1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/bug.h> 21 #include <linux/cache.h> 22 #include <linux/rbtree.h> 23 #include <linux/socket.h> 24 #include <linux/refcount.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <net/flow_dissector.h> 39 #include <linux/splice.h> 40 #include <linux/in6.h> 41 #include <linux/if_packet.h> 42 #include <net/flow.h> 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct net_device; 242 struct scatterlist; 243 struct pipe_inode_info; 244 struct iov_iter; 245 struct napi_struct; 246 struct bpf_prog; 247 union bpf_attr; 248 struct skb_ext; 249 250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 251 struct nf_conntrack { 252 atomic_t use; 253 }; 254 #endif 255 256 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 257 struct nf_bridge_info { 258 enum { 259 BRNF_PROTO_UNCHANGED, 260 BRNF_PROTO_8021Q, 261 BRNF_PROTO_PPPOE 262 } orig_proto:8; 263 u8 pkt_otherhost:1; 264 u8 in_prerouting:1; 265 u8 bridged_dnat:1; 266 __u16 frag_max_size; 267 struct net_device *physindev; 268 269 /* always valid & non-NULL from FORWARD on, for physdev match */ 270 struct net_device *physoutdev; 271 union { 272 /* prerouting: detect dnat in orig/reply direction */ 273 __be32 ipv4_daddr; 274 struct in6_addr ipv6_daddr; 275 276 /* after prerouting + nat detected: store original source 277 * mac since neigh resolution overwrites it, only used while 278 * skb is out in neigh layer. 279 */ 280 char neigh_header[8]; 281 }; 282 }; 283 #endif 284 285 struct sk_buff_head { 286 /* These two members must be first. */ 287 struct sk_buff *next; 288 struct sk_buff *prev; 289 290 __u32 qlen; 291 spinlock_t lock; 292 }; 293 294 struct sk_buff; 295 296 /* To allow 64K frame to be packed as single skb without frag_list we 297 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 298 * buffers which do not start on a page boundary. 299 * 300 * Since GRO uses frags we allocate at least 16 regardless of page 301 * size. 302 */ 303 #if (65536/PAGE_SIZE + 1) < 16 304 #define MAX_SKB_FRAGS 16UL 305 #else 306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 307 #endif 308 extern int sysctl_max_skb_frags; 309 310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 311 * segment using its current segmentation instead. 312 */ 313 #define GSO_BY_FRAGS 0xFFFF 314 315 typedef struct skb_frag_struct skb_frag_t; 316 317 struct skb_frag_struct { 318 struct { 319 struct page *p; 320 } page; 321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 322 __u32 page_offset; 323 __u32 size; 324 #else 325 __u16 page_offset; 326 __u16 size; 327 #endif 328 }; 329 330 /** 331 * skb_frag_size - Returns the size of a skb fragment 332 * @frag: skb fragment 333 */ 334 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 335 { 336 return frag->size; 337 } 338 339 /** 340 * skb_frag_size_set - Sets the size of a skb fragment 341 * @frag: skb fragment 342 * @size: size of fragment 343 */ 344 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 345 { 346 frag->size = size; 347 } 348 349 /** 350 * skb_frag_size_add - Incrementes the size of a skb fragment by %delta 351 * @frag: skb fragment 352 * @delta: value to add 353 */ 354 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 355 { 356 frag->size += delta; 357 } 358 359 /** 360 * skb_frag_size_sub - Decrements the size of a skb fragment by %delta 361 * @frag: skb fragment 362 * @delta: value to subtract 363 */ 364 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 365 { 366 frag->size -= delta; 367 } 368 369 /** 370 * skb_frag_must_loop - Test if %p is a high memory page 371 * @p: fragment's page 372 */ 373 static inline bool skb_frag_must_loop(struct page *p) 374 { 375 #if defined(CONFIG_HIGHMEM) 376 if (PageHighMem(p)) 377 return true; 378 #endif 379 return false; 380 } 381 382 /** 383 * skb_frag_foreach_page - loop over pages in a fragment 384 * 385 * @f: skb frag to operate on 386 * @f_off: offset from start of f->page.p 387 * @f_len: length from f_off to loop over 388 * @p: (temp var) current page 389 * @p_off: (temp var) offset from start of current page, 390 * non-zero only on first page. 391 * @p_len: (temp var) length in current page, 392 * < PAGE_SIZE only on first and last page. 393 * @copied: (temp var) length so far, excluding current p_len. 394 * 395 * A fragment can hold a compound page, in which case per-page 396 * operations, notably kmap_atomic, must be called for each 397 * regular page. 398 */ 399 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 400 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 401 p_off = (f_off) & (PAGE_SIZE - 1), \ 402 p_len = skb_frag_must_loop(p) ? \ 403 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 404 copied = 0; \ 405 copied < f_len; \ 406 copied += p_len, p++, p_off = 0, \ 407 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 408 409 #define HAVE_HW_TIME_STAMP 410 411 /** 412 * struct skb_shared_hwtstamps - hardware time stamps 413 * @hwtstamp: hardware time stamp transformed into duration 414 * since arbitrary point in time 415 * 416 * Software time stamps generated by ktime_get_real() are stored in 417 * skb->tstamp. 418 * 419 * hwtstamps can only be compared against other hwtstamps from 420 * the same device. 421 * 422 * This structure is attached to packets as part of the 423 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 424 */ 425 struct skb_shared_hwtstamps { 426 ktime_t hwtstamp; 427 }; 428 429 /* Definitions for tx_flags in struct skb_shared_info */ 430 enum { 431 /* generate hardware time stamp */ 432 SKBTX_HW_TSTAMP = 1 << 0, 433 434 /* generate software time stamp when queueing packet to NIC */ 435 SKBTX_SW_TSTAMP = 1 << 1, 436 437 /* device driver is going to provide hardware time stamp */ 438 SKBTX_IN_PROGRESS = 1 << 2, 439 440 /* device driver supports TX zero-copy buffers */ 441 SKBTX_DEV_ZEROCOPY = 1 << 3, 442 443 /* generate wifi status information (where possible) */ 444 SKBTX_WIFI_STATUS = 1 << 4, 445 446 /* This indicates at least one fragment might be overwritten 447 * (as in vmsplice(), sendfile() ...) 448 * If we need to compute a TX checksum, we'll need to copy 449 * all frags to avoid possible bad checksum 450 */ 451 SKBTX_SHARED_FRAG = 1 << 5, 452 453 /* generate software time stamp when entering packet scheduling */ 454 SKBTX_SCHED_TSTAMP = 1 << 6, 455 }; 456 457 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 458 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 459 SKBTX_SCHED_TSTAMP) 460 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 461 462 /* 463 * The callback notifies userspace to release buffers when skb DMA is done in 464 * lower device, the skb last reference should be 0 when calling this. 465 * The zerocopy_success argument is true if zero copy transmit occurred, 466 * false on data copy or out of memory error caused by data copy attempt. 467 * The ctx field is used to track device context. 468 * The desc field is used to track userspace buffer index. 469 */ 470 struct ubuf_info { 471 void (*callback)(struct ubuf_info *, bool zerocopy_success); 472 union { 473 struct { 474 unsigned long desc; 475 void *ctx; 476 }; 477 struct { 478 u32 id; 479 u16 len; 480 u16 zerocopy:1; 481 u32 bytelen; 482 }; 483 }; 484 refcount_t refcnt; 485 486 struct mmpin { 487 struct user_struct *user; 488 unsigned int num_pg; 489 } mmp; 490 }; 491 492 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 493 494 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 495 void mm_unaccount_pinned_pages(struct mmpin *mmp); 496 497 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 498 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 499 struct ubuf_info *uarg); 500 501 static inline void sock_zerocopy_get(struct ubuf_info *uarg) 502 { 503 refcount_inc(&uarg->refcnt); 504 } 505 506 void sock_zerocopy_put(struct ubuf_info *uarg); 507 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 508 509 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 510 511 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 512 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 513 struct msghdr *msg, int len, 514 struct ubuf_info *uarg); 515 516 /* This data is invariant across clones and lives at 517 * the end of the header data, ie. at skb->end. 518 */ 519 struct skb_shared_info { 520 __u8 __unused; 521 __u8 meta_len; 522 __u8 nr_frags; 523 __u8 tx_flags; 524 unsigned short gso_size; 525 /* Warning: this field is not always filled in (UFO)! */ 526 unsigned short gso_segs; 527 struct sk_buff *frag_list; 528 struct skb_shared_hwtstamps hwtstamps; 529 unsigned int gso_type; 530 u32 tskey; 531 532 /* 533 * Warning : all fields before dataref are cleared in __alloc_skb() 534 */ 535 atomic_t dataref; 536 537 /* Intermediate layers must ensure that destructor_arg 538 * remains valid until skb destructor */ 539 void * destructor_arg; 540 541 /* must be last field, see pskb_expand_head() */ 542 skb_frag_t frags[MAX_SKB_FRAGS]; 543 }; 544 545 /* We divide dataref into two halves. The higher 16 bits hold references 546 * to the payload part of skb->data. The lower 16 bits hold references to 547 * the entire skb->data. A clone of a headerless skb holds the length of 548 * the header in skb->hdr_len. 549 * 550 * All users must obey the rule that the skb->data reference count must be 551 * greater than or equal to the payload reference count. 552 * 553 * Holding a reference to the payload part means that the user does not 554 * care about modifications to the header part of skb->data. 555 */ 556 #define SKB_DATAREF_SHIFT 16 557 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 558 559 560 enum { 561 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 562 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 563 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 564 }; 565 566 enum { 567 SKB_GSO_TCPV4 = 1 << 0, 568 569 /* This indicates the skb is from an untrusted source. */ 570 SKB_GSO_DODGY = 1 << 1, 571 572 /* This indicates the tcp segment has CWR set. */ 573 SKB_GSO_TCP_ECN = 1 << 2, 574 575 SKB_GSO_TCP_FIXEDID = 1 << 3, 576 577 SKB_GSO_TCPV6 = 1 << 4, 578 579 SKB_GSO_FCOE = 1 << 5, 580 581 SKB_GSO_GRE = 1 << 6, 582 583 SKB_GSO_GRE_CSUM = 1 << 7, 584 585 SKB_GSO_IPXIP4 = 1 << 8, 586 587 SKB_GSO_IPXIP6 = 1 << 9, 588 589 SKB_GSO_UDP_TUNNEL = 1 << 10, 590 591 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 592 593 SKB_GSO_PARTIAL = 1 << 12, 594 595 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 596 597 SKB_GSO_SCTP = 1 << 14, 598 599 SKB_GSO_ESP = 1 << 15, 600 601 SKB_GSO_UDP = 1 << 16, 602 603 SKB_GSO_UDP_L4 = 1 << 17, 604 }; 605 606 #if BITS_PER_LONG > 32 607 #define NET_SKBUFF_DATA_USES_OFFSET 1 608 #endif 609 610 #ifdef NET_SKBUFF_DATA_USES_OFFSET 611 typedef unsigned int sk_buff_data_t; 612 #else 613 typedef unsigned char *sk_buff_data_t; 614 #endif 615 616 /** 617 * struct sk_buff - socket buffer 618 * @next: Next buffer in list 619 * @prev: Previous buffer in list 620 * @tstamp: Time we arrived/left 621 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 622 * @sk: Socket we are owned by 623 * @dev: Device we arrived on/are leaving by 624 * @cb: Control buffer. Free for use by every layer. Put private vars here 625 * @_skb_refdst: destination entry (with norefcount bit) 626 * @sp: the security path, used for xfrm 627 * @len: Length of actual data 628 * @data_len: Data length 629 * @mac_len: Length of link layer header 630 * @hdr_len: writable header length of cloned skb 631 * @csum: Checksum (must include start/offset pair) 632 * @csum_start: Offset from skb->head where checksumming should start 633 * @csum_offset: Offset from csum_start where checksum should be stored 634 * @priority: Packet queueing priority 635 * @ignore_df: allow local fragmentation 636 * @cloned: Head may be cloned (check refcnt to be sure) 637 * @ip_summed: Driver fed us an IP checksum 638 * @nohdr: Payload reference only, must not modify header 639 * @pkt_type: Packet class 640 * @fclone: skbuff clone status 641 * @ipvs_property: skbuff is owned by ipvs 642 * @offload_fwd_mark: Packet was L2-forwarded in hardware 643 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 644 * @tc_skip_classify: do not classify packet. set by IFB device 645 * @tc_at_ingress: used within tc_classify to distinguish in/egress 646 * @tc_redirected: packet was redirected by a tc action 647 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 648 * @peeked: this packet has been seen already, so stats have been 649 * done for it, don't do them again 650 * @nf_trace: netfilter packet trace flag 651 * @protocol: Packet protocol from driver 652 * @destructor: Destruct function 653 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 654 * @_nfct: Associated connection, if any (with nfctinfo bits) 655 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 656 * @skb_iif: ifindex of device we arrived on 657 * @tc_index: Traffic control index 658 * @hash: the packet hash 659 * @queue_mapping: Queue mapping for multiqueue devices 660 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 661 * @active_extensions: active extensions (skb_ext_id types) 662 * @ndisc_nodetype: router type (from link layer) 663 * @ooo_okay: allow the mapping of a socket to a queue to be changed 664 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 665 * ports. 666 * @sw_hash: indicates hash was computed in software stack 667 * @wifi_acked_valid: wifi_acked was set 668 * @wifi_acked: whether frame was acked on wifi or not 669 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 670 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 671 * @dst_pending_confirm: need to confirm neighbour 672 * @decrypted: Decrypted SKB 673 * @napi_id: id of the NAPI struct this skb came from 674 * @secmark: security marking 675 * @mark: Generic packet mark 676 * @vlan_proto: vlan encapsulation protocol 677 * @vlan_tci: vlan tag control information 678 * @inner_protocol: Protocol (encapsulation) 679 * @inner_transport_header: Inner transport layer header (encapsulation) 680 * @inner_network_header: Network layer header (encapsulation) 681 * @inner_mac_header: Link layer header (encapsulation) 682 * @transport_header: Transport layer header 683 * @network_header: Network layer header 684 * @mac_header: Link layer header 685 * @tail: Tail pointer 686 * @end: End pointer 687 * @head: Head of buffer 688 * @data: Data head pointer 689 * @truesize: Buffer size 690 * @users: User count - see {datagram,tcp}.c 691 * @extensions: allocated extensions, valid if active_extensions is nonzero 692 */ 693 694 struct sk_buff { 695 union { 696 struct { 697 /* These two members must be first. */ 698 struct sk_buff *next; 699 struct sk_buff *prev; 700 701 union { 702 struct net_device *dev; 703 /* Some protocols might use this space to store information, 704 * while device pointer would be NULL. 705 * UDP receive path is one user. 706 */ 707 unsigned long dev_scratch; 708 }; 709 }; 710 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 711 struct list_head list; 712 }; 713 714 union { 715 struct sock *sk; 716 int ip_defrag_offset; 717 }; 718 719 union { 720 ktime_t tstamp; 721 u64 skb_mstamp_ns; /* earliest departure time */ 722 }; 723 /* 724 * This is the control buffer. It is free to use for every 725 * layer. Please put your private variables there. If you 726 * want to keep them across layers you have to do a skb_clone() 727 * first. This is owned by whoever has the skb queued ATM. 728 */ 729 char cb[48] __aligned(8); 730 731 union { 732 struct { 733 unsigned long _skb_refdst; 734 void (*destructor)(struct sk_buff *skb); 735 }; 736 struct list_head tcp_tsorted_anchor; 737 }; 738 739 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 740 unsigned long _nfct; 741 #endif 742 unsigned int len, 743 data_len; 744 __u16 mac_len, 745 hdr_len; 746 747 /* Following fields are _not_ copied in __copy_skb_header() 748 * Note that queue_mapping is here mostly to fill a hole. 749 */ 750 __u16 queue_mapping; 751 752 /* if you move cloned around you also must adapt those constants */ 753 #ifdef __BIG_ENDIAN_BITFIELD 754 #define CLONED_MASK (1 << 7) 755 #else 756 #define CLONED_MASK 1 757 #endif 758 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 759 760 __u8 __cloned_offset[0]; 761 __u8 cloned:1, 762 nohdr:1, 763 fclone:2, 764 peeked:1, 765 head_frag:1, 766 pfmemalloc:1; 767 #ifdef CONFIG_SKB_EXTENSIONS 768 __u8 active_extensions; 769 #endif 770 /* fields enclosed in headers_start/headers_end are copied 771 * using a single memcpy() in __copy_skb_header() 772 */ 773 /* private: */ 774 __u32 headers_start[0]; 775 /* public: */ 776 777 /* if you move pkt_type around you also must adapt those constants */ 778 #ifdef __BIG_ENDIAN_BITFIELD 779 #define PKT_TYPE_MAX (7 << 5) 780 #else 781 #define PKT_TYPE_MAX 7 782 #endif 783 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 784 785 __u8 __pkt_type_offset[0]; 786 __u8 pkt_type:3; 787 __u8 ignore_df:1; 788 __u8 nf_trace:1; 789 __u8 ip_summed:2; 790 __u8 ooo_okay:1; 791 792 __u8 l4_hash:1; 793 __u8 sw_hash:1; 794 __u8 wifi_acked_valid:1; 795 __u8 wifi_acked:1; 796 __u8 no_fcs:1; 797 /* Indicates the inner headers are valid in the skbuff. */ 798 __u8 encapsulation:1; 799 __u8 encap_hdr_csum:1; 800 __u8 csum_valid:1; 801 802 #ifdef __BIG_ENDIAN_BITFIELD 803 #define PKT_VLAN_PRESENT_BIT 7 804 #else 805 #define PKT_VLAN_PRESENT_BIT 0 806 #endif 807 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset) 808 __u8 __pkt_vlan_present_offset[0]; 809 __u8 vlan_present:1; 810 __u8 csum_complete_sw:1; 811 __u8 csum_level:2; 812 __u8 csum_not_inet:1; 813 __u8 dst_pending_confirm:1; 814 #ifdef CONFIG_IPV6_NDISC_NODETYPE 815 __u8 ndisc_nodetype:2; 816 #endif 817 818 __u8 ipvs_property:1; 819 __u8 inner_protocol_type:1; 820 __u8 remcsum_offload:1; 821 #ifdef CONFIG_NET_SWITCHDEV 822 __u8 offload_fwd_mark:1; 823 __u8 offload_l3_fwd_mark:1; 824 #endif 825 #ifdef CONFIG_NET_CLS_ACT 826 __u8 tc_skip_classify:1; 827 __u8 tc_at_ingress:1; 828 __u8 tc_redirected:1; 829 __u8 tc_from_ingress:1; 830 #endif 831 #ifdef CONFIG_TLS_DEVICE 832 __u8 decrypted:1; 833 #endif 834 835 #ifdef CONFIG_NET_SCHED 836 __u16 tc_index; /* traffic control index */ 837 #endif 838 839 union { 840 __wsum csum; 841 struct { 842 __u16 csum_start; 843 __u16 csum_offset; 844 }; 845 }; 846 __u32 priority; 847 int skb_iif; 848 __u32 hash; 849 __be16 vlan_proto; 850 __u16 vlan_tci; 851 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 852 union { 853 unsigned int napi_id; 854 unsigned int sender_cpu; 855 }; 856 #endif 857 #ifdef CONFIG_NETWORK_SECMARK 858 __u32 secmark; 859 #endif 860 861 union { 862 __u32 mark; 863 __u32 reserved_tailroom; 864 }; 865 866 union { 867 __be16 inner_protocol; 868 __u8 inner_ipproto; 869 }; 870 871 __u16 inner_transport_header; 872 __u16 inner_network_header; 873 __u16 inner_mac_header; 874 875 __be16 protocol; 876 __u16 transport_header; 877 __u16 network_header; 878 __u16 mac_header; 879 880 /* private: */ 881 __u32 headers_end[0]; 882 /* public: */ 883 884 /* These elements must be at the end, see alloc_skb() for details. */ 885 sk_buff_data_t tail; 886 sk_buff_data_t end; 887 unsigned char *head, 888 *data; 889 unsigned int truesize; 890 refcount_t users; 891 892 #ifdef CONFIG_SKB_EXTENSIONS 893 /* only useable after checking ->active_extensions != 0 */ 894 struct skb_ext *extensions; 895 #endif 896 }; 897 898 #ifdef __KERNEL__ 899 /* 900 * Handling routines are only of interest to the kernel 901 */ 902 903 #define SKB_ALLOC_FCLONE 0x01 904 #define SKB_ALLOC_RX 0x02 905 #define SKB_ALLOC_NAPI 0x04 906 907 /** 908 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 909 * @skb: buffer 910 */ 911 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 912 { 913 return unlikely(skb->pfmemalloc); 914 } 915 916 /* 917 * skb might have a dst pointer attached, refcounted or not. 918 * _skb_refdst low order bit is set if refcount was _not_ taken 919 */ 920 #define SKB_DST_NOREF 1UL 921 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 922 923 #define SKB_NFCT_PTRMASK ~(7UL) 924 /** 925 * skb_dst - returns skb dst_entry 926 * @skb: buffer 927 * 928 * Returns skb dst_entry, regardless of reference taken or not. 929 */ 930 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 931 { 932 /* If refdst was not refcounted, check we still are in a 933 * rcu_read_lock section 934 */ 935 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 936 !rcu_read_lock_held() && 937 !rcu_read_lock_bh_held()); 938 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 939 } 940 941 /** 942 * skb_dst_set - sets skb dst 943 * @skb: buffer 944 * @dst: dst entry 945 * 946 * Sets skb dst, assuming a reference was taken on dst and should 947 * be released by skb_dst_drop() 948 */ 949 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 950 { 951 skb->_skb_refdst = (unsigned long)dst; 952 } 953 954 /** 955 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 956 * @skb: buffer 957 * @dst: dst entry 958 * 959 * Sets skb dst, assuming a reference was not taken on dst. 960 * If dst entry is cached, we do not take reference and dst_release 961 * will be avoided by refdst_drop. If dst entry is not cached, we take 962 * reference, so that last dst_release can destroy the dst immediately. 963 */ 964 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 965 { 966 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 967 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 968 } 969 970 /** 971 * skb_dst_is_noref - Test if skb dst isn't refcounted 972 * @skb: buffer 973 */ 974 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 975 { 976 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 977 } 978 979 /** 980 * skb_rtable - Returns the skb &rtable 981 * @skb: buffer 982 */ 983 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 984 { 985 return (struct rtable *)skb_dst(skb); 986 } 987 988 /* For mangling skb->pkt_type from user space side from applications 989 * such as nft, tc, etc, we only allow a conservative subset of 990 * possible pkt_types to be set. 991 */ 992 static inline bool skb_pkt_type_ok(u32 ptype) 993 { 994 return ptype <= PACKET_OTHERHOST; 995 } 996 997 /** 998 * skb_napi_id - Returns the skb's NAPI id 999 * @skb: buffer 1000 */ 1001 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1002 { 1003 #ifdef CONFIG_NET_RX_BUSY_POLL 1004 return skb->napi_id; 1005 #else 1006 return 0; 1007 #endif 1008 } 1009 1010 /** 1011 * skb_unref - decrement the skb's reference count 1012 * @skb: buffer 1013 * 1014 * Returns true if we can free the skb. 1015 */ 1016 static inline bool skb_unref(struct sk_buff *skb) 1017 { 1018 if (unlikely(!skb)) 1019 return false; 1020 if (likely(refcount_read(&skb->users) == 1)) 1021 smp_rmb(); 1022 else if (likely(!refcount_dec_and_test(&skb->users))) 1023 return false; 1024 1025 return true; 1026 } 1027 1028 void skb_release_head_state(struct sk_buff *skb); 1029 void kfree_skb(struct sk_buff *skb); 1030 void kfree_skb_list(struct sk_buff *segs); 1031 void skb_tx_error(struct sk_buff *skb); 1032 void consume_skb(struct sk_buff *skb); 1033 void __consume_stateless_skb(struct sk_buff *skb); 1034 void __kfree_skb(struct sk_buff *skb); 1035 extern struct kmem_cache *skbuff_head_cache; 1036 1037 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1038 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1039 bool *fragstolen, int *delta_truesize); 1040 1041 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1042 int node); 1043 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1044 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1045 1046 /** 1047 * alloc_skb - allocate a network buffer 1048 * @size: size to allocate 1049 * @priority: allocation mask 1050 * 1051 * This function is a convenient wrapper around __alloc_skb(). 1052 */ 1053 static inline struct sk_buff *alloc_skb(unsigned int size, 1054 gfp_t priority) 1055 { 1056 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1057 } 1058 1059 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1060 unsigned long data_len, 1061 int max_page_order, 1062 int *errcode, 1063 gfp_t gfp_mask); 1064 1065 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1066 struct sk_buff_fclones { 1067 struct sk_buff skb1; 1068 1069 struct sk_buff skb2; 1070 1071 refcount_t fclone_ref; 1072 }; 1073 1074 /** 1075 * skb_fclone_busy - check if fclone is busy 1076 * @sk: socket 1077 * @skb: buffer 1078 * 1079 * Returns true if skb is a fast clone, and its clone is not freed. 1080 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1081 * so we also check that this didnt happen. 1082 */ 1083 static inline bool skb_fclone_busy(const struct sock *sk, 1084 const struct sk_buff *skb) 1085 { 1086 const struct sk_buff_fclones *fclones; 1087 1088 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1089 1090 return skb->fclone == SKB_FCLONE_ORIG && 1091 refcount_read(&fclones->fclone_ref) > 1 && 1092 fclones->skb2.sk == sk; 1093 } 1094 1095 /** 1096 * alloc_skb_fclone - allocate a network buffer from fclone cache 1097 * @size: size to allocate 1098 * @priority: allocation mask 1099 * 1100 * This function is a convenient wrapper around __alloc_skb(). 1101 */ 1102 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1103 gfp_t priority) 1104 { 1105 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1106 } 1107 1108 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1109 void skb_headers_offset_update(struct sk_buff *skb, int off); 1110 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1111 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1112 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1113 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1114 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1115 gfp_t gfp_mask, bool fclone); 1116 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1117 gfp_t gfp_mask) 1118 { 1119 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1120 } 1121 1122 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1123 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1124 unsigned int headroom); 1125 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1126 int newtailroom, gfp_t priority); 1127 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1128 int offset, int len); 1129 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1130 int offset, int len); 1131 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1132 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1133 1134 /** 1135 * skb_pad - zero pad the tail of an skb 1136 * @skb: buffer to pad 1137 * @pad: space to pad 1138 * 1139 * Ensure that a buffer is followed by a padding area that is zero 1140 * filled. Used by network drivers which may DMA or transfer data 1141 * beyond the buffer end onto the wire. 1142 * 1143 * May return error in out of memory cases. The skb is freed on error. 1144 */ 1145 static inline int skb_pad(struct sk_buff *skb, int pad) 1146 { 1147 return __skb_pad(skb, pad, true); 1148 } 1149 #define dev_kfree_skb(a) consume_skb(a) 1150 1151 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1152 int offset, size_t size); 1153 1154 struct skb_seq_state { 1155 __u32 lower_offset; 1156 __u32 upper_offset; 1157 __u32 frag_idx; 1158 __u32 stepped_offset; 1159 struct sk_buff *root_skb; 1160 struct sk_buff *cur_skb; 1161 __u8 *frag_data; 1162 }; 1163 1164 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1165 unsigned int to, struct skb_seq_state *st); 1166 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1167 struct skb_seq_state *st); 1168 void skb_abort_seq_read(struct skb_seq_state *st); 1169 1170 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1171 unsigned int to, struct ts_config *config); 1172 1173 /* 1174 * Packet hash types specify the type of hash in skb_set_hash. 1175 * 1176 * Hash types refer to the protocol layer addresses which are used to 1177 * construct a packet's hash. The hashes are used to differentiate or identify 1178 * flows of the protocol layer for the hash type. Hash types are either 1179 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1180 * 1181 * Properties of hashes: 1182 * 1183 * 1) Two packets in different flows have different hash values 1184 * 2) Two packets in the same flow should have the same hash value 1185 * 1186 * A hash at a higher layer is considered to be more specific. A driver should 1187 * set the most specific hash possible. 1188 * 1189 * A driver cannot indicate a more specific hash than the layer at which a hash 1190 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1191 * 1192 * A driver may indicate a hash level which is less specific than the 1193 * actual layer the hash was computed on. For instance, a hash computed 1194 * at L4 may be considered an L3 hash. This should only be done if the 1195 * driver can't unambiguously determine that the HW computed the hash at 1196 * the higher layer. Note that the "should" in the second property above 1197 * permits this. 1198 */ 1199 enum pkt_hash_types { 1200 PKT_HASH_TYPE_NONE, /* Undefined type */ 1201 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1202 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1203 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1204 }; 1205 1206 static inline void skb_clear_hash(struct sk_buff *skb) 1207 { 1208 skb->hash = 0; 1209 skb->sw_hash = 0; 1210 skb->l4_hash = 0; 1211 } 1212 1213 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1214 { 1215 if (!skb->l4_hash) 1216 skb_clear_hash(skb); 1217 } 1218 1219 static inline void 1220 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1221 { 1222 skb->l4_hash = is_l4; 1223 skb->sw_hash = is_sw; 1224 skb->hash = hash; 1225 } 1226 1227 static inline void 1228 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1229 { 1230 /* Used by drivers to set hash from HW */ 1231 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1232 } 1233 1234 static inline void 1235 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1236 { 1237 __skb_set_hash(skb, hash, true, is_l4); 1238 } 1239 1240 void __skb_get_hash(struct sk_buff *skb); 1241 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1242 u32 skb_get_poff(const struct sk_buff *skb); 1243 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1244 const struct flow_keys_basic *keys, int hlen); 1245 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1246 void *data, int hlen_proto); 1247 1248 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1249 int thoff, u8 ip_proto) 1250 { 1251 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1252 } 1253 1254 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1255 const struct flow_dissector_key *key, 1256 unsigned int key_count); 1257 1258 #ifdef CONFIG_NET 1259 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1260 struct bpf_prog *prog); 1261 1262 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr); 1263 #else 1264 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1265 struct bpf_prog *prog) 1266 { 1267 return -EOPNOTSUPP; 1268 } 1269 1270 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr) 1271 { 1272 return -EOPNOTSUPP; 1273 } 1274 #endif 1275 1276 struct bpf_flow_keys; 1277 bool __skb_flow_bpf_dissect(struct bpf_prog *prog, 1278 const struct sk_buff *skb, 1279 struct flow_dissector *flow_dissector, 1280 struct bpf_flow_keys *flow_keys); 1281 bool __skb_flow_dissect(const struct sk_buff *skb, 1282 struct flow_dissector *flow_dissector, 1283 void *target_container, 1284 void *data, __be16 proto, int nhoff, int hlen, 1285 unsigned int flags); 1286 1287 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1288 struct flow_dissector *flow_dissector, 1289 void *target_container, unsigned int flags) 1290 { 1291 return __skb_flow_dissect(skb, flow_dissector, target_container, 1292 NULL, 0, 0, 0, flags); 1293 } 1294 1295 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1296 struct flow_keys *flow, 1297 unsigned int flags) 1298 { 1299 memset(flow, 0, sizeof(*flow)); 1300 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1301 NULL, 0, 0, 0, flags); 1302 } 1303 1304 static inline bool 1305 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb, 1306 struct flow_keys_basic *flow, void *data, 1307 __be16 proto, int nhoff, int hlen, 1308 unsigned int flags) 1309 { 1310 memset(flow, 0, sizeof(*flow)); 1311 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow, 1312 data, proto, nhoff, hlen, flags); 1313 } 1314 1315 void 1316 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1317 struct flow_dissector *flow_dissector, 1318 void *target_container); 1319 1320 static inline __u32 skb_get_hash(struct sk_buff *skb) 1321 { 1322 if (!skb->l4_hash && !skb->sw_hash) 1323 __skb_get_hash(skb); 1324 1325 return skb->hash; 1326 } 1327 1328 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1329 { 1330 if (!skb->l4_hash && !skb->sw_hash) { 1331 struct flow_keys keys; 1332 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1333 1334 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1335 } 1336 1337 return skb->hash; 1338 } 1339 1340 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1341 1342 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1343 { 1344 return skb->hash; 1345 } 1346 1347 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1348 { 1349 to->hash = from->hash; 1350 to->sw_hash = from->sw_hash; 1351 to->l4_hash = from->l4_hash; 1352 }; 1353 1354 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1355 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1356 { 1357 return skb->head + skb->end; 1358 } 1359 1360 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1361 { 1362 return skb->end; 1363 } 1364 #else 1365 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1366 { 1367 return skb->end; 1368 } 1369 1370 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1371 { 1372 return skb->end - skb->head; 1373 } 1374 #endif 1375 1376 /* Internal */ 1377 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1378 1379 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1380 { 1381 return &skb_shinfo(skb)->hwtstamps; 1382 } 1383 1384 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1385 { 1386 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1387 1388 return is_zcopy ? skb_uarg(skb) : NULL; 1389 } 1390 1391 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1392 bool *have_ref) 1393 { 1394 if (skb && uarg && !skb_zcopy(skb)) { 1395 if (unlikely(have_ref && *have_ref)) 1396 *have_ref = false; 1397 else 1398 sock_zerocopy_get(uarg); 1399 skb_shinfo(skb)->destructor_arg = uarg; 1400 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1401 } 1402 } 1403 1404 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1405 { 1406 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1407 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1408 } 1409 1410 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1411 { 1412 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1413 } 1414 1415 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1416 { 1417 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1418 } 1419 1420 /* Release a reference on a zerocopy structure */ 1421 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1422 { 1423 struct ubuf_info *uarg = skb_zcopy(skb); 1424 1425 if (uarg) { 1426 if (uarg->callback == sock_zerocopy_callback) { 1427 uarg->zerocopy = uarg->zerocopy && zerocopy; 1428 sock_zerocopy_put(uarg); 1429 } else if (!skb_zcopy_is_nouarg(skb)) { 1430 uarg->callback(uarg, zerocopy); 1431 } 1432 1433 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1434 } 1435 } 1436 1437 /* Abort a zerocopy operation and revert zckey on error in send syscall */ 1438 static inline void skb_zcopy_abort(struct sk_buff *skb) 1439 { 1440 struct ubuf_info *uarg = skb_zcopy(skb); 1441 1442 if (uarg) { 1443 sock_zerocopy_put_abort(uarg, false); 1444 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1445 } 1446 } 1447 1448 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1449 { 1450 skb->next = NULL; 1451 } 1452 1453 static inline void skb_list_del_init(struct sk_buff *skb) 1454 { 1455 __list_del_entry(&skb->list); 1456 skb_mark_not_on_list(skb); 1457 } 1458 1459 /** 1460 * skb_queue_empty - check if a queue is empty 1461 * @list: queue head 1462 * 1463 * Returns true if the queue is empty, false otherwise. 1464 */ 1465 static inline int skb_queue_empty(const struct sk_buff_head *list) 1466 { 1467 return list->next == (const struct sk_buff *) list; 1468 } 1469 1470 /** 1471 * skb_queue_is_last - check if skb is the last entry in the queue 1472 * @list: queue head 1473 * @skb: buffer 1474 * 1475 * Returns true if @skb is the last buffer on the list. 1476 */ 1477 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1478 const struct sk_buff *skb) 1479 { 1480 return skb->next == (const struct sk_buff *) list; 1481 } 1482 1483 /** 1484 * skb_queue_is_first - check if skb is the first entry in the queue 1485 * @list: queue head 1486 * @skb: buffer 1487 * 1488 * Returns true if @skb is the first buffer on the list. 1489 */ 1490 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1491 const struct sk_buff *skb) 1492 { 1493 return skb->prev == (const struct sk_buff *) list; 1494 } 1495 1496 /** 1497 * skb_queue_next - return the next packet in the queue 1498 * @list: queue head 1499 * @skb: current buffer 1500 * 1501 * Return the next packet in @list after @skb. It is only valid to 1502 * call this if skb_queue_is_last() evaluates to false. 1503 */ 1504 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1505 const struct sk_buff *skb) 1506 { 1507 /* This BUG_ON may seem severe, but if we just return then we 1508 * are going to dereference garbage. 1509 */ 1510 BUG_ON(skb_queue_is_last(list, skb)); 1511 return skb->next; 1512 } 1513 1514 /** 1515 * skb_queue_prev - return the prev packet in the queue 1516 * @list: queue head 1517 * @skb: current buffer 1518 * 1519 * Return the prev packet in @list before @skb. It is only valid to 1520 * call this if skb_queue_is_first() evaluates to false. 1521 */ 1522 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1523 const struct sk_buff *skb) 1524 { 1525 /* This BUG_ON may seem severe, but if we just return then we 1526 * are going to dereference garbage. 1527 */ 1528 BUG_ON(skb_queue_is_first(list, skb)); 1529 return skb->prev; 1530 } 1531 1532 /** 1533 * skb_get - reference buffer 1534 * @skb: buffer to reference 1535 * 1536 * Makes another reference to a socket buffer and returns a pointer 1537 * to the buffer. 1538 */ 1539 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1540 { 1541 refcount_inc(&skb->users); 1542 return skb; 1543 } 1544 1545 /* 1546 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1547 */ 1548 1549 /** 1550 * skb_cloned - is the buffer a clone 1551 * @skb: buffer to check 1552 * 1553 * Returns true if the buffer was generated with skb_clone() and is 1554 * one of multiple shared copies of the buffer. Cloned buffers are 1555 * shared data so must not be written to under normal circumstances. 1556 */ 1557 static inline int skb_cloned(const struct sk_buff *skb) 1558 { 1559 return skb->cloned && 1560 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1561 } 1562 1563 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1564 { 1565 might_sleep_if(gfpflags_allow_blocking(pri)); 1566 1567 if (skb_cloned(skb)) 1568 return pskb_expand_head(skb, 0, 0, pri); 1569 1570 return 0; 1571 } 1572 1573 /** 1574 * skb_header_cloned - is the header a clone 1575 * @skb: buffer to check 1576 * 1577 * Returns true if modifying the header part of the buffer requires 1578 * the data to be copied. 1579 */ 1580 static inline int skb_header_cloned(const struct sk_buff *skb) 1581 { 1582 int dataref; 1583 1584 if (!skb->cloned) 1585 return 0; 1586 1587 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1588 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1589 return dataref != 1; 1590 } 1591 1592 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1593 { 1594 might_sleep_if(gfpflags_allow_blocking(pri)); 1595 1596 if (skb_header_cloned(skb)) 1597 return pskb_expand_head(skb, 0, 0, pri); 1598 1599 return 0; 1600 } 1601 1602 /** 1603 * __skb_header_release - release reference to header 1604 * @skb: buffer to operate on 1605 */ 1606 static inline void __skb_header_release(struct sk_buff *skb) 1607 { 1608 skb->nohdr = 1; 1609 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1610 } 1611 1612 1613 /** 1614 * skb_shared - is the buffer shared 1615 * @skb: buffer to check 1616 * 1617 * Returns true if more than one person has a reference to this 1618 * buffer. 1619 */ 1620 static inline int skb_shared(const struct sk_buff *skb) 1621 { 1622 return refcount_read(&skb->users) != 1; 1623 } 1624 1625 /** 1626 * skb_share_check - check if buffer is shared and if so clone it 1627 * @skb: buffer to check 1628 * @pri: priority for memory allocation 1629 * 1630 * If the buffer is shared the buffer is cloned and the old copy 1631 * drops a reference. A new clone with a single reference is returned. 1632 * If the buffer is not shared the original buffer is returned. When 1633 * being called from interrupt status or with spinlocks held pri must 1634 * be GFP_ATOMIC. 1635 * 1636 * NULL is returned on a memory allocation failure. 1637 */ 1638 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1639 { 1640 might_sleep_if(gfpflags_allow_blocking(pri)); 1641 if (skb_shared(skb)) { 1642 struct sk_buff *nskb = skb_clone(skb, pri); 1643 1644 if (likely(nskb)) 1645 consume_skb(skb); 1646 else 1647 kfree_skb(skb); 1648 skb = nskb; 1649 } 1650 return skb; 1651 } 1652 1653 /* 1654 * Copy shared buffers into a new sk_buff. We effectively do COW on 1655 * packets to handle cases where we have a local reader and forward 1656 * and a couple of other messy ones. The normal one is tcpdumping 1657 * a packet thats being forwarded. 1658 */ 1659 1660 /** 1661 * skb_unshare - make a copy of a shared buffer 1662 * @skb: buffer to check 1663 * @pri: priority for memory allocation 1664 * 1665 * If the socket buffer is a clone then this function creates a new 1666 * copy of the data, drops a reference count on the old copy and returns 1667 * the new copy with the reference count at 1. If the buffer is not a clone 1668 * the original buffer is returned. When called with a spinlock held or 1669 * from interrupt state @pri must be %GFP_ATOMIC 1670 * 1671 * %NULL is returned on a memory allocation failure. 1672 */ 1673 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1674 gfp_t pri) 1675 { 1676 might_sleep_if(gfpflags_allow_blocking(pri)); 1677 if (skb_cloned(skb)) { 1678 struct sk_buff *nskb = skb_copy(skb, pri); 1679 1680 /* Free our shared copy */ 1681 if (likely(nskb)) 1682 consume_skb(skb); 1683 else 1684 kfree_skb(skb); 1685 skb = nskb; 1686 } 1687 return skb; 1688 } 1689 1690 /** 1691 * skb_peek - peek at the head of an &sk_buff_head 1692 * @list_: list to peek at 1693 * 1694 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1695 * be careful with this one. A peek leaves the buffer on the 1696 * list and someone else may run off with it. You must hold 1697 * the appropriate locks or have a private queue to do this. 1698 * 1699 * Returns %NULL for an empty list or a pointer to the head element. 1700 * The reference count is not incremented and the reference is therefore 1701 * volatile. Use with caution. 1702 */ 1703 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1704 { 1705 struct sk_buff *skb = list_->next; 1706 1707 if (skb == (struct sk_buff *)list_) 1708 skb = NULL; 1709 return skb; 1710 } 1711 1712 /** 1713 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1714 * @list_: list to peek at 1715 * 1716 * Like skb_peek(), but the caller knows that the list is not empty. 1717 */ 1718 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1719 { 1720 return list_->next; 1721 } 1722 1723 /** 1724 * skb_peek_next - peek skb following the given one from a queue 1725 * @skb: skb to start from 1726 * @list_: list to peek at 1727 * 1728 * Returns %NULL when the end of the list is met or a pointer to the 1729 * next element. The reference count is not incremented and the 1730 * reference is therefore volatile. Use with caution. 1731 */ 1732 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1733 const struct sk_buff_head *list_) 1734 { 1735 struct sk_buff *next = skb->next; 1736 1737 if (next == (struct sk_buff *)list_) 1738 next = NULL; 1739 return next; 1740 } 1741 1742 /** 1743 * skb_peek_tail - peek at the tail of an &sk_buff_head 1744 * @list_: list to peek at 1745 * 1746 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1747 * be careful with this one. A peek leaves the buffer on the 1748 * list and someone else may run off with it. You must hold 1749 * the appropriate locks or have a private queue to do this. 1750 * 1751 * Returns %NULL for an empty list or a pointer to the tail element. 1752 * The reference count is not incremented and the reference is therefore 1753 * volatile. Use with caution. 1754 */ 1755 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1756 { 1757 struct sk_buff *skb = list_->prev; 1758 1759 if (skb == (struct sk_buff *)list_) 1760 skb = NULL; 1761 return skb; 1762 1763 } 1764 1765 /** 1766 * skb_queue_len - get queue length 1767 * @list_: list to measure 1768 * 1769 * Return the length of an &sk_buff queue. 1770 */ 1771 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1772 { 1773 return list_->qlen; 1774 } 1775 1776 /** 1777 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1778 * @list: queue to initialize 1779 * 1780 * This initializes only the list and queue length aspects of 1781 * an sk_buff_head object. This allows to initialize the list 1782 * aspects of an sk_buff_head without reinitializing things like 1783 * the spinlock. It can also be used for on-stack sk_buff_head 1784 * objects where the spinlock is known to not be used. 1785 */ 1786 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1787 { 1788 list->prev = list->next = (struct sk_buff *)list; 1789 list->qlen = 0; 1790 } 1791 1792 /* 1793 * This function creates a split out lock class for each invocation; 1794 * this is needed for now since a whole lot of users of the skb-queue 1795 * infrastructure in drivers have different locking usage (in hardirq) 1796 * than the networking core (in softirq only). In the long run either the 1797 * network layer or drivers should need annotation to consolidate the 1798 * main types of usage into 3 classes. 1799 */ 1800 static inline void skb_queue_head_init(struct sk_buff_head *list) 1801 { 1802 spin_lock_init(&list->lock); 1803 __skb_queue_head_init(list); 1804 } 1805 1806 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1807 struct lock_class_key *class) 1808 { 1809 skb_queue_head_init(list); 1810 lockdep_set_class(&list->lock, class); 1811 } 1812 1813 /* 1814 * Insert an sk_buff on a list. 1815 * 1816 * The "__skb_xxxx()" functions are the non-atomic ones that 1817 * can only be called with interrupts disabled. 1818 */ 1819 static inline void __skb_insert(struct sk_buff *newsk, 1820 struct sk_buff *prev, struct sk_buff *next, 1821 struct sk_buff_head *list) 1822 { 1823 newsk->next = next; 1824 newsk->prev = prev; 1825 next->prev = prev->next = newsk; 1826 list->qlen++; 1827 } 1828 1829 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1830 struct sk_buff *prev, 1831 struct sk_buff *next) 1832 { 1833 struct sk_buff *first = list->next; 1834 struct sk_buff *last = list->prev; 1835 1836 first->prev = prev; 1837 prev->next = first; 1838 1839 last->next = next; 1840 next->prev = last; 1841 } 1842 1843 /** 1844 * skb_queue_splice - join two skb lists, this is designed for stacks 1845 * @list: the new list to add 1846 * @head: the place to add it in the first list 1847 */ 1848 static inline void skb_queue_splice(const struct sk_buff_head *list, 1849 struct sk_buff_head *head) 1850 { 1851 if (!skb_queue_empty(list)) { 1852 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1853 head->qlen += list->qlen; 1854 } 1855 } 1856 1857 /** 1858 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1859 * @list: the new list to add 1860 * @head: the place to add it in the first list 1861 * 1862 * The list at @list is reinitialised 1863 */ 1864 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1865 struct sk_buff_head *head) 1866 { 1867 if (!skb_queue_empty(list)) { 1868 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1869 head->qlen += list->qlen; 1870 __skb_queue_head_init(list); 1871 } 1872 } 1873 1874 /** 1875 * skb_queue_splice_tail - join two skb lists, each list being a queue 1876 * @list: the new list to add 1877 * @head: the place to add it in the first list 1878 */ 1879 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1880 struct sk_buff_head *head) 1881 { 1882 if (!skb_queue_empty(list)) { 1883 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1884 head->qlen += list->qlen; 1885 } 1886 } 1887 1888 /** 1889 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1890 * @list: the new list to add 1891 * @head: the place to add it in the first list 1892 * 1893 * Each of the lists is a queue. 1894 * The list at @list is reinitialised 1895 */ 1896 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1897 struct sk_buff_head *head) 1898 { 1899 if (!skb_queue_empty(list)) { 1900 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1901 head->qlen += list->qlen; 1902 __skb_queue_head_init(list); 1903 } 1904 } 1905 1906 /** 1907 * __skb_queue_after - queue a buffer at the list head 1908 * @list: list to use 1909 * @prev: place after this buffer 1910 * @newsk: buffer to queue 1911 * 1912 * Queue a buffer int the middle of a list. This function takes no locks 1913 * and you must therefore hold required locks before calling it. 1914 * 1915 * A buffer cannot be placed on two lists at the same time. 1916 */ 1917 static inline void __skb_queue_after(struct sk_buff_head *list, 1918 struct sk_buff *prev, 1919 struct sk_buff *newsk) 1920 { 1921 __skb_insert(newsk, prev, prev->next, list); 1922 } 1923 1924 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1925 struct sk_buff_head *list); 1926 1927 static inline void __skb_queue_before(struct sk_buff_head *list, 1928 struct sk_buff *next, 1929 struct sk_buff *newsk) 1930 { 1931 __skb_insert(newsk, next->prev, next, list); 1932 } 1933 1934 /** 1935 * __skb_queue_head - queue a buffer at the list head 1936 * @list: list to use 1937 * @newsk: buffer to queue 1938 * 1939 * Queue a buffer at the start of a list. This function takes no locks 1940 * and you must therefore hold required locks before calling it. 1941 * 1942 * A buffer cannot be placed on two lists at the same time. 1943 */ 1944 static inline void __skb_queue_head(struct sk_buff_head *list, 1945 struct sk_buff *newsk) 1946 { 1947 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1948 } 1949 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1950 1951 /** 1952 * __skb_queue_tail - queue a buffer at the list tail 1953 * @list: list to use 1954 * @newsk: buffer to queue 1955 * 1956 * Queue a buffer at the end of a list. This function takes no locks 1957 * and you must therefore hold required locks before calling it. 1958 * 1959 * A buffer cannot be placed on two lists at the same time. 1960 */ 1961 static inline void __skb_queue_tail(struct sk_buff_head *list, 1962 struct sk_buff *newsk) 1963 { 1964 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1965 } 1966 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1967 1968 /* 1969 * remove sk_buff from list. _Must_ be called atomically, and with 1970 * the list known.. 1971 */ 1972 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1973 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1974 { 1975 struct sk_buff *next, *prev; 1976 1977 list->qlen--; 1978 next = skb->next; 1979 prev = skb->prev; 1980 skb->next = skb->prev = NULL; 1981 next->prev = prev; 1982 prev->next = next; 1983 } 1984 1985 /** 1986 * __skb_dequeue - remove from the head of the queue 1987 * @list: list to dequeue from 1988 * 1989 * Remove the head of the list. This function does not take any locks 1990 * so must be used with appropriate locks held only. The head item is 1991 * returned or %NULL if the list is empty. 1992 */ 1993 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1994 { 1995 struct sk_buff *skb = skb_peek(list); 1996 if (skb) 1997 __skb_unlink(skb, list); 1998 return skb; 1999 } 2000 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2001 2002 /** 2003 * __skb_dequeue_tail - remove from the tail of the queue 2004 * @list: list to dequeue from 2005 * 2006 * Remove the tail of the list. This function does not take any locks 2007 * so must be used with appropriate locks held only. The tail item is 2008 * returned or %NULL if the list is empty. 2009 */ 2010 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2011 { 2012 struct sk_buff *skb = skb_peek_tail(list); 2013 if (skb) 2014 __skb_unlink(skb, list); 2015 return skb; 2016 } 2017 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2018 2019 2020 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2021 { 2022 return skb->data_len; 2023 } 2024 2025 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2026 { 2027 return skb->len - skb->data_len; 2028 } 2029 2030 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2031 { 2032 unsigned int i, len = 0; 2033 2034 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2035 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2036 return len; 2037 } 2038 2039 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2040 { 2041 return skb_headlen(skb) + __skb_pagelen(skb); 2042 } 2043 2044 /** 2045 * __skb_fill_page_desc - initialise a paged fragment in an skb 2046 * @skb: buffer containing fragment to be initialised 2047 * @i: paged fragment index to initialise 2048 * @page: the page to use for this fragment 2049 * @off: the offset to the data with @page 2050 * @size: the length of the data 2051 * 2052 * Initialises the @i'th fragment of @skb to point to &size bytes at 2053 * offset @off within @page. 2054 * 2055 * Does not take any additional reference on the fragment. 2056 */ 2057 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2058 struct page *page, int off, int size) 2059 { 2060 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2061 2062 /* 2063 * Propagate page pfmemalloc to the skb if we can. The problem is 2064 * that not all callers have unique ownership of the page but rely 2065 * on page_is_pfmemalloc doing the right thing(tm). 2066 */ 2067 frag->page.p = page; 2068 frag->page_offset = off; 2069 skb_frag_size_set(frag, size); 2070 2071 page = compound_head(page); 2072 if (page_is_pfmemalloc(page)) 2073 skb->pfmemalloc = true; 2074 } 2075 2076 /** 2077 * skb_fill_page_desc - initialise a paged fragment in an skb 2078 * @skb: buffer containing fragment to be initialised 2079 * @i: paged fragment index to initialise 2080 * @page: the page to use for this fragment 2081 * @off: the offset to the data with @page 2082 * @size: the length of the data 2083 * 2084 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2085 * @skb to point to @size bytes at offset @off within @page. In 2086 * addition updates @skb such that @i is the last fragment. 2087 * 2088 * Does not take any additional reference on the fragment. 2089 */ 2090 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2091 struct page *page, int off, int size) 2092 { 2093 __skb_fill_page_desc(skb, i, page, off, size); 2094 skb_shinfo(skb)->nr_frags = i + 1; 2095 } 2096 2097 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2098 int size, unsigned int truesize); 2099 2100 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2101 unsigned int truesize); 2102 2103 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2104 2105 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2106 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2107 { 2108 return skb->head + skb->tail; 2109 } 2110 2111 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2112 { 2113 skb->tail = skb->data - skb->head; 2114 } 2115 2116 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2117 { 2118 skb_reset_tail_pointer(skb); 2119 skb->tail += offset; 2120 } 2121 2122 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2123 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2124 { 2125 return skb->tail; 2126 } 2127 2128 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2129 { 2130 skb->tail = skb->data; 2131 } 2132 2133 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2134 { 2135 skb->tail = skb->data + offset; 2136 } 2137 2138 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2139 2140 /* 2141 * Add data to an sk_buff 2142 */ 2143 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2144 void *skb_put(struct sk_buff *skb, unsigned int len); 2145 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2146 { 2147 void *tmp = skb_tail_pointer(skb); 2148 SKB_LINEAR_ASSERT(skb); 2149 skb->tail += len; 2150 skb->len += len; 2151 return tmp; 2152 } 2153 2154 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2155 { 2156 void *tmp = __skb_put(skb, len); 2157 2158 memset(tmp, 0, len); 2159 return tmp; 2160 } 2161 2162 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2163 unsigned int len) 2164 { 2165 void *tmp = __skb_put(skb, len); 2166 2167 memcpy(tmp, data, len); 2168 return tmp; 2169 } 2170 2171 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2172 { 2173 *(u8 *)__skb_put(skb, 1) = val; 2174 } 2175 2176 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2177 { 2178 void *tmp = skb_put(skb, len); 2179 2180 memset(tmp, 0, len); 2181 2182 return tmp; 2183 } 2184 2185 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2186 unsigned int len) 2187 { 2188 void *tmp = skb_put(skb, len); 2189 2190 memcpy(tmp, data, len); 2191 2192 return tmp; 2193 } 2194 2195 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2196 { 2197 *(u8 *)skb_put(skb, 1) = val; 2198 } 2199 2200 void *skb_push(struct sk_buff *skb, unsigned int len); 2201 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2202 { 2203 skb->data -= len; 2204 skb->len += len; 2205 return skb->data; 2206 } 2207 2208 void *skb_pull(struct sk_buff *skb, unsigned int len); 2209 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2210 { 2211 skb->len -= len; 2212 BUG_ON(skb->len < skb->data_len); 2213 return skb->data += len; 2214 } 2215 2216 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2217 { 2218 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2219 } 2220 2221 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2222 2223 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2224 { 2225 if (len > skb_headlen(skb) && 2226 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2227 return NULL; 2228 skb->len -= len; 2229 return skb->data += len; 2230 } 2231 2232 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2233 { 2234 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2235 } 2236 2237 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 2238 { 2239 if (likely(len <= skb_headlen(skb))) 2240 return 1; 2241 if (unlikely(len > skb->len)) 2242 return 0; 2243 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2244 } 2245 2246 void skb_condense(struct sk_buff *skb); 2247 2248 /** 2249 * skb_headroom - bytes at buffer head 2250 * @skb: buffer to check 2251 * 2252 * Return the number of bytes of free space at the head of an &sk_buff. 2253 */ 2254 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2255 { 2256 return skb->data - skb->head; 2257 } 2258 2259 /** 2260 * skb_tailroom - bytes at buffer end 2261 * @skb: buffer to check 2262 * 2263 * Return the number of bytes of free space at the tail of an sk_buff 2264 */ 2265 static inline int skb_tailroom(const struct sk_buff *skb) 2266 { 2267 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2268 } 2269 2270 /** 2271 * skb_availroom - bytes at buffer end 2272 * @skb: buffer to check 2273 * 2274 * Return the number of bytes of free space at the tail of an sk_buff 2275 * allocated by sk_stream_alloc() 2276 */ 2277 static inline int skb_availroom(const struct sk_buff *skb) 2278 { 2279 if (skb_is_nonlinear(skb)) 2280 return 0; 2281 2282 return skb->end - skb->tail - skb->reserved_tailroom; 2283 } 2284 2285 /** 2286 * skb_reserve - adjust headroom 2287 * @skb: buffer to alter 2288 * @len: bytes to move 2289 * 2290 * Increase the headroom of an empty &sk_buff by reducing the tail 2291 * room. This is only allowed for an empty buffer. 2292 */ 2293 static inline void skb_reserve(struct sk_buff *skb, int len) 2294 { 2295 skb->data += len; 2296 skb->tail += len; 2297 } 2298 2299 /** 2300 * skb_tailroom_reserve - adjust reserved_tailroom 2301 * @skb: buffer to alter 2302 * @mtu: maximum amount of headlen permitted 2303 * @needed_tailroom: minimum amount of reserved_tailroom 2304 * 2305 * Set reserved_tailroom so that headlen can be as large as possible but 2306 * not larger than mtu and tailroom cannot be smaller than 2307 * needed_tailroom. 2308 * The required headroom should already have been reserved before using 2309 * this function. 2310 */ 2311 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2312 unsigned int needed_tailroom) 2313 { 2314 SKB_LINEAR_ASSERT(skb); 2315 if (mtu < skb_tailroom(skb) - needed_tailroom) 2316 /* use at most mtu */ 2317 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2318 else 2319 /* use up to all available space */ 2320 skb->reserved_tailroom = needed_tailroom; 2321 } 2322 2323 #define ENCAP_TYPE_ETHER 0 2324 #define ENCAP_TYPE_IPPROTO 1 2325 2326 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2327 __be16 protocol) 2328 { 2329 skb->inner_protocol = protocol; 2330 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2331 } 2332 2333 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2334 __u8 ipproto) 2335 { 2336 skb->inner_ipproto = ipproto; 2337 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2338 } 2339 2340 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2341 { 2342 skb->inner_mac_header = skb->mac_header; 2343 skb->inner_network_header = skb->network_header; 2344 skb->inner_transport_header = skb->transport_header; 2345 } 2346 2347 static inline void skb_reset_mac_len(struct sk_buff *skb) 2348 { 2349 skb->mac_len = skb->network_header - skb->mac_header; 2350 } 2351 2352 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2353 *skb) 2354 { 2355 return skb->head + skb->inner_transport_header; 2356 } 2357 2358 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2359 { 2360 return skb_inner_transport_header(skb) - skb->data; 2361 } 2362 2363 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2364 { 2365 skb->inner_transport_header = skb->data - skb->head; 2366 } 2367 2368 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2369 const int offset) 2370 { 2371 skb_reset_inner_transport_header(skb); 2372 skb->inner_transport_header += offset; 2373 } 2374 2375 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2376 { 2377 return skb->head + skb->inner_network_header; 2378 } 2379 2380 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2381 { 2382 skb->inner_network_header = skb->data - skb->head; 2383 } 2384 2385 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2386 const int offset) 2387 { 2388 skb_reset_inner_network_header(skb); 2389 skb->inner_network_header += offset; 2390 } 2391 2392 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2393 { 2394 return skb->head + skb->inner_mac_header; 2395 } 2396 2397 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2398 { 2399 skb->inner_mac_header = skb->data - skb->head; 2400 } 2401 2402 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2403 const int offset) 2404 { 2405 skb_reset_inner_mac_header(skb); 2406 skb->inner_mac_header += offset; 2407 } 2408 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2409 { 2410 return skb->transport_header != (typeof(skb->transport_header))~0U; 2411 } 2412 2413 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2414 { 2415 return skb->head + skb->transport_header; 2416 } 2417 2418 static inline void skb_reset_transport_header(struct sk_buff *skb) 2419 { 2420 skb->transport_header = skb->data - skb->head; 2421 } 2422 2423 static inline void skb_set_transport_header(struct sk_buff *skb, 2424 const int offset) 2425 { 2426 skb_reset_transport_header(skb); 2427 skb->transport_header += offset; 2428 } 2429 2430 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2431 { 2432 return skb->head + skb->network_header; 2433 } 2434 2435 static inline void skb_reset_network_header(struct sk_buff *skb) 2436 { 2437 skb->network_header = skb->data - skb->head; 2438 } 2439 2440 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2441 { 2442 skb_reset_network_header(skb); 2443 skb->network_header += offset; 2444 } 2445 2446 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2447 { 2448 return skb->head + skb->mac_header; 2449 } 2450 2451 static inline int skb_mac_offset(const struct sk_buff *skb) 2452 { 2453 return skb_mac_header(skb) - skb->data; 2454 } 2455 2456 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2457 { 2458 return skb->network_header - skb->mac_header; 2459 } 2460 2461 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2462 { 2463 return skb->mac_header != (typeof(skb->mac_header))~0U; 2464 } 2465 2466 static inline void skb_reset_mac_header(struct sk_buff *skb) 2467 { 2468 skb->mac_header = skb->data - skb->head; 2469 } 2470 2471 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2472 { 2473 skb_reset_mac_header(skb); 2474 skb->mac_header += offset; 2475 } 2476 2477 static inline void skb_pop_mac_header(struct sk_buff *skb) 2478 { 2479 skb->mac_header = skb->network_header; 2480 } 2481 2482 static inline void skb_probe_transport_header(struct sk_buff *skb) 2483 { 2484 struct flow_keys_basic keys; 2485 2486 if (skb_transport_header_was_set(skb)) 2487 return; 2488 2489 if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0)) 2490 skb_set_transport_header(skb, keys.control.thoff); 2491 } 2492 2493 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2494 { 2495 if (skb_mac_header_was_set(skb)) { 2496 const unsigned char *old_mac = skb_mac_header(skb); 2497 2498 skb_set_mac_header(skb, -skb->mac_len); 2499 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2500 } 2501 } 2502 2503 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2504 { 2505 return skb->csum_start - skb_headroom(skb); 2506 } 2507 2508 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2509 { 2510 return skb->head + skb->csum_start; 2511 } 2512 2513 static inline int skb_transport_offset(const struct sk_buff *skb) 2514 { 2515 return skb_transport_header(skb) - skb->data; 2516 } 2517 2518 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2519 { 2520 return skb->transport_header - skb->network_header; 2521 } 2522 2523 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2524 { 2525 return skb->inner_transport_header - skb->inner_network_header; 2526 } 2527 2528 static inline int skb_network_offset(const struct sk_buff *skb) 2529 { 2530 return skb_network_header(skb) - skb->data; 2531 } 2532 2533 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2534 { 2535 return skb_inner_network_header(skb) - skb->data; 2536 } 2537 2538 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2539 { 2540 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2541 } 2542 2543 /* 2544 * CPUs often take a performance hit when accessing unaligned memory 2545 * locations. The actual performance hit varies, it can be small if the 2546 * hardware handles it or large if we have to take an exception and fix it 2547 * in software. 2548 * 2549 * Since an ethernet header is 14 bytes network drivers often end up with 2550 * the IP header at an unaligned offset. The IP header can be aligned by 2551 * shifting the start of the packet by 2 bytes. Drivers should do this 2552 * with: 2553 * 2554 * skb_reserve(skb, NET_IP_ALIGN); 2555 * 2556 * The downside to this alignment of the IP header is that the DMA is now 2557 * unaligned. On some architectures the cost of an unaligned DMA is high 2558 * and this cost outweighs the gains made by aligning the IP header. 2559 * 2560 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2561 * to be overridden. 2562 */ 2563 #ifndef NET_IP_ALIGN 2564 #define NET_IP_ALIGN 2 2565 #endif 2566 2567 /* 2568 * The networking layer reserves some headroom in skb data (via 2569 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2570 * the header has to grow. In the default case, if the header has to grow 2571 * 32 bytes or less we avoid the reallocation. 2572 * 2573 * Unfortunately this headroom changes the DMA alignment of the resulting 2574 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2575 * on some architectures. An architecture can override this value, 2576 * perhaps setting it to a cacheline in size (since that will maintain 2577 * cacheline alignment of the DMA). It must be a power of 2. 2578 * 2579 * Various parts of the networking layer expect at least 32 bytes of 2580 * headroom, you should not reduce this. 2581 * 2582 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2583 * to reduce average number of cache lines per packet. 2584 * get_rps_cpus() for example only access one 64 bytes aligned block : 2585 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2586 */ 2587 #ifndef NET_SKB_PAD 2588 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2589 #endif 2590 2591 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2592 2593 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2594 { 2595 if (WARN_ON(skb_is_nonlinear(skb))) 2596 return; 2597 skb->len = len; 2598 skb_set_tail_pointer(skb, len); 2599 } 2600 2601 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2602 { 2603 __skb_set_length(skb, len); 2604 } 2605 2606 void skb_trim(struct sk_buff *skb, unsigned int len); 2607 2608 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2609 { 2610 if (skb->data_len) 2611 return ___pskb_trim(skb, len); 2612 __skb_trim(skb, len); 2613 return 0; 2614 } 2615 2616 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2617 { 2618 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2619 } 2620 2621 /** 2622 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2623 * @skb: buffer to alter 2624 * @len: new length 2625 * 2626 * This is identical to pskb_trim except that the caller knows that 2627 * the skb is not cloned so we should never get an error due to out- 2628 * of-memory. 2629 */ 2630 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2631 { 2632 int err = pskb_trim(skb, len); 2633 BUG_ON(err); 2634 } 2635 2636 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2637 { 2638 unsigned int diff = len - skb->len; 2639 2640 if (skb_tailroom(skb) < diff) { 2641 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2642 GFP_ATOMIC); 2643 if (ret) 2644 return ret; 2645 } 2646 __skb_set_length(skb, len); 2647 return 0; 2648 } 2649 2650 /** 2651 * skb_orphan - orphan a buffer 2652 * @skb: buffer to orphan 2653 * 2654 * If a buffer currently has an owner then we call the owner's 2655 * destructor function and make the @skb unowned. The buffer continues 2656 * to exist but is no longer charged to its former owner. 2657 */ 2658 static inline void skb_orphan(struct sk_buff *skb) 2659 { 2660 if (skb->destructor) { 2661 skb->destructor(skb); 2662 skb->destructor = NULL; 2663 skb->sk = NULL; 2664 } else { 2665 BUG_ON(skb->sk); 2666 } 2667 } 2668 2669 /** 2670 * skb_orphan_frags - orphan the frags contained in a buffer 2671 * @skb: buffer to orphan frags from 2672 * @gfp_mask: allocation mask for replacement pages 2673 * 2674 * For each frag in the SKB which needs a destructor (i.e. has an 2675 * owner) create a copy of that frag and release the original 2676 * page by calling the destructor. 2677 */ 2678 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2679 { 2680 if (likely(!skb_zcopy(skb))) 2681 return 0; 2682 if (skb_uarg(skb)->callback == sock_zerocopy_callback) 2683 return 0; 2684 return skb_copy_ubufs(skb, gfp_mask); 2685 } 2686 2687 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2688 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2689 { 2690 if (likely(!skb_zcopy(skb))) 2691 return 0; 2692 return skb_copy_ubufs(skb, gfp_mask); 2693 } 2694 2695 /** 2696 * __skb_queue_purge - empty a list 2697 * @list: list to empty 2698 * 2699 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2700 * the list and one reference dropped. This function does not take the 2701 * list lock and the caller must hold the relevant locks to use it. 2702 */ 2703 static inline void __skb_queue_purge(struct sk_buff_head *list) 2704 { 2705 struct sk_buff *skb; 2706 while ((skb = __skb_dequeue(list)) != NULL) 2707 kfree_skb(skb); 2708 } 2709 void skb_queue_purge(struct sk_buff_head *list); 2710 2711 unsigned int skb_rbtree_purge(struct rb_root *root); 2712 2713 void *netdev_alloc_frag(unsigned int fragsz); 2714 2715 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2716 gfp_t gfp_mask); 2717 2718 /** 2719 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2720 * @dev: network device to receive on 2721 * @length: length to allocate 2722 * 2723 * Allocate a new &sk_buff and assign it a usage count of one. The 2724 * buffer has unspecified headroom built in. Users should allocate 2725 * the headroom they think they need without accounting for the 2726 * built in space. The built in space is used for optimisations. 2727 * 2728 * %NULL is returned if there is no free memory. Although this function 2729 * allocates memory it can be called from an interrupt. 2730 */ 2731 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2732 unsigned int length) 2733 { 2734 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2735 } 2736 2737 /* legacy helper around __netdev_alloc_skb() */ 2738 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2739 gfp_t gfp_mask) 2740 { 2741 return __netdev_alloc_skb(NULL, length, gfp_mask); 2742 } 2743 2744 /* legacy helper around netdev_alloc_skb() */ 2745 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2746 { 2747 return netdev_alloc_skb(NULL, length); 2748 } 2749 2750 2751 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2752 unsigned int length, gfp_t gfp) 2753 { 2754 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2755 2756 if (NET_IP_ALIGN && skb) 2757 skb_reserve(skb, NET_IP_ALIGN); 2758 return skb; 2759 } 2760 2761 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2762 unsigned int length) 2763 { 2764 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2765 } 2766 2767 static inline void skb_free_frag(void *addr) 2768 { 2769 page_frag_free(addr); 2770 } 2771 2772 void *napi_alloc_frag(unsigned int fragsz); 2773 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2774 unsigned int length, gfp_t gfp_mask); 2775 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2776 unsigned int length) 2777 { 2778 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2779 } 2780 void napi_consume_skb(struct sk_buff *skb, int budget); 2781 2782 void __kfree_skb_flush(void); 2783 void __kfree_skb_defer(struct sk_buff *skb); 2784 2785 /** 2786 * __dev_alloc_pages - allocate page for network Rx 2787 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2788 * @order: size of the allocation 2789 * 2790 * Allocate a new page. 2791 * 2792 * %NULL is returned if there is no free memory. 2793 */ 2794 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2795 unsigned int order) 2796 { 2797 /* This piece of code contains several assumptions. 2798 * 1. This is for device Rx, therefor a cold page is preferred. 2799 * 2. The expectation is the user wants a compound page. 2800 * 3. If requesting a order 0 page it will not be compound 2801 * due to the check to see if order has a value in prep_new_page 2802 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2803 * code in gfp_to_alloc_flags that should be enforcing this. 2804 */ 2805 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2806 2807 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2808 } 2809 2810 static inline struct page *dev_alloc_pages(unsigned int order) 2811 { 2812 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2813 } 2814 2815 /** 2816 * __dev_alloc_page - allocate a page for network Rx 2817 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2818 * 2819 * Allocate a new page. 2820 * 2821 * %NULL is returned if there is no free memory. 2822 */ 2823 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2824 { 2825 return __dev_alloc_pages(gfp_mask, 0); 2826 } 2827 2828 static inline struct page *dev_alloc_page(void) 2829 { 2830 return dev_alloc_pages(0); 2831 } 2832 2833 /** 2834 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2835 * @page: The page that was allocated from skb_alloc_page 2836 * @skb: The skb that may need pfmemalloc set 2837 */ 2838 static inline void skb_propagate_pfmemalloc(struct page *page, 2839 struct sk_buff *skb) 2840 { 2841 if (page_is_pfmemalloc(page)) 2842 skb->pfmemalloc = true; 2843 } 2844 2845 /** 2846 * skb_frag_page - retrieve the page referred to by a paged fragment 2847 * @frag: the paged fragment 2848 * 2849 * Returns the &struct page associated with @frag. 2850 */ 2851 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2852 { 2853 return frag->page.p; 2854 } 2855 2856 /** 2857 * __skb_frag_ref - take an addition reference on a paged fragment. 2858 * @frag: the paged fragment 2859 * 2860 * Takes an additional reference on the paged fragment @frag. 2861 */ 2862 static inline void __skb_frag_ref(skb_frag_t *frag) 2863 { 2864 get_page(skb_frag_page(frag)); 2865 } 2866 2867 /** 2868 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2869 * @skb: the buffer 2870 * @f: the fragment offset. 2871 * 2872 * Takes an additional reference on the @f'th paged fragment of @skb. 2873 */ 2874 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2875 { 2876 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2877 } 2878 2879 /** 2880 * __skb_frag_unref - release a reference on a paged fragment. 2881 * @frag: the paged fragment 2882 * 2883 * Releases a reference on the paged fragment @frag. 2884 */ 2885 static inline void __skb_frag_unref(skb_frag_t *frag) 2886 { 2887 put_page(skb_frag_page(frag)); 2888 } 2889 2890 /** 2891 * skb_frag_unref - release a reference on a paged fragment of an skb. 2892 * @skb: the buffer 2893 * @f: the fragment offset 2894 * 2895 * Releases a reference on the @f'th paged fragment of @skb. 2896 */ 2897 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2898 { 2899 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2900 } 2901 2902 /** 2903 * skb_frag_address - gets the address of the data contained in a paged fragment 2904 * @frag: the paged fragment buffer 2905 * 2906 * Returns the address of the data within @frag. The page must already 2907 * be mapped. 2908 */ 2909 static inline void *skb_frag_address(const skb_frag_t *frag) 2910 { 2911 return page_address(skb_frag_page(frag)) + frag->page_offset; 2912 } 2913 2914 /** 2915 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2916 * @frag: the paged fragment buffer 2917 * 2918 * Returns the address of the data within @frag. Checks that the page 2919 * is mapped and returns %NULL otherwise. 2920 */ 2921 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2922 { 2923 void *ptr = page_address(skb_frag_page(frag)); 2924 if (unlikely(!ptr)) 2925 return NULL; 2926 2927 return ptr + frag->page_offset; 2928 } 2929 2930 /** 2931 * __skb_frag_set_page - sets the page contained in a paged fragment 2932 * @frag: the paged fragment 2933 * @page: the page to set 2934 * 2935 * Sets the fragment @frag to contain @page. 2936 */ 2937 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2938 { 2939 frag->page.p = page; 2940 } 2941 2942 /** 2943 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2944 * @skb: the buffer 2945 * @f: the fragment offset 2946 * @page: the page to set 2947 * 2948 * Sets the @f'th fragment of @skb to contain @page. 2949 */ 2950 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2951 struct page *page) 2952 { 2953 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2954 } 2955 2956 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2957 2958 /** 2959 * skb_frag_dma_map - maps a paged fragment via the DMA API 2960 * @dev: the device to map the fragment to 2961 * @frag: the paged fragment to map 2962 * @offset: the offset within the fragment (starting at the 2963 * fragment's own offset) 2964 * @size: the number of bytes to map 2965 * @dir: the direction of the mapping (``PCI_DMA_*``) 2966 * 2967 * Maps the page associated with @frag to @device. 2968 */ 2969 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2970 const skb_frag_t *frag, 2971 size_t offset, size_t size, 2972 enum dma_data_direction dir) 2973 { 2974 return dma_map_page(dev, skb_frag_page(frag), 2975 frag->page_offset + offset, size, dir); 2976 } 2977 2978 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2979 gfp_t gfp_mask) 2980 { 2981 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2982 } 2983 2984 2985 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2986 gfp_t gfp_mask) 2987 { 2988 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2989 } 2990 2991 2992 /** 2993 * skb_clone_writable - is the header of a clone writable 2994 * @skb: buffer to check 2995 * @len: length up to which to write 2996 * 2997 * Returns true if modifying the header part of the cloned buffer 2998 * does not requires the data to be copied. 2999 */ 3000 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3001 { 3002 return !skb_header_cloned(skb) && 3003 skb_headroom(skb) + len <= skb->hdr_len; 3004 } 3005 3006 static inline int skb_try_make_writable(struct sk_buff *skb, 3007 unsigned int write_len) 3008 { 3009 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3010 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3011 } 3012 3013 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3014 int cloned) 3015 { 3016 int delta = 0; 3017 3018 if (headroom > skb_headroom(skb)) 3019 delta = headroom - skb_headroom(skb); 3020 3021 if (delta || cloned) 3022 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3023 GFP_ATOMIC); 3024 return 0; 3025 } 3026 3027 /** 3028 * skb_cow - copy header of skb when it is required 3029 * @skb: buffer to cow 3030 * @headroom: needed headroom 3031 * 3032 * If the skb passed lacks sufficient headroom or its data part 3033 * is shared, data is reallocated. If reallocation fails, an error 3034 * is returned and original skb is not changed. 3035 * 3036 * The result is skb with writable area skb->head...skb->tail 3037 * and at least @headroom of space at head. 3038 */ 3039 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3040 { 3041 return __skb_cow(skb, headroom, skb_cloned(skb)); 3042 } 3043 3044 /** 3045 * skb_cow_head - skb_cow but only making the head writable 3046 * @skb: buffer to cow 3047 * @headroom: needed headroom 3048 * 3049 * This function is identical to skb_cow except that we replace the 3050 * skb_cloned check by skb_header_cloned. It should be used when 3051 * you only need to push on some header and do not need to modify 3052 * the data. 3053 */ 3054 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3055 { 3056 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3057 } 3058 3059 /** 3060 * skb_padto - pad an skbuff up to a minimal size 3061 * @skb: buffer to pad 3062 * @len: minimal length 3063 * 3064 * Pads up a buffer to ensure the trailing bytes exist and are 3065 * blanked. If the buffer already contains sufficient data it 3066 * is untouched. Otherwise it is extended. Returns zero on 3067 * success. The skb is freed on error. 3068 */ 3069 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3070 { 3071 unsigned int size = skb->len; 3072 if (likely(size >= len)) 3073 return 0; 3074 return skb_pad(skb, len - size); 3075 } 3076 3077 /** 3078 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3079 * @skb: buffer to pad 3080 * @len: minimal length 3081 * @free_on_error: free buffer on error 3082 * 3083 * Pads up a buffer to ensure the trailing bytes exist and are 3084 * blanked. If the buffer already contains sufficient data it 3085 * is untouched. Otherwise it is extended. Returns zero on 3086 * success. The skb is freed on error if @free_on_error is true. 3087 */ 3088 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 3089 bool free_on_error) 3090 { 3091 unsigned int size = skb->len; 3092 3093 if (unlikely(size < len)) { 3094 len -= size; 3095 if (__skb_pad(skb, len, free_on_error)) 3096 return -ENOMEM; 3097 __skb_put(skb, len); 3098 } 3099 return 0; 3100 } 3101 3102 /** 3103 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3104 * @skb: buffer to pad 3105 * @len: minimal length 3106 * 3107 * Pads up a buffer to ensure the trailing bytes exist and are 3108 * blanked. If the buffer already contains sufficient data it 3109 * is untouched. Otherwise it is extended. Returns zero on 3110 * success. The skb is freed on error. 3111 */ 3112 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 3113 { 3114 return __skb_put_padto(skb, len, true); 3115 } 3116 3117 static inline int skb_add_data(struct sk_buff *skb, 3118 struct iov_iter *from, int copy) 3119 { 3120 const int off = skb->len; 3121 3122 if (skb->ip_summed == CHECKSUM_NONE) { 3123 __wsum csum = 0; 3124 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3125 &csum, from)) { 3126 skb->csum = csum_block_add(skb->csum, csum, off); 3127 return 0; 3128 } 3129 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3130 return 0; 3131 3132 __skb_trim(skb, off); 3133 return -EFAULT; 3134 } 3135 3136 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3137 const struct page *page, int off) 3138 { 3139 if (skb_zcopy(skb)) 3140 return false; 3141 if (i) { 3142 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 3143 3144 return page == skb_frag_page(frag) && 3145 off == frag->page_offset + skb_frag_size(frag); 3146 } 3147 return false; 3148 } 3149 3150 static inline int __skb_linearize(struct sk_buff *skb) 3151 { 3152 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3153 } 3154 3155 /** 3156 * skb_linearize - convert paged skb to linear one 3157 * @skb: buffer to linarize 3158 * 3159 * If there is no free memory -ENOMEM is returned, otherwise zero 3160 * is returned and the old skb data released. 3161 */ 3162 static inline int skb_linearize(struct sk_buff *skb) 3163 { 3164 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3165 } 3166 3167 /** 3168 * skb_has_shared_frag - can any frag be overwritten 3169 * @skb: buffer to test 3170 * 3171 * Return true if the skb has at least one frag that might be modified 3172 * by an external entity (as in vmsplice()/sendfile()) 3173 */ 3174 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3175 { 3176 return skb_is_nonlinear(skb) && 3177 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3178 } 3179 3180 /** 3181 * skb_linearize_cow - make sure skb is linear and writable 3182 * @skb: buffer to process 3183 * 3184 * If there is no free memory -ENOMEM is returned, otherwise zero 3185 * is returned and the old skb data released. 3186 */ 3187 static inline int skb_linearize_cow(struct sk_buff *skb) 3188 { 3189 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3190 __skb_linearize(skb) : 0; 3191 } 3192 3193 static __always_inline void 3194 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3195 unsigned int off) 3196 { 3197 if (skb->ip_summed == CHECKSUM_COMPLETE) 3198 skb->csum = csum_block_sub(skb->csum, 3199 csum_partial(start, len, 0), off); 3200 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3201 skb_checksum_start_offset(skb) < 0) 3202 skb->ip_summed = CHECKSUM_NONE; 3203 } 3204 3205 /** 3206 * skb_postpull_rcsum - update checksum for received skb after pull 3207 * @skb: buffer to update 3208 * @start: start of data before pull 3209 * @len: length of data pulled 3210 * 3211 * After doing a pull on a received packet, you need to call this to 3212 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3213 * CHECKSUM_NONE so that it can be recomputed from scratch. 3214 */ 3215 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3216 const void *start, unsigned int len) 3217 { 3218 __skb_postpull_rcsum(skb, start, len, 0); 3219 } 3220 3221 static __always_inline void 3222 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3223 unsigned int off) 3224 { 3225 if (skb->ip_summed == CHECKSUM_COMPLETE) 3226 skb->csum = csum_block_add(skb->csum, 3227 csum_partial(start, len, 0), off); 3228 } 3229 3230 /** 3231 * skb_postpush_rcsum - update checksum for received skb after push 3232 * @skb: buffer to update 3233 * @start: start of data after push 3234 * @len: length of data pushed 3235 * 3236 * After doing a push on a received packet, you need to call this to 3237 * update the CHECKSUM_COMPLETE checksum. 3238 */ 3239 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3240 const void *start, unsigned int len) 3241 { 3242 __skb_postpush_rcsum(skb, start, len, 0); 3243 } 3244 3245 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3246 3247 /** 3248 * skb_push_rcsum - push skb and update receive checksum 3249 * @skb: buffer to update 3250 * @len: length of data pulled 3251 * 3252 * This function performs an skb_push on the packet and updates 3253 * the CHECKSUM_COMPLETE checksum. It should be used on 3254 * receive path processing instead of skb_push unless you know 3255 * that the checksum difference is zero (e.g., a valid IP header) 3256 * or you are setting ip_summed to CHECKSUM_NONE. 3257 */ 3258 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3259 { 3260 skb_push(skb, len); 3261 skb_postpush_rcsum(skb, skb->data, len); 3262 return skb->data; 3263 } 3264 3265 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3266 /** 3267 * pskb_trim_rcsum - trim received skb and update checksum 3268 * @skb: buffer to trim 3269 * @len: new length 3270 * 3271 * This is exactly the same as pskb_trim except that it ensures the 3272 * checksum of received packets are still valid after the operation. 3273 * It can change skb pointers. 3274 */ 3275 3276 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3277 { 3278 if (likely(len >= skb->len)) 3279 return 0; 3280 return pskb_trim_rcsum_slow(skb, len); 3281 } 3282 3283 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3284 { 3285 if (skb->ip_summed == CHECKSUM_COMPLETE) 3286 skb->ip_summed = CHECKSUM_NONE; 3287 __skb_trim(skb, len); 3288 return 0; 3289 } 3290 3291 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3292 { 3293 if (skb->ip_summed == CHECKSUM_COMPLETE) 3294 skb->ip_summed = CHECKSUM_NONE; 3295 return __skb_grow(skb, len); 3296 } 3297 3298 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3299 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3300 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3301 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3302 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3303 3304 #define skb_queue_walk(queue, skb) \ 3305 for (skb = (queue)->next; \ 3306 skb != (struct sk_buff *)(queue); \ 3307 skb = skb->next) 3308 3309 #define skb_queue_walk_safe(queue, skb, tmp) \ 3310 for (skb = (queue)->next, tmp = skb->next; \ 3311 skb != (struct sk_buff *)(queue); \ 3312 skb = tmp, tmp = skb->next) 3313 3314 #define skb_queue_walk_from(queue, skb) \ 3315 for (; skb != (struct sk_buff *)(queue); \ 3316 skb = skb->next) 3317 3318 #define skb_rbtree_walk(skb, root) \ 3319 for (skb = skb_rb_first(root); skb != NULL; \ 3320 skb = skb_rb_next(skb)) 3321 3322 #define skb_rbtree_walk_from(skb) \ 3323 for (; skb != NULL; \ 3324 skb = skb_rb_next(skb)) 3325 3326 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3327 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3328 skb = tmp) 3329 3330 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3331 for (tmp = skb->next; \ 3332 skb != (struct sk_buff *)(queue); \ 3333 skb = tmp, tmp = skb->next) 3334 3335 #define skb_queue_reverse_walk(queue, skb) \ 3336 for (skb = (queue)->prev; \ 3337 skb != (struct sk_buff *)(queue); \ 3338 skb = skb->prev) 3339 3340 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3341 for (skb = (queue)->prev, tmp = skb->prev; \ 3342 skb != (struct sk_buff *)(queue); \ 3343 skb = tmp, tmp = skb->prev) 3344 3345 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3346 for (tmp = skb->prev; \ 3347 skb != (struct sk_buff *)(queue); \ 3348 skb = tmp, tmp = skb->prev) 3349 3350 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3351 { 3352 return skb_shinfo(skb)->frag_list != NULL; 3353 } 3354 3355 static inline void skb_frag_list_init(struct sk_buff *skb) 3356 { 3357 skb_shinfo(skb)->frag_list = NULL; 3358 } 3359 3360 #define skb_walk_frags(skb, iter) \ 3361 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3362 3363 3364 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3365 const struct sk_buff *skb); 3366 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3367 struct sk_buff_head *queue, 3368 unsigned int flags, 3369 void (*destructor)(struct sock *sk, 3370 struct sk_buff *skb), 3371 int *off, int *err, 3372 struct sk_buff **last); 3373 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3374 void (*destructor)(struct sock *sk, 3375 struct sk_buff *skb), 3376 int *off, int *err, 3377 struct sk_buff **last); 3378 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3379 void (*destructor)(struct sock *sk, 3380 struct sk_buff *skb), 3381 int *off, int *err); 3382 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3383 int *err); 3384 __poll_t datagram_poll(struct file *file, struct socket *sock, 3385 struct poll_table_struct *wait); 3386 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3387 struct iov_iter *to, int size); 3388 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3389 struct msghdr *msg, int size) 3390 { 3391 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3392 } 3393 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3394 struct msghdr *msg); 3395 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3396 struct iov_iter *to, int len, 3397 struct ahash_request *hash); 3398 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3399 struct iov_iter *from, int len); 3400 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3401 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3402 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3403 static inline void skb_free_datagram_locked(struct sock *sk, 3404 struct sk_buff *skb) 3405 { 3406 __skb_free_datagram_locked(sk, skb, 0); 3407 } 3408 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3409 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3410 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3411 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3412 int len, __wsum csum); 3413 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3414 struct pipe_inode_info *pipe, unsigned int len, 3415 unsigned int flags); 3416 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3417 int len); 3418 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3419 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3420 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3421 int len, int hlen); 3422 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3423 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3424 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3425 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3426 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3427 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3428 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3429 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3430 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3431 int skb_vlan_pop(struct sk_buff *skb); 3432 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3433 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3434 gfp_t gfp); 3435 3436 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3437 { 3438 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3439 } 3440 3441 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3442 { 3443 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3444 } 3445 3446 struct skb_checksum_ops { 3447 __wsum (*update)(const void *mem, int len, __wsum wsum); 3448 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3449 }; 3450 3451 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3452 3453 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3454 __wsum csum, const struct skb_checksum_ops *ops); 3455 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3456 __wsum csum); 3457 3458 static inline void * __must_check 3459 __skb_header_pointer(const struct sk_buff *skb, int offset, 3460 int len, void *data, int hlen, void *buffer) 3461 { 3462 if (hlen - offset >= len) 3463 return data + offset; 3464 3465 if (!skb || 3466 skb_copy_bits(skb, offset, buffer, len) < 0) 3467 return NULL; 3468 3469 return buffer; 3470 } 3471 3472 static inline void * __must_check 3473 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3474 { 3475 return __skb_header_pointer(skb, offset, len, skb->data, 3476 skb_headlen(skb), buffer); 3477 } 3478 3479 /** 3480 * skb_needs_linearize - check if we need to linearize a given skb 3481 * depending on the given device features. 3482 * @skb: socket buffer to check 3483 * @features: net device features 3484 * 3485 * Returns true if either: 3486 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3487 * 2. skb is fragmented and the device does not support SG. 3488 */ 3489 static inline bool skb_needs_linearize(struct sk_buff *skb, 3490 netdev_features_t features) 3491 { 3492 return skb_is_nonlinear(skb) && 3493 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3494 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3495 } 3496 3497 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3498 void *to, 3499 const unsigned int len) 3500 { 3501 memcpy(to, skb->data, len); 3502 } 3503 3504 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3505 const int offset, void *to, 3506 const unsigned int len) 3507 { 3508 memcpy(to, skb->data + offset, len); 3509 } 3510 3511 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3512 const void *from, 3513 const unsigned int len) 3514 { 3515 memcpy(skb->data, from, len); 3516 } 3517 3518 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3519 const int offset, 3520 const void *from, 3521 const unsigned int len) 3522 { 3523 memcpy(skb->data + offset, from, len); 3524 } 3525 3526 void skb_init(void); 3527 3528 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3529 { 3530 return skb->tstamp; 3531 } 3532 3533 /** 3534 * skb_get_timestamp - get timestamp from a skb 3535 * @skb: skb to get stamp from 3536 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3537 * 3538 * Timestamps are stored in the skb as offsets to a base timestamp. 3539 * This function converts the offset back to a struct timeval and stores 3540 * it in stamp. 3541 */ 3542 static inline void skb_get_timestamp(const struct sk_buff *skb, 3543 struct __kernel_old_timeval *stamp) 3544 { 3545 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3546 } 3547 3548 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3549 struct __kernel_sock_timeval *stamp) 3550 { 3551 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3552 3553 stamp->tv_sec = ts.tv_sec; 3554 stamp->tv_usec = ts.tv_nsec / 1000; 3555 } 3556 3557 static inline void skb_get_timestampns(const struct sk_buff *skb, 3558 struct timespec *stamp) 3559 { 3560 *stamp = ktime_to_timespec(skb->tstamp); 3561 } 3562 3563 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 3564 struct __kernel_timespec *stamp) 3565 { 3566 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3567 3568 stamp->tv_sec = ts.tv_sec; 3569 stamp->tv_nsec = ts.tv_nsec; 3570 } 3571 3572 static inline void __net_timestamp(struct sk_buff *skb) 3573 { 3574 skb->tstamp = ktime_get_real(); 3575 } 3576 3577 static inline ktime_t net_timedelta(ktime_t t) 3578 { 3579 return ktime_sub(ktime_get_real(), t); 3580 } 3581 3582 static inline ktime_t net_invalid_timestamp(void) 3583 { 3584 return 0; 3585 } 3586 3587 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3588 { 3589 return skb_shinfo(skb)->meta_len; 3590 } 3591 3592 static inline void *skb_metadata_end(const struct sk_buff *skb) 3593 { 3594 return skb_mac_header(skb); 3595 } 3596 3597 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3598 const struct sk_buff *skb_b, 3599 u8 meta_len) 3600 { 3601 const void *a = skb_metadata_end(skb_a); 3602 const void *b = skb_metadata_end(skb_b); 3603 /* Using more efficient varaiant than plain call to memcmp(). */ 3604 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3605 u64 diffs = 0; 3606 3607 switch (meta_len) { 3608 #define __it(x, op) (x -= sizeof(u##op)) 3609 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3610 case 32: diffs |= __it_diff(a, b, 64); 3611 /* fall through */ 3612 case 24: diffs |= __it_diff(a, b, 64); 3613 /* fall through */ 3614 case 16: diffs |= __it_diff(a, b, 64); 3615 /* fall through */ 3616 case 8: diffs |= __it_diff(a, b, 64); 3617 break; 3618 case 28: diffs |= __it_diff(a, b, 64); 3619 /* fall through */ 3620 case 20: diffs |= __it_diff(a, b, 64); 3621 /* fall through */ 3622 case 12: diffs |= __it_diff(a, b, 64); 3623 /* fall through */ 3624 case 4: diffs |= __it_diff(a, b, 32); 3625 break; 3626 } 3627 return diffs; 3628 #else 3629 return memcmp(a - meta_len, b - meta_len, meta_len); 3630 #endif 3631 } 3632 3633 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3634 const struct sk_buff *skb_b) 3635 { 3636 u8 len_a = skb_metadata_len(skb_a); 3637 u8 len_b = skb_metadata_len(skb_b); 3638 3639 if (!(len_a | len_b)) 3640 return false; 3641 3642 return len_a != len_b ? 3643 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3644 } 3645 3646 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3647 { 3648 skb_shinfo(skb)->meta_len = meta_len; 3649 } 3650 3651 static inline void skb_metadata_clear(struct sk_buff *skb) 3652 { 3653 skb_metadata_set(skb, 0); 3654 } 3655 3656 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3657 3658 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3659 3660 void skb_clone_tx_timestamp(struct sk_buff *skb); 3661 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3662 3663 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3664 3665 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3666 { 3667 } 3668 3669 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3670 { 3671 return false; 3672 } 3673 3674 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3675 3676 /** 3677 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3678 * 3679 * PHY drivers may accept clones of transmitted packets for 3680 * timestamping via their phy_driver.txtstamp method. These drivers 3681 * must call this function to return the skb back to the stack with a 3682 * timestamp. 3683 * 3684 * @skb: clone of the the original outgoing packet 3685 * @hwtstamps: hardware time stamps 3686 * 3687 */ 3688 void skb_complete_tx_timestamp(struct sk_buff *skb, 3689 struct skb_shared_hwtstamps *hwtstamps); 3690 3691 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3692 struct skb_shared_hwtstamps *hwtstamps, 3693 struct sock *sk, int tstype); 3694 3695 /** 3696 * skb_tstamp_tx - queue clone of skb with send time stamps 3697 * @orig_skb: the original outgoing packet 3698 * @hwtstamps: hardware time stamps, may be NULL if not available 3699 * 3700 * If the skb has a socket associated, then this function clones the 3701 * skb (thus sharing the actual data and optional structures), stores 3702 * the optional hardware time stamping information (if non NULL) or 3703 * generates a software time stamp (otherwise), then queues the clone 3704 * to the error queue of the socket. Errors are silently ignored. 3705 */ 3706 void skb_tstamp_tx(struct sk_buff *orig_skb, 3707 struct skb_shared_hwtstamps *hwtstamps); 3708 3709 /** 3710 * skb_tx_timestamp() - Driver hook for transmit timestamping 3711 * 3712 * Ethernet MAC Drivers should call this function in their hard_xmit() 3713 * function immediately before giving the sk_buff to the MAC hardware. 3714 * 3715 * Specifically, one should make absolutely sure that this function is 3716 * called before TX completion of this packet can trigger. Otherwise 3717 * the packet could potentially already be freed. 3718 * 3719 * @skb: A socket buffer. 3720 */ 3721 static inline void skb_tx_timestamp(struct sk_buff *skb) 3722 { 3723 skb_clone_tx_timestamp(skb); 3724 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3725 skb_tstamp_tx(skb, NULL); 3726 } 3727 3728 /** 3729 * skb_complete_wifi_ack - deliver skb with wifi status 3730 * 3731 * @skb: the original outgoing packet 3732 * @acked: ack status 3733 * 3734 */ 3735 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3736 3737 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3738 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3739 3740 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3741 { 3742 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3743 skb->csum_valid || 3744 (skb->ip_summed == CHECKSUM_PARTIAL && 3745 skb_checksum_start_offset(skb) >= 0)); 3746 } 3747 3748 /** 3749 * skb_checksum_complete - Calculate checksum of an entire packet 3750 * @skb: packet to process 3751 * 3752 * This function calculates the checksum over the entire packet plus 3753 * the value of skb->csum. The latter can be used to supply the 3754 * checksum of a pseudo header as used by TCP/UDP. It returns the 3755 * checksum. 3756 * 3757 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3758 * this function can be used to verify that checksum on received 3759 * packets. In that case the function should return zero if the 3760 * checksum is correct. In particular, this function will return zero 3761 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3762 * hardware has already verified the correctness of the checksum. 3763 */ 3764 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3765 { 3766 return skb_csum_unnecessary(skb) ? 3767 0 : __skb_checksum_complete(skb); 3768 } 3769 3770 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3771 { 3772 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3773 if (skb->csum_level == 0) 3774 skb->ip_summed = CHECKSUM_NONE; 3775 else 3776 skb->csum_level--; 3777 } 3778 } 3779 3780 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3781 { 3782 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3783 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3784 skb->csum_level++; 3785 } else if (skb->ip_summed == CHECKSUM_NONE) { 3786 skb->ip_summed = CHECKSUM_UNNECESSARY; 3787 skb->csum_level = 0; 3788 } 3789 } 3790 3791 /* Check if we need to perform checksum complete validation. 3792 * 3793 * Returns true if checksum complete is needed, false otherwise 3794 * (either checksum is unnecessary or zero checksum is allowed). 3795 */ 3796 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3797 bool zero_okay, 3798 __sum16 check) 3799 { 3800 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3801 skb->csum_valid = 1; 3802 __skb_decr_checksum_unnecessary(skb); 3803 return false; 3804 } 3805 3806 return true; 3807 } 3808 3809 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3810 * in checksum_init. 3811 */ 3812 #define CHECKSUM_BREAK 76 3813 3814 /* Unset checksum-complete 3815 * 3816 * Unset checksum complete can be done when packet is being modified 3817 * (uncompressed for instance) and checksum-complete value is 3818 * invalidated. 3819 */ 3820 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3821 { 3822 if (skb->ip_summed == CHECKSUM_COMPLETE) 3823 skb->ip_summed = CHECKSUM_NONE; 3824 } 3825 3826 /* Validate (init) checksum based on checksum complete. 3827 * 3828 * Return values: 3829 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3830 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3831 * checksum is stored in skb->csum for use in __skb_checksum_complete 3832 * non-zero: value of invalid checksum 3833 * 3834 */ 3835 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3836 bool complete, 3837 __wsum psum) 3838 { 3839 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3840 if (!csum_fold(csum_add(psum, skb->csum))) { 3841 skb->csum_valid = 1; 3842 return 0; 3843 } 3844 } 3845 3846 skb->csum = psum; 3847 3848 if (complete || skb->len <= CHECKSUM_BREAK) { 3849 __sum16 csum; 3850 3851 csum = __skb_checksum_complete(skb); 3852 skb->csum_valid = !csum; 3853 return csum; 3854 } 3855 3856 return 0; 3857 } 3858 3859 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3860 { 3861 return 0; 3862 } 3863 3864 /* Perform checksum validate (init). Note that this is a macro since we only 3865 * want to calculate the pseudo header which is an input function if necessary. 3866 * First we try to validate without any computation (checksum unnecessary) and 3867 * then calculate based on checksum complete calling the function to compute 3868 * pseudo header. 3869 * 3870 * Return values: 3871 * 0: checksum is validated or try to in skb_checksum_complete 3872 * non-zero: value of invalid checksum 3873 */ 3874 #define __skb_checksum_validate(skb, proto, complete, \ 3875 zero_okay, check, compute_pseudo) \ 3876 ({ \ 3877 __sum16 __ret = 0; \ 3878 skb->csum_valid = 0; \ 3879 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3880 __ret = __skb_checksum_validate_complete(skb, \ 3881 complete, compute_pseudo(skb, proto)); \ 3882 __ret; \ 3883 }) 3884 3885 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3886 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3887 3888 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3889 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3890 3891 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3892 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3893 3894 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3895 compute_pseudo) \ 3896 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3897 3898 #define skb_checksum_simple_validate(skb) \ 3899 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3900 3901 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3902 { 3903 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3904 } 3905 3906 static inline void __skb_checksum_convert(struct sk_buff *skb, 3907 __sum16 check, __wsum pseudo) 3908 { 3909 skb->csum = ~pseudo; 3910 skb->ip_summed = CHECKSUM_COMPLETE; 3911 } 3912 3913 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3914 do { \ 3915 if (__skb_checksum_convert_check(skb)) \ 3916 __skb_checksum_convert(skb, check, \ 3917 compute_pseudo(skb, proto)); \ 3918 } while (0) 3919 3920 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3921 u16 start, u16 offset) 3922 { 3923 skb->ip_summed = CHECKSUM_PARTIAL; 3924 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3925 skb->csum_offset = offset - start; 3926 } 3927 3928 /* Update skbuf and packet to reflect the remote checksum offload operation. 3929 * When called, ptr indicates the starting point for skb->csum when 3930 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3931 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3932 */ 3933 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3934 int start, int offset, bool nopartial) 3935 { 3936 __wsum delta; 3937 3938 if (!nopartial) { 3939 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3940 return; 3941 } 3942 3943 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3944 __skb_checksum_complete(skb); 3945 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3946 } 3947 3948 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3949 3950 /* Adjust skb->csum since we changed the packet */ 3951 skb->csum = csum_add(skb->csum, delta); 3952 } 3953 3954 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3955 { 3956 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3957 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3958 #else 3959 return NULL; 3960 #endif 3961 } 3962 3963 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3964 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3965 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3966 { 3967 if (nfct && atomic_dec_and_test(&nfct->use)) 3968 nf_conntrack_destroy(nfct); 3969 } 3970 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3971 { 3972 if (nfct) 3973 atomic_inc(&nfct->use); 3974 } 3975 #endif 3976 3977 #ifdef CONFIG_SKB_EXTENSIONS 3978 enum skb_ext_id { 3979 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3980 SKB_EXT_BRIDGE_NF, 3981 #endif 3982 #ifdef CONFIG_XFRM 3983 SKB_EXT_SEC_PATH, 3984 #endif 3985 SKB_EXT_NUM, /* must be last */ 3986 }; 3987 3988 /** 3989 * struct skb_ext - sk_buff extensions 3990 * @refcnt: 1 on allocation, deallocated on 0 3991 * @offset: offset to add to @data to obtain extension address 3992 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 3993 * @data: start of extension data, variable sized 3994 * 3995 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 3996 * to use 'u8' types while allowing up to 2kb worth of extension data. 3997 */ 3998 struct skb_ext { 3999 refcount_t refcnt; 4000 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4001 u8 chunks; /* same */ 4002 char data[0] __aligned(8); 4003 }; 4004 4005 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4006 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4007 void __skb_ext_put(struct skb_ext *ext); 4008 4009 static inline void skb_ext_put(struct sk_buff *skb) 4010 { 4011 if (skb->active_extensions) 4012 __skb_ext_put(skb->extensions); 4013 } 4014 4015 static inline void __skb_ext_copy(struct sk_buff *dst, 4016 const struct sk_buff *src) 4017 { 4018 dst->active_extensions = src->active_extensions; 4019 4020 if (src->active_extensions) { 4021 struct skb_ext *ext = src->extensions; 4022 4023 refcount_inc(&ext->refcnt); 4024 dst->extensions = ext; 4025 } 4026 } 4027 4028 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4029 { 4030 skb_ext_put(dst); 4031 __skb_ext_copy(dst, src); 4032 } 4033 4034 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4035 { 4036 return !!ext->offset[i]; 4037 } 4038 4039 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4040 { 4041 return skb->active_extensions & (1 << id); 4042 } 4043 4044 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4045 { 4046 if (skb_ext_exist(skb, id)) 4047 __skb_ext_del(skb, id); 4048 } 4049 4050 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4051 { 4052 if (skb_ext_exist(skb, id)) { 4053 struct skb_ext *ext = skb->extensions; 4054 4055 return (void *)ext + (ext->offset[id] << 3); 4056 } 4057 4058 return NULL; 4059 } 4060 #else 4061 static inline void skb_ext_put(struct sk_buff *skb) {} 4062 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4063 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4064 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4065 #endif /* CONFIG_SKB_EXTENSIONS */ 4066 4067 static inline void nf_reset(struct sk_buff *skb) 4068 { 4069 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4070 nf_conntrack_put(skb_nfct(skb)); 4071 skb->_nfct = 0; 4072 #endif 4073 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4074 skb_ext_del(skb, SKB_EXT_BRIDGE_NF); 4075 #endif 4076 } 4077 4078 static inline void nf_reset_trace(struct sk_buff *skb) 4079 { 4080 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4081 skb->nf_trace = 0; 4082 #endif 4083 } 4084 4085 static inline void ipvs_reset(struct sk_buff *skb) 4086 { 4087 #if IS_ENABLED(CONFIG_IP_VS) 4088 skb->ipvs_property = 0; 4089 #endif 4090 } 4091 4092 /* Note: This doesn't put any conntrack info in dst. */ 4093 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4094 bool copy) 4095 { 4096 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4097 dst->_nfct = src->_nfct; 4098 nf_conntrack_get(skb_nfct(src)); 4099 #endif 4100 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4101 if (copy) 4102 dst->nf_trace = src->nf_trace; 4103 #endif 4104 } 4105 4106 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4107 { 4108 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4109 nf_conntrack_put(skb_nfct(dst)); 4110 #endif 4111 __nf_copy(dst, src, true); 4112 } 4113 4114 #ifdef CONFIG_NETWORK_SECMARK 4115 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4116 { 4117 to->secmark = from->secmark; 4118 } 4119 4120 static inline void skb_init_secmark(struct sk_buff *skb) 4121 { 4122 skb->secmark = 0; 4123 } 4124 #else 4125 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4126 { } 4127 4128 static inline void skb_init_secmark(struct sk_buff *skb) 4129 { } 4130 #endif 4131 4132 static inline int secpath_exists(const struct sk_buff *skb) 4133 { 4134 #ifdef CONFIG_XFRM 4135 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4136 #else 4137 return 0; 4138 #endif 4139 } 4140 4141 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4142 { 4143 return !skb->destructor && 4144 !secpath_exists(skb) && 4145 !skb_nfct(skb) && 4146 !skb->_skb_refdst && 4147 !skb_has_frag_list(skb); 4148 } 4149 4150 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4151 { 4152 skb->queue_mapping = queue_mapping; 4153 } 4154 4155 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4156 { 4157 return skb->queue_mapping; 4158 } 4159 4160 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4161 { 4162 to->queue_mapping = from->queue_mapping; 4163 } 4164 4165 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4166 { 4167 skb->queue_mapping = rx_queue + 1; 4168 } 4169 4170 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4171 { 4172 return skb->queue_mapping - 1; 4173 } 4174 4175 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4176 { 4177 return skb->queue_mapping != 0; 4178 } 4179 4180 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4181 { 4182 skb->dst_pending_confirm = val; 4183 } 4184 4185 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4186 { 4187 return skb->dst_pending_confirm != 0; 4188 } 4189 4190 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4191 { 4192 #ifdef CONFIG_XFRM 4193 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4194 #else 4195 return NULL; 4196 #endif 4197 } 4198 4199 /* Keeps track of mac header offset relative to skb->head. 4200 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4201 * For non-tunnel skb it points to skb_mac_header() and for 4202 * tunnel skb it points to outer mac header. 4203 * Keeps track of level of encapsulation of network headers. 4204 */ 4205 struct skb_gso_cb { 4206 union { 4207 int mac_offset; 4208 int data_offset; 4209 }; 4210 int encap_level; 4211 __wsum csum; 4212 __u16 csum_start; 4213 }; 4214 #define SKB_SGO_CB_OFFSET 32 4215 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 4216 4217 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4218 { 4219 return (skb_mac_header(inner_skb) - inner_skb->head) - 4220 SKB_GSO_CB(inner_skb)->mac_offset; 4221 } 4222 4223 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4224 { 4225 int new_headroom, headroom; 4226 int ret; 4227 4228 headroom = skb_headroom(skb); 4229 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4230 if (ret) 4231 return ret; 4232 4233 new_headroom = skb_headroom(skb); 4234 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4235 return 0; 4236 } 4237 4238 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4239 { 4240 /* Do not update partial checksums if remote checksum is enabled. */ 4241 if (skb->remcsum_offload) 4242 return; 4243 4244 SKB_GSO_CB(skb)->csum = res; 4245 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4246 } 4247 4248 /* Compute the checksum for a gso segment. First compute the checksum value 4249 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4250 * then add in skb->csum (checksum from csum_start to end of packet). 4251 * skb->csum and csum_start are then updated to reflect the checksum of the 4252 * resultant packet starting from the transport header-- the resultant checksum 4253 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4254 * header. 4255 */ 4256 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4257 { 4258 unsigned char *csum_start = skb_transport_header(skb); 4259 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4260 __wsum partial = SKB_GSO_CB(skb)->csum; 4261 4262 SKB_GSO_CB(skb)->csum = res; 4263 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4264 4265 return csum_fold(csum_partial(csum_start, plen, partial)); 4266 } 4267 4268 static inline bool skb_is_gso(const struct sk_buff *skb) 4269 { 4270 return skb_shinfo(skb)->gso_size; 4271 } 4272 4273 /* Note: Should be called only if skb_is_gso(skb) is true */ 4274 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4275 { 4276 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4277 } 4278 4279 /* Note: Should be called only if skb_is_gso(skb) is true */ 4280 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4281 { 4282 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4283 } 4284 4285 /* Note: Should be called only if skb_is_gso(skb) is true */ 4286 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4287 { 4288 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4289 } 4290 4291 static inline void skb_gso_reset(struct sk_buff *skb) 4292 { 4293 skb_shinfo(skb)->gso_size = 0; 4294 skb_shinfo(skb)->gso_segs = 0; 4295 skb_shinfo(skb)->gso_type = 0; 4296 } 4297 4298 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4299 u16 increment) 4300 { 4301 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4302 return; 4303 shinfo->gso_size += increment; 4304 } 4305 4306 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4307 u16 decrement) 4308 { 4309 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4310 return; 4311 shinfo->gso_size -= decrement; 4312 } 4313 4314 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4315 4316 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4317 { 4318 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4319 * wanted then gso_type will be set. */ 4320 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4321 4322 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4323 unlikely(shinfo->gso_type == 0)) { 4324 __skb_warn_lro_forwarding(skb); 4325 return true; 4326 } 4327 return false; 4328 } 4329 4330 static inline void skb_forward_csum(struct sk_buff *skb) 4331 { 4332 /* Unfortunately we don't support this one. Any brave souls? */ 4333 if (skb->ip_summed == CHECKSUM_COMPLETE) 4334 skb->ip_summed = CHECKSUM_NONE; 4335 } 4336 4337 /** 4338 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4339 * @skb: skb to check 4340 * 4341 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4342 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4343 * use this helper, to document places where we make this assertion. 4344 */ 4345 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4346 { 4347 #ifdef DEBUG 4348 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4349 #endif 4350 } 4351 4352 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4353 4354 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4355 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4356 unsigned int transport_len, 4357 __sum16(*skb_chkf)(struct sk_buff *skb)); 4358 4359 /** 4360 * skb_head_is_locked - Determine if the skb->head is locked down 4361 * @skb: skb to check 4362 * 4363 * The head on skbs build around a head frag can be removed if they are 4364 * not cloned. This function returns true if the skb head is locked down 4365 * due to either being allocated via kmalloc, or by being a clone with 4366 * multiple references to the head. 4367 */ 4368 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4369 { 4370 return !skb->head_frag || skb_cloned(skb); 4371 } 4372 4373 /* Local Checksum Offload. 4374 * Compute outer checksum based on the assumption that the 4375 * inner checksum will be offloaded later. 4376 * See Documentation/networking/checksum-offloads.rst for 4377 * explanation of how this works. 4378 * Fill in outer checksum adjustment (e.g. with sum of outer 4379 * pseudo-header) before calling. 4380 * Also ensure that inner checksum is in linear data area. 4381 */ 4382 static inline __wsum lco_csum(struct sk_buff *skb) 4383 { 4384 unsigned char *csum_start = skb_checksum_start(skb); 4385 unsigned char *l4_hdr = skb_transport_header(skb); 4386 __wsum partial; 4387 4388 /* Start with complement of inner checksum adjustment */ 4389 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4390 skb->csum_offset)); 4391 4392 /* Add in checksum of our headers (incl. outer checksum 4393 * adjustment filled in by caller) and return result. 4394 */ 4395 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4396 } 4397 4398 #endif /* __KERNEL__ */ 4399 #endif /* _LINUX_SKBUFF_H */ 4400