xref: /linux-6.15/include/linux/skbuff.h (revision 12bb14aa)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 	atomic_t use;
250 };
251 #endif
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	refcount_t		use;
256 	enum {
257 		BRNF_PROTO_UNCHANGED,
258 		BRNF_PROTO_8021Q,
259 		BRNF_PROTO_PPPOE
260 	} orig_proto:8;
261 	u8			pkt_otherhost:1;
262 	u8			in_prerouting:1;
263 	u8			bridged_dnat:1;
264 	__u16			frag_max_size;
265 	struct net_device	*physindev;
266 
267 	/* always valid & non-NULL from FORWARD on, for physdev match */
268 	struct net_device	*physoutdev;
269 	union {
270 		/* prerouting: detect dnat in orig/reply direction */
271 		__be32          ipv4_daddr;
272 		struct in6_addr ipv6_daddr;
273 
274 		/* after prerouting + nat detected: store original source
275 		 * mac since neigh resolution overwrites it, only used while
276 		 * skb is out in neigh layer.
277 		 */
278 		char neigh_header[8];
279 	};
280 };
281 #endif
282 
283 struct sk_buff_head {
284 	/* These two members must be first. */
285 	struct sk_buff	*next;
286 	struct sk_buff	*prev;
287 
288 	__u32		qlen;
289 	spinlock_t	lock;
290 };
291 
292 struct sk_buff;
293 
294 /* To allow 64K frame to be packed as single skb without frag_list we
295  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296  * buffers which do not start on a page boundary.
297  *
298  * Since GRO uses frags we allocate at least 16 regardless of page
299  * size.
300  */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307 
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309  * segment using its current segmentation instead.
310  */
311 #define GSO_BY_FRAGS	0xFFFF
312 
313 typedef struct skb_frag_struct skb_frag_t;
314 
315 struct skb_frag_struct {
316 	struct {
317 		struct page *p;
318 	} page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 	__u32 page_offset;
321 	__u32 size;
322 #else
323 	__u16 page_offset;
324 	__u16 size;
325 #endif
326 };
327 
328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 	return frag->size;
331 }
332 
333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 	frag->size = size;
336 }
337 
338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 	frag->size += delta;
341 }
342 
343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 	frag->size -= delta;
346 }
347 
348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 	if (PageHighMem(p))
352 		return true;
353 #endif
354 	return false;
355 }
356 
357 /**
358  *	skb_frag_foreach_page - loop over pages in a fragment
359  *
360  *	@f:		skb frag to operate on
361  *	@f_off:		offset from start of f->page.p
362  *	@f_len:		length from f_off to loop over
363  *	@p:		(temp var) current page
364  *	@p_off:		(temp var) offset from start of current page,
365  *	                           non-zero only on first page.
366  *	@p_len:		(temp var) length in current page,
367  *				   < PAGE_SIZE only on first and last page.
368  *	@copied:	(temp var) length so far, excluding current p_len.
369  *
370  *	A fragment can hold a compound page, in which case per-page
371  *	operations, notably kmap_atomic, must be called for each
372  *	regular page.
373  */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
375 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
376 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
377 	     p_len = skb_frag_must_loop(p) ?				\
378 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
379 	     copied = 0;						\
380 	     copied < f_len;						\
381 	     copied += p_len, p++, p_off = 0,				\
382 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
383 
384 #define HAVE_HW_TIME_STAMP
385 
386 /**
387  * struct skb_shared_hwtstamps - hardware time stamps
388  * @hwtstamp:	hardware time stamp transformed into duration
389  *		since arbitrary point in time
390  *
391  * Software time stamps generated by ktime_get_real() are stored in
392  * skb->tstamp.
393  *
394  * hwtstamps can only be compared against other hwtstamps from
395  * the same device.
396  *
397  * This structure is attached to packets as part of the
398  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399  */
400 struct skb_shared_hwtstamps {
401 	ktime_t	hwtstamp;
402 };
403 
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 	/* generate hardware time stamp */
407 	SKBTX_HW_TSTAMP = 1 << 0,
408 
409 	/* generate software time stamp when queueing packet to NIC */
410 	SKBTX_SW_TSTAMP = 1 << 1,
411 
412 	/* device driver is going to provide hardware time stamp */
413 	SKBTX_IN_PROGRESS = 1 << 2,
414 
415 	/* device driver supports TX zero-copy buffers */
416 	SKBTX_DEV_ZEROCOPY = 1 << 3,
417 
418 	/* generate wifi status information (where possible) */
419 	SKBTX_WIFI_STATUS = 1 << 4,
420 
421 	/* This indicates at least one fragment might be overwritten
422 	 * (as in vmsplice(), sendfile() ...)
423 	 * If we need to compute a TX checksum, we'll need to copy
424 	 * all frags to avoid possible bad checksum
425 	 */
426 	SKBTX_SHARED_FRAG = 1 << 5,
427 
428 	/* generate software time stamp when entering packet scheduling */
429 	SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431 
432 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
434 				 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436 
437 /*
438  * The callback notifies userspace to release buffers when skb DMA is done in
439  * lower device, the skb last reference should be 0 when calling this.
440  * The zerocopy_success argument is true if zero copy transmit occurred,
441  * false on data copy or out of memory error caused by data copy attempt.
442  * The ctx field is used to track device context.
443  * The desc field is used to track userspace buffer index.
444  */
445 struct ubuf_info {
446 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 	union {
448 		struct {
449 			unsigned long desc;
450 			void *ctx;
451 		};
452 		struct {
453 			u32 id;
454 			u16 len;
455 			u16 zerocopy:1;
456 			u32 bytelen;
457 		};
458 	};
459 	refcount_t refcnt;
460 
461 	struct mmpin {
462 		struct user_struct *user;
463 		unsigned int num_pg;
464 	} mmp;
465 };
466 
467 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468 
469 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
470 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
471 					struct ubuf_info *uarg);
472 
473 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
474 {
475 	refcount_inc(&uarg->refcnt);
476 }
477 
478 void sock_zerocopy_put(struct ubuf_info *uarg);
479 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
480 
481 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
482 
483 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
484 			     struct msghdr *msg, int len,
485 			     struct ubuf_info *uarg);
486 
487 /* This data is invariant across clones and lives at
488  * the end of the header data, ie. at skb->end.
489  */
490 struct skb_shared_info {
491 	__u8		__unused;
492 	__u8		meta_len;
493 	__u8		nr_frags;
494 	__u8		tx_flags;
495 	unsigned short	gso_size;
496 	/* Warning: this field is not always filled in (UFO)! */
497 	unsigned short	gso_segs;
498 	struct sk_buff	*frag_list;
499 	struct skb_shared_hwtstamps hwtstamps;
500 	unsigned int	gso_type;
501 	u32		tskey;
502 
503 	/*
504 	 * Warning : all fields before dataref are cleared in __alloc_skb()
505 	 */
506 	atomic_t	dataref;
507 
508 	/* Intermediate layers must ensure that destructor_arg
509 	 * remains valid until skb destructor */
510 	void *		destructor_arg;
511 
512 	/* must be last field, see pskb_expand_head() */
513 	skb_frag_t	frags[MAX_SKB_FRAGS];
514 };
515 
516 /* We divide dataref into two halves.  The higher 16 bits hold references
517  * to the payload part of skb->data.  The lower 16 bits hold references to
518  * the entire skb->data.  A clone of a headerless skb holds the length of
519  * the header in skb->hdr_len.
520  *
521  * All users must obey the rule that the skb->data reference count must be
522  * greater than or equal to the payload reference count.
523  *
524  * Holding a reference to the payload part means that the user does not
525  * care about modifications to the header part of skb->data.
526  */
527 #define SKB_DATAREF_SHIFT 16
528 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
529 
530 
531 enum {
532 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
533 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
534 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
535 };
536 
537 enum {
538 	SKB_GSO_TCPV4 = 1 << 0,
539 
540 	/* This indicates the skb is from an untrusted source. */
541 	SKB_GSO_DODGY = 1 << 1,
542 
543 	/* This indicates the tcp segment has CWR set. */
544 	SKB_GSO_TCP_ECN = 1 << 2,
545 
546 	SKB_GSO_TCP_FIXEDID = 1 << 3,
547 
548 	SKB_GSO_TCPV6 = 1 << 4,
549 
550 	SKB_GSO_FCOE = 1 << 5,
551 
552 	SKB_GSO_GRE = 1 << 6,
553 
554 	SKB_GSO_GRE_CSUM = 1 << 7,
555 
556 	SKB_GSO_IPXIP4 = 1 << 8,
557 
558 	SKB_GSO_IPXIP6 = 1 << 9,
559 
560 	SKB_GSO_UDP_TUNNEL = 1 << 10,
561 
562 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
563 
564 	SKB_GSO_PARTIAL = 1 << 12,
565 
566 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
567 
568 	SKB_GSO_SCTP = 1 << 14,
569 
570 	SKB_GSO_ESP = 1 << 15,
571 
572 	SKB_GSO_UDP = 1 << 16,
573 };
574 
575 #if BITS_PER_LONG > 32
576 #define NET_SKBUFF_DATA_USES_OFFSET 1
577 #endif
578 
579 #ifdef NET_SKBUFF_DATA_USES_OFFSET
580 typedef unsigned int sk_buff_data_t;
581 #else
582 typedef unsigned char *sk_buff_data_t;
583 #endif
584 
585 /**
586  *	struct sk_buff - socket buffer
587  *	@next: Next buffer in list
588  *	@prev: Previous buffer in list
589  *	@tstamp: Time we arrived/left
590  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
591  *	@sk: Socket we are owned by
592  *	@dev: Device we arrived on/are leaving by
593  *	@cb: Control buffer. Free for use by every layer. Put private vars here
594  *	@_skb_refdst: destination entry (with norefcount bit)
595  *	@sp: the security path, used for xfrm
596  *	@len: Length of actual data
597  *	@data_len: Data length
598  *	@mac_len: Length of link layer header
599  *	@hdr_len: writable header length of cloned skb
600  *	@csum: Checksum (must include start/offset pair)
601  *	@csum_start: Offset from skb->head where checksumming should start
602  *	@csum_offset: Offset from csum_start where checksum should be stored
603  *	@priority: Packet queueing priority
604  *	@ignore_df: allow local fragmentation
605  *	@cloned: Head may be cloned (check refcnt to be sure)
606  *	@ip_summed: Driver fed us an IP checksum
607  *	@nohdr: Payload reference only, must not modify header
608  *	@pkt_type: Packet class
609  *	@fclone: skbuff clone status
610  *	@ipvs_property: skbuff is owned by ipvs
611  *	@tc_skip_classify: do not classify packet. set by IFB device
612  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
613  *	@tc_redirected: packet was redirected by a tc action
614  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
615  *	@peeked: this packet has been seen already, so stats have been
616  *		done for it, don't do them again
617  *	@nf_trace: netfilter packet trace flag
618  *	@protocol: Packet protocol from driver
619  *	@destructor: Destruct function
620  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
621  *	@_nfct: Associated connection, if any (with nfctinfo bits)
622  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
623  *	@skb_iif: ifindex of device we arrived on
624  *	@tc_index: Traffic control index
625  *	@hash: the packet hash
626  *	@queue_mapping: Queue mapping for multiqueue devices
627  *	@xmit_more: More SKBs are pending for this queue
628  *	@ndisc_nodetype: router type (from link layer)
629  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
630  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
631  *		ports.
632  *	@sw_hash: indicates hash was computed in software stack
633  *	@wifi_acked_valid: wifi_acked was set
634  *	@wifi_acked: whether frame was acked on wifi or not
635  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
636  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
637  *	@dst_pending_confirm: need to confirm neighbour
638   *	@napi_id: id of the NAPI struct this skb came from
639  *	@secmark: security marking
640  *	@mark: Generic packet mark
641  *	@vlan_proto: vlan encapsulation protocol
642  *	@vlan_tci: vlan tag control information
643  *	@inner_protocol: Protocol (encapsulation)
644  *	@inner_transport_header: Inner transport layer header (encapsulation)
645  *	@inner_network_header: Network layer header (encapsulation)
646  *	@inner_mac_header: Link layer header (encapsulation)
647  *	@transport_header: Transport layer header
648  *	@network_header: Network layer header
649  *	@mac_header: Link layer header
650  *	@tail: Tail pointer
651  *	@end: End pointer
652  *	@head: Head of buffer
653  *	@data: Data head pointer
654  *	@truesize: Buffer size
655  *	@users: User count - see {datagram,tcp}.c
656  */
657 
658 struct sk_buff {
659 	union {
660 		struct {
661 			/* These two members must be first. */
662 			struct sk_buff		*next;
663 			struct sk_buff		*prev;
664 
665 			union {
666 				struct net_device	*dev;
667 				/* Some protocols might use this space to store information,
668 				 * while device pointer would be NULL.
669 				 * UDP receive path is one user.
670 				 */
671 				unsigned long		dev_scratch;
672 			};
673 		};
674 		struct rb_node	rbnode; /* used in netem & tcp stack */
675 	};
676 	struct sock		*sk;
677 
678 	union {
679 		ktime_t		tstamp;
680 		u64		skb_mstamp;
681 	};
682 	/*
683 	 * This is the control buffer. It is free to use for every
684 	 * layer. Please put your private variables there. If you
685 	 * want to keep them across layers you have to do a skb_clone()
686 	 * first. This is owned by whoever has the skb queued ATM.
687 	 */
688 	char			cb[48] __aligned(8);
689 
690 	union {
691 		struct {
692 			unsigned long	_skb_refdst;
693 			void		(*destructor)(struct sk_buff *skb);
694 		};
695 		struct list_head	tcp_tsorted_anchor;
696 	};
697 
698 #ifdef CONFIG_XFRM
699 	struct	sec_path	*sp;
700 #endif
701 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
702 	unsigned long		 _nfct;
703 #endif
704 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
705 	struct nf_bridge_info	*nf_bridge;
706 #endif
707 	unsigned int		len,
708 				data_len;
709 	__u16			mac_len,
710 				hdr_len;
711 
712 	/* Following fields are _not_ copied in __copy_skb_header()
713 	 * Note that queue_mapping is here mostly to fill a hole.
714 	 */
715 	__u16			queue_mapping;
716 
717 /* if you move cloned around you also must adapt those constants */
718 #ifdef __BIG_ENDIAN_BITFIELD
719 #define CLONED_MASK	(1 << 7)
720 #else
721 #define CLONED_MASK	1
722 #endif
723 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
724 
725 	__u8			__cloned_offset[0];
726 	__u8			cloned:1,
727 				nohdr:1,
728 				fclone:2,
729 				peeked:1,
730 				head_frag:1,
731 				xmit_more:1,
732 				__unused:1; /* one bit hole */
733 
734 	/* fields enclosed in headers_start/headers_end are copied
735 	 * using a single memcpy() in __copy_skb_header()
736 	 */
737 	/* private: */
738 	__u32			headers_start[0];
739 	/* public: */
740 
741 /* if you move pkt_type around you also must adapt those constants */
742 #ifdef __BIG_ENDIAN_BITFIELD
743 #define PKT_TYPE_MAX	(7 << 5)
744 #else
745 #define PKT_TYPE_MAX	7
746 #endif
747 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
748 
749 	__u8			__pkt_type_offset[0];
750 	__u8			pkt_type:3;
751 	__u8			pfmemalloc:1;
752 	__u8			ignore_df:1;
753 
754 	__u8			nf_trace:1;
755 	__u8			ip_summed:2;
756 	__u8			ooo_okay:1;
757 	__u8			l4_hash:1;
758 	__u8			sw_hash:1;
759 	__u8			wifi_acked_valid:1;
760 	__u8			wifi_acked:1;
761 
762 	__u8			no_fcs:1;
763 	/* Indicates the inner headers are valid in the skbuff. */
764 	__u8			encapsulation:1;
765 	__u8			encap_hdr_csum:1;
766 	__u8			csum_valid:1;
767 	__u8			csum_complete_sw:1;
768 	__u8			csum_level:2;
769 	__u8			csum_not_inet:1;
770 
771 	__u8			dst_pending_confirm:1;
772 #ifdef CONFIG_IPV6_NDISC_NODETYPE
773 	__u8			ndisc_nodetype:2;
774 #endif
775 	__u8			ipvs_property:1;
776 	__u8			inner_protocol_type:1;
777 	__u8			remcsum_offload:1;
778 #ifdef CONFIG_NET_SWITCHDEV
779 	__u8			offload_fwd_mark:1;
780 	__u8			offload_mr_fwd_mark:1;
781 #endif
782 #ifdef CONFIG_NET_CLS_ACT
783 	__u8			tc_skip_classify:1;
784 	__u8			tc_at_ingress:1;
785 	__u8			tc_redirected:1;
786 	__u8			tc_from_ingress:1;
787 #endif
788 
789 #ifdef CONFIG_NET_SCHED
790 	__u16			tc_index;	/* traffic control index */
791 #endif
792 
793 	union {
794 		__wsum		csum;
795 		struct {
796 			__u16	csum_start;
797 			__u16	csum_offset;
798 		};
799 	};
800 	__u32			priority;
801 	int			skb_iif;
802 	__u32			hash;
803 	__be16			vlan_proto;
804 	__u16			vlan_tci;
805 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
806 	union {
807 		unsigned int	napi_id;
808 		unsigned int	sender_cpu;
809 	};
810 #endif
811 #ifdef CONFIG_NETWORK_SECMARK
812 	__u32		secmark;
813 #endif
814 
815 	union {
816 		__u32		mark;
817 		__u32		reserved_tailroom;
818 	};
819 
820 	union {
821 		__be16		inner_protocol;
822 		__u8		inner_ipproto;
823 	};
824 
825 	__u16			inner_transport_header;
826 	__u16			inner_network_header;
827 	__u16			inner_mac_header;
828 
829 	__be16			protocol;
830 	__u16			transport_header;
831 	__u16			network_header;
832 	__u16			mac_header;
833 
834 	/* private: */
835 	__u32			headers_end[0];
836 	/* public: */
837 
838 	/* These elements must be at the end, see alloc_skb() for details.  */
839 	sk_buff_data_t		tail;
840 	sk_buff_data_t		end;
841 	unsigned char		*head,
842 				*data;
843 	unsigned int		truesize;
844 	refcount_t		users;
845 };
846 
847 #ifdef __KERNEL__
848 /*
849  *	Handling routines are only of interest to the kernel
850  */
851 #include <linux/slab.h>
852 
853 
854 #define SKB_ALLOC_FCLONE	0x01
855 #define SKB_ALLOC_RX		0x02
856 #define SKB_ALLOC_NAPI		0x04
857 
858 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
859 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
860 {
861 	return unlikely(skb->pfmemalloc);
862 }
863 
864 /*
865  * skb might have a dst pointer attached, refcounted or not.
866  * _skb_refdst low order bit is set if refcount was _not_ taken
867  */
868 #define SKB_DST_NOREF	1UL
869 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
870 
871 #define SKB_NFCT_PTRMASK	~(7UL)
872 /**
873  * skb_dst - returns skb dst_entry
874  * @skb: buffer
875  *
876  * Returns skb dst_entry, regardless of reference taken or not.
877  */
878 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
879 {
880 	/* If refdst was not refcounted, check we still are in a
881 	 * rcu_read_lock section
882 	 */
883 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
884 		!rcu_read_lock_held() &&
885 		!rcu_read_lock_bh_held());
886 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
887 }
888 
889 /**
890  * skb_dst_set - sets skb dst
891  * @skb: buffer
892  * @dst: dst entry
893  *
894  * Sets skb dst, assuming a reference was taken on dst and should
895  * be released by skb_dst_drop()
896  */
897 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
898 {
899 	skb->_skb_refdst = (unsigned long)dst;
900 }
901 
902 /**
903  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
904  * @skb: buffer
905  * @dst: dst entry
906  *
907  * Sets skb dst, assuming a reference was not taken on dst.
908  * If dst entry is cached, we do not take reference and dst_release
909  * will be avoided by refdst_drop. If dst entry is not cached, we take
910  * reference, so that last dst_release can destroy the dst immediately.
911  */
912 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
913 {
914 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
915 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
916 }
917 
918 /**
919  * skb_dst_is_noref - Test if skb dst isn't refcounted
920  * @skb: buffer
921  */
922 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
923 {
924 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
925 }
926 
927 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
928 {
929 	return (struct rtable *)skb_dst(skb);
930 }
931 
932 /* For mangling skb->pkt_type from user space side from applications
933  * such as nft, tc, etc, we only allow a conservative subset of
934  * possible pkt_types to be set.
935 */
936 static inline bool skb_pkt_type_ok(u32 ptype)
937 {
938 	return ptype <= PACKET_OTHERHOST;
939 }
940 
941 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
942 {
943 #ifdef CONFIG_NET_RX_BUSY_POLL
944 	return skb->napi_id;
945 #else
946 	return 0;
947 #endif
948 }
949 
950 /* decrement the reference count and return true if we can free the skb */
951 static inline bool skb_unref(struct sk_buff *skb)
952 {
953 	if (unlikely(!skb))
954 		return false;
955 	if (likely(refcount_read(&skb->users) == 1))
956 		smp_rmb();
957 	else if (likely(!refcount_dec_and_test(&skb->users)))
958 		return false;
959 
960 	return true;
961 }
962 
963 void skb_release_head_state(struct sk_buff *skb);
964 void kfree_skb(struct sk_buff *skb);
965 void kfree_skb_list(struct sk_buff *segs);
966 void skb_tx_error(struct sk_buff *skb);
967 void consume_skb(struct sk_buff *skb);
968 void __consume_stateless_skb(struct sk_buff *skb);
969 void  __kfree_skb(struct sk_buff *skb);
970 extern struct kmem_cache *skbuff_head_cache;
971 
972 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
973 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
974 		      bool *fragstolen, int *delta_truesize);
975 
976 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
977 			    int node);
978 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
979 struct sk_buff *build_skb(void *data, unsigned int frag_size);
980 static inline struct sk_buff *alloc_skb(unsigned int size,
981 					gfp_t priority)
982 {
983 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
984 }
985 
986 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
987 				     unsigned long data_len,
988 				     int max_page_order,
989 				     int *errcode,
990 				     gfp_t gfp_mask);
991 
992 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
993 struct sk_buff_fclones {
994 	struct sk_buff	skb1;
995 
996 	struct sk_buff	skb2;
997 
998 	refcount_t	fclone_ref;
999 };
1000 
1001 /**
1002  *	skb_fclone_busy - check if fclone is busy
1003  *	@sk: socket
1004  *	@skb: buffer
1005  *
1006  * Returns true if skb is a fast clone, and its clone is not freed.
1007  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1008  * so we also check that this didnt happen.
1009  */
1010 static inline bool skb_fclone_busy(const struct sock *sk,
1011 				   const struct sk_buff *skb)
1012 {
1013 	const struct sk_buff_fclones *fclones;
1014 
1015 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1016 
1017 	return skb->fclone == SKB_FCLONE_ORIG &&
1018 	       refcount_read(&fclones->fclone_ref) > 1 &&
1019 	       fclones->skb2.sk == sk;
1020 }
1021 
1022 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1023 					       gfp_t priority)
1024 {
1025 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1026 }
1027 
1028 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1029 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1030 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1031 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1032 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1033 				   gfp_t gfp_mask, bool fclone);
1034 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1035 					  gfp_t gfp_mask)
1036 {
1037 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1038 }
1039 
1040 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1041 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1042 				     unsigned int headroom);
1043 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1044 				int newtailroom, gfp_t priority);
1045 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1046 				     int offset, int len);
1047 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1048 			      int offset, int len);
1049 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1050 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1051 
1052 /**
1053  *	skb_pad			-	zero pad the tail of an skb
1054  *	@skb: buffer to pad
1055  *	@pad: space to pad
1056  *
1057  *	Ensure that a buffer is followed by a padding area that is zero
1058  *	filled. Used by network drivers which may DMA or transfer data
1059  *	beyond the buffer end onto the wire.
1060  *
1061  *	May return error in out of memory cases. The skb is freed on error.
1062  */
1063 static inline int skb_pad(struct sk_buff *skb, int pad)
1064 {
1065 	return __skb_pad(skb, pad, true);
1066 }
1067 #define dev_kfree_skb(a)	consume_skb(a)
1068 
1069 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1070 			    int getfrag(void *from, char *to, int offset,
1071 					int len, int odd, struct sk_buff *skb),
1072 			    void *from, int length);
1073 
1074 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1075 			 int offset, size_t size);
1076 
1077 struct skb_seq_state {
1078 	__u32		lower_offset;
1079 	__u32		upper_offset;
1080 	__u32		frag_idx;
1081 	__u32		stepped_offset;
1082 	struct sk_buff	*root_skb;
1083 	struct sk_buff	*cur_skb;
1084 	__u8		*frag_data;
1085 };
1086 
1087 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1088 			  unsigned int to, struct skb_seq_state *st);
1089 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1090 			  struct skb_seq_state *st);
1091 void skb_abort_seq_read(struct skb_seq_state *st);
1092 
1093 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1094 			   unsigned int to, struct ts_config *config);
1095 
1096 /*
1097  * Packet hash types specify the type of hash in skb_set_hash.
1098  *
1099  * Hash types refer to the protocol layer addresses which are used to
1100  * construct a packet's hash. The hashes are used to differentiate or identify
1101  * flows of the protocol layer for the hash type. Hash types are either
1102  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1103  *
1104  * Properties of hashes:
1105  *
1106  * 1) Two packets in different flows have different hash values
1107  * 2) Two packets in the same flow should have the same hash value
1108  *
1109  * A hash at a higher layer is considered to be more specific. A driver should
1110  * set the most specific hash possible.
1111  *
1112  * A driver cannot indicate a more specific hash than the layer at which a hash
1113  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1114  *
1115  * A driver may indicate a hash level which is less specific than the
1116  * actual layer the hash was computed on. For instance, a hash computed
1117  * at L4 may be considered an L3 hash. This should only be done if the
1118  * driver can't unambiguously determine that the HW computed the hash at
1119  * the higher layer. Note that the "should" in the second property above
1120  * permits this.
1121  */
1122 enum pkt_hash_types {
1123 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1124 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1125 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1126 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1127 };
1128 
1129 static inline void skb_clear_hash(struct sk_buff *skb)
1130 {
1131 	skb->hash = 0;
1132 	skb->sw_hash = 0;
1133 	skb->l4_hash = 0;
1134 }
1135 
1136 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1137 {
1138 	if (!skb->l4_hash)
1139 		skb_clear_hash(skb);
1140 }
1141 
1142 static inline void
1143 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1144 {
1145 	skb->l4_hash = is_l4;
1146 	skb->sw_hash = is_sw;
1147 	skb->hash = hash;
1148 }
1149 
1150 static inline void
1151 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1152 {
1153 	/* Used by drivers to set hash from HW */
1154 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1155 }
1156 
1157 static inline void
1158 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1159 {
1160 	__skb_set_hash(skb, hash, true, is_l4);
1161 }
1162 
1163 void __skb_get_hash(struct sk_buff *skb);
1164 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1165 u32 skb_get_poff(const struct sk_buff *skb);
1166 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1167 		   const struct flow_keys *keys, int hlen);
1168 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1169 			    void *data, int hlen_proto);
1170 
1171 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1172 					int thoff, u8 ip_proto)
1173 {
1174 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1175 }
1176 
1177 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1178 			     const struct flow_dissector_key *key,
1179 			     unsigned int key_count);
1180 
1181 bool __skb_flow_dissect(const struct sk_buff *skb,
1182 			struct flow_dissector *flow_dissector,
1183 			void *target_container,
1184 			void *data, __be16 proto, int nhoff, int hlen,
1185 			unsigned int flags);
1186 
1187 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1188 				    struct flow_dissector *flow_dissector,
1189 				    void *target_container, unsigned int flags)
1190 {
1191 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1192 				  NULL, 0, 0, 0, flags);
1193 }
1194 
1195 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1196 					      struct flow_keys *flow,
1197 					      unsigned int flags)
1198 {
1199 	memset(flow, 0, sizeof(*flow));
1200 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1201 				  NULL, 0, 0, 0, flags);
1202 }
1203 
1204 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1205 						  void *data, __be16 proto,
1206 						  int nhoff, int hlen,
1207 						  unsigned int flags)
1208 {
1209 	memset(flow, 0, sizeof(*flow));
1210 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1211 				  data, proto, nhoff, hlen, flags);
1212 }
1213 
1214 static inline __u32 skb_get_hash(struct sk_buff *skb)
1215 {
1216 	if (!skb->l4_hash && !skb->sw_hash)
1217 		__skb_get_hash(skb);
1218 
1219 	return skb->hash;
1220 }
1221 
1222 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1223 {
1224 	if (!skb->l4_hash && !skb->sw_hash) {
1225 		struct flow_keys keys;
1226 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1227 
1228 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1229 	}
1230 
1231 	return skb->hash;
1232 }
1233 
1234 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1235 
1236 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1237 {
1238 	return skb->hash;
1239 }
1240 
1241 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1242 {
1243 	to->hash = from->hash;
1244 	to->sw_hash = from->sw_hash;
1245 	to->l4_hash = from->l4_hash;
1246 };
1247 
1248 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1249 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1250 {
1251 	return skb->head + skb->end;
1252 }
1253 
1254 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1255 {
1256 	return skb->end;
1257 }
1258 #else
1259 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1260 {
1261 	return skb->end;
1262 }
1263 
1264 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1265 {
1266 	return skb->end - skb->head;
1267 }
1268 #endif
1269 
1270 /* Internal */
1271 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1272 
1273 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1274 {
1275 	return &skb_shinfo(skb)->hwtstamps;
1276 }
1277 
1278 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1279 {
1280 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1281 
1282 	return is_zcopy ? skb_uarg(skb) : NULL;
1283 }
1284 
1285 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1286 {
1287 	if (skb && uarg && !skb_zcopy(skb)) {
1288 		sock_zerocopy_get(uarg);
1289 		skb_shinfo(skb)->destructor_arg = uarg;
1290 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1291 	}
1292 }
1293 
1294 /* Release a reference on a zerocopy structure */
1295 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1296 {
1297 	struct ubuf_info *uarg = skb_zcopy(skb);
1298 
1299 	if (uarg) {
1300 		if (uarg->callback == sock_zerocopy_callback) {
1301 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1302 			sock_zerocopy_put(uarg);
1303 		} else {
1304 			uarg->callback(uarg, zerocopy);
1305 		}
1306 
1307 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1308 	}
1309 }
1310 
1311 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1312 static inline void skb_zcopy_abort(struct sk_buff *skb)
1313 {
1314 	struct ubuf_info *uarg = skb_zcopy(skb);
1315 
1316 	if (uarg) {
1317 		sock_zerocopy_put_abort(uarg);
1318 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1319 	}
1320 }
1321 
1322 /**
1323  *	skb_queue_empty - check if a queue is empty
1324  *	@list: queue head
1325  *
1326  *	Returns true if the queue is empty, false otherwise.
1327  */
1328 static inline int skb_queue_empty(const struct sk_buff_head *list)
1329 {
1330 	return list->next == (const struct sk_buff *) list;
1331 }
1332 
1333 /**
1334  *	skb_queue_is_last - check if skb is the last entry in the queue
1335  *	@list: queue head
1336  *	@skb: buffer
1337  *
1338  *	Returns true if @skb is the last buffer on the list.
1339  */
1340 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1341 				     const struct sk_buff *skb)
1342 {
1343 	return skb->next == (const struct sk_buff *) list;
1344 }
1345 
1346 /**
1347  *	skb_queue_is_first - check if skb is the first entry in the queue
1348  *	@list: queue head
1349  *	@skb: buffer
1350  *
1351  *	Returns true if @skb is the first buffer on the list.
1352  */
1353 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1354 				      const struct sk_buff *skb)
1355 {
1356 	return skb->prev == (const struct sk_buff *) list;
1357 }
1358 
1359 /**
1360  *	skb_queue_next - return the next packet in the queue
1361  *	@list: queue head
1362  *	@skb: current buffer
1363  *
1364  *	Return the next packet in @list after @skb.  It is only valid to
1365  *	call this if skb_queue_is_last() evaluates to false.
1366  */
1367 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1368 					     const struct sk_buff *skb)
1369 {
1370 	/* This BUG_ON may seem severe, but if we just return then we
1371 	 * are going to dereference garbage.
1372 	 */
1373 	BUG_ON(skb_queue_is_last(list, skb));
1374 	return skb->next;
1375 }
1376 
1377 /**
1378  *	skb_queue_prev - return the prev packet in the queue
1379  *	@list: queue head
1380  *	@skb: current buffer
1381  *
1382  *	Return the prev packet in @list before @skb.  It is only valid to
1383  *	call this if skb_queue_is_first() evaluates to false.
1384  */
1385 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1386 					     const struct sk_buff *skb)
1387 {
1388 	/* This BUG_ON may seem severe, but if we just return then we
1389 	 * are going to dereference garbage.
1390 	 */
1391 	BUG_ON(skb_queue_is_first(list, skb));
1392 	return skb->prev;
1393 }
1394 
1395 /**
1396  *	skb_get - reference buffer
1397  *	@skb: buffer to reference
1398  *
1399  *	Makes another reference to a socket buffer and returns a pointer
1400  *	to the buffer.
1401  */
1402 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1403 {
1404 	refcount_inc(&skb->users);
1405 	return skb;
1406 }
1407 
1408 /*
1409  * If users == 1, we are the only owner and are can avoid redundant
1410  * atomic change.
1411  */
1412 
1413 /**
1414  *	skb_cloned - is the buffer a clone
1415  *	@skb: buffer to check
1416  *
1417  *	Returns true if the buffer was generated with skb_clone() and is
1418  *	one of multiple shared copies of the buffer. Cloned buffers are
1419  *	shared data so must not be written to under normal circumstances.
1420  */
1421 static inline int skb_cloned(const struct sk_buff *skb)
1422 {
1423 	return skb->cloned &&
1424 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1425 }
1426 
1427 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1428 {
1429 	might_sleep_if(gfpflags_allow_blocking(pri));
1430 
1431 	if (skb_cloned(skb))
1432 		return pskb_expand_head(skb, 0, 0, pri);
1433 
1434 	return 0;
1435 }
1436 
1437 /**
1438  *	skb_header_cloned - is the header a clone
1439  *	@skb: buffer to check
1440  *
1441  *	Returns true if modifying the header part of the buffer requires
1442  *	the data to be copied.
1443  */
1444 static inline int skb_header_cloned(const struct sk_buff *skb)
1445 {
1446 	int dataref;
1447 
1448 	if (!skb->cloned)
1449 		return 0;
1450 
1451 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1452 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1453 	return dataref != 1;
1454 }
1455 
1456 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1457 {
1458 	might_sleep_if(gfpflags_allow_blocking(pri));
1459 
1460 	if (skb_header_cloned(skb))
1461 		return pskb_expand_head(skb, 0, 0, pri);
1462 
1463 	return 0;
1464 }
1465 
1466 /**
1467  *	__skb_header_release - release reference to header
1468  *	@skb: buffer to operate on
1469  */
1470 static inline void __skb_header_release(struct sk_buff *skb)
1471 {
1472 	skb->nohdr = 1;
1473 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1474 }
1475 
1476 
1477 /**
1478  *	skb_shared - is the buffer shared
1479  *	@skb: buffer to check
1480  *
1481  *	Returns true if more than one person has a reference to this
1482  *	buffer.
1483  */
1484 static inline int skb_shared(const struct sk_buff *skb)
1485 {
1486 	return refcount_read(&skb->users) != 1;
1487 }
1488 
1489 /**
1490  *	skb_share_check - check if buffer is shared and if so clone it
1491  *	@skb: buffer to check
1492  *	@pri: priority for memory allocation
1493  *
1494  *	If the buffer is shared the buffer is cloned and the old copy
1495  *	drops a reference. A new clone with a single reference is returned.
1496  *	If the buffer is not shared the original buffer is returned. When
1497  *	being called from interrupt status or with spinlocks held pri must
1498  *	be GFP_ATOMIC.
1499  *
1500  *	NULL is returned on a memory allocation failure.
1501  */
1502 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1503 {
1504 	might_sleep_if(gfpflags_allow_blocking(pri));
1505 	if (skb_shared(skb)) {
1506 		struct sk_buff *nskb = skb_clone(skb, pri);
1507 
1508 		if (likely(nskb))
1509 			consume_skb(skb);
1510 		else
1511 			kfree_skb(skb);
1512 		skb = nskb;
1513 	}
1514 	return skb;
1515 }
1516 
1517 /*
1518  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1519  *	packets to handle cases where we have a local reader and forward
1520  *	and a couple of other messy ones. The normal one is tcpdumping
1521  *	a packet thats being forwarded.
1522  */
1523 
1524 /**
1525  *	skb_unshare - make a copy of a shared buffer
1526  *	@skb: buffer to check
1527  *	@pri: priority for memory allocation
1528  *
1529  *	If the socket buffer is a clone then this function creates a new
1530  *	copy of the data, drops a reference count on the old copy and returns
1531  *	the new copy with the reference count at 1. If the buffer is not a clone
1532  *	the original buffer is returned. When called with a spinlock held or
1533  *	from interrupt state @pri must be %GFP_ATOMIC
1534  *
1535  *	%NULL is returned on a memory allocation failure.
1536  */
1537 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1538 					  gfp_t pri)
1539 {
1540 	might_sleep_if(gfpflags_allow_blocking(pri));
1541 	if (skb_cloned(skb)) {
1542 		struct sk_buff *nskb = skb_copy(skb, pri);
1543 
1544 		/* Free our shared copy */
1545 		if (likely(nskb))
1546 			consume_skb(skb);
1547 		else
1548 			kfree_skb(skb);
1549 		skb = nskb;
1550 	}
1551 	return skb;
1552 }
1553 
1554 /**
1555  *	skb_peek - peek at the head of an &sk_buff_head
1556  *	@list_: list to peek at
1557  *
1558  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1559  *	be careful with this one. A peek leaves the buffer on the
1560  *	list and someone else may run off with it. You must hold
1561  *	the appropriate locks or have a private queue to do this.
1562  *
1563  *	Returns %NULL for an empty list or a pointer to the head element.
1564  *	The reference count is not incremented and the reference is therefore
1565  *	volatile. Use with caution.
1566  */
1567 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1568 {
1569 	struct sk_buff *skb = list_->next;
1570 
1571 	if (skb == (struct sk_buff *)list_)
1572 		skb = NULL;
1573 	return skb;
1574 }
1575 
1576 /**
1577  *	skb_peek_next - peek skb following the given one from a queue
1578  *	@skb: skb to start from
1579  *	@list_: list to peek at
1580  *
1581  *	Returns %NULL when the end of the list is met or a pointer to the
1582  *	next element. The reference count is not incremented and the
1583  *	reference is therefore volatile. Use with caution.
1584  */
1585 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1586 		const struct sk_buff_head *list_)
1587 {
1588 	struct sk_buff *next = skb->next;
1589 
1590 	if (next == (struct sk_buff *)list_)
1591 		next = NULL;
1592 	return next;
1593 }
1594 
1595 /**
1596  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1597  *	@list_: list to peek at
1598  *
1599  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1600  *	be careful with this one. A peek leaves the buffer on the
1601  *	list and someone else may run off with it. You must hold
1602  *	the appropriate locks or have a private queue to do this.
1603  *
1604  *	Returns %NULL for an empty list or a pointer to the tail element.
1605  *	The reference count is not incremented and the reference is therefore
1606  *	volatile. Use with caution.
1607  */
1608 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1609 {
1610 	struct sk_buff *skb = list_->prev;
1611 
1612 	if (skb == (struct sk_buff *)list_)
1613 		skb = NULL;
1614 	return skb;
1615 
1616 }
1617 
1618 /**
1619  *	skb_queue_len	- get queue length
1620  *	@list_: list to measure
1621  *
1622  *	Return the length of an &sk_buff queue.
1623  */
1624 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1625 {
1626 	return list_->qlen;
1627 }
1628 
1629 /**
1630  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1631  *	@list: queue to initialize
1632  *
1633  *	This initializes only the list and queue length aspects of
1634  *	an sk_buff_head object.  This allows to initialize the list
1635  *	aspects of an sk_buff_head without reinitializing things like
1636  *	the spinlock.  It can also be used for on-stack sk_buff_head
1637  *	objects where the spinlock is known to not be used.
1638  */
1639 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1640 {
1641 	list->prev = list->next = (struct sk_buff *)list;
1642 	list->qlen = 0;
1643 }
1644 
1645 /*
1646  * This function creates a split out lock class for each invocation;
1647  * this is needed for now since a whole lot of users of the skb-queue
1648  * infrastructure in drivers have different locking usage (in hardirq)
1649  * than the networking core (in softirq only). In the long run either the
1650  * network layer or drivers should need annotation to consolidate the
1651  * main types of usage into 3 classes.
1652  */
1653 static inline void skb_queue_head_init(struct sk_buff_head *list)
1654 {
1655 	spin_lock_init(&list->lock);
1656 	__skb_queue_head_init(list);
1657 }
1658 
1659 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1660 		struct lock_class_key *class)
1661 {
1662 	skb_queue_head_init(list);
1663 	lockdep_set_class(&list->lock, class);
1664 }
1665 
1666 /*
1667  *	Insert an sk_buff on a list.
1668  *
1669  *	The "__skb_xxxx()" functions are the non-atomic ones that
1670  *	can only be called with interrupts disabled.
1671  */
1672 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1673 		struct sk_buff_head *list);
1674 static inline void __skb_insert(struct sk_buff *newsk,
1675 				struct sk_buff *prev, struct sk_buff *next,
1676 				struct sk_buff_head *list)
1677 {
1678 	newsk->next = next;
1679 	newsk->prev = prev;
1680 	next->prev  = prev->next = newsk;
1681 	list->qlen++;
1682 }
1683 
1684 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1685 				      struct sk_buff *prev,
1686 				      struct sk_buff *next)
1687 {
1688 	struct sk_buff *first = list->next;
1689 	struct sk_buff *last = list->prev;
1690 
1691 	first->prev = prev;
1692 	prev->next = first;
1693 
1694 	last->next = next;
1695 	next->prev = last;
1696 }
1697 
1698 /**
1699  *	skb_queue_splice - join two skb lists, this is designed for stacks
1700  *	@list: the new list to add
1701  *	@head: the place to add it in the first list
1702  */
1703 static inline void skb_queue_splice(const struct sk_buff_head *list,
1704 				    struct sk_buff_head *head)
1705 {
1706 	if (!skb_queue_empty(list)) {
1707 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1708 		head->qlen += list->qlen;
1709 	}
1710 }
1711 
1712 /**
1713  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1714  *	@list: the new list to add
1715  *	@head: the place to add it in the first list
1716  *
1717  *	The list at @list is reinitialised
1718  */
1719 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1720 					 struct sk_buff_head *head)
1721 {
1722 	if (!skb_queue_empty(list)) {
1723 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1724 		head->qlen += list->qlen;
1725 		__skb_queue_head_init(list);
1726 	}
1727 }
1728 
1729 /**
1730  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1731  *	@list: the new list to add
1732  *	@head: the place to add it in the first list
1733  */
1734 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1735 					 struct sk_buff_head *head)
1736 {
1737 	if (!skb_queue_empty(list)) {
1738 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1739 		head->qlen += list->qlen;
1740 	}
1741 }
1742 
1743 /**
1744  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1745  *	@list: the new list to add
1746  *	@head: the place to add it in the first list
1747  *
1748  *	Each of the lists is a queue.
1749  *	The list at @list is reinitialised
1750  */
1751 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1752 					      struct sk_buff_head *head)
1753 {
1754 	if (!skb_queue_empty(list)) {
1755 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1756 		head->qlen += list->qlen;
1757 		__skb_queue_head_init(list);
1758 	}
1759 }
1760 
1761 /**
1762  *	__skb_queue_after - queue a buffer at the list head
1763  *	@list: list to use
1764  *	@prev: place after this buffer
1765  *	@newsk: buffer to queue
1766  *
1767  *	Queue a buffer int the middle of a list. This function takes no locks
1768  *	and you must therefore hold required locks before calling it.
1769  *
1770  *	A buffer cannot be placed on two lists at the same time.
1771  */
1772 static inline void __skb_queue_after(struct sk_buff_head *list,
1773 				     struct sk_buff *prev,
1774 				     struct sk_buff *newsk)
1775 {
1776 	__skb_insert(newsk, prev, prev->next, list);
1777 }
1778 
1779 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1780 		struct sk_buff_head *list);
1781 
1782 static inline void __skb_queue_before(struct sk_buff_head *list,
1783 				      struct sk_buff *next,
1784 				      struct sk_buff *newsk)
1785 {
1786 	__skb_insert(newsk, next->prev, next, list);
1787 }
1788 
1789 /**
1790  *	__skb_queue_head - queue a buffer at the list head
1791  *	@list: list to use
1792  *	@newsk: buffer to queue
1793  *
1794  *	Queue a buffer at the start of a list. This function takes no locks
1795  *	and you must therefore hold required locks before calling it.
1796  *
1797  *	A buffer cannot be placed on two lists at the same time.
1798  */
1799 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1800 static inline void __skb_queue_head(struct sk_buff_head *list,
1801 				    struct sk_buff *newsk)
1802 {
1803 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1804 }
1805 
1806 /**
1807  *	__skb_queue_tail - queue a buffer at the list tail
1808  *	@list: list to use
1809  *	@newsk: buffer to queue
1810  *
1811  *	Queue a buffer at the end of a list. This function takes no locks
1812  *	and you must therefore hold required locks before calling it.
1813  *
1814  *	A buffer cannot be placed on two lists at the same time.
1815  */
1816 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1817 static inline void __skb_queue_tail(struct sk_buff_head *list,
1818 				   struct sk_buff *newsk)
1819 {
1820 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1821 }
1822 
1823 /*
1824  * remove sk_buff from list. _Must_ be called atomically, and with
1825  * the list known..
1826  */
1827 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1828 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1829 {
1830 	struct sk_buff *next, *prev;
1831 
1832 	list->qlen--;
1833 	next	   = skb->next;
1834 	prev	   = skb->prev;
1835 	skb->next  = skb->prev = NULL;
1836 	next->prev = prev;
1837 	prev->next = next;
1838 }
1839 
1840 /**
1841  *	__skb_dequeue - remove from the head of the queue
1842  *	@list: list to dequeue from
1843  *
1844  *	Remove the head of the list. This function does not take any locks
1845  *	so must be used with appropriate locks held only. The head item is
1846  *	returned or %NULL if the list is empty.
1847  */
1848 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1849 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1850 {
1851 	struct sk_buff *skb = skb_peek(list);
1852 	if (skb)
1853 		__skb_unlink(skb, list);
1854 	return skb;
1855 }
1856 
1857 /**
1858  *	__skb_dequeue_tail - remove from the tail of the queue
1859  *	@list: list to dequeue from
1860  *
1861  *	Remove the tail of the list. This function does not take any locks
1862  *	so must be used with appropriate locks held only. The tail item is
1863  *	returned or %NULL if the list is empty.
1864  */
1865 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1866 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1867 {
1868 	struct sk_buff *skb = skb_peek_tail(list);
1869 	if (skb)
1870 		__skb_unlink(skb, list);
1871 	return skb;
1872 }
1873 
1874 
1875 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1876 {
1877 	return skb->data_len;
1878 }
1879 
1880 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1881 {
1882 	return skb->len - skb->data_len;
1883 }
1884 
1885 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1886 {
1887 	unsigned int i, len = 0;
1888 
1889 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1890 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1891 	return len;
1892 }
1893 
1894 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1895 {
1896 	return skb_headlen(skb) + __skb_pagelen(skb);
1897 }
1898 
1899 /**
1900  * __skb_fill_page_desc - initialise a paged fragment in an skb
1901  * @skb: buffer containing fragment to be initialised
1902  * @i: paged fragment index to initialise
1903  * @page: the page to use for this fragment
1904  * @off: the offset to the data with @page
1905  * @size: the length of the data
1906  *
1907  * Initialises the @i'th fragment of @skb to point to &size bytes at
1908  * offset @off within @page.
1909  *
1910  * Does not take any additional reference on the fragment.
1911  */
1912 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1913 					struct page *page, int off, int size)
1914 {
1915 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1916 
1917 	/*
1918 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1919 	 * that not all callers have unique ownership of the page but rely
1920 	 * on page_is_pfmemalloc doing the right thing(tm).
1921 	 */
1922 	frag->page.p		  = page;
1923 	frag->page_offset	  = off;
1924 	skb_frag_size_set(frag, size);
1925 
1926 	page = compound_head(page);
1927 	if (page_is_pfmemalloc(page))
1928 		skb->pfmemalloc	= true;
1929 }
1930 
1931 /**
1932  * skb_fill_page_desc - initialise a paged fragment in an skb
1933  * @skb: buffer containing fragment to be initialised
1934  * @i: paged fragment index to initialise
1935  * @page: the page to use for this fragment
1936  * @off: the offset to the data with @page
1937  * @size: the length of the data
1938  *
1939  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1940  * @skb to point to @size bytes at offset @off within @page. In
1941  * addition updates @skb such that @i is the last fragment.
1942  *
1943  * Does not take any additional reference on the fragment.
1944  */
1945 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1946 				      struct page *page, int off, int size)
1947 {
1948 	__skb_fill_page_desc(skb, i, page, off, size);
1949 	skb_shinfo(skb)->nr_frags = i + 1;
1950 }
1951 
1952 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1953 		     int size, unsigned int truesize);
1954 
1955 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1956 			  unsigned int truesize);
1957 
1958 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1959 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1960 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1961 
1962 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1963 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1964 {
1965 	return skb->head + skb->tail;
1966 }
1967 
1968 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1969 {
1970 	skb->tail = skb->data - skb->head;
1971 }
1972 
1973 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1974 {
1975 	skb_reset_tail_pointer(skb);
1976 	skb->tail += offset;
1977 }
1978 
1979 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1980 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1981 {
1982 	return skb->tail;
1983 }
1984 
1985 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1986 {
1987 	skb->tail = skb->data;
1988 }
1989 
1990 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1991 {
1992 	skb->tail = skb->data + offset;
1993 }
1994 
1995 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1996 
1997 /*
1998  *	Add data to an sk_buff
1999  */
2000 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2001 void *skb_put(struct sk_buff *skb, unsigned int len);
2002 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2003 {
2004 	void *tmp = skb_tail_pointer(skb);
2005 	SKB_LINEAR_ASSERT(skb);
2006 	skb->tail += len;
2007 	skb->len  += len;
2008 	return tmp;
2009 }
2010 
2011 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2012 {
2013 	void *tmp = __skb_put(skb, len);
2014 
2015 	memset(tmp, 0, len);
2016 	return tmp;
2017 }
2018 
2019 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2020 				   unsigned int len)
2021 {
2022 	void *tmp = __skb_put(skb, len);
2023 
2024 	memcpy(tmp, data, len);
2025 	return tmp;
2026 }
2027 
2028 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2029 {
2030 	*(u8 *)__skb_put(skb, 1) = val;
2031 }
2032 
2033 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2034 {
2035 	void *tmp = skb_put(skb, len);
2036 
2037 	memset(tmp, 0, len);
2038 
2039 	return tmp;
2040 }
2041 
2042 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2043 				 unsigned int len)
2044 {
2045 	void *tmp = skb_put(skb, len);
2046 
2047 	memcpy(tmp, data, len);
2048 
2049 	return tmp;
2050 }
2051 
2052 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2053 {
2054 	*(u8 *)skb_put(skb, 1) = val;
2055 }
2056 
2057 void *skb_push(struct sk_buff *skb, unsigned int len);
2058 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2059 {
2060 	skb->data -= len;
2061 	skb->len  += len;
2062 	return skb->data;
2063 }
2064 
2065 void *skb_pull(struct sk_buff *skb, unsigned int len);
2066 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2067 {
2068 	skb->len -= len;
2069 	BUG_ON(skb->len < skb->data_len);
2070 	return skb->data += len;
2071 }
2072 
2073 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2074 {
2075 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2076 }
2077 
2078 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2079 
2080 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2081 {
2082 	if (len > skb_headlen(skb) &&
2083 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2084 		return NULL;
2085 	skb->len -= len;
2086 	return skb->data += len;
2087 }
2088 
2089 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2090 {
2091 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2092 }
2093 
2094 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2095 {
2096 	if (likely(len <= skb_headlen(skb)))
2097 		return 1;
2098 	if (unlikely(len > skb->len))
2099 		return 0;
2100 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2101 }
2102 
2103 void skb_condense(struct sk_buff *skb);
2104 
2105 /**
2106  *	skb_headroom - bytes at buffer head
2107  *	@skb: buffer to check
2108  *
2109  *	Return the number of bytes of free space at the head of an &sk_buff.
2110  */
2111 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2112 {
2113 	return skb->data - skb->head;
2114 }
2115 
2116 /**
2117  *	skb_tailroom - bytes at buffer end
2118  *	@skb: buffer to check
2119  *
2120  *	Return the number of bytes of free space at the tail of an sk_buff
2121  */
2122 static inline int skb_tailroom(const struct sk_buff *skb)
2123 {
2124 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2125 }
2126 
2127 /**
2128  *	skb_availroom - bytes at buffer end
2129  *	@skb: buffer to check
2130  *
2131  *	Return the number of bytes of free space at the tail of an sk_buff
2132  *	allocated by sk_stream_alloc()
2133  */
2134 static inline int skb_availroom(const struct sk_buff *skb)
2135 {
2136 	if (skb_is_nonlinear(skb))
2137 		return 0;
2138 
2139 	return skb->end - skb->tail - skb->reserved_tailroom;
2140 }
2141 
2142 /**
2143  *	skb_reserve - adjust headroom
2144  *	@skb: buffer to alter
2145  *	@len: bytes to move
2146  *
2147  *	Increase the headroom of an empty &sk_buff by reducing the tail
2148  *	room. This is only allowed for an empty buffer.
2149  */
2150 static inline void skb_reserve(struct sk_buff *skb, int len)
2151 {
2152 	skb->data += len;
2153 	skb->tail += len;
2154 }
2155 
2156 /**
2157  *	skb_tailroom_reserve - adjust reserved_tailroom
2158  *	@skb: buffer to alter
2159  *	@mtu: maximum amount of headlen permitted
2160  *	@needed_tailroom: minimum amount of reserved_tailroom
2161  *
2162  *	Set reserved_tailroom so that headlen can be as large as possible but
2163  *	not larger than mtu and tailroom cannot be smaller than
2164  *	needed_tailroom.
2165  *	The required headroom should already have been reserved before using
2166  *	this function.
2167  */
2168 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2169 					unsigned int needed_tailroom)
2170 {
2171 	SKB_LINEAR_ASSERT(skb);
2172 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2173 		/* use at most mtu */
2174 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2175 	else
2176 		/* use up to all available space */
2177 		skb->reserved_tailroom = needed_tailroom;
2178 }
2179 
2180 #define ENCAP_TYPE_ETHER	0
2181 #define ENCAP_TYPE_IPPROTO	1
2182 
2183 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2184 					  __be16 protocol)
2185 {
2186 	skb->inner_protocol = protocol;
2187 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2188 }
2189 
2190 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2191 					 __u8 ipproto)
2192 {
2193 	skb->inner_ipproto = ipproto;
2194 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2195 }
2196 
2197 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2198 {
2199 	skb->inner_mac_header = skb->mac_header;
2200 	skb->inner_network_header = skb->network_header;
2201 	skb->inner_transport_header = skb->transport_header;
2202 }
2203 
2204 static inline void skb_reset_mac_len(struct sk_buff *skb)
2205 {
2206 	skb->mac_len = skb->network_header - skb->mac_header;
2207 }
2208 
2209 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2210 							*skb)
2211 {
2212 	return skb->head + skb->inner_transport_header;
2213 }
2214 
2215 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2216 {
2217 	return skb_inner_transport_header(skb) - skb->data;
2218 }
2219 
2220 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2221 {
2222 	skb->inner_transport_header = skb->data - skb->head;
2223 }
2224 
2225 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2226 						   const int offset)
2227 {
2228 	skb_reset_inner_transport_header(skb);
2229 	skb->inner_transport_header += offset;
2230 }
2231 
2232 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2233 {
2234 	return skb->head + skb->inner_network_header;
2235 }
2236 
2237 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2238 {
2239 	skb->inner_network_header = skb->data - skb->head;
2240 }
2241 
2242 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2243 						const int offset)
2244 {
2245 	skb_reset_inner_network_header(skb);
2246 	skb->inner_network_header += offset;
2247 }
2248 
2249 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2250 {
2251 	return skb->head + skb->inner_mac_header;
2252 }
2253 
2254 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2255 {
2256 	skb->inner_mac_header = skb->data - skb->head;
2257 }
2258 
2259 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2260 					    const int offset)
2261 {
2262 	skb_reset_inner_mac_header(skb);
2263 	skb->inner_mac_header += offset;
2264 }
2265 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2266 {
2267 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2268 }
2269 
2270 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2271 {
2272 	return skb->head + skb->transport_header;
2273 }
2274 
2275 static inline void skb_reset_transport_header(struct sk_buff *skb)
2276 {
2277 	skb->transport_header = skb->data - skb->head;
2278 }
2279 
2280 static inline void skb_set_transport_header(struct sk_buff *skb,
2281 					    const int offset)
2282 {
2283 	skb_reset_transport_header(skb);
2284 	skb->transport_header += offset;
2285 }
2286 
2287 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2288 {
2289 	return skb->head + skb->network_header;
2290 }
2291 
2292 static inline void skb_reset_network_header(struct sk_buff *skb)
2293 {
2294 	skb->network_header = skb->data - skb->head;
2295 }
2296 
2297 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2298 {
2299 	skb_reset_network_header(skb);
2300 	skb->network_header += offset;
2301 }
2302 
2303 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2304 {
2305 	return skb->head + skb->mac_header;
2306 }
2307 
2308 static inline int skb_mac_offset(const struct sk_buff *skb)
2309 {
2310 	return skb_mac_header(skb) - skb->data;
2311 }
2312 
2313 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2314 {
2315 	return skb->network_header - skb->mac_header;
2316 }
2317 
2318 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2319 {
2320 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2321 }
2322 
2323 static inline void skb_reset_mac_header(struct sk_buff *skb)
2324 {
2325 	skb->mac_header = skb->data - skb->head;
2326 }
2327 
2328 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2329 {
2330 	skb_reset_mac_header(skb);
2331 	skb->mac_header += offset;
2332 }
2333 
2334 static inline void skb_pop_mac_header(struct sk_buff *skb)
2335 {
2336 	skb->mac_header = skb->network_header;
2337 }
2338 
2339 static inline void skb_probe_transport_header(struct sk_buff *skb,
2340 					      const int offset_hint)
2341 {
2342 	struct flow_keys keys;
2343 
2344 	if (skb_transport_header_was_set(skb))
2345 		return;
2346 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2347 		skb_set_transport_header(skb, keys.control.thoff);
2348 	else
2349 		skb_set_transport_header(skb, offset_hint);
2350 }
2351 
2352 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2353 {
2354 	if (skb_mac_header_was_set(skb)) {
2355 		const unsigned char *old_mac = skb_mac_header(skb);
2356 
2357 		skb_set_mac_header(skb, -skb->mac_len);
2358 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2359 	}
2360 }
2361 
2362 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2363 {
2364 	return skb->csum_start - skb_headroom(skb);
2365 }
2366 
2367 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2368 {
2369 	return skb->head + skb->csum_start;
2370 }
2371 
2372 static inline int skb_transport_offset(const struct sk_buff *skb)
2373 {
2374 	return skb_transport_header(skb) - skb->data;
2375 }
2376 
2377 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2378 {
2379 	return skb->transport_header - skb->network_header;
2380 }
2381 
2382 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2383 {
2384 	return skb->inner_transport_header - skb->inner_network_header;
2385 }
2386 
2387 static inline int skb_network_offset(const struct sk_buff *skb)
2388 {
2389 	return skb_network_header(skb) - skb->data;
2390 }
2391 
2392 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2393 {
2394 	return skb_inner_network_header(skb) - skb->data;
2395 }
2396 
2397 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2398 {
2399 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2400 }
2401 
2402 /*
2403  * CPUs often take a performance hit when accessing unaligned memory
2404  * locations. The actual performance hit varies, it can be small if the
2405  * hardware handles it or large if we have to take an exception and fix it
2406  * in software.
2407  *
2408  * Since an ethernet header is 14 bytes network drivers often end up with
2409  * the IP header at an unaligned offset. The IP header can be aligned by
2410  * shifting the start of the packet by 2 bytes. Drivers should do this
2411  * with:
2412  *
2413  * skb_reserve(skb, NET_IP_ALIGN);
2414  *
2415  * The downside to this alignment of the IP header is that the DMA is now
2416  * unaligned. On some architectures the cost of an unaligned DMA is high
2417  * and this cost outweighs the gains made by aligning the IP header.
2418  *
2419  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2420  * to be overridden.
2421  */
2422 #ifndef NET_IP_ALIGN
2423 #define NET_IP_ALIGN	2
2424 #endif
2425 
2426 /*
2427  * The networking layer reserves some headroom in skb data (via
2428  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2429  * the header has to grow. In the default case, if the header has to grow
2430  * 32 bytes or less we avoid the reallocation.
2431  *
2432  * Unfortunately this headroom changes the DMA alignment of the resulting
2433  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2434  * on some architectures. An architecture can override this value,
2435  * perhaps setting it to a cacheline in size (since that will maintain
2436  * cacheline alignment of the DMA). It must be a power of 2.
2437  *
2438  * Various parts of the networking layer expect at least 32 bytes of
2439  * headroom, you should not reduce this.
2440  *
2441  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2442  * to reduce average number of cache lines per packet.
2443  * get_rps_cpus() for example only access one 64 bytes aligned block :
2444  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2445  */
2446 #ifndef NET_SKB_PAD
2447 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2448 #endif
2449 
2450 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2451 
2452 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2453 {
2454 	if (unlikely(skb_is_nonlinear(skb))) {
2455 		WARN_ON(1);
2456 		return;
2457 	}
2458 	skb->len = len;
2459 	skb_set_tail_pointer(skb, len);
2460 }
2461 
2462 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2463 {
2464 	__skb_set_length(skb, len);
2465 }
2466 
2467 void skb_trim(struct sk_buff *skb, unsigned int len);
2468 
2469 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2470 {
2471 	if (skb->data_len)
2472 		return ___pskb_trim(skb, len);
2473 	__skb_trim(skb, len);
2474 	return 0;
2475 }
2476 
2477 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2478 {
2479 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2480 }
2481 
2482 /**
2483  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2484  *	@skb: buffer to alter
2485  *	@len: new length
2486  *
2487  *	This is identical to pskb_trim except that the caller knows that
2488  *	the skb is not cloned so we should never get an error due to out-
2489  *	of-memory.
2490  */
2491 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2492 {
2493 	int err = pskb_trim(skb, len);
2494 	BUG_ON(err);
2495 }
2496 
2497 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2498 {
2499 	unsigned int diff = len - skb->len;
2500 
2501 	if (skb_tailroom(skb) < diff) {
2502 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2503 					   GFP_ATOMIC);
2504 		if (ret)
2505 			return ret;
2506 	}
2507 	__skb_set_length(skb, len);
2508 	return 0;
2509 }
2510 
2511 /**
2512  *	skb_orphan - orphan a buffer
2513  *	@skb: buffer to orphan
2514  *
2515  *	If a buffer currently has an owner then we call the owner's
2516  *	destructor function and make the @skb unowned. The buffer continues
2517  *	to exist but is no longer charged to its former owner.
2518  */
2519 static inline void skb_orphan(struct sk_buff *skb)
2520 {
2521 	if (skb->destructor) {
2522 		skb->destructor(skb);
2523 		skb->destructor = NULL;
2524 		skb->sk		= NULL;
2525 	} else {
2526 		BUG_ON(skb->sk);
2527 	}
2528 }
2529 
2530 /**
2531  *	skb_orphan_frags - orphan the frags contained in a buffer
2532  *	@skb: buffer to orphan frags from
2533  *	@gfp_mask: allocation mask for replacement pages
2534  *
2535  *	For each frag in the SKB which needs a destructor (i.e. has an
2536  *	owner) create a copy of that frag and release the original
2537  *	page by calling the destructor.
2538  */
2539 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2540 {
2541 	if (likely(!skb_zcopy(skb)))
2542 		return 0;
2543 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2544 		return 0;
2545 	return skb_copy_ubufs(skb, gfp_mask);
2546 }
2547 
2548 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2549 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2550 {
2551 	if (likely(!skb_zcopy(skb)))
2552 		return 0;
2553 	return skb_copy_ubufs(skb, gfp_mask);
2554 }
2555 
2556 /**
2557  *	__skb_queue_purge - empty a list
2558  *	@list: list to empty
2559  *
2560  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2561  *	the list and one reference dropped. This function does not take the
2562  *	list lock and the caller must hold the relevant locks to use it.
2563  */
2564 void skb_queue_purge(struct sk_buff_head *list);
2565 static inline void __skb_queue_purge(struct sk_buff_head *list)
2566 {
2567 	struct sk_buff *skb;
2568 	while ((skb = __skb_dequeue(list)) != NULL)
2569 		kfree_skb(skb);
2570 }
2571 
2572 void skb_rbtree_purge(struct rb_root *root);
2573 
2574 void *netdev_alloc_frag(unsigned int fragsz);
2575 
2576 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2577 				   gfp_t gfp_mask);
2578 
2579 /**
2580  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2581  *	@dev: network device to receive on
2582  *	@length: length to allocate
2583  *
2584  *	Allocate a new &sk_buff and assign it a usage count of one. The
2585  *	buffer has unspecified headroom built in. Users should allocate
2586  *	the headroom they think they need without accounting for the
2587  *	built in space. The built in space is used for optimisations.
2588  *
2589  *	%NULL is returned if there is no free memory. Although this function
2590  *	allocates memory it can be called from an interrupt.
2591  */
2592 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2593 					       unsigned int length)
2594 {
2595 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2596 }
2597 
2598 /* legacy helper around __netdev_alloc_skb() */
2599 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2600 					      gfp_t gfp_mask)
2601 {
2602 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2603 }
2604 
2605 /* legacy helper around netdev_alloc_skb() */
2606 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2607 {
2608 	return netdev_alloc_skb(NULL, length);
2609 }
2610 
2611 
2612 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2613 		unsigned int length, gfp_t gfp)
2614 {
2615 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2616 
2617 	if (NET_IP_ALIGN && skb)
2618 		skb_reserve(skb, NET_IP_ALIGN);
2619 	return skb;
2620 }
2621 
2622 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2623 		unsigned int length)
2624 {
2625 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2626 }
2627 
2628 static inline void skb_free_frag(void *addr)
2629 {
2630 	page_frag_free(addr);
2631 }
2632 
2633 void *napi_alloc_frag(unsigned int fragsz);
2634 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2635 				 unsigned int length, gfp_t gfp_mask);
2636 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2637 					     unsigned int length)
2638 {
2639 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2640 }
2641 void napi_consume_skb(struct sk_buff *skb, int budget);
2642 
2643 void __kfree_skb_flush(void);
2644 void __kfree_skb_defer(struct sk_buff *skb);
2645 
2646 /**
2647  * __dev_alloc_pages - allocate page for network Rx
2648  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2649  * @order: size of the allocation
2650  *
2651  * Allocate a new page.
2652  *
2653  * %NULL is returned if there is no free memory.
2654 */
2655 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2656 					     unsigned int order)
2657 {
2658 	/* This piece of code contains several assumptions.
2659 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2660 	 * 2.  The expectation is the user wants a compound page.
2661 	 * 3.  If requesting a order 0 page it will not be compound
2662 	 *     due to the check to see if order has a value in prep_new_page
2663 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2664 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2665 	 */
2666 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2667 
2668 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2669 }
2670 
2671 static inline struct page *dev_alloc_pages(unsigned int order)
2672 {
2673 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2674 }
2675 
2676 /**
2677  * __dev_alloc_page - allocate a page for network Rx
2678  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2679  *
2680  * Allocate a new page.
2681  *
2682  * %NULL is returned if there is no free memory.
2683  */
2684 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2685 {
2686 	return __dev_alloc_pages(gfp_mask, 0);
2687 }
2688 
2689 static inline struct page *dev_alloc_page(void)
2690 {
2691 	return dev_alloc_pages(0);
2692 }
2693 
2694 /**
2695  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2696  *	@page: The page that was allocated from skb_alloc_page
2697  *	@skb: The skb that may need pfmemalloc set
2698  */
2699 static inline void skb_propagate_pfmemalloc(struct page *page,
2700 					     struct sk_buff *skb)
2701 {
2702 	if (page_is_pfmemalloc(page))
2703 		skb->pfmemalloc = true;
2704 }
2705 
2706 /**
2707  * skb_frag_page - retrieve the page referred to by a paged fragment
2708  * @frag: the paged fragment
2709  *
2710  * Returns the &struct page associated with @frag.
2711  */
2712 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2713 {
2714 	return frag->page.p;
2715 }
2716 
2717 /**
2718  * __skb_frag_ref - take an addition reference on a paged fragment.
2719  * @frag: the paged fragment
2720  *
2721  * Takes an additional reference on the paged fragment @frag.
2722  */
2723 static inline void __skb_frag_ref(skb_frag_t *frag)
2724 {
2725 	get_page(skb_frag_page(frag));
2726 }
2727 
2728 /**
2729  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2730  * @skb: the buffer
2731  * @f: the fragment offset.
2732  *
2733  * Takes an additional reference on the @f'th paged fragment of @skb.
2734  */
2735 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2736 {
2737 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2738 }
2739 
2740 /**
2741  * __skb_frag_unref - release a reference on a paged fragment.
2742  * @frag: the paged fragment
2743  *
2744  * Releases a reference on the paged fragment @frag.
2745  */
2746 static inline void __skb_frag_unref(skb_frag_t *frag)
2747 {
2748 	put_page(skb_frag_page(frag));
2749 }
2750 
2751 /**
2752  * skb_frag_unref - release a reference on a paged fragment of an skb.
2753  * @skb: the buffer
2754  * @f: the fragment offset
2755  *
2756  * Releases a reference on the @f'th paged fragment of @skb.
2757  */
2758 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2759 {
2760 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2761 }
2762 
2763 /**
2764  * skb_frag_address - gets the address of the data contained in a paged fragment
2765  * @frag: the paged fragment buffer
2766  *
2767  * Returns the address of the data within @frag. The page must already
2768  * be mapped.
2769  */
2770 static inline void *skb_frag_address(const skb_frag_t *frag)
2771 {
2772 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2773 }
2774 
2775 /**
2776  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2777  * @frag: the paged fragment buffer
2778  *
2779  * Returns the address of the data within @frag. Checks that the page
2780  * is mapped and returns %NULL otherwise.
2781  */
2782 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2783 {
2784 	void *ptr = page_address(skb_frag_page(frag));
2785 	if (unlikely(!ptr))
2786 		return NULL;
2787 
2788 	return ptr + frag->page_offset;
2789 }
2790 
2791 /**
2792  * __skb_frag_set_page - sets the page contained in a paged fragment
2793  * @frag: the paged fragment
2794  * @page: the page to set
2795  *
2796  * Sets the fragment @frag to contain @page.
2797  */
2798 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2799 {
2800 	frag->page.p = page;
2801 }
2802 
2803 /**
2804  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2805  * @skb: the buffer
2806  * @f: the fragment offset
2807  * @page: the page to set
2808  *
2809  * Sets the @f'th fragment of @skb to contain @page.
2810  */
2811 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2812 				     struct page *page)
2813 {
2814 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2815 }
2816 
2817 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2818 
2819 /**
2820  * skb_frag_dma_map - maps a paged fragment via the DMA API
2821  * @dev: the device to map the fragment to
2822  * @frag: the paged fragment to map
2823  * @offset: the offset within the fragment (starting at the
2824  *          fragment's own offset)
2825  * @size: the number of bytes to map
2826  * @dir: the direction of the mapping (``PCI_DMA_*``)
2827  *
2828  * Maps the page associated with @frag to @device.
2829  */
2830 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2831 					  const skb_frag_t *frag,
2832 					  size_t offset, size_t size,
2833 					  enum dma_data_direction dir)
2834 {
2835 	return dma_map_page(dev, skb_frag_page(frag),
2836 			    frag->page_offset + offset, size, dir);
2837 }
2838 
2839 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2840 					gfp_t gfp_mask)
2841 {
2842 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2843 }
2844 
2845 
2846 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2847 						  gfp_t gfp_mask)
2848 {
2849 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2850 }
2851 
2852 
2853 /**
2854  *	skb_clone_writable - is the header of a clone writable
2855  *	@skb: buffer to check
2856  *	@len: length up to which to write
2857  *
2858  *	Returns true if modifying the header part of the cloned buffer
2859  *	does not requires the data to be copied.
2860  */
2861 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2862 {
2863 	return !skb_header_cloned(skb) &&
2864 	       skb_headroom(skb) + len <= skb->hdr_len;
2865 }
2866 
2867 static inline int skb_try_make_writable(struct sk_buff *skb,
2868 					unsigned int write_len)
2869 {
2870 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2871 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2872 }
2873 
2874 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2875 			    int cloned)
2876 {
2877 	int delta = 0;
2878 
2879 	if (headroom > skb_headroom(skb))
2880 		delta = headroom - skb_headroom(skb);
2881 
2882 	if (delta || cloned)
2883 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2884 					GFP_ATOMIC);
2885 	return 0;
2886 }
2887 
2888 /**
2889  *	skb_cow - copy header of skb when it is required
2890  *	@skb: buffer to cow
2891  *	@headroom: needed headroom
2892  *
2893  *	If the skb passed lacks sufficient headroom or its data part
2894  *	is shared, data is reallocated. If reallocation fails, an error
2895  *	is returned and original skb is not changed.
2896  *
2897  *	The result is skb with writable area skb->head...skb->tail
2898  *	and at least @headroom of space at head.
2899  */
2900 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2901 {
2902 	return __skb_cow(skb, headroom, skb_cloned(skb));
2903 }
2904 
2905 /**
2906  *	skb_cow_head - skb_cow but only making the head writable
2907  *	@skb: buffer to cow
2908  *	@headroom: needed headroom
2909  *
2910  *	This function is identical to skb_cow except that we replace the
2911  *	skb_cloned check by skb_header_cloned.  It should be used when
2912  *	you only need to push on some header and do not need to modify
2913  *	the data.
2914  */
2915 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2916 {
2917 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2918 }
2919 
2920 /**
2921  *	skb_padto	- pad an skbuff up to a minimal size
2922  *	@skb: buffer to pad
2923  *	@len: minimal length
2924  *
2925  *	Pads up a buffer to ensure the trailing bytes exist and are
2926  *	blanked. If the buffer already contains sufficient data it
2927  *	is untouched. Otherwise it is extended. Returns zero on
2928  *	success. The skb is freed on error.
2929  */
2930 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2931 {
2932 	unsigned int size = skb->len;
2933 	if (likely(size >= len))
2934 		return 0;
2935 	return skb_pad(skb, len - size);
2936 }
2937 
2938 /**
2939  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2940  *	@skb: buffer to pad
2941  *	@len: minimal length
2942  *	@free_on_error: free buffer on error
2943  *
2944  *	Pads up a buffer to ensure the trailing bytes exist and are
2945  *	blanked. If the buffer already contains sufficient data it
2946  *	is untouched. Otherwise it is extended. Returns zero on
2947  *	success. The skb is freed on error if @free_on_error is true.
2948  */
2949 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2950 				  bool free_on_error)
2951 {
2952 	unsigned int size = skb->len;
2953 
2954 	if (unlikely(size < len)) {
2955 		len -= size;
2956 		if (__skb_pad(skb, len, free_on_error))
2957 			return -ENOMEM;
2958 		__skb_put(skb, len);
2959 	}
2960 	return 0;
2961 }
2962 
2963 /**
2964  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2965  *	@skb: buffer to pad
2966  *	@len: minimal length
2967  *
2968  *	Pads up a buffer to ensure the trailing bytes exist and are
2969  *	blanked. If the buffer already contains sufficient data it
2970  *	is untouched. Otherwise it is extended. Returns zero on
2971  *	success. The skb is freed on error.
2972  */
2973 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2974 {
2975 	return __skb_put_padto(skb, len, true);
2976 }
2977 
2978 static inline int skb_add_data(struct sk_buff *skb,
2979 			       struct iov_iter *from, int copy)
2980 {
2981 	const int off = skb->len;
2982 
2983 	if (skb->ip_summed == CHECKSUM_NONE) {
2984 		__wsum csum = 0;
2985 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2986 					         &csum, from)) {
2987 			skb->csum = csum_block_add(skb->csum, csum, off);
2988 			return 0;
2989 		}
2990 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
2991 		return 0;
2992 
2993 	__skb_trim(skb, off);
2994 	return -EFAULT;
2995 }
2996 
2997 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2998 				    const struct page *page, int off)
2999 {
3000 	if (skb_zcopy(skb))
3001 		return false;
3002 	if (i) {
3003 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3004 
3005 		return page == skb_frag_page(frag) &&
3006 		       off == frag->page_offset + skb_frag_size(frag);
3007 	}
3008 	return false;
3009 }
3010 
3011 static inline int __skb_linearize(struct sk_buff *skb)
3012 {
3013 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3014 }
3015 
3016 /**
3017  *	skb_linearize - convert paged skb to linear one
3018  *	@skb: buffer to linarize
3019  *
3020  *	If there is no free memory -ENOMEM is returned, otherwise zero
3021  *	is returned and the old skb data released.
3022  */
3023 static inline int skb_linearize(struct sk_buff *skb)
3024 {
3025 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3026 }
3027 
3028 /**
3029  * skb_has_shared_frag - can any frag be overwritten
3030  * @skb: buffer to test
3031  *
3032  * Return true if the skb has at least one frag that might be modified
3033  * by an external entity (as in vmsplice()/sendfile())
3034  */
3035 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3036 {
3037 	return skb_is_nonlinear(skb) &&
3038 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3039 }
3040 
3041 /**
3042  *	skb_linearize_cow - make sure skb is linear and writable
3043  *	@skb: buffer to process
3044  *
3045  *	If there is no free memory -ENOMEM is returned, otherwise zero
3046  *	is returned and the old skb data released.
3047  */
3048 static inline int skb_linearize_cow(struct sk_buff *skb)
3049 {
3050 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3051 	       __skb_linearize(skb) : 0;
3052 }
3053 
3054 static __always_inline void
3055 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3056 		     unsigned int off)
3057 {
3058 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3059 		skb->csum = csum_block_sub(skb->csum,
3060 					   csum_partial(start, len, 0), off);
3061 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3062 		 skb_checksum_start_offset(skb) < 0)
3063 		skb->ip_summed = CHECKSUM_NONE;
3064 }
3065 
3066 /**
3067  *	skb_postpull_rcsum - update checksum for received skb after pull
3068  *	@skb: buffer to update
3069  *	@start: start of data before pull
3070  *	@len: length of data pulled
3071  *
3072  *	After doing a pull on a received packet, you need to call this to
3073  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3074  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3075  */
3076 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3077 				      const void *start, unsigned int len)
3078 {
3079 	__skb_postpull_rcsum(skb, start, len, 0);
3080 }
3081 
3082 static __always_inline void
3083 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3084 		     unsigned int off)
3085 {
3086 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3087 		skb->csum = csum_block_add(skb->csum,
3088 					   csum_partial(start, len, 0), off);
3089 }
3090 
3091 /**
3092  *	skb_postpush_rcsum - update checksum for received skb after push
3093  *	@skb: buffer to update
3094  *	@start: start of data after push
3095  *	@len: length of data pushed
3096  *
3097  *	After doing a push on a received packet, you need to call this to
3098  *	update the CHECKSUM_COMPLETE checksum.
3099  */
3100 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3101 				      const void *start, unsigned int len)
3102 {
3103 	__skb_postpush_rcsum(skb, start, len, 0);
3104 }
3105 
3106 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3107 
3108 /**
3109  *	skb_push_rcsum - push skb and update receive checksum
3110  *	@skb: buffer to update
3111  *	@len: length of data pulled
3112  *
3113  *	This function performs an skb_push on the packet and updates
3114  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3115  *	receive path processing instead of skb_push unless you know
3116  *	that the checksum difference is zero (e.g., a valid IP header)
3117  *	or you are setting ip_summed to CHECKSUM_NONE.
3118  */
3119 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3120 {
3121 	skb_push(skb, len);
3122 	skb_postpush_rcsum(skb, skb->data, len);
3123 	return skb->data;
3124 }
3125 
3126 /**
3127  *	pskb_trim_rcsum - trim received skb and update checksum
3128  *	@skb: buffer to trim
3129  *	@len: new length
3130  *
3131  *	This is exactly the same as pskb_trim except that it ensures the
3132  *	checksum of received packets are still valid after the operation.
3133  */
3134 
3135 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3136 {
3137 	if (likely(len >= skb->len))
3138 		return 0;
3139 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3140 		skb->ip_summed = CHECKSUM_NONE;
3141 	return __pskb_trim(skb, len);
3142 }
3143 
3144 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3145 {
3146 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3147 		skb->ip_summed = CHECKSUM_NONE;
3148 	__skb_trim(skb, len);
3149 	return 0;
3150 }
3151 
3152 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3153 {
3154 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3155 		skb->ip_summed = CHECKSUM_NONE;
3156 	return __skb_grow(skb, len);
3157 }
3158 
3159 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3160 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3161 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3162 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3163 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3164 
3165 #define skb_queue_walk(queue, skb) \
3166 		for (skb = (queue)->next;					\
3167 		     skb != (struct sk_buff *)(queue);				\
3168 		     skb = skb->next)
3169 
3170 #define skb_queue_walk_safe(queue, skb, tmp)					\
3171 		for (skb = (queue)->next, tmp = skb->next;			\
3172 		     skb != (struct sk_buff *)(queue);				\
3173 		     skb = tmp, tmp = skb->next)
3174 
3175 #define skb_queue_walk_from(queue, skb)						\
3176 		for (; skb != (struct sk_buff *)(queue);			\
3177 		     skb = skb->next)
3178 
3179 #define skb_rbtree_walk(skb, root)						\
3180 		for (skb = skb_rb_first(root); skb != NULL;			\
3181 		     skb = skb_rb_next(skb))
3182 
3183 #define skb_rbtree_walk_from(skb)						\
3184 		for (; skb != NULL;						\
3185 		     skb = skb_rb_next(skb))
3186 
3187 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3188 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3189 		     skb = tmp)
3190 
3191 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3192 		for (tmp = skb->next;						\
3193 		     skb != (struct sk_buff *)(queue);				\
3194 		     skb = tmp, tmp = skb->next)
3195 
3196 #define skb_queue_reverse_walk(queue, skb) \
3197 		for (skb = (queue)->prev;					\
3198 		     skb != (struct sk_buff *)(queue);				\
3199 		     skb = skb->prev)
3200 
3201 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3202 		for (skb = (queue)->prev, tmp = skb->prev;			\
3203 		     skb != (struct sk_buff *)(queue);				\
3204 		     skb = tmp, tmp = skb->prev)
3205 
3206 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3207 		for (tmp = skb->prev;						\
3208 		     skb != (struct sk_buff *)(queue);				\
3209 		     skb = tmp, tmp = skb->prev)
3210 
3211 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3212 {
3213 	return skb_shinfo(skb)->frag_list != NULL;
3214 }
3215 
3216 static inline void skb_frag_list_init(struct sk_buff *skb)
3217 {
3218 	skb_shinfo(skb)->frag_list = NULL;
3219 }
3220 
3221 #define skb_walk_frags(skb, iter)	\
3222 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3223 
3224 
3225 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3226 				const struct sk_buff *skb);
3227 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3228 					  struct sk_buff_head *queue,
3229 					  unsigned int flags,
3230 					  void (*destructor)(struct sock *sk,
3231 							   struct sk_buff *skb),
3232 					  int *peeked, int *off, int *err,
3233 					  struct sk_buff **last);
3234 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3235 					void (*destructor)(struct sock *sk,
3236 							   struct sk_buff *skb),
3237 					int *peeked, int *off, int *err,
3238 					struct sk_buff **last);
3239 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3240 				    void (*destructor)(struct sock *sk,
3241 						       struct sk_buff *skb),
3242 				    int *peeked, int *off, int *err);
3243 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3244 				  int *err);
3245 unsigned int datagram_poll(struct file *file, struct socket *sock,
3246 			   struct poll_table_struct *wait);
3247 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3248 			   struct iov_iter *to, int size);
3249 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3250 					struct msghdr *msg, int size)
3251 {
3252 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3253 }
3254 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3255 				   struct msghdr *msg);
3256 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3257 				 struct iov_iter *from, int len);
3258 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3259 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3260 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3261 static inline void skb_free_datagram_locked(struct sock *sk,
3262 					    struct sk_buff *skb)
3263 {
3264 	__skb_free_datagram_locked(sk, skb, 0);
3265 }
3266 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3267 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3268 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3269 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3270 			      int len, __wsum csum);
3271 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3272 		    struct pipe_inode_info *pipe, unsigned int len,
3273 		    unsigned int flags);
3274 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3275 			 int len);
3276 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3277 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3278 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3279 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3280 		 int len, int hlen);
3281 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3282 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3283 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3284 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3285 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3286 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3287 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3288 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3289 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3290 int skb_vlan_pop(struct sk_buff *skb);
3291 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3292 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3293 			     gfp_t gfp);
3294 
3295 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3296 {
3297 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3298 }
3299 
3300 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3301 {
3302 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3303 }
3304 
3305 struct skb_checksum_ops {
3306 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3307 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3308 };
3309 
3310 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3311 
3312 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3313 		      __wsum csum, const struct skb_checksum_ops *ops);
3314 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3315 		    __wsum csum);
3316 
3317 static inline void * __must_check
3318 __skb_header_pointer(const struct sk_buff *skb, int offset,
3319 		     int len, void *data, int hlen, void *buffer)
3320 {
3321 	if (hlen - offset >= len)
3322 		return data + offset;
3323 
3324 	if (!skb ||
3325 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3326 		return NULL;
3327 
3328 	return buffer;
3329 }
3330 
3331 static inline void * __must_check
3332 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3333 {
3334 	return __skb_header_pointer(skb, offset, len, skb->data,
3335 				    skb_headlen(skb), buffer);
3336 }
3337 
3338 /**
3339  *	skb_needs_linearize - check if we need to linearize a given skb
3340  *			      depending on the given device features.
3341  *	@skb: socket buffer to check
3342  *	@features: net device features
3343  *
3344  *	Returns true if either:
3345  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3346  *	2. skb is fragmented and the device does not support SG.
3347  */
3348 static inline bool skb_needs_linearize(struct sk_buff *skb,
3349 				       netdev_features_t features)
3350 {
3351 	return skb_is_nonlinear(skb) &&
3352 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3353 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3354 }
3355 
3356 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3357 					     void *to,
3358 					     const unsigned int len)
3359 {
3360 	memcpy(to, skb->data, len);
3361 }
3362 
3363 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3364 						    const int offset, void *to,
3365 						    const unsigned int len)
3366 {
3367 	memcpy(to, skb->data + offset, len);
3368 }
3369 
3370 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3371 					   const void *from,
3372 					   const unsigned int len)
3373 {
3374 	memcpy(skb->data, from, len);
3375 }
3376 
3377 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3378 						  const int offset,
3379 						  const void *from,
3380 						  const unsigned int len)
3381 {
3382 	memcpy(skb->data + offset, from, len);
3383 }
3384 
3385 void skb_init(void);
3386 
3387 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3388 {
3389 	return skb->tstamp;
3390 }
3391 
3392 /**
3393  *	skb_get_timestamp - get timestamp from a skb
3394  *	@skb: skb to get stamp from
3395  *	@stamp: pointer to struct timeval to store stamp in
3396  *
3397  *	Timestamps are stored in the skb as offsets to a base timestamp.
3398  *	This function converts the offset back to a struct timeval and stores
3399  *	it in stamp.
3400  */
3401 static inline void skb_get_timestamp(const struct sk_buff *skb,
3402 				     struct timeval *stamp)
3403 {
3404 	*stamp = ktime_to_timeval(skb->tstamp);
3405 }
3406 
3407 static inline void skb_get_timestampns(const struct sk_buff *skb,
3408 				       struct timespec *stamp)
3409 {
3410 	*stamp = ktime_to_timespec(skb->tstamp);
3411 }
3412 
3413 static inline void __net_timestamp(struct sk_buff *skb)
3414 {
3415 	skb->tstamp = ktime_get_real();
3416 }
3417 
3418 static inline ktime_t net_timedelta(ktime_t t)
3419 {
3420 	return ktime_sub(ktime_get_real(), t);
3421 }
3422 
3423 static inline ktime_t net_invalid_timestamp(void)
3424 {
3425 	return 0;
3426 }
3427 
3428 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3429 {
3430 	return skb_shinfo(skb)->meta_len;
3431 }
3432 
3433 static inline void *skb_metadata_end(const struct sk_buff *skb)
3434 {
3435 	return skb_mac_header(skb);
3436 }
3437 
3438 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3439 					  const struct sk_buff *skb_b,
3440 					  u8 meta_len)
3441 {
3442 	const void *a = skb_metadata_end(skb_a);
3443 	const void *b = skb_metadata_end(skb_b);
3444 	/* Using more efficient varaiant than plain call to memcmp(). */
3445 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3446 	u64 diffs = 0;
3447 
3448 	switch (meta_len) {
3449 #define __it(x, op) (x -= sizeof(u##op))
3450 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3451 	case 32: diffs |= __it_diff(a, b, 64);
3452 	case 24: diffs |= __it_diff(a, b, 64);
3453 	case 16: diffs |= __it_diff(a, b, 64);
3454 	case  8: diffs |= __it_diff(a, b, 64);
3455 		break;
3456 	case 28: diffs |= __it_diff(a, b, 64);
3457 	case 20: diffs |= __it_diff(a, b, 64);
3458 	case 12: diffs |= __it_diff(a, b, 64);
3459 	case  4: diffs |= __it_diff(a, b, 32);
3460 		break;
3461 	}
3462 	return diffs;
3463 #else
3464 	return memcmp(a - meta_len, b - meta_len, meta_len);
3465 #endif
3466 }
3467 
3468 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3469 					const struct sk_buff *skb_b)
3470 {
3471 	u8 len_a = skb_metadata_len(skb_a);
3472 	u8 len_b = skb_metadata_len(skb_b);
3473 
3474 	if (!(len_a | len_b))
3475 		return false;
3476 
3477 	return len_a != len_b ?
3478 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3479 }
3480 
3481 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3482 {
3483 	skb_shinfo(skb)->meta_len = meta_len;
3484 }
3485 
3486 static inline void skb_metadata_clear(struct sk_buff *skb)
3487 {
3488 	skb_metadata_set(skb, 0);
3489 }
3490 
3491 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3492 
3493 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3494 
3495 void skb_clone_tx_timestamp(struct sk_buff *skb);
3496 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3497 
3498 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3499 
3500 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3501 {
3502 }
3503 
3504 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3505 {
3506 	return false;
3507 }
3508 
3509 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3510 
3511 /**
3512  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3513  *
3514  * PHY drivers may accept clones of transmitted packets for
3515  * timestamping via their phy_driver.txtstamp method. These drivers
3516  * must call this function to return the skb back to the stack with a
3517  * timestamp.
3518  *
3519  * @skb: clone of the the original outgoing packet
3520  * @hwtstamps: hardware time stamps
3521  *
3522  */
3523 void skb_complete_tx_timestamp(struct sk_buff *skb,
3524 			       struct skb_shared_hwtstamps *hwtstamps);
3525 
3526 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3527 		     struct skb_shared_hwtstamps *hwtstamps,
3528 		     struct sock *sk, int tstype);
3529 
3530 /**
3531  * skb_tstamp_tx - queue clone of skb with send time stamps
3532  * @orig_skb:	the original outgoing packet
3533  * @hwtstamps:	hardware time stamps, may be NULL if not available
3534  *
3535  * If the skb has a socket associated, then this function clones the
3536  * skb (thus sharing the actual data and optional structures), stores
3537  * the optional hardware time stamping information (if non NULL) or
3538  * generates a software time stamp (otherwise), then queues the clone
3539  * to the error queue of the socket.  Errors are silently ignored.
3540  */
3541 void skb_tstamp_tx(struct sk_buff *orig_skb,
3542 		   struct skb_shared_hwtstamps *hwtstamps);
3543 
3544 /**
3545  * skb_tx_timestamp() - Driver hook for transmit timestamping
3546  *
3547  * Ethernet MAC Drivers should call this function in their hard_xmit()
3548  * function immediately before giving the sk_buff to the MAC hardware.
3549  *
3550  * Specifically, one should make absolutely sure that this function is
3551  * called before TX completion of this packet can trigger.  Otherwise
3552  * the packet could potentially already be freed.
3553  *
3554  * @skb: A socket buffer.
3555  */
3556 static inline void skb_tx_timestamp(struct sk_buff *skb)
3557 {
3558 	skb_clone_tx_timestamp(skb);
3559 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3560 		skb_tstamp_tx(skb, NULL);
3561 }
3562 
3563 /**
3564  * skb_complete_wifi_ack - deliver skb with wifi status
3565  *
3566  * @skb: the original outgoing packet
3567  * @acked: ack status
3568  *
3569  */
3570 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3571 
3572 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3573 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3574 
3575 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3576 {
3577 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3578 		skb->csum_valid ||
3579 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3580 		 skb_checksum_start_offset(skb) >= 0));
3581 }
3582 
3583 /**
3584  *	skb_checksum_complete - Calculate checksum of an entire packet
3585  *	@skb: packet to process
3586  *
3587  *	This function calculates the checksum over the entire packet plus
3588  *	the value of skb->csum.  The latter can be used to supply the
3589  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3590  *	checksum.
3591  *
3592  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3593  *	this function can be used to verify that checksum on received
3594  *	packets.  In that case the function should return zero if the
3595  *	checksum is correct.  In particular, this function will return zero
3596  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3597  *	hardware has already verified the correctness of the checksum.
3598  */
3599 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3600 {
3601 	return skb_csum_unnecessary(skb) ?
3602 	       0 : __skb_checksum_complete(skb);
3603 }
3604 
3605 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3606 {
3607 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3608 		if (skb->csum_level == 0)
3609 			skb->ip_summed = CHECKSUM_NONE;
3610 		else
3611 			skb->csum_level--;
3612 	}
3613 }
3614 
3615 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3616 {
3617 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3618 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3619 			skb->csum_level++;
3620 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3621 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3622 		skb->csum_level = 0;
3623 	}
3624 }
3625 
3626 /* Check if we need to perform checksum complete validation.
3627  *
3628  * Returns true if checksum complete is needed, false otherwise
3629  * (either checksum is unnecessary or zero checksum is allowed).
3630  */
3631 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3632 						  bool zero_okay,
3633 						  __sum16 check)
3634 {
3635 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3636 		skb->csum_valid = 1;
3637 		__skb_decr_checksum_unnecessary(skb);
3638 		return false;
3639 	}
3640 
3641 	return true;
3642 }
3643 
3644 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3645  * in checksum_init.
3646  */
3647 #define CHECKSUM_BREAK 76
3648 
3649 /* Unset checksum-complete
3650  *
3651  * Unset checksum complete can be done when packet is being modified
3652  * (uncompressed for instance) and checksum-complete value is
3653  * invalidated.
3654  */
3655 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3656 {
3657 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3658 		skb->ip_summed = CHECKSUM_NONE;
3659 }
3660 
3661 /* Validate (init) checksum based on checksum complete.
3662  *
3663  * Return values:
3664  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3665  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3666  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3667  *   non-zero: value of invalid checksum
3668  *
3669  */
3670 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3671 						       bool complete,
3672 						       __wsum psum)
3673 {
3674 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3675 		if (!csum_fold(csum_add(psum, skb->csum))) {
3676 			skb->csum_valid = 1;
3677 			return 0;
3678 		}
3679 	}
3680 
3681 	skb->csum = psum;
3682 
3683 	if (complete || skb->len <= CHECKSUM_BREAK) {
3684 		__sum16 csum;
3685 
3686 		csum = __skb_checksum_complete(skb);
3687 		skb->csum_valid = !csum;
3688 		return csum;
3689 	}
3690 
3691 	return 0;
3692 }
3693 
3694 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3695 {
3696 	return 0;
3697 }
3698 
3699 /* Perform checksum validate (init). Note that this is a macro since we only
3700  * want to calculate the pseudo header which is an input function if necessary.
3701  * First we try to validate without any computation (checksum unnecessary) and
3702  * then calculate based on checksum complete calling the function to compute
3703  * pseudo header.
3704  *
3705  * Return values:
3706  *   0: checksum is validated or try to in skb_checksum_complete
3707  *   non-zero: value of invalid checksum
3708  */
3709 #define __skb_checksum_validate(skb, proto, complete,			\
3710 				zero_okay, check, compute_pseudo)	\
3711 ({									\
3712 	__sum16 __ret = 0;						\
3713 	skb->csum_valid = 0;						\
3714 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3715 		__ret = __skb_checksum_validate_complete(skb,		\
3716 				complete, compute_pseudo(skb, proto));	\
3717 	__ret;								\
3718 })
3719 
3720 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3721 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3722 
3723 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3724 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3725 
3726 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3727 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3728 
3729 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3730 					 compute_pseudo)		\
3731 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3732 
3733 #define skb_checksum_simple_validate(skb)				\
3734 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3735 
3736 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3737 {
3738 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3739 }
3740 
3741 static inline void __skb_checksum_convert(struct sk_buff *skb,
3742 					  __sum16 check, __wsum pseudo)
3743 {
3744 	skb->csum = ~pseudo;
3745 	skb->ip_summed = CHECKSUM_COMPLETE;
3746 }
3747 
3748 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3749 do {									\
3750 	if (__skb_checksum_convert_check(skb))				\
3751 		__skb_checksum_convert(skb, check,			\
3752 				       compute_pseudo(skb, proto));	\
3753 } while (0)
3754 
3755 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3756 					      u16 start, u16 offset)
3757 {
3758 	skb->ip_summed = CHECKSUM_PARTIAL;
3759 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3760 	skb->csum_offset = offset - start;
3761 }
3762 
3763 /* Update skbuf and packet to reflect the remote checksum offload operation.
3764  * When called, ptr indicates the starting point for skb->csum when
3765  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3766  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3767  */
3768 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3769 				       int start, int offset, bool nopartial)
3770 {
3771 	__wsum delta;
3772 
3773 	if (!nopartial) {
3774 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3775 		return;
3776 	}
3777 
3778 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3779 		__skb_checksum_complete(skb);
3780 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3781 	}
3782 
3783 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3784 
3785 	/* Adjust skb->csum since we changed the packet */
3786 	skb->csum = csum_add(skb->csum, delta);
3787 }
3788 
3789 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3790 {
3791 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3792 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3793 #else
3794 	return NULL;
3795 #endif
3796 }
3797 
3798 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3799 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3800 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3801 {
3802 	if (nfct && atomic_dec_and_test(&nfct->use))
3803 		nf_conntrack_destroy(nfct);
3804 }
3805 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3806 {
3807 	if (nfct)
3808 		atomic_inc(&nfct->use);
3809 }
3810 #endif
3811 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3812 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3813 {
3814 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3815 		kfree(nf_bridge);
3816 }
3817 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3818 {
3819 	if (nf_bridge)
3820 		refcount_inc(&nf_bridge->use);
3821 }
3822 #endif /* CONFIG_BRIDGE_NETFILTER */
3823 static inline void nf_reset(struct sk_buff *skb)
3824 {
3825 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3826 	nf_conntrack_put(skb_nfct(skb));
3827 	skb->_nfct = 0;
3828 #endif
3829 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3830 	nf_bridge_put(skb->nf_bridge);
3831 	skb->nf_bridge = NULL;
3832 #endif
3833 }
3834 
3835 static inline void nf_reset_trace(struct sk_buff *skb)
3836 {
3837 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3838 	skb->nf_trace = 0;
3839 #endif
3840 }
3841 
3842 static inline void ipvs_reset(struct sk_buff *skb)
3843 {
3844 #if IS_ENABLED(CONFIG_IP_VS)
3845 	skb->ipvs_property = 0;
3846 #endif
3847 }
3848 
3849 /* Note: This doesn't put any conntrack and bridge info in dst. */
3850 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3851 			     bool copy)
3852 {
3853 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3854 	dst->_nfct = src->_nfct;
3855 	nf_conntrack_get(skb_nfct(src));
3856 #endif
3857 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3858 	dst->nf_bridge  = src->nf_bridge;
3859 	nf_bridge_get(src->nf_bridge);
3860 #endif
3861 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3862 	if (copy)
3863 		dst->nf_trace = src->nf_trace;
3864 #endif
3865 }
3866 
3867 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3868 {
3869 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3870 	nf_conntrack_put(skb_nfct(dst));
3871 #endif
3872 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3873 	nf_bridge_put(dst->nf_bridge);
3874 #endif
3875 	__nf_copy(dst, src, true);
3876 }
3877 
3878 #ifdef CONFIG_NETWORK_SECMARK
3879 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3880 {
3881 	to->secmark = from->secmark;
3882 }
3883 
3884 static inline void skb_init_secmark(struct sk_buff *skb)
3885 {
3886 	skb->secmark = 0;
3887 }
3888 #else
3889 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3890 { }
3891 
3892 static inline void skb_init_secmark(struct sk_buff *skb)
3893 { }
3894 #endif
3895 
3896 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3897 {
3898 	return !skb->destructor &&
3899 #if IS_ENABLED(CONFIG_XFRM)
3900 		!skb->sp &&
3901 #endif
3902 		!skb_nfct(skb) &&
3903 		!skb->_skb_refdst &&
3904 		!skb_has_frag_list(skb);
3905 }
3906 
3907 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3908 {
3909 	skb->queue_mapping = queue_mapping;
3910 }
3911 
3912 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3913 {
3914 	return skb->queue_mapping;
3915 }
3916 
3917 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3918 {
3919 	to->queue_mapping = from->queue_mapping;
3920 }
3921 
3922 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3923 {
3924 	skb->queue_mapping = rx_queue + 1;
3925 }
3926 
3927 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3928 {
3929 	return skb->queue_mapping - 1;
3930 }
3931 
3932 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3933 {
3934 	return skb->queue_mapping != 0;
3935 }
3936 
3937 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3938 {
3939 	skb->dst_pending_confirm = val;
3940 }
3941 
3942 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3943 {
3944 	return skb->dst_pending_confirm != 0;
3945 }
3946 
3947 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3948 {
3949 #ifdef CONFIG_XFRM
3950 	return skb->sp;
3951 #else
3952 	return NULL;
3953 #endif
3954 }
3955 
3956 /* Keeps track of mac header offset relative to skb->head.
3957  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3958  * For non-tunnel skb it points to skb_mac_header() and for
3959  * tunnel skb it points to outer mac header.
3960  * Keeps track of level of encapsulation of network headers.
3961  */
3962 struct skb_gso_cb {
3963 	union {
3964 		int	mac_offset;
3965 		int	data_offset;
3966 	};
3967 	int	encap_level;
3968 	__wsum	csum;
3969 	__u16	csum_start;
3970 };
3971 #define SKB_SGO_CB_OFFSET	32
3972 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3973 
3974 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3975 {
3976 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3977 		SKB_GSO_CB(inner_skb)->mac_offset;
3978 }
3979 
3980 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3981 {
3982 	int new_headroom, headroom;
3983 	int ret;
3984 
3985 	headroom = skb_headroom(skb);
3986 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3987 	if (ret)
3988 		return ret;
3989 
3990 	new_headroom = skb_headroom(skb);
3991 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3992 	return 0;
3993 }
3994 
3995 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3996 {
3997 	/* Do not update partial checksums if remote checksum is enabled. */
3998 	if (skb->remcsum_offload)
3999 		return;
4000 
4001 	SKB_GSO_CB(skb)->csum = res;
4002 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4003 }
4004 
4005 /* Compute the checksum for a gso segment. First compute the checksum value
4006  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4007  * then add in skb->csum (checksum from csum_start to end of packet).
4008  * skb->csum and csum_start are then updated to reflect the checksum of the
4009  * resultant packet starting from the transport header-- the resultant checksum
4010  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4011  * header.
4012  */
4013 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4014 {
4015 	unsigned char *csum_start = skb_transport_header(skb);
4016 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4017 	__wsum partial = SKB_GSO_CB(skb)->csum;
4018 
4019 	SKB_GSO_CB(skb)->csum = res;
4020 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4021 
4022 	return csum_fold(csum_partial(csum_start, plen, partial));
4023 }
4024 
4025 static inline bool skb_is_gso(const struct sk_buff *skb)
4026 {
4027 	return skb_shinfo(skb)->gso_size;
4028 }
4029 
4030 /* Note: Should be called only if skb_is_gso(skb) is true */
4031 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4032 {
4033 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4034 }
4035 
4036 static inline void skb_gso_reset(struct sk_buff *skb)
4037 {
4038 	skb_shinfo(skb)->gso_size = 0;
4039 	skb_shinfo(skb)->gso_segs = 0;
4040 	skb_shinfo(skb)->gso_type = 0;
4041 }
4042 
4043 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4044 
4045 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4046 {
4047 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4048 	 * wanted then gso_type will be set. */
4049 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4050 
4051 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4052 	    unlikely(shinfo->gso_type == 0)) {
4053 		__skb_warn_lro_forwarding(skb);
4054 		return true;
4055 	}
4056 	return false;
4057 }
4058 
4059 static inline void skb_forward_csum(struct sk_buff *skb)
4060 {
4061 	/* Unfortunately we don't support this one.  Any brave souls? */
4062 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4063 		skb->ip_summed = CHECKSUM_NONE;
4064 }
4065 
4066 /**
4067  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4068  * @skb: skb to check
4069  *
4070  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4071  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4072  * use this helper, to document places where we make this assertion.
4073  */
4074 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4075 {
4076 #ifdef DEBUG
4077 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4078 #endif
4079 }
4080 
4081 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4082 
4083 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4084 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4085 				     unsigned int transport_len,
4086 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4087 
4088 /**
4089  * skb_head_is_locked - Determine if the skb->head is locked down
4090  * @skb: skb to check
4091  *
4092  * The head on skbs build around a head frag can be removed if they are
4093  * not cloned.  This function returns true if the skb head is locked down
4094  * due to either being allocated via kmalloc, or by being a clone with
4095  * multiple references to the head.
4096  */
4097 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4098 {
4099 	return !skb->head_frag || skb_cloned(skb);
4100 }
4101 
4102 /**
4103  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4104  *
4105  * @skb: GSO skb
4106  *
4107  * skb_gso_network_seglen is used to determine the real size of the
4108  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4109  *
4110  * The MAC/L2 header is not accounted for.
4111  */
4112 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4113 {
4114 	unsigned int hdr_len = skb_transport_header(skb) -
4115 			       skb_network_header(skb);
4116 	return hdr_len + skb_gso_transport_seglen(skb);
4117 }
4118 
4119 /* Local Checksum Offload.
4120  * Compute outer checksum based on the assumption that the
4121  * inner checksum will be offloaded later.
4122  * See Documentation/networking/checksum-offloads.txt for
4123  * explanation of how this works.
4124  * Fill in outer checksum adjustment (e.g. with sum of outer
4125  * pseudo-header) before calling.
4126  * Also ensure that inner checksum is in linear data area.
4127  */
4128 static inline __wsum lco_csum(struct sk_buff *skb)
4129 {
4130 	unsigned char *csum_start = skb_checksum_start(skb);
4131 	unsigned char *l4_hdr = skb_transport_header(skb);
4132 	__wsum partial;
4133 
4134 	/* Start with complement of inner checksum adjustment */
4135 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4136 						    skb->csum_offset));
4137 
4138 	/* Add in checksum of our headers (incl. outer checksum
4139 	 * adjustment filled in by caller) and return result.
4140 	 */
4141 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4142 }
4143 
4144 #endif	/* __KERNEL__ */
4145 #endif	/* _LINUX_SKBUFF_H */
4146