1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 24 #include <linux/atomic.h> 25 #include <asm/types.h> 26 #include <linux/spinlock.h> 27 #include <linux/net.h> 28 #include <linux/textsearch.h> 29 #include <net/checksum.h> 30 #include <linux/rcupdate.h> 31 #include <linux/dmaengine.h> 32 #include <linux/hrtimer.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/netdev_features.h> 35 36 /* Don't change this without changing skb_csum_unnecessary! */ 37 #define CHECKSUM_NONE 0 38 #define CHECKSUM_UNNECESSARY 1 39 #define CHECKSUM_COMPLETE 2 40 #define CHECKSUM_PARTIAL 3 41 42 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 43 ~(SMP_CACHE_BYTES - 1)) 44 #define SKB_WITH_OVERHEAD(X) \ 45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 46 #define SKB_MAX_ORDER(X, ORDER) \ 47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 50 51 /* return minimum truesize of one skb containing X bytes of data */ 52 #define SKB_TRUESIZE(X) ((X) + \ 53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 55 56 /* A. Checksumming of received packets by device. 57 * 58 * NONE: device failed to checksum this packet. 59 * skb->csum is undefined. 60 * 61 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 62 * skb->csum is undefined. 63 * It is bad option, but, unfortunately, many of vendors do this. 64 * Apparently with secret goal to sell you new device, when you 65 * will add new protocol to your host. F.e. IPv6. 8) 66 * 67 * COMPLETE: the most generic way. Device supplied checksum of _all_ 68 * the packet as seen by netif_rx in skb->csum. 69 * NOTE: Even if device supports only some protocols, but 70 * is able to produce some skb->csum, it MUST use COMPLETE, 71 * not UNNECESSARY. 72 * 73 * PARTIAL: identical to the case for output below. This may occur 74 * on a packet received directly from another Linux OS, e.g., 75 * a virtualised Linux kernel on the same host. The packet can 76 * be treated in the same way as UNNECESSARY except that on 77 * output (i.e., forwarding) the checksum must be filled in 78 * by the OS or the hardware. 79 * 80 * B. Checksumming on output. 81 * 82 * NONE: skb is checksummed by protocol or csum is not required. 83 * 84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 85 * from skb->csum_start to the end and to record the checksum 86 * at skb->csum_start + skb->csum_offset. 87 * 88 * Device must show its capabilities in dev->features, set 89 * at device setup time. 90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 91 * everything. 92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 93 * TCP/UDP over IPv4. Sigh. Vendors like this 94 * way by an unknown reason. Though, see comment above 95 * about CHECKSUM_UNNECESSARY. 8) 96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 97 * 98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers 99 * that do not want net to perform the checksum calculation should use 100 * this flag in their outgoing skbs. 101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC 102 * offload. Correspondingly, the FCoE protocol driver 103 * stack should use CHECKSUM_UNNECESSARY. 104 * 105 * Any questions? No questions, good. --ANK 106 */ 107 108 struct net_device; 109 struct scatterlist; 110 struct pipe_inode_info; 111 112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 113 struct nf_conntrack { 114 atomic_t use; 115 }; 116 #endif 117 118 #ifdef CONFIG_BRIDGE_NETFILTER 119 struct nf_bridge_info { 120 atomic_t use; 121 unsigned int mask; 122 struct net_device *physindev; 123 struct net_device *physoutdev; 124 unsigned long data[32 / sizeof(unsigned long)]; 125 }; 126 #endif 127 128 struct sk_buff_head { 129 /* These two members must be first. */ 130 struct sk_buff *next; 131 struct sk_buff *prev; 132 133 __u32 qlen; 134 spinlock_t lock; 135 }; 136 137 struct sk_buff; 138 139 /* To allow 64K frame to be packed as single skb without frag_list we 140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 141 * buffers which do not start on a page boundary. 142 * 143 * Since GRO uses frags we allocate at least 16 regardless of page 144 * size. 145 */ 146 #if (65536/PAGE_SIZE + 1) < 16 147 #define MAX_SKB_FRAGS 16UL 148 #else 149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 150 #endif 151 152 typedef struct skb_frag_struct skb_frag_t; 153 154 struct skb_frag_struct { 155 struct { 156 struct page *p; 157 } page; 158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 159 __u32 page_offset; 160 __u32 size; 161 #else 162 __u16 page_offset; 163 __u16 size; 164 #endif 165 }; 166 167 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 168 { 169 return frag->size; 170 } 171 172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 173 { 174 frag->size = size; 175 } 176 177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 178 { 179 frag->size += delta; 180 } 181 182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 183 { 184 frag->size -= delta; 185 } 186 187 #define HAVE_HW_TIME_STAMP 188 189 /** 190 * struct skb_shared_hwtstamps - hardware time stamps 191 * @hwtstamp: hardware time stamp transformed into duration 192 * since arbitrary point in time 193 * @syststamp: hwtstamp transformed to system time base 194 * 195 * Software time stamps generated by ktime_get_real() are stored in 196 * skb->tstamp. The relation between the different kinds of time 197 * stamps is as follows: 198 * 199 * syststamp and tstamp can be compared against each other in 200 * arbitrary combinations. The accuracy of a 201 * syststamp/tstamp/"syststamp from other device" comparison is 202 * limited by the accuracy of the transformation into system time 203 * base. This depends on the device driver and its underlying 204 * hardware. 205 * 206 * hwtstamps can only be compared against other hwtstamps from 207 * the same device. 208 * 209 * This structure is attached to packets as part of the 210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 211 */ 212 struct skb_shared_hwtstamps { 213 ktime_t hwtstamp; 214 ktime_t syststamp; 215 }; 216 217 /* Definitions for tx_flags in struct skb_shared_info */ 218 enum { 219 /* generate hardware time stamp */ 220 SKBTX_HW_TSTAMP = 1 << 0, 221 222 /* generate software time stamp */ 223 SKBTX_SW_TSTAMP = 1 << 1, 224 225 /* device driver is going to provide hardware time stamp */ 226 SKBTX_IN_PROGRESS = 1 << 2, 227 228 /* device driver supports TX zero-copy buffers */ 229 SKBTX_DEV_ZEROCOPY = 1 << 3, 230 231 /* generate wifi status information (where possible) */ 232 SKBTX_WIFI_STATUS = 1 << 4, 233 234 /* This indicates at least one fragment might be overwritten 235 * (as in vmsplice(), sendfile() ...) 236 * If we need to compute a TX checksum, we'll need to copy 237 * all frags to avoid possible bad checksum 238 */ 239 SKBTX_SHARED_FRAG = 1 << 5, 240 }; 241 242 /* 243 * The callback notifies userspace to release buffers when skb DMA is done in 244 * lower device, the skb last reference should be 0 when calling this. 245 * The zerocopy_success argument is true if zero copy transmit occurred, 246 * false on data copy or out of memory error caused by data copy attempt. 247 * The ctx field is used to track device context. 248 * The desc field is used to track userspace buffer index. 249 */ 250 struct ubuf_info { 251 void (*callback)(struct ubuf_info *, bool zerocopy_success); 252 void *ctx; 253 unsigned long desc; 254 }; 255 256 /* This data is invariant across clones and lives at 257 * the end of the header data, ie. at skb->end. 258 */ 259 struct skb_shared_info { 260 unsigned char nr_frags; 261 __u8 tx_flags; 262 unsigned short gso_size; 263 /* Warning: this field is not always filled in (UFO)! */ 264 unsigned short gso_segs; 265 unsigned short gso_type; 266 struct sk_buff *frag_list; 267 struct skb_shared_hwtstamps hwtstamps; 268 __be32 ip6_frag_id; 269 270 /* 271 * Warning : all fields before dataref are cleared in __alloc_skb() 272 */ 273 atomic_t dataref; 274 275 /* Intermediate layers must ensure that destructor_arg 276 * remains valid until skb destructor */ 277 void * destructor_arg; 278 279 /* must be last field, see pskb_expand_head() */ 280 skb_frag_t frags[MAX_SKB_FRAGS]; 281 }; 282 283 /* We divide dataref into two halves. The higher 16 bits hold references 284 * to the payload part of skb->data. The lower 16 bits hold references to 285 * the entire skb->data. A clone of a headerless skb holds the length of 286 * the header in skb->hdr_len. 287 * 288 * All users must obey the rule that the skb->data reference count must be 289 * greater than or equal to the payload reference count. 290 * 291 * Holding a reference to the payload part means that the user does not 292 * care about modifications to the header part of skb->data. 293 */ 294 #define SKB_DATAREF_SHIFT 16 295 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 296 297 298 enum { 299 SKB_FCLONE_UNAVAILABLE, 300 SKB_FCLONE_ORIG, 301 SKB_FCLONE_CLONE, 302 }; 303 304 enum { 305 SKB_GSO_TCPV4 = 1 << 0, 306 SKB_GSO_UDP = 1 << 1, 307 308 /* This indicates the skb is from an untrusted source. */ 309 SKB_GSO_DODGY = 1 << 2, 310 311 /* This indicates the tcp segment has CWR set. */ 312 SKB_GSO_TCP_ECN = 1 << 3, 313 314 SKB_GSO_TCPV6 = 1 << 4, 315 316 SKB_GSO_FCOE = 1 << 5, 317 318 SKB_GSO_GRE = 1 << 6, 319 }; 320 321 #if BITS_PER_LONG > 32 322 #define NET_SKBUFF_DATA_USES_OFFSET 1 323 #endif 324 325 #ifdef NET_SKBUFF_DATA_USES_OFFSET 326 typedef unsigned int sk_buff_data_t; 327 #else 328 typedef unsigned char *sk_buff_data_t; 329 #endif 330 331 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 332 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 333 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1 334 #endif 335 336 /** 337 * struct sk_buff - socket buffer 338 * @next: Next buffer in list 339 * @prev: Previous buffer in list 340 * @tstamp: Time we arrived 341 * @sk: Socket we are owned by 342 * @dev: Device we arrived on/are leaving by 343 * @cb: Control buffer. Free for use by every layer. Put private vars here 344 * @_skb_refdst: destination entry (with norefcount bit) 345 * @sp: the security path, used for xfrm 346 * @len: Length of actual data 347 * @data_len: Data length 348 * @mac_len: Length of link layer header 349 * @hdr_len: writable header length of cloned skb 350 * @csum: Checksum (must include start/offset pair) 351 * @csum_start: Offset from skb->head where checksumming should start 352 * @csum_offset: Offset from csum_start where checksum should be stored 353 * @priority: Packet queueing priority 354 * @local_df: allow local fragmentation 355 * @cloned: Head may be cloned (check refcnt to be sure) 356 * @ip_summed: Driver fed us an IP checksum 357 * @nohdr: Payload reference only, must not modify header 358 * @nfctinfo: Relationship of this skb to the connection 359 * @pkt_type: Packet class 360 * @fclone: skbuff clone status 361 * @ipvs_property: skbuff is owned by ipvs 362 * @peeked: this packet has been seen already, so stats have been 363 * done for it, don't do them again 364 * @nf_trace: netfilter packet trace flag 365 * @protocol: Packet protocol from driver 366 * @destructor: Destruct function 367 * @nfct: Associated connection, if any 368 * @nfct_reasm: netfilter conntrack re-assembly pointer 369 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 370 * @skb_iif: ifindex of device we arrived on 371 * @tc_index: Traffic control index 372 * @tc_verd: traffic control verdict 373 * @rxhash: the packet hash computed on receive 374 * @queue_mapping: Queue mapping for multiqueue devices 375 * @ndisc_nodetype: router type (from link layer) 376 * @ooo_okay: allow the mapping of a socket to a queue to be changed 377 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport 378 * ports. 379 * @wifi_acked_valid: wifi_acked was set 380 * @wifi_acked: whether frame was acked on wifi or not 381 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 382 * @dma_cookie: a cookie to one of several possible DMA operations 383 * done by skb DMA functions 384 * @secmark: security marking 385 * @mark: Generic packet mark 386 * @dropcount: total number of sk_receive_queue overflows 387 * @vlan_tci: vlan tag control information 388 * @inner_transport_header: Inner transport layer header (encapsulation) 389 * @inner_network_header: Network layer header (encapsulation) 390 * @transport_header: Transport layer header 391 * @network_header: Network layer header 392 * @mac_header: Link layer header 393 * @tail: Tail pointer 394 * @end: End pointer 395 * @head: Head of buffer 396 * @data: Data head pointer 397 * @truesize: Buffer size 398 * @users: User count - see {datagram,tcp}.c 399 */ 400 401 struct sk_buff { 402 /* These two members must be first. */ 403 struct sk_buff *next; 404 struct sk_buff *prev; 405 406 ktime_t tstamp; 407 408 struct sock *sk; 409 struct net_device *dev; 410 411 /* 412 * This is the control buffer. It is free to use for every 413 * layer. Please put your private variables there. If you 414 * want to keep them across layers you have to do a skb_clone() 415 * first. This is owned by whoever has the skb queued ATM. 416 */ 417 char cb[48] __aligned(8); 418 419 unsigned long _skb_refdst; 420 #ifdef CONFIG_XFRM 421 struct sec_path *sp; 422 #endif 423 unsigned int len, 424 data_len; 425 __u16 mac_len, 426 hdr_len; 427 union { 428 __wsum csum; 429 struct { 430 __u16 csum_start; 431 __u16 csum_offset; 432 }; 433 }; 434 __u32 priority; 435 kmemcheck_bitfield_begin(flags1); 436 __u8 local_df:1, 437 cloned:1, 438 ip_summed:2, 439 nohdr:1, 440 nfctinfo:3; 441 __u8 pkt_type:3, 442 fclone:2, 443 ipvs_property:1, 444 peeked:1, 445 nf_trace:1; 446 kmemcheck_bitfield_end(flags1); 447 __be16 protocol; 448 449 void (*destructor)(struct sk_buff *skb); 450 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 451 struct nf_conntrack *nfct; 452 #endif 453 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 454 struct sk_buff *nfct_reasm; 455 #endif 456 #ifdef CONFIG_BRIDGE_NETFILTER 457 struct nf_bridge_info *nf_bridge; 458 #endif 459 460 int skb_iif; 461 462 __u32 rxhash; 463 464 __u16 vlan_tci; 465 466 #ifdef CONFIG_NET_SCHED 467 __u16 tc_index; /* traffic control index */ 468 #ifdef CONFIG_NET_CLS_ACT 469 __u16 tc_verd; /* traffic control verdict */ 470 #endif 471 #endif 472 473 __u16 queue_mapping; 474 kmemcheck_bitfield_begin(flags2); 475 #ifdef CONFIG_IPV6_NDISC_NODETYPE 476 __u8 ndisc_nodetype:2; 477 #endif 478 __u8 pfmemalloc:1; 479 __u8 ooo_okay:1; 480 __u8 l4_rxhash:1; 481 __u8 wifi_acked_valid:1; 482 __u8 wifi_acked:1; 483 __u8 no_fcs:1; 484 __u8 head_frag:1; 485 /* Encapsulation protocol and NIC drivers should use 486 * this flag to indicate to each other if the skb contains 487 * encapsulated packet or not and maybe use the inner packet 488 * headers if needed 489 */ 490 __u8 encapsulation:1; 491 /* 7/9 bit hole (depending on ndisc_nodetype presence) */ 492 kmemcheck_bitfield_end(flags2); 493 494 #ifdef CONFIG_NET_DMA 495 dma_cookie_t dma_cookie; 496 #endif 497 #ifdef CONFIG_NETWORK_SECMARK 498 __u32 secmark; 499 #endif 500 union { 501 __u32 mark; 502 __u32 dropcount; 503 __u32 reserved_tailroom; 504 }; 505 506 sk_buff_data_t inner_transport_header; 507 sk_buff_data_t inner_network_header; 508 sk_buff_data_t transport_header; 509 sk_buff_data_t network_header; 510 sk_buff_data_t mac_header; 511 /* These elements must be at the end, see alloc_skb() for details. */ 512 sk_buff_data_t tail; 513 sk_buff_data_t end; 514 unsigned char *head, 515 *data; 516 unsigned int truesize; 517 atomic_t users; 518 }; 519 520 #ifdef __KERNEL__ 521 /* 522 * Handling routines are only of interest to the kernel 523 */ 524 #include <linux/slab.h> 525 526 527 #define SKB_ALLOC_FCLONE 0x01 528 #define SKB_ALLOC_RX 0x02 529 530 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 531 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 532 { 533 return unlikely(skb->pfmemalloc); 534 } 535 536 /* 537 * skb might have a dst pointer attached, refcounted or not. 538 * _skb_refdst low order bit is set if refcount was _not_ taken 539 */ 540 #define SKB_DST_NOREF 1UL 541 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 542 543 /** 544 * skb_dst - returns skb dst_entry 545 * @skb: buffer 546 * 547 * Returns skb dst_entry, regardless of reference taken or not. 548 */ 549 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 550 { 551 /* If refdst was not refcounted, check we still are in a 552 * rcu_read_lock section 553 */ 554 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 555 !rcu_read_lock_held() && 556 !rcu_read_lock_bh_held()); 557 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 558 } 559 560 /** 561 * skb_dst_set - sets skb dst 562 * @skb: buffer 563 * @dst: dst entry 564 * 565 * Sets skb dst, assuming a reference was taken on dst and should 566 * be released by skb_dst_drop() 567 */ 568 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 569 { 570 skb->_skb_refdst = (unsigned long)dst; 571 } 572 573 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 574 575 /** 576 * skb_dst_is_noref - Test if skb dst isn't refcounted 577 * @skb: buffer 578 */ 579 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 580 { 581 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 582 } 583 584 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 585 { 586 return (struct rtable *)skb_dst(skb); 587 } 588 589 extern void kfree_skb(struct sk_buff *skb); 590 extern void skb_tx_error(struct sk_buff *skb); 591 extern void consume_skb(struct sk_buff *skb); 592 extern void __kfree_skb(struct sk_buff *skb); 593 extern struct kmem_cache *skbuff_head_cache; 594 595 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 596 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 597 bool *fragstolen, int *delta_truesize); 598 599 extern struct sk_buff *__alloc_skb(unsigned int size, 600 gfp_t priority, int flags, int node); 601 extern struct sk_buff *build_skb(void *data, unsigned int frag_size); 602 static inline struct sk_buff *alloc_skb(unsigned int size, 603 gfp_t priority) 604 { 605 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 606 } 607 608 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 609 gfp_t priority) 610 { 611 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 612 } 613 614 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 615 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 616 extern struct sk_buff *skb_clone(struct sk_buff *skb, 617 gfp_t priority); 618 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 619 gfp_t priority); 620 extern struct sk_buff *__pskb_copy(struct sk_buff *skb, 621 int headroom, gfp_t gfp_mask); 622 623 extern int pskb_expand_head(struct sk_buff *skb, 624 int nhead, int ntail, 625 gfp_t gfp_mask); 626 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 627 unsigned int headroom); 628 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 629 int newheadroom, int newtailroom, 630 gfp_t priority); 631 extern int skb_to_sgvec(struct sk_buff *skb, 632 struct scatterlist *sg, int offset, 633 int len); 634 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 635 struct sk_buff **trailer); 636 extern int skb_pad(struct sk_buff *skb, int pad); 637 #define dev_kfree_skb(a) consume_skb(a) 638 639 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 640 int getfrag(void *from, char *to, int offset, 641 int len,int odd, struct sk_buff *skb), 642 void *from, int length); 643 644 struct skb_seq_state { 645 __u32 lower_offset; 646 __u32 upper_offset; 647 __u32 frag_idx; 648 __u32 stepped_offset; 649 struct sk_buff *root_skb; 650 struct sk_buff *cur_skb; 651 __u8 *frag_data; 652 }; 653 654 extern void skb_prepare_seq_read(struct sk_buff *skb, 655 unsigned int from, unsigned int to, 656 struct skb_seq_state *st); 657 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 658 struct skb_seq_state *st); 659 extern void skb_abort_seq_read(struct skb_seq_state *st); 660 661 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 662 unsigned int to, struct ts_config *config, 663 struct ts_state *state); 664 665 extern void __skb_get_rxhash(struct sk_buff *skb); 666 static inline __u32 skb_get_rxhash(struct sk_buff *skb) 667 { 668 if (!skb->l4_rxhash) 669 __skb_get_rxhash(skb); 670 671 return skb->rxhash; 672 } 673 674 #ifdef NET_SKBUFF_DATA_USES_OFFSET 675 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 676 { 677 return skb->head + skb->end; 678 } 679 680 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 681 { 682 return skb->end; 683 } 684 #else 685 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 686 { 687 return skb->end; 688 } 689 690 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 691 { 692 return skb->end - skb->head; 693 } 694 #endif 695 696 /* Internal */ 697 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 698 699 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 700 { 701 return &skb_shinfo(skb)->hwtstamps; 702 } 703 704 /** 705 * skb_queue_empty - check if a queue is empty 706 * @list: queue head 707 * 708 * Returns true if the queue is empty, false otherwise. 709 */ 710 static inline int skb_queue_empty(const struct sk_buff_head *list) 711 { 712 return list->next == (struct sk_buff *)list; 713 } 714 715 /** 716 * skb_queue_is_last - check if skb is the last entry in the queue 717 * @list: queue head 718 * @skb: buffer 719 * 720 * Returns true if @skb is the last buffer on the list. 721 */ 722 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 723 const struct sk_buff *skb) 724 { 725 return skb->next == (struct sk_buff *)list; 726 } 727 728 /** 729 * skb_queue_is_first - check if skb is the first entry in the queue 730 * @list: queue head 731 * @skb: buffer 732 * 733 * Returns true if @skb is the first buffer on the list. 734 */ 735 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 736 const struct sk_buff *skb) 737 { 738 return skb->prev == (struct sk_buff *)list; 739 } 740 741 /** 742 * skb_queue_next - return the next packet in the queue 743 * @list: queue head 744 * @skb: current buffer 745 * 746 * Return the next packet in @list after @skb. It is only valid to 747 * call this if skb_queue_is_last() evaluates to false. 748 */ 749 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 750 const struct sk_buff *skb) 751 { 752 /* This BUG_ON may seem severe, but if we just return then we 753 * are going to dereference garbage. 754 */ 755 BUG_ON(skb_queue_is_last(list, skb)); 756 return skb->next; 757 } 758 759 /** 760 * skb_queue_prev - return the prev packet in the queue 761 * @list: queue head 762 * @skb: current buffer 763 * 764 * Return the prev packet in @list before @skb. It is only valid to 765 * call this if skb_queue_is_first() evaluates to false. 766 */ 767 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 768 const struct sk_buff *skb) 769 { 770 /* This BUG_ON may seem severe, but if we just return then we 771 * are going to dereference garbage. 772 */ 773 BUG_ON(skb_queue_is_first(list, skb)); 774 return skb->prev; 775 } 776 777 /** 778 * skb_get - reference buffer 779 * @skb: buffer to reference 780 * 781 * Makes another reference to a socket buffer and returns a pointer 782 * to the buffer. 783 */ 784 static inline struct sk_buff *skb_get(struct sk_buff *skb) 785 { 786 atomic_inc(&skb->users); 787 return skb; 788 } 789 790 /* 791 * If users == 1, we are the only owner and are can avoid redundant 792 * atomic change. 793 */ 794 795 /** 796 * skb_cloned - is the buffer a clone 797 * @skb: buffer to check 798 * 799 * Returns true if the buffer was generated with skb_clone() and is 800 * one of multiple shared copies of the buffer. Cloned buffers are 801 * shared data so must not be written to under normal circumstances. 802 */ 803 static inline int skb_cloned(const struct sk_buff *skb) 804 { 805 return skb->cloned && 806 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 807 } 808 809 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 810 { 811 might_sleep_if(pri & __GFP_WAIT); 812 813 if (skb_cloned(skb)) 814 return pskb_expand_head(skb, 0, 0, pri); 815 816 return 0; 817 } 818 819 /** 820 * skb_header_cloned - is the header a clone 821 * @skb: buffer to check 822 * 823 * Returns true if modifying the header part of the buffer requires 824 * the data to be copied. 825 */ 826 static inline int skb_header_cloned(const struct sk_buff *skb) 827 { 828 int dataref; 829 830 if (!skb->cloned) 831 return 0; 832 833 dataref = atomic_read(&skb_shinfo(skb)->dataref); 834 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 835 return dataref != 1; 836 } 837 838 /** 839 * skb_header_release - release reference to header 840 * @skb: buffer to operate on 841 * 842 * Drop a reference to the header part of the buffer. This is done 843 * by acquiring a payload reference. You must not read from the header 844 * part of skb->data after this. 845 */ 846 static inline void skb_header_release(struct sk_buff *skb) 847 { 848 BUG_ON(skb->nohdr); 849 skb->nohdr = 1; 850 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 851 } 852 853 /** 854 * skb_shared - is the buffer shared 855 * @skb: buffer to check 856 * 857 * Returns true if more than one person has a reference to this 858 * buffer. 859 */ 860 static inline int skb_shared(const struct sk_buff *skb) 861 { 862 return atomic_read(&skb->users) != 1; 863 } 864 865 /** 866 * skb_share_check - check if buffer is shared and if so clone it 867 * @skb: buffer to check 868 * @pri: priority for memory allocation 869 * 870 * If the buffer is shared the buffer is cloned and the old copy 871 * drops a reference. A new clone with a single reference is returned. 872 * If the buffer is not shared the original buffer is returned. When 873 * being called from interrupt status or with spinlocks held pri must 874 * be GFP_ATOMIC. 875 * 876 * NULL is returned on a memory allocation failure. 877 */ 878 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 879 { 880 might_sleep_if(pri & __GFP_WAIT); 881 if (skb_shared(skb)) { 882 struct sk_buff *nskb = skb_clone(skb, pri); 883 884 if (likely(nskb)) 885 consume_skb(skb); 886 else 887 kfree_skb(skb); 888 skb = nskb; 889 } 890 return skb; 891 } 892 893 /* 894 * Copy shared buffers into a new sk_buff. We effectively do COW on 895 * packets to handle cases where we have a local reader and forward 896 * and a couple of other messy ones. The normal one is tcpdumping 897 * a packet thats being forwarded. 898 */ 899 900 /** 901 * skb_unshare - make a copy of a shared buffer 902 * @skb: buffer to check 903 * @pri: priority for memory allocation 904 * 905 * If the socket buffer is a clone then this function creates a new 906 * copy of the data, drops a reference count on the old copy and returns 907 * the new copy with the reference count at 1. If the buffer is not a clone 908 * the original buffer is returned. When called with a spinlock held or 909 * from interrupt state @pri must be %GFP_ATOMIC 910 * 911 * %NULL is returned on a memory allocation failure. 912 */ 913 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 914 gfp_t pri) 915 { 916 might_sleep_if(pri & __GFP_WAIT); 917 if (skb_cloned(skb)) { 918 struct sk_buff *nskb = skb_copy(skb, pri); 919 kfree_skb(skb); /* Free our shared copy */ 920 skb = nskb; 921 } 922 return skb; 923 } 924 925 /** 926 * skb_peek - peek at the head of an &sk_buff_head 927 * @list_: list to peek at 928 * 929 * Peek an &sk_buff. Unlike most other operations you _MUST_ 930 * be careful with this one. A peek leaves the buffer on the 931 * list and someone else may run off with it. You must hold 932 * the appropriate locks or have a private queue to do this. 933 * 934 * Returns %NULL for an empty list or a pointer to the head element. 935 * The reference count is not incremented and the reference is therefore 936 * volatile. Use with caution. 937 */ 938 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 939 { 940 struct sk_buff *skb = list_->next; 941 942 if (skb == (struct sk_buff *)list_) 943 skb = NULL; 944 return skb; 945 } 946 947 /** 948 * skb_peek_next - peek skb following the given one from a queue 949 * @skb: skb to start from 950 * @list_: list to peek at 951 * 952 * Returns %NULL when the end of the list is met or a pointer to the 953 * next element. The reference count is not incremented and the 954 * reference is therefore volatile. Use with caution. 955 */ 956 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 957 const struct sk_buff_head *list_) 958 { 959 struct sk_buff *next = skb->next; 960 961 if (next == (struct sk_buff *)list_) 962 next = NULL; 963 return next; 964 } 965 966 /** 967 * skb_peek_tail - peek at the tail of an &sk_buff_head 968 * @list_: list to peek at 969 * 970 * Peek an &sk_buff. Unlike most other operations you _MUST_ 971 * be careful with this one. A peek leaves the buffer on the 972 * list and someone else may run off with it. You must hold 973 * the appropriate locks or have a private queue to do this. 974 * 975 * Returns %NULL for an empty list or a pointer to the tail element. 976 * The reference count is not incremented and the reference is therefore 977 * volatile. Use with caution. 978 */ 979 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 980 { 981 struct sk_buff *skb = list_->prev; 982 983 if (skb == (struct sk_buff *)list_) 984 skb = NULL; 985 return skb; 986 987 } 988 989 /** 990 * skb_queue_len - get queue length 991 * @list_: list to measure 992 * 993 * Return the length of an &sk_buff queue. 994 */ 995 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 996 { 997 return list_->qlen; 998 } 999 1000 /** 1001 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1002 * @list: queue to initialize 1003 * 1004 * This initializes only the list and queue length aspects of 1005 * an sk_buff_head object. This allows to initialize the list 1006 * aspects of an sk_buff_head without reinitializing things like 1007 * the spinlock. It can also be used for on-stack sk_buff_head 1008 * objects where the spinlock is known to not be used. 1009 */ 1010 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1011 { 1012 list->prev = list->next = (struct sk_buff *)list; 1013 list->qlen = 0; 1014 } 1015 1016 /* 1017 * This function creates a split out lock class for each invocation; 1018 * this is needed for now since a whole lot of users of the skb-queue 1019 * infrastructure in drivers have different locking usage (in hardirq) 1020 * than the networking core (in softirq only). In the long run either the 1021 * network layer or drivers should need annotation to consolidate the 1022 * main types of usage into 3 classes. 1023 */ 1024 static inline void skb_queue_head_init(struct sk_buff_head *list) 1025 { 1026 spin_lock_init(&list->lock); 1027 __skb_queue_head_init(list); 1028 } 1029 1030 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1031 struct lock_class_key *class) 1032 { 1033 skb_queue_head_init(list); 1034 lockdep_set_class(&list->lock, class); 1035 } 1036 1037 /* 1038 * Insert an sk_buff on a list. 1039 * 1040 * The "__skb_xxxx()" functions are the non-atomic ones that 1041 * can only be called with interrupts disabled. 1042 */ 1043 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 1044 static inline void __skb_insert(struct sk_buff *newsk, 1045 struct sk_buff *prev, struct sk_buff *next, 1046 struct sk_buff_head *list) 1047 { 1048 newsk->next = next; 1049 newsk->prev = prev; 1050 next->prev = prev->next = newsk; 1051 list->qlen++; 1052 } 1053 1054 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1055 struct sk_buff *prev, 1056 struct sk_buff *next) 1057 { 1058 struct sk_buff *first = list->next; 1059 struct sk_buff *last = list->prev; 1060 1061 first->prev = prev; 1062 prev->next = first; 1063 1064 last->next = next; 1065 next->prev = last; 1066 } 1067 1068 /** 1069 * skb_queue_splice - join two skb lists, this is designed for stacks 1070 * @list: the new list to add 1071 * @head: the place to add it in the first list 1072 */ 1073 static inline void skb_queue_splice(const struct sk_buff_head *list, 1074 struct sk_buff_head *head) 1075 { 1076 if (!skb_queue_empty(list)) { 1077 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1078 head->qlen += list->qlen; 1079 } 1080 } 1081 1082 /** 1083 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1084 * @list: the new list to add 1085 * @head: the place to add it in the first list 1086 * 1087 * The list at @list is reinitialised 1088 */ 1089 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1090 struct sk_buff_head *head) 1091 { 1092 if (!skb_queue_empty(list)) { 1093 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1094 head->qlen += list->qlen; 1095 __skb_queue_head_init(list); 1096 } 1097 } 1098 1099 /** 1100 * skb_queue_splice_tail - join two skb lists, each list being a queue 1101 * @list: the new list to add 1102 * @head: the place to add it in the first list 1103 */ 1104 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1105 struct sk_buff_head *head) 1106 { 1107 if (!skb_queue_empty(list)) { 1108 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1109 head->qlen += list->qlen; 1110 } 1111 } 1112 1113 /** 1114 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1115 * @list: the new list to add 1116 * @head: the place to add it in the first list 1117 * 1118 * Each of the lists is a queue. 1119 * The list at @list is reinitialised 1120 */ 1121 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1122 struct sk_buff_head *head) 1123 { 1124 if (!skb_queue_empty(list)) { 1125 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1126 head->qlen += list->qlen; 1127 __skb_queue_head_init(list); 1128 } 1129 } 1130 1131 /** 1132 * __skb_queue_after - queue a buffer at the list head 1133 * @list: list to use 1134 * @prev: place after this buffer 1135 * @newsk: buffer to queue 1136 * 1137 * Queue a buffer int the middle of a list. This function takes no locks 1138 * and you must therefore hold required locks before calling it. 1139 * 1140 * A buffer cannot be placed on two lists at the same time. 1141 */ 1142 static inline void __skb_queue_after(struct sk_buff_head *list, 1143 struct sk_buff *prev, 1144 struct sk_buff *newsk) 1145 { 1146 __skb_insert(newsk, prev, prev->next, list); 1147 } 1148 1149 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1150 struct sk_buff_head *list); 1151 1152 static inline void __skb_queue_before(struct sk_buff_head *list, 1153 struct sk_buff *next, 1154 struct sk_buff *newsk) 1155 { 1156 __skb_insert(newsk, next->prev, next, list); 1157 } 1158 1159 /** 1160 * __skb_queue_head - queue a buffer at the list head 1161 * @list: list to use 1162 * @newsk: buffer to queue 1163 * 1164 * Queue a buffer at the start of a list. This function takes no locks 1165 * and you must therefore hold required locks before calling it. 1166 * 1167 * A buffer cannot be placed on two lists at the same time. 1168 */ 1169 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1170 static inline void __skb_queue_head(struct sk_buff_head *list, 1171 struct sk_buff *newsk) 1172 { 1173 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1174 } 1175 1176 /** 1177 * __skb_queue_tail - queue a buffer at the list tail 1178 * @list: list to use 1179 * @newsk: buffer to queue 1180 * 1181 * Queue a buffer at the end of a list. This function takes no locks 1182 * and you must therefore hold required locks before calling it. 1183 * 1184 * A buffer cannot be placed on two lists at the same time. 1185 */ 1186 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1187 static inline void __skb_queue_tail(struct sk_buff_head *list, 1188 struct sk_buff *newsk) 1189 { 1190 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1191 } 1192 1193 /* 1194 * remove sk_buff from list. _Must_ be called atomically, and with 1195 * the list known.. 1196 */ 1197 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1198 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1199 { 1200 struct sk_buff *next, *prev; 1201 1202 list->qlen--; 1203 next = skb->next; 1204 prev = skb->prev; 1205 skb->next = skb->prev = NULL; 1206 next->prev = prev; 1207 prev->next = next; 1208 } 1209 1210 /** 1211 * __skb_dequeue - remove from the head of the queue 1212 * @list: list to dequeue from 1213 * 1214 * Remove the head of the list. This function does not take any locks 1215 * so must be used with appropriate locks held only. The head item is 1216 * returned or %NULL if the list is empty. 1217 */ 1218 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1219 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1220 { 1221 struct sk_buff *skb = skb_peek(list); 1222 if (skb) 1223 __skb_unlink(skb, list); 1224 return skb; 1225 } 1226 1227 /** 1228 * __skb_dequeue_tail - remove from the tail of the queue 1229 * @list: list to dequeue from 1230 * 1231 * Remove the tail of the list. This function does not take any locks 1232 * so must be used with appropriate locks held only. The tail item is 1233 * returned or %NULL if the list is empty. 1234 */ 1235 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1236 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1237 { 1238 struct sk_buff *skb = skb_peek_tail(list); 1239 if (skb) 1240 __skb_unlink(skb, list); 1241 return skb; 1242 } 1243 1244 1245 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1246 { 1247 return skb->data_len; 1248 } 1249 1250 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1251 { 1252 return skb->len - skb->data_len; 1253 } 1254 1255 static inline int skb_pagelen(const struct sk_buff *skb) 1256 { 1257 int i, len = 0; 1258 1259 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1260 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1261 return len + skb_headlen(skb); 1262 } 1263 1264 /** 1265 * __skb_fill_page_desc - initialise a paged fragment in an skb 1266 * @skb: buffer containing fragment to be initialised 1267 * @i: paged fragment index to initialise 1268 * @page: the page to use for this fragment 1269 * @off: the offset to the data with @page 1270 * @size: the length of the data 1271 * 1272 * Initialises the @i'th fragment of @skb to point to &size bytes at 1273 * offset @off within @page. 1274 * 1275 * Does not take any additional reference on the fragment. 1276 */ 1277 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1278 struct page *page, int off, int size) 1279 { 1280 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1281 1282 /* 1283 * Propagate page->pfmemalloc to the skb if we can. The problem is 1284 * that not all callers have unique ownership of the page. If 1285 * pfmemalloc is set, we check the mapping as a mapping implies 1286 * page->index is set (index and pfmemalloc share space). 1287 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1288 * do not lose pfmemalloc information as the pages would not be 1289 * allocated using __GFP_MEMALLOC. 1290 */ 1291 frag->page.p = page; 1292 frag->page_offset = off; 1293 skb_frag_size_set(frag, size); 1294 1295 page = compound_head(page); 1296 if (page->pfmemalloc && !page->mapping) 1297 skb->pfmemalloc = true; 1298 } 1299 1300 /** 1301 * skb_fill_page_desc - initialise a paged fragment in an skb 1302 * @skb: buffer containing fragment to be initialised 1303 * @i: paged fragment index to initialise 1304 * @page: the page to use for this fragment 1305 * @off: the offset to the data with @page 1306 * @size: the length of the data 1307 * 1308 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1309 * @skb to point to &size bytes at offset @off within @page. In 1310 * addition updates @skb such that @i is the last fragment. 1311 * 1312 * Does not take any additional reference on the fragment. 1313 */ 1314 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1315 struct page *page, int off, int size) 1316 { 1317 __skb_fill_page_desc(skb, i, page, off, size); 1318 skb_shinfo(skb)->nr_frags = i + 1; 1319 } 1320 1321 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1322 int off, int size, unsigned int truesize); 1323 1324 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1325 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1326 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1327 1328 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1329 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1330 { 1331 return skb->head + skb->tail; 1332 } 1333 1334 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1335 { 1336 skb->tail = skb->data - skb->head; 1337 } 1338 1339 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1340 { 1341 skb_reset_tail_pointer(skb); 1342 skb->tail += offset; 1343 } 1344 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1345 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1346 { 1347 return skb->tail; 1348 } 1349 1350 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1351 { 1352 skb->tail = skb->data; 1353 } 1354 1355 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1356 { 1357 skb->tail = skb->data + offset; 1358 } 1359 1360 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1361 1362 /* 1363 * Add data to an sk_buff 1364 */ 1365 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1366 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1367 { 1368 unsigned char *tmp = skb_tail_pointer(skb); 1369 SKB_LINEAR_ASSERT(skb); 1370 skb->tail += len; 1371 skb->len += len; 1372 return tmp; 1373 } 1374 1375 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1376 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1377 { 1378 skb->data -= len; 1379 skb->len += len; 1380 return skb->data; 1381 } 1382 1383 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1384 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1385 { 1386 skb->len -= len; 1387 BUG_ON(skb->len < skb->data_len); 1388 return skb->data += len; 1389 } 1390 1391 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1392 { 1393 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1394 } 1395 1396 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1397 1398 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1399 { 1400 if (len > skb_headlen(skb) && 1401 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1402 return NULL; 1403 skb->len -= len; 1404 return skb->data += len; 1405 } 1406 1407 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1408 { 1409 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1410 } 1411 1412 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1413 { 1414 if (likely(len <= skb_headlen(skb))) 1415 return 1; 1416 if (unlikely(len > skb->len)) 1417 return 0; 1418 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1419 } 1420 1421 /** 1422 * skb_headroom - bytes at buffer head 1423 * @skb: buffer to check 1424 * 1425 * Return the number of bytes of free space at the head of an &sk_buff. 1426 */ 1427 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1428 { 1429 return skb->data - skb->head; 1430 } 1431 1432 /** 1433 * skb_tailroom - bytes at buffer end 1434 * @skb: buffer to check 1435 * 1436 * Return the number of bytes of free space at the tail of an sk_buff 1437 */ 1438 static inline int skb_tailroom(const struct sk_buff *skb) 1439 { 1440 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1441 } 1442 1443 /** 1444 * skb_availroom - bytes at buffer end 1445 * @skb: buffer to check 1446 * 1447 * Return the number of bytes of free space at the tail of an sk_buff 1448 * allocated by sk_stream_alloc() 1449 */ 1450 static inline int skb_availroom(const struct sk_buff *skb) 1451 { 1452 if (skb_is_nonlinear(skb)) 1453 return 0; 1454 1455 return skb->end - skb->tail - skb->reserved_tailroom; 1456 } 1457 1458 /** 1459 * skb_reserve - adjust headroom 1460 * @skb: buffer to alter 1461 * @len: bytes to move 1462 * 1463 * Increase the headroom of an empty &sk_buff by reducing the tail 1464 * room. This is only allowed for an empty buffer. 1465 */ 1466 static inline void skb_reserve(struct sk_buff *skb, int len) 1467 { 1468 skb->data += len; 1469 skb->tail += len; 1470 } 1471 1472 static inline void skb_reset_inner_headers(struct sk_buff *skb) 1473 { 1474 skb->inner_network_header = skb->network_header; 1475 skb->inner_transport_header = skb->transport_header; 1476 } 1477 1478 static inline void skb_reset_mac_len(struct sk_buff *skb) 1479 { 1480 skb->mac_len = skb->network_header - skb->mac_header; 1481 } 1482 1483 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1484 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1485 *skb) 1486 { 1487 return skb->head + skb->inner_transport_header; 1488 } 1489 1490 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1491 { 1492 skb->inner_transport_header = skb->data - skb->head; 1493 } 1494 1495 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1496 const int offset) 1497 { 1498 skb_reset_inner_transport_header(skb); 1499 skb->inner_transport_header += offset; 1500 } 1501 1502 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1503 { 1504 return skb->head + skb->inner_network_header; 1505 } 1506 1507 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1508 { 1509 skb->inner_network_header = skb->data - skb->head; 1510 } 1511 1512 static inline void skb_set_inner_network_header(struct sk_buff *skb, 1513 const int offset) 1514 { 1515 skb_reset_inner_network_header(skb); 1516 skb->inner_network_header += offset; 1517 } 1518 1519 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1520 { 1521 return skb->transport_header != ~0U; 1522 } 1523 1524 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1525 { 1526 return skb->head + skb->transport_header; 1527 } 1528 1529 static inline void skb_reset_transport_header(struct sk_buff *skb) 1530 { 1531 skb->transport_header = skb->data - skb->head; 1532 } 1533 1534 static inline void skb_set_transport_header(struct sk_buff *skb, 1535 const int offset) 1536 { 1537 skb_reset_transport_header(skb); 1538 skb->transport_header += offset; 1539 } 1540 1541 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1542 { 1543 return skb->head + skb->network_header; 1544 } 1545 1546 static inline void skb_reset_network_header(struct sk_buff *skb) 1547 { 1548 skb->network_header = skb->data - skb->head; 1549 } 1550 1551 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1552 { 1553 skb_reset_network_header(skb); 1554 skb->network_header += offset; 1555 } 1556 1557 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1558 { 1559 return skb->head + skb->mac_header; 1560 } 1561 1562 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1563 { 1564 return skb->mac_header != ~0U; 1565 } 1566 1567 static inline void skb_reset_mac_header(struct sk_buff *skb) 1568 { 1569 skb->mac_header = skb->data - skb->head; 1570 } 1571 1572 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1573 { 1574 skb_reset_mac_header(skb); 1575 skb->mac_header += offset; 1576 } 1577 1578 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1579 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1580 *skb) 1581 { 1582 return skb->inner_transport_header; 1583 } 1584 1585 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1586 { 1587 skb->inner_transport_header = skb->data; 1588 } 1589 1590 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1591 const int offset) 1592 { 1593 skb->inner_transport_header = skb->data + offset; 1594 } 1595 1596 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1597 { 1598 return skb->inner_network_header; 1599 } 1600 1601 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1602 { 1603 skb->inner_network_header = skb->data; 1604 } 1605 1606 static inline void skb_set_inner_network_header(struct sk_buff *skb, 1607 const int offset) 1608 { 1609 skb->inner_network_header = skb->data + offset; 1610 } 1611 1612 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1613 { 1614 return skb->transport_header != NULL; 1615 } 1616 1617 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1618 { 1619 return skb->transport_header; 1620 } 1621 1622 static inline void skb_reset_transport_header(struct sk_buff *skb) 1623 { 1624 skb->transport_header = skb->data; 1625 } 1626 1627 static inline void skb_set_transport_header(struct sk_buff *skb, 1628 const int offset) 1629 { 1630 skb->transport_header = skb->data + offset; 1631 } 1632 1633 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1634 { 1635 return skb->network_header; 1636 } 1637 1638 static inline void skb_reset_network_header(struct sk_buff *skb) 1639 { 1640 skb->network_header = skb->data; 1641 } 1642 1643 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1644 { 1645 skb->network_header = skb->data + offset; 1646 } 1647 1648 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1649 { 1650 return skb->mac_header; 1651 } 1652 1653 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1654 { 1655 return skb->mac_header != NULL; 1656 } 1657 1658 static inline void skb_reset_mac_header(struct sk_buff *skb) 1659 { 1660 skb->mac_header = skb->data; 1661 } 1662 1663 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1664 { 1665 skb->mac_header = skb->data + offset; 1666 } 1667 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1668 1669 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1670 { 1671 if (skb_mac_header_was_set(skb)) { 1672 const unsigned char *old_mac = skb_mac_header(skb); 1673 1674 skb_set_mac_header(skb, -skb->mac_len); 1675 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1676 } 1677 } 1678 1679 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1680 { 1681 return skb->csum_start - skb_headroom(skb); 1682 } 1683 1684 static inline int skb_transport_offset(const struct sk_buff *skb) 1685 { 1686 return skb_transport_header(skb) - skb->data; 1687 } 1688 1689 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1690 { 1691 return skb->transport_header - skb->network_header; 1692 } 1693 1694 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1695 { 1696 return skb->inner_transport_header - skb->inner_network_header; 1697 } 1698 1699 static inline int skb_network_offset(const struct sk_buff *skb) 1700 { 1701 return skb_network_header(skb) - skb->data; 1702 } 1703 1704 static inline int skb_inner_network_offset(const struct sk_buff *skb) 1705 { 1706 return skb_inner_network_header(skb) - skb->data; 1707 } 1708 1709 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1710 { 1711 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1712 } 1713 1714 /* 1715 * CPUs often take a performance hit when accessing unaligned memory 1716 * locations. The actual performance hit varies, it can be small if the 1717 * hardware handles it or large if we have to take an exception and fix it 1718 * in software. 1719 * 1720 * Since an ethernet header is 14 bytes network drivers often end up with 1721 * the IP header at an unaligned offset. The IP header can be aligned by 1722 * shifting the start of the packet by 2 bytes. Drivers should do this 1723 * with: 1724 * 1725 * skb_reserve(skb, NET_IP_ALIGN); 1726 * 1727 * The downside to this alignment of the IP header is that the DMA is now 1728 * unaligned. On some architectures the cost of an unaligned DMA is high 1729 * and this cost outweighs the gains made by aligning the IP header. 1730 * 1731 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1732 * to be overridden. 1733 */ 1734 #ifndef NET_IP_ALIGN 1735 #define NET_IP_ALIGN 2 1736 #endif 1737 1738 /* 1739 * The networking layer reserves some headroom in skb data (via 1740 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1741 * the header has to grow. In the default case, if the header has to grow 1742 * 32 bytes or less we avoid the reallocation. 1743 * 1744 * Unfortunately this headroom changes the DMA alignment of the resulting 1745 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1746 * on some architectures. An architecture can override this value, 1747 * perhaps setting it to a cacheline in size (since that will maintain 1748 * cacheline alignment of the DMA). It must be a power of 2. 1749 * 1750 * Various parts of the networking layer expect at least 32 bytes of 1751 * headroom, you should not reduce this. 1752 * 1753 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1754 * to reduce average number of cache lines per packet. 1755 * get_rps_cpus() for example only access one 64 bytes aligned block : 1756 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1757 */ 1758 #ifndef NET_SKB_PAD 1759 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1760 #endif 1761 1762 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1763 1764 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1765 { 1766 if (unlikely(skb_is_nonlinear(skb))) { 1767 WARN_ON(1); 1768 return; 1769 } 1770 skb->len = len; 1771 skb_set_tail_pointer(skb, len); 1772 } 1773 1774 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1775 1776 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1777 { 1778 if (skb->data_len) 1779 return ___pskb_trim(skb, len); 1780 __skb_trim(skb, len); 1781 return 0; 1782 } 1783 1784 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1785 { 1786 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1787 } 1788 1789 /** 1790 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1791 * @skb: buffer to alter 1792 * @len: new length 1793 * 1794 * This is identical to pskb_trim except that the caller knows that 1795 * the skb is not cloned so we should never get an error due to out- 1796 * of-memory. 1797 */ 1798 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1799 { 1800 int err = pskb_trim(skb, len); 1801 BUG_ON(err); 1802 } 1803 1804 /** 1805 * skb_orphan - orphan a buffer 1806 * @skb: buffer to orphan 1807 * 1808 * If a buffer currently has an owner then we call the owner's 1809 * destructor function and make the @skb unowned. The buffer continues 1810 * to exist but is no longer charged to its former owner. 1811 */ 1812 static inline void skb_orphan(struct sk_buff *skb) 1813 { 1814 if (skb->destructor) 1815 skb->destructor(skb); 1816 skb->destructor = NULL; 1817 skb->sk = NULL; 1818 } 1819 1820 /** 1821 * skb_orphan_frags - orphan the frags contained in a buffer 1822 * @skb: buffer to orphan frags from 1823 * @gfp_mask: allocation mask for replacement pages 1824 * 1825 * For each frag in the SKB which needs a destructor (i.e. has an 1826 * owner) create a copy of that frag and release the original 1827 * page by calling the destructor. 1828 */ 1829 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 1830 { 1831 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 1832 return 0; 1833 return skb_copy_ubufs(skb, gfp_mask); 1834 } 1835 1836 /** 1837 * __skb_queue_purge - empty a list 1838 * @list: list to empty 1839 * 1840 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1841 * the list and one reference dropped. This function does not take the 1842 * list lock and the caller must hold the relevant locks to use it. 1843 */ 1844 extern void skb_queue_purge(struct sk_buff_head *list); 1845 static inline void __skb_queue_purge(struct sk_buff_head *list) 1846 { 1847 struct sk_buff *skb; 1848 while ((skb = __skb_dequeue(list)) != NULL) 1849 kfree_skb(skb); 1850 } 1851 1852 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 1853 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 1854 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 1855 1856 extern void *netdev_alloc_frag(unsigned int fragsz); 1857 1858 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1859 unsigned int length, 1860 gfp_t gfp_mask); 1861 1862 /** 1863 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1864 * @dev: network device to receive on 1865 * @length: length to allocate 1866 * 1867 * Allocate a new &sk_buff and assign it a usage count of one. The 1868 * buffer has unspecified headroom built in. Users should allocate 1869 * the headroom they think they need without accounting for the 1870 * built in space. The built in space is used for optimisations. 1871 * 1872 * %NULL is returned if there is no free memory. Although this function 1873 * allocates memory it can be called from an interrupt. 1874 */ 1875 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1876 unsigned int length) 1877 { 1878 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1879 } 1880 1881 /* legacy helper around __netdev_alloc_skb() */ 1882 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1883 gfp_t gfp_mask) 1884 { 1885 return __netdev_alloc_skb(NULL, length, gfp_mask); 1886 } 1887 1888 /* legacy helper around netdev_alloc_skb() */ 1889 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1890 { 1891 return netdev_alloc_skb(NULL, length); 1892 } 1893 1894 1895 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 1896 unsigned int length, gfp_t gfp) 1897 { 1898 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 1899 1900 if (NET_IP_ALIGN && skb) 1901 skb_reserve(skb, NET_IP_ALIGN); 1902 return skb; 1903 } 1904 1905 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1906 unsigned int length) 1907 { 1908 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 1909 } 1910 1911 /* 1912 * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data 1913 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1914 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1915 * @order: size of the allocation 1916 * 1917 * Allocate a new page. 1918 * 1919 * %NULL is returned if there is no free memory. 1920 */ 1921 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 1922 struct sk_buff *skb, 1923 unsigned int order) 1924 { 1925 struct page *page; 1926 1927 gfp_mask |= __GFP_COLD; 1928 1929 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1930 gfp_mask |= __GFP_MEMALLOC; 1931 1932 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 1933 if (skb && page && page->pfmemalloc) 1934 skb->pfmemalloc = true; 1935 1936 return page; 1937 } 1938 1939 /** 1940 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 1941 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1942 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1943 * 1944 * Allocate a new page. 1945 * 1946 * %NULL is returned if there is no free memory. 1947 */ 1948 static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 1949 struct sk_buff *skb) 1950 { 1951 return __skb_alloc_pages(gfp_mask, skb, 0); 1952 } 1953 1954 /** 1955 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 1956 * @page: The page that was allocated from skb_alloc_page 1957 * @skb: The skb that may need pfmemalloc set 1958 */ 1959 static inline void skb_propagate_pfmemalloc(struct page *page, 1960 struct sk_buff *skb) 1961 { 1962 if (page && page->pfmemalloc) 1963 skb->pfmemalloc = true; 1964 } 1965 1966 /** 1967 * skb_frag_page - retrieve the page refered to by a paged fragment 1968 * @frag: the paged fragment 1969 * 1970 * Returns the &struct page associated with @frag. 1971 */ 1972 static inline struct page *skb_frag_page(const skb_frag_t *frag) 1973 { 1974 return frag->page.p; 1975 } 1976 1977 /** 1978 * __skb_frag_ref - take an addition reference on a paged fragment. 1979 * @frag: the paged fragment 1980 * 1981 * Takes an additional reference on the paged fragment @frag. 1982 */ 1983 static inline void __skb_frag_ref(skb_frag_t *frag) 1984 { 1985 get_page(skb_frag_page(frag)); 1986 } 1987 1988 /** 1989 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 1990 * @skb: the buffer 1991 * @f: the fragment offset. 1992 * 1993 * Takes an additional reference on the @f'th paged fragment of @skb. 1994 */ 1995 static inline void skb_frag_ref(struct sk_buff *skb, int f) 1996 { 1997 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 1998 } 1999 2000 /** 2001 * __skb_frag_unref - release a reference on a paged fragment. 2002 * @frag: the paged fragment 2003 * 2004 * Releases a reference on the paged fragment @frag. 2005 */ 2006 static inline void __skb_frag_unref(skb_frag_t *frag) 2007 { 2008 put_page(skb_frag_page(frag)); 2009 } 2010 2011 /** 2012 * skb_frag_unref - release a reference on a paged fragment of an skb. 2013 * @skb: the buffer 2014 * @f: the fragment offset 2015 * 2016 * Releases a reference on the @f'th paged fragment of @skb. 2017 */ 2018 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2019 { 2020 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2021 } 2022 2023 /** 2024 * skb_frag_address - gets the address of the data contained in a paged fragment 2025 * @frag: the paged fragment buffer 2026 * 2027 * Returns the address of the data within @frag. The page must already 2028 * be mapped. 2029 */ 2030 static inline void *skb_frag_address(const skb_frag_t *frag) 2031 { 2032 return page_address(skb_frag_page(frag)) + frag->page_offset; 2033 } 2034 2035 /** 2036 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2037 * @frag: the paged fragment buffer 2038 * 2039 * Returns the address of the data within @frag. Checks that the page 2040 * is mapped and returns %NULL otherwise. 2041 */ 2042 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2043 { 2044 void *ptr = page_address(skb_frag_page(frag)); 2045 if (unlikely(!ptr)) 2046 return NULL; 2047 2048 return ptr + frag->page_offset; 2049 } 2050 2051 /** 2052 * __skb_frag_set_page - sets the page contained in a paged fragment 2053 * @frag: the paged fragment 2054 * @page: the page to set 2055 * 2056 * Sets the fragment @frag to contain @page. 2057 */ 2058 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2059 { 2060 frag->page.p = page; 2061 } 2062 2063 /** 2064 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2065 * @skb: the buffer 2066 * @f: the fragment offset 2067 * @page: the page to set 2068 * 2069 * Sets the @f'th fragment of @skb to contain @page. 2070 */ 2071 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2072 struct page *page) 2073 { 2074 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2075 } 2076 2077 /** 2078 * skb_frag_dma_map - maps a paged fragment via the DMA API 2079 * @dev: the device to map the fragment to 2080 * @frag: the paged fragment to map 2081 * @offset: the offset within the fragment (starting at the 2082 * fragment's own offset) 2083 * @size: the number of bytes to map 2084 * @dir: the direction of the mapping (%PCI_DMA_*) 2085 * 2086 * Maps the page associated with @frag to @device. 2087 */ 2088 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2089 const skb_frag_t *frag, 2090 size_t offset, size_t size, 2091 enum dma_data_direction dir) 2092 { 2093 return dma_map_page(dev, skb_frag_page(frag), 2094 frag->page_offset + offset, size, dir); 2095 } 2096 2097 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2098 gfp_t gfp_mask) 2099 { 2100 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2101 } 2102 2103 /** 2104 * skb_clone_writable - is the header of a clone writable 2105 * @skb: buffer to check 2106 * @len: length up to which to write 2107 * 2108 * Returns true if modifying the header part of the cloned buffer 2109 * does not requires the data to be copied. 2110 */ 2111 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2112 { 2113 return !skb_header_cloned(skb) && 2114 skb_headroom(skb) + len <= skb->hdr_len; 2115 } 2116 2117 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2118 int cloned) 2119 { 2120 int delta = 0; 2121 2122 if (headroom > skb_headroom(skb)) 2123 delta = headroom - skb_headroom(skb); 2124 2125 if (delta || cloned) 2126 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2127 GFP_ATOMIC); 2128 return 0; 2129 } 2130 2131 /** 2132 * skb_cow - copy header of skb when it is required 2133 * @skb: buffer to cow 2134 * @headroom: needed headroom 2135 * 2136 * If the skb passed lacks sufficient headroom or its data part 2137 * is shared, data is reallocated. If reallocation fails, an error 2138 * is returned and original skb is not changed. 2139 * 2140 * The result is skb with writable area skb->head...skb->tail 2141 * and at least @headroom of space at head. 2142 */ 2143 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2144 { 2145 return __skb_cow(skb, headroom, skb_cloned(skb)); 2146 } 2147 2148 /** 2149 * skb_cow_head - skb_cow but only making the head writable 2150 * @skb: buffer to cow 2151 * @headroom: needed headroom 2152 * 2153 * This function is identical to skb_cow except that we replace the 2154 * skb_cloned check by skb_header_cloned. It should be used when 2155 * you only need to push on some header and do not need to modify 2156 * the data. 2157 */ 2158 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2159 { 2160 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2161 } 2162 2163 /** 2164 * skb_padto - pad an skbuff up to a minimal size 2165 * @skb: buffer to pad 2166 * @len: minimal length 2167 * 2168 * Pads up a buffer to ensure the trailing bytes exist and are 2169 * blanked. If the buffer already contains sufficient data it 2170 * is untouched. Otherwise it is extended. Returns zero on 2171 * success. The skb is freed on error. 2172 */ 2173 2174 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2175 { 2176 unsigned int size = skb->len; 2177 if (likely(size >= len)) 2178 return 0; 2179 return skb_pad(skb, len - size); 2180 } 2181 2182 static inline int skb_add_data(struct sk_buff *skb, 2183 char __user *from, int copy) 2184 { 2185 const int off = skb->len; 2186 2187 if (skb->ip_summed == CHECKSUM_NONE) { 2188 int err = 0; 2189 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2190 copy, 0, &err); 2191 if (!err) { 2192 skb->csum = csum_block_add(skb->csum, csum, off); 2193 return 0; 2194 } 2195 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2196 return 0; 2197 2198 __skb_trim(skb, off); 2199 return -EFAULT; 2200 } 2201 2202 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2203 const struct page *page, int off) 2204 { 2205 if (i) { 2206 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2207 2208 return page == skb_frag_page(frag) && 2209 off == frag->page_offset + skb_frag_size(frag); 2210 } 2211 return false; 2212 } 2213 2214 static inline int __skb_linearize(struct sk_buff *skb) 2215 { 2216 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2217 } 2218 2219 /** 2220 * skb_linearize - convert paged skb to linear one 2221 * @skb: buffer to linarize 2222 * 2223 * If there is no free memory -ENOMEM is returned, otherwise zero 2224 * is returned and the old skb data released. 2225 */ 2226 static inline int skb_linearize(struct sk_buff *skb) 2227 { 2228 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2229 } 2230 2231 /** 2232 * skb_has_shared_frag - can any frag be overwritten 2233 * @skb: buffer to test 2234 * 2235 * Return true if the skb has at least one frag that might be modified 2236 * by an external entity (as in vmsplice()/sendfile()) 2237 */ 2238 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2239 { 2240 return skb_is_nonlinear(skb) && 2241 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2242 } 2243 2244 /** 2245 * skb_linearize_cow - make sure skb is linear and writable 2246 * @skb: buffer to process 2247 * 2248 * If there is no free memory -ENOMEM is returned, otherwise zero 2249 * is returned and the old skb data released. 2250 */ 2251 static inline int skb_linearize_cow(struct sk_buff *skb) 2252 { 2253 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2254 __skb_linearize(skb) : 0; 2255 } 2256 2257 /** 2258 * skb_postpull_rcsum - update checksum for received skb after pull 2259 * @skb: buffer to update 2260 * @start: start of data before pull 2261 * @len: length of data pulled 2262 * 2263 * After doing a pull on a received packet, you need to call this to 2264 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2265 * CHECKSUM_NONE so that it can be recomputed from scratch. 2266 */ 2267 2268 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2269 const void *start, unsigned int len) 2270 { 2271 if (skb->ip_summed == CHECKSUM_COMPLETE) 2272 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2273 } 2274 2275 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2276 2277 /** 2278 * pskb_trim_rcsum - trim received skb and update checksum 2279 * @skb: buffer to trim 2280 * @len: new length 2281 * 2282 * This is exactly the same as pskb_trim except that it ensures the 2283 * checksum of received packets are still valid after the operation. 2284 */ 2285 2286 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2287 { 2288 if (likely(len >= skb->len)) 2289 return 0; 2290 if (skb->ip_summed == CHECKSUM_COMPLETE) 2291 skb->ip_summed = CHECKSUM_NONE; 2292 return __pskb_trim(skb, len); 2293 } 2294 2295 #define skb_queue_walk(queue, skb) \ 2296 for (skb = (queue)->next; \ 2297 skb != (struct sk_buff *)(queue); \ 2298 skb = skb->next) 2299 2300 #define skb_queue_walk_safe(queue, skb, tmp) \ 2301 for (skb = (queue)->next, tmp = skb->next; \ 2302 skb != (struct sk_buff *)(queue); \ 2303 skb = tmp, tmp = skb->next) 2304 2305 #define skb_queue_walk_from(queue, skb) \ 2306 for (; skb != (struct sk_buff *)(queue); \ 2307 skb = skb->next) 2308 2309 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 2310 for (tmp = skb->next; \ 2311 skb != (struct sk_buff *)(queue); \ 2312 skb = tmp, tmp = skb->next) 2313 2314 #define skb_queue_reverse_walk(queue, skb) \ 2315 for (skb = (queue)->prev; \ 2316 skb != (struct sk_buff *)(queue); \ 2317 skb = skb->prev) 2318 2319 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2320 for (skb = (queue)->prev, tmp = skb->prev; \ 2321 skb != (struct sk_buff *)(queue); \ 2322 skb = tmp, tmp = skb->prev) 2323 2324 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2325 for (tmp = skb->prev; \ 2326 skb != (struct sk_buff *)(queue); \ 2327 skb = tmp, tmp = skb->prev) 2328 2329 static inline bool skb_has_frag_list(const struct sk_buff *skb) 2330 { 2331 return skb_shinfo(skb)->frag_list != NULL; 2332 } 2333 2334 static inline void skb_frag_list_init(struct sk_buff *skb) 2335 { 2336 skb_shinfo(skb)->frag_list = NULL; 2337 } 2338 2339 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2340 { 2341 frag->next = skb_shinfo(skb)->frag_list; 2342 skb_shinfo(skb)->frag_list = frag; 2343 } 2344 2345 #define skb_walk_frags(skb, iter) \ 2346 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2347 2348 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2349 int *peeked, int *off, int *err); 2350 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 2351 int noblock, int *err); 2352 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 2353 struct poll_table_struct *wait); 2354 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 2355 int offset, struct iovec *to, 2356 int size); 2357 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 2358 int hlen, 2359 struct iovec *iov); 2360 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 2361 int offset, 2362 const struct iovec *from, 2363 int from_offset, 2364 int len); 2365 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 2366 int offset, 2367 const struct iovec *to, 2368 int to_offset, 2369 int size); 2370 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2371 extern void skb_free_datagram_locked(struct sock *sk, 2372 struct sk_buff *skb); 2373 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 2374 unsigned int flags); 2375 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 2376 int len, __wsum csum); 2377 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 2378 void *to, int len); 2379 extern int skb_store_bits(struct sk_buff *skb, int offset, 2380 const void *from, int len); 2381 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 2382 int offset, u8 *to, int len, 2383 __wsum csum); 2384 extern int skb_splice_bits(struct sk_buff *skb, 2385 unsigned int offset, 2386 struct pipe_inode_info *pipe, 2387 unsigned int len, 2388 unsigned int flags); 2389 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2390 extern void skb_split(struct sk_buff *skb, 2391 struct sk_buff *skb1, const u32 len); 2392 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 2393 int shiftlen); 2394 2395 extern struct sk_buff *skb_segment(struct sk_buff *skb, 2396 netdev_features_t features); 2397 2398 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2399 int len, void *buffer) 2400 { 2401 int hlen = skb_headlen(skb); 2402 2403 if (hlen - offset >= len) 2404 return skb->data + offset; 2405 2406 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2407 return NULL; 2408 2409 return buffer; 2410 } 2411 2412 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2413 void *to, 2414 const unsigned int len) 2415 { 2416 memcpy(to, skb->data, len); 2417 } 2418 2419 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2420 const int offset, void *to, 2421 const unsigned int len) 2422 { 2423 memcpy(to, skb->data + offset, len); 2424 } 2425 2426 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2427 const void *from, 2428 const unsigned int len) 2429 { 2430 memcpy(skb->data, from, len); 2431 } 2432 2433 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2434 const int offset, 2435 const void *from, 2436 const unsigned int len) 2437 { 2438 memcpy(skb->data + offset, from, len); 2439 } 2440 2441 extern void skb_init(void); 2442 2443 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2444 { 2445 return skb->tstamp; 2446 } 2447 2448 /** 2449 * skb_get_timestamp - get timestamp from a skb 2450 * @skb: skb to get stamp from 2451 * @stamp: pointer to struct timeval to store stamp in 2452 * 2453 * Timestamps are stored in the skb as offsets to a base timestamp. 2454 * This function converts the offset back to a struct timeval and stores 2455 * it in stamp. 2456 */ 2457 static inline void skb_get_timestamp(const struct sk_buff *skb, 2458 struct timeval *stamp) 2459 { 2460 *stamp = ktime_to_timeval(skb->tstamp); 2461 } 2462 2463 static inline void skb_get_timestampns(const struct sk_buff *skb, 2464 struct timespec *stamp) 2465 { 2466 *stamp = ktime_to_timespec(skb->tstamp); 2467 } 2468 2469 static inline void __net_timestamp(struct sk_buff *skb) 2470 { 2471 skb->tstamp = ktime_get_real(); 2472 } 2473 2474 static inline ktime_t net_timedelta(ktime_t t) 2475 { 2476 return ktime_sub(ktime_get_real(), t); 2477 } 2478 2479 static inline ktime_t net_invalid_timestamp(void) 2480 { 2481 return ktime_set(0, 0); 2482 } 2483 2484 extern void skb_timestamping_init(void); 2485 2486 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2487 2488 extern void skb_clone_tx_timestamp(struct sk_buff *skb); 2489 extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 2490 2491 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2492 2493 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2494 { 2495 } 2496 2497 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2498 { 2499 return false; 2500 } 2501 2502 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2503 2504 /** 2505 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2506 * 2507 * PHY drivers may accept clones of transmitted packets for 2508 * timestamping via their phy_driver.txtstamp method. These drivers 2509 * must call this function to return the skb back to the stack, with 2510 * or without a timestamp. 2511 * 2512 * @skb: clone of the the original outgoing packet 2513 * @hwtstamps: hardware time stamps, may be NULL if not available 2514 * 2515 */ 2516 void skb_complete_tx_timestamp(struct sk_buff *skb, 2517 struct skb_shared_hwtstamps *hwtstamps); 2518 2519 /** 2520 * skb_tstamp_tx - queue clone of skb with send time stamps 2521 * @orig_skb: the original outgoing packet 2522 * @hwtstamps: hardware time stamps, may be NULL if not available 2523 * 2524 * If the skb has a socket associated, then this function clones the 2525 * skb (thus sharing the actual data and optional structures), stores 2526 * the optional hardware time stamping information (if non NULL) or 2527 * generates a software time stamp (otherwise), then queues the clone 2528 * to the error queue of the socket. Errors are silently ignored. 2529 */ 2530 extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2531 struct skb_shared_hwtstamps *hwtstamps); 2532 2533 static inline void sw_tx_timestamp(struct sk_buff *skb) 2534 { 2535 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2536 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2537 skb_tstamp_tx(skb, NULL); 2538 } 2539 2540 /** 2541 * skb_tx_timestamp() - Driver hook for transmit timestamping 2542 * 2543 * Ethernet MAC Drivers should call this function in their hard_xmit() 2544 * function immediately before giving the sk_buff to the MAC hardware. 2545 * 2546 * @skb: A socket buffer. 2547 */ 2548 static inline void skb_tx_timestamp(struct sk_buff *skb) 2549 { 2550 skb_clone_tx_timestamp(skb); 2551 sw_tx_timestamp(skb); 2552 } 2553 2554 /** 2555 * skb_complete_wifi_ack - deliver skb with wifi status 2556 * 2557 * @skb: the original outgoing packet 2558 * @acked: ack status 2559 * 2560 */ 2561 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2562 2563 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2564 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2565 2566 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2567 { 2568 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2569 } 2570 2571 /** 2572 * skb_checksum_complete - Calculate checksum of an entire packet 2573 * @skb: packet to process 2574 * 2575 * This function calculates the checksum over the entire packet plus 2576 * the value of skb->csum. The latter can be used to supply the 2577 * checksum of a pseudo header as used by TCP/UDP. It returns the 2578 * checksum. 2579 * 2580 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2581 * this function can be used to verify that checksum on received 2582 * packets. In that case the function should return zero if the 2583 * checksum is correct. In particular, this function will return zero 2584 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2585 * hardware has already verified the correctness of the checksum. 2586 */ 2587 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2588 { 2589 return skb_csum_unnecessary(skb) ? 2590 0 : __skb_checksum_complete(skb); 2591 } 2592 2593 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2594 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2595 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2596 { 2597 if (nfct && atomic_dec_and_test(&nfct->use)) 2598 nf_conntrack_destroy(nfct); 2599 } 2600 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2601 { 2602 if (nfct) 2603 atomic_inc(&nfct->use); 2604 } 2605 #endif 2606 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2607 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2608 { 2609 if (skb) 2610 atomic_inc(&skb->users); 2611 } 2612 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2613 { 2614 if (skb) 2615 kfree_skb(skb); 2616 } 2617 #endif 2618 #ifdef CONFIG_BRIDGE_NETFILTER 2619 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2620 { 2621 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2622 kfree(nf_bridge); 2623 } 2624 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2625 { 2626 if (nf_bridge) 2627 atomic_inc(&nf_bridge->use); 2628 } 2629 #endif /* CONFIG_BRIDGE_NETFILTER */ 2630 static inline void nf_reset(struct sk_buff *skb) 2631 { 2632 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2633 nf_conntrack_put(skb->nfct); 2634 skb->nfct = NULL; 2635 #endif 2636 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2637 nf_conntrack_put_reasm(skb->nfct_reasm); 2638 skb->nfct_reasm = NULL; 2639 #endif 2640 #ifdef CONFIG_BRIDGE_NETFILTER 2641 nf_bridge_put(skb->nf_bridge); 2642 skb->nf_bridge = NULL; 2643 #endif 2644 } 2645 2646 static inline void nf_reset_trace(struct sk_buff *skb) 2647 { 2648 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 2649 skb->nf_trace = 0; 2650 #endif 2651 } 2652 2653 /* Note: This doesn't put any conntrack and bridge info in dst. */ 2654 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2655 { 2656 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2657 dst->nfct = src->nfct; 2658 nf_conntrack_get(src->nfct); 2659 dst->nfctinfo = src->nfctinfo; 2660 #endif 2661 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2662 dst->nfct_reasm = src->nfct_reasm; 2663 nf_conntrack_get_reasm(src->nfct_reasm); 2664 #endif 2665 #ifdef CONFIG_BRIDGE_NETFILTER 2666 dst->nf_bridge = src->nf_bridge; 2667 nf_bridge_get(src->nf_bridge); 2668 #endif 2669 } 2670 2671 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2672 { 2673 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2674 nf_conntrack_put(dst->nfct); 2675 #endif 2676 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2677 nf_conntrack_put_reasm(dst->nfct_reasm); 2678 #endif 2679 #ifdef CONFIG_BRIDGE_NETFILTER 2680 nf_bridge_put(dst->nf_bridge); 2681 #endif 2682 __nf_copy(dst, src); 2683 } 2684 2685 #ifdef CONFIG_NETWORK_SECMARK 2686 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2687 { 2688 to->secmark = from->secmark; 2689 } 2690 2691 static inline void skb_init_secmark(struct sk_buff *skb) 2692 { 2693 skb->secmark = 0; 2694 } 2695 #else 2696 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2697 { } 2698 2699 static inline void skb_init_secmark(struct sk_buff *skb) 2700 { } 2701 #endif 2702 2703 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2704 { 2705 skb->queue_mapping = queue_mapping; 2706 } 2707 2708 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2709 { 2710 return skb->queue_mapping; 2711 } 2712 2713 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2714 { 2715 to->queue_mapping = from->queue_mapping; 2716 } 2717 2718 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2719 { 2720 skb->queue_mapping = rx_queue + 1; 2721 } 2722 2723 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2724 { 2725 return skb->queue_mapping - 1; 2726 } 2727 2728 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2729 { 2730 return skb->queue_mapping != 0; 2731 } 2732 2733 extern u16 __skb_tx_hash(const struct net_device *dev, 2734 const struct sk_buff *skb, 2735 unsigned int num_tx_queues); 2736 2737 #ifdef CONFIG_XFRM 2738 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2739 { 2740 return skb->sp; 2741 } 2742 #else 2743 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2744 { 2745 return NULL; 2746 } 2747 #endif 2748 2749 /* Keeps track of mac header offset relative to skb->head. 2750 * It is useful for TSO of Tunneling protocol. e.g. GRE. 2751 * For non-tunnel skb it points to skb_mac_header() and for 2752 * tunnel skb it points to outer mac header. */ 2753 struct skb_gso_cb { 2754 int mac_offset; 2755 }; 2756 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 2757 2758 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 2759 { 2760 return (skb_mac_header(inner_skb) - inner_skb->head) - 2761 SKB_GSO_CB(inner_skb)->mac_offset; 2762 } 2763 2764 static inline bool skb_is_gso(const struct sk_buff *skb) 2765 { 2766 return skb_shinfo(skb)->gso_size; 2767 } 2768 2769 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 2770 { 2771 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2772 } 2773 2774 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2775 2776 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2777 { 2778 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2779 * wanted then gso_type will be set. */ 2780 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2781 2782 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2783 unlikely(shinfo->gso_type == 0)) { 2784 __skb_warn_lro_forwarding(skb); 2785 return true; 2786 } 2787 return false; 2788 } 2789 2790 static inline void skb_forward_csum(struct sk_buff *skb) 2791 { 2792 /* Unfortunately we don't support this one. Any brave souls? */ 2793 if (skb->ip_summed == CHECKSUM_COMPLETE) 2794 skb->ip_summed = CHECKSUM_NONE; 2795 } 2796 2797 /** 2798 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2799 * @skb: skb to check 2800 * 2801 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2802 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2803 * use this helper, to document places where we make this assertion. 2804 */ 2805 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 2806 { 2807 #ifdef DEBUG 2808 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2809 #endif 2810 } 2811 2812 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2813 2814 /** 2815 * skb_head_is_locked - Determine if the skb->head is locked down 2816 * @skb: skb to check 2817 * 2818 * The head on skbs build around a head frag can be removed if they are 2819 * not cloned. This function returns true if the skb head is locked down 2820 * due to either being allocated via kmalloc, or by being a clone with 2821 * multiple references to the head. 2822 */ 2823 static inline bool skb_head_is_locked(const struct sk_buff *skb) 2824 { 2825 return !skb->head_frag || skb_cloned(skb); 2826 } 2827 #endif /* __KERNEL__ */ 2828 #endif /* _LINUX_SKBUFF_H */ 2829