xref: /linux-6.15/include/linux/skbuff.h (revision 0dffdb3b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <linux/page_frag_cache.h>
35 #include <net/flow.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason-core.h>
41 #include <net/netmem.h>
42 
43 /**
44  * DOC: skb checksums
45  *
46  * The interface for checksum offload between the stack and networking drivers
47  * is as follows...
48  *
49  * IP checksum related features
50  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
51  *
52  * Drivers advertise checksum offload capabilities in the features of a device.
53  * From the stack's point of view these are capabilities offered by the driver.
54  * A driver typically only advertises features that it is capable of offloading
55  * to its device.
56  *
57  * .. flat-table:: Checksum related device features
58  *   :widths: 1 10
59  *
60  *   * - %NETIF_F_HW_CSUM
61  *     - The driver (or its device) is able to compute one
62  *	 IP (one's complement) checksum for any combination
63  *	 of protocols or protocol layering. The checksum is
64  *	 computed and set in a packet per the CHECKSUM_PARTIAL
65  *	 interface (see below).
66  *
67  *   * - %NETIF_F_IP_CSUM
68  *     - Driver (device) is only able to checksum plain
69  *	 TCP or UDP packets over IPv4. These are specifically
70  *	 unencapsulated packets of the form IPv4|TCP or
71  *	 IPv4|UDP where the Protocol field in the IPv4 header
72  *	 is TCP or UDP. The IPv4 header may contain IP options.
73  *	 This feature cannot be set in features for a device
74  *	 with NETIF_F_HW_CSUM also set. This feature is being
75  *	 DEPRECATED (see below).
76  *
77  *   * - %NETIF_F_IPV6_CSUM
78  *     - Driver (device) is only able to checksum plain
79  *	 TCP or UDP packets over IPv6. These are specifically
80  *	 unencapsulated packets of the form IPv6|TCP or
81  *	 IPv6|UDP where the Next Header field in the IPv6
82  *	 header is either TCP or UDP. IPv6 extension headers
83  *	 are not supported with this feature. This feature
84  *	 cannot be set in features for a device with
85  *	 NETIF_F_HW_CSUM also set. This feature is being
86  *	 DEPRECATED (see below).
87  *
88  *   * - %NETIF_F_RXCSUM
89  *     - Driver (device) performs receive checksum offload.
90  *	 This flag is only used to disable the RX checksum
91  *	 feature for a device. The stack will accept receive
92  *	 checksum indication in packets received on a device
93  *	 regardless of whether NETIF_F_RXCSUM is set.
94  *
95  * Checksumming of received packets by device
96  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
97  *
98  * Indication of checksum verification is set in &sk_buff.ip_summed.
99  * Possible values are:
100  *
101  * - %CHECKSUM_NONE
102  *
103  *   Device did not checksum this packet e.g. due to lack of capabilities.
104  *   The packet contains full (though not verified) checksum in packet but
105  *   not in skb->csum. Thus, skb->csum is undefined in this case.
106  *
107  * - %CHECKSUM_UNNECESSARY
108  *
109  *   The hardware you're dealing with doesn't calculate the full checksum
110  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
111  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
112  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
113  *   though. A driver or device must never modify the checksum field in the
114  *   packet even if checksum is verified.
115  *
116  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
117  *
118  *     - TCP: IPv6 and IPv4.
119  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
120  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
121  *       may perform further validation in this case.
122  *     - GRE: only if the checksum is present in the header.
123  *     - SCTP: indicates the CRC in SCTP header has been validated.
124  *     - FCOE: indicates the CRC in FC frame has been validated.
125  *
126  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
127  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
128  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
129  *   and a device is able to verify the checksums for UDP (possibly zero),
130  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
131  *   two. If the device were only able to verify the UDP checksum and not
132  *   GRE, either because it doesn't support GRE checksum or because GRE
133  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
134  *   not considered in this case).
135  *
136  * - %CHECKSUM_COMPLETE
137  *
138  *   This is the most generic way. The device supplied checksum of the _whole_
139  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
140  *   hardware doesn't need to parse L3/L4 headers to implement this.
141  *
142  *   Notes:
143  *
144  *   - Even if device supports only some protocols, but is able to produce
145  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
146  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
147  *
148  * - %CHECKSUM_PARTIAL
149  *
150  *   A checksum is set up to be offloaded to a device as described in the
151  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
152  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
153  *   on the same host, or it may be set in the input path in GRO or remote
154  *   checksum offload. For the purposes of checksum verification, the checksum
155  *   referred to by skb->csum_start + skb->csum_offset and any preceding
156  *   checksums in the packet are considered verified. Any checksums in the
157  *   packet that are after the checksum being offloaded are not considered to
158  *   be verified.
159  *
160  * Checksumming on transmit for non-GSO
161  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162  *
163  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
164  * Values are:
165  *
166  * - %CHECKSUM_PARTIAL
167  *
168  *   The driver is required to checksum the packet as seen by hard_start_xmit()
169  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
170  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
171  *   A driver may verify that the
172  *   csum_start and csum_offset values are valid values given the length and
173  *   offset of the packet, but it should not attempt to validate that the
174  *   checksum refers to a legitimate transport layer checksum -- it is the
175  *   purview of the stack to validate that csum_start and csum_offset are set
176  *   correctly.
177  *
178  *   When the stack requests checksum offload for a packet, the driver MUST
179  *   ensure that the checksum is set correctly. A driver can either offload the
180  *   checksum calculation to the device, or call skb_checksum_help (in the case
181  *   that the device does not support offload for a particular checksum).
182  *
183  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
184  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
185  *   checksum offload capability.
186  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
187  *   on network device checksumming capabilities: if a packet does not match
188  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
189  *   &sk_buff.csum_not_inet, see :ref:`crc`)
190  *   is called to resolve the checksum.
191  *
192  * - %CHECKSUM_NONE
193  *
194  *   The skb was already checksummed by the protocol, or a checksum is not
195  *   required.
196  *
197  * - %CHECKSUM_UNNECESSARY
198  *
199  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
200  *   output.
201  *
202  * - %CHECKSUM_COMPLETE
203  *
204  *   Not used in checksum output. If a driver observes a packet with this value
205  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
206  *
207  * .. _crc:
208  *
209  * Non-IP checksum (CRC) offloads
210  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211  *
212  * .. flat-table::
213  *   :widths: 1 10
214  *
215  *   * - %NETIF_F_SCTP_CRC
216  *     - This feature indicates that a device is capable of
217  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
218  *	 will set csum_start and csum_offset accordingly, set ip_summed to
219  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
220  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
221  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
222  *	 must verify which offload is configured for a packet by testing the
223  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
224  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
225  *
226  *   * - %NETIF_F_FCOE_CRC
227  *     - This feature indicates that a device is capable of offloading the FCOE
228  *	 CRC in a packet. To perform this offload the stack will set ip_summed
229  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
230  *	 accordingly. Note that there is no indication in the skbuff that the
231  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
232  *	 both IP checksum offload and FCOE CRC offload must verify which offload
233  *	 is configured for a packet, presumably by inspecting packet headers.
234  *
235  * Checksumming on output with GSO
236  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
237  *
238  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
239  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
240  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
241  * part of the GSO operation is implied. If a checksum is being offloaded
242  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
243  * csum_offset are set to refer to the outermost checksum being offloaded
244  * (two offloaded checksums are possible with UDP encapsulation).
245  */
246 
247 /* Don't change this without changing skb_csum_unnecessary! */
248 #define CHECKSUM_NONE		0
249 #define CHECKSUM_UNNECESSARY	1
250 #define CHECKSUM_COMPLETE	2
251 #define CHECKSUM_PARTIAL	3
252 
253 /* Maximum value in skb->csum_level */
254 #define SKB_MAX_CSUM_LEVEL	3
255 
256 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
257 #define SKB_WITH_OVERHEAD(X)	\
258 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
259 
260 /* For X bytes available in skb->head, what is the minimal
261  * allocation needed, knowing struct skb_shared_info needs
262  * to be aligned.
263  */
264 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
265 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
266 
267 #define SKB_MAX_ORDER(X, ORDER) \
268 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
269 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
270 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
271 
272 /* return minimum truesize of one skb containing X bytes of data */
273 #define SKB_TRUESIZE(X) ((X) +						\
274 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
275 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
276 
277 struct ahash_request;
278 struct net_device;
279 struct scatterlist;
280 struct pipe_inode_info;
281 struct iov_iter;
282 struct napi_struct;
283 struct bpf_prog;
284 union bpf_attr;
285 struct skb_ext;
286 struct ts_config;
287 
288 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
289 struct nf_bridge_info {
290 	enum {
291 		BRNF_PROTO_UNCHANGED,
292 		BRNF_PROTO_8021Q,
293 		BRNF_PROTO_PPPOE
294 	} orig_proto:8;
295 	u8			pkt_otherhost:1;
296 	u8			in_prerouting:1;
297 	u8			bridged_dnat:1;
298 	u8			sabotage_in_done:1;
299 	__u16			frag_max_size;
300 	int			physinif;
301 
302 	/* always valid & non-NULL from FORWARD on, for physdev match */
303 	struct net_device	*physoutdev;
304 	union {
305 		/* prerouting: detect dnat in orig/reply direction */
306 		__be32          ipv4_daddr;
307 		struct in6_addr ipv6_daddr;
308 
309 		/* after prerouting + nat detected: store original source
310 		 * mac since neigh resolution overwrites it, only used while
311 		 * skb is out in neigh layer.
312 		 */
313 		char neigh_header[8];
314 	};
315 };
316 #endif
317 
318 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
319 /* Chain in tc_skb_ext will be used to share the tc chain with
320  * ovs recirc_id. It will be set to the current chain by tc
321  * and read by ovs to recirc_id.
322  */
323 struct tc_skb_ext {
324 	union {
325 		u64 act_miss_cookie;
326 		__u32 chain;
327 	};
328 	__u16 mru;
329 	__u16 zone;
330 	u8 post_ct:1;
331 	u8 post_ct_snat:1;
332 	u8 post_ct_dnat:1;
333 	u8 act_miss:1; /* Set if act_miss_cookie is used */
334 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
335 };
336 #endif
337 
338 struct sk_buff_head {
339 	/* These two members must be first to match sk_buff. */
340 	struct_group_tagged(sk_buff_list, list,
341 		struct sk_buff	*next;
342 		struct sk_buff	*prev;
343 	);
344 
345 	__u32		qlen;
346 	spinlock_t	lock;
347 };
348 
349 struct sk_buff;
350 
351 #ifndef CONFIG_MAX_SKB_FRAGS
352 # define CONFIG_MAX_SKB_FRAGS 17
353 #endif
354 
355 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
356 
357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358  * segment using its current segmentation instead.
359  */
360 #define GSO_BY_FRAGS	0xFFFF
361 
362 typedef struct skb_frag {
363 	netmem_ref netmem;
364 	unsigned int len;
365 	unsigned int offset;
366 } skb_frag_t;
367 
368 /**
369  * skb_frag_size() - Returns the size of a skb fragment
370  * @frag: skb fragment
371  */
372 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
373 {
374 	return frag->len;
375 }
376 
377 /**
378  * skb_frag_size_set() - Sets the size of a skb fragment
379  * @frag: skb fragment
380  * @size: size of fragment
381  */
382 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
383 {
384 	frag->len = size;
385 }
386 
387 /**
388  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
389  * @frag: skb fragment
390  * @delta: value to add
391  */
392 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
393 {
394 	frag->len += delta;
395 }
396 
397 /**
398  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
399  * @frag: skb fragment
400  * @delta: value to subtract
401  */
402 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
403 {
404 	frag->len -= delta;
405 }
406 
407 /**
408  * skb_frag_must_loop - Test if %p is a high memory page
409  * @p: fragment's page
410  */
411 static inline bool skb_frag_must_loop(struct page *p)
412 {
413 #if defined(CONFIG_HIGHMEM)
414 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
415 		return true;
416 #endif
417 	return false;
418 }
419 
420 /**
421  *	skb_frag_foreach_page - loop over pages in a fragment
422  *
423  *	@f:		skb frag to operate on
424  *	@f_off:		offset from start of f->netmem
425  *	@f_len:		length from f_off to loop over
426  *	@p:		(temp var) current page
427  *	@p_off:		(temp var) offset from start of current page,
428  *	                           non-zero only on first page.
429  *	@p_len:		(temp var) length in current page,
430  *				   < PAGE_SIZE only on first and last page.
431  *	@copied:	(temp var) length so far, excluding current p_len.
432  *
433  *	A fragment can hold a compound page, in which case per-page
434  *	operations, notably kmap_atomic, must be called for each
435  *	regular page.
436  */
437 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
438 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
439 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
440 	     p_len = skb_frag_must_loop(p) ?				\
441 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
442 	     copied = 0;						\
443 	     copied < f_len;						\
444 	     copied += p_len, p++, p_off = 0,				\
445 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
446 
447 /**
448  * struct skb_shared_hwtstamps - hardware time stamps
449  * @hwtstamp:		hardware time stamp transformed into duration
450  *			since arbitrary point in time
451  * @netdev_data:	address/cookie of network device driver used as
452  *			reference to actual hardware time stamp
453  *
454  * Software time stamps generated by ktime_get_real() are stored in
455  * skb->tstamp.
456  *
457  * hwtstamps can only be compared against other hwtstamps from
458  * the same device.
459  *
460  * This structure is attached to packets as part of the
461  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
462  */
463 struct skb_shared_hwtstamps {
464 	union {
465 		ktime_t	hwtstamp;
466 		void *netdev_data;
467 	};
468 };
469 
470 /* Definitions for tx_flags in struct skb_shared_info */
471 enum {
472 	/* generate hardware time stamp */
473 	SKBTX_HW_TSTAMP = 1 << 0,
474 
475 	/* generate software time stamp when queueing packet to NIC */
476 	SKBTX_SW_TSTAMP = 1 << 1,
477 
478 	/* device driver is going to provide hardware time stamp */
479 	SKBTX_IN_PROGRESS = 1 << 2,
480 
481 	/* generate hardware time stamp based on cycles if supported */
482 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
483 
484 	/* generate wifi status information (where possible) */
485 	SKBTX_WIFI_STATUS = 1 << 4,
486 
487 	/* determine hardware time stamp based on time or cycles */
488 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
489 
490 	/* generate software time stamp when entering packet scheduling */
491 	SKBTX_SCHED_TSTAMP = 1 << 6,
492 };
493 
494 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
495 				 SKBTX_SCHED_TSTAMP)
496 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
497 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
498 				 SKBTX_ANY_SW_TSTAMP)
499 
500 /* Definitions for flags in struct skb_shared_info */
501 enum {
502 	/* use zcopy routines */
503 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
504 
505 	/* This indicates at least one fragment might be overwritten
506 	 * (as in vmsplice(), sendfile() ...)
507 	 * If we need to compute a TX checksum, we'll need to copy
508 	 * all frags to avoid possible bad checksum
509 	 */
510 	SKBFL_SHARED_FRAG = BIT(1),
511 
512 	/* segment contains only zerocopy data and should not be
513 	 * charged to the kernel memory.
514 	 */
515 	SKBFL_PURE_ZEROCOPY = BIT(2),
516 
517 	SKBFL_DONT_ORPHAN = BIT(3),
518 
519 	/* page references are managed by the ubuf_info, so it's safe to
520 	 * use frags only up until ubuf_info is released
521 	 */
522 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
523 };
524 
525 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
526 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
527 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
528 
529 struct ubuf_info_ops {
530 	void (*complete)(struct sk_buff *, struct ubuf_info *,
531 			 bool zerocopy_success);
532 	/* has to be compatible with skb_zcopy_set() */
533 	int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
534 };
535 
536 /*
537  * The callback notifies userspace to release buffers when skb DMA is done in
538  * lower device, the skb last reference should be 0 when calling this.
539  * The zerocopy_success argument is true if zero copy transmit occurred,
540  * false on data copy or out of memory error caused by data copy attempt.
541  * The ctx field is used to track device context.
542  * The desc field is used to track userspace buffer index.
543  */
544 struct ubuf_info {
545 	const struct ubuf_info_ops *ops;
546 	refcount_t refcnt;
547 	u8 flags;
548 };
549 
550 struct ubuf_info_msgzc {
551 	struct ubuf_info ubuf;
552 
553 	union {
554 		struct {
555 			unsigned long desc;
556 			void *ctx;
557 		};
558 		struct {
559 			u32 id;
560 			u16 len;
561 			u16 zerocopy:1;
562 			u32 bytelen;
563 		};
564 	};
565 
566 	struct mmpin {
567 		struct user_struct *user;
568 		unsigned int num_pg;
569 	} mmp;
570 };
571 
572 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
573 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
574 					     ubuf)
575 
576 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
577 void mm_unaccount_pinned_pages(struct mmpin *mmp);
578 
579 /* Preserve some data across TX submission and completion.
580  *
581  * Note, this state is stored in the driver. Extending the layout
582  * might need some special care.
583  */
584 struct xsk_tx_metadata_compl {
585 	__u64 *tx_timestamp;
586 };
587 
588 /* This data is invariant across clones and lives at
589  * the end of the header data, ie. at skb->end.
590  */
591 struct skb_shared_info {
592 	__u8		flags;
593 	__u8		meta_len;
594 	__u8		nr_frags;
595 	__u8		tx_flags;
596 	unsigned short	gso_size;
597 	/* Warning: this field is not always filled in (UFO)! */
598 	unsigned short	gso_segs;
599 	struct sk_buff	*frag_list;
600 	union {
601 		struct skb_shared_hwtstamps hwtstamps;
602 		struct xsk_tx_metadata_compl xsk_meta;
603 	};
604 	unsigned int	gso_type;
605 	u32		tskey;
606 
607 	/*
608 	 * Warning : all fields before dataref are cleared in __alloc_skb()
609 	 */
610 	atomic_t	dataref;
611 	unsigned int	xdp_frags_size;
612 
613 	/* Intermediate layers must ensure that destructor_arg
614 	 * remains valid until skb destructor */
615 	void *		destructor_arg;
616 
617 	/* must be last field, see pskb_expand_head() */
618 	skb_frag_t	frags[MAX_SKB_FRAGS];
619 };
620 
621 /**
622  * DOC: dataref and headerless skbs
623  *
624  * Transport layers send out clones of payload skbs they hold for
625  * retransmissions. To allow lower layers of the stack to prepend their headers
626  * we split &skb_shared_info.dataref into two halves.
627  * The lower 16 bits count the overall number of references.
628  * The higher 16 bits indicate how many of the references are payload-only.
629  * skb_header_cloned() checks if skb is allowed to add / write the headers.
630  *
631  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
632  * (via __skb_header_release()). Any clone created from marked skb will get
633  * &sk_buff.hdr_len populated with the available headroom.
634  * If there's the only clone in existence it's able to modify the headroom
635  * at will. The sequence of calls inside the transport layer is::
636  *
637  *  <alloc skb>
638  *  skb_reserve()
639  *  __skb_header_release()
640  *  skb_clone()
641  *  // send the clone down the stack
642  *
643  * This is not a very generic construct and it depends on the transport layers
644  * doing the right thing. In practice there's usually only one payload-only skb.
645  * Having multiple payload-only skbs with different lengths of hdr_len is not
646  * possible. The payload-only skbs should never leave their owner.
647  */
648 #define SKB_DATAREF_SHIFT 16
649 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
650 
651 
652 enum {
653 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
654 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
655 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
656 };
657 
658 enum {
659 	SKB_GSO_TCPV4 = 1 << 0,
660 
661 	/* This indicates the skb is from an untrusted source. */
662 	SKB_GSO_DODGY = 1 << 1,
663 
664 	/* This indicates the tcp segment has CWR set. */
665 	SKB_GSO_TCP_ECN = 1 << 2,
666 
667 	SKB_GSO_TCP_FIXEDID = 1 << 3,
668 
669 	SKB_GSO_TCPV6 = 1 << 4,
670 
671 	SKB_GSO_FCOE = 1 << 5,
672 
673 	SKB_GSO_GRE = 1 << 6,
674 
675 	SKB_GSO_GRE_CSUM = 1 << 7,
676 
677 	SKB_GSO_IPXIP4 = 1 << 8,
678 
679 	SKB_GSO_IPXIP6 = 1 << 9,
680 
681 	SKB_GSO_UDP_TUNNEL = 1 << 10,
682 
683 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
684 
685 	SKB_GSO_PARTIAL = 1 << 12,
686 
687 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
688 
689 	SKB_GSO_SCTP = 1 << 14,
690 
691 	SKB_GSO_ESP = 1 << 15,
692 
693 	SKB_GSO_UDP = 1 << 16,
694 
695 	SKB_GSO_UDP_L4 = 1 << 17,
696 
697 	SKB_GSO_FRAGLIST = 1 << 18,
698 };
699 
700 #if BITS_PER_LONG > 32
701 #define NET_SKBUFF_DATA_USES_OFFSET 1
702 #endif
703 
704 #ifdef NET_SKBUFF_DATA_USES_OFFSET
705 typedef unsigned int sk_buff_data_t;
706 #else
707 typedef unsigned char *sk_buff_data_t;
708 #endif
709 
710 enum skb_tstamp_type {
711 	SKB_CLOCK_REALTIME,
712 	SKB_CLOCK_MONOTONIC,
713 	SKB_CLOCK_TAI,
714 	__SKB_CLOCK_MAX = SKB_CLOCK_TAI,
715 };
716 
717 /**
718  * DOC: Basic sk_buff geometry
719  *
720  * struct sk_buff itself is a metadata structure and does not hold any packet
721  * data. All the data is held in associated buffers.
722  *
723  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
724  * into two parts:
725  *
726  *  - data buffer, containing headers and sometimes payload;
727  *    this is the part of the skb operated on by the common helpers
728  *    such as skb_put() or skb_pull();
729  *  - shared info (struct skb_shared_info) which holds an array of pointers
730  *    to read-only data in the (page, offset, length) format.
731  *
732  * Optionally &skb_shared_info.frag_list may point to another skb.
733  *
734  * Basic diagram may look like this::
735  *
736  *                                  ---------------
737  *                                 | sk_buff       |
738  *                                  ---------------
739  *     ,---------------------------  + head
740  *    /          ,-----------------  + data
741  *   /          /      ,-----------  + tail
742  *  |          |      |            , + end
743  *  |          |      |           |
744  *  v          v      v           v
745  *   -----------------------------------------------
746  *  | headroom | data |  tailroom | skb_shared_info |
747  *   -----------------------------------------------
748  *                                 + [page frag]
749  *                                 + [page frag]
750  *                                 + [page frag]
751  *                                 + [page frag]       ---------
752  *                                 + frag_list    --> | sk_buff |
753  *                                                     ---------
754  *
755  */
756 
757 /**
758  *	struct sk_buff - socket buffer
759  *	@next: Next buffer in list
760  *	@prev: Previous buffer in list
761  *	@tstamp: Time we arrived/left
762  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
763  *		for retransmit timer
764  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
765  *	@list: queue head
766  *	@ll_node: anchor in an llist (eg socket defer_list)
767  *	@sk: Socket we are owned by
768  *	@dev: Device we arrived on/are leaving by
769  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
770  *	@cb: Control buffer. Free for use by every layer. Put private vars here
771  *	@_skb_refdst: destination entry (with norefcount bit)
772  *	@len: Length of actual data
773  *	@data_len: Data length
774  *	@mac_len: Length of link layer header
775  *	@hdr_len: writable header length of cloned skb
776  *	@csum: Checksum (must include start/offset pair)
777  *	@csum_start: Offset from skb->head where checksumming should start
778  *	@csum_offset: Offset from csum_start where checksum should be stored
779  *	@priority: Packet queueing priority
780  *	@ignore_df: allow local fragmentation
781  *	@cloned: Head may be cloned (check refcnt to be sure)
782  *	@ip_summed: Driver fed us an IP checksum
783  *	@nohdr: Payload reference only, must not modify header
784  *	@pkt_type: Packet class
785  *	@fclone: skbuff clone status
786  *	@ipvs_property: skbuff is owned by ipvs
787  *	@inner_protocol_type: whether the inner protocol is
788  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
789  *	@remcsum_offload: remote checksum offload is enabled
790  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
791  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
792  *	@tc_skip_classify: do not classify packet. set by IFB device
793  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
794  *	@redirected: packet was redirected by packet classifier
795  *	@from_ingress: packet was redirected from the ingress path
796  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
797  *	@peeked: this packet has been seen already, so stats have been
798  *		done for it, don't do them again
799  *	@nf_trace: netfilter packet trace flag
800  *	@protocol: Packet protocol from driver
801  *	@destructor: Destruct function
802  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
803  *	@_sk_redir: socket redirection information for skmsg
804  *	@_nfct: Associated connection, if any (with nfctinfo bits)
805  *	@skb_iif: ifindex of device we arrived on
806  *	@tc_index: Traffic control index
807  *	@hash: the packet hash
808  *	@queue_mapping: Queue mapping for multiqueue devices
809  *	@head_frag: skb was allocated from page fragments,
810  *		not allocated by kmalloc() or vmalloc().
811  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
812  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
813  *		page_pool support on driver)
814  *	@active_extensions: active extensions (skb_ext_id types)
815  *	@ndisc_nodetype: router type (from link layer)
816  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
817  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
818  *		ports.
819  *	@sw_hash: indicates hash was computed in software stack
820  *	@wifi_acked_valid: wifi_acked was set
821  *	@wifi_acked: whether frame was acked on wifi or not
822  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
823  *	@encapsulation: indicates the inner headers in the skbuff are valid
824  *	@encap_hdr_csum: software checksum is needed
825  *	@csum_valid: checksum is already valid
826  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
827  *	@csum_complete_sw: checksum was completed by software
828  *	@csum_level: indicates the number of consecutive checksums found in
829  *		the packet minus one that have been verified as
830  *		CHECKSUM_UNNECESSARY (max 3)
831  *	@unreadable: indicates that at least 1 of the fragments in this skb is
832  *		unreadable.
833  *	@dst_pending_confirm: need to confirm neighbour
834  *	@decrypted: Decrypted SKB
835  *	@slow_gro: state present at GRO time, slower prepare step required
836  *	@tstamp_type: When set, skb->tstamp has the
837  *		delivery_time clock base of skb->tstamp.
838  *	@napi_id: id of the NAPI struct this skb came from
839  *	@sender_cpu: (aka @napi_id) source CPU in XPS
840  *	@alloc_cpu: CPU which did the skb allocation.
841  *	@secmark: security marking
842  *	@mark: Generic packet mark
843  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
844  *		at the tail of an sk_buff
845  *	@vlan_all: vlan fields (proto & tci)
846  *	@vlan_proto: vlan encapsulation protocol
847  *	@vlan_tci: vlan tag control information
848  *	@inner_protocol: Protocol (encapsulation)
849  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
850  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
851  *	@inner_transport_header: Inner transport layer header (encapsulation)
852  *	@inner_network_header: Network layer header (encapsulation)
853  *	@inner_mac_header: Link layer header (encapsulation)
854  *	@transport_header: Transport layer header
855  *	@network_header: Network layer header
856  *	@mac_header: Link layer header
857  *	@kcov_handle: KCOV remote handle for remote coverage collection
858  *	@tail: Tail pointer
859  *	@end: End pointer
860  *	@head: Head of buffer
861  *	@data: Data head pointer
862  *	@truesize: Buffer size
863  *	@users: User count - see {datagram,tcp}.c
864  *	@extensions: allocated extensions, valid if active_extensions is nonzero
865  */
866 
867 struct sk_buff {
868 	union {
869 		struct {
870 			/* These two members must be first to match sk_buff_head. */
871 			struct sk_buff		*next;
872 			struct sk_buff		*prev;
873 
874 			union {
875 				struct net_device	*dev;
876 				/* Some protocols might use this space to store information,
877 				 * while device pointer would be NULL.
878 				 * UDP receive path is one user.
879 				 */
880 				unsigned long		dev_scratch;
881 			};
882 		};
883 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
884 		struct list_head	list;
885 		struct llist_node	ll_node;
886 	};
887 
888 	struct sock		*sk;
889 
890 	union {
891 		ktime_t		tstamp;
892 		u64		skb_mstamp_ns; /* earliest departure time */
893 	};
894 	/*
895 	 * This is the control buffer. It is free to use for every
896 	 * layer. Please put your private variables there. If you
897 	 * want to keep them across layers you have to do a skb_clone()
898 	 * first. This is owned by whoever has the skb queued ATM.
899 	 */
900 	char			cb[48] __aligned(8);
901 
902 	union {
903 		struct {
904 			unsigned long	_skb_refdst;
905 			void		(*destructor)(struct sk_buff *skb);
906 		};
907 		struct list_head	tcp_tsorted_anchor;
908 #ifdef CONFIG_NET_SOCK_MSG
909 		unsigned long		_sk_redir;
910 #endif
911 	};
912 
913 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
914 	unsigned long		 _nfct;
915 #endif
916 	unsigned int		len,
917 				data_len;
918 	__u16			mac_len,
919 				hdr_len;
920 
921 	/* Following fields are _not_ copied in __copy_skb_header()
922 	 * Note that queue_mapping is here mostly to fill a hole.
923 	 */
924 	__u16			queue_mapping;
925 
926 /* if you move cloned around you also must adapt those constants */
927 #ifdef __BIG_ENDIAN_BITFIELD
928 #define CLONED_MASK	(1 << 7)
929 #else
930 #define CLONED_MASK	1
931 #endif
932 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
933 
934 	/* private: */
935 	__u8			__cloned_offset[0];
936 	/* public: */
937 	__u8			cloned:1,
938 				nohdr:1,
939 				fclone:2,
940 				peeked:1,
941 				head_frag:1,
942 				pfmemalloc:1,
943 				pp_recycle:1; /* page_pool recycle indicator */
944 #ifdef CONFIG_SKB_EXTENSIONS
945 	__u8			active_extensions;
946 #endif
947 
948 	/* Fields enclosed in headers group are copied
949 	 * using a single memcpy() in __copy_skb_header()
950 	 */
951 	struct_group(headers,
952 
953 	/* private: */
954 	__u8			__pkt_type_offset[0];
955 	/* public: */
956 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
957 	__u8			ignore_df:1;
958 	__u8			dst_pending_confirm:1;
959 	__u8			ip_summed:2;
960 	__u8			ooo_okay:1;
961 
962 	/* private: */
963 	__u8			__mono_tc_offset[0];
964 	/* public: */
965 	__u8			tstamp_type:2;	/* See skb_tstamp_type */
966 #ifdef CONFIG_NET_XGRESS
967 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
968 	__u8			tc_skip_classify:1;
969 #endif
970 	__u8			remcsum_offload:1;
971 	__u8			csum_complete_sw:1;
972 	__u8			csum_level:2;
973 	__u8			inner_protocol_type:1;
974 
975 	__u8			l4_hash:1;
976 	__u8			sw_hash:1;
977 #ifdef CONFIG_WIRELESS
978 	__u8			wifi_acked_valid:1;
979 	__u8			wifi_acked:1;
980 #endif
981 	__u8			no_fcs:1;
982 	/* Indicates the inner headers are valid in the skbuff. */
983 	__u8			encapsulation:1;
984 	__u8			encap_hdr_csum:1;
985 	__u8			csum_valid:1;
986 #ifdef CONFIG_IPV6_NDISC_NODETYPE
987 	__u8			ndisc_nodetype:2;
988 #endif
989 
990 #if IS_ENABLED(CONFIG_IP_VS)
991 	__u8			ipvs_property:1;
992 #endif
993 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
994 	__u8			nf_trace:1;
995 #endif
996 #ifdef CONFIG_NET_SWITCHDEV
997 	__u8			offload_fwd_mark:1;
998 	__u8			offload_l3_fwd_mark:1;
999 #endif
1000 	__u8			redirected:1;
1001 #ifdef CONFIG_NET_REDIRECT
1002 	__u8			from_ingress:1;
1003 #endif
1004 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1005 	__u8			nf_skip_egress:1;
1006 #endif
1007 #ifdef CONFIG_SKB_DECRYPTED
1008 	__u8			decrypted:1;
1009 #endif
1010 	__u8			slow_gro:1;
1011 #if IS_ENABLED(CONFIG_IP_SCTP)
1012 	__u8			csum_not_inet:1;
1013 #endif
1014 	__u8			unreadable:1;
1015 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1016 	__u16			tc_index;	/* traffic control index */
1017 #endif
1018 
1019 	u16			alloc_cpu;
1020 
1021 	union {
1022 		__wsum		csum;
1023 		struct {
1024 			__u16	csum_start;
1025 			__u16	csum_offset;
1026 		};
1027 	};
1028 	__u32			priority;
1029 	int			skb_iif;
1030 	__u32			hash;
1031 	union {
1032 		u32		vlan_all;
1033 		struct {
1034 			__be16	vlan_proto;
1035 			__u16	vlan_tci;
1036 		};
1037 	};
1038 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1039 	union {
1040 		unsigned int	napi_id;
1041 		unsigned int	sender_cpu;
1042 	};
1043 #endif
1044 #ifdef CONFIG_NETWORK_SECMARK
1045 	__u32		secmark;
1046 #endif
1047 
1048 	union {
1049 		__u32		mark;
1050 		__u32		reserved_tailroom;
1051 	};
1052 
1053 	union {
1054 		__be16		inner_protocol;
1055 		__u8		inner_ipproto;
1056 	};
1057 
1058 	__u16			inner_transport_header;
1059 	__u16			inner_network_header;
1060 	__u16			inner_mac_header;
1061 
1062 	__be16			protocol;
1063 	__u16			transport_header;
1064 	__u16			network_header;
1065 	__u16			mac_header;
1066 
1067 #ifdef CONFIG_KCOV
1068 	u64			kcov_handle;
1069 #endif
1070 
1071 	); /* end headers group */
1072 
1073 	/* These elements must be at the end, see alloc_skb() for details.  */
1074 	sk_buff_data_t		tail;
1075 	sk_buff_data_t		end;
1076 	unsigned char		*head,
1077 				*data;
1078 	unsigned int		truesize;
1079 	refcount_t		users;
1080 
1081 #ifdef CONFIG_SKB_EXTENSIONS
1082 	/* only usable after checking ->active_extensions != 0 */
1083 	struct skb_ext		*extensions;
1084 #endif
1085 };
1086 
1087 /* if you move pkt_type around you also must adapt those constants */
1088 #ifdef __BIG_ENDIAN_BITFIELD
1089 #define PKT_TYPE_MAX	(7 << 5)
1090 #else
1091 #define PKT_TYPE_MAX	7
1092 #endif
1093 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1094 
1095 /* if you move tc_at_ingress or tstamp_type
1096  * around, you also must adapt these constants.
1097  */
1098 #ifdef __BIG_ENDIAN_BITFIELD
1099 #define SKB_TSTAMP_TYPE_MASK		(3 << 6)
1100 #define SKB_TSTAMP_TYPE_RSHIFT		(6)
1101 #define TC_AT_INGRESS_MASK		(1 << 5)
1102 #else
1103 #define SKB_TSTAMP_TYPE_MASK		(3)
1104 #define TC_AT_INGRESS_MASK		(1 << 2)
1105 #endif
1106 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1107 
1108 #ifdef __KERNEL__
1109 /*
1110  *	Handling routines are only of interest to the kernel
1111  */
1112 
1113 #define SKB_ALLOC_FCLONE	0x01
1114 #define SKB_ALLOC_RX		0x02
1115 #define SKB_ALLOC_NAPI		0x04
1116 
1117 /**
1118  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1119  * @skb: buffer
1120  */
1121 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1122 {
1123 	return unlikely(skb->pfmemalloc);
1124 }
1125 
1126 /*
1127  * skb might have a dst pointer attached, refcounted or not.
1128  * _skb_refdst low order bit is set if refcount was _not_ taken
1129  */
1130 #define SKB_DST_NOREF	1UL
1131 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1132 
1133 /**
1134  * skb_dst - returns skb dst_entry
1135  * @skb: buffer
1136  *
1137  * Returns: skb dst_entry, regardless of reference taken or not.
1138  */
1139 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1140 {
1141 	/* If refdst was not refcounted, check we still are in a
1142 	 * rcu_read_lock section
1143 	 */
1144 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1145 		!rcu_read_lock_held() &&
1146 		!rcu_read_lock_bh_held());
1147 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1148 }
1149 
1150 /**
1151  * skb_dst_set - sets skb dst
1152  * @skb: buffer
1153  * @dst: dst entry
1154  *
1155  * Sets skb dst, assuming a reference was taken on dst and should
1156  * be released by skb_dst_drop()
1157  */
1158 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1159 {
1160 	skb->slow_gro |= !!dst;
1161 	skb->_skb_refdst = (unsigned long)dst;
1162 }
1163 
1164 /**
1165  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1166  * @skb: buffer
1167  * @dst: dst entry
1168  *
1169  * Sets skb dst, assuming a reference was not taken on dst.
1170  * If dst entry is cached, we do not take reference and dst_release
1171  * will be avoided by refdst_drop. If dst entry is not cached, we take
1172  * reference, so that last dst_release can destroy the dst immediately.
1173  */
1174 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1175 {
1176 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1177 	skb->slow_gro |= !!dst;
1178 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1179 }
1180 
1181 /**
1182  * skb_dst_is_noref - Test if skb dst isn't refcounted
1183  * @skb: buffer
1184  */
1185 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1186 {
1187 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1188 }
1189 
1190 /* For mangling skb->pkt_type from user space side from applications
1191  * such as nft, tc, etc, we only allow a conservative subset of
1192  * possible pkt_types to be set.
1193 */
1194 static inline bool skb_pkt_type_ok(u32 ptype)
1195 {
1196 	return ptype <= PACKET_OTHERHOST;
1197 }
1198 
1199 /**
1200  * skb_napi_id - Returns the skb's NAPI id
1201  * @skb: buffer
1202  */
1203 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1204 {
1205 #ifdef CONFIG_NET_RX_BUSY_POLL
1206 	return skb->napi_id;
1207 #else
1208 	return 0;
1209 #endif
1210 }
1211 
1212 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1213 {
1214 #ifdef CONFIG_WIRELESS
1215 	return skb->wifi_acked_valid;
1216 #else
1217 	return 0;
1218 #endif
1219 }
1220 
1221 /**
1222  * skb_unref - decrement the skb's reference count
1223  * @skb: buffer
1224  *
1225  * Returns: true if we can free the skb.
1226  */
1227 static inline bool skb_unref(struct sk_buff *skb)
1228 {
1229 	if (unlikely(!skb))
1230 		return false;
1231 	if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1))
1232 		smp_rmb();
1233 	else if (likely(!refcount_dec_and_test(&skb->users)))
1234 		return false;
1235 
1236 	return true;
1237 }
1238 
1239 static inline bool skb_data_unref(const struct sk_buff *skb,
1240 				  struct skb_shared_info *shinfo)
1241 {
1242 	int bias;
1243 
1244 	if (!skb->cloned)
1245 		return true;
1246 
1247 	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1248 
1249 	if (atomic_read(&shinfo->dataref) == bias)
1250 		smp_rmb();
1251 	else if (atomic_sub_return(bias, &shinfo->dataref))
1252 		return false;
1253 
1254 	return true;
1255 }
1256 
1257 void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1258 				      enum skb_drop_reason reason);
1259 
1260 static inline void
1261 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1262 {
1263 	sk_skb_reason_drop(NULL, skb, reason);
1264 }
1265 
1266 /**
1267  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1268  *	@skb: buffer to free
1269  */
1270 static inline void kfree_skb(struct sk_buff *skb)
1271 {
1272 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1273 }
1274 
1275 void skb_release_head_state(struct sk_buff *skb);
1276 void kfree_skb_list_reason(struct sk_buff *segs,
1277 			   enum skb_drop_reason reason);
1278 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1279 void skb_tx_error(struct sk_buff *skb);
1280 
1281 static inline void kfree_skb_list(struct sk_buff *segs)
1282 {
1283 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1284 }
1285 
1286 #ifdef CONFIG_TRACEPOINTS
1287 void consume_skb(struct sk_buff *skb);
1288 #else
1289 static inline void consume_skb(struct sk_buff *skb)
1290 {
1291 	return kfree_skb(skb);
1292 }
1293 #endif
1294 
1295 void __consume_stateless_skb(struct sk_buff *skb);
1296 void  __kfree_skb(struct sk_buff *skb);
1297 
1298 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1299 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1300 		      bool *fragstolen, int *delta_truesize);
1301 
1302 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1303 			    int node);
1304 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1305 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1306 struct sk_buff *build_skb_around(struct sk_buff *skb,
1307 				 void *data, unsigned int frag_size);
1308 void skb_attempt_defer_free(struct sk_buff *skb);
1309 
1310 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1311 struct sk_buff *slab_build_skb(void *data);
1312 
1313 /**
1314  * alloc_skb - allocate a network buffer
1315  * @size: size to allocate
1316  * @priority: allocation mask
1317  *
1318  * This function is a convenient wrapper around __alloc_skb().
1319  */
1320 static inline struct sk_buff *alloc_skb(unsigned int size,
1321 					gfp_t priority)
1322 {
1323 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1324 }
1325 
1326 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1327 				     unsigned long data_len,
1328 				     int max_page_order,
1329 				     int *errcode,
1330 				     gfp_t gfp_mask);
1331 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1332 
1333 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1334 struct sk_buff_fclones {
1335 	struct sk_buff	skb1;
1336 
1337 	struct sk_buff	skb2;
1338 
1339 	refcount_t	fclone_ref;
1340 };
1341 
1342 /**
1343  *	skb_fclone_busy - check if fclone is busy
1344  *	@sk: socket
1345  *	@skb: buffer
1346  *
1347  * Returns: true if skb is a fast clone, and its clone is not freed.
1348  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1349  * so we also check that didn't happen.
1350  */
1351 static inline bool skb_fclone_busy(const struct sock *sk,
1352 				   const struct sk_buff *skb)
1353 {
1354 	const struct sk_buff_fclones *fclones;
1355 
1356 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1357 
1358 	return skb->fclone == SKB_FCLONE_ORIG &&
1359 	       refcount_read(&fclones->fclone_ref) > 1 &&
1360 	       READ_ONCE(fclones->skb2.sk) == sk;
1361 }
1362 
1363 /**
1364  * alloc_skb_fclone - allocate a network buffer from fclone cache
1365  * @size: size to allocate
1366  * @priority: allocation mask
1367  *
1368  * This function is a convenient wrapper around __alloc_skb().
1369  */
1370 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1371 					       gfp_t priority)
1372 {
1373 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1374 }
1375 
1376 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1377 void skb_headers_offset_update(struct sk_buff *skb, int off);
1378 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1379 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1380 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1381 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1382 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1383 				   gfp_t gfp_mask, bool fclone);
1384 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1385 					  gfp_t gfp_mask)
1386 {
1387 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1388 }
1389 
1390 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1391 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1392 				     unsigned int headroom);
1393 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1394 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1395 				int newtailroom, gfp_t priority);
1396 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1397 				     int offset, int len);
1398 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1399 			      int offset, int len);
1400 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1401 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1402 
1403 /**
1404  *	skb_pad			-	zero pad the tail of an skb
1405  *	@skb: buffer to pad
1406  *	@pad: space to pad
1407  *
1408  *	Ensure that a buffer is followed by a padding area that is zero
1409  *	filled. Used by network drivers which may DMA or transfer data
1410  *	beyond the buffer end onto the wire.
1411  *
1412  *	May return error in out of memory cases. The skb is freed on error.
1413  */
1414 static inline int skb_pad(struct sk_buff *skb, int pad)
1415 {
1416 	return __skb_pad(skb, pad, true);
1417 }
1418 #define dev_kfree_skb(a)	consume_skb(a)
1419 
1420 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1421 			 int offset, size_t size, size_t max_frags);
1422 
1423 struct skb_seq_state {
1424 	__u32		lower_offset;
1425 	__u32		upper_offset;
1426 	__u32		frag_idx;
1427 	__u32		stepped_offset;
1428 	struct sk_buff	*root_skb;
1429 	struct sk_buff	*cur_skb;
1430 	__u8		*frag_data;
1431 	__u32		frag_off;
1432 };
1433 
1434 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1435 			  unsigned int to, struct skb_seq_state *st);
1436 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1437 			  struct skb_seq_state *st);
1438 void skb_abort_seq_read(struct skb_seq_state *st);
1439 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len);
1440 
1441 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1442 			   unsigned int to, struct ts_config *config);
1443 
1444 /*
1445  * Packet hash types specify the type of hash in skb_set_hash.
1446  *
1447  * Hash types refer to the protocol layer addresses which are used to
1448  * construct a packet's hash. The hashes are used to differentiate or identify
1449  * flows of the protocol layer for the hash type. Hash types are either
1450  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1451  *
1452  * Properties of hashes:
1453  *
1454  * 1) Two packets in different flows have different hash values
1455  * 2) Two packets in the same flow should have the same hash value
1456  *
1457  * A hash at a higher layer is considered to be more specific. A driver should
1458  * set the most specific hash possible.
1459  *
1460  * A driver cannot indicate a more specific hash than the layer at which a hash
1461  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1462  *
1463  * A driver may indicate a hash level which is less specific than the
1464  * actual layer the hash was computed on. For instance, a hash computed
1465  * at L4 may be considered an L3 hash. This should only be done if the
1466  * driver can't unambiguously determine that the HW computed the hash at
1467  * the higher layer. Note that the "should" in the second property above
1468  * permits this.
1469  */
1470 enum pkt_hash_types {
1471 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1472 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1473 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1474 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1475 };
1476 
1477 static inline void skb_clear_hash(struct sk_buff *skb)
1478 {
1479 	skb->hash = 0;
1480 	skb->sw_hash = 0;
1481 	skb->l4_hash = 0;
1482 }
1483 
1484 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1485 {
1486 	if (!skb->l4_hash)
1487 		skb_clear_hash(skb);
1488 }
1489 
1490 static inline void
1491 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1492 {
1493 	skb->l4_hash = is_l4;
1494 	skb->sw_hash = is_sw;
1495 	skb->hash = hash;
1496 }
1497 
1498 static inline void
1499 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1500 {
1501 	/* Used by drivers to set hash from HW */
1502 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1503 }
1504 
1505 static inline void
1506 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1507 {
1508 	__skb_set_hash(skb, hash, true, is_l4);
1509 }
1510 
1511 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb);
1512 
1513 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1514 {
1515 	return __skb_get_hash_symmetric_net(NULL, skb);
1516 }
1517 
1518 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb);
1519 u32 skb_get_poff(const struct sk_buff *skb);
1520 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1521 		   const struct flow_keys_basic *keys, int hlen);
1522 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1523 			    const void *data, int hlen_proto);
1524 
1525 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1526 					int thoff, u8 ip_proto)
1527 {
1528 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1529 }
1530 
1531 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1532 			     const struct flow_dissector_key *key,
1533 			     unsigned int key_count);
1534 
1535 struct bpf_flow_dissector;
1536 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1537 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1538 
1539 bool __skb_flow_dissect(const struct net *net,
1540 			const struct sk_buff *skb,
1541 			struct flow_dissector *flow_dissector,
1542 			void *target_container, const void *data,
1543 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1544 
1545 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1546 				    struct flow_dissector *flow_dissector,
1547 				    void *target_container, unsigned int flags)
1548 {
1549 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1550 				  target_container, NULL, 0, 0, 0, flags);
1551 }
1552 
1553 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1554 					      struct flow_keys *flow,
1555 					      unsigned int flags)
1556 {
1557 	memset(flow, 0, sizeof(*flow));
1558 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1559 				  flow, NULL, 0, 0, 0, flags);
1560 }
1561 
1562 static inline bool
1563 skb_flow_dissect_flow_keys_basic(const struct net *net,
1564 				 const struct sk_buff *skb,
1565 				 struct flow_keys_basic *flow,
1566 				 const void *data, __be16 proto,
1567 				 int nhoff, int hlen, unsigned int flags)
1568 {
1569 	memset(flow, 0, sizeof(*flow));
1570 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1571 				  data, proto, nhoff, hlen, flags);
1572 }
1573 
1574 void skb_flow_dissect_meta(const struct sk_buff *skb,
1575 			   struct flow_dissector *flow_dissector,
1576 			   void *target_container);
1577 
1578 /* Gets a skb connection tracking info, ctinfo map should be a
1579  * map of mapsize to translate enum ip_conntrack_info states
1580  * to user states.
1581  */
1582 void
1583 skb_flow_dissect_ct(const struct sk_buff *skb,
1584 		    struct flow_dissector *flow_dissector,
1585 		    void *target_container,
1586 		    u16 *ctinfo_map, size_t mapsize,
1587 		    bool post_ct, u16 zone);
1588 void
1589 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1590 			     struct flow_dissector *flow_dissector,
1591 			     void *target_container);
1592 
1593 void skb_flow_dissect_hash(const struct sk_buff *skb,
1594 			   struct flow_dissector *flow_dissector,
1595 			   void *target_container);
1596 
1597 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb)
1598 {
1599 	if (!skb->l4_hash && !skb->sw_hash)
1600 		__skb_get_hash_net(net, skb);
1601 
1602 	return skb->hash;
1603 }
1604 
1605 static inline __u32 skb_get_hash(struct sk_buff *skb)
1606 {
1607 	if (!skb->l4_hash && !skb->sw_hash)
1608 		__skb_get_hash_net(NULL, skb);
1609 
1610 	return skb->hash;
1611 }
1612 
1613 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1614 {
1615 	if (!skb->l4_hash && !skb->sw_hash) {
1616 		struct flow_keys keys;
1617 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1618 
1619 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1620 	}
1621 
1622 	return skb->hash;
1623 }
1624 
1625 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1626 			   const siphash_key_t *perturb);
1627 
1628 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1629 {
1630 	return skb->hash;
1631 }
1632 
1633 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1634 {
1635 	to->hash = from->hash;
1636 	to->sw_hash = from->sw_hash;
1637 	to->l4_hash = from->l4_hash;
1638 };
1639 
1640 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1641 				    const struct sk_buff *skb2)
1642 {
1643 #ifdef CONFIG_SKB_DECRYPTED
1644 	return skb2->decrypted - skb1->decrypted;
1645 #else
1646 	return 0;
1647 #endif
1648 }
1649 
1650 static inline bool skb_is_decrypted(const struct sk_buff *skb)
1651 {
1652 #ifdef CONFIG_SKB_DECRYPTED
1653 	return skb->decrypted;
1654 #else
1655 	return false;
1656 #endif
1657 }
1658 
1659 static inline void skb_copy_decrypted(struct sk_buff *to,
1660 				      const struct sk_buff *from)
1661 {
1662 #ifdef CONFIG_SKB_DECRYPTED
1663 	to->decrypted = from->decrypted;
1664 #endif
1665 }
1666 
1667 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1668 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1669 {
1670 	return skb->head + skb->end;
1671 }
1672 
1673 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1674 {
1675 	return skb->end;
1676 }
1677 
1678 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1679 {
1680 	skb->end = offset;
1681 }
1682 #else
1683 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1684 {
1685 	return skb->end;
1686 }
1687 
1688 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1689 {
1690 	return skb->end - skb->head;
1691 }
1692 
1693 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1694 {
1695 	skb->end = skb->head + offset;
1696 }
1697 #endif
1698 
1699 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1700 
1701 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1702 				       struct ubuf_info *uarg);
1703 
1704 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1705 
1706 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1707 			    struct sk_buff *skb, struct iov_iter *from,
1708 			    size_t length);
1709 
1710 int zerocopy_fill_skb_from_iter(struct sk_buff *skb,
1711 				struct iov_iter *from, size_t length);
1712 
1713 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1714 					  struct msghdr *msg, int len)
1715 {
1716 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1717 }
1718 
1719 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1720 			     struct msghdr *msg, int len,
1721 			     struct ubuf_info *uarg);
1722 
1723 /* Internal */
1724 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1725 
1726 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1727 {
1728 	return &skb_shinfo(skb)->hwtstamps;
1729 }
1730 
1731 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1732 {
1733 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1734 
1735 	return is_zcopy ? skb_uarg(skb) : NULL;
1736 }
1737 
1738 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1739 {
1740 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1741 }
1742 
1743 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1744 {
1745 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1746 }
1747 
1748 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1749 				       const struct sk_buff *skb2)
1750 {
1751 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1752 }
1753 
1754 static inline void net_zcopy_get(struct ubuf_info *uarg)
1755 {
1756 	refcount_inc(&uarg->refcnt);
1757 }
1758 
1759 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1760 {
1761 	skb_shinfo(skb)->destructor_arg = uarg;
1762 	skb_shinfo(skb)->flags |= uarg->flags;
1763 }
1764 
1765 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1766 				 bool *have_ref)
1767 {
1768 	if (skb && uarg && !skb_zcopy(skb)) {
1769 		if (unlikely(have_ref && *have_ref))
1770 			*have_ref = false;
1771 		else
1772 			net_zcopy_get(uarg);
1773 		skb_zcopy_init(skb, uarg);
1774 	}
1775 }
1776 
1777 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1778 {
1779 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1780 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1781 }
1782 
1783 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1784 {
1785 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1786 }
1787 
1788 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1789 {
1790 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1791 }
1792 
1793 static inline void net_zcopy_put(struct ubuf_info *uarg)
1794 {
1795 	if (uarg)
1796 		uarg->ops->complete(NULL, uarg, true);
1797 }
1798 
1799 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1800 {
1801 	if (uarg) {
1802 		if (uarg->ops == &msg_zerocopy_ubuf_ops)
1803 			msg_zerocopy_put_abort(uarg, have_uref);
1804 		else if (have_uref)
1805 			net_zcopy_put(uarg);
1806 	}
1807 }
1808 
1809 /* Release a reference on a zerocopy structure */
1810 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1811 {
1812 	struct ubuf_info *uarg = skb_zcopy(skb);
1813 
1814 	if (uarg) {
1815 		if (!skb_zcopy_is_nouarg(skb))
1816 			uarg->ops->complete(skb, uarg, zerocopy_success);
1817 
1818 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1819 	}
1820 }
1821 
1822 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1823 
1824 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1825 {
1826 	if (unlikely(skb_zcopy_managed(skb)))
1827 		__skb_zcopy_downgrade_managed(skb);
1828 }
1829 
1830 /* Return true if frags in this skb are readable by the host. */
1831 static inline bool skb_frags_readable(const struct sk_buff *skb)
1832 {
1833 	return !skb->unreadable;
1834 }
1835 
1836 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1837 {
1838 	skb->next = NULL;
1839 }
1840 
1841 static inline void skb_poison_list(struct sk_buff *skb)
1842 {
1843 #ifdef CONFIG_DEBUG_NET
1844 	skb->next = SKB_LIST_POISON_NEXT;
1845 #endif
1846 }
1847 
1848 /* Iterate through singly-linked GSO fragments of an skb. */
1849 #define skb_list_walk_safe(first, skb, next_skb)                               \
1850 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1851 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1852 
1853 static inline void skb_list_del_init(struct sk_buff *skb)
1854 {
1855 	__list_del_entry(&skb->list);
1856 	skb_mark_not_on_list(skb);
1857 }
1858 
1859 /**
1860  *	skb_queue_empty - check if a queue is empty
1861  *	@list: queue head
1862  *
1863  *	Returns true if the queue is empty, false otherwise.
1864  */
1865 static inline int skb_queue_empty(const struct sk_buff_head *list)
1866 {
1867 	return list->next == (const struct sk_buff *) list;
1868 }
1869 
1870 /**
1871  *	skb_queue_empty_lockless - check if a queue is empty
1872  *	@list: queue head
1873  *
1874  *	Returns true if the queue is empty, false otherwise.
1875  *	This variant can be used in lockless contexts.
1876  */
1877 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1878 {
1879 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1880 }
1881 
1882 
1883 /**
1884  *	skb_queue_is_last - check if skb is the last entry in the queue
1885  *	@list: queue head
1886  *	@skb: buffer
1887  *
1888  *	Returns true if @skb is the last buffer on the list.
1889  */
1890 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1891 				     const struct sk_buff *skb)
1892 {
1893 	return skb->next == (const struct sk_buff *) list;
1894 }
1895 
1896 /**
1897  *	skb_queue_is_first - check if skb is the first entry in the queue
1898  *	@list: queue head
1899  *	@skb: buffer
1900  *
1901  *	Returns true if @skb is the first buffer on the list.
1902  */
1903 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1904 				      const struct sk_buff *skb)
1905 {
1906 	return skb->prev == (const struct sk_buff *) list;
1907 }
1908 
1909 /**
1910  *	skb_queue_next - return the next packet in the queue
1911  *	@list: queue head
1912  *	@skb: current buffer
1913  *
1914  *	Return the next packet in @list after @skb.  It is only valid to
1915  *	call this if skb_queue_is_last() evaluates to false.
1916  */
1917 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1918 					     const struct sk_buff *skb)
1919 {
1920 	/* This BUG_ON may seem severe, but if we just return then we
1921 	 * are going to dereference garbage.
1922 	 */
1923 	BUG_ON(skb_queue_is_last(list, skb));
1924 	return skb->next;
1925 }
1926 
1927 /**
1928  *	skb_queue_prev - return the prev packet in the queue
1929  *	@list: queue head
1930  *	@skb: current buffer
1931  *
1932  *	Return the prev packet in @list before @skb.  It is only valid to
1933  *	call this if skb_queue_is_first() evaluates to false.
1934  */
1935 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1936 					     const struct sk_buff *skb)
1937 {
1938 	/* This BUG_ON may seem severe, but if we just return then we
1939 	 * are going to dereference garbage.
1940 	 */
1941 	BUG_ON(skb_queue_is_first(list, skb));
1942 	return skb->prev;
1943 }
1944 
1945 /**
1946  *	skb_get - reference buffer
1947  *	@skb: buffer to reference
1948  *
1949  *	Makes another reference to a socket buffer and returns a pointer
1950  *	to the buffer.
1951  */
1952 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1953 {
1954 	refcount_inc(&skb->users);
1955 	return skb;
1956 }
1957 
1958 /*
1959  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1960  */
1961 
1962 /**
1963  *	skb_cloned - is the buffer a clone
1964  *	@skb: buffer to check
1965  *
1966  *	Returns true if the buffer was generated with skb_clone() and is
1967  *	one of multiple shared copies of the buffer. Cloned buffers are
1968  *	shared data so must not be written to under normal circumstances.
1969  */
1970 static inline int skb_cloned(const struct sk_buff *skb)
1971 {
1972 	return skb->cloned &&
1973 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1974 }
1975 
1976 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1977 {
1978 	might_sleep_if(gfpflags_allow_blocking(pri));
1979 
1980 	if (skb_cloned(skb))
1981 		return pskb_expand_head(skb, 0, 0, pri);
1982 
1983 	return 0;
1984 }
1985 
1986 /* This variant of skb_unclone() makes sure skb->truesize
1987  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1988  *
1989  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1990  * when various debugging features are in place.
1991  */
1992 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1993 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1994 {
1995 	might_sleep_if(gfpflags_allow_blocking(pri));
1996 
1997 	if (skb_cloned(skb))
1998 		return __skb_unclone_keeptruesize(skb, pri);
1999 	return 0;
2000 }
2001 
2002 /**
2003  *	skb_header_cloned - is the header a clone
2004  *	@skb: buffer to check
2005  *
2006  *	Returns true if modifying the header part of the buffer requires
2007  *	the data to be copied.
2008  */
2009 static inline int skb_header_cloned(const struct sk_buff *skb)
2010 {
2011 	int dataref;
2012 
2013 	if (!skb->cloned)
2014 		return 0;
2015 
2016 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
2017 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2018 	return dataref != 1;
2019 }
2020 
2021 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2022 {
2023 	might_sleep_if(gfpflags_allow_blocking(pri));
2024 
2025 	if (skb_header_cloned(skb))
2026 		return pskb_expand_head(skb, 0, 0, pri);
2027 
2028 	return 0;
2029 }
2030 
2031 /**
2032  * __skb_header_release() - allow clones to use the headroom
2033  * @skb: buffer to operate on
2034  *
2035  * See "DOC: dataref and headerless skbs".
2036  */
2037 static inline void __skb_header_release(struct sk_buff *skb)
2038 {
2039 	skb->nohdr = 1;
2040 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2041 }
2042 
2043 
2044 /**
2045  *	skb_shared - is the buffer shared
2046  *	@skb: buffer to check
2047  *
2048  *	Returns true if more than one person has a reference to this
2049  *	buffer.
2050  */
2051 static inline int skb_shared(const struct sk_buff *skb)
2052 {
2053 	return refcount_read(&skb->users) != 1;
2054 }
2055 
2056 /**
2057  *	skb_share_check - check if buffer is shared and if so clone it
2058  *	@skb: buffer to check
2059  *	@pri: priority for memory allocation
2060  *
2061  *	If the buffer is shared the buffer is cloned and the old copy
2062  *	drops a reference. A new clone with a single reference is returned.
2063  *	If the buffer is not shared the original buffer is returned. When
2064  *	being called from interrupt status or with spinlocks held pri must
2065  *	be GFP_ATOMIC.
2066  *
2067  *	NULL is returned on a memory allocation failure.
2068  */
2069 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2070 {
2071 	might_sleep_if(gfpflags_allow_blocking(pri));
2072 	if (skb_shared(skb)) {
2073 		struct sk_buff *nskb = skb_clone(skb, pri);
2074 
2075 		if (likely(nskb))
2076 			consume_skb(skb);
2077 		else
2078 			kfree_skb(skb);
2079 		skb = nskb;
2080 	}
2081 	return skb;
2082 }
2083 
2084 /*
2085  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2086  *	packets to handle cases where we have a local reader and forward
2087  *	and a couple of other messy ones. The normal one is tcpdumping
2088  *	a packet that's being forwarded.
2089  */
2090 
2091 /**
2092  *	skb_unshare - make a copy of a shared buffer
2093  *	@skb: buffer to check
2094  *	@pri: priority for memory allocation
2095  *
2096  *	If the socket buffer is a clone then this function creates a new
2097  *	copy of the data, drops a reference count on the old copy and returns
2098  *	the new copy with the reference count at 1. If the buffer is not a clone
2099  *	the original buffer is returned. When called with a spinlock held or
2100  *	from interrupt state @pri must be %GFP_ATOMIC
2101  *
2102  *	%NULL is returned on a memory allocation failure.
2103  */
2104 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2105 					  gfp_t pri)
2106 {
2107 	might_sleep_if(gfpflags_allow_blocking(pri));
2108 	if (skb_cloned(skb)) {
2109 		struct sk_buff *nskb = skb_copy(skb, pri);
2110 
2111 		/* Free our shared copy */
2112 		if (likely(nskb))
2113 			consume_skb(skb);
2114 		else
2115 			kfree_skb(skb);
2116 		skb = nskb;
2117 	}
2118 	return skb;
2119 }
2120 
2121 /**
2122  *	skb_peek - peek at the head of an &sk_buff_head
2123  *	@list_: list to peek at
2124  *
2125  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2126  *	be careful with this one. A peek leaves the buffer on the
2127  *	list and someone else may run off with it. You must hold
2128  *	the appropriate locks or have a private queue to do this.
2129  *
2130  *	Returns %NULL for an empty list or a pointer to the head element.
2131  *	The reference count is not incremented and the reference is therefore
2132  *	volatile. Use with caution.
2133  */
2134 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2135 {
2136 	struct sk_buff *skb = list_->next;
2137 
2138 	if (skb == (struct sk_buff *)list_)
2139 		skb = NULL;
2140 	return skb;
2141 }
2142 
2143 /**
2144  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2145  *	@list_: list to peek at
2146  *
2147  *	Like skb_peek(), but the caller knows that the list is not empty.
2148  */
2149 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2150 {
2151 	return list_->next;
2152 }
2153 
2154 /**
2155  *	skb_peek_next - peek skb following the given one from a queue
2156  *	@skb: skb to start from
2157  *	@list_: list to peek at
2158  *
2159  *	Returns %NULL when the end of the list is met or a pointer to the
2160  *	next element. The reference count is not incremented and the
2161  *	reference is therefore volatile. Use with caution.
2162  */
2163 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2164 		const struct sk_buff_head *list_)
2165 {
2166 	struct sk_buff *next = skb->next;
2167 
2168 	if (next == (struct sk_buff *)list_)
2169 		next = NULL;
2170 	return next;
2171 }
2172 
2173 /**
2174  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2175  *	@list_: list to peek at
2176  *
2177  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2178  *	be careful with this one. A peek leaves the buffer on the
2179  *	list and someone else may run off with it. You must hold
2180  *	the appropriate locks or have a private queue to do this.
2181  *
2182  *	Returns %NULL for an empty list or a pointer to the tail element.
2183  *	The reference count is not incremented and the reference is therefore
2184  *	volatile. Use with caution.
2185  */
2186 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2187 {
2188 	struct sk_buff *skb = READ_ONCE(list_->prev);
2189 
2190 	if (skb == (struct sk_buff *)list_)
2191 		skb = NULL;
2192 	return skb;
2193 
2194 }
2195 
2196 /**
2197  *	skb_queue_len	- get queue length
2198  *	@list_: list to measure
2199  *
2200  *	Return the length of an &sk_buff queue.
2201  */
2202 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2203 {
2204 	return list_->qlen;
2205 }
2206 
2207 /**
2208  *	skb_queue_len_lockless	- get queue length
2209  *	@list_: list to measure
2210  *
2211  *	Return the length of an &sk_buff queue.
2212  *	This variant can be used in lockless contexts.
2213  */
2214 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2215 {
2216 	return READ_ONCE(list_->qlen);
2217 }
2218 
2219 /**
2220  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2221  *	@list: queue to initialize
2222  *
2223  *	This initializes only the list and queue length aspects of
2224  *	an sk_buff_head object.  This allows to initialize the list
2225  *	aspects of an sk_buff_head without reinitializing things like
2226  *	the spinlock.  It can also be used for on-stack sk_buff_head
2227  *	objects where the spinlock is known to not be used.
2228  */
2229 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2230 {
2231 	list->prev = list->next = (struct sk_buff *)list;
2232 	list->qlen = 0;
2233 }
2234 
2235 /*
2236  * This function creates a split out lock class for each invocation;
2237  * this is needed for now since a whole lot of users of the skb-queue
2238  * infrastructure in drivers have different locking usage (in hardirq)
2239  * than the networking core (in softirq only). In the long run either the
2240  * network layer or drivers should need annotation to consolidate the
2241  * main types of usage into 3 classes.
2242  */
2243 static inline void skb_queue_head_init(struct sk_buff_head *list)
2244 {
2245 	spin_lock_init(&list->lock);
2246 	__skb_queue_head_init(list);
2247 }
2248 
2249 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2250 		struct lock_class_key *class)
2251 {
2252 	skb_queue_head_init(list);
2253 	lockdep_set_class(&list->lock, class);
2254 }
2255 
2256 /*
2257  *	Insert an sk_buff on a list.
2258  *
2259  *	The "__skb_xxxx()" functions are the non-atomic ones that
2260  *	can only be called with interrupts disabled.
2261  */
2262 static inline void __skb_insert(struct sk_buff *newsk,
2263 				struct sk_buff *prev, struct sk_buff *next,
2264 				struct sk_buff_head *list)
2265 {
2266 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2267 	 * for the opposite READ_ONCE()
2268 	 */
2269 	WRITE_ONCE(newsk->next, next);
2270 	WRITE_ONCE(newsk->prev, prev);
2271 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2272 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2273 	WRITE_ONCE(list->qlen, list->qlen + 1);
2274 }
2275 
2276 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2277 				      struct sk_buff *prev,
2278 				      struct sk_buff *next)
2279 {
2280 	struct sk_buff *first = list->next;
2281 	struct sk_buff *last = list->prev;
2282 
2283 	WRITE_ONCE(first->prev, prev);
2284 	WRITE_ONCE(prev->next, first);
2285 
2286 	WRITE_ONCE(last->next, next);
2287 	WRITE_ONCE(next->prev, last);
2288 }
2289 
2290 /**
2291  *	skb_queue_splice - join two skb lists, this is designed for stacks
2292  *	@list: the new list to add
2293  *	@head: the place to add it in the first list
2294  */
2295 static inline void skb_queue_splice(const struct sk_buff_head *list,
2296 				    struct sk_buff_head *head)
2297 {
2298 	if (!skb_queue_empty(list)) {
2299 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2300 		head->qlen += list->qlen;
2301 	}
2302 }
2303 
2304 /**
2305  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2306  *	@list: the new list to add
2307  *	@head: the place to add it in the first list
2308  *
2309  *	The list at @list is reinitialised
2310  */
2311 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2312 					 struct sk_buff_head *head)
2313 {
2314 	if (!skb_queue_empty(list)) {
2315 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2316 		head->qlen += list->qlen;
2317 		__skb_queue_head_init(list);
2318 	}
2319 }
2320 
2321 /**
2322  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2323  *	@list: the new list to add
2324  *	@head: the place to add it in the first list
2325  */
2326 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2327 					 struct sk_buff_head *head)
2328 {
2329 	if (!skb_queue_empty(list)) {
2330 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2331 		head->qlen += list->qlen;
2332 	}
2333 }
2334 
2335 /**
2336  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2337  *	@list: the new list to add
2338  *	@head: the place to add it in the first list
2339  *
2340  *	Each of the lists is a queue.
2341  *	The list at @list is reinitialised
2342  */
2343 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2344 					      struct sk_buff_head *head)
2345 {
2346 	if (!skb_queue_empty(list)) {
2347 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2348 		head->qlen += list->qlen;
2349 		__skb_queue_head_init(list);
2350 	}
2351 }
2352 
2353 /**
2354  *	__skb_queue_after - queue a buffer at the list head
2355  *	@list: list to use
2356  *	@prev: place after this buffer
2357  *	@newsk: buffer to queue
2358  *
2359  *	Queue a buffer int the middle of a list. This function takes no locks
2360  *	and you must therefore hold required locks before calling it.
2361  *
2362  *	A buffer cannot be placed on two lists at the same time.
2363  */
2364 static inline void __skb_queue_after(struct sk_buff_head *list,
2365 				     struct sk_buff *prev,
2366 				     struct sk_buff *newsk)
2367 {
2368 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2369 }
2370 
2371 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2372 		struct sk_buff_head *list);
2373 
2374 static inline void __skb_queue_before(struct sk_buff_head *list,
2375 				      struct sk_buff *next,
2376 				      struct sk_buff *newsk)
2377 {
2378 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2379 }
2380 
2381 /**
2382  *	__skb_queue_head - queue a buffer at the list head
2383  *	@list: list to use
2384  *	@newsk: buffer to queue
2385  *
2386  *	Queue a buffer at the start of a list. This function takes no locks
2387  *	and you must therefore hold required locks before calling it.
2388  *
2389  *	A buffer cannot be placed on two lists at the same time.
2390  */
2391 static inline void __skb_queue_head(struct sk_buff_head *list,
2392 				    struct sk_buff *newsk)
2393 {
2394 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2395 }
2396 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2397 
2398 /**
2399  *	__skb_queue_tail - queue a buffer at the list tail
2400  *	@list: list to use
2401  *	@newsk: buffer to queue
2402  *
2403  *	Queue a buffer at the end of a list. This function takes no locks
2404  *	and you must therefore hold required locks before calling it.
2405  *
2406  *	A buffer cannot be placed on two lists at the same time.
2407  */
2408 static inline void __skb_queue_tail(struct sk_buff_head *list,
2409 				   struct sk_buff *newsk)
2410 {
2411 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2412 }
2413 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2414 
2415 /*
2416  * remove sk_buff from list. _Must_ be called atomically, and with
2417  * the list known..
2418  */
2419 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2420 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2421 {
2422 	struct sk_buff *next, *prev;
2423 
2424 	WRITE_ONCE(list->qlen, list->qlen - 1);
2425 	next	   = skb->next;
2426 	prev	   = skb->prev;
2427 	skb->next  = skb->prev = NULL;
2428 	WRITE_ONCE(next->prev, prev);
2429 	WRITE_ONCE(prev->next, next);
2430 }
2431 
2432 /**
2433  *	__skb_dequeue - remove from the head of the queue
2434  *	@list: list to dequeue from
2435  *
2436  *	Remove the head of the list. This function does not take any locks
2437  *	so must be used with appropriate locks held only. The head item is
2438  *	returned or %NULL if the list is empty.
2439  */
2440 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2441 {
2442 	struct sk_buff *skb = skb_peek(list);
2443 	if (skb)
2444 		__skb_unlink(skb, list);
2445 	return skb;
2446 }
2447 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2448 
2449 /**
2450  *	__skb_dequeue_tail - remove from the tail of the queue
2451  *	@list: list to dequeue from
2452  *
2453  *	Remove the tail of the list. This function does not take any locks
2454  *	so must be used with appropriate locks held only. The tail item is
2455  *	returned or %NULL if the list is empty.
2456  */
2457 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2458 {
2459 	struct sk_buff *skb = skb_peek_tail(list);
2460 	if (skb)
2461 		__skb_unlink(skb, list);
2462 	return skb;
2463 }
2464 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2465 
2466 
2467 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2468 {
2469 	return skb->data_len;
2470 }
2471 
2472 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2473 {
2474 	return skb->len - skb->data_len;
2475 }
2476 
2477 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2478 {
2479 	unsigned int i, len = 0;
2480 
2481 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2482 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2483 	return len;
2484 }
2485 
2486 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2487 {
2488 	return skb_headlen(skb) + __skb_pagelen(skb);
2489 }
2490 
2491 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2492 					     netmem_ref netmem, int off,
2493 					     int size)
2494 {
2495 	frag->netmem = netmem;
2496 	frag->offset = off;
2497 	skb_frag_size_set(frag, size);
2498 }
2499 
2500 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2501 					   struct page *page,
2502 					   int off, int size)
2503 {
2504 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2505 }
2506 
2507 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2508 						int i, netmem_ref netmem,
2509 						int off, int size)
2510 {
2511 	skb_frag_t *frag = &shinfo->frags[i];
2512 
2513 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2514 }
2515 
2516 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2517 					      int i, struct page *page,
2518 					      int off, int size)
2519 {
2520 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2521 				     size);
2522 }
2523 
2524 /**
2525  * skb_len_add - adds a number to len fields of skb
2526  * @skb: buffer to add len to
2527  * @delta: number of bytes to add
2528  */
2529 static inline void skb_len_add(struct sk_buff *skb, int delta)
2530 {
2531 	skb->len += delta;
2532 	skb->data_len += delta;
2533 	skb->truesize += delta;
2534 }
2535 
2536 /**
2537  * __skb_fill_netmem_desc - initialise a fragment in an skb
2538  * @skb: buffer containing fragment to be initialised
2539  * @i: fragment index to initialise
2540  * @netmem: the netmem to use for this fragment
2541  * @off: the offset to the data with @page
2542  * @size: the length of the data
2543  *
2544  * Initialises the @i'th fragment of @skb to point to &size bytes at
2545  * offset @off within @page.
2546  *
2547  * Does not take any additional reference on the fragment.
2548  */
2549 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2550 					  netmem_ref netmem, int off, int size)
2551 {
2552 	struct page *page;
2553 
2554 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2555 
2556 	if (netmem_is_net_iov(netmem)) {
2557 		skb->unreadable = true;
2558 		return;
2559 	}
2560 
2561 	page = netmem_to_page(netmem);
2562 
2563 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2564 	 * that not all callers have unique ownership of the page but rely
2565 	 * on page_is_pfmemalloc doing the right thing(tm).
2566 	 */
2567 	page = compound_head(page);
2568 	if (page_is_pfmemalloc(page))
2569 		skb->pfmemalloc = true;
2570 }
2571 
2572 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2573 					struct page *page, int off, int size)
2574 {
2575 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2576 }
2577 
2578 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2579 					netmem_ref netmem, int off, int size)
2580 {
2581 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2582 	skb_shinfo(skb)->nr_frags = i + 1;
2583 }
2584 
2585 /**
2586  * skb_fill_page_desc - initialise a paged fragment in an skb
2587  * @skb: buffer containing fragment to be initialised
2588  * @i: paged fragment index to initialise
2589  * @page: the page to use for this fragment
2590  * @off: the offset to the data with @page
2591  * @size: the length of the data
2592  *
2593  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2594  * @skb to point to @size bytes at offset @off within @page. In
2595  * addition updates @skb such that @i is the last fragment.
2596  *
2597  * Does not take any additional reference on the fragment.
2598  */
2599 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2600 				      struct page *page, int off, int size)
2601 {
2602 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2603 }
2604 
2605 /**
2606  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2607  * @skb: buffer containing fragment to be initialised
2608  * @i: paged fragment index to initialise
2609  * @page: the page to use for this fragment
2610  * @off: the offset to the data with @page
2611  * @size: the length of the data
2612  *
2613  * Variant of skb_fill_page_desc() which does not deal with
2614  * pfmemalloc, if page is not owned by us.
2615  */
2616 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2617 					    struct page *page, int off,
2618 					    int size)
2619 {
2620 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2621 
2622 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2623 	shinfo->nr_frags = i + 1;
2624 }
2625 
2626 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2627 			    int off, int size, unsigned int truesize);
2628 
2629 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2630 				   struct page *page, int off, int size,
2631 				   unsigned int truesize)
2632 {
2633 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2634 			       truesize);
2635 }
2636 
2637 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2638 			  unsigned int truesize);
2639 
2640 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2641 
2642 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2643 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2644 {
2645 	return skb->head + skb->tail;
2646 }
2647 
2648 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2649 {
2650 	skb->tail = skb->data - skb->head;
2651 }
2652 
2653 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2654 {
2655 	skb_reset_tail_pointer(skb);
2656 	skb->tail += offset;
2657 }
2658 
2659 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2660 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2661 {
2662 	return skb->tail;
2663 }
2664 
2665 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2666 {
2667 	skb->tail = skb->data;
2668 }
2669 
2670 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2671 {
2672 	skb->tail = skb->data + offset;
2673 }
2674 
2675 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2676 
2677 static inline void skb_assert_len(struct sk_buff *skb)
2678 {
2679 #ifdef CONFIG_DEBUG_NET
2680 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2681 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2682 #endif /* CONFIG_DEBUG_NET */
2683 }
2684 
2685 #if defined(CONFIG_FAIL_SKB_REALLOC)
2686 void skb_might_realloc(struct sk_buff *skb);
2687 #else
2688 static inline void skb_might_realloc(struct sk_buff *skb) {}
2689 #endif
2690 
2691 /*
2692  *	Add data to an sk_buff
2693  */
2694 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2695 void *skb_put(struct sk_buff *skb, unsigned int len);
2696 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2697 {
2698 	void *tmp = skb_tail_pointer(skb);
2699 	SKB_LINEAR_ASSERT(skb);
2700 	skb->tail += len;
2701 	skb->len  += len;
2702 	return tmp;
2703 }
2704 
2705 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2706 {
2707 	void *tmp = __skb_put(skb, len);
2708 
2709 	memset(tmp, 0, len);
2710 	return tmp;
2711 }
2712 
2713 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2714 				   unsigned int len)
2715 {
2716 	void *tmp = __skb_put(skb, len);
2717 
2718 	memcpy(tmp, data, len);
2719 	return tmp;
2720 }
2721 
2722 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2723 {
2724 	*(u8 *)__skb_put(skb, 1) = val;
2725 }
2726 
2727 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2728 {
2729 	void *tmp = skb_put(skb, len);
2730 
2731 	memset(tmp, 0, len);
2732 
2733 	return tmp;
2734 }
2735 
2736 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2737 				 unsigned int len)
2738 {
2739 	void *tmp = skb_put(skb, len);
2740 
2741 	memcpy(tmp, data, len);
2742 
2743 	return tmp;
2744 }
2745 
2746 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2747 {
2748 	*(u8 *)skb_put(skb, 1) = val;
2749 }
2750 
2751 void *skb_push(struct sk_buff *skb, unsigned int len);
2752 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2753 {
2754 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2755 
2756 	skb->data -= len;
2757 	skb->len  += len;
2758 	return skb->data;
2759 }
2760 
2761 void *skb_pull(struct sk_buff *skb, unsigned int len);
2762 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2763 {
2764 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2765 
2766 	skb->len -= len;
2767 	if (unlikely(skb->len < skb->data_len)) {
2768 #if defined(CONFIG_DEBUG_NET)
2769 		skb->len += len;
2770 		pr_err("__skb_pull(len=%u)\n", len);
2771 		skb_dump(KERN_ERR, skb, false);
2772 #endif
2773 		BUG();
2774 	}
2775 	return skb->data += len;
2776 }
2777 
2778 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2779 {
2780 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2781 }
2782 
2783 void *skb_pull_data(struct sk_buff *skb, size_t len);
2784 
2785 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2786 
2787 static inline enum skb_drop_reason
2788 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2789 {
2790 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2791 	skb_might_realloc(skb);
2792 
2793 	if (likely(len <= skb_headlen(skb)))
2794 		return SKB_NOT_DROPPED_YET;
2795 
2796 	if (unlikely(len > skb->len))
2797 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2798 
2799 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2800 		return SKB_DROP_REASON_NOMEM;
2801 
2802 	return SKB_NOT_DROPPED_YET;
2803 }
2804 
2805 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2806 {
2807 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2808 }
2809 
2810 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2811 {
2812 	if (!pskb_may_pull(skb, len))
2813 		return NULL;
2814 
2815 	skb->len -= len;
2816 	return skb->data += len;
2817 }
2818 
2819 void skb_condense(struct sk_buff *skb);
2820 
2821 /**
2822  *	skb_headroom - bytes at buffer head
2823  *	@skb: buffer to check
2824  *
2825  *	Return the number of bytes of free space at the head of an &sk_buff.
2826  */
2827 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2828 {
2829 	return skb->data - skb->head;
2830 }
2831 
2832 /**
2833  *	skb_tailroom - bytes at buffer end
2834  *	@skb: buffer to check
2835  *
2836  *	Return the number of bytes of free space at the tail of an sk_buff
2837  */
2838 static inline int skb_tailroom(const struct sk_buff *skb)
2839 {
2840 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2841 }
2842 
2843 /**
2844  *	skb_availroom - bytes at buffer end
2845  *	@skb: buffer to check
2846  *
2847  *	Return the number of bytes of free space at the tail of an sk_buff
2848  *	allocated by sk_stream_alloc()
2849  */
2850 static inline int skb_availroom(const struct sk_buff *skb)
2851 {
2852 	if (skb_is_nonlinear(skb))
2853 		return 0;
2854 
2855 	return skb->end - skb->tail - skb->reserved_tailroom;
2856 }
2857 
2858 /**
2859  *	skb_reserve - adjust headroom
2860  *	@skb: buffer to alter
2861  *	@len: bytes to move
2862  *
2863  *	Increase the headroom of an empty &sk_buff by reducing the tail
2864  *	room. This is only allowed for an empty buffer.
2865  */
2866 static inline void skb_reserve(struct sk_buff *skb, int len)
2867 {
2868 	skb->data += len;
2869 	skb->tail += len;
2870 }
2871 
2872 /**
2873  *	skb_tailroom_reserve - adjust reserved_tailroom
2874  *	@skb: buffer to alter
2875  *	@mtu: maximum amount of headlen permitted
2876  *	@needed_tailroom: minimum amount of reserved_tailroom
2877  *
2878  *	Set reserved_tailroom so that headlen can be as large as possible but
2879  *	not larger than mtu and tailroom cannot be smaller than
2880  *	needed_tailroom.
2881  *	The required headroom should already have been reserved before using
2882  *	this function.
2883  */
2884 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2885 					unsigned int needed_tailroom)
2886 {
2887 	SKB_LINEAR_ASSERT(skb);
2888 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2889 		/* use at most mtu */
2890 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2891 	else
2892 		/* use up to all available space */
2893 		skb->reserved_tailroom = needed_tailroom;
2894 }
2895 
2896 #define ENCAP_TYPE_ETHER	0
2897 #define ENCAP_TYPE_IPPROTO	1
2898 
2899 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2900 					  __be16 protocol)
2901 {
2902 	skb->inner_protocol = protocol;
2903 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2904 }
2905 
2906 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2907 					 __u8 ipproto)
2908 {
2909 	skb->inner_ipproto = ipproto;
2910 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2911 }
2912 
2913 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2914 {
2915 	skb->inner_mac_header = skb->mac_header;
2916 	skb->inner_network_header = skb->network_header;
2917 	skb->inner_transport_header = skb->transport_header;
2918 }
2919 
2920 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2921 {
2922 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2923 }
2924 
2925 static inline void skb_reset_mac_len(struct sk_buff *skb)
2926 {
2927 	if (!skb_mac_header_was_set(skb)) {
2928 		DEBUG_NET_WARN_ON_ONCE(1);
2929 		skb->mac_len = 0;
2930 	} else {
2931 		skb->mac_len = skb->network_header - skb->mac_header;
2932 	}
2933 }
2934 
2935 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2936 							*skb)
2937 {
2938 	return skb->head + skb->inner_transport_header;
2939 }
2940 
2941 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2942 {
2943 	return skb_inner_transport_header(skb) - skb->data;
2944 }
2945 
2946 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2947 {
2948 	long offset = skb->data - skb->head;
2949 
2950 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset);
2951 	skb->inner_transport_header = offset;
2952 }
2953 
2954 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2955 						   const int offset)
2956 {
2957 	skb_reset_inner_transport_header(skb);
2958 	skb->inner_transport_header += offset;
2959 }
2960 
2961 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2962 {
2963 	return skb->head + skb->inner_network_header;
2964 }
2965 
2966 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2967 {
2968 	long offset = skb->data - skb->head;
2969 
2970 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset);
2971 	skb->inner_network_header = offset;
2972 }
2973 
2974 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2975 						const int offset)
2976 {
2977 	skb_reset_inner_network_header(skb);
2978 	skb->inner_network_header += offset;
2979 }
2980 
2981 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2982 {
2983 	return skb->inner_network_header > 0;
2984 }
2985 
2986 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2987 {
2988 	return skb->head + skb->inner_mac_header;
2989 }
2990 
2991 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2992 {
2993 	long offset = skb->data - skb->head;
2994 
2995 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset);
2996 	skb->inner_mac_header = offset;
2997 }
2998 
2999 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
3000 					    const int offset)
3001 {
3002 	skb_reset_inner_mac_header(skb);
3003 	skb->inner_mac_header += offset;
3004 }
3005 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
3006 {
3007 	return skb->transport_header != (typeof(skb->transport_header))~0U;
3008 }
3009 
3010 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
3011 {
3012 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3013 	return skb->head + skb->transport_header;
3014 }
3015 
3016 static inline void skb_reset_transport_header(struct sk_buff *skb)
3017 {
3018 	long offset = skb->data - skb->head;
3019 
3020 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset);
3021 	skb->transport_header = offset;
3022 }
3023 
3024 static inline void skb_set_transport_header(struct sk_buff *skb,
3025 					    const int offset)
3026 {
3027 	skb_reset_transport_header(skb);
3028 	skb->transport_header += offset;
3029 }
3030 
3031 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
3032 {
3033 	return skb->head + skb->network_header;
3034 }
3035 
3036 static inline void skb_reset_network_header(struct sk_buff *skb)
3037 {
3038 	long offset = skb->data - skb->head;
3039 
3040 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset);
3041 	skb->network_header = offset;
3042 }
3043 
3044 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
3045 {
3046 	skb_reset_network_header(skb);
3047 	skb->network_header += offset;
3048 }
3049 
3050 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
3051 {
3052 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3053 	return skb->head + skb->mac_header;
3054 }
3055 
3056 static inline int skb_mac_offset(const struct sk_buff *skb)
3057 {
3058 	return skb_mac_header(skb) - skb->data;
3059 }
3060 
3061 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
3062 {
3063 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3064 	return skb->network_header - skb->mac_header;
3065 }
3066 
3067 static inline void skb_unset_mac_header(struct sk_buff *skb)
3068 {
3069 	skb->mac_header = (typeof(skb->mac_header))~0U;
3070 }
3071 
3072 static inline void skb_reset_mac_header(struct sk_buff *skb)
3073 {
3074 	long offset = skb->data - skb->head;
3075 
3076 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset);
3077 	skb->mac_header = offset;
3078 }
3079 
3080 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3081 {
3082 	skb_reset_mac_header(skb);
3083 	skb->mac_header += offset;
3084 }
3085 
3086 static inline void skb_pop_mac_header(struct sk_buff *skb)
3087 {
3088 	skb->mac_header = skb->network_header;
3089 }
3090 
3091 static inline void skb_probe_transport_header(struct sk_buff *skb)
3092 {
3093 	struct flow_keys_basic keys;
3094 
3095 	if (skb_transport_header_was_set(skb))
3096 		return;
3097 
3098 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3099 					     NULL, 0, 0, 0, 0))
3100 		skb_set_transport_header(skb, keys.control.thoff);
3101 }
3102 
3103 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3104 {
3105 	if (skb_mac_header_was_set(skb)) {
3106 		const unsigned char *old_mac = skb_mac_header(skb);
3107 
3108 		skb_set_mac_header(skb, -skb->mac_len);
3109 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3110 	}
3111 }
3112 
3113 /* Move the full mac header up to current network_header.
3114  * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3115  * Must be provided the complete mac header length.
3116  */
3117 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3118 {
3119 	if (skb_mac_header_was_set(skb)) {
3120 		const unsigned char *old_mac = skb_mac_header(skb);
3121 
3122 		skb_set_mac_header(skb, -full_mac_len);
3123 		memmove(skb_mac_header(skb), old_mac, full_mac_len);
3124 		__skb_push(skb, full_mac_len - skb->mac_len);
3125 	}
3126 }
3127 
3128 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3129 {
3130 	return skb->csum_start - skb_headroom(skb);
3131 }
3132 
3133 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3134 {
3135 	return skb->head + skb->csum_start;
3136 }
3137 
3138 static inline int skb_transport_offset(const struct sk_buff *skb)
3139 {
3140 	return skb_transport_header(skb) - skb->data;
3141 }
3142 
3143 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3144 {
3145 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3146 	return skb->transport_header - skb->network_header;
3147 }
3148 
3149 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3150 {
3151 	return skb->inner_transport_header - skb->inner_network_header;
3152 }
3153 
3154 static inline int skb_network_offset(const struct sk_buff *skb)
3155 {
3156 	return skb_network_header(skb) - skb->data;
3157 }
3158 
3159 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3160 {
3161 	return skb_inner_network_header(skb) - skb->data;
3162 }
3163 
3164 static inline enum skb_drop_reason
3165 pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len)
3166 {
3167 	return pskb_may_pull_reason(skb, skb_network_offset(skb) + len);
3168 }
3169 
3170 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3171 {
3172 	return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
3173 }
3174 
3175 /*
3176  * CPUs often take a performance hit when accessing unaligned memory
3177  * locations. The actual performance hit varies, it can be small if the
3178  * hardware handles it or large if we have to take an exception and fix it
3179  * in software.
3180  *
3181  * Since an ethernet header is 14 bytes network drivers often end up with
3182  * the IP header at an unaligned offset. The IP header can be aligned by
3183  * shifting the start of the packet by 2 bytes. Drivers should do this
3184  * with:
3185  *
3186  * skb_reserve(skb, NET_IP_ALIGN);
3187  *
3188  * The downside to this alignment of the IP header is that the DMA is now
3189  * unaligned. On some architectures the cost of an unaligned DMA is high
3190  * and this cost outweighs the gains made by aligning the IP header.
3191  *
3192  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3193  * to be overridden.
3194  */
3195 #ifndef NET_IP_ALIGN
3196 #define NET_IP_ALIGN	2
3197 #endif
3198 
3199 /*
3200  * The networking layer reserves some headroom in skb data (via
3201  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3202  * the header has to grow. In the default case, if the header has to grow
3203  * 32 bytes or less we avoid the reallocation.
3204  *
3205  * Unfortunately this headroom changes the DMA alignment of the resulting
3206  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3207  * on some architectures. An architecture can override this value,
3208  * perhaps setting it to a cacheline in size (since that will maintain
3209  * cacheline alignment of the DMA). It must be a power of 2.
3210  *
3211  * Various parts of the networking layer expect at least 32 bytes of
3212  * headroom, you should not reduce this.
3213  *
3214  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3215  * to reduce average number of cache lines per packet.
3216  * get_rps_cpu() for example only access one 64 bytes aligned block :
3217  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3218  */
3219 #ifndef NET_SKB_PAD
3220 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3221 #endif
3222 
3223 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3224 
3225 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3226 {
3227 	if (WARN_ON(skb_is_nonlinear(skb)))
3228 		return;
3229 	skb->len = len;
3230 	skb_set_tail_pointer(skb, len);
3231 }
3232 
3233 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3234 {
3235 	__skb_set_length(skb, len);
3236 }
3237 
3238 void skb_trim(struct sk_buff *skb, unsigned int len);
3239 
3240 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3241 {
3242 	if (skb->data_len)
3243 		return ___pskb_trim(skb, len);
3244 	__skb_trim(skb, len);
3245 	return 0;
3246 }
3247 
3248 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3249 {
3250 	skb_might_realloc(skb);
3251 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3252 }
3253 
3254 /**
3255  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3256  *	@skb: buffer to alter
3257  *	@len: new length
3258  *
3259  *	This is identical to pskb_trim except that the caller knows that
3260  *	the skb is not cloned so we should never get an error due to out-
3261  *	of-memory.
3262  */
3263 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3264 {
3265 	int err = pskb_trim(skb, len);
3266 	BUG_ON(err);
3267 }
3268 
3269 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3270 {
3271 	unsigned int diff = len - skb->len;
3272 
3273 	if (skb_tailroom(skb) < diff) {
3274 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3275 					   GFP_ATOMIC);
3276 		if (ret)
3277 			return ret;
3278 	}
3279 	__skb_set_length(skb, len);
3280 	return 0;
3281 }
3282 
3283 /**
3284  *	skb_orphan - orphan a buffer
3285  *	@skb: buffer to orphan
3286  *
3287  *	If a buffer currently has an owner then we call the owner's
3288  *	destructor function and make the @skb unowned. The buffer continues
3289  *	to exist but is no longer charged to its former owner.
3290  */
3291 static inline void skb_orphan(struct sk_buff *skb)
3292 {
3293 	if (skb->destructor) {
3294 		skb->destructor(skb);
3295 		skb->destructor = NULL;
3296 		skb->sk		= NULL;
3297 	} else {
3298 		BUG_ON(skb->sk);
3299 	}
3300 }
3301 
3302 /**
3303  *	skb_orphan_frags - orphan the frags contained in a buffer
3304  *	@skb: buffer to orphan frags from
3305  *	@gfp_mask: allocation mask for replacement pages
3306  *
3307  *	For each frag in the SKB which needs a destructor (i.e. has an
3308  *	owner) create a copy of that frag and release the original
3309  *	page by calling the destructor.
3310  */
3311 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3312 {
3313 	if (likely(!skb_zcopy(skb)))
3314 		return 0;
3315 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3316 		return 0;
3317 	return skb_copy_ubufs(skb, gfp_mask);
3318 }
3319 
3320 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3321 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3322 {
3323 	if (likely(!skb_zcopy(skb)))
3324 		return 0;
3325 	return skb_copy_ubufs(skb, gfp_mask);
3326 }
3327 
3328 /**
3329  *	__skb_queue_purge_reason - empty a list
3330  *	@list: list to empty
3331  *	@reason: drop reason
3332  *
3333  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3334  *	the list and one reference dropped. This function does not take the
3335  *	list lock and the caller must hold the relevant locks to use it.
3336  */
3337 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3338 					    enum skb_drop_reason reason)
3339 {
3340 	struct sk_buff *skb;
3341 
3342 	while ((skb = __skb_dequeue(list)) != NULL)
3343 		kfree_skb_reason(skb, reason);
3344 }
3345 
3346 static inline void __skb_queue_purge(struct sk_buff_head *list)
3347 {
3348 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3349 }
3350 
3351 void skb_queue_purge_reason(struct sk_buff_head *list,
3352 			    enum skb_drop_reason reason);
3353 
3354 static inline void skb_queue_purge(struct sk_buff_head *list)
3355 {
3356 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3357 }
3358 
3359 unsigned int skb_rbtree_purge(struct rb_root *root);
3360 void skb_errqueue_purge(struct sk_buff_head *list);
3361 
3362 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3363 
3364 /**
3365  * netdev_alloc_frag - allocate a page fragment
3366  * @fragsz: fragment size
3367  *
3368  * Allocates a frag from a page for receive buffer.
3369  * Uses GFP_ATOMIC allocations.
3370  */
3371 static inline void *netdev_alloc_frag(unsigned int fragsz)
3372 {
3373 	return __netdev_alloc_frag_align(fragsz, ~0u);
3374 }
3375 
3376 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3377 					    unsigned int align)
3378 {
3379 	WARN_ON_ONCE(!is_power_of_2(align));
3380 	return __netdev_alloc_frag_align(fragsz, -align);
3381 }
3382 
3383 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3384 				   gfp_t gfp_mask);
3385 
3386 /**
3387  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3388  *	@dev: network device to receive on
3389  *	@length: length to allocate
3390  *
3391  *	Allocate a new &sk_buff and assign it a usage count of one. The
3392  *	buffer has unspecified headroom built in. Users should allocate
3393  *	the headroom they think they need without accounting for the
3394  *	built in space. The built in space is used for optimisations.
3395  *
3396  *	%NULL is returned if there is no free memory. Although this function
3397  *	allocates memory it can be called from an interrupt.
3398  */
3399 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3400 					       unsigned int length)
3401 {
3402 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3403 }
3404 
3405 /* legacy helper around __netdev_alloc_skb() */
3406 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3407 					      gfp_t gfp_mask)
3408 {
3409 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3410 }
3411 
3412 /* legacy helper around netdev_alloc_skb() */
3413 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3414 {
3415 	return netdev_alloc_skb(NULL, length);
3416 }
3417 
3418 
3419 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3420 		unsigned int length, gfp_t gfp)
3421 {
3422 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3423 
3424 	if (NET_IP_ALIGN && skb)
3425 		skb_reserve(skb, NET_IP_ALIGN);
3426 	return skb;
3427 }
3428 
3429 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3430 		unsigned int length)
3431 {
3432 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3433 }
3434 
3435 static inline void skb_free_frag(void *addr)
3436 {
3437 	page_frag_free(addr);
3438 }
3439 
3440 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3441 
3442 static inline void *napi_alloc_frag(unsigned int fragsz)
3443 {
3444 	return __napi_alloc_frag_align(fragsz, ~0u);
3445 }
3446 
3447 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3448 					  unsigned int align)
3449 {
3450 	WARN_ON_ONCE(!is_power_of_2(align));
3451 	return __napi_alloc_frag_align(fragsz, -align);
3452 }
3453 
3454 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3455 void napi_consume_skb(struct sk_buff *skb, int budget);
3456 
3457 void napi_skb_free_stolen_head(struct sk_buff *skb);
3458 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3459 
3460 /**
3461  * __dev_alloc_pages - allocate page for network Rx
3462  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3463  * @order: size of the allocation
3464  *
3465  * Allocate a new page.
3466  *
3467  * %NULL is returned if there is no free memory.
3468 */
3469 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
3470 					     unsigned int order)
3471 {
3472 	/* This piece of code contains several assumptions.
3473 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3474 	 * 2.  The expectation is the user wants a compound page.
3475 	 * 3.  If requesting a order 0 page it will not be compound
3476 	 *     due to the check to see if order has a value in prep_new_page
3477 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3478 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3479 	 */
3480 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3481 
3482 	return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
3483 }
3484 #define __dev_alloc_pages(...)	alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
3485 
3486 /*
3487  * This specialized allocator has to be a macro for its allocations to be
3488  * accounted separately (to have a separate alloc_tag).
3489  */
3490 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
3491 
3492 /**
3493  * __dev_alloc_page - allocate a page for network Rx
3494  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3495  *
3496  * Allocate a new page.
3497  *
3498  * %NULL is returned if there is no free memory.
3499  */
3500 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
3501 {
3502 	return __dev_alloc_pages_noprof(gfp_mask, 0);
3503 }
3504 #define __dev_alloc_page(...)	alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
3505 
3506 /*
3507  * This specialized allocator has to be a macro for its allocations to be
3508  * accounted separately (to have a separate alloc_tag).
3509  */
3510 #define dev_alloc_page()	dev_alloc_pages(0)
3511 
3512 /**
3513  * dev_page_is_reusable - check whether a page can be reused for network Rx
3514  * @page: the page to test
3515  *
3516  * A page shouldn't be considered for reusing/recycling if it was allocated
3517  * under memory pressure or at a distant memory node.
3518  *
3519  * Returns: false if this page should be returned to page allocator, true
3520  * otherwise.
3521  */
3522 static inline bool dev_page_is_reusable(const struct page *page)
3523 {
3524 	return likely(page_to_nid(page) == numa_mem_id() &&
3525 		      !page_is_pfmemalloc(page));
3526 }
3527 
3528 /**
3529  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3530  *	@page: The page that was allocated from skb_alloc_page
3531  *	@skb: The skb that may need pfmemalloc set
3532  */
3533 static inline void skb_propagate_pfmemalloc(const struct page *page,
3534 					    struct sk_buff *skb)
3535 {
3536 	if (page_is_pfmemalloc(page))
3537 		skb->pfmemalloc = true;
3538 }
3539 
3540 /**
3541  * skb_frag_off() - Returns the offset of a skb fragment
3542  * @frag: the paged fragment
3543  */
3544 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3545 {
3546 	return frag->offset;
3547 }
3548 
3549 /**
3550  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3551  * @frag: skb fragment
3552  * @delta: value to add
3553  */
3554 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3555 {
3556 	frag->offset += delta;
3557 }
3558 
3559 /**
3560  * skb_frag_off_set() - Sets the offset of a skb fragment
3561  * @frag: skb fragment
3562  * @offset: offset of fragment
3563  */
3564 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3565 {
3566 	frag->offset = offset;
3567 }
3568 
3569 /**
3570  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3571  * @fragto: skb fragment where offset is set
3572  * @fragfrom: skb fragment offset is copied from
3573  */
3574 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3575 				     const skb_frag_t *fragfrom)
3576 {
3577 	fragto->offset = fragfrom->offset;
3578 }
3579 
3580 /* Return: true if the skb_frag contains a net_iov. */
3581 static inline bool skb_frag_is_net_iov(const skb_frag_t *frag)
3582 {
3583 	return netmem_is_net_iov(frag->netmem);
3584 }
3585 
3586 /**
3587  * skb_frag_net_iov - retrieve the net_iov referred to by fragment
3588  * @frag: the fragment
3589  *
3590  * Return: the &struct net_iov associated with @frag. Returns NULL if this
3591  * frag has no associated net_iov.
3592  */
3593 static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag)
3594 {
3595 	if (!skb_frag_is_net_iov(frag))
3596 		return NULL;
3597 
3598 	return netmem_to_net_iov(frag->netmem);
3599 }
3600 
3601 /**
3602  * skb_frag_page - retrieve the page referred to by a paged fragment
3603  * @frag: the paged fragment
3604  *
3605  * Return: the &struct page associated with @frag. Returns NULL if this frag
3606  * has no associated page.
3607  */
3608 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3609 {
3610 	if (skb_frag_is_net_iov(frag))
3611 		return NULL;
3612 
3613 	return netmem_to_page(frag->netmem);
3614 }
3615 
3616 /**
3617  * skb_frag_netmem - retrieve the netmem referred to by a fragment
3618  * @frag: the fragment
3619  *
3620  * Return: the &netmem_ref associated with @frag.
3621  */
3622 static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag)
3623 {
3624 	return frag->netmem;
3625 }
3626 
3627 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3628 		    unsigned int headroom);
3629 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3630 			 const struct bpf_prog *prog);
3631 
3632 /**
3633  * skb_frag_address - gets the address of the data contained in a paged fragment
3634  * @frag: the paged fragment buffer
3635  *
3636  * Returns: the address of the data within @frag. The page must already
3637  * be mapped.
3638  */
3639 static inline void *skb_frag_address(const skb_frag_t *frag)
3640 {
3641 	if (!skb_frag_page(frag))
3642 		return NULL;
3643 
3644 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3645 }
3646 
3647 /**
3648  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3649  * @frag: the paged fragment buffer
3650  *
3651  * Returns: the address of the data within @frag. Checks that the page
3652  * is mapped and returns %NULL otherwise.
3653  */
3654 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3655 {
3656 	void *ptr = page_address(skb_frag_page(frag));
3657 	if (unlikely(!ptr))
3658 		return NULL;
3659 
3660 	return ptr + skb_frag_off(frag);
3661 }
3662 
3663 /**
3664  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3665  * @fragto: skb fragment where page is set
3666  * @fragfrom: skb fragment page is copied from
3667  */
3668 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3669 				      const skb_frag_t *fragfrom)
3670 {
3671 	fragto->netmem = fragfrom->netmem;
3672 }
3673 
3674 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3675 
3676 /**
3677  * __skb_frag_dma_map - maps a paged fragment via the DMA API
3678  * @dev: the device to map the fragment to
3679  * @frag: the paged fragment to map
3680  * @offset: the offset within the fragment (starting at the
3681  *          fragment's own offset)
3682  * @size: the number of bytes to map
3683  * @dir: the direction of the mapping (``PCI_DMA_*``)
3684  *
3685  * Maps the page associated with @frag to @device.
3686  */
3687 static inline dma_addr_t __skb_frag_dma_map(struct device *dev,
3688 					    const skb_frag_t *frag,
3689 					    size_t offset, size_t size,
3690 					    enum dma_data_direction dir)
3691 {
3692 	return dma_map_page(dev, skb_frag_page(frag),
3693 			    skb_frag_off(frag) + offset, size, dir);
3694 }
3695 
3696 #define skb_frag_dma_map(dev, frag, ...)				\
3697 	CONCATENATE(_skb_frag_dma_map,					\
3698 		    COUNT_ARGS(__VA_ARGS__))(dev, frag, ##__VA_ARGS__)
3699 
3700 #define __skb_frag_dma_map1(dev, frag, offset, uf, uo) ({		\
3701 	const skb_frag_t *uf = (frag);					\
3702 	size_t uo = (offset);						\
3703 									\
3704 	__skb_frag_dma_map(dev, uf, uo, skb_frag_size(uf) - uo,		\
3705 			   DMA_TO_DEVICE);				\
3706 })
3707 #define _skb_frag_dma_map1(dev, frag, offset)				\
3708 	__skb_frag_dma_map1(dev, frag, offset, __UNIQUE_ID(frag_),	\
3709 			    __UNIQUE_ID(offset_))
3710 #define _skb_frag_dma_map0(dev, frag)					\
3711 	_skb_frag_dma_map1(dev, frag, 0)
3712 #define _skb_frag_dma_map2(dev, frag, offset, size)			\
3713 	__skb_frag_dma_map(dev, frag, offset, size, DMA_TO_DEVICE)
3714 #define _skb_frag_dma_map3(dev, frag, offset, size, dir)		\
3715 	__skb_frag_dma_map(dev, frag, offset, size, dir)
3716 
3717 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3718 					gfp_t gfp_mask)
3719 {
3720 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3721 }
3722 
3723 
3724 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3725 						  gfp_t gfp_mask)
3726 {
3727 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3728 }
3729 
3730 
3731 /**
3732  *	skb_clone_writable - is the header of a clone writable
3733  *	@skb: buffer to check
3734  *	@len: length up to which to write
3735  *
3736  *	Returns true if modifying the header part of the cloned buffer
3737  *	does not requires the data to be copied.
3738  */
3739 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3740 {
3741 	return !skb_header_cloned(skb) &&
3742 	       skb_headroom(skb) + len <= skb->hdr_len;
3743 }
3744 
3745 static inline int skb_try_make_writable(struct sk_buff *skb,
3746 					unsigned int write_len)
3747 {
3748 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3749 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3750 }
3751 
3752 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3753 			    int cloned)
3754 {
3755 	int delta = 0;
3756 
3757 	if (headroom > skb_headroom(skb))
3758 		delta = headroom - skb_headroom(skb);
3759 
3760 	if (delta || cloned)
3761 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3762 					GFP_ATOMIC);
3763 	return 0;
3764 }
3765 
3766 /**
3767  *	skb_cow - copy header of skb when it is required
3768  *	@skb: buffer to cow
3769  *	@headroom: needed headroom
3770  *
3771  *	If the skb passed lacks sufficient headroom or its data part
3772  *	is shared, data is reallocated. If reallocation fails, an error
3773  *	is returned and original skb is not changed.
3774  *
3775  *	The result is skb with writable area skb->head...skb->tail
3776  *	and at least @headroom of space at head.
3777  */
3778 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3779 {
3780 	return __skb_cow(skb, headroom, skb_cloned(skb));
3781 }
3782 
3783 /**
3784  *	skb_cow_head - skb_cow but only making the head writable
3785  *	@skb: buffer to cow
3786  *	@headroom: needed headroom
3787  *
3788  *	This function is identical to skb_cow except that we replace the
3789  *	skb_cloned check by skb_header_cloned.  It should be used when
3790  *	you only need to push on some header and do not need to modify
3791  *	the data.
3792  */
3793 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3794 {
3795 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3796 }
3797 
3798 /**
3799  *	skb_padto	- pad an skbuff up to a minimal size
3800  *	@skb: buffer to pad
3801  *	@len: minimal length
3802  *
3803  *	Pads up a buffer to ensure the trailing bytes exist and are
3804  *	blanked. If the buffer already contains sufficient data it
3805  *	is untouched. Otherwise it is extended. Returns zero on
3806  *	success. The skb is freed on error.
3807  */
3808 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3809 {
3810 	unsigned int size = skb->len;
3811 	if (likely(size >= len))
3812 		return 0;
3813 	return skb_pad(skb, len - size);
3814 }
3815 
3816 /**
3817  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3818  *	@skb: buffer to pad
3819  *	@len: minimal length
3820  *	@free_on_error: free buffer on error
3821  *
3822  *	Pads up a buffer to ensure the trailing bytes exist and are
3823  *	blanked. If the buffer already contains sufficient data it
3824  *	is untouched. Otherwise it is extended. Returns zero on
3825  *	success. The skb is freed on error if @free_on_error is true.
3826  */
3827 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3828 					       unsigned int len,
3829 					       bool free_on_error)
3830 {
3831 	unsigned int size = skb->len;
3832 
3833 	if (unlikely(size < len)) {
3834 		len -= size;
3835 		if (__skb_pad(skb, len, free_on_error))
3836 			return -ENOMEM;
3837 		__skb_put(skb, len);
3838 	}
3839 	return 0;
3840 }
3841 
3842 /**
3843  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3844  *	@skb: buffer to pad
3845  *	@len: minimal length
3846  *
3847  *	Pads up a buffer to ensure the trailing bytes exist and are
3848  *	blanked. If the buffer already contains sufficient data it
3849  *	is untouched. Otherwise it is extended. Returns zero on
3850  *	success. The skb is freed on error.
3851  */
3852 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3853 {
3854 	return __skb_put_padto(skb, len, true);
3855 }
3856 
3857 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3858 	__must_check;
3859 
3860 static inline int skb_add_data(struct sk_buff *skb,
3861 			       struct iov_iter *from, int copy)
3862 {
3863 	const int off = skb->len;
3864 
3865 	if (skb->ip_summed == CHECKSUM_NONE) {
3866 		__wsum csum = 0;
3867 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3868 					         &csum, from)) {
3869 			skb->csum = csum_block_add(skb->csum, csum, off);
3870 			return 0;
3871 		}
3872 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3873 		return 0;
3874 
3875 	__skb_trim(skb, off);
3876 	return -EFAULT;
3877 }
3878 
3879 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3880 				    const struct page *page, int off)
3881 {
3882 	if (skb_zcopy(skb))
3883 		return false;
3884 	if (i) {
3885 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3886 
3887 		return page == skb_frag_page(frag) &&
3888 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3889 	}
3890 	return false;
3891 }
3892 
3893 static inline int __skb_linearize(struct sk_buff *skb)
3894 {
3895 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3896 }
3897 
3898 /**
3899  *	skb_linearize - convert paged skb to linear one
3900  *	@skb: buffer to linarize
3901  *
3902  *	If there is no free memory -ENOMEM is returned, otherwise zero
3903  *	is returned and the old skb data released.
3904  */
3905 static inline int skb_linearize(struct sk_buff *skb)
3906 {
3907 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3908 }
3909 
3910 /**
3911  * skb_has_shared_frag - can any frag be overwritten
3912  * @skb: buffer to test
3913  *
3914  * Return: true if the skb has at least one frag that might be modified
3915  * by an external entity (as in vmsplice()/sendfile())
3916  */
3917 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3918 {
3919 	return skb_is_nonlinear(skb) &&
3920 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3921 }
3922 
3923 /**
3924  *	skb_linearize_cow - make sure skb is linear and writable
3925  *	@skb: buffer to process
3926  *
3927  *	If there is no free memory -ENOMEM is returned, otherwise zero
3928  *	is returned and the old skb data released.
3929  */
3930 static inline int skb_linearize_cow(struct sk_buff *skb)
3931 {
3932 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3933 	       __skb_linearize(skb) : 0;
3934 }
3935 
3936 static __always_inline void
3937 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3938 		     unsigned int off)
3939 {
3940 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3941 		skb->csum = csum_block_sub(skb->csum,
3942 					   csum_partial(start, len, 0), off);
3943 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3944 		 skb_checksum_start_offset(skb) < 0)
3945 		skb->ip_summed = CHECKSUM_NONE;
3946 }
3947 
3948 /**
3949  *	skb_postpull_rcsum - update checksum for received skb after pull
3950  *	@skb: buffer to update
3951  *	@start: start of data before pull
3952  *	@len: length of data pulled
3953  *
3954  *	After doing a pull on a received packet, you need to call this to
3955  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3956  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3957  */
3958 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3959 				      const void *start, unsigned int len)
3960 {
3961 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3962 		skb->csum = wsum_negate(csum_partial(start, len,
3963 						     wsum_negate(skb->csum)));
3964 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3965 		 skb_checksum_start_offset(skb) < 0)
3966 		skb->ip_summed = CHECKSUM_NONE;
3967 }
3968 
3969 static __always_inline void
3970 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3971 		     unsigned int off)
3972 {
3973 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3974 		skb->csum = csum_block_add(skb->csum,
3975 					   csum_partial(start, len, 0), off);
3976 }
3977 
3978 /**
3979  *	skb_postpush_rcsum - update checksum for received skb after push
3980  *	@skb: buffer to update
3981  *	@start: start of data after push
3982  *	@len: length of data pushed
3983  *
3984  *	After doing a push on a received packet, you need to call this to
3985  *	update the CHECKSUM_COMPLETE checksum.
3986  */
3987 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3988 				      const void *start, unsigned int len)
3989 {
3990 	__skb_postpush_rcsum(skb, start, len, 0);
3991 }
3992 
3993 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3994 
3995 /**
3996  *	skb_push_rcsum - push skb and update receive checksum
3997  *	@skb: buffer to update
3998  *	@len: length of data pulled
3999  *
4000  *	This function performs an skb_push on the packet and updates
4001  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4002  *	receive path processing instead of skb_push unless you know
4003  *	that the checksum difference is zero (e.g., a valid IP header)
4004  *	or you are setting ip_summed to CHECKSUM_NONE.
4005  */
4006 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
4007 {
4008 	skb_push(skb, len);
4009 	skb_postpush_rcsum(skb, skb->data, len);
4010 	return skb->data;
4011 }
4012 
4013 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
4014 /**
4015  *	pskb_trim_rcsum - trim received skb and update checksum
4016  *	@skb: buffer to trim
4017  *	@len: new length
4018  *
4019  *	This is exactly the same as pskb_trim except that it ensures the
4020  *	checksum of received packets are still valid after the operation.
4021  *	It can change skb pointers.
4022  */
4023 
4024 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4025 {
4026 	skb_might_realloc(skb);
4027 	if (likely(len >= skb->len))
4028 		return 0;
4029 	return pskb_trim_rcsum_slow(skb, len);
4030 }
4031 
4032 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4033 {
4034 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4035 		skb->ip_summed = CHECKSUM_NONE;
4036 	__skb_trim(skb, len);
4037 	return 0;
4038 }
4039 
4040 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
4041 {
4042 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4043 		skb->ip_summed = CHECKSUM_NONE;
4044 	return __skb_grow(skb, len);
4045 }
4046 
4047 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
4048 #define skb_rb_first(root) rb_to_skb(rb_first(root))
4049 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
4050 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
4051 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
4052 
4053 #define skb_queue_walk(queue, skb) \
4054 		for (skb = (queue)->next;					\
4055 		     skb != (struct sk_buff *)(queue);				\
4056 		     skb = skb->next)
4057 
4058 #define skb_queue_walk_safe(queue, skb, tmp)					\
4059 		for (skb = (queue)->next, tmp = skb->next;			\
4060 		     skb != (struct sk_buff *)(queue);				\
4061 		     skb = tmp, tmp = skb->next)
4062 
4063 #define skb_queue_walk_from(queue, skb)						\
4064 		for (; skb != (struct sk_buff *)(queue);			\
4065 		     skb = skb->next)
4066 
4067 #define skb_rbtree_walk(skb, root)						\
4068 		for (skb = skb_rb_first(root); skb != NULL;			\
4069 		     skb = skb_rb_next(skb))
4070 
4071 #define skb_rbtree_walk_from(skb)						\
4072 		for (; skb != NULL;						\
4073 		     skb = skb_rb_next(skb))
4074 
4075 #define skb_rbtree_walk_from_safe(skb, tmp)					\
4076 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
4077 		     skb = tmp)
4078 
4079 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
4080 		for (tmp = skb->next;						\
4081 		     skb != (struct sk_buff *)(queue);				\
4082 		     skb = tmp, tmp = skb->next)
4083 
4084 #define skb_queue_reverse_walk(queue, skb) \
4085 		for (skb = (queue)->prev;					\
4086 		     skb != (struct sk_buff *)(queue);				\
4087 		     skb = skb->prev)
4088 
4089 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
4090 		for (skb = (queue)->prev, tmp = skb->prev;			\
4091 		     skb != (struct sk_buff *)(queue);				\
4092 		     skb = tmp, tmp = skb->prev)
4093 
4094 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
4095 		for (tmp = skb->prev;						\
4096 		     skb != (struct sk_buff *)(queue);				\
4097 		     skb = tmp, tmp = skb->prev)
4098 
4099 static inline bool skb_has_frag_list(const struct sk_buff *skb)
4100 {
4101 	return skb_shinfo(skb)->frag_list != NULL;
4102 }
4103 
4104 static inline void skb_frag_list_init(struct sk_buff *skb)
4105 {
4106 	skb_shinfo(skb)->frag_list = NULL;
4107 }
4108 
4109 #define skb_walk_frags(skb, iter)	\
4110 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4111 
4112 
4113 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4114 				int *err, long *timeo_p,
4115 				const struct sk_buff *skb);
4116 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4117 					  struct sk_buff_head *queue,
4118 					  unsigned int flags,
4119 					  int *off, int *err,
4120 					  struct sk_buff **last);
4121 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4122 					struct sk_buff_head *queue,
4123 					unsigned int flags, int *off, int *err,
4124 					struct sk_buff **last);
4125 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4126 				    struct sk_buff_head *sk_queue,
4127 				    unsigned int flags, int *off, int *err);
4128 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4129 __poll_t datagram_poll(struct file *file, struct socket *sock,
4130 			   struct poll_table_struct *wait);
4131 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4132 			   struct iov_iter *to, int size);
4133 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4134 					struct msghdr *msg, int size)
4135 {
4136 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4137 }
4138 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4139 				   struct msghdr *msg);
4140 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4141 			   struct iov_iter *to, int len,
4142 			   struct ahash_request *hash);
4143 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4144 				 struct iov_iter *from, int len);
4145 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4146 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4147 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4148 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4149 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4150 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4151 			      int len);
4152 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4153 		    struct pipe_inode_info *pipe, unsigned int len,
4154 		    unsigned int flags);
4155 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4156 			 int len);
4157 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4158 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4159 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4160 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4161 		 int len, int hlen);
4162 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4163 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4164 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4165 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4166 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4167 				 unsigned int offset);
4168 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4169 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4170 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4171 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4172 int skb_vlan_pop(struct sk_buff *skb);
4173 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4174 int skb_eth_pop(struct sk_buff *skb);
4175 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4176 		 const unsigned char *src);
4177 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4178 		  int mac_len, bool ethernet);
4179 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4180 		 bool ethernet);
4181 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4182 int skb_mpls_dec_ttl(struct sk_buff *skb);
4183 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4184 			     gfp_t gfp);
4185 
4186 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4187 {
4188 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4189 }
4190 
4191 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4192 {
4193 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4194 }
4195 
4196 struct skb_checksum_ops {
4197 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4198 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4199 };
4200 
4201 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4202 
4203 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4204 		      __wsum csum, const struct skb_checksum_ops *ops);
4205 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4206 		    __wsum csum);
4207 
4208 static inline void * __must_check
4209 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4210 		     const void *data, int hlen, void *buffer)
4211 {
4212 	if (likely(hlen - offset >= len))
4213 		return (void *)data + offset;
4214 
4215 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4216 		return NULL;
4217 
4218 	return buffer;
4219 }
4220 
4221 static inline void * __must_check
4222 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4223 {
4224 	return __skb_header_pointer(skb, offset, len, skb->data,
4225 				    skb_headlen(skb), buffer);
4226 }
4227 
4228 static inline void * __must_check
4229 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4230 {
4231 	if (likely(skb_headlen(skb) - offset >= len))
4232 		return skb->data + offset;
4233 	return NULL;
4234 }
4235 
4236 /**
4237  *	skb_needs_linearize - check if we need to linearize a given skb
4238  *			      depending on the given device features.
4239  *	@skb: socket buffer to check
4240  *	@features: net device features
4241  *
4242  *	Returns true if either:
4243  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4244  *	2. skb is fragmented and the device does not support SG.
4245  */
4246 static inline bool skb_needs_linearize(struct sk_buff *skb,
4247 				       netdev_features_t features)
4248 {
4249 	return skb_is_nonlinear(skb) &&
4250 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4251 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4252 }
4253 
4254 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4255 					     void *to,
4256 					     const unsigned int len)
4257 {
4258 	memcpy(to, skb->data, len);
4259 }
4260 
4261 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4262 						    const int offset, void *to,
4263 						    const unsigned int len)
4264 {
4265 	memcpy(to, skb->data + offset, len);
4266 }
4267 
4268 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4269 					   const void *from,
4270 					   const unsigned int len)
4271 {
4272 	memcpy(skb->data, from, len);
4273 }
4274 
4275 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4276 						  const int offset,
4277 						  const void *from,
4278 						  const unsigned int len)
4279 {
4280 	memcpy(skb->data + offset, from, len);
4281 }
4282 
4283 void skb_init(void);
4284 
4285 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4286 {
4287 	return skb->tstamp;
4288 }
4289 
4290 /**
4291  *	skb_get_timestamp - get timestamp from a skb
4292  *	@skb: skb to get stamp from
4293  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4294  *
4295  *	Timestamps are stored in the skb as offsets to a base timestamp.
4296  *	This function converts the offset back to a struct timeval and stores
4297  *	it in stamp.
4298  */
4299 static inline void skb_get_timestamp(const struct sk_buff *skb,
4300 				     struct __kernel_old_timeval *stamp)
4301 {
4302 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4303 }
4304 
4305 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4306 					 struct __kernel_sock_timeval *stamp)
4307 {
4308 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4309 
4310 	stamp->tv_sec = ts.tv_sec;
4311 	stamp->tv_usec = ts.tv_nsec / 1000;
4312 }
4313 
4314 static inline void skb_get_timestampns(const struct sk_buff *skb,
4315 				       struct __kernel_old_timespec *stamp)
4316 {
4317 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4318 
4319 	stamp->tv_sec = ts.tv_sec;
4320 	stamp->tv_nsec = ts.tv_nsec;
4321 }
4322 
4323 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4324 					   struct __kernel_timespec *stamp)
4325 {
4326 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4327 
4328 	stamp->tv_sec = ts.tv_sec;
4329 	stamp->tv_nsec = ts.tv_nsec;
4330 }
4331 
4332 static inline void __net_timestamp(struct sk_buff *skb)
4333 {
4334 	skb->tstamp = ktime_get_real();
4335 	skb->tstamp_type = SKB_CLOCK_REALTIME;
4336 }
4337 
4338 static inline ktime_t net_timedelta(ktime_t t)
4339 {
4340 	return ktime_sub(ktime_get_real(), t);
4341 }
4342 
4343 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4344 					 u8 tstamp_type)
4345 {
4346 	skb->tstamp = kt;
4347 
4348 	if (kt)
4349 		skb->tstamp_type = tstamp_type;
4350 	else
4351 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4352 }
4353 
4354 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4355 						    ktime_t kt, clockid_t clockid)
4356 {
4357 	u8 tstamp_type = SKB_CLOCK_REALTIME;
4358 
4359 	switch (clockid) {
4360 	case CLOCK_REALTIME:
4361 		break;
4362 	case CLOCK_MONOTONIC:
4363 		tstamp_type = SKB_CLOCK_MONOTONIC;
4364 		break;
4365 	case CLOCK_TAI:
4366 		tstamp_type = SKB_CLOCK_TAI;
4367 		break;
4368 	default:
4369 		WARN_ON_ONCE(1);
4370 		kt = 0;
4371 	}
4372 
4373 	skb_set_delivery_time(skb, kt, tstamp_type);
4374 }
4375 
4376 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4377 
4378 /* It is used in the ingress path to clear the delivery_time.
4379  * If needed, set the skb->tstamp to the (rcv) timestamp.
4380  */
4381 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4382 {
4383 	if (skb->tstamp_type) {
4384 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4385 		if (static_branch_unlikely(&netstamp_needed_key))
4386 			skb->tstamp = ktime_get_real();
4387 		else
4388 			skb->tstamp = 0;
4389 	}
4390 }
4391 
4392 static inline void skb_clear_tstamp(struct sk_buff *skb)
4393 {
4394 	if (skb->tstamp_type)
4395 		return;
4396 
4397 	skb->tstamp = 0;
4398 }
4399 
4400 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4401 {
4402 	if (skb->tstamp_type)
4403 		return 0;
4404 
4405 	return skb->tstamp;
4406 }
4407 
4408 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4409 {
4410 	if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4411 		return skb->tstamp;
4412 
4413 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4414 		return ktime_get_real();
4415 
4416 	return 0;
4417 }
4418 
4419 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4420 {
4421 	return skb_shinfo(skb)->meta_len;
4422 }
4423 
4424 static inline void *skb_metadata_end(const struct sk_buff *skb)
4425 {
4426 	return skb_mac_header(skb);
4427 }
4428 
4429 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4430 					  const struct sk_buff *skb_b,
4431 					  u8 meta_len)
4432 {
4433 	const void *a = skb_metadata_end(skb_a);
4434 	const void *b = skb_metadata_end(skb_b);
4435 	u64 diffs = 0;
4436 
4437 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4438 	    BITS_PER_LONG != 64)
4439 		goto slow;
4440 
4441 	/* Using more efficient variant than plain call to memcmp(). */
4442 	switch (meta_len) {
4443 #define __it(x, op) (x -= sizeof(u##op))
4444 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4445 	case 32: diffs |= __it_diff(a, b, 64);
4446 		fallthrough;
4447 	case 24: diffs |= __it_diff(a, b, 64);
4448 		fallthrough;
4449 	case 16: diffs |= __it_diff(a, b, 64);
4450 		fallthrough;
4451 	case  8: diffs |= __it_diff(a, b, 64);
4452 		break;
4453 	case 28: diffs |= __it_diff(a, b, 64);
4454 		fallthrough;
4455 	case 20: diffs |= __it_diff(a, b, 64);
4456 		fallthrough;
4457 	case 12: diffs |= __it_diff(a, b, 64);
4458 		fallthrough;
4459 	case  4: diffs |= __it_diff(a, b, 32);
4460 		break;
4461 	default:
4462 slow:
4463 		return memcmp(a - meta_len, b - meta_len, meta_len);
4464 	}
4465 	return diffs;
4466 }
4467 
4468 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4469 					const struct sk_buff *skb_b)
4470 {
4471 	u8 len_a = skb_metadata_len(skb_a);
4472 	u8 len_b = skb_metadata_len(skb_b);
4473 
4474 	if (!(len_a | len_b))
4475 		return false;
4476 
4477 	return len_a != len_b ?
4478 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4479 }
4480 
4481 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4482 {
4483 	skb_shinfo(skb)->meta_len = meta_len;
4484 }
4485 
4486 static inline void skb_metadata_clear(struct sk_buff *skb)
4487 {
4488 	skb_metadata_set(skb, 0);
4489 }
4490 
4491 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4492 
4493 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4494 
4495 void skb_clone_tx_timestamp(struct sk_buff *skb);
4496 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4497 
4498 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4499 
4500 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4501 {
4502 }
4503 
4504 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4505 {
4506 	return false;
4507 }
4508 
4509 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4510 
4511 /**
4512  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4513  *
4514  * PHY drivers may accept clones of transmitted packets for
4515  * timestamping via their phy_driver.txtstamp method. These drivers
4516  * must call this function to return the skb back to the stack with a
4517  * timestamp.
4518  *
4519  * @skb: clone of the original outgoing packet
4520  * @hwtstamps: hardware time stamps
4521  *
4522  */
4523 void skb_complete_tx_timestamp(struct sk_buff *skb,
4524 			       struct skb_shared_hwtstamps *hwtstamps);
4525 
4526 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4527 		     struct skb_shared_hwtstamps *hwtstamps,
4528 		     struct sock *sk, int tstype);
4529 
4530 /**
4531  * skb_tstamp_tx - queue clone of skb with send time stamps
4532  * @orig_skb:	the original outgoing packet
4533  * @hwtstamps:	hardware time stamps, may be NULL if not available
4534  *
4535  * If the skb has a socket associated, then this function clones the
4536  * skb (thus sharing the actual data and optional structures), stores
4537  * the optional hardware time stamping information (if non NULL) or
4538  * generates a software time stamp (otherwise), then queues the clone
4539  * to the error queue of the socket.  Errors are silently ignored.
4540  */
4541 void skb_tstamp_tx(struct sk_buff *orig_skb,
4542 		   struct skb_shared_hwtstamps *hwtstamps);
4543 
4544 /**
4545  * skb_tx_timestamp() - Driver hook for transmit timestamping
4546  *
4547  * Ethernet MAC Drivers should call this function in their hard_xmit()
4548  * function immediately before giving the sk_buff to the MAC hardware.
4549  *
4550  * Specifically, one should make absolutely sure that this function is
4551  * called before TX completion of this packet can trigger.  Otherwise
4552  * the packet could potentially already be freed.
4553  *
4554  * @skb: A socket buffer.
4555  */
4556 static inline void skb_tx_timestamp(struct sk_buff *skb)
4557 {
4558 	skb_clone_tx_timestamp(skb);
4559 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4560 		skb_tstamp_tx(skb, NULL);
4561 }
4562 
4563 /**
4564  * skb_complete_wifi_ack - deliver skb with wifi status
4565  *
4566  * @skb: the original outgoing packet
4567  * @acked: ack status
4568  *
4569  */
4570 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4571 
4572 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4573 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4574 
4575 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4576 {
4577 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4578 		skb->csum_valid ||
4579 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4580 		 skb_checksum_start_offset(skb) >= 0));
4581 }
4582 
4583 /**
4584  *	skb_checksum_complete - Calculate checksum of an entire packet
4585  *	@skb: packet to process
4586  *
4587  *	This function calculates the checksum over the entire packet plus
4588  *	the value of skb->csum.  The latter can be used to supply the
4589  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4590  *	checksum.
4591  *
4592  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4593  *	this function can be used to verify that checksum on received
4594  *	packets.  In that case the function should return zero if the
4595  *	checksum is correct.  In particular, this function will return zero
4596  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4597  *	hardware has already verified the correctness of the checksum.
4598  */
4599 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4600 {
4601 	return skb_csum_unnecessary(skb) ?
4602 	       0 : __skb_checksum_complete(skb);
4603 }
4604 
4605 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4606 {
4607 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4608 		if (skb->csum_level == 0)
4609 			skb->ip_summed = CHECKSUM_NONE;
4610 		else
4611 			skb->csum_level--;
4612 	}
4613 }
4614 
4615 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4616 {
4617 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4618 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4619 			skb->csum_level++;
4620 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4621 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4622 		skb->csum_level = 0;
4623 	}
4624 }
4625 
4626 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4627 {
4628 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4629 		skb->ip_summed = CHECKSUM_NONE;
4630 		skb->csum_level = 0;
4631 	}
4632 }
4633 
4634 /* Check if we need to perform checksum complete validation.
4635  *
4636  * Returns: true if checksum complete is needed, false otherwise
4637  * (either checksum is unnecessary or zero checksum is allowed).
4638  */
4639 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4640 						  bool zero_okay,
4641 						  __sum16 check)
4642 {
4643 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4644 		skb->csum_valid = 1;
4645 		__skb_decr_checksum_unnecessary(skb);
4646 		return false;
4647 	}
4648 
4649 	return true;
4650 }
4651 
4652 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4653  * in checksum_init.
4654  */
4655 #define CHECKSUM_BREAK 76
4656 
4657 /* Unset checksum-complete
4658  *
4659  * Unset checksum complete can be done when packet is being modified
4660  * (uncompressed for instance) and checksum-complete value is
4661  * invalidated.
4662  */
4663 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4664 {
4665 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4666 		skb->ip_summed = CHECKSUM_NONE;
4667 }
4668 
4669 /* Validate (init) checksum based on checksum complete.
4670  *
4671  * Return values:
4672  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4673  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4674  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4675  *   non-zero: value of invalid checksum
4676  *
4677  */
4678 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4679 						       bool complete,
4680 						       __wsum psum)
4681 {
4682 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4683 		if (!csum_fold(csum_add(psum, skb->csum))) {
4684 			skb->csum_valid = 1;
4685 			return 0;
4686 		}
4687 	}
4688 
4689 	skb->csum = psum;
4690 
4691 	if (complete || skb->len <= CHECKSUM_BREAK) {
4692 		__sum16 csum;
4693 
4694 		csum = __skb_checksum_complete(skb);
4695 		skb->csum_valid = !csum;
4696 		return csum;
4697 	}
4698 
4699 	return 0;
4700 }
4701 
4702 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4703 {
4704 	return 0;
4705 }
4706 
4707 /* Perform checksum validate (init). Note that this is a macro since we only
4708  * want to calculate the pseudo header which is an input function if necessary.
4709  * First we try to validate without any computation (checksum unnecessary) and
4710  * then calculate based on checksum complete calling the function to compute
4711  * pseudo header.
4712  *
4713  * Return values:
4714  *   0: checksum is validated or try to in skb_checksum_complete
4715  *   non-zero: value of invalid checksum
4716  */
4717 #define __skb_checksum_validate(skb, proto, complete,			\
4718 				zero_okay, check, compute_pseudo)	\
4719 ({									\
4720 	__sum16 __ret = 0;						\
4721 	skb->csum_valid = 0;						\
4722 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4723 		__ret = __skb_checksum_validate_complete(skb,		\
4724 				complete, compute_pseudo(skb, proto));	\
4725 	__ret;								\
4726 })
4727 
4728 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4729 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4730 
4731 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4732 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4733 
4734 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4735 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4736 
4737 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4738 					 compute_pseudo)		\
4739 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4740 
4741 #define skb_checksum_simple_validate(skb)				\
4742 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4743 
4744 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4745 {
4746 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4747 }
4748 
4749 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4750 {
4751 	skb->csum = ~pseudo;
4752 	skb->ip_summed = CHECKSUM_COMPLETE;
4753 }
4754 
4755 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4756 do {									\
4757 	if (__skb_checksum_convert_check(skb))				\
4758 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4759 } while (0)
4760 
4761 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4762 					      u16 start, u16 offset)
4763 {
4764 	skb->ip_summed = CHECKSUM_PARTIAL;
4765 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4766 	skb->csum_offset = offset - start;
4767 }
4768 
4769 /* Update skbuf and packet to reflect the remote checksum offload operation.
4770  * When called, ptr indicates the starting point for skb->csum when
4771  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4772  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4773  */
4774 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4775 				       int start, int offset, bool nopartial)
4776 {
4777 	__wsum delta;
4778 
4779 	if (!nopartial) {
4780 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4781 		return;
4782 	}
4783 
4784 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4785 		__skb_checksum_complete(skb);
4786 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4787 	}
4788 
4789 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4790 
4791 	/* Adjust skb->csum since we changed the packet */
4792 	skb->csum = csum_add(skb->csum, delta);
4793 }
4794 
4795 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4796 {
4797 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4798 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4799 #else
4800 	return NULL;
4801 #endif
4802 }
4803 
4804 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4805 {
4806 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4807 	return skb->_nfct;
4808 #else
4809 	return 0UL;
4810 #endif
4811 }
4812 
4813 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4814 {
4815 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4816 	skb->slow_gro |= !!nfct;
4817 	skb->_nfct = nfct;
4818 #endif
4819 }
4820 
4821 #ifdef CONFIG_SKB_EXTENSIONS
4822 enum skb_ext_id {
4823 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4824 	SKB_EXT_BRIDGE_NF,
4825 #endif
4826 #ifdef CONFIG_XFRM
4827 	SKB_EXT_SEC_PATH,
4828 #endif
4829 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4830 	TC_SKB_EXT,
4831 #endif
4832 #if IS_ENABLED(CONFIG_MPTCP)
4833 	SKB_EXT_MPTCP,
4834 #endif
4835 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4836 	SKB_EXT_MCTP,
4837 #endif
4838 	SKB_EXT_NUM, /* must be last */
4839 };
4840 
4841 /**
4842  *	struct skb_ext - sk_buff extensions
4843  *	@refcnt: 1 on allocation, deallocated on 0
4844  *	@offset: offset to add to @data to obtain extension address
4845  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4846  *	@data: start of extension data, variable sized
4847  *
4848  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4849  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4850  */
4851 struct skb_ext {
4852 	refcount_t refcnt;
4853 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4854 	u8 chunks;		/* same */
4855 	char data[] __aligned(8);
4856 };
4857 
4858 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4859 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4860 		    struct skb_ext *ext);
4861 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4862 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4863 void __skb_ext_put(struct skb_ext *ext);
4864 
4865 static inline void skb_ext_put(struct sk_buff *skb)
4866 {
4867 	if (skb->active_extensions)
4868 		__skb_ext_put(skb->extensions);
4869 }
4870 
4871 static inline void __skb_ext_copy(struct sk_buff *dst,
4872 				  const struct sk_buff *src)
4873 {
4874 	dst->active_extensions = src->active_extensions;
4875 
4876 	if (src->active_extensions) {
4877 		struct skb_ext *ext = src->extensions;
4878 
4879 		refcount_inc(&ext->refcnt);
4880 		dst->extensions = ext;
4881 	}
4882 }
4883 
4884 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4885 {
4886 	skb_ext_put(dst);
4887 	__skb_ext_copy(dst, src);
4888 }
4889 
4890 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4891 {
4892 	return !!ext->offset[i];
4893 }
4894 
4895 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4896 {
4897 	return skb->active_extensions & (1 << id);
4898 }
4899 
4900 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4901 {
4902 	if (skb_ext_exist(skb, id))
4903 		__skb_ext_del(skb, id);
4904 }
4905 
4906 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4907 {
4908 	if (skb_ext_exist(skb, id)) {
4909 		struct skb_ext *ext = skb->extensions;
4910 
4911 		return (void *)ext + (ext->offset[id] << 3);
4912 	}
4913 
4914 	return NULL;
4915 }
4916 
4917 static inline void skb_ext_reset(struct sk_buff *skb)
4918 {
4919 	if (unlikely(skb->active_extensions)) {
4920 		__skb_ext_put(skb->extensions);
4921 		skb->active_extensions = 0;
4922 	}
4923 }
4924 
4925 static inline bool skb_has_extensions(struct sk_buff *skb)
4926 {
4927 	return unlikely(skb->active_extensions);
4928 }
4929 #else
4930 static inline void skb_ext_put(struct sk_buff *skb) {}
4931 static inline void skb_ext_reset(struct sk_buff *skb) {}
4932 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4933 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4934 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4935 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4936 #endif /* CONFIG_SKB_EXTENSIONS */
4937 
4938 static inline void nf_reset_ct(struct sk_buff *skb)
4939 {
4940 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4941 	nf_conntrack_put(skb_nfct(skb));
4942 	skb->_nfct = 0;
4943 #endif
4944 }
4945 
4946 static inline void nf_reset_trace(struct sk_buff *skb)
4947 {
4948 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4949 	skb->nf_trace = 0;
4950 #endif
4951 }
4952 
4953 static inline void ipvs_reset(struct sk_buff *skb)
4954 {
4955 #if IS_ENABLED(CONFIG_IP_VS)
4956 	skb->ipvs_property = 0;
4957 #endif
4958 }
4959 
4960 /* Note: This doesn't put any conntrack info in dst. */
4961 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4962 			     bool copy)
4963 {
4964 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4965 	dst->_nfct = src->_nfct;
4966 	nf_conntrack_get(skb_nfct(src));
4967 #endif
4968 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4969 	if (copy)
4970 		dst->nf_trace = src->nf_trace;
4971 #endif
4972 }
4973 
4974 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4975 {
4976 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4977 	nf_conntrack_put(skb_nfct(dst));
4978 #endif
4979 	dst->slow_gro = src->slow_gro;
4980 	__nf_copy(dst, src, true);
4981 }
4982 
4983 #ifdef CONFIG_NETWORK_SECMARK
4984 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4985 {
4986 	to->secmark = from->secmark;
4987 }
4988 
4989 static inline void skb_init_secmark(struct sk_buff *skb)
4990 {
4991 	skb->secmark = 0;
4992 }
4993 #else
4994 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4995 { }
4996 
4997 static inline void skb_init_secmark(struct sk_buff *skb)
4998 { }
4999 #endif
5000 
5001 static inline int secpath_exists(const struct sk_buff *skb)
5002 {
5003 #ifdef CONFIG_XFRM
5004 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
5005 #else
5006 	return 0;
5007 #endif
5008 }
5009 
5010 static inline bool skb_irq_freeable(const struct sk_buff *skb)
5011 {
5012 	return !skb->destructor &&
5013 		!secpath_exists(skb) &&
5014 		!skb_nfct(skb) &&
5015 		!skb->_skb_refdst &&
5016 		!skb_has_frag_list(skb);
5017 }
5018 
5019 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
5020 {
5021 	skb->queue_mapping = queue_mapping;
5022 }
5023 
5024 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
5025 {
5026 	return skb->queue_mapping;
5027 }
5028 
5029 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
5030 {
5031 	to->queue_mapping = from->queue_mapping;
5032 }
5033 
5034 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
5035 {
5036 	skb->queue_mapping = rx_queue + 1;
5037 }
5038 
5039 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
5040 {
5041 	return skb->queue_mapping - 1;
5042 }
5043 
5044 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
5045 {
5046 	return skb->queue_mapping != 0;
5047 }
5048 
5049 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
5050 {
5051 	skb->dst_pending_confirm = val;
5052 }
5053 
5054 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
5055 {
5056 	return skb->dst_pending_confirm != 0;
5057 }
5058 
5059 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
5060 {
5061 #ifdef CONFIG_XFRM
5062 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
5063 #else
5064 	return NULL;
5065 #endif
5066 }
5067 
5068 static inline bool skb_is_gso(const struct sk_buff *skb)
5069 {
5070 	return skb_shinfo(skb)->gso_size;
5071 }
5072 
5073 /* Note: Should be called only if skb_is_gso(skb) is true */
5074 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
5075 {
5076 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
5077 }
5078 
5079 /* Note: Should be called only if skb_is_gso(skb) is true */
5080 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
5081 {
5082 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
5083 }
5084 
5085 /* Note: Should be called only if skb_is_gso(skb) is true */
5086 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
5087 {
5088 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
5089 }
5090 
5091 static inline void skb_gso_reset(struct sk_buff *skb)
5092 {
5093 	skb_shinfo(skb)->gso_size = 0;
5094 	skb_shinfo(skb)->gso_segs = 0;
5095 	skb_shinfo(skb)->gso_type = 0;
5096 }
5097 
5098 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
5099 					 u16 increment)
5100 {
5101 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5102 		return;
5103 	shinfo->gso_size += increment;
5104 }
5105 
5106 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5107 					 u16 decrement)
5108 {
5109 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5110 		return;
5111 	shinfo->gso_size -= decrement;
5112 }
5113 
5114 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5115 
5116 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5117 {
5118 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5119 	 * wanted then gso_type will be set. */
5120 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5121 
5122 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5123 	    unlikely(shinfo->gso_type == 0)) {
5124 		__skb_warn_lro_forwarding(skb);
5125 		return true;
5126 	}
5127 	return false;
5128 }
5129 
5130 static inline void skb_forward_csum(struct sk_buff *skb)
5131 {
5132 	/* Unfortunately we don't support this one.  Any brave souls? */
5133 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5134 		skb->ip_summed = CHECKSUM_NONE;
5135 }
5136 
5137 /**
5138  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5139  * @skb: skb to check
5140  *
5141  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5142  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5143  * use this helper, to document places where we make this assertion.
5144  */
5145 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5146 {
5147 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5148 }
5149 
5150 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5151 
5152 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5153 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5154 				     unsigned int transport_len,
5155 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5156 
5157 /**
5158  * skb_head_is_locked - Determine if the skb->head is locked down
5159  * @skb: skb to check
5160  *
5161  * The head on skbs build around a head frag can be removed if they are
5162  * not cloned.  This function returns true if the skb head is locked down
5163  * due to either being allocated via kmalloc, or by being a clone with
5164  * multiple references to the head.
5165  */
5166 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5167 {
5168 	return !skb->head_frag || skb_cloned(skb);
5169 }
5170 
5171 /* Local Checksum Offload.
5172  * Compute outer checksum based on the assumption that the
5173  * inner checksum will be offloaded later.
5174  * See Documentation/networking/checksum-offloads.rst for
5175  * explanation of how this works.
5176  * Fill in outer checksum adjustment (e.g. with sum of outer
5177  * pseudo-header) before calling.
5178  * Also ensure that inner checksum is in linear data area.
5179  */
5180 static inline __wsum lco_csum(struct sk_buff *skb)
5181 {
5182 	unsigned char *csum_start = skb_checksum_start(skb);
5183 	unsigned char *l4_hdr = skb_transport_header(skb);
5184 	__wsum partial;
5185 
5186 	/* Start with complement of inner checksum adjustment */
5187 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5188 						    skb->csum_offset));
5189 
5190 	/* Add in checksum of our headers (incl. outer checksum
5191 	 * adjustment filled in by caller) and return result.
5192 	 */
5193 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5194 }
5195 
5196 static inline bool skb_is_redirected(const struct sk_buff *skb)
5197 {
5198 	return skb->redirected;
5199 }
5200 
5201 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5202 {
5203 	skb->redirected = 1;
5204 #ifdef CONFIG_NET_REDIRECT
5205 	skb->from_ingress = from_ingress;
5206 	if (skb->from_ingress)
5207 		skb_clear_tstamp(skb);
5208 #endif
5209 }
5210 
5211 static inline void skb_reset_redirect(struct sk_buff *skb)
5212 {
5213 	skb->redirected = 0;
5214 }
5215 
5216 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5217 					      bool from_ingress)
5218 {
5219 	skb->redirected = 1;
5220 #ifdef CONFIG_NET_REDIRECT
5221 	skb->from_ingress = from_ingress;
5222 #endif
5223 }
5224 
5225 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5226 {
5227 #if IS_ENABLED(CONFIG_IP_SCTP)
5228 	return skb->csum_not_inet;
5229 #else
5230 	return 0;
5231 #endif
5232 }
5233 
5234 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5235 {
5236 	skb->ip_summed = CHECKSUM_NONE;
5237 #if IS_ENABLED(CONFIG_IP_SCTP)
5238 	skb->csum_not_inet = 0;
5239 #endif
5240 }
5241 
5242 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5243 				       const u64 kcov_handle)
5244 {
5245 #ifdef CONFIG_KCOV
5246 	skb->kcov_handle = kcov_handle;
5247 #endif
5248 }
5249 
5250 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5251 {
5252 #ifdef CONFIG_KCOV
5253 	return skb->kcov_handle;
5254 #else
5255 	return 0;
5256 #endif
5257 }
5258 
5259 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5260 {
5261 #ifdef CONFIG_PAGE_POOL
5262 	skb->pp_recycle = 1;
5263 #endif
5264 }
5265 
5266 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5267 			     ssize_t maxsize, gfp_t gfp);
5268 
5269 #endif	/* __KERNEL__ */
5270 #endif	/* _LINUX_SKBUFF_H */
5271