ops *ops);
3984 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3985 		    __wsum csum);
3986 
3987 static inline void * __must_check
3988 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3989 		     const void *data, int hlen, void *buffer)
3990 {
3991 	if (likely(hlen - offset >= len))
3992 		return (void *)data + offset;
3993 
3994 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3995 		return NULL;
3996 
3997 	return buffer;
3998 }
3999 
4000 static inline void * __must_check
4001 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4002 {
4003 	return __skb_header_pointer(skb, offset, len, skb->data,
4004 				    skb_headlen(skb), buffer);
4005 }
4006 
4007 /**
4008  *	skb_needs_linearize - check if we need to linearize a given skb
4009  *			      depending on the given device features.
4010  *	@skb: socket buffer to check
4011  *	@features: net device features
4012  *
4013  *	Returns true if either:
4014  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4015  *	2. skb is fragmented and the device does not support SG.
4016  */
4017 static inline bool skb_needs_linearize(struct sk_buff *skb,
4018 				       netdev_features_t features)
4019 {
4020 	return skb_is_nonlinear(skb) &&
4021 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4022 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4023 }
4024 
4025 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4026 					     void *to,
4027 					     const unsigned int len)
4028 {
4029 	memcpy(to, skb->data, len);
4030 }
4031 
4032 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4033 						    const int offset, void *to,
4034 						    const unsigned int len)
4035 {
4036 	memcpy(to, skb->data + offset, len);
4037 }
4038 
4039 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4040 					   const void *from,
4041 					   const unsigned int len)
4042 {
4043 	memcpy(skb->data, from, len);
4044 }
4045 
4046 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4047 						  const int offset,
4048 						  const void *from,
4049 						  const unsigned int len)
4050 {
4051 	memcpy(skb->data + offset, from, len);
4052 }
4053 
4054 void skb_init(void);
4055 
4056 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4057 {
4058 	return skb->tstamp;
4059 }
4060 
4061 /**
4062  *	skb_get_timestamp - get timestamp from a skb
4063  *	@skb: skb to get stamp from
4064  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4065  *
4066  *	Timestamps are stored in the skb as offsets to a base timestamp.
4067  *	This function converts the offset back to a struct timeval and stores
4068  *	it in stamp.
4069  */
4070 static inline void skb_get_timestamp(const struct sk_buff *skb,
4071 				     struct __kernel_old_timeval *stamp)
4072 {
4073 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4074 }
4075 
4076 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4077 					 struct __kernel_sock_timeval *stamp)
4078 {
4079 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4080 
4081 	stamp->tv_sec = ts.tv_sec;
4082 	stamp->tv_usec = ts.tv_nsec / 1000;
4083 }
4084 
4085 static inline void skb_get_timestampns(const struct sk_buff *skb,
4086 				       struct __kernel_old_timespec *stamp)
4087 {
4088 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4089 
4090 	stamp->tv_sec = ts.tv_sec;
4091 	stamp->tv_nsec = ts.tv_nsec;
4092 }
4093 
4094 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4095 					   struct __kernel_timespec *stamp)
4096 {
4097 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4098 
4099 	stamp->tv_sec = ts.tv_sec;
4100 	stamp->tv_nsec = ts.tv_nsec;
4101 }
4102 
4103 static inline void __net_timestamp(struct sk_buff *skb)
4104 {
4105 	skb->tstamp = ktime_get_real();
4106 	skb->mono_delivery_time = 0;
4107 }
4108 
4109 static inline ktime_t net_timedelta(ktime_t t)
4110 {
4111 	return ktime_sub(ktime_get_real(), t);
4112 }
4113 
4114 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4115 					 bool mono)
4116 {
4117 	skb->tstamp = kt;
4118 	skb->mono_delivery_time = kt && mono;
4119 }
4120 
4121 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4122 
4123 /* It is used in the ingress path to clear the delivery_time.
4124  * If needed, set the skb->tstamp to the (rcv) timestamp.
4125  */
4126 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4127 {
4128 	if (skb->mono_delivery_time) {
4129 		skb->mono_delivery_time = 0;
4130 		if (static_branch_unlikely(&netstamp_needed_key))
4131 			skb->tstamp = ktime_get_real();
4132 		else
4133 			skb->tstamp = 0;
4134 	}
4135 }
4136 
4137 static inline void skb_clear_tstamp(struct sk_buff *skb)
4138 {
4139 	if (skb->mono_delivery_time)
4140 		return;
4141 
4142 	skb->tstamp = 0;
4143 }
4144 
4145 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4146 {
4147 	if (skb->mono_delivery_time)
4148 		return 0;
4149 
4150 	return skb->tstamp;
4151 }
4152 
4153 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4154 {
4155 	if (!skb->mono_delivery_time && skb->tstamp)
4156 		return skb->tstamp;
4157 
4158 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4159 		return ktime_get_real();
4160 
4161 	return 0;
4162 }
4163 
4164 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4165 {
4166 	return skb_shinfo(skb)->meta_len;
4167 }
4168 
4169 static inline void *skb_metadata_end(const struct sk_buff *skb)
4170 {
4171 	return skb_mac_header(skb);
4172 }
4173 
4174 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4175 					  const struct sk_buff *skb_b,
4176 					  u8 meta_len)
4177 {
4178 	const void *a = skb_metadata_end(skb_a);
4179 	const void *b = skb_metadata_end(skb_b);
4180 	/* Using more efficient varaiant than plain call to memcmp(). */
4181 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4182 	u64 diffs = 0;
4183 
4184 	switch (meta_len) {
4185 #define __it(x, op) (x -= sizeof(u##op))
4186 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4187 	case 32: diffs |= __it_diff(a, b, 64);
4188 		fallthrough;
4189 	case 24: diffs |= __it_diff(a, b, 64);
4190 		fallthrough;
4191 	case 16: diffs |= __it_diff(a, b, 64);
4192 		fallthrough;
4193 	case  8: diffs |= __it_diff(a, b, 64);
4194 		break;
4195 	case 28: diffs |= __it_diff(a, b, 64);
4196 		fallthrough;
4197 	case 20: diffs |= __it_diff(a, b, 64);
4198 		fallthrough;
4199 	case 12: diffs |= __it_diff(a, b, 64);
4200 		fallthrough;
4201 	case  4: diffs |= __it_diff(a, b, 32);
4202 		break;
4203 	}
4204 	return diffs;
4205 #else
4206 	return memcmp(a - meta_len, b - meta_len, meta_len);
4207 #endif
4208 }
4209 
4210 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4211 					const struct sk_buff *skb_b)
4212 {
4213 	u8 len_a = skb_metadata_len(skb_a);
4214 	u8 len_b = skb_metadata_len(skb_b);
4215 
4216 	if (!(len_a | len_b))
4217 		return false;
4218 
4219 	return len_a != len_b ?
4220 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4221 }
4222 
4223 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4224 {
4225 	skb_shinfo(skb)->meta_len = meta_len;
4226 }
4227 
4228 static inline void skb_metadata_clear(struct sk_buff *skb)
4229 {
4230 	skb_metadata_set(skb, 0);
4231 }
4232 
4233 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4234 
4235 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4236 
4237 void skb_clone_tx_timestamp(struct sk_buff *skb);
4238 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4239 
4240 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4241 
4242 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4243 {
4244 }
4245 
4246 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4247 {
4248 	return false;
4249 }
4250 
4251 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4252 
4253 /**
4254  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4255  *
4256  * PHY drivers may accept clones of transmitted packets for
4257  * timestamping via their phy_driver.txtstamp method. These drivers
4258  * must call this function to return the skb back to the stack with a
4259  * timestamp.
4260  *
4261  * @skb: clone of the original outgoing packet
4262  * @hwtstamps: hardware time stamps
4263  *
4264  */
4265 void skb_complete_tx_timestamp(struct sk_buff *skb,
4266 			       struct skb_shared_hwtstamps *hwtstamps);
4267 
4268 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4269 		     struct skb_shared_hwtstamps *hwtstamps,
4270 		     struct sock *sk, int tstype);
4271 
4272 /**
4273  * skb_tstamp_tx - queue clone of skb with send time stamps
4274  * @orig_skb:	the original outgoing packet
4275  * @hwtstamps:	hardware time stamps, may be NULL if not available
4276  *
4277  * If the skb has a socket associated, then this function clones the
4278  * skb (thus sharing the actual data and optional structures), stores
4279  * the optional hardware time stamping information (if non NULL) or
4280  * generates a software time stamp (otherwise), then queues the clone
4281  * to the error queue of the socket.  Errors are silently ignored.
4282  */
4283 void skb_tstamp_tx(struct sk_buff *orig_skb,
4284 		   struct skb_shared_hwtstamps *hwtstamps);
4285 
4286 /**
4287  * skb_tx_timestamp() - Driver hook for transmit timestamping
4288  *
4289  * Ethernet MAC Drivers should call this function in their hard_xmit()
4290  * function immediately before giving the sk_buff to the MAC hardware.
4291  *
4292  * Specifically, one should make absolutely sure that this function is
4293  * called before TX completion of this packet can trigger.  Otherwise
4294  * the packet could potentially already be freed.
4295  *
4296  * @skb: A socket buffer.
4297  */
4298 static inline void skb_tx_timestamp(struct sk_buff *skb)
4299 {
4300 	skb_clone_tx_timestamp(skb);
4301 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4302 		skb_tstamp_tx(skb, NULL);
4303 }
4304 
4305 /**
4306  * skb_complete_wifi_ack - deliver skb with wifi status
4307  *
4308  * @skb: the original outgoing packet
4309  * @acked: ack status
4310  *
4311  */
4312 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4313 
4314 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4315 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4316 
4317 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4318 {
4319 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4320 		skb->csum_valid ||
4321 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4322 		 skb_checksum_start_offset(skb) >= 0));
4323 }
4324 
4325 /**
4326  *	skb_checksum_complete - Calculate checksum of an entire packet
4327  *	@skb: packet to process
4328  *
4329  *	This function calculates the checksum over the entire packet plus
4330  *	the value of skb->csum.  The latter can be used to supply the
4331  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4332  *	checksum.
4333  *
4334  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4335  *	this function can be used to verify that checksum on received
4336  *	packets.  In that case the function should return zero if the
4337  *	checksum is correct.  In particular, this function will return zero
4338  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4339  *	hardware has already verified the correctness of the checksum.
4340  */
4341 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4342 {
4343 	return skb_csum_unnecessary(skb) ?
4344 	       0 : __skb_checksum_complete(skb);
4345 }
4346 
4347 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4348 {
4349 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4350 		if (skb->csum_level == 0)
4351 			skb->ip_summed = CHECKSUM_NONE;
4352 		else
4353 			skb->csum_level--;
4354 	}
4355 }
4356 
4357 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4358 {
4359 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4360 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4361 			skb->csum_level++;
4362 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4363 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4364 		skb->csum_level = 0;
4365 	}
4366 }
4367 
4368 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4369 {
4370 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4371 		skb->ip_summed = CHECKSUM_NONE;
4372 		skb->csum_level = 0;
4373 	}
4374 }
4375 
4376 /* Check if we need to perform checksum complete validation.
4377  *
4378  * Returns true if checksum complete is needed, false otherwise
4379  * (either checksum is unnecessary or zero checksum is allowed).
4380  */
4381 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4382 						  bool zero_okay,
4383 						  __sum16 check)
4384 {
4385 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4386 		skb->csum_valid = 1;
4387 		__skb_decr_checksum_unnecessary(skb);
4388 		return false;
4389 	}
4390 
4391 	return true;
4392 }
4393 
4394 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4395  * in checksum_init.
4396  */
4397 #define CHECKSUM_BREAK 76
4398 
4399 /* Unset checksum-complete
4400  *
4401  * Unset checksum complete can be done when packet is being modified
4402  * (uncompressed for instance) and checksum-complete value is
4403  * invalidated.
4404  */
4405 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4406 {
4407 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4408 		skb->ip_summed = CHECKSUM_NONE;
4409 }
4410 
4411 /* Validate (init) checksum based on checksum complete.
4412  *
4413  * Return values:
4414  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4415  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4416  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4417  *   non-zero: value of invalid checksum
4418  *
4419  */
4420 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4421 						       bool complete,
4422 						       __wsum psum)
4423 {
4424 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4425 		if (!csum_fold(csum_add(psum, skb->csum))) {
4426 			skb->csum_valid = 1;
4427 			return 0;
4428 		}
4429 	}
4430 
4431 	skb->csum = psum;
4432 
4433 	if (complete || skb->len <= CHECKSUM_BREAK) {
4434 		__sum16 csum;
4435 
4436 		csum = __skb_checksum_complete(skb);
4437 		skb->csum_valid = !csum;
4438 		return csum;
4439 	}
4440 
4441 	return 0;
4442 }
4443 
4444 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4445 {
4446 	return 0;
4447 }
4448 
4449 /* Perform checksum validate (init). Note that this is a macro since we only
4450  * want to calculate the pseudo header which is an input function if necessary.
4451  * First we try to validate without any computation (checksum unnecessary) and
4452  * then calculate based on checksum complete calling the function to compute
4453  * pseudo header.
4454  *
4455  * Return values:
4456  *   0: checksum is validated or try to in skb_checksum_complete
4457  *   non-zero: value of invalid checksum
4458  */
4459 #define __skb_checksum_validate(skb, proto, complete,			\
4460 				zero_okay, check, compute_pseudo)	\
4461 ({									\
4462 	__sum16 __ret = 0;						\
4463 	skb->csum_valid = 0;						\
4464 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4465 		__ret = __skb_checksum_validate_complete(skb,		\
4466 				complete, compute_pseudo(skb, proto));	\
4467 	__ret;								\
4468 })
4469 
4470 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4471 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4472 
4473 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4474 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4475 
4476 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4477 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4478 
4479 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4480 					 compute_pseudo)		\
4481 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4482 
4483 #define skb_checksum_simple_validate(skb)				\
4484 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4485 
4486 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4487 {
4488 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4489 }
4490 
4491 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4492 {
4493 	skb->csum = ~pseudo;
4494 	skb->ip_summed = CHECKSUM_COMPLETE;
4495 }
4496 
4497 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4498 do {									\
4499 	if (__skb_checksum_convert_check(skb))				\
4500 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4501 } while (0)
4502 
4503 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4504 					      u16 start, u16 offset)
4505 {
4506 	skb->ip_summed = CHECKSUM_PARTIAL;
4507 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4508 	skb->csum_offset = offset - start;
4509 }
4510 
4511 /* Update skbuf and packet to reflect the remote checksum offload operation.
4512  * When called, ptr indicates the starting point for skb->csum when
4513  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4514  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4515  */
4516 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4517 				       int start, int offset, bool nopartial)
4518 {
4519 	__wsum delta;
4520 
4521 	if (!nopartial) {
4522 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4523 		return;
4524 	}
4525 
4526 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4527 		__skb_checksum_complete(skb);
4528 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4529 	}
4530 
4531 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4532 
4533 	/* Adjust skb->csum since we changed the packet */
4534 	skb->csum = csum_add(skb->csum, delta);
4535 }
4536 
4537 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4538 {
4539 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4540 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4541 #else
4542 	return NULL;
4543 #endif
4544 }
4545 
4546 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4547 {
4548 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4549 	return skb->_nfct;
4550 #else
4551 	return 0UL;
4552 #endif
4553 }
4554 
4555 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4556 {
4557 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4558 	skb->slow_gro |= !!nfct;
4559 	skb->_nfct = nfct;
4560 #endif
4561 }
4562 
4563 #ifdef CONFIG_SKB_EXTENSIONS
4564 enum skb_ext_id {
4565 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4566 	SKB_EXT_BRIDGE_NF,
4567 #endif
4568 #ifdef CONFIG_XFRM
4569 	SKB_EXT_SEC_PATH,
4570 #endif
4571 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4572 	TC_SKB_EXT,
4573 #endif
4574 #if IS_ENABLED(CONFIG_MPTCP)
4575 	SKB_EXT_MPTCP,
4576 #endif
4577 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4578 	SKB_EXT_MCTP,
4579 #endif
4580 	SKB_EXT_NUM, /* must be last */
4581 };
4582 
4583 /**
4584  *	struct skb_ext - sk_buff extensions
4585  *	@refcnt: 1 on allocation, deallocated on 0
4586  *	@offset: offset to add to @data to obtain extension address
4587  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4588  *	@data: start of extension data, variable sized
4589  *
4590  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4591  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4592  */
4593 struct skb_ext {
4594 	refcount_t refcnt;
4595 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4596 	u8 chunks;		/* same */
4597 	char data[] __aligned(8);
4598 };
4599 
4600 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4601 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4602 		    struct skb_ext *ext);
4603 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4604 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4605 void __skb_ext_put(struct skb_ext *ext);
4606 
4607 static inline void skb_ext_put(struct sk_buff *skb)
4608 {
4609 	if (skb->active_extensions)
4610 		__skb_ext_put(skb->extensions);
4611 }
4612 
4613 static inline void __skb_ext_copy(struct sk_buff *dst,
4614 				  const struct sk_buff *src)
4615 {
4616 	dst->active_extensions = src->active_extensions;
4617 
4618 	if (src->active_extensions) {
4619 		struct skb_ext *ext = src->extensions;
4620 
4621 		refcount_inc(&ext->refcnt);
4622 		dst->extensions = ext;
4623 	}
4624 }
4625 
4626 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4627 {
4628 	skb_ext_put(dst);
4629 	__skb_ext_copy(dst, src);
4630 }
4631 
4632 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4633 {
4634 	return !!ext->offset[i];
4635 }
4636 
4637 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4638 {
4639 	return skb->active_extensions & (1 << id);
4640 }
4641 
4642 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4643 {
4644 	if (skb_ext_exist(skb, id))
4645 		__skb_ext_del(skb, id);
4646 }
4647 
4648 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4649 {
4650 	if (skb_ext_exist(skb, id)) {
4651 		struct skb_ext *ext = skb->extensions;
4652 
4653 		return (void *)ext + (ext->offset[id] << 3);
4654 	}
4655 
4656 	return NULL;
4657 }
4658 
4659 static inline void skb_ext_reset(struct sk_buff *skb)
4660 {
4661 	if (unlikely(skb->active_extensions)) {
4662 		__skb_ext_put(skb->extensions);
4663 		skb->active_extensions = 0;
4664 	}
4665 }
4666 
4667 static inline bool skb_has_extensions(struct sk_buff *skb)
4668 {
4669 	return unlikely(skb->active_extensions);
4670 }
4671 #else
4672 static inline void skb_ext_put(struct sk_buff *skb) {}
4673 static inline void skb_ext_reset(struct sk_buff *skb) {}
4674 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4675 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4676 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4677 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4678 #endif /* CONFIG_SKB_EXTENSIONS */
4679 
4680 static inline void nf_reset_ct(struct sk_buff *skb)
4681 {
4682 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4683 	nf_conntrack_put(skb_nfct(skb));
4684 	skb->_nfct = 0;
4685 #endif
4686 }
4687 
4688 static inline void nf_reset_trace(struct sk_buff *skb)
4689 {
4690 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4691 	skb->nf_trace = 0;
4692 #endif
4693 }
4694 
4695 static inline void ipvs_reset(struct sk_buff *skb)
4696 {
4697 #if IS_ENABLED(CONFIG_IP_VS)
4698 	skb->ipvs_property = 0;
4699 #endif
4700 }
4701 
4702 /* Note: This doesn't put any conntrack info in dst. */
4703 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4704 			     bool copy)
4705 {
4706 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4707 	dst->_nfct = src->_nfct;
4708 	nf_conntrack_get(skb_nfct(src));
4709 #endif
4710 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4711 	if (copy)
4712 		dst->nf_trace = src->nf_trace;
4713 #endif
4714 }
4715 
4716 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4717 {
4718 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4719 	nf_conntrack_put(skb_nfct(dst));
4720 #endif
4721 	dst->slow_gro = src->slow_gro;
4722 	__nf_copy(dst, src, true);
4723 }
4724 
4725 #ifdef CONFIG_NETWORK_SECMARK
4726 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4727 {
4728 	to->secmark = from->secmark;
4729 }
4730 
4731 static inline void skb_init_secmark(struct sk_buff *skb)
4732 {
4733 	skb->secmark = 0;
4734 }
4735 #else
4736 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4737 { }
4738 
4739 static inline void skb_init_secmark(struct sk_buff *skb)
4740 { }
4741 #endif
4742 
4743 static inline int secpath_exists(const struct sk_buff *skb)
4744 {
4745 #ifdef CONFIG_XFRM
4746 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4747 #else
4748 	return 0;
4749 #endif
4750 }
4751 
4752 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4753 {
4754 	return !skb->destructor &&
4755 		!secpath_exists(skb) &&
4756 		!skb_nfct(skb) &&
4757 		!skb->_skb_refdst &&
4758 		!skb_has_frag_list(skb);
4759 }
4760 
4761 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4762 {
4763 	skb->queue_mapping = queue_mapping;
4764 }
4765 
4766 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4767 {
4768 	return skb->queue_mapping;
4769 }
4770 
4771 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4772 {
4773 	to->queue_mapping = from->queue_mapping;
4774 }
4775 
4776 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4777 {
4778 	skb->queue_mapping = rx_queue + 1;
4779 }
4780 
4781 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4782 {
4783 	return skb->queue_mapping - 1;
4784 }
4785 
4786 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4787 {
4788 	return skb->queue_mapping != 0;
4789 }
4790 
4791 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4792 {
4793 	skb->dst_pending_confirm = val;
4794 }
4795 
4796 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4797 {
4798 	return skb->dst_pending_confirm != 0;
4799 }
4800 
4801 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4802 {
4803 #ifdef CONFIG_XFRM
4804 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4805 #else
4806 	return NULL;
4807 #endif
4808 }
4809 
4810 /* Keeps track of mac header offset relative to skb->head.
4811  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4812  * For non-tunnel skb it points to skb_mac_header() and for
4813  * tunnel skb it points to outer mac header.
4814  * Keeps track of level of encapsulation of network headers.
4815  */
4816 struct skb_gso_cb {
4817 	union {
4818 		int	mac_offset;
4819 		int	data_offset;
4820 	};
4821 	int	encap_level;
4822 	__wsum	csum;
4823 	__u16	csum_start;
4824 };
4825 #define SKB_GSO_CB_OFFSET	32
4826 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4827 
4828 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4829 {
4830 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4831 		SKB_GSO_CB(inner_skb)->mac_offset;
4832 }
4833 
4834 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4835 {
4836 	int new_headroom, headroom;
4837 	int ret;
4838 
4839 	headroom = skb_headroom(skb);
4840 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4841 	if (ret)
4842 		return ret;
4843 
4844 	new_headroom = skb_headroom(skb);
4845 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4846 	return 0;
4847 }
4848 
4849 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4850 {
4851 	/* Do not update partial checksums if remote checksum is enabled. */
4852 	if (skb->remcsum_offload)
4853 		return;
4854 
4855 	SKB_GSO_CB(skb)->csum = res;
4856 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4857 }
4858 
4859 /* Compute the checksum for a gso segment. First compute the checksum value
4860  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4861  * then add in skb->csum (checksum from csum_start to end of packet).
4862  * skb->csum and csum_start are then updated to reflect the checksum of the
4863  * resultant packet starting from the transport header-- the resultant checksum
4864  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4865  * header.
4866  */
4867 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4868 {
4869 	unsigned char *csum_start = skb_transport_header(skb);
4870 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4871 	__wsum partial = SKB_GSO_CB(skb)->csum;
4872 
4873 	SKB_GSO_CB(skb)->csum = res;
4874 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4875 
4876 	return csum_fold(csum_partial(csum_start, plen, partial));
4877 }
4878 
4879 static inline bool skb_is_gso(const struct sk_buff *skb)
4880 {
4881 	return skb_shinfo(skb)->gso_size;
4882 }
4883 
4884 /* Note: Should be called only if skb_is_gso(skb) is true */
4885 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4886 {
4887 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4888 }
4889 
4890 /* Note: Should be called only if skb_is_gso(skb) is true */
4891 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4892 {
4893 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4894 }
4895 
4896 /* Note: Should be called only if skb_is_gso(skb) is true */
4897 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4898 {
4899 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4900 }
4901 
4902 static inline void skb_gso_reset(struct sk_buff *skb)
4903 {
4904 	skb_shinfo(skb)->gso_size = 0;
4905 	skb_shinfo(skb)->gso_segs = 0;
4906 	skb_shinfo(skb)->gso_type = 0;
4907 }
4908 
4909 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4910 					 u16 increment)
4911 {
4912 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4913 		return;
4914 	shinfo->gso_size += increment;
4915 }
4916 
4917 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4918 					 u16 decrement)
4919 {
4920 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4921 		return;
4922 	shinfo->gso_size -= decrement;
4923 }
4924 
4925 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4926 
4927 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4928 {
4929 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4930 	 * wanted then gso_type will be set. */
4931 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4932 
4933 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4934 	    unlikely(shinfo->gso_type == 0)) {
4935 		__skb_warn_lro_forwarding(skb);
4936 		return true;
4937 	}
4938 	return false;
4939 }
4940 
4941 static inline void skb_forward_csum(struct sk_buff *skb)
4942 {
4943 	/* Unfortunately we don't support this one.  Any brave souls? */
4944 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4945 		skb->ip_summed = CHECKSUM_NONE;
4946 }
4947 
4948 /**
4949  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4950  * @skb: skb to check
4951  *
4952  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4953  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4954  * use this helper, to document places where we make this assertion.
4955  */
4956 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4957 {
4958 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4959 }
4960 
4961 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4962 
4963 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4964 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4965 				     unsigned int transport_len,
4966 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4967 
4968 /**
4969  * skb_head_is_locked - Determine if the skb->head is locked down
4970  * @skb: skb to check
4971  *
4972  * The head on skbs build around a head frag can be removed if they are
4973  * not cloned.  This function returns true if the skb head is locked down
4974  * due to either being allocated via kmalloc, or by being a clone with
4975  * multiple references to the head.
4976  */
4977 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4978 {
4979 	return !skb->head_frag || skb_cloned(skb);
4980 }
4981 
4982 /* Local Checksum Offload.
4983  * Compute outer checksum based on the assumption that the
4984  * inner checksum will be offloaded later.
4985  * See Documentation/networking/checksum-offloads.rst for
4986  * explanation of how this works.
4987  * Fill in outer checksum adjustment (e.g. with sum of outer
4988  * pseudo-header) before calling.
4989  * Also ensure that inner checksum is in linear data area.
4990  */
4991 static inline __wsum lco_csum(struct sk_buff *skb)
4992 {
4993 	unsigned char *csum_start = skb_checksum_start(skb);
4994 	unsigned char *l4_hdr = skb_transport_header(skb);
4995 	__wsum partial;
4996 
4997 	/* Start with complement of inner checksum adjustment */
4998 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4999 						    skb->csum_offset));
5000 
5001 	/* Add in checksum of our headers (incl. outer checksum
5002 	 * adjustment filled in by caller) and return result.
5003 	 */
5004 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5005 }
5006 
5007 static inline bool skb_is_redirected(const struct sk_buff *skb)
5008 {
5009 	return skb->redirected;
5010 }
5011 
5012 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5013 {
5014 	skb->redirected = 1;
5015 #ifdef CONFIG_NET_REDIRECT
5016 	skb->from_ingress = from_ingress;
5017 	if (skb->from_ingress)
5018 		skb_clear_tstamp(skb);
5019 #endif
5020 }
5021 
5022 static inline void skb_reset_redirect(struct sk_buff *skb)
5023 {
5024 	skb->redirected = 0;
5025 }
5026 
5027 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5028 {
5029 	return skb->csum_not_inet;
5030 }
5031 
5032 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5033 				       const u64 kcov_handle)
5034 {
5035 #ifdef CONFIG_KCOV
5036 	skb->kcov_handle = kcov_handle;
5037 #endif
5038 }
5039 
5040 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5041 {
5042 #ifdef CONFIG_KCOV
5043 	return skb->kcov_handle;
5044 #else
5045 	return 0;
5046 #endif
5047 }
5048 
5049 #ifdef CONFIG_PAGE_POOL
5050 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5051 {
5052 	skb->pp_recycle = 1;
5053 }
5054 #endif
5055 
5056 #endif	/* __KERNEL__ */
5057 #endif	/* _LINUX_SKBUFF_H */
5058