xref: /linux-6.15/include/linux/skbuff.h (revision 0768e170)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
251 struct nf_conntrack {
252 	atomic_t use;
253 };
254 #endif
255 
256 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
257 struct nf_bridge_info {
258 	enum {
259 		BRNF_PROTO_UNCHANGED,
260 		BRNF_PROTO_8021Q,
261 		BRNF_PROTO_PPPOE
262 	} orig_proto:8;
263 	u8			pkt_otherhost:1;
264 	u8			in_prerouting:1;
265 	u8			bridged_dnat:1;
266 	__u16			frag_max_size;
267 	struct net_device	*physindev;
268 
269 	/* always valid & non-NULL from FORWARD on, for physdev match */
270 	struct net_device	*physoutdev;
271 	union {
272 		/* prerouting: detect dnat in orig/reply direction */
273 		__be32          ipv4_daddr;
274 		struct in6_addr ipv6_daddr;
275 
276 		/* after prerouting + nat detected: store original source
277 		 * mac since neigh resolution overwrites it, only used while
278 		 * skb is out in neigh layer.
279 		 */
280 		char neigh_header[8];
281 	};
282 };
283 #endif
284 
285 struct sk_buff_head {
286 	/* These two members must be first. */
287 	struct sk_buff	*next;
288 	struct sk_buff	*prev;
289 
290 	__u32		qlen;
291 	spinlock_t	lock;
292 };
293 
294 struct sk_buff;
295 
296 /* To allow 64K frame to be packed as single skb without frag_list we
297  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298  * buffers which do not start on a page boundary.
299  *
300  * Since GRO uses frags we allocate at least 16 regardless of page
301  * size.
302  */
303 #if (65536/PAGE_SIZE + 1) < 16
304 #define MAX_SKB_FRAGS 16UL
305 #else
306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
307 #endif
308 extern int sysctl_max_skb_frags;
309 
310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311  * segment using its current segmentation instead.
312  */
313 #define GSO_BY_FRAGS	0xFFFF
314 
315 typedef struct skb_frag_struct skb_frag_t;
316 
317 struct skb_frag_struct {
318 	struct {
319 		struct page *p;
320 	} page;
321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
322 	__u32 page_offset;
323 	__u32 size;
324 #else
325 	__u16 page_offset;
326 	__u16 size;
327 #endif
328 };
329 
330 /**
331  * skb_frag_size - Returns the size of a skb fragment
332  * @frag: skb fragment
333  */
334 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
335 {
336 	return frag->size;
337 }
338 
339 /**
340  * skb_frag_size_set - Sets the size of a skb fragment
341  * @frag: skb fragment
342  * @size: size of fragment
343  */
344 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
345 {
346 	frag->size = size;
347 }
348 
349 /**
350  * skb_frag_size_add - Incrementes the size of a skb fragment by %delta
351  * @frag: skb fragment
352  * @delta: value to add
353  */
354 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
355 {
356 	frag->size += delta;
357 }
358 
359 /**
360  * skb_frag_size_sub - Decrements the size of a skb fragment by %delta
361  * @frag: skb fragment
362  * @delta: value to subtract
363  */
364 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
365 {
366 	frag->size -= delta;
367 }
368 
369 /**
370  * skb_frag_must_loop - Test if %p is a high memory page
371  * @p: fragment's page
372  */
373 static inline bool skb_frag_must_loop(struct page *p)
374 {
375 #if defined(CONFIG_HIGHMEM)
376 	if (PageHighMem(p))
377 		return true;
378 #endif
379 	return false;
380 }
381 
382 /**
383  *	skb_frag_foreach_page - loop over pages in a fragment
384  *
385  *	@f:		skb frag to operate on
386  *	@f_off:		offset from start of f->page.p
387  *	@f_len:		length from f_off to loop over
388  *	@p:		(temp var) current page
389  *	@p_off:		(temp var) offset from start of current page,
390  *	                           non-zero only on first page.
391  *	@p_len:		(temp var) length in current page,
392  *				   < PAGE_SIZE only on first and last page.
393  *	@copied:	(temp var) length so far, excluding current p_len.
394  *
395  *	A fragment can hold a compound page, in which case per-page
396  *	operations, notably kmap_atomic, must be called for each
397  *	regular page.
398  */
399 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
400 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
401 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
402 	     p_len = skb_frag_must_loop(p) ?				\
403 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
404 	     copied = 0;						\
405 	     copied < f_len;						\
406 	     copied += p_len, p++, p_off = 0,				\
407 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
408 
409 #define HAVE_HW_TIME_STAMP
410 
411 /**
412  * struct skb_shared_hwtstamps - hardware time stamps
413  * @hwtstamp:	hardware time stamp transformed into duration
414  *		since arbitrary point in time
415  *
416  * Software time stamps generated by ktime_get_real() are stored in
417  * skb->tstamp.
418  *
419  * hwtstamps can only be compared against other hwtstamps from
420  * the same device.
421  *
422  * This structure is attached to packets as part of the
423  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
424  */
425 struct skb_shared_hwtstamps {
426 	ktime_t	hwtstamp;
427 };
428 
429 /* Definitions for tx_flags in struct skb_shared_info */
430 enum {
431 	/* generate hardware time stamp */
432 	SKBTX_HW_TSTAMP = 1 << 0,
433 
434 	/* generate software time stamp when queueing packet to NIC */
435 	SKBTX_SW_TSTAMP = 1 << 1,
436 
437 	/* device driver is going to provide hardware time stamp */
438 	SKBTX_IN_PROGRESS = 1 << 2,
439 
440 	/* device driver supports TX zero-copy buffers */
441 	SKBTX_DEV_ZEROCOPY = 1 << 3,
442 
443 	/* generate wifi status information (where possible) */
444 	SKBTX_WIFI_STATUS = 1 << 4,
445 
446 	/* This indicates at least one fragment might be overwritten
447 	 * (as in vmsplice(), sendfile() ...)
448 	 * If we need to compute a TX checksum, we'll need to copy
449 	 * all frags to avoid possible bad checksum
450 	 */
451 	SKBTX_SHARED_FRAG = 1 << 5,
452 
453 	/* generate software time stamp when entering packet scheduling */
454 	SKBTX_SCHED_TSTAMP = 1 << 6,
455 };
456 
457 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
458 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
459 				 SKBTX_SCHED_TSTAMP)
460 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
461 
462 /*
463  * The callback notifies userspace to release buffers when skb DMA is done in
464  * lower device, the skb last reference should be 0 when calling this.
465  * The zerocopy_success argument is true if zero copy transmit occurred,
466  * false on data copy or out of memory error caused by data copy attempt.
467  * The ctx field is used to track device context.
468  * The desc field is used to track userspace buffer index.
469  */
470 struct ubuf_info {
471 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
472 	union {
473 		struct {
474 			unsigned long desc;
475 			void *ctx;
476 		};
477 		struct {
478 			u32 id;
479 			u16 len;
480 			u16 zerocopy:1;
481 			u32 bytelen;
482 		};
483 	};
484 	refcount_t refcnt;
485 
486 	struct mmpin {
487 		struct user_struct *user;
488 		unsigned int num_pg;
489 	} mmp;
490 };
491 
492 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
493 
494 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
495 void mm_unaccount_pinned_pages(struct mmpin *mmp);
496 
497 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
498 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
499 					struct ubuf_info *uarg);
500 
501 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
502 {
503 	refcount_inc(&uarg->refcnt);
504 }
505 
506 void sock_zerocopy_put(struct ubuf_info *uarg);
507 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
508 
509 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
510 
511 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
512 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
513 			     struct msghdr *msg, int len,
514 			     struct ubuf_info *uarg);
515 
516 /* This data is invariant across clones and lives at
517  * the end of the header data, ie. at skb->end.
518  */
519 struct skb_shared_info {
520 	__u8		__unused;
521 	__u8		meta_len;
522 	__u8		nr_frags;
523 	__u8		tx_flags;
524 	unsigned short	gso_size;
525 	/* Warning: this field is not always filled in (UFO)! */
526 	unsigned short	gso_segs;
527 	struct sk_buff	*frag_list;
528 	struct skb_shared_hwtstamps hwtstamps;
529 	unsigned int	gso_type;
530 	u32		tskey;
531 
532 	/*
533 	 * Warning : all fields before dataref are cleared in __alloc_skb()
534 	 */
535 	atomic_t	dataref;
536 
537 	/* Intermediate layers must ensure that destructor_arg
538 	 * remains valid until skb destructor */
539 	void *		destructor_arg;
540 
541 	/* must be last field, see pskb_expand_head() */
542 	skb_frag_t	frags[MAX_SKB_FRAGS];
543 };
544 
545 /* We divide dataref into two halves.  The higher 16 bits hold references
546  * to the payload part of skb->data.  The lower 16 bits hold references to
547  * the entire skb->data.  A clone of a headerless skb holds the length of
548  * the header in skb->hdr_len.
549  *
550  * All users must obey the rule that the skb->data reference count must be
551  * greater than or equal to the payload reference count.
552  *
553  * Holding a reference to the payload part means that the user does not
554  * care about modifications to the header part of skb->data.
555  */
556 #define SKB_DATAREF_SHIFT 16
557 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
558 
559 
560 enum {
561 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
562 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
563 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
564 };
565 
566 enum {
567 	SKB_GSO_TCPV4 = 1 << 0,
568 
569 	/* This indicates the skb is from an untrusted source. */
570 	SKB_GSO_DODGY = 1 << 1,
571 
572 	/* This indicates the tcp segment has CWR set. */
573 	SKB_GSO_TCP_ECN = 1 << 2,
574 
575 	SKB_GSO_TCP_FIXEDID = 1 << 3,
576 
577 	SKB_GSO_TCPV6 = 1 << 4,
578 
579 	SKB_GSO_FCOE = 1 << 5,
580 
581 	SKB_GSO_GRE = 1 << 6,
582 
583 	SKB_GSO_GRE_CSUM = 1 << 7,
584 
585 	SKB_GSO_IPXIP4 = 1 << 8,
586 
587 	SKB_GSO_IPXIP6 = 1 << 9,
588 
589 	SKB_GSO_UDP_TUNNEL = 1 << 10,
590 
591 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
592 
593 	SKB_GSO_PARTIAL = 1 << 12,
594 
595 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
596 
597 	SKB_GSO_SCTP = 1 << 14,
598 
599 	SKB_GSO_ESP = 1 << 15,
600 
601 	SKB_GSO_UDP = 1 << 16,
602 
603 	SKB_GSO_UDP_L4 = 1 << 17,
604 };
605 
606 #if BITS_PER_LONG > 32
607 #define NET_SKBUFF_DATA_USES_OFFSET 1
608 #endif
609 
610 #ifdef NET_SKBUFF_DATA_USES_OFFSET
611 typedef unsigned int sk_buff_data_t;
612 #else
613 typedef unsigned char *sk_buff_data_t;
614 #endif
615 
616 /**
617  *	struct sk_buff - socket buffer
618  *	@next: Next buffer in list
619  *	@prev: Previous buffer in list
620  *	@tstamp: Time we arrived/left
621  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
622  *	@sk: Socket we are owned by
623  *	@dev: Device we arrived on/are leaving by
624  *	@cb: Control buffer. Free for use by every layer. Put private vars here
625  *	@_skb_refdst: destination entry (with norefcount bit)
626  *	@sp: the security path, used for xfrm
627  *	@len: Length of actual data
628  *	@data_len: Data length
629  *	@mac_len: Length of link layer header
630  *	@hdr_len: writable header length of cloned skb
631  *	@csum: Checksum (must include start/offset pair)
632  *	@csum_start: Offset from skb->head where checksumming should start
633  *	@csum_offset: Offset from csum_start where checksum should be stored
634  *	@priority: Packet queueing priority
635  *	@ignore_df: allow local fragmentation
636  *	@cloned: Head may be cloned (check refcnt to be sure)
637  *	@ip_summed: Driver fed us an IP checksum
638  *	@nohdr: Payload reference only, must not modify header
639  *	@pkt_type: Packet class
640  *	@fclone: skbuff clone status
641  *	@ipvs_property: skbuff is owned by ipvs
642  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
643  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
644  *	@tc_skip_classify: do not classify packet. set by IFB device
645  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
646  *	@tc_redirected: packet was redirected by a tc action
647  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
648  *	@peeked: this packet has been seen already, so stats have been
649  *		done for it, don't do them again
650  *	@nf_trace: netfilter packet trace flag
651  *	@protocol: Packet protocol from driver
652  *	@destructor: Destruct function
653  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
654  *	@_nfct: Associated connection, if any (with nfctinfo bits)
655  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
656  *	@skb_iif: ifindex of device we arrived on
657  *	@tc_index: Traffic control index
658  *	@hash: the packet hash
659  *	@queue_mapping: Queue mapping for multiqueue devices
660  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
661  *	@active_extensions: active extensions (skb_ext_id types)
662  *	@ndisc_nodetype: router type (from link layer)
663  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
664  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
665  *		ports.
666  *	@sw_hash: indicates hash was computed in software stack
667  *	@wifi_acked_valid: wifi_acked was set
668  *	@wifi_acked: whether frame was acked on wifi or not
669  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
670  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
671  *	@dst_pending_confirm: need to confirm neighbour
672  *	@decrypted: Decrypted SKB
673  *	@napi_id: id of the NAPI struct this skb came from
674  *	@secmark: security marking
675  *	@mark: Generic packet mark
676  *	@vlan_proto: vlan encapsulation protocol
677  *	@vlan_tci: vlan tag control information
678  *	@inner_protocol: Protocol (encapsulation)
679  *	@inner_transport_header: Inner transport layer header (encapsulation)
680  *	@inner_network_header: Network layer header (encapsulation)
681  *	@inner_mac_header: Link layer header (encapsulation)
682  *	@transport_header: Transport layer header
683  *	@network_header: Network layer header
684  *	@mac_header: Link layer header
685  *	@tail: Tail pointer
686  *	@end: End pointer
687  *	@head: Head of buffer
688  *	@data: Data head pointer
689  *	@truesize: Buffer size
690  *	@users: User count - see {datagram,tcp}.c
691  *	@extensions: allocated extensions, valid if active_extensions is nonzero
692  */
693 
694 struct sk_buff {
695 	union {
696 		struct {
697 			/* These two members must be first. */
698 			struct sk_buff		*next;
699 			struct sk_buff		*prev;
700 
701 			union {
702 				struct net_device	*dev;
703 				/* Some protocols might use this space to store information,
704 				 * while device pointer would be NULL.
705 				 * UDP receive path is one user.
706 				 */
707 				unsigned long		dev_scratch;
708 			};
709 		};
710 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
711 		struct list_head	list;
712 	};
713 
714 	union {
715 		struct sock		*sk;
716 		int			ip_defrag_offset;
717 	};
718 
719 	union {
720 		ktime_t		tstamp;
721 		u64		skb_mstamp_ns; /* earliest departure time */
722 	};
723 	/*
724 	 * This is the control buffer. It is free to use for every
725 	 * layer. Please put your private variables there. If you
726 	 * want to keep them across layers you have to do a skb_clone()
727 	 * first. This is owned by whoever has the skb queued ATM.
728 	 */
729 	char			cb[48] __aligned(8);
730 
731 	union {
732 		struct {
733 			unsigned long	_skb_refdst;
734 			void		(*destructor)(struct sk_buff *skb);
735 		};
736 		struct list_head	tcp_tsorted_anchor;
737 	};
738 
739 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
740 	unsigned long		 _nfct;
741 #endif
742 	unsigned int		len,
743 				data_len;
744 	__u16			mac_len,
745 				hdr_len;
746 
747 	/* Following fields are _not_ copied in __copy_skb_header()
748 	 * Note that queue_mapping is here mostly to fill a hole.
749 	 */
750 	__u16			queue_mapping;
751 
752 /* if you move cloned around you also must adapt those constants */
753 #ifdef __BIG_ENDIAN_BITFIELD
754 #define CLONED_MASK	(1 << 7)
755 #else
756 #define CLONED_MASK	1
757 #endif
758 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
759 
760 	__u8			__cloned_offset[0];
761 	__u8			cloned:1,
762 				nohdr:1,
763 				fclone:2,
764 				peeked:1,
765 				head_frag:1,
766 				pfmemalloc:1;
767 #ifdef CONFIG_SKB_EXTENSIONS
768 	__u8			active_extensions;
769 #endif
770 	/* fields enclosed in headers_start/headers_end are copied
771 	 * using a single memcpy() in __copy_skb_header()
772 	 */
773 	/* private: */
774 	__u32			headers_start[0];
775 	/* public: */
776 
777 /* if you move pkt_type around you also must adapt those constants */
778 #ifdef __BIG_ENDIAN_BITFIELD
779 #define PKT_TYPE_MAX	(7 << 5)
780 #else
781 #define PKT_TYPE_MAX	7
782 #endif
783 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
784 
785 	__u8			__pkt_type_offset[0];
786 	__u8			pkt_type:3;
787 	__u8			ignore_df:1;
788 	__u8			nf_trace:1;
789 	__u8			ip_summed:2;
790 	__u8			ooo_okay:1;
791 
792 	__u8			l4_hash:1;
793 	__u8			sw_hash:1;
794 	__u8			wifi_acked_valid:1;
795 	__u8			wifi_acked:1;
796 	__u8			no_fcs:1;
797 	/* Indicates the inner headers are valid in the skbuff. */
798 	__u8			encapsulation:1;
799 	__u8			encap_hdr_csum:1;
800 	__u8			csum_valid:1;
801 
802 #ifdef __BIG_ENDIAN_BITFIELD
803 #define PKT_VLAN_PRESENT_BIT	7
804 #else
805 #define PKT_VLAN_PRESENT_BIT	0
806 #endif
807 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
808 	__u8			__pkt_vlan_present_offset[0];
809 	__u8			vlan_present:1;
810 	__u8			csum_complete_sw:1;
811 	__u8			csum_level:2;
812 	__u8			csum_not_inet:1;
813 	__u8			dst_pending_confirm:1;
814 #ifdef CONFIG_IPV6_NDISC_NODETYPE
815 	__u8			ndisc_nodetype:2;
816 #endif
817 
818 	__u8			ipvs_property:1;
819 	__u8			inner_protocol_type:1;
820 	__u8			remcsum_offload:1;
821 #ifdef CONFIG_NET_SWITCHDEV
822 	__u8			offload_fwd_mark:1;
823 	__u8			offload_l3_fwd_mark:1;
824 #endif
825 #ifdef CONFIG_NET_CLS_ACT
826 	__u8			tc_skip_classify:1;
827 	__u8			tc_at_ingress:1;
828 	__u8			tc_redirected:1;
829 	__u8			tc_from_ingress:1;
830 #endif
831 #ifdef CONFIG_TLS_DEVICE
832 	__u8			decrypted:1;
833 #endif
834 
835 #ifdef CONFIG_NET_SCHED
836 	__u16			tc_index;	/* traffic control index */
837 #endif
838 
839 	union {
840 		__wsum		csum;
841 		struct {
842 			__u16	csum_start;
843 			__u16	csum_offset;
844 		};
845 	};
846 	__u32			priority;
847 	int			skb_iif;
848 	__u32			hash;
849 	__be16			vlan_proto;
850 	__u16			vlan_tci;
851 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
852 	union {
853 		unsigned int	napi_id;
854 		unsigned int	sender_cpu;
855 	};
856 #endif
857 #ifdef CONFIG_NETWORK_SECMARK
858 	__u32		secmark;
859 #endif
860 
861 	union {
862 		__u32		mark;
863 		__u32		reserved_tailroom;
864 	};
865 
866 	union {
867 		__be16		inner_protocol;
868 		__u8		inner_ipproto;
869 	};
870 
871 	__u16			inner_transport_header;
872 	__u16			inner_network_header;
873 	__u16			inner_mac_header;
874 
875 	__be16			protocol;
876 	__u16			transport_header;
877 	__u16			network_header;
878 	__u16			mac_header;
879 
880 	/* private: */
881 	__u32			headers_end[0];
882 	/* public: */
883 
884 	/* These elements must be at the end, see alloc_skb() for details.  */
885 	sk_buff_data_t		tail;
886 	sk_buff_data_t		end;
887 	unsigned char		*head,
888 				*data;
889 	unsigned int		truesize;
890 	refcount_t		users;
891 
892 #ifdef CONFIG_SKB_EXTENSIONS
893 	/* only useable after checking ->active_extensions != 0 */
894 	struct skb_ext		*extensions;
895 #endif
896 };
897 
898 #ifdef __KERNEL__
899 /*
900  *	Handling routines are only of interest to the kernel
901  */
902 
903 #define SKB_ALLOC_FCLONE	0x01
904 #define SKB_ALLOC_RX		0x02
905 #define SKB_ALLOC_NAPI		0x04
906 
907 /**
908  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
909  * @skb: buffer
910  */
911 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
912 {
913 	return unlikely(skb->pfmemalloc);
914 }
915 
916 /*
917  * skb might have a dst pointer attached, refcounted or not.
918  * _skb_refdst low order bit is set if refcount was _not_ taken
919  */
920 #define SKB_DST_NOREF	1UL
921 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
922 
923 #define SKB_NFCT_PTRMASK	~(7UL)
924 /**
925  * skb_dst - returns skb dst_entry
926  * @skb: buffer
927  *
928  * Returns skb dst_entry, regardless of reference taken or not.
929  */
930 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
931 {
932 	/* If refdst was not refcounted, check we still are in a
933 	 * rcu_read_lock section
934 	 */
935 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
936 		!rcu_read_lock_held() &&
937 		!rcu_read_lock_bh_held());
938 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
939 }
940 
941 /**
942  * skb_dst_set - sets skb dst
943  * @skb: buffer
944  * @dst: dst entry
945  *
946  * Sets skb dst, assuming a reference was taken on dst and should
947  * be released by skb_dst_drop()
948  */
949 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
950 {
951 	skb->_skb_refdst = (unsigned long)dst;
952 }
953 
954 /**
955  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
956  * @skb: buffer
957  * @dst: dst entry
958  *
959  * Sets skb dst, assuming a reference was not taken on dst.
960  * If dst entry is cached, we do not take reference and dst_release
961  * will be avoided by refdst_drop. If dst entry is not cached, we take
962  * reference, so that last dst_release can destroy the dst immediately.
963  */
964 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
965 {
966 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
967 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
968 }
969 
970 /**
971  * skb_dst_is_noref - Test if skb dst isn't refcounted
972  * @skb: buffer
973  */
974 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
975 {
976 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
977 }
978 
979 /**
980  * skb_rtable - Returns the skb &rtable
981  * @skb: buffer
982  */
983 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
984 {
985 	return (struct rtable *)skb_dst(skb);
986 }
987 
988 /* For mangling skb->pkt_type from user space side from applications
989  * such as nft, tc, etc, we only allow a conservative subset of
990  * possible pkt_types to be set.
991 */
992 static inline bool skb_pkt_type_ok(u32 ptype)
993 {
994 	return ptype <= PACKET_OTHERHOST;
995 }
996 
997 /**
998  * skb_napi_id - Returns the skb's NAPI id
999  * @skb: buffer
1000  */
1001 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1002 {
1003 #ifdef CONFIG_NET_RX_BUSY_POLL
1004 	return skb->napi_id;
1005 #else
1006 	return 0;
1007 #endif
1008 }
1009 
1010 /**
1011  * skb_unref - decrement the skb's reference count
1012  * @skb: buffer
1013  *
1014  * Returns true if we can free the skb.
1015  */
1016 static inline bool skb_unref(struct sk_buff *skb)
1017 {
1018 	if (unlikely(!skb))
1019 		return false;
1020 	if (likely(refcount_read(&skb->users) == 1))
1021 		smp_rmb();
1022 	else if (likely(!refcount_dec_and_test(&skb->users)))
1023 		return false;
1024 
1025 	return true;
1026 }
1027 
1028 void skb_release_head_state(struct sk_buff *skb);
1029 void kfree_skb(struct sk_buff *skb);
1030 void kfree_skb_list(struct sk_buff *segs);
1031 void skb_tx_error(struct sk_buff *skb);
1032 void consume_skb(struct sk_buff *skb);
1033 void __consume_stateless_skb(struct sk_buff *skb);
1034 void  __kfree_skb(struct sk_buff *skb);
1035 extern struct kmem_cache *skbuff_head_cache;
1036 
1037 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1038 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1039 		      bool *fragstolen, int *delta_truesize);
1040 
1041 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1042 			    int node);
1043 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1044 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1045 
1046 /**
1047  * alloc_skb - allocate a network buffer
1048  * @size: size to allocate
1049  * @priority: allocation mask
1050  *
1051  * This function is a convenient wrapper around __alloc_skb().
1052  */
1053 static inline struct sk_buff *alloc_skb(unsigned int size,
1054 					gfp_t priority)
1055 {
1056 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1057 }
1058 
1059 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1060 				     unsigned long data_len,
1061 				     int max_page_order,
1062 				     int *errcode,
1063 				     gfp_t gfp_mask);
1064 
1065 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1066 struct sk_buff_fclones {
1067 	struct sk_buff	skb1;
1068 
1069 	struct sk_buff	skb2;
1070 
1071 	refcount_t	fclone_ref;
1072 };
1073 
1074 /**
1075  *	skb_fclone_busy - check if fclone is busy
1076  *	@sk: socket
1077  *	@skb: buffer
1078  *
1079  * Returns true if skb is a fast clone, and its clone is not freed.
1080  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1081  * so we also check that this didnt happen.
1082  */
1083 static inline bool skb_fclone_busy(const struct sock *sk,
1084 				   const struct sk_buff *skb)
1085 {
1086 	const struct sk_buff_fclones *fclones;
1087 
1088 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1089 
1090 	return skb->fclone == SKB_FCLONE_ORIG &&
1091 	       refcount_read(&fclones->fclone_ref) > 1 &&
1092 	       fclones->skb2.sk == sk;
1093 }
1094 
1095 /**
1096  * alloc_skb_fclone - allocate a network buffer from fclone cache
1097  * @size: size to allocate
1098  * @priority: allocation mask
1099  *
1100  * This function is a convenient wrapper around __alloc_skb().
1101  */
1102 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1103 					       gfp_t priority)
1104 {
1105 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1106 }
1107 
1108 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1109 void skb_headers_offset_update(struct sk_buff *skb, int off);
1110 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1111 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1112 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1113 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1114 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1115 				   gfp_t gfp_mask, bool fclone);
1116 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1117 					  gfp_t gfp_mask)
1118 {
1119 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1120 }
1121 
1122 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1123 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1124 				     unsigned int headroom);
1125 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1126 				int newtailroom, gfp_t priority);
1127 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1128 				     int offset, int len);
1129 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1130 			      int offset, int len);
1131 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1132 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1133 
1134 /**
1135  *	skb_pad			-	zero pad the tail of an skb
1136  *	@skb: buffer to pad
1137  *	@pad: space to pad
1138  *
1139  *	Ensure that a buffer is followed by a padding area that is zero
1140  *	filled. Used by network drivers which may DMA or transfer data
1141  *	beyond the buffer end onto the wire.
1142  *
1143  *	May return error in out of memory cases. The skb is freed on error.
1144  */
1145 static inline int skb_pad(struct sk_buff *skb, int pad)
1146 {
1147 	return __skb_pad(skb, pad, true);
1148 }
1149 #define dev_kfree_skb(a)	consume_skb(a)
1150 
1151 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1152 			 int offset, size_t size);
1153 
1154 struct skb_seq_state {
1155 	__u32		lower_offset;
1156 	__u32		upper_offset;
1157 	__u32		frag_idx;
1158 	__u32		stepped_offset;
1159 	struct sk_buff	*root_skb;
1160 	struct sk_buff	*cur_skb;
1161 	__u8		*frag_data;
1162 };
1163 
1164 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1165 			  unsigned int to, struct skb_seq_state *st);
1166 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1167 			  struct skb_seq_state *st);
1168 void skb_abort_seq_read(struct skb_seq_state *st);
1169 
1170 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1171 			   unsigned int to, struct ts_config *config);
1172 
1173 /*
1174  * Packet hash types specify the type of hash in skb_set_hash.
1175  *
1176  * Hash types refer to the protocol layer addresses which are used to
1177  * construct a packet's hash. The hashes are used to differentiate or identify
1178  * flows of the protocol layer for the hash type. Hash types are either
1179  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1180  *
1181  * Properties of hashes:
1182  *
1183  * 1) Two packets in different flows have different hash values
1184  * 2) Two packets in the same flow should have the same hash value
1185  *
1186  * A hash at a higher layer is considered to be more specific. A driver should
1187  * set the most specific hash possible.
1188  *
1189  * A driver cannot indicate a more specific hash than the layer at which a hash
1190  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1191  *
1192  * A driver may indicate a hash level which is less specific than the
1193  * actual layer the hash was computed on. For instance, a hash computed
1194  * at L4 may be considered an L3 hash. This should only be done if the
1195  * driver can't unambiguously determine that the HW computed the hash at
1196  * the higher layer. Note that the "should" in the second property above
1197  * permits this.
1198  */
1199 enum pkt_hash_types {
1200 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1201 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1202 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1203 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1204 };
1205 
1206 static inline void skb_clear_hash(struct sk_buff *skb)
1207 {
1208 	skb->hash = 0;
1209 	skb->sw_hash = 0;
1210 	skb->l4_hash = 0;
1211 }
1212 
1213 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1214 {
1215 	if (!skb->l4_hash)
1216 		skb_clear_hash(skb);
1217 }
1218 
1219 static inline void
1220 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1221 {
1222 	skb->l4_hash = is_l4;
1223 	skb->sw_hash = is_sw;
1224 	skb->hash = hash;
1225 }
1226 
1227 static inline void
1228 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1229 {
1230 	/* Used by drivers to set hash from HW */
1231 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1232 }
1233 
1234 static inline void
1235 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1236 {
1237 	__skb_set_hash(skb, hash, true, is_l4);
1238 }
1239 
1240 void __skb_get_hash(struct sk_buff *skb);
1241 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1242 u32 skb_get_poff(const struct sk_buff *skb);
1243 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1244 		   const struct flow_keys_basic *keys, int hlen);
1245 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1246 			    void *data, int hlen_proto);
1247 
1248 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1249 					int thoff, u8 ip_proto)
1250 {
1251 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1252 }
1253 
1254 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1255 			     const struct flow_dissector_key *key,
1256 			     unsigned int key_count);
1257 
1258 #ifdef CONFIG_NET
1259 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1260 				       struct bpf_prog *prog);
1261 
1262 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1263 #else
1264 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1265 						     struct bpf_prog *prog)
1266 {
1267 	return -EOPNOTSUPP;
1268 }
1269 
1270 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1271 {
1272 	return -EOPNOTSUPP;
1273 }
1274 #endif
1275 
1276 struct bpf_flow_keys;
1277 bool __skb_flow_bpf_dissect(struct bpf_prog *prog,
1278 			    const struct sk_buff *skb,
1279 			    struct flow_dissector *flow_dissector,
1280 			    struct bpf_flow_keys *flow_keys);
1281 bool __skb_flow_dissect(const struct sk_buff *skb,
1282 			struct flow_dissector *flow_dissector,
1283 			void *target_container,
1284 			void *data, __be16 proto, int nhoff, int hlen,
1285 			unsigned int flags);
1286 
1287 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1288 				    struct flow_dissector *flow_dissector,
1289 				    void *target_container, unsigned int flags)
1290 {
1291 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1292 				  NULL, 0, 0, 0, flags);
1293 }
1294 
1295 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1296 					      struct flow_keys *flow,
1297 					      unsigned int flags)
1298 {
1299 	memset(flow, 0, sizeof(*flow));
1300 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1301 				  NULL, 0, 0, 0, flags);
1302 }
1303 
1304 static inline bool
1305 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1306 				 struct flow_keys_basic *flow, void *data,
1307 				 __be16 proto, int nhoff, int hlen,
1308 				 unsigned int flags)
1309 {
1310 	memset(flow, 0, sizeof(*flow));
1311 	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1312 				  data, proto, nhoff, hlen, flags);
1313 }
1314 
1315 void
1316 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1317 			     struct flow_dissector *flow_dissector,
1318 			     void *target_container);
1319 
1320 static inline __u32 skb_get_hash(struct sk_buff *skb)
1321 {
1322 	if (!skb->l4_hash && !skb->sw_hash)
1323 		__skb_get_hash(skb);
1324 
1325 	return skb->hash;
1326 }
1327 
1328 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1329 {
1330 	if (!skb->l4_hash && !skb->sw_hash) {
1331 		struct flow_keys keys;
1332 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1333 
1334 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1335 	}
1336 
1337 	return skb->hash;
1338 }
1339 
1340 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1341 
1342 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1343 {
1344 	return skb->hash;
1345 }
1346 
1347 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1348 {
1349 	to->hash = from->hash;
1350 	to->sw_hash = from->sw_hash;
1351 	to->l4_hash = from->l4_hash;
1352 };
1353 
1354 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1355 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1356 {
1357 	return skb->head + skb->end;
1358 }
1359 
1360 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1361 {
1362 	return skb->end;
1363 }
1364 #else
1365 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1366 {
1367 	return skb->end;
1368 }
1369 
1370 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1371 {
1372 	return skb->end - skb->head;
1373 }
1374 #endif
1375 
1376 /* Internal */
1377 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1378 
1379 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1380 {
1381 	return &skb_shinfo(skb)->hwtstamps;
1382 }
1383 
1384 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1385 {
1386 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1387 
1388 	return is_zcopy ? skb_uarg(skb) : NULL;
1389 }
1390 
1391 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1392 				 bool *have_ref)
1393 {
1394 	if (skb && uarg && !skb_zcopy(skb)) {
1395 		if (unlikely(have_ref && *have_ref))
1396 			*have_ref = false;
1397 		else
1398 			sock_zerocopy_get(uarg);
1399 		skb_shinfo(skb)->destructor_arg = uarg;
1400 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1401 	}
1402 }
1403 
1404 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1405 {
1406 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1407 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1408 }
1409 
1410 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1411 {
1412 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1413 }
1414 
1415 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1416 {
1417 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1418 }
1419 
1420 /* Release a reference on a zerocopy structure */
1421 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1422 {
1423 	struct ubuf_info *uarg = skb_zcopy(skb);
1424 
1425 	if (uarg) {
1426 		if (uarg->callback == sock_zerocopy_callback) {
1427 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1428 			sock_zerocopy_put(uarg);
1429 		} else if (!skb_zcopy_is_nouarg(skb)) {
1430 			uarg->callback(uarg, zerocopy);
1431 		}
1432 
1433 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1434 	}
1435 }
1436 
1437 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1438 static inline void skb_zcopy_abort(struct sk_buff *skb)
1439 {
1440 	struct ubuf_info *uarg = skb_zcopy(skb);
1441 
1442 	if (uarg) {
1443 		sock_zerocopy_put_abort(uarg, false);
1444 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1445 	}
1446 }
1447 
1448 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1449 {
1450 	skb->next = NULL;
1451 }
1452 
1453 static inline void skb_list_del_init(struct sk_buff *skb)
1454 {
1455 	__list_del_entry(&skb->list);
1456 	skb_mark_not_on_list(skb);
1457 }
1458 
1459 /**
1460  *	skb_queue_empty - check if a queue is empty
1461  *	@list: queue head
1462  *
1463  *	Returns true if the queue is empty, false otherwise.
1464  */
1465 static inline int skb_queue_empty(const struct sk_buff_head *list)
1466 {
1467 	return list->next == (const struct sk_buff *) list;
1468 }
1469 
1470 /**
1471  *	skb_queue_is_last - check if skb is the last entry in the queue
1472  *	@list: queue head
1473  *	@skb: buffer
1474  *
1475  *	Returns true if @skb is the last buffer on the list.
1476  */
1477 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1478 				     const struct sk_buff *skb)
1479 {
1480 	return skb->next == (const struct sk_buff *) list;
1481 }
1482 
1483 /**
1484  *	skb_queue_is_first - check if skb is the first entry in the queue
1485  *	@list: queue head
1486  *	@skb: buffer
1487  *
1488  *	Returns true if @skb is the first buffer on the list.
1489  */
1490 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1491 				      const struct sk_buff *skb)
1492 {
1493 	return skb->prev == (const struct sk_buff *) list;
1494 }
1495 
1496 /**
1497  *	skb_queue_next - return the next packet in the queue
1498  *	@list: queue head
1499  *	@skb: current buffer
1500  *
1501  *	Return the next packet in @list after @skb.  It is only valid to
1502  *	call this if skb_queue_is_last() evaluates to false.
1503  */
1504 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1505 					     const struct sk_buff *skb)
1506 {
1507 	/* This BUG_ON may seem severe, but if we just return then we
1508 	 * are going to dereference garbage.
1509 	 */
1510 	BUG_ON(skb_queue_is_last(list, skb));
1511 	return skb->next;
1512 }
1513 
1514 /**
1515  *	skb_queue_prev - return the prev packet in the queue
1516  *	@list: queue head
1517  *	@skb: current buffer
1518  *
1519  *	Return the prev packet in @list before @skb.  It is only valid to
1520  *	call this if skb_queue_is_first() evaluates to false.
1521  */
1522 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1523 					     const struct sk_buff *skb)
1524 {
1525 	/* This BUG_ON may seem severe, but if we just return then we
1526 	 * are going to dereference garbage.
1527 	 */
1528 	BUG_ON(skb_queue_is_first(list, skb));
1529 	return skb->prev;
1530 }
1531 
1532 /**
1533  *	skb_get - reference buffer
1534  *	@skb: buffer to reference
1535  *
1536  *	Makes another reference to a socket buffer and returns a pointer
1537  *	to the buffer.
1538  */
1539 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1540 {
1541 	refcount_inc(&skb->users);
1542 	return skb;
1543 }
1544 
1545 /*
1546  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1547  */
1548 
1549 /**
1550  *	skb_cloned - is the buffer a clone
1551  *	@skb: buffer to check
1552  *
1553  *	Returns true if the buffer was generated with skb_clone() and is
1554  *	one of multiple shared copies of the buffer. Cloned buffers are
1555  *	shared data so must not be written to under normal circumstances.
1556  */
1557 static inline int skb_cloned(const struct sk_buff *skb)
1558 {
1559 	return skb->cloned &&
1560 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1561 }
1562 
1563 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1564 {
1565 	might_sleep_if(gfpflags_allow_blocking(pri));
1566 
1567 	if (skb_cloned(skb))
1568 		return pskb_expand_head(skb, 0, 0, pri);
1569 
1570 	return 0;
1571 }
1572 
1573 /**
1574  *	skb_header_cloned - is the header a clone
1575  *	@skb: buffer to check
1576  *
1577  *	Returns true if modifying the header part of the buffer requires
1578  *	the data to be copied.
1579  */
1580 static inline int skb_header_cloned(const struct sk_buff *skb)
1581 {
1582 	int dataref;
1583 
1584 	if (!skb->cloned)
1585 		return 0;
1586 
1587 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1588 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1589 	return dataref != 1;
1590 }
1591 
1592 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1593 {
1594 	might_sleep_if(gfpflags_allow_blocking(pri));
1595 
1596 	if (skb_header_cloned(skb))
1597 		return pskb_expand_head(skb, 0, 0, pri);
1598 
1599 	return 0;
1600 }
1601 
1602 /**
1603  *	__skb_header_release - release reference to header
1604  *	@skb: buffer to operate on
1605  */
1606 static inline void __skb_header_release(struct sk_buff *skb)
1607 {
1608 	skb->nohdr = 1;
1609 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1610 }
1611 
1612 
1613 /**
1614  *	skb_shared - is the buffer shared
1615  *	@skb: buffer to check
1616  *
1617  *	Returns true if more than one person has a reference to this
1618  *	buffer.
1619  */
1620 static inline int skb_shared(const struct sk_buff *skb)
1621 {
1622 	return refcount_read(&skb->users) != 1;
1623 }
1624 
1625 /**
1626  *	skb_share_check - check if buffer is shared and if so clone it
1627  *	@skb: buffer to check
1628  *	@pri: priority for memory allocation
1629  *
1630  *	If the buffer is shared the buffer is cloned and the old copy
1631  *	drops a reference. A new clone with a single reference is returned.
1632  *	If the buffer is not shared the original buffer is returned. When
1633  *	being called from interrupt status or with spinlocks held pri must
1634  *	be GFP_ATOMIC.
1635  *
1636  *	NULL is returned on a memory allocation failure.
1637  */
1638 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1639 {
1640 	might_sleep_if(gfpflags_allow_blocking(pri));
1641 	if (skb_shared(skb)) {
1642 		struct sk_buff *nskb = skb_clone(skb, pri);
1643 
1644 		if (likely(nskb))
1645 			consume_skb(skb);
1646 		else
1647 			kfree_skb(skb);
1648 		skb = nskb;
1649 	}
1650 	return skb;
1651 }
1652 
1653 /*
1654  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1655  *	packets to handle cases where we have a local reader and forward
1656  *	and a couple of other messy ones. The normal one is tcpdumping
1657  *	a packet thats being forwarded.
1658  */
1659 
1660 /**
1661  *	skb_unshare - make a copy of a shared buffer
1662  *	@skb: buffer to check
1663  *	@pri: priority for memory allocation
1664  *
1665  *	If the socket buffer is a clone then this function creates a new
1666  *	copy of the data, drops a reference count on the old copy and returns
1667  *	the new copy with the reference count at 1. If the buffer is not a clone
1668  *	the original buffer is returned. When called with a spinlock held or
1669  *	from interrupt state @pri must be %GFP_ATOMIC
1670  *
1671  *	%NULL is returned on a memory allocation failure.
1672  */
1673 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1674 					  gfp_t pri)
1675 {
1676 	might_sleep_if(gfpflags_allow_blocking(pri));
1677 	if (skb_cloned(skb)) {
1678 		struct sk_buff *nskb = skb_copy(skb, pri);
1679 
1680 		/* Free our shared copy */
1681 		if (likely(nskb))
1682 			consume_skb(skb);
1683 		else
1684 			kfree_skb(skb);
1685 		skb = nskb;
1686 	}
1687 	return skb;
1688 }
1689 
1690 /**
1691  *	skb_peek - peek at the head of an &sk_buff_head
1692  *	@list_: list to peek at
1693  *
1694  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1695  *	be careful with this one. A peek leaves the buffer on the
1696  *	list and someone else may run off with it. You must hold
1697  *	the appropriate locks or have a private queue to do this.
1698  *
1699  *	Returns %NULL for an empty list or a pointer to the head element.
1700  *	The reference count is not incremented and the reference is therefore
1701  *	volatile. Use with caution.
1702  */
1703 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1704 {
1705 	struct sk_buff *skb = list_->next;
1706 
1707 	if (skb == (struct sk_buff *)list_)
1708 		skb = NULL;
1709 	return skb;
1710 }
1711 
1712 /**
1713  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1714  *	@list_: list to peek at
1715  *
1716  *	Like skb_peek(), but the caller knows that the list is not empty.
1717  */
1718 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1719 {
1720 	return list_->next;
1721 }
1722 
1723 /**
1724  *	skb_peek_next - peek skb following the given one from a queue
1725  *	@skb: skb to start from
1726  *	@list_: list to peek at
1727  *
1728  *	Returns %NULL when the end of the list is met or a pointer to the
1729  *	next element. The reference count is not incremented and the
1730  *	reference is therefore volatile. Use with caution.
1731  */
1732 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1733 		const struct sk_buff_head *list_)
1734 {
1735 	struct sk_buff *next = skb->next;
1736 
1737 	if (next == (struct sk_buff *)list_)
1738 		next = NULL;
1739 	return next;
1740 }
1741 
1742 /**
1743  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1744  *	@list_: list to peek at
1745  *
1746  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1747  *	be careful with this one. A peek leaves the buffer on the
1748  *	list and someone else may run off with it. You must hold
1749  *	the appropriate locks or have a private queue to do this.
1750  *
1751  *	Returns %NULL for an empty list or a pointer to the tail element.
1752  *	The reference count is not incremented and the reference is therefore
1753  *	volatile. Use with caution.
1754  */
1755 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1756 {
1757 	struct sk_buff *skb = list_->prev;
1758 
1759 	if (skb == (struct sk_buff *)list_)
1760 		skb = NULL;
1761 	return skb;
1762 
1763 }
1764 
1765 /**
1766  *	skb_queue_len	- get queue length
1767  *	@list_: list to measure
1768  *
1769  *	Return the length of an &sk_buff queue.
1770  */
1771 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1772 {
1773 	return list_->qlen;
1774 }
1775 
1776 /**
1777  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1778  *	@list: queue to initialize
1779  *
1780  *	This initializes only the list and queue length aspects of
1781  *	an sk_buff_head object.  This allows to initialize the list
1782  *	aspects of an sk_buff_head without reinitializing things like
1783  *	the spinlock.  It can also be used for on-stack sk_buff_head
1784  *	objects where the spinlock is known to not be used.
1785  */
1786 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1787 {
1788 	list->prev = list->next = (struct sk_buff *)list;
1789 	list->qlen = 0;
1790 }
1791 
1792 /*
1793  * This function creates a split out lock class for each invocation;
1794  * this is needed for now since a whole lot of users of the skb-queue
1795  * infrastructure in drivers have different locking usage (in hardirq)
1796  * than the networking core (in softirq only). In the long run either the
1797  * network layer or drivers should need annotation to consolidate the
1798  * main types of usage into 3 classes.
1799  */
1800 static inline void skb_queue_head_init(struct sk_buff_head *list)
1801 {
1802 	spin_lock_init(&list->lock);
1803 	__skb_queue_head_init(list);
1804 }
1805 
1806 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1807 		struct lock_class_key *class)
1808 {
1809 	skb_queue_head_init(list);
1810 	lockdep_set_class(&list->lock, class);
1811 }
1812 
1813 /*
1814  *	Insert an sk_buff on a list.
1815  *
1816  *	The "__skb_xxxx()" functions are the non-atomic ones that
1817  *	can only be called with interrupts disabled.
1818  */
1819 static inline void __skb_insert(struct sk_buff *newsk,
1820 				struct sk_buff *prev, struct sk_buff *next,
1821 				struct sk_buff_head *list)
1822 {
1823 	newsk->next = next;
1824 	newsk->prev = prev;
1825 	next->prev  = prev->next = newsk;
1826 	list->qlen++;
1827 }
1828 
1829 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1830 				      struct sk_buff *prev,
1831 				      struct sk_buff *next)
1832 {
1833 	struct sk_buff *first = list->next;
1834 	struct sk_buff *last = list->prev;
1835 
1836 	first->prev = prev;
1837 	prev->next = first;
1838 
1839 	last->next = next;
1840 	next->prev = last;
1841 }
1842 
1843 /**
1844  *	skb_queue_splice - join two skb lists, this is designed for stacks
1845  *	@list: the new list to add
1846  *	@head: the place to add it in the first list
1847  */
1848 static inline void skb_queue_splice(const struct sk_buff_head *list,
1849 				    struct sk_buff_head *head)
1850 {
1851 	if (!skb_queue_empty(list)) {
1852 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1853 		head->qlen += list->qlen;
1854 	}
1855 }
1856 
1857 /**
1858  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1859  *	@list: the new list to add
1860  *	@head: the place to add it in the first list
1861  *
1862  *	The list at @list is reinitialised
1863  */
1864 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1865 					 struct sk_buff_head *head)
1866 {
1867 	if (!skb_queue_empty(list)) {
1868 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1869 		head->qlen += list->qlen;
1870 		__skb_queue_head_init(list);
1871 	}
1872 }
1873 
1874 /**
1875  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1876  *	@list: the new list to add
1877  *	@head: the place to add it in the first list
1878  */
1879 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1880 					 struct sk_buff_head *head)
1881 {
1882 	if (!skb_queue_empty(list)) {
1883 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1884 		head->qlen += list->qlen;
1885 	}
1886 }
1887 
1888 /**
1889  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1890  *	@list: the new list to add
1891  *	@head: the place to add it in the first list
1892  *
1893  *	Each of the lists is a queue.
1894  *	The list at @list is reinitialised
1895  */
1896 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1897 					      struct sk_buff_head *head)
1898 {
1899 	if (!skb_queue_empty(list)) {
1900 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1901 		head->qlen += list->qlen;
1902 		__skb_queue_head_init(list);
1903 	}
1904 }
1905 
1906 /**
1907  *	__skb_queue_after - queue a buffer at the list head
1908  *	@list: list to use
1909  *	@prev: place after this buffer
1910  *	@newsk: buffer to queue
1911  *
1912  *	Queue a buffer int the middle of a list. This function takes no locks
1913  *	and you must therefore hold required locks before calling it.
1914  *
1915  *	A buffer cannot be placed on two lists at the same time.
1916  */
1917 static inline void __skb_queue_after(struct sk_buff_head *list,
1918 				     struct sk_buff *prev,
1919 				     struct sk_buff *newsk)
1920 {
1921 	__skb_insert(newsk, prev, prev->next, list);
1922 }
1923 
1924 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1925 		struct sk_buff_head *list);
1926 
1927 static inline void __skb_queue_before(struct sk_buff_head *list,
1928 				      struct sk_buff *next,
1929 				      struct sk_buff *newsk)
1930 {
1931 	__skb_insert(newsk, next->prev, next, list);
1932 }
1933 
1934 /**
1935  *	__skb_queue_head - queue a buffer at the list head
1936  *	@list: list to use
1937  *	@newsk: buffer to queue
1938  *
1939  *	Queue a buffer at the start of a list. This function takes no locks
1940  *	and you must therefore hold required locks before calling it.
1941  *
1942  *	A buffer cannot be placed on two lists at the same time.
1943  */
1944 static inline void __skb_queue_head(struct sk_buff_head *list,
1945 				    struct sk_buff *newsk)
1946 {
1947 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1948 }
1949 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1950 
1951 /**
1952  *	__skb_queue_tail - queue a buffer at the list tail
1953  *	@list: list to use
1954  *	@newsk: buffer to queue
1955  *
1956  *	Queue a buffer at the end of a list. This function takes no locks
1957  *	and you must therefore hold required locks before calling it.
1958  *
1959  *	A buffer cannot be placed on two lists at the same time.
1960  */
1961 static inline void __skb_queue_tail(struct sk_buff_head *list,
1962 				   struct sk_buff *newsk)
1963 {
1964 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1965 }
1966 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1967 
1968 /*
1969  * remove sk_buff from list. _Must_ be called atomically, and with
1970  * the list known..
1971  */
1972 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1973 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1974 {
1975 	struct sk_buff *next, *prev;
1976 
1977 	list->qlen--;
1978 	next	   = skb->next;
1979 	prev	   = skb->prev;
1980 	skb->next  = skb->prev = NULL;
1981 	next->prev = prev;
1982 	prev->next = next;
1983 }
1984 
1985 /**
1986  *	__skb_dequeue - remove from the head of the queue
1987  *	@list: list to dequeue from
1988  *
1989  *	Remove the head of the list. This function does not take any locks
1990  *	so must be used with appropriate locks held only. The head item is
1991  *	returned or %NULL if the list is empty.
1992  */
1993 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1994 {
1995 	struct sk_buff *skb = skb_peek(list);
1996 	if (skb)
1997 		__skb_unlink(skb, list);
1998 	return skb;
1999 }
2000 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2001 
2002 /**
2003  *	__skb_dequeue_tail - remove from the tail of the queue
2004  *	@list: list to dequeue from
2005  *
2006  *	Remove the tail of the list. This function does not take any locks
2007  *	so must be used with appropriate locks held only. The tail item is
2008  *	returned or %NULL if the list is empty.
2009  */
2010 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2011 {
2012 	struct sk_buff *skb = skb_peek_tail(list);
2013 	if (skb)
2014 		__skb_unlink(skb, list);
2015 	return skb;
2016 }
2017 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2018 
2019 
2020 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2021 {
2022 	return skb->data_len;
2023 }
2024 
2025 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2026 {
2027 	return skb->len - skb->data_len;
2028 }
2029 
2030 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2031 {
2032 	unsigned int i, len = 0;
2033 
2034 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2035 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2036 	return len;
2037 }
2038 
2039 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2040 {
2041 	return skb_headlen(skb) + __skb_pagelen(skb);
2042 }
2043 
2044 /**
2045  * __skb_fill_page_desc - initialise a paged fragment in an skb
2046  * @skb: buffer containing fragment to be initialised
2047  * @i: paged fragment index to initialise
2048  * @page: the page to use for this fragment
2049  * @off: the offset to the data with @page
2050  * @size: the length of the data
2051  *
2052  * Initialises the @i'th fragment of @skb to point to &size bytes at
2053  * offset @off within @page.
2054  *
2055  * Does not take any additional reference on the fragment.
2056  */
2057 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2058 					struct page *page, int off, int size)
2059 {
2060 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2061 
2062 	/*
2063 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2064 	 * that not all callers have unique ownership of the page but rely
2065 	 * on page_is_pfmemalloc doing the right thing(tm).
2066 	 */
2067 	frag->page.p		  = page;
2068 	frag->page_offset	  = off;
2069 	skb_frag_size_set(frag, size);
2070 
2071 	page = compound_head(page);
2072 	if (page_is_pfmemalloc(page))
2073 		skb->pfmemalloc	= true;
2074 }
2075 
2076 /**
2077  * skb_fill_page_desc - initialise a paged fragment in an skb
2078  * @skb: buffer containing fragment to be initialised
2079  * @i: paged fragment index to initialise
2080  * @page: the page to use for this fragment
2081  * @off: the offset to the data with @page
2082  * @size: the length of the data
2083  *
2084  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2085  * @skb to point to @size bytes at offset @off within @page. In
2086  * addition updates @skb such that @i is the last fragment.
2087  *
2088  * Does not take any additional reference on the fragment.
2089  */
2090 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2091 				      struct page *page, int off, int size)
2092 {
2093 	__skb_fill_page_desc(skb, i, page, off, size);
2094 	skb_shinfo(skb)->nr_frags = i + 1;
2095 }
2096 
2097 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2098 		     int size, unsigned int truesize);
2099 
2100 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2101 			  unsigned int truesize);
2102 
2103 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2104 
2105 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2106 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2107 {
2108 	return skb->head + skb->tail;
2109 }
2110 
2111 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2112 {
2113 	skb->tail = skb->data - skb->head;
2114 }
2115 
2116 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2117 {
2118 	skb_reset_tail_pointer(skb);
2119 	skb->tail += offset;
2120 }
2121 
2122 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2123 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2124 {
2125 	return skb->tail;
2126 }
2127 
2128 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2129 {
2130 	skb->tail = skb->data;
2131 }
2132 
2133 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2134 {
2135 	skb->tail = skb->data + offset;
2136 }
2137 
2138 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2139 
2140 /*
2141  *	Add data to an sk_buff
2142  */
2143 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2144 void *skb_put(struct sk_buff *skb, unsigned int len);
2145 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2146 {
2147 	void *tmp = skb_tail_pointer(skb);
2148 	SKB_LINEAR_ASSERT(skb);
2149 	skb->tail += len;
2150 	skb->len  += len;
2151 	return tmp;
2152 }
2153 
2154 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2155 {
2156 	void *tmp = __skb_put(skb, len);
2157 
2158 	memset(tmp, 0, len);
2159 	return tmp;
2160 }
2161 
2162 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2163 				   unsigned int len)
2164 {
2165 	void *tmp = __skb_put(skb, len);
2166 
2167 	memcpy(tmp, data, len);
2168 	return tmp;
2169 }
2170 
2171 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2172 {
2173 	*(u8 *)__skb_put(skb, 1) = val;
2174 }
2175 
2176 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2177 {
2178 	void *tmp = skb_put(skb, len);
2179 
2180 	memset(tmp, 0, len);
2181 
2182 	return tmp;
2183 }
2184 
2185 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2186 				 unsigned int len)
2187 {
2188 	void *tmp = skb_put(skb, len);
2189 
2190 	memcpy(tmp, data, len);
2191 
2192 	return tmp;
2193 }
2194 
2195 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2196 {
2197 	*(u8 *)skb_put(skb, 1) = val;
2198 }
2199 
2200 void *skb_push(struct sk_buff *skb, unsigned int len);
2201 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2202 {
2203 	skb->data -= len;
2204 	skb->len  += len;
2205 	return skb->data;
2206 }
2207 
2208 void *skb_pull(struct sk_buff *skb, unsigned int len);
2209 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2210 {
2211 	skb->len -= len;
2212 	BUG_ON(skb->len < skb->data_len);
2213 	return skb->data += len;
2214 }
2215 
2216 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2217 {
2218 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2219 }
2220 
2221 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2222 
2223 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2224 {
2225 	if (len > skb_headlen(skb) &&
2226 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2227 		return NULL;
2228 	skb->len -= len;
2229 	return skb->data += len;
2230 }
2231 
2232 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2233 {
2234 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2235 }
2236 
2237 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2238 {
2239 	if (likely(len <= skb_headlen(skb)))
2240 		return 1;
2241 	if (unlikely(len > skb->len))
2242 		return 0;
2243 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2244 }
2245 
2246 void skb_condense(struct sk_buff *skb);
2247 
2248 /**
2249  *	skb_headroom - bytes at buffer head
2250  *	@skb: buffer to check
2251  *
2252  *	Return the number of bytes of free space at the head of an &sk_buff.
2253  */
2254 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2255 {
2256 	return skb->data - skb->head;
2257 }
2258 
2259 /**
2260  *	skb_tailroom - bytes at buffer end
2261  *	@skb: buffer to check
2262  *
2263  *	Return the number of bytes of free space at the tail of an sk_buff
2264  */
2265 static inline int skb_tailroom(const struct sk_buff *skb)
2266 {
2267 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2268 }
2269 
2270 /**
2271  *	skb_availroom - bytes at buffer end
2272  *	@skb: buffer to check
2273  *
2274  *	Return the number of bytes of free space at the tail of an sk_buff
2275  *	allocated by sk_stream_alloc()
2276  */
2277 static inline int skb_availroom(const struct sk_buff *skb)
2278 {
2279 	if (skb_is_nonlinear(skb))
2280 		return 0;
2281 
2282 	return skb->end - skb->tail - skb->reserved_tailroom;
2283 }
2284 
2285 /**
2286  *	skb_reserve - adjust headroom
2287  *	@skb: buffer to alter
2288  *	@len: bytes to move
2289  *
2290  *	Increase the headroom of an empty &sk_buff by reducing the tail
2291  *	room. This is only allowed for an empty buffer.
2292  */
2293 static inline void skb_reserve(struct sk_buff *skb, int len)
2294 {
2295 	skb->data += len;
2296 	skb->tail += len;
2297 }
2298 
2299 /**
2300  *	skb_tailroom_reserve - adjust reserved_tailroom
2301  *	@skb: buffer to alter
2302  *	@mtu: maximum amount of headlen permitted
2303  *	@needed_tailroom: minimum amount of reserved_tailroom
2304  *
2305  *	Set reserved_tailroom so that headlen can be as large as possible but
2306  *	not larger than mtu and tailroom cannot be smaller than
2307  *	needed_tailroom.
2308  *	The required headroom should already have been reserved before using
2309  *	this function.
2310  */
2311 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2312 					unsigned int needed_tailroom)
2313 {
2314 	SKB_LINEAR_ASSERT(skb);
2315 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2316 		/* use at most mtu */
2317 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2318 	else
2319 		/* use up to all available space */
2320 		skb->reserved_tailroom = needed_tailroom;
2321 }
2322 
2323 #define ENCAP_TYPE_ETHER	0
2324 #define ENCAP_TYPE_IPPROTO	1
2325 
2326 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2327 					  __be16 protocol)
2328 {
2329 	skb->inner_protocol = protocol;
2330 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2331 }
2332 
2333 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2334 					 __u8 ipproto)
2335 {
2336 	skb->inner_ipproto = ipproto;
2337 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2338 }
2339 
2340 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2341 {
2342 	skb->inner_mac_header = skb->mac_header;
2343 	skb->inner_network_header = skb->network_header;
2344 	skb->inner_transport_header = skb->transport_header;
2345 }
2346 
2347 static inline void skb_reset_mac_len(struct sk_buff *skb)
2348 {
2349 	skb->mac_len = skb->network_header - skb->mac_header;
2350 }
2351 
2352 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2353 							*skb)
2354 {
2355 	return skb->head + skb->inner_transport_header;
2356 }
2357 
2358 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2359 {
2360 	return skb_inner_transport_header(skb) - skb->data;
2361 }
2362 
2363 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2364 {
2365 	skb->inner_transport_header = skb->data - skb->head;
2366 }
2367 
2368 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2369 						   const int offset)
2370 {
2371 	skb_reset_inner_transport_header(skb);
2372 	skb->inner_transport_header += offset;
2373 }
2374 
2375 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2376 {
2377 	return skb->head + skb->inner_network_header;
2378 }
2379 
2380 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2381 {
2382 	skb->inner_network_header = skb->data - skb->head;
2383 }
2384 
2385 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2386 						const int offset)
2387 {
2388 	skb_reset_inner_network_header(skb);
2389 	skb->inner_network_header += offset;
2390 }
2391 
2392 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2393 {
2394 	return skb->head + skb->inner_mac_header;
2395 }
2396 
2397 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2398 {
2399 	skb->inner_mac_header = skb->data - skb->head;
2400 }
2401 
2402 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2403 					    const int offset)
2404 {
2405 	skb_reset_inner_mac_header(skb);
2406 	skb->inner_mac_header += offset;
2407 }
2408 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2409 {
2410 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2411 }
2412 
2413 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2414 {
2415 	return skb->head + skb->transport_header;
2416 }
2417 
2418 static inline void skb_reset_transport_header(struct sk_buff *skb)
2419 {
2420 	skb->transport_header = skb->data - skb->head;
2421 }
2422 
2423 static inline void skb_set_transport_header(struct sk_buff *skb,
2424 					    const int offset)
2425 {
2426 	skb_reset_transport_header(skb);
2427 	skb->transport_header += offset;
2428 }
2429 
2430 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2431 {
2432 	return skb->head + skb->network_header;
2433 }
2434 
2435 static inline void skb_reset_network_header(struct sk_buff *skb)
2436 {
2437 	skb->network_header = skb->data - skb->head;
2438 }
2439 
2440 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2441 {
2442 	skb_reset_network_header(skb);
2443 	skb->network_header += offset;
2444 }
2445 
2446 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2447 {
2448 	return skb->head + skb->mac_header;
2449 }
2450 
2451 static inline int skb_mac_offset(const struct sk_buff *skb)
2452 {
2453 	return skb_mac_header(skb) - skb->data;
2454 }
2455 
2456 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2457 {
2458 	return skb->network_header - skb->mac_header;
2459 }
2460 
2461 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2462 {
2463 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2464 }
2465 
2466 static inline void skb_reset_mac_header(struct sk_buff *skb)
2467 {
2468 	skb->mac_header = skb->data - skb->head;
2469 }
2470 
2471 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2472 {
2473 	skb_reset_mac_header(skb);
2474 	skb->mac_header += offset;
2475 }
2476 
2477 static inline void skb_pop_mac_header(struct sk_buff *skb)
2478 {
2479 	skb->mac_header = skb->network_header;
2480 }
2481 
2482 static inline void skb_probe_transport_header(struct sk_buff *skb)
2483 {
2484 	struct flow_keys_basic keys;
2485 
2486 	if (skb_transport_header_was_set(skb))
2487 		return;
2488 
2489 	if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2490 		skb_set_transport_header(skb, keys.control.thoff);
2491 }
2492 
2493 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2494 {
2495 	if (skb_mac_header_was_set(skb)) {
2496 		const unsigned char *old_mac = skb_mac_header(skb);
2497 
2498 		skb_set_mac_header(skb, -skb->mac_len);
2499 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2500 	}
2501 }
2502 
2503 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2504 {
2505 	return skb->csum_start - skb_headroom(skb);
2506 }
2507 
2508 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2509 {
2510 	return skb->head + skb->csum_start;
2511 }
2512 
2513 static inline int skb_transport_offset(const struct sk_buff *skb)
2514 {
2515 	return skb_transport_header(skb) - skb->data;
2516 }
2517 
2518 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2519 {
2520 	return skb->transport_header - skb->network_header;
2521 }
2522 
2523 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2524 {
2525 	return skb->inner_transport_header - skb->inner_network_header;
2526 }
2527 
2528 static inline int skb_network_offset(const struct sk_buff *skb)
2529 {
2530 	return skb_network_header(skb) - skb->data;
2531 }
2532 
2533 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2534 {
2535 	return skb_inner_network_header(skb) - skb->data;
2536 }
2537 
2538 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2539 {
2540 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2541 }
2542 
2543 /*
2544  * CPUs often take a performance hit when accessing unaligned memory
2545  * locations. The actual performance hit varies, it can be small if the
2546  * hardware handles it or large if we have to take an exception and fix it
2547  * in software.
2548  *
2549  * Since an ethernet header is 14 bytes network drivers often end up with
2550  * the IP header at an unaligned offset. The IP header can be aligned by
2551  * shifting the start of the packet by 2 bytes. Drivers should do this
2552  * with:
2553  *
2554  * skb_reserve(skb, NET_IP_ALIGN);
2555  *
2556  * The downside to this alignment of the IP header is that the DMA is now
2557  * unaligned. On some architectures the cost of an unaligned DMA is high
2558  * and this cost outweighs the gains made by aligning the IP header.
2559  *
2560  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2561  * to be overridden.
2562  */
2563 #ifndef NET_IP_ALIGN
2564 #define NET_IP_ALIGN	2
2565 #endif
2566 
2567 /*
2568  * The networking layer reserves some headroom in skb data (via
2569  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2570  * the header has to grow. In the default case, if the header has to grow
2571  * 32 bytes or less we avoid the reallocation.
2572  *
2573  * Unfortunately this headroom changes the DMA alignment of the resulting
2574  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2575  * on some architectures. An architecture can override this value,
2576  * perhaps setting it to a cacheline in size (since that will maintain
2577  * cacheline alignment of the DMA). It must be a power of 2.
2578  *
2579  * Various parts of the networking layer expect at least 32 bytes of
2580  * headroom, you should not reduce this.
2581  *
2582  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2583  * to reduce average number of cache lines per packet.
2584  * get_rps_cpus() for example only access one 64 bytes aligned block :
2585  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2586  */
2587 #ifndef NET_SKB_PAD
2588 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2589 #endif
2590 
2591 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2592 
2593 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2594 {
2595 	if (WARN_ON(skb_is_nonlinear(skb)))
2596 		return;
2597 	skb->len = len;
2598 	skb_set_tail_pointer(skb, len);
2599 }
2600 
2601 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2602 {
2603 	__skb_set_length(skb, len);
2604 }
2605 
2606 void skb_trim(struct sk_buff *skb, unsigned int len);
2607 
2608 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2609 {
2610 	if (skb->data_len)
2611 		return ___pskb_trim(skb, len);
2612 	__skb_trim(skb, len);
2613 	return 0;
2614 }
2615 
2616 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2617 {
2618 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2619 }
2620 
2621 /**
2622  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2623  *	@skb: buffer to alter
2624  *	@len: new length
2625  *
2626  *	This is identical to pskb_trim except that the caller knows that
2627  *	the skb is not cloned so we should never get an error due to out-
2628  *	of-memory.
2629  */
2630 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2631 {
2632 	int err = pskb_trim(skb, len);
2633 	BUG_ON(err);
2634 }
2635 
2636 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2637 {
2638 	unsigned int diff = len - skb->len;
2639 
2640 	if (skb_tailroom(skb) < diff) {
2641 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2642 					   GFP_ATOMIC);
2643 		if (ret)
2644 			return ret;
2645 	}
2646 	__skb_set_length(skb, len);
2647 	return 0;
2648 }
2649 
2650 /**
2651  *	skb_orphan - orphan a buffer
2652  *	@skb: buffer to orphan
2653  *
2654  *	If a buffer currently has an owner then we call the owner's
2655  *	destructor function and make the @skb unowned. The buffer continues
2656  *	to exist but is no longer charged to its former owner.
2657  */
2658 static inline void skb_orphan(struct sk_buff *skb)
2659 {
2660 	if (skb->destructor) {
2661 		skb->destructor(skb);
2662 		skb->destructor = NULL;
2663 		skb->sk		= NULL;
2664 	} else {
2665 		BUG_ON(skb->sk);
2666 	}
2667 }
2668 
2669 /**
2670  *	skb_orphan_frags - orphan the frags contained in a buffer
2671  *	@skb: buffer to orphan frags from
2672  *	@gfp_mask: allocation mask for replacement pages
2673  *
2674  *	For each frag in the SKB which needs a destructor (i.e. has an
2675  *	owner) create a copy of that frag and release the original
2676  *	page by calling the destructor.
2677  */
2678 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2679 {
2680 	if (likely(!skb_zcopy(skb)))
2681 		return 0;
2682 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2683 		return 0;
2684 	return skb_copy_ubufs(skb, gfp_mask);
2685 }
2686 
2687 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2688 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2689 {
2690 	if (likely(!skb_zcopy(skb)))
2691 		return 0;
2692 	return skb_copy_ubufs(skb, gfp_mask);
2693 }
2694 
2695 /**
2696  *	__skb_queue_purge - empty a list
2697  *	@list: list to empty
2698  *
2699  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2700  *	the list and one reference dropped. This function does not take the
2701  *	list lock and the caller must hold the relevant locks to use it.
2702  */
2703 static inline void __skb_queue_purge(struct sk_buff_head *list)
2704 {
2705 	struct sk_buff *skb;
2706 	while ((skb = __skb_dequeue(list)) != NULL)
2707 		kfree_skb(skb);
2708 }
2709 void skb_queue_purge(struct sk_buff_head *list);
2710 
2711 unsigned int skb_rbtree_purge(struct rb_root *root);
2712 
2713 void *netdev_alloc_frag(unsigned int fragsz);
2714 
2715 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2716 				   gfp_t gfp_mask);
2717 
2718 /**
2719  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2720  *	@dev: network device to receive on
2721  *	@length: length to allocate
2722  *
2723  *	Allocate a new &sk_buff and assign it a usage count of one. The
2724  *	buffer has unspecified headroom built in. Users should allocate
2725  *	the headroom they think they need without accounting for the
2726  *	built in space. The built in space is used for optimisations.
2727  *
2728  *	%NULL is returned if there is no free memory. Although this function
2729  *	allocates memory it can be called from an interrupt.
2730  */
2731 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2732 					       unsigned int length)
2733 {
2734 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2735 }
2736 
2737 /* legacy helper around __netdev_alloc_skb() */
2738 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2739 					      gfp_t gfp_mask)
2740 {
2741 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2742 }
2743 
2744 /* legacy helper around netdev_alloc_skb() */
2745 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2746 {
2747 	return netdev_alloc_skb(NULL, length);
2748 }
2749 
2750 
2751 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2752 		unsigned int length, gfp_t gfp)
2753 {
2754 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2755 
2756 	if (NET_IP_ALIGN && skb)
2757 		skb_reserve(skb, NET_IP_ALIGN);
2758 	return skb;
2759 }
2760 
2761 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2762 		unsigned int length)
2763 {
2764 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2765 }
2766 
2767 static inline void skb_free_frag(void *addr)
2768 {
2769 	page_frag_free(addr);
2770 }
2771 
2772 void *napi_alloc_frag(unsigned int fragsz);
2773 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2774 				 unsigned int length, gfp_t gfp_mask);
2775 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2776 					     unsigned int length)
2777 {
2778 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2779 }
2780 void napi_consume_skb(struct sk_buff *skb, int budget);
2781 
2782 void __kfree_skb_flush(void);
2783 void __kfree_skb_defer(struct sk_buff *skb);
2784 
2785 /**
2786  * __dev_alloc_pages - allocate page for network Rx
2787  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2788  * @order: size of the allocation
2789  *
2790  * Allocate a new page.
2791  *
2792  * %NULL is returned if there is no free memory.
2793 */
2794 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2795 					     unsigned int order)
2796 {
2797 	/* This piece of code contains several assumptions.
2798 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2799 	 * 2.  The expectation is the user wants a compound page.
2800 	 * 3.  If requesting a order 0 page it will not be compound
2801 	 *     due to the check to see if order has a value in prep_new_page
2802 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2803 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2804 	 */
2805 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2806 
2807 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2808 }
2809 
2810 static inline struct page *dev_alloc_pages(unsigned int order)
2811 {
2812 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2813 }
2814 
2815 /**
2816  * __dev_alloc_page - allocate a page for network Rx
2817  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2818  *
2819  * Allocate a new page.
2820  *
2821  * %NULL is returned if there is no free memory.
2822  */
2823 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2824 {
2825 	return __dev_alloc_pages(gfp_mask, 0);
2826 }
2827 
2828 static inline struct page *dev_alloc_page(void)
2829 {
2830 	return dev_alloc_pages(0);
2831 }
2832 
2833 /**
2834  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2835  *	@page: The page that was allocated from skb_alloc_page
2836  *	@skb: The skb that may need pfmemalloc set
2837  */
2838 static inline void skb_propagate_pfmemalloc(struct page *page,
2839 					     struct sk_buff *skb)
2840 {
2841 	if (page_is_pfmemalloc(page))
2842 		skb->pfmemalloc = true;
2843 }
2844 
2845 /**
2846  * skb_frag_page - retrieve the page referred to by a paged fragment
2847  * @frag: the paged fragment
2848  *
2849  * Returns the &struct page associated with @frag.
2850  */
2851 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2852 {
2853 	return frag->page.p;
2854 }
2855 
2856 /**
2857  * __skb_frag_ref - take an addition reference on a paged fragment.
2858  * @frag: the paged fragment
2859  *
2860  * Takes an additional reference on the paged fragment @frag.
2861  */
2862 static inline void __skb_frag_ref(skb_frag_t *frag)
2863 {
2864 	get_page(skb_frag_page(frag));
2865 }
2866 
2867 /**
2868  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2869  * @skb: the buffer
2870  * @f: the fragment offset.
2871  *
2872  * Takes an additional reference on the @f'th paged fragment of @skb.
2873  */
2874 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2875 {
2876 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2877 }
2878 
2879 /**
2880  * __skb_frag_unref - release a reference on a paged fragment.
2881  * @frag: the paged fragment
2882  *
2883  * Releases a reference on the paged fragment @frag.
2884  */
2885 static inline void __skb_frag_unref(skb_frag_t *frag)
2886 {
2887 	put_page(skb_frag_page(frag));
2888 }
2889 
2890 /**
2891  * skb_frag_unref - release a reference on a paged fragment of an skb.
2892  * @skb: the buffer
2893  * @f: the fragment offset
2894  *
2895  * Releases a reference on the @f'th paged fragment of @skb.
2896  */
2897 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2898 {
2899 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2900 }
2901 
2902 /**
2903  * skb_frag_address - gets the address of the data contained in a paged fragment
2904  * @frag: the paged fragment buffer
2905  *
2906  * Returns the address of the data within @frag. The page must already
2907  * be mapped.
2908  */
2909 static inline void *skb_frag_address(const skb_frag_t *frag)
2910 {
2911 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2912 }
2913 
2914 /**
2915  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2916  * @frag: the paged fragment buffer
2917  *
2918  * Returns the address of the data within @frag. Checks that the page
2919  * is mapped and returns %NULL otherwise.
2920  */
2921 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2922 {
2923 	void *ptr = page_address(skb_frag_page(frag));
2924 	if (unlikely(!ptr))
2925 		return NULL;
2926 
2927 	return ptr + frag->page_offset;
2928 }
2929 
2930 /**
2931  * __skb_frag_set_page - sets the page contained in a paged fragment
2932  * @frag: the paged fragment
2933  * @page: the page to set
2934  *
2935  * Sets the fragment @frag to contain @page.
2936  */
2937 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2938 {
2939 	frag->page.p = page;
2940 }
2941 
2942 /**
2943  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2944  * @skb: the buffer
2945  * @f: the fragment offset
2946  * @page: the page to set
2947  *
2948  * Sets the @f'th fragment of @skb to contain @page.
2949  */
2950 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2951 				     struct page *page)
2952 {
2953 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2954 }
2955 
2956 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2957 
2958 /**
2959  * skb_frag_dma_map - maps a paged fragment via the DMA API
2960  * @dev: the device to map the fragment to
2961  * @frag: the paged fragment to map
2962  * @offset: the offset within the fragment (starting at the
2963  *          fragment's own offset)
2964  * @size: the number of bytes to map
2965  * @dir: the direction of the mapping (``PCI_DMA_*``)
2966  *
2967  * Maps the page associated with @frag to @device.
2968  */
2969 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2970 					  const skb_frag_t *frag,
2971 					  size_t offset, size_t size,
2972 					  enum dma_data_direction dir)
2973 {
2974 	return dma_map_page(dev, skb_frag_page(frag),
2975 			    frag->page_offset + offset, size, dir);
2976 }
2977 
2978 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2979 					gfp_t gfp_mask)
2980 {
2981 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2982 }
2983 
2984 
2985 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2986 						  gfp_t gfp_mask)
2987 {
2988 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2989 }
2990 
2991 
2992 /**
2993  *	skb_clone_writable - is the header of a clone writable
2994  *	@skb: buffer to check
2995  *	@len: length up to which to write
2996  *
2997  *	Returns true if modifying the header part of the cloned buffer
2998  *	does not requires the data to be copied.
2999  */
3000 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3001 {
3002 	return !skb_header_cloned(skb) &&
3003 	       skb_headroom(skb) + len <= skb->hdr_len;
3004 }
3005 
3006 static inline int skb_try_make_writable(struct sk_buff *skb,
3007 					unsigned int write_len)
3008 {
3009 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3010 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3011 }
3012 
3013 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3014 			    int cloned)
3015 {
3016 	int delta = 0;
3017 
3018 	if (headroom > skb_headroom(skb))
3019 		delta = headroom - skb_headroom(skb);
3020 
3021 	if (delta || cloned)
3022 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3023 					GFP_ATOMIC);
3024 	return 0;
3025 }
3026 
3027 /**
3028  *	skb_cow - copy header of skb when it is required
3029  *	@skb: buffer to cow
3030  *	@headroom: needed headroom
3031  *
3032  *	If the skb passed lacks sufficient headroom or its data part
3033  *	is shared, data is reallocated. If reallocation fails, an error
3034  *	is returned and original skb is not changed.
3035  *
3036  *	The result is skb with writable area skb->head...skb->tail
3037  *	and at least @headroom of space at head.
3038  */
3039 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3040 {
3041 	return __skb_cow(skb, headroom, skb_cloned(skb));
3042 }
3043 
3044 /**
3045  *	skb_cow_head - skb_cow but only making the head writable
3046  *	@skb: buffer to cow
3047  *	@headroom: needed headroom
3048  *
3049  *	This function is identical to skb_cow except that we replace the
3050  *	skb_cloned check by skb_header_cloned.  It should be used when
3051  *	you only need to push on some header and do not need to modify
3052  *	the data.
3053  */
3054 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3055 {
3056 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3057 }
3058 
3059 /**
3060  *	skb_padto	- pad an skbuff up to a minimal size
3061  *	@skb: buffer to pad
3062  *	@len: minimal length
3063  *
3064  *	Pads up a buffer to ensure the trailing bytes exist and are
3065  *	blanked. If the buffer already contains sufficient data it
3066  *	is untouched. Otherwise it is extended. Returns zero on
3067  *	success. The skb is freed on error.
3068  */
3069 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3070 {
3071 	unsigned int size = skb->len;
3072 	if (likely(size >= len))
3073 		return 0;
3074 	return skb_pad(skb, len - size);
3075 }
3076 
3077 /**
3078  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3079  *	@skb: buffer to pad
3080  *	@len: minimal length
3081  *	@free_on_error: free buffer on error
3082  *
3083  *	Pads up a buffer to ensure the trailing bytes exist and are
3084  *	blanked. If the buffer already contains sufficient data it
3085  *	is untouched. Otherwise it is extended. Returns zero on
3086  *	success. The skb is freed on error if @free_on_error is true.
3087  */
3088 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3089 				  bool free_on_error)
3090 {
3091 	unsigned int size = skb->len;
3092 
3093 	if (unlikely(size < len)) {
3094 		len -= size;
3095 		if (__skb_pad(skb, len, free_on_error))
3096 			return -ENOMEM;
3097 		__skb_put(skb, len);
3098 	}
3099 	return 0;
3100 }
3101 
3102 /**
3103  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3104  *	@skb: buffer to pad
3105  *	@len: minimal length
3106  *
3107  *	Pads up a buffer to ensure the trailing bytes exist and are
3108  *	blanked. If the buffer already contains sufficient data it
3109  *	is untouched. Otherwise it is extended. Returns zero on
3110  *	success. The skb is freed on error.
3111  */
3112 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3113 {
3114 	return __skb_put_padto(skb, len, true);
3115 }
3116 
3117 static inline int skb_add_data(struct sk_buff *skb,
3118 			       struct iov_iter *from, int copy)
3119 {
3120 	const int off = skb->len;
3121 
3122 	if (skb->ip_summed == CHECKSUM_NONE) {
3123 		__wsum csum = 0;
3124 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3125 					         &csum, from)) {
3126 			skb->csum = csum_block_add(skb->csum, csum, off);
3127 			return 0;
3128 		}
3129 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3130 		return 0;
3131 
3132 	__skb_trim(skb, off);
3133 	return -EFAULT;
3134 }
3135 
3136 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3137 				    const struct page *page, int off)
3138 {
3139 	if (skb_zcopy(skb))
3140 		return false;
3141 	if (i) {
3142 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3143 
3144 		return page == skb_frag_page(frag) &&
3145 		       off == frag->page_offset + skb_frag_size(frag);
3146 	}
3147 	return false;
3148 }
3149 
3150 static inline int __skb_linearize(struct sk_buff *skb)
3151 {
3152 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3153 }
3154 
3155 /**
3156  *	skb_linearize - convert paged skb to linear one
3157  *	@skb: buffer to linarize
3158  *
3159  *	If there is no free memory -ENOMEM is returned, otherwise zero
3160  *	is returned and the old skb data released.
3161  */
3162 static inline int skb_linearize(struct sk_buff *skb)
3163 {
3164 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3165 }
3166 
3167 /**
3168  * skb_has_shared_frag - can any frag be overwritten
3169  * @skb: buffer to test
3170  *
3171  * Return true if the skb has at least one frag that might be modified
3172  * by an external entity (as in vmsplice()/sendfile())
3173  */
3174 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3175 {
3176 	return skb_is_nonlinear(skb) &&
3177 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3178 }
3179 
3180 /**
3181  *	skb_linearize_cow - make sure skb is linear and writable
3182  *	@skb: buffer to process
3183  *
3184  *	If there is no free memory -ENOMEM is returned, otherwise zero
3185  *	is returned and the old skb data released.
3186  */
3187 static inline int skb_linearize_cow(struct sk_buff *skb)
3188 {
3189 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3190 	       __skb_linearize(skb) : 0;
3191 }
3192 
3193 static __always_inline void
3194 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3195 		     unsigned int off)
3196 {
3197 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3198 		skb->csum = csum_block_sub(skb->csum,
3199 					   csum_partial(start, len, 0), off);
3200 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3201 		 skb_checksum_start_offset(skb) < 0)
3202 		skb->ip_summed = CHECKSUM_NONE;
3203 }
3204 
3205 /**
3206  *	skb_postpull_rcsum - update checksum for received skb after pull
3207  *	@skb: buffer to update
3208  *	@start: start of data before pull
3209  *	@len: length of data pulled
3210  *
3211  *	After doing a pull on a received packet, you need to call this to
3212  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3213  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3214  */
3215 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3216 				      const void *start, unsigned int len)
3217 {
3218 	__skb_postpull_rcsum(skb, start, len, 0);
3219 }
3220 
3221 static __always_inline void
3222 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3223 		     unsigned int off)
3224 {
3225 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3226 		skb->csum = csum_block_add(skb->csum,
3227 					   csum_partial(start, len, 0), off);
3228 }
3229 
3230 /**
3231  *	skb_postpush_rcsum - update checksum for received skb after push
3232  *	@skb: buffer to update
3233  *	@start: start of data after push
3234  *	@len: length of data pushed
3235  *
3236  *	After doing a push on a received packet, you need to call this to
3237  *	update the CHECKSUM_COMPLETE checksum.
3238  */
3239 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3240 				      const void *start, unsigned int len)
3241 {
3242 	__skb_postpush_rcsum(skb, start, len, 0);
3243 }
3244 
3245 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3246 
3247 /**
3248  *	skb_push_rcsum - push skb and update receive checksum
3249  *	@skb: buffer to update
3250  *	@len: length of data pulled
3251  *
3252  *	This function performs an skb_push on the packet and updates
3253  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3254  *	receive path processing instead of skb_push unless you know
3255  *	that the checksum difference is zero (e.g., a valid IP header)
3256  *	or you are setting ip_summed to CHECKSUM_NONE.
3257  */
3258 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3259 {
3260 	skb_push(skb, len);
3261 	skb_postpush_rcsum(skb, skb->data, len);
3262 	return skb->data;
3263 }
3264 
3265 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3266 /**
3267  *	pskb_trim_rcsum - trim received skb and update checksum
3268  *	@skb: buffer to trim
3269  *	@len: new length
3270  *
3271  *	This is exactly the same as pskb_trim except that it ensures the
3272  *	checksum of received packets are still valid after the operation.
3273  *	It can change skb pointers.
3274  */
3275 
3276 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3277 {
3278 	if (likely(len >= skb->len))
3279 		return 0;
3280 	return pskb_trim_rcsum_slow(skb, len);
3281 }
3282 
3283 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3284 {
3285 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3286 		skb->ip_summed = CHECKSUM_NONE;
3287 	__skb_trim(skb, len);
3288 	return 0;
3289 }
3290 
3291 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3292 {
3293 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3294 		skb->ip_summed = CHECKSUM_NONE;
3295 	return __skb_grow(skb, len);
3296 }
3297 
3298 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3299 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3300 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3301 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3302 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3303 
3304 #define skb_queue_walk(queue, skb) \
3305 		for (skb = (queue)->next;					\
3306 		     skb != (struct sk_buff *)(queue);				\
3307 		     skb = skb->next)
3308 
3309 #define skb_queue_walk_safe(queue, skb, tmp)					\
3310 		for (skb = (queue)->next, tmp = skb->next;			\
3311 		     skb != (struct sk_buff *)(queue);				\
3312 		     skb = tmp, tmp = skb->next)
3313 
3314 #define skb_queue_walk_from(queue, skb)						\
3315 		for (; skb != (struct sk_buff *)(queue);			\
3316 		     skb = skb->next)
3317 
3318 #define skb_rbtree_walk(skb, root)						\
3319 		for (skb = skb_rb_first(root); skb != NULL;			\
3320 		     skb = skb_rb_next(skb))
3321 
3322 #define skb_rbtree_walk_from(skb)						\
3323 		for (; skb != NULL;						\
3324 		     skb = skb_rb_next(skb))
3325 
3326 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3327 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3328 		     skb = tmp)
3329 
3330 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3331 		for (tmp = skb->next;						\
3332 		     skb != (struct sk_buff *)(queue);				\
3333 		     skb = tmp, tmp = skb->next)
3334 
3335 #define skb_queue_reverse_walk(queue, skb) \
3336 		for (skb = (queue)->prev;					\
3337 		     skb != (struct sk_buff *)(queue);				\
3338 		     skb = skb->prev)
3339 
3340 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3341 		for (skb = (queue)->prev, tmp = skb->prev;			\
3342 		     skb != (struct sk_buff *)(queue);				\
3343 		     skb = tmp, tmp = skb->prev)
3344 
3345 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3346 		for (tmp = skb->prev;						\
3347 		     skb != (struct sk_buff *)(queue);				\
3348 		     skb = tmp, tmp = skb->prev)
3349 
3350 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3351 {
3352 	return skb_shinfo(skb)->frag_list != NULL;
3353 }
3354 
3355 static inline void skb_frag_list_init(struct sk_buff *skb)
3356 {
3357 	skb_shinfo(skb)->frag_list = NULL;
3358 }
3359 
3360 #define skb_walk_frags(skb, iter)	\
3361 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3362 
3363 
3364 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3365 				const struct sk_buff *skb);
3366 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3367 					  struct sk_buff_head *queue,
3368 					  unsigned int flags,
3369 					  void (*destructor)(struct sock *sk,
3370 							   struct sk_buff *skb),
3371 					  int *off, int *err,
3372 					  struct sk_buff **last);
3373 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3374 					void (*destructor)(struct sock *sk,
3375 							   struct sk_buff *skb),
3376 					int *off, int *err,
3377 					struct sk_buff **last);
3378 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3379 				    void (*destructor)(struct sock *sk,
3380 						       struct sk_buff *skb),
3381 				    int *off, int *err);
3382 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3383 				  int *err);
3384 __poll_t datagram_poll(struct file *file, struct socket *sock,
3385 			   struct poll_table_struct *wait);
3386 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3387 			   struct iov_iter *to, int size);
3388 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3389 					struct msghdr *msg, int size)
3390 {
3391 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3392 }
3393 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3394 				   struct msghdr *msg);
3395 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3396 			   struct iov_iter *to, int len,
3397 			   struct ahash_request *hash);
3398 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3399 				 struct iov_iter *from, int len);
3400 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3401 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3402 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3403 static inline void skb_free_datagram_locked(struct sock *sk,
3404 					    struct sk_buff *skb)
3405 {
3406 	__skb_free_datagram_locked(sk, skb, 0);
3407 }
3408 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3409 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3410 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3411 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3412 			      int len, __wsum csum);
3413 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3414 		    struct pipe_inode_info *pipe, unsigned int len,
3415 		    unsigned int flags);
3416 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3417 			 int len);
3418 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3419 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3420 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3421 		 int len, int hlen);
3422 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3423 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3424 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3425 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3426 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3427 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3428 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3429 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3430 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3431 int skb_vlan_pop(struct sk_buff *skb);
3432 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3433 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3434 			     gfp_t gfp);
3435 
3436 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3437 {
3438 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3439 }
3440 
3441 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3442 {
3443 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3444 }
3445 
3446 struct skb_checksum_ops {
3447 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3448 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3449 };
3450 
3451 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3452 
3453 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3454 		      __wsum csum, const struct skb_checksum_ops *ops);
3455 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3456 		    __wsum csum);
3457 
3458 static inline void * __must_check
3459 __skb_header_pointer(const struct sk_buff *skb, int offset,
3460 		     int len, void *data, int hlen, void *buffer)
3461 {
3462 	if (hlen - offset >= len)
3463 		return data + offset;
3464 
3465 	if (!skb ||
3466 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3467 		return NULL;
3468 
3469 	return buffer;
3470 }
3471 
3472 static inline void * __must_check
3473 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3474 {
3475 	return __skb_header_pointer(skb, offset, len, skb->data,
3476 				    skb_headlen(skb), buffer);
3477 }
3478 
3479 /**
3480  *	skb_needs_linearize - check if we need to linearize a given skb
3481  *			      depending on the given device features.
3482  *	@skb: socket buffer to check
3483  *	@features: net device features
3484  *
3485  *	Returns true if either:
3486  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3487  *	2. skb is fragmented and the device does not support SG.
3488  */
3489 static inline bool skb_needs_linearize(struct sk_buff *skb,
3490 				       netdev_features_t features)
3491 {
3492 	return skb_is_nonlinear(skb) &&
3493 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3494 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3495 }
3496 
3497 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3498 					     void *to,
3499 					     const unsigned int len)
3500 {
3501 	memcpy(to, skb->data, len);
3502 }
3503 
3504 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3505 						    const int offset, void *to,
3506 						    const unsigned int len)
3507 {
3508 	memcpy(to, skb->data + offset, len);
3509 }
3510 
3511 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3512 					   const void *from,
3513 					   const unsigned int len)
3514 {
3515 	memcpy(skb->data, from, len);
3516 }
3517 
3518 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3519 						  const int offset,
3520 						  const void *from,
3521 						  const unsigned int len)
3522 {
3523 	memcpy(skb->data + offset, from, len);
3524 }
3525 
3526 void skb_init(void);
3527 
3528 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3529 {
3530 	return skb->tstamp;
3531 }
3532 
3533 /**
3534  *	skb_get_timestamp - get timestamp from a skb
3535  *	@skb: skb to get stamp from
3536  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3537  *
3538  *	Timestamps are stored in the skb as offsets to a base timestamp.
3539  *	This function converts the offset back to a struct timeval and stores
3540  *	it in stamp.
3541  */
3542 static inline void skb_get_timestamp(const struct sk_buff *skb,
3543 				     struct __kernel_old_timeval *stamp)
3544 {
3545 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3546 }
3547 
3548 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3549 					 struct __kernel_sock_timeval *stamp)
3550 {
3551 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3552 
3553 	stamp->tv_sec = ts.tv_sec;
3554 	stamp->tv_usec = ts.tv_nsec / 1000;
3555 }
3556 
3557 static inline void skb_get_timestampns(const struct sk_buff *skb,
3558 				       struct timespec *stamp)
3559 {
3560 	*stamp = ktime_to_timespec(skb->tstamp);
3561 }
3562 
3563 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3564 					   struct __kernel_timespec *stamp)
3565 {
3566 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3567 
3568 	stamp->tv_sec = ts.tv_sec;
3569 	stamp->tv_nsec = ts.tv_nsec;
3570 }
3571 
3572 static inline void __net_timestamp(struct sk_buff *skb)
3573 {
3574 	skb->tstamp = ktime_get_real();
3575 }
3576 
3577 static inline ktime_t net_timedelta(ktime_t t)
3578 {
3579 	return ktime_sub(ktime_get_real(), t);
3580 }
3581 
3582 static inline ktime_t net_invalid_timestamp(void)
3583 {
3584 	return 0;
3585 }
3586 
3587 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3588 {
3589 	return skb_shinfo(skb)->meta_len;
3590 }
3591 
3592 static inline void *skb_metadata_end(const struct sk_buff *skb)
3593 {
3594 	return skb_mac_header(skb);
3595 }
3596 
3597 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3598 					  const struct sk_buff *skb_b,
3599 					  u8 meta_len)
3600 {
3601 	const void *a = skb_metadata_end(skb_a);
3602 	const void *b = skb_metadata_end(skb_b);
3603 	/* Using more efficient varaiant than plain call to memcmp(). */
3604 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3605 	u64 diffs = 0;
3606 
3607 	switch (meta_len) {
3608 #define __it(x, op) (x -= sizeof(u##op))
3609 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3610 	case 32: diffs |= __it_diff(a, b, 64);
3611 		 /* fall through */
3612 	case 24: diffs |= __it_diff(a, b, 64);
3613 		 /* fall through */
3614 	case 16: diffs |= __it_diff(a, b, 64);
3615 		 /* fall through */
3616 	case  8: diffs |= __it_diff(a, b, 64);
3617 		break;
3618 	case 28: diffs |= __it_diff(a, b, 64);
3619 		 /* fall through */
3620 	case 20: diffs |= __it_diff(a, b, 64);
3621 		 /* fall through */
3622 	case 12: diffs |= __it_diff(a, b, 64);
3623 		 /* fall through */
3624 	case  4: diffs |= __it_diff(a, b, 32);
3625 		break;
3626 	}
3627 	return diffs;
3628 #else
3629 	return memcmp(a - meta_len, b - meta_len, meta_len);
3630 #endif
3631 }
3632 
3633 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3634 					const struct sk_buff *skb_b)
3635 {
3636 	u8 len_a = skb_metadata_len(skb_a);
3637 	u8 len_b = skb_metadata_len(skb_b);
3638 
3639 	if (!(len_a | len_b))
3640 		return false;
3641 
3642 	return len_a != len_b ?
3643 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3644 }
3645 
3646 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3647 {
3648 	skb_shinfo(skb)->meta_len = meta_len;
3649 }
3650 
3651 static inline void skb_metadata_clear(struct sk_buff *skb)
3652 {
3653 	skb_metadata_set(skb, 0);
3654 }
3655 
3656 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3657 
3658 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3659 
3660 void skb_clone_tx_timestamp(struct sk_buff *skb);
3661 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3662 
3663 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3664 
3665 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3666 {
3667 }
3668 
3669 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3670 {
3671 	return false;
3672 }
3673 
3674 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3675 
3676 /**
3677  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3678  *
3679  * PHY drivers may accept clones of transmitted packets for
3680  * timestamping via their phy_driver.txtstamp method. These drivers
3681  * must call this function to return the skb back to the stack with a
3682  * timestamp.
3683  *
3684  * @skb: clone of the the original outgoing packet
3685  * @hwtstamps: hardware time stamps
3686  *
3687  */
3688 void skb_complete_tx_timestamp(struct sk_buff *skb,
3689 			       struct skb_shared_hwtstamps *hwtstamps);
3690 
3691 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3692 		     struct skb_shared_hwtstamps *hwtstamps,
3693 		     struct sock *sk, int tstype);
3694 
3695 /**
3696  * skb_tstamp_tx - queue clone of skb with send time stamps
3697  * @orig_skb:	the original outgoing packet
3698  * @hwtstamps:	hardware time stamps, may be NULL if not available
3699  *
3700  * If the skb has a socket associated, then this function clones the
3701  * skb (thus sharing the actual data and optional structures), stores
3702  * the optional hardware time stamping information (if non NULL) or
3703  * generates a software time stamp (otherwise), then queues the clone
3704  * to the error queue of the socket.  Errors are silently ignored.
3705  */
3706 void skb_tstamp_tx(struct sk_buff *orig_skb,
3707 		   struct skb_shared_hwtstamps *hwtstamps);
3708 
3709 /**
3710  * skb_tx_timestamp() - Driver hook for transmit timestamping
3711  *
3712  * Ethernet MAC Drivers should call this function in their hard_xmit()
3713  * function immediately before giving the sk_buff to the MAC hardware.
3714  *
3715  * Specifically, one should make absolutely sure that this function is
3716  * called before TX completion of this packet can trigger.  Otherwise
3717  * the packet could potentially already be freed.
3718  *
3719  * @skb: A socket buffer.
3720  */
3721 static inline void skb_tx_timestamp(struct sk_buff *skb)
3722 {
3723 	skb_clone_tx_timestamp(skb);
3724 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3725 		skb_tstamp_tx(skb, NULL);
3726 }
3727 
3728 /**
3729  * skb_complete_wifi_ack - deliver skb with wifi status
3730  *
3731  * @skb: the original outgoing packet
3732  * @acked: ack status
3733  *
3734  */
3735 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3736 
3737 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3738 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3739 
3740 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3741 {
3742 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3743 		skb->csum_valid ||
3744 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3745 		 skb_checksum_start_offset(skb) >= 0));
3746 }
3747 
3748 /**
3749  *	skb_checksum_complete - Calculate checksum of an entire packet
3750  *	@skb: packet to process
3751  *
3752  *	This function calculates the checksum over the entire packet plus
3753  *	the value of skb->csum.  The latter can be used to supply the
3754  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3755  *	checksum.
3756  *
3757  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3758  *	this function can be used to verify that checksum on received
3759  *	packets.  In that case the function should return zero if the
3760  *	checksum is correct.  In particular, this function will return zero
3761  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3762  *	hardware has already verified the correctness of the checksum.
3763  */
3764 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3765 {
3766 	return skb_csum_unnecessary(skb) ?
3767 	       0 : __skb_checksum_complete(skb);
3768 }
3769 
3770 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3771 {
3772 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3773 		if (skb->csum_level == 0)
3774 			skb->ip_summed = CHECKSUM_NONE;
3775 		else
3776 			skb->csum_level--;
3777 	}
3778 }
3779 
3780 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3781 {
3782 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3783 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3784 			skb->csum_level++;
3785 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3786 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3787 		skb->csum_level = 0;
3788 	}
3789 }
3790 
3791 /* Check if we need to perform checksum complete validation.
3792  *
3793  * Returns true if checksum complete is needed, false otherwise
3794  * (either checksum is unnecessary or zero checksum is allowed).
3795  */
3796 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3797 						  bool zero_okay,
3798 						  __sum16 check)
3799 {
3800 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3801 		skb->csum_valid = 1;
3802 		__skb_decr_checksum_unnecessary(skb);
3803 		return false;
3804 	}
3805 
3806 	return true;
3807 }
3808 
3809 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3810  * in checksum_init.
3811  */
3812 #define CHECKSUM_BREAK 76
3813 
3814 /* Unset checksum-complete
3815  *
3816  * Unset checksum complete can be done when packet is being modified
3817  * (uncompressed for instance) and checksum-complete value is
3818  * invalidated.
3819  */
3820 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3821 {
3822 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3823 		skb->ip_summed = CHECKSUM_NONE;
3824 }
3825 
3826 /* Validate (init) checksum based on checksum complete.
3827  *
3828  * Return values:
3829  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3830  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3831  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3832  *   non-zero: value of invalid checksum
3833  *
3834  */
3835 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3836 						       bool complete,
3837 						       __wsum psum)
3838 {
3839 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3840 		if (!csum_fold(csum_add(psum, skb->csum))) {
3841 			skb->csum_valid = 1;
3842 			return 0;
3843 		}
3844 	}
3845 
3846 	skb->csum = psum;
3847 
3848 	if (complete || skb->len <= CHECKSUM_BREAK) {
3849 		__sum16 csum;
3850 
3851 		csum = __skb_checksum_complete(skb);
3852 		skb->csum_valid = !csum;
3853 		return csum;
3854 	}
3855 
3856 	return 0;
3857 }
3858 
3859 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3860 {
3861 	return 0;
3862 }
3863 
3864 /* Perform checksum validate (init). Note that this is a macro since we only
3865  * want to calculate the pseudo header which is an input function if necessary.
3866  * First we try to validate without any computation (checksum unnecessary) and
3867  * then calculate based on checksum complete calling the function to compute
3868  * pseudo header.
3869  *
3870  * Return values:
3871  *   0: checksum is validated or try to in skb_checksum_complete
3872  *   non-zero: value of invalid checksum
3873  */
3874 #define __skb_checksum_validate(skb, proto, complete,			\
3875 				zero_okay, check, compute_pseudo)	\
3876 ({									\
3877 	__sum16 __ret = 0;						\
3878 	skb->csum_valid = 0;						\
3879 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3880 		__ret = __skb_checksum_validate_complete(skb,		\
3881 				complete, compute_pseudo(skb, proto));	\
3882 	__ret;								\
3883 })
3884 
3885 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3886 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3887 
3888 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3889 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3890 
3891 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3892 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3893 
3894 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3895 					 compute_pseudo)		\
3896 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3897 
3898 #define skb_checksum_simple_validate(skb)				\
3899 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3900 
3901 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3902 {
3903 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3904 }
3905 
3906 static inline void __skb_checksum_convert(struct sk_buff *skb,
3907 					  __sum16 check, __wsum pseudo)
3908 {
3909 	skb->csum = ~pseudo;
3910 	skb->ip_summed = CHECKSUM_COMPLETE;
3911 }
3912 
3913 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3914 do {									\
3915 	if (__skb_checksum_convert_check(skb))				\
3916 		__skb_checksum_convert(skb, check,			\
3917 				       compute_pseudo(skb, proto));	\
3918 } while (0)
3919 
3920 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3921 					      u16 start, u16 offset)
3922 {
3923 	skb->ip_summed = CHECKSUM_PARTIAL;
3924 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3925 	skb->csum_offset = offset - start;
3926 }
3927 
3928 /* Update skbuf and packet to reflect the remote checksum offload operation.
3929  * When called, ptr indicates the starting point for skb->csum when
3930  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3931  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3932  */
3933 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3934 				       int start, int offset, bool nopartial)
3935 {
3936 	__wsum delta;
3937 
3938 	if (!nopartial) {
3939 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3940 		return;
3941 	}
3942 
3943 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3944 		__skb_checksum_complete(skb);
3945 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3946 	}
3947 
3948 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3949 
3950 	/* Adjust skb->csum since we changed the packet */
3951 	skb->csum = csum_add(skb->csum, delta);
3952 }
3953 
3954 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3955 {
3956 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3957 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3958 #else
3959 	return NULL;
3960 #endif
3961 }
3962 
3963 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3964 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3965 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3966 {
3967 	if (nfct && atomic_dec_and_test(&nfct->use))
3968 		nf_conntrack_destroy(nfct);
3969 }
3970 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3971 {
3972 	if (nfct)
3973 		atomic_inc(&nfct->use);
3974 }
3975 #endif
3976 
3977 #ifdef CONFIG_SKB_EXTENSIONS
3978 enum skb_ext_id {
3979 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3980 	SKB_EXT_BRIDGE_NF,
3981 #endif
3982 #ifdef CONFIG_XFRM
3983 	SKB_EXT_SEC_PATH,
3984 #endif
3985 	SKB_EXT_NUM, /* must be last */
3986 };
3987 
3988 /**
3989  *	struct skb_ext - sk_buff extensions
3990  *	@refcnt: 1 on allocation, deallocated on 0
3991  *	@offset: offset to add to @data to obtain extension address
3992  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
3993  *	@data: start of extension data, variable sized
3994  *
3995  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
3996  *	to use 'u8' types while allowing up to 2kb worth of extension data.
3997  */
3998 struct skb_ext {
3999 	refcount_t refcnt;
4000 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4001 	u8 chunks;		/* same */
4002 	char data[0] __aligned(8);
4003 };
4004 
4005 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4006 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4007 void __skb_ext_put(struct skb_ext *ext);
4008 
4009 static inline void skb_ext_put(struct sk_buff *skb)
4010 {
4011 	if (skb->active_extensions)
4012 		__skb_ext_put(skb->extensions);
4013 }
4014 
4015 static inline void __skb_ext_copy(struct sk_buff *dst,
4016 				  const struct sk_buff *src)
4017 {
4018 	dst->active_extensions = src->active_extensions;
4019 
4020 	if (src->active_extensions) {
4021 		struct skb_ext *ext = src->extensions;
4022 
4023 		refcount_inc(&ext->refcnt);
4024 		dst->extensions = ext;
4025 	}
4026 }
4027 
4028 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4029 {
4030 	skb_ext_put(dst);
4031 	__skb_ext_copy(dst, src);
4032 }
4033 
4034 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4035 {
4036 	return !!ext->offset[i];
4037 }
4038 
4039 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4040 {
4041 	return skb->active_extensions & (1 << id);
4042 }
4043 
4044 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4045 {
4046 	if (skb_ext_exist(skb, id))
4047 		__skb_ext_del(skb, id);
4048 }
4049 
4050 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4051 {
4052 	if (skb_ext_exist(skb, id)) {
4053 		struct skb_ext *ext = skb->extensions;
4054 
4055 		return (void *)ext + (ext->offset[id] << 3);
4056 	}
4057 
4058 	return NULL;
4059 }
4060 #else
4061 static inline void skb_ext_put(struct sk_buff *skb) {}
4062 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4063 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4064 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4065 #endif /* CONFIG_SKB_EXTENSIONS */
4066 
4067 static inline void nf_reset(struct sk_buff *skb)
4068 {
4069 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4070 	nf_conntrack_put(skb_nfct(skb));
4071 	skb->_nfct = 0;
4072 #endif
4073 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4074 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
4075 #endif
4076 }
4077 
4078 static inline void nf_reset_trace(struct sk_buff *skb)
4079 {
4080 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4081 	skb->nf_trace = 0;
4082 #endif
4083 }
4084 
4085 static inline void ipvs_reset(struct sk_buff *skb)
4086 {
4087 #if IS_ENABLED(CONFIG_IP_VS)
4088 	skb->ipvs_property = 0;
4089 #endif
4090 }
4091 
4092 /* Note: This doesn't put any conntrack info in dst. */
4093 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4094 			     bool copy)
4095 {
4096 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4097 	dst->_nfct = src->_nfct;
4098 	nf_conntrack_get(skb_nfct(src));
4099 #endif
4100 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4101 	if (copy)
4102 		dst->nf_trace = src->nf_trace;
4103 #endif
4104 }
4105 
4106 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4107 {
4108 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4109 	nf_conntrack_put(skb_nfct(dst));
4110 #endif
4111 	__nf_copy(dst, src, true);
4112 }
4113 
4114 #ifdef CONFIG_NETWORK_SECMARK
4115 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4116 {
4117 	to->secmark = from->secmark;
4118 }
4119 
4120 static inline void skb_init_secmark(struct sk_buff *skb)
4121 {
4122 	skb->secmark = 0;
4123 }
4124 #else
4125 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4126 { }
4127 
4128 static inline void skb_init_secmark(struct sk_buff *skb)
4129 { }
4130 #endif
4131 
4132 static inline int secpath_exists(const struct sk_buff *skb)
4133 {
4134 #ifdef CONFIG_XFRM
4135 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4136 #else
4137 	return 0;
4138 #endif
4139 }
4140 
4141 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4142 {
4143 	return !skb->destructor &&
4144 		!secpath_exists(skb) &&
4145 		!skb_nfct(skb) &&
4146 		!skb->_skb_refdst &&
4147 		!skb_has_frag_list(skb);
4148 }
4149 
4150 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4151 {
4152 	skb->queue_mapping = queue_mapping;
4153 }
4154 
4155 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4156 {
4157 	return skb->queue_mapping;
4158 }
4159 
4160 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4161 {
4162 	to->queue_mapping = from->queue_mapping;
4163 }
4164 
4165 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4166 {
4167 	skb->queue_mapping = rx_queue + 1;
4168 }
4169 
4170 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4171 {
4172 	return skb->queue_mapping - 1;
4173 }
4174 
4175 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4176 {
4177 	return skb->queue_mapping != 0;
4178 }
4179 
4180 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4181 {
4182 	skb->dst_pending_confirm = val;
4183 }
4184 
4185 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4186 {
4187 	return skb->dst_pending_confirm != 0;
4188 }
4189 
4190 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4191 {
4192 #ifdef CONFIG_XFRM
4193 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4194 #else
4195 	return NULL;
4196 #endif
4197 }
4198 
4199 /* Keeps track of mac header offset relative to skb->head.
4200  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4201  * For non-tunnel skb it points to skb_mac_header() and for
4202  * tunnel skb it points to outer mac header.
4203  * Keeps track of level of encapsulation of network headers.
4204  */
4205 struct skb_gso_cb {
4206 	union {
4207 		int	mac_offset;
4208 		int	data_offset;
4209 	};
4210 	int	encap_level;
4211 	__wsum	csum;
4212 	__u16	csum_start;
4213 };
4214 #define SKB_SGO_CB_OFFSET	32
4215 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4216 
4217 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4218 {
4219 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4220 		SKB_GSO_CB(inner_skb)->mac_offset;
4221 }
4222 
4223 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4224 {
4225 	int new_headroom, headroom;
4226 	int ret;
4227 
4228 	headroom = skb_headroom(skb);
4229 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4230 	if (ret)
4231 		return ret;
4232 
4233 	new_headroom = skb_headroom(skb);
4234 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4235 	return 0;
4236 }
4237 
4238 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4239 {
4240 	/* Do not update partial checksums if remote checksum is enabled. */
4241 	if (skb->remcsum_offload)
4242 		return;
4243 
4244 	SKB_GSO_CB(skb)->csum = res;
4245 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4246 }
4247 
4248 /* Compute the checksum for a gso segment. First compute the checksum value
4249  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4250  * then add in skb->csum (checksum from csum_start to end of packet).
4251  * skb->csum and csum_start are then updated to reflect the checksum of the
4252  * resultant packet starting from the transport header-- the resultant checksum
4253  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4254  * header.
4255  */
4256 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4257 {
4258 	unsigned char *csum_start = skb_transport_header(skb);
4259 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4260 	__wsum partial = SKB_GSO_CB(skb)->csum;
4261 
4262 	SKB_GSO_CB(skb)->csum = res;
4263 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4264 
4265 	return csum_fold(csum_partial(csum_start, plen, partial));
4266 }
4267 
4268 static inline bool skb_is_gso(const struct sk_buff *skb)
4269 {
4270 	return skb_shinfo(skb)->gso_size;
4271 }
4272 
4273 /* Note: Should be called only if skb_is_gso(skb) is true */
4274 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4275 {
4276 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4277 }
4278 
4279 /* Note: Should be called only if skb_is_gso(skb) is true */
4280 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4281 {
4282 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4283 }
4284 
4285 /* Note: Should be called only if skb_is_gso(skb) is true */
4286 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4287 {
4288 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4289 }
4290 
4291 static inline void skb_gso_reset(struct sk_buff *skb)
4292 {
4293 	skb_shinfo(skb)->gso_size = 0;
4294 	skb_shinfo(skb)->gso_segs = 0;
4295 	skb_shinfo(skb)->gso_type = 0;
4296 }
4297 
4298 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4299 					 u16 increment)
4300 {
4301 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4302 		return;
4303 	shinfo->gso_size += increment;
4304 }
4305 
4306 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4307 					 u16 decrement)
4308 {
4309 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4310 		return;
4311 	shinfo->gso_size -= decrement;
4312 }
4313 
4314 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4315 
4316 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4317 {
4318 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4319 	 * wanted then gso_type will be set. */
4320 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4321 
4322 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4323 	    unlikely(shinfo->gso_type == 0)) {
4324 		__skb_warn_lro_forwarding(skb);
4325 		return true;
4326 	}
4327 	return false;
4328 }
4329 
4330 static inline void skb_forward_csum(struct sk_buff *skb)
4331 {
4332 	/* Unfortunately we don't support this one.  Any brave souls? */
4333 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4334 		skb->ip_summed = CHECKSUM_NONE;
4335 }
4336 
4337 /**
4338  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4339  * @skb: skb to check
4340  *
4341  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4342  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4343  * use this helper, to document places where we make this assertion.
4344  */
4345 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4346 {
4347 #ifdef DEBUG
4348 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4349 #endif
4350 }
4351 
4352 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4353 
4354 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4355 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4356 				     unsigned int transport_len,
4357 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4358 
4359 /**
4360  * skb_head_is_locked - Determine if the skb->head is locked down
4361  * @skb: skb to check
4362  *
4363  * The head on skbs build around a head frag can be removed if they are
4364  * not cloned.  This function returns true if the skb head is locked down
4365  * due to either being allocated via kmalloc, or by being a clone with
4366  * multiple references to the head.
4367  */
4368 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4369 {
4370 	return !skb->head_frag || skb_cloned(skb);
4371 }
4372 
4373 /* Local Checksum Offload.
4374  * Compute outer checksum based on the assumption that the
4375  * inner checksum will be offloaded later.
4376  * See Documentation/networking/checksum-offloads.rst for
4377  * explanation of how this works.
4378  * Fill in outer checksum adjustment (e.g. with sum of outer
4379  * pseudo-header) before calling.
4380  * Also ensure that inner checksum is in linear data area.
4381  */
4382 static inline __wsum lco_csum(struct sk_buff *skb)
4383 {
4384 	unsigned char *csum_start = skb_checksum_start(skb);
4385 	unsigned char *l4_hdr = skb_transport_header(skb);
4386 	__wsum partial;
4387 
4388 	/* Start with complement of inner checksum adjustment */
4389 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4390 						    skb->csum_offset));
4391 
4392 	/* Add in checksum of our headers (incl. outer checksum
4393 	 * adjustment filled in by caller) and return result.
4394 	 */
4395 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4396 }
4397 
4398 #endif	/* __KERNEL__ */
4399 #endif	/* _LINUX_SKBUFF_H */
4400