xref: /linux-6.15/include/linux/skbuff.h (revision 055d752f)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41 
42 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
43 				 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X)	\
45 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
50 
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) +						\
53 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
54 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55 
56 /* A. Checksumming of received packets by device.
57  *
58  *	NONE: device failed to checksum this packet.
59  *		skb->csum is undefined.
60  *
61  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
62  *		skb->csum is undefined.
63  *	      It is bad option, but, unfortunately, many of vendors do this.
64  *	      Apparently with secret goal to sell you new device, when you
65  *	      will add new protocol to your host. F.e. IPv6. 8)
66  *
67  *	COMPLETE: the most generic way. Device supplied checksum of _all_
68  *	    the packet as seen by netif_rx in skb->csum.
69  *	    NOTE: Even if device supports only some protocols, but
70  *	    is able to produce some skb->csum, it MUST use COMPLETE,
71  *	    not UNNECESSARY.
72  *
73  *	PARTIAL: identical to the case for output below.  This may occur
74  *	    on a packet received directly from another Linux OS, e.g.,
75  *	    a virtualised Linux kernel on the same host.  The packet can
76  *	    be treated in the same way as UNNECESSARY except that on
77  *	    output (i.e., forwarding) the checksum must be filled in
78  *	    by the OS or the hardware.
79  *
80  * B. Checksumming on output.
81  *
82  *	NONE: skb is checksummed by protocol or csum is not required.
83  *
84  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
85  *	from skb->csum_start to the end and to record the checksum
86  *	at skb->csum_start + skb->csum_offset.
87  *
88  *	Device must show its capabilities in dev->features, set
89  *	at device setup time.
90  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
91  *			  everything.
92  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93  *			  TCP/UDP over IPv4. Sigh. Vendors like this
94  *			  way by an unknown reason. Though, see comment above
95  *			  about CHECKSUM_UNNECESSARY. 8)
96  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97  *
98  *	UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99  *	that do not want net to perform the checksum calculation should use
100  *	this flag in their outgoing skbs.
101  *	NETIF_F_FCOE_CRC  this indicates the device can do FCoE FC CRC
102  *			  offload. Correspondingly, the FCoE protocol driver
103  *			  stack should use CHECKSUM_UNNECESSARY.
104  *
105  *	Any questions? No questions, good. 		--ANK
106  */
107 
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111 
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 	atomic_t use;
115 };
116 #endif
117 
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 	atomic_t		use;
121 	unsigned int		mask;
122 	struct net_device	*physindev;
123 	struct net_device	*physoutdev;
124 	unsigned long		data[32 / sizeof(unsigned long)];
125 };
126 #endif
127 
128 struct sk_buff_head {
129 	/* These two members must be first. */
130 	struct sk_buff	*next;
131 	struct sk_buff	*prev;
132 
133 	__u32		qlen;
134 	spinlock_t	lock;
135 };
136 
137 struct sk_buff;
138 
139 /* To allow 64K frame to be packed as single skb without frag_list we
140  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141  * buffers which do not start on a page boundary.
142  *
143  * Since GRO uses frags we allocate at least 16 regardless of page
144  * size.
145  */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151 
152 typedef struct skb_frag_struct skb_frag_t;
153 
154 struct skb_frag_struct {
155 	struct {
156 		struct page *p;
157 	} page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 	__u32 page_offset;
160 	__u32 size;
161 #else
162 	__u16 page_offset;
163 	__u16 size;
164 #endif
165 };
166 
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 	return frag->size;
170 }
171 
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 	frag->size = size;
175 }
176 
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 	frag->size += delta;
180 }
181 
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 	frag->size -= delta;
185 }
186 
187 #define HAVE_HW_TIME_STAMP
188 
189 /**
190  * struct skb_shared_hwtstamps - hardware time stamps
191  * @hwtstamp:	hardware time stamp transformed into duration
192  *		since arbitrary point in time
193  * @syststamp:	hwtstamp transformed to system time base
194  *
195  * Software time stamps generated by ktime_get_real() are stored in
196  * skb->tstamp. The relation between the different kinds of time
197  * stamps is as follows:
198  *
199  * syststamp and tstamp can be compared against each other in
200  * arbitrary combinations.  The accuracy of a
201  * syststamp/tstamp/"syststamp from other device" comparison is
202  * limited by the accuracy of the transformation into system time
203  * base. This depends on the device driver and its underlying
204  * hardware.
205  *
206  * hwtstamps can only be compared against other hwtstamps from
207  * the same device.
208  *
209  * This structure is attached to packets as part of the
210  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211  */
212 struct skb_shared_hwtstamps {
213 	ktime_t	hwtstamp;
214 	ktime_t	syststamp;
215 };
216 
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 	/* generate hardware time stamp */
220 	SKBTX_HW_TSTAMP = 1 << 0,
221 
222 	/* generate software time stamp */
223 	SKBTX_SW_TSTAMP = 1 << 1,
224 
225 	/* device driver is going to provide hardware time stamp */
226 	SKBTX_IN_PROGRESS = 1 << 2,
227 
228 	/* device driver supports TX zero-copy buffers */
229 	SKBTX_DEV_ZEROCOPY = 1 << 3,
230 
231 	/* generate wifi status information (where possible) */
232 	SKBTX_WIFI_STATUS = 1 << 4,
233 
234 	/* This indicates at least one fragment might be overwritten
235 	 * (as in vmsplice(), sendfile() ...)
236 	 * If we need to compute a TX checksum, we'll need to copy
237 	 * all frags to avoid possible bad checksum
238 	 */
239 	SKBTX_SHARED_FRAG = 1 << 5,
240 };
241 
242 /*
243  * The callback notifies userspace to release buffers when skb DMA is done in
244  * lower device, the skb last reference should be 0 when calling this.
245  * The zerocopy_success argument is true if zero copy transmit occurred,
246  * false on data copy or out of memory error caused by data copy attempt.
247  * The ctx field is used to track device context.
248  * The desc field is used to track userspace buffer index.
249  */
250 struct ubuf_info {
251 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
252 	void *ctx;
253 	unsigned long desc;
254 };
255 
256 /* This data is invariant across clones and lives at
257  * the end of the header data, ie. at skb->end.
258  */
259 struct skb_shared_info {
260 	unsigned char	nr_frags;
261 	__u8		tx_flags;
262 	unsigned short	gso_size;
263 	/* Warning: this field is not always filled in (UFO)! */
264 	unsigned short	gso_segs;
265 	unsigned short  gso_type;
266 	struct sk_buff	*frag_list;
267 	struct skb_shared_hwtstamps hwtstamps;
268 	__be32          ip6_frag_id;
269 
270 	/*
271 	 * Warning : all fields before dataref are cleared in __alloc_skb()
272 	 */
273 	atomic_t	dataref;
274 
275 	/* Intermediate layers must ensure that destructor_arg
276 	 * remains valid until skb destructor */
277 	void *		destructor_arg;
278 
279 	/* must be last field, see pskb_expand_head() */
280 	skb_frag_t	frags[MAX_SKB_FRAGS];
281 };
282 
283 /* We divide dataref into two halves.  The higher 16 bits hold references
284  * to the payload part of skb->data.  The lower 16 bits hold references to
285  * the entire skb->data.  A clone of a headerless skb holds the length of
286  * the header in skb->hdr_len.
287  *
288  * All users must obey the rule that the skb->data reference count must be
289  * greater than or equal to the payload reference count.
290  *
291  * Holding a reference to the payload part means that the user does not
292  * care about modifications to the header part of skb->data.
293  */
294 #define SKB_DATAREF_SHIFT 16
295 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
296 
297 
298 enum {
299 	SKB_FCLONE_UNAVAILABLE,
300 	SKB_FCLONE_ORIG,
301 	SKB_FCLONE_CLONE,
302 };
303 
304 enum {
305 	SKB_GSO_TCPV4 = 1 << 0,
306 	SKB_GSO_UDP = 1 << 1,
307 
308 	/* This indicates the skb is from an untrusted source. */
309 	SKB_GSO_DODGY = 1 << 2,
310 
311 	/* This indicates the tcp segment has CWR set. */
312 	SKB_GSO_TCP_ECN = 1 << 3,
313 
314 	SKB_GSO_TCPV6 = 1 << 4,
315 
316 	SKB_GSO_FCOE = 1 << 5,
317 
318 	SKB_GSO_GRE = 1 << 6,
319 };
320 
321 #if BITS_PER_LONG > 32
322 #define NET_SKBUFF_DATA_USES_OFFSET 1
323 #endif
324 
325 #ifdef NET_SKBUFF_DATA_USES_OFFSET
326 typedef unsigned int sk_buff_data_t;
327 #else
328 typedef unsigned char *sk_buff_data_t;
329 #endif
330 
331 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
332     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
333 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
334 #endif
335 
336 /**
337  *	struct sk_buff - socket buffer
338  *	@next: Next buffer in list
339  *	@prev: Previous buffer in list
340  *	@tstamp: Time we arrived
341  *	@sk: Socket we are owned by
342  *	@dev: Device we arrived on/are leaving by
343  *	@cb: Control buffer. Free for use by every layer. Put private vars here
344  *	@_skb_refdst: destination entry (with norefcount bit)
345  *	@sp: the security path, used for xfrm
346  *	@len: Length of actual data
347  *	@data_len: Data length
348  *	@mac_len: Length of link layer header
349  *	@hdr_len: writable header length of cloned skb
350  *	@csum: Checksum (must include start/offset pair)
351  *	@csum_start: Offset from skb->head where checksumming should start
352  *	@csum_offset: Offset from csum_start where checksum should be stored
353  *	@priority: Packet queueing priority
354  *	@local_df: allow local fragmentation
355  *	@cloned: Head may be cloned (check refcnt to be sure)
356  *	@ip_summed: Driver fed us an IP checksum
357  *	@nohdr: Payload reference only, must not modify header
358  *	@nfctinfo: Relationship of this skb to the connection
359  *	@pkt_type: Packet class
360  *	@fclone: skbuff clone status
361  *	@ipvs_property: skbuff is owned by ipvs
362  *	@peeked: this packet has been seen already, so stats have been
363  *		done for it, don't do them again
364  *	@nf_trace: netfilter packet trace flag
365  *	@protocol: Packet protocol from driver
366  *	@destructor: Destruct function
367  *	@nfct: Associated connection, if any
368  *	@nfct_reasm: netfilter conntrack re-assembly pointer
369  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
370  *	@skb_iif: ifindex of device we arrived on
371  *	@tc_index: Traffic control index
372  *	@tc_verd: traffic control verdict
373  *	@rxhash: the packet hash computed on receive
374  *	@queue_mapping: Queue mapping for multiqueue devices
375  *	@ndisc_nodetype: router type (from link layer)
376  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
377  *	@l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
378  *		ports.
379  *	@wifi_acked_valid: wifi_acked was set
380  *	@wifi_acked: whether frame was acked on wifi or not
381  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
382  *	@dma_cookie: a cookie to one of several possible DMA operations
383  *		done by skb DMA functions
384  *	@secmark: security marking
385  *	@mark: Generic packet mark
386  *	@dropcount: total number of sk_receive_queue overflows
387  *	@vlan_tci: vlan tag control information
388  *	@inner_transport_header: Inner transport layer header (encapsulation)
389  *	@inner_network_header: Network layer header (encapsulation)
390  *	@transport_header: Transport layer header
391  *	@network_header: Network layer header
392  *	@mac_header: Link layer header
393  *	@tail: Tail pointer
394  *	@end: End pointer
395  *	@head: Head of buffer
396  *	@data: Data head pointer
397  *	@truesize: Buffer size
398  *	@users: User count - see {datagram,tcp}.c
399  */
400 
401 struct sk_buff {
402 	/* These two members must be first. */
403 	struct sk_buff		*next;
404 	struct sk_buff		*prev;
405 
406 	ktime_t			tstamp;
407 
408 	struct sock		*sk;
409 	struct net_device	*dev;
410 
411 	/*
412 	 * This is the control buffer. It is free to use for every
413 	 * layer. Please put your private variables there. If you
414 	 * want to keep them across layers you have to do a skb_clone()
415 	 * first. This is owned by whoever has the skb queued ATM.
416 	 */
417 	char			cb[48] __aligned(8);
418 
419 	unsigned long		_skb_refdst;
420 #ifdef CONFIG_XFRM
421 	struct	sec_path	*sp;
422 #endif
423 	unsigned int		len,
424 				data_len;
425 	__u16			mac_len,
426 				hdr_len;
427 	union {
428 		__wsum		csum;
429 		struct {
430 			__u16	csum_start;
431 			__u16	csum_offset;
432 		};
433 	};
434 	__u32			priority;
435 	kmemcheck_bitfield_begin(flags1);
436 	__u8			local_df:1,
437 				cloned:1,
438 				ip_summed:2,
439 				nohdr:1,
440 				nfctinfo:3;
441 	__u8			pkt_type:3,
442 				fclone:2,
443 				ipvs_property:1,
444 				peeked:1,
445 				nf_trace:1;
446 	kmemcheck_bitfield_end(flags1);
447 	__be16			protocol;
448 
449 	void			(*destructor)(struct sk_buff *skb);
450 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
451 	struct nf_conntrack	*nfct;
452 #endif
453 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
454 	struct sk_buff		*nfct_reasm;
455 #endif
456 #ifdef CONFIG_BRIDGE_NETFILTER
457 	struct nf_bridge_info	*nf_bridge;
458 #endif
459 
460 	int			skb_iif;
461 
462 	__u32			rxhash;
463 
464 	__u16			vlan_tci;
465 
466 #ifdef CONFIG_NET_SCHED
467 	__u16			tc_index;	/* traffic control index */
468 #ifdef CONFIG_NET_CLS_ACT
469 	__u16			tc_verd;	/* traffic control verdict */
470 #endif
471 #endif
472 
473 	__u16			queue_mapping;
474 	kmemcheck_bitfield_begin(flags2);
475 #ifdef CONFIG_IPV6_NDISC_NODETYPE
476 	__u8			ndisc_nodetype:2;
477 #endif
478 	__u8			pfmemalloc:1;
479 	__u8			ooo_okay:1;
480 	__u8			l4_rxhash:1;
481 	__u8			wifi_acked_valid:1;
482 	__u8			wifi_acked:1;
483 	__u8			no_fcs:1;
484 	__u8			head_frag:1;
485 	/* Encapsulation protocol and NIC drivers should use
486 	 * this flag to indicate to each other if the skb contains
487 	 * encapsulated packet or not and maybe use the inner packet
488 	 * headers if needed
489 	 */
490 	__u8			encapsulation:1;
491 	/* 7/9 bit hole (depending on ndisc_nodetype presence) */
492 	kmemcheck_bitfield_end(flags2);
493 
494 #ifdef CONFIG_NET_DMA
495 	dma_cookie_t		dma_cookie;
496 #endif
497 #ifdef CONFIG_NETWORK_SECMARK
498 	__u32			secmark;
499 #endif
500 	union {
501 		__u32		mark;
502 		__u32		dropcount;
503 		__u32		reserved_tailroom;
504 	};
505 
506 	sk_buff_data_t		inner_transport_header;
507 	sk_buff_data_t		inner_network_header;
508 	sk_buff_data_t		transport_header;
509 	sk_buff_data_t		network_header;
510 	sk_buff_data_t		mac_header;
511 	/* These elements must be at the end, see alloc_skb() for details.  */
512 	sk_buff_data_t		tail;
513 	sk_buff_data_t		end;
514 	unsigned char		*head,
515 				*data;
516 	unsigned int		truesize;
517 	atomic_t		users;
518 };
519 
520 #ifdef __KERNEL__
521 /*
522  *	Handling routines are only of interest to the kernel
523  */
524 #include <linux/slab.h>
525 
526 
527 #define SKB_ALLOC_FCLONE	0x01
528 #define SKB_ALLOC_RX		0x02
529 
530 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
531 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
532 {
533 	return unlikely(skb->pfmemalloc);
534 }
535 
536 /*
537  * skb might have a dst pointer attached, refcounted or not.
538  * _skb_refdst low order bit is set if refcount was _not_ taken
539  */
540 #define SKB_DST_NOREF	1UL
541 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
542 
543 /**
544  * skb_dst - returns skb dst_entry
545  * @skb: buffer
546  *
547  * Returns skb dst_entry, regardless of reference taken or not.
548  */
549 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
550 {
551 	/* If refdst was not refcounted, check we still are in a
552 	 * rcu_read_lock section
553 	 */
554 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
555 		!rcu_read_lock_held() &&
556 		!rcu_read_lock_bh_held());
557 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
558 }
559 
560 /**
561  * skb_dst_set - sets skb dst
562  * @skb: buffer
563  * @dst: dst entry
564  *
565  * Sets skb dst, assuming a reference was taken on dst and should
566  * be released by skb_dst_drop()
567  */
568 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
569 {
570 	skb->_skb_refdst = (unsigned long)dst;
571 }
572 
573 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
574 
575 /**
576  * skb_dst_is_noref - Test if skb dst isn't refcounted
577  * @skb: buffer
578  */
579 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
580 {
581 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
582 }
583 
584 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
585 {
586 	return (struct rtable *)skb_dst(skb);
587 }
588 
589 extern void kfree_skb(struct sk_buff *skb);
590 extern void skb_tx_error(struct sk_buff *skb);
591 extern void consume_skb(struct sk_buff *skb);
592 extern void	       __kfree_skb(struct sk_buff *skb);
593 extern struct kmem_cache *skbuff_head_cache;
594 
595 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
596 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
597 			     bool *fragstolen, int *delta_truesize);
598 
599 extern struct sk_buff *__alloc_skb(unsigned int size,
600 				   gfp_t priority, int flags, int node);
601 extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
602 static inline struct sk_buff *alloc_skb(unsigned int size,
603 					gfp_t priority)
604 {
605 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
606 }
607 
608 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
609 					       gfp_t priority)
610 {
611 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
612 }
613 
614 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
615 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
616 extern struct sk_buff *skb_clone(struct sk_buff *skb,
617 				 gfp_t priority);
618 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
619 				gfp_t priority);
620 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
621 				 int headroom, gfp_t gfp_mask);
622 
623 extern int	       pskb_expand_head(struct sk_buff *skb,
624 					int nhead, int ntail,
625 					gfp_t gfp_mask);
626 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
627 					    unsigned int headroom);
628 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
629 				       int newheadroom, int newtailroom,
630 				       gfp_t priority);
631 extern int	       skb_to_sgvec(struct sk_buff *skb,
632 				    struct scatterlist *sg, int offset,
633 				    int len);
634 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
635 				    struct sk_buff **trailer);
636 extern int	       skb_pad(struct sk_buff *skb, int pad);
637 #define dev_kfree_skb(a)	consume_skb(a)
638 
639 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
640 			int getfrag(void *from, char *to, int offset,
641 			int len,int odd, struct sk_buff *skb),
642 			void *from, int length);
643 
644 struct skb_seq_state {
645 	__u32		lower_offset;
646 	__u32		upper_offset;
647 	__u32		frag_idx;
648 	__u32		stepped_offset;
649 	struct sk_buff	*root_skb;
650 	struct sk_buff	*cur_skb;
651 	__u8		*frag_data;
652 };
653 
654 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
655 					   unsigned int from, unsigned int to,
656 					   struct skb_seq_state *st);
657 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
658 				   struct skb_seq_state *st);
659 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
660 
661 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
662 				    unsigned int to, struct ts_config *config,
663 				    struct ts_state *state);
664 
665 extern void __skb_get_rxhash(struct sk_buff *skb);
666 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
667 {
668 	if (!skb->l4_rxhash)
669 		__skb_get_rxhash(skb);
670 
671 	return skb->rxhash;
672 }
673 
674 #ifdef NET_SKBUFF_DATA_USES_OFFSET
675 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
676 {
677 	return skb->head + skb->end;
678 }
679 
680 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
681 {
682 	return skb->end;
683 }
684 #else
685 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
686 {
687 	return skb->end;
688 }
689 
690 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
691 {
692 	return skb->end - skb->head;
693 }
694 #endif
695 
696 /* Internal */
697 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
698 
699 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
700 {
701 	return &skb_shinfo(skb)->hwtstamps;
702 }
703 
704 /**
705  *	skb_queue_empty - check if a queue is empty
706  *	@list: queue head
707  *
708  *	Returns true if the queue is empty, false otherwise.
709  */
710 static inline int skb_queue_empty(const struct sk_buff_head *list)
711 {
712 	return list->next == (struct sk_buff *)list;
713 }
714 
715 /**
716  *	skb_queue_is_last - check if skb is the last entry in the queue
717  *	@list: queue head
718  *	@skb: buffer
719  *
720  *	Returns true if @skb is the last buffer on the list.
721  */
722 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
723 				     const struct sk_buff *skb)
724 {
725 	return skb->next == (struct sk_buff *)list;
726 }
727 
728 /**
729  *	skb_queue_is_first - check if skb is the first entry in the queue
730  *	@list: queue head
731  *	@skb: buffer
732  *
733  *	Returns true if @skb is the first buffer on the list.
734  */
735 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
736 				      const struct sk_buff *skb)
737 {
738 	return skb->prev == (struct sk_buff *)list;
739 }
740 
741 /**
742  *	skb_queue_next - return the next packet in the queue
743  *	@list: queue head
744  *	@skb: current buffer
745  *
746  *	Return the next packet in @list after @skb.  It is only valid to
747  *	call this if skb_queue_is_last() evaluates to false.
748  */
749 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
750 					     const struct sk_buff *skb)
751 {
752 	/* This BUG_ON may seem severe, but if we just return then we
753 	 * are going to dereference garbage.
754 	 */
755 	BUG_ON(skb_queue_is_last(list, skb));
756 	return skb->next;
757 }
758 
759 /**
760  *	skb_queue_prev - return the prev packet in the queue
761  *	@list: queue head
762  *	@skb: current buffer
763  *
764  *	Return the prev packet in @list before @skb.  It is only valid to
765  *	call this if skb_queue_is_first() evaluates to false.
766  */
767 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
768 					     const struct sk_buff *skb)
769 {
770 	/* This BUG_ON may seem severe, but if we just return then we
771 	 * are going to dereference garbage.
772 	 */
773 	BUG_ON(skb_queue_is_first(list, skb));
774 	return skb->prev;
775 }
776 
777 /**
778  *	skb_get - reference buffer
779  *	@skb: buffer to reference
780  *
781  *	Makes another reference to a socket buffer and returns a pointer
782  *	to the buffer.
783  */
784 static inline struct sk_buff *skb_get(struct sk_buff *skb)
785 {
786 	atomic_inc(&skb->users);
787 	return skb;
788 }
789 
790 /*
791  * If users == 1, we are the only owner and are can avoid redundant
792  * atomic change.
793  */
794 
795 /**
796  *	skb_cloned - is the buffer a clone
797  *	@skb: buffer to check
798  *
799  *	Returns true if the buffer was generated with skb_clone() and is
800  *	one of multiple shared copies of the buffer. Cloned buffers are
801  *	shared data so must not be written to under normal circumstances.
802  */
803 static inline int skb_cloned(const struct sk_buff *skb)
804 {
805 	return skb->cloned &&
806 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
807 }
808 
809 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
810 {
811 	might_sleep_if(pri & __GFP_WAIT);
812 
813 	if (skb_cloned(skb))
814 		return pskb_expand_head(skb, 0, 0, pri);
815 
816 	return 0;
817 }
818 
819 /**
820  *	skb_header_cloned - is the header a clone
821  *	@skb: buffer to check
822  *
823  *	Returns true if modifying the header part of the buffer requires
824  *	the data to be copied.
825  */
826 static inline int skb_header_cloned(const struct sk_buff *skb)
827 {
828 	int dataref;
829 
830 	if (!skb->cloned)
831 		return 0;
832 
833 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
834 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
835 	return dataref != 1;
836 }
837 
838 /**
839  *	skb_header_release - release reference to header
840  *	@skb: buffer to operate on
841  *
842  *	Drop a reference to the header part of the buffer.  This is done
843  *	by acquiring a payload reference.  You must not read from the header
844  *	part of skb->data after this.
845  */
846 static inline void skb_header_release(struct sk_buff *skb)
847 {
848 	BUG_ON(skb->nohdr);
849 	skb->nohdr = 1;
850 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
851 }
852 
853 /**
854  *	skb_shared - is the buffer shared
855  *	@skb: buffer to check
856  *
857  *	Returns true if more than one person has a reference to this
858  *	buffer.
859  */
860 static inline int skb_shared(const struct sk_buff *skb)
861 {
862 	return atomic_read(&skb->users) != 1;
863 }
864 
865 /**
866  *	skb_share_check - check if buffer is shared and if so clone it
867  *	@skb: buffer to check
868  *	@pri: priority for memory allocation
869  *
870  *	If the buffer is shared the buffer is cloned and the old copy
871  *	drops a reference. A new clone with a single reference is returned.
872  *	If the buffer is not shared the original buffer is returned. When
873  *	being called from interrupt status or with spinlocks held pri must
874  *	be GFP_ATOMIC.
875  *
876  *	NULL is returned on a memory allocation failure.
877  */
878 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
879 {
880 	might_sleep_if(pri & __GFP_WAIT);
881 	if (skb_shared(skb)) {
882 		struct sk_buff *nskb = skb_clone(skb, pri);
883 
884 		if (likely(nskb))
885 			consume_skb(skb);
886 		else
887 			kfree_skb(skb);
888 		skb = nskb;
889 	}
890 	return skb;
891 }
892 
893 /*
894  *	Copy shared buffers into a new sk_buff. We effectively do COW on
895  *	packets to handle cases where we have a local reader and forward
896  *	and a couple of other messy ones. The normal one is tcpdumping
897  *	a packet thats being forwarded.
898  */
899 
900 /**
901  *	skb_unshare - make a copy of a shared buffer
902  *	@skb: buffer to check
903  *	@pri: priority for memory allocation
904  *
905  *	If the socket buffer is a clone then this function creates a new
906  *	copy of the data, drops a reference count on the old copy and returns
907  *	the new copy with the reference count at 1. If the buffer is not a clone
908  *	the original buffer is returned. When called with a spinlock held or
909  *	from interrupt state @pri must be %GFP_ATOMIC
910  *
911  *	%NULL is returned on a memory allocation failure.
912  */
913 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
914 					  gfp_t pri)
915 {
916 	might_sleep_if(pri & __GFP_WAIT);
917 	if (skb_cloned(skb)) {
918 		struct sk_buff *nskb = skb_copy(skb, pri);
919 		kfree_skb(skb);	/* Free our shared copy */
920 		skb = nskb;
921 	}
922 	return skb;
923 }
924 
925 /**
926  *	skb_peek - peek at the head of an &sk_buff_head
927  *	@list_: list to peek at
928  *
929  *	Peek an &sk_buff. Unlike most other operations you _MUST_
930  *	be careful with this one. A peek leaves the buffer on the
931  *	list and someone else may run off with it. You must hold
932  *	the appropriate locks or have a private queue to do this.
933  *
934  *	Returns %NULL for an empty list or a pointer to the head element.
935  *	The reference count is not incremented and the reference is therefore
936  *	volatile. Use with caution.
937  */
938 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
939 {
940 	struct sk_buff *skb = list_->next;
941 
942 	if (skb == (struct sk_buff *)list_)
943 		skb = NULL;
944 	return skb;
945 }
946 
947 /**
948  *	skb_peek_next - peek skb following the given one from a queue
949  *	@skb: skb to start from
950  *	@list_: list to peek at
951  *
952  *	Returns %NULL when the end of the list is met or a pointer to the
953  *	next element. The reference count is not incremented and the
954  *	reference is therefore volatile. Use with caution.
955  */
956 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
957 		const struct sk_buff_head *list_)
958 {
959 	struct sk_buff *next = skb->next;
960 
961 	if (next == (struct sk_buff *)list_)
962 		next = NULL;
963 	return next;
964 }
965 
966 /**
967  *	skb_peek_tail - peek at the tail of an &sk_buff_head
968  *	@list_: list to peek at
969  *
970  *	Peek an &sk_buff. Unlike most other operations you _MUST_
971  *	be careful with this one. A peek leaves the buffer on the
972  *	list and someone else may run off with it. You must hold
973  *	the appropriate locks or have a private queue to do this.
974  *
975  *	Returns %NULL for an empty list or a pointer to the tail element.
976  *	The reference count is not incremented and the reference is therefore
977  *	volatile. Use with caution.
978  */
979 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
980 {
981 	struct sk_buff *skb = list_->prev;
982 
983 	if (skb == (struct sk_buff *)list_)
984 		skb = NULL;
985 	return skb;
986 
987 }
988 
989 /**
990  *	skb_queue_len	- get queue length
991  *	@list_: list to measure
992  *
993  *	Return the length of an &sk_buff queue.
994  */
995 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
996 {
997 	return list_->qlen;
998 }
999 
1000 /**
1001  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1002  *	@list: queue to initialize
1003  *
1004  *	This initializes only the list and queue length aspects of
1005  *	an sk_buff_head object.  This allows to initialize the list
1006  *	aspects of an sk_buff_head without reinitializing things like
1007  *	the spinlock.  It can also be used for on-stack sk_buff_head
1008  *	objects where the spinlock is known to not be used.
1009  */
1010 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1011 {
1012 	list->prev = list->next = (struct sk_buff *)list;
1013 	list->qlen = 0;
1014 }
1015 
1016 /*
1017  * This function creates a split out lock class for each invocation;
1018  * this is needed for now since a whole lot of users of the skb-queue
1019  * infrastructure in drivers have different locking usage (in hardirq)
1020  * than the networking core (in softirq only). In the long run either the
1021  * network layer or drivers should need annotation to consolidate the
1022  * main types of usage into 3 classes.
1023  */
1024 static inline void skb_queue_head_init(struct sk_buff_head *list)
1025 {
1026 	spin_lock_init(&list->lock);
1027 	__skb_queue_head_init(list);
1028 }
1029 
1030 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1031 		struct lock_class_key *class)
1032 {
1033 	skb_queue_head_init(list);
1034 	lockdep_set_class(&list->lock, class);
1035 }
1036 
1037 /*
1038  *	Insert an sk_buff on a list.
1039  *
1040  *	The "__skb_xxxx()" functions are the non-atomic ones that
1041  *	can only be called with interrupts disabled.
1042  */
1043 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1044 static inline void __skb_insert(struct sk_buff *newsk,
1045 				struct sk_buff *prev, struct sk_buff *next,
1046 				struct sk_buff_head *list)
1047 {
1048 	newsk->next = next;
1049 	newsk->prev = prev;
1050 	next->prev  = prev->next = newsk;
1051 	list->qlen++;
1052 }
1053 
1054 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1055 				      struct sk_buff *prev,
1056 				      struct sk_buff *next)
1057 {
1058 	struct sk_buff *first = list->next;
1059 	struct sk_buff *last = list->prev;
1060 
1061 	first->prev = prev;
1062 	prev->next = first;
1063 
1064 	last->next = next;
1065 	next->prev = last;
1066 }
1067 
1068 /**
1069  *	skb_queue_splice - join two skb lists, this is designed for stacks
1070  *	@list: the new list to add
1071  *	@head: the place to add it in the first list
1072  */
1073 static inline void skb_queue_splice(const struct sk_buff_head *list,
1074 				    struct sk_buff_head *head)
1075 {
1076 	if (!skb_queue_empty(list)) {
1077 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1078 		head->qlen += list->qlen;
1079 	}
1080 }
1081 
1082 /**
1083  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1084  *	@list: the new list to add
1085  *	@head: the place to add it in the first list
1086  *
1087  *	The list at @list is reinitialised
1088  */
1089 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1090 					 struct sk_buff_head *head)
1091 {
1092 	if (!skb_queue_empty(list)) {
1093 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1094 		head->qlen += list->qlen;
1095 		__skb_queue_head_init(list);
1096 	}
1097 }
1098 
1099 /**
1100  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1101  *	@list: the new list to add
1102  *	@head: the place to add it in the first list
1103  */
1104 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1105 					 struct sk_buff_head *head)
1106 {
1107 	if (!skb_queue_empty(list)) {
1108 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1109 		head->qlen += list->qlen;
1110 	}
1111 }
1112 
1113 /**
1114  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1115  *	@list: the new list to add
1116  *	@head: the place to add it in the first list
1117  *
1118  *	Each of the lists is a queue.
1119  *	The list at @list is reinitialised
1120  */
1121 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1122 					      struct sk_buff_head *head)
1123 {
1124 	if (!skb_queue_empty(list)) {
1125 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1126 		head->qlen += list->qlen;
1127 		__skb_queue_head_init(list);
1128 	}
1129 }
1130 
1131 /**
1132  *	__skb_queue_after - queue a buffer at the list head
1133  *	@list: list to use
1134  *	@prev: place after this buffer
1135  *	@newsk: buffer to queue
1136  *
1137  *	Queue a buffer int the middle of a list. This function takes no locks
1138  *	and you must therefore hold required locks before calling it.
1139  *
1140  *	A buffer cannot be placed on two lists at the same time.
1141  */
1142 static inline void __skb_queue_after(struct sk_buff_head *list,
1143 				     struct sk_buff *prev,
1144 				     struct sk_buff *newsk)
1145 {
1146 	__skb_insert(newsk, prev, prev->next, list);
1147 }
1148 
1149 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1150 		       struct sk_buff_head *list);
1151 
1152 static inline void __skb_queue_before(struct sk_buff_head *list,
1153 				      struct sk_buff *next,
1154 				      struct sk_buff *newsk)
1155 {
1156 	__skb_insert(newsk, next->prev, next, list);
1157 }
1158 
1159 /**
1160  *	__skb_queue_head - queue a buffer at the list head
1161  *	@list: list to use
1162  *	@newsk: buffer to queue
1163  *
1164  *	Queue a buffer at the start of a list. This function takes no locks
1165  *	and you must therefore hold required locks before calling it.
1166  *
1167  *	A buffer cannot be placed on two lists at the same time.
1168  */
1169 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1170 static inline void __skb_queue_head(struct sk_buff_head *list,
1171 				    struct sk_buff *newsk)
1172 {
1173 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1174 }
1175 
1176 /**
1177  *	__skb_queue_tail - queue a buffer at the list tail
1178  *	@list: list to use
1179  *	@newsk: buffer to queue
1180  *
1181  *	Queue a buffer at the end of a list. This function takes no locks
1182  *	and you must therefore hold required locks before calling it.
1183  *
1184  *	A buffer cannot be placed on two lists at the same time.
1185  */
1186 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1187 static inline void __skb_queue_tail(struct sk_buff_head *list,
1188 				   struct sk_buff *newsk)
1189 {
1190 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1191 }
1192 
1193 /*
1194  * remove sk_buff from list. _Must_ be called atomically, and with
1195  * the list known..
1196  */
1197 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1198 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1199 {
1200 	struct sk_buff *next, *prev;
1201 
1202 	list->qlen--;
1203 	next	   = skb->next;
1204 	prev	   = skb->prev;
1205 	skb->next  = skb->prev = NULL;
1206 	next->prev = prev;
1207 	prev->next = next;
1208 }
1209 
1210 /**
1211  *	__skb_dequeue - remove from the head of the queue
1212  *	@list: list to dequeue from
1213  *
1214  *	Remove the head of the list. This function does not take any locks
1215  *	so must be used with appropriate locks held only. The head item is
1216  *	returned or %NULL if the list is empty.
1217  */
1218 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1219 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1220 {
1221 	struct sk_buff *skb = skb_peek(list);
1222 	if (skb)
1223 		__skb_unlink(skb, list);
1224 	return skb;
1225 }
1226 
1227 /**
1228  *	__skb_dequeue_tail - remove from the tail of the queue
1229  *	@list: list to dequeue from
1230  *
1231  *	Remove the tail of the list. This function does not take any locks
1232  *	so must be used with appropriate locks held only. The tail item is
1233  *	returned or %NULL if the list is empty.
1234  */
1235 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1236 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1237 {
1238 	struct sk_buff *skb = skb_peek_tail(list);
1239 	if (skb)
1240 		__skb_unlink(skb, list);
1241 	return skb;
1242 }
1243 
1244 
1245 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1246 {
1247 	return skb->data_len;
1248 }
1249 
1250 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1251 {
1252 	return skb->len - skb->data_len;
1253 }
1254 
1255 static inline int skb_pagelen(const struct sk_buff *skb)
1256 {
1257 	int i, len = 0;
1258 
1259 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1260 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1261 	return len + skb_headlen(skb);
1262 }
1263 
1264 /**
1265  * __skb_fill_page_desc - initialise a paged fragment in an skb
1266  * @skb: buffer containing fragment to be initialised
1267  * @i: paged fragment index to initialise
1268  * @page: the page to use for this fragment
1269  * @off: the offset to the data with @page
1270  * @size: the length of the data
1271  *
1272  * Initialises the @i'th fragment of @skb to point to &size bytes at
1273  * offset @off within @page.
1274  *
1275  * Does not take any additional reference on the fragment.
1276  */
1277 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1278 					struct page *page, int off, int size)
1279 {
1280 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1281 
1282 	/*
1283 	 * Propagate page->pfmemalloc to the skb if we can. The problem is
1284 	 * that not all callers have unique ownership of the page. If
1285 	 * pfmemalloc is set, we check the mapping as a mapping implies
1286 	 * page->index is set (index and pfmemalloc share space).
1287 	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1288 	 * do not lose pfmemalloc information as the pages would not be
1289 	 * allocated using __GFP_MEMALLOC.
1290 	 */
1291 	frag->page.p		  = page;
1292 	frag->page_offset	  = off;
1293 	skb_frag_size_set(frag, size);
1294 
1295 	page = compound_head(page);
1296 	if (page->pfmemalloc && !page->mapping)
1297 		skb->pfmemalloc	= true;
1298 }
1299 
1300 /**
1301  * skb_fill_page_desc - initialise a paged fragment in an skb
1302  * @skb: buffer containing fragment to be initialised
1303  * @i: paged fragment index to initialise
1304  * @page: the page to use for this fragment
1305  * @off: the offset to the data with @page
1306  * @size: the length of the data
1307  *
1308  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1309  * @skb to point to &size bytes at offset @off within @page. In
1310  * addition updates @skb such that @i is the last fragment.
1311  *
1312  * Does not take any additional reference on the fragment.
1313  */
1314 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1315 				      struct page *page, int off, int size)
1316 {
1317 	__skb_fill_page_desc(skb, i, page, off, size);
1318 	skb_shinfo(skb)->nr_frags = i + 1;
1319 }
1320 
1321 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1322 			    int off, int size, unsigned int truesize);
1323 
1324 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1325 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1326 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1327 
1328 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1329 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1330 {
1331 	return skb->head + skb->tail;
1332 }
1333 
1334 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1335 {
1336 	skb->tail = skb->data - skb->head;
1337 }
1338 
1339 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1340 {
1341 	skb_reset_tail_pointer(skb);
1342 	skb->tail += offset;
1343 }
1344 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1345 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1346 {
1347 	return skb->tail;
1348 }
1349 
1350 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1351 {
1352 	skb->tail = skb->data;
1353 }
1354 
1355 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1356 {
1357 	skb->tail = skb->data + offset;
1358 }
1359 
1360 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1361 
1362 /*
1363  *	Add data to an sk_buff
1364  */
1365 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1366 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1367 {
1368 	unsigned char *tmp = skb_tail_pointer(skb);
1369 	SKB_LINEAR_ASSERT(skb);
1370 	skb->tail += len;
1371 	skb->len  += len;
1372 	return tmp;
1373 }
1374 
1375 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1376 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1377 {
1378 	skb->data -= len;
1379 	skb->len  += len;
1380 	return skb->data;
1381 }
1382 
1383 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1384 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1385 {
1386 	skb->len -= len;
1387 	BUG_ON(skb->len < skb->data_len);
1388 	return skb->data += len;
1389 }
1390 
1391 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1392 {
1393 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1394 }
1395 
1396 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1397 
1398 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1399 {
1400 	if (len > skb_headlen(skb) &&
1401 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1402 		return NULL;
1403 	skb->len -= len;
1404 	return skb->data += len;
1405 }
1406 
1407 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1408 {
1409 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1410 }
1411 
1412 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1413 {
1414 	if (likely(len <= skb_headlen(skb)))
1415 		return 1;
1416 	if (unlikely(len > skb->len))
1417 		return 0;
1418 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1419 }
1420 
1421 /**
1422  *	skb_headroom - bytes at buffer head
1423  *	@skb: buffer to check
1424  *
1425  *	Return the number of bytes of free space at the head of an &sk_buff.
1426  */
1427 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1428 {
1429 	return skb->data - skb->head;
1430 }
1431 
1432 /**
1433  *	skb_tailroom - bytes at buffer end
1434  *	@skb: buffer to check
1435  *
1436  *	Return the number of bytes of free space at the tail of an sk_buff
1437  */
1438 static inline int skb_tailroom(const struct sk_buff *skb)
1439 {
1440 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1441 }
1442 
1443 /**
1444  *	skb_availroom - bytes at buffer end
1445  *	@skb: buffer to check
1446  *
1447  *	Return the number of bytes of free space at the tail of an sk_buff
1448  *	allocated by sk_stream_alloc()
1449  */
1450 static inline int skb_availroom(const struct sk_buff *skb)
1451 {
1452 	if (skb_is_nonlinear(skb))
1453 		return 0;
1454 
1455 	return skb->end - skb->tail - skb->reserved_tailroom;
1456 }
1457 
1458 /**
1459  *	skb_reserve - adjust headroom
1460  *	@skb: buffer to alter
1461  *	@len: bytes to move
1462  *
1463  *	Increase the headroom of an empty &sk_buff by reducing the tail
1464  *	room. This is only allowed for an empty buffer.
1465  */
1466 static inline void skb_reserve(struct sk_buff *skb, int len)
1467 {
1468 	skb->data += len;
1469 	skb->tail += len;
1470 }
1471 
1472 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1473 {
1474 	skb->inner_network_header = skb->network_header;
1475 	skb->inner_transport_header = skb->transport_header;
1476 }
1477 
1478 static inline void skb_reset_mac_len(struct sk_buff *skb)
1479 {
1480 	skb->mac_len = skb->network_header - skb->mac_header;
1481 }
1482 
1483 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1484 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1485 							*skb)
1486 {
1487 	return skb->head + skb->inner_transport_header;
1488 }
1489 
1490 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1491 {
1492 	skb->inner_transport_header = skb->data - skb->head;
1493 }
1494 
1495 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1496 						   const int offset)
1497 {
1498 	skb_reset_inner_transport_header(skb);
1499 	skb->inner_transport_header += offset;
1500 }
1501 
1502 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1503 {
1504 	return skb->head + skb->inner_network_header;
1505 }
1506 
1507 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1508 {
1509 	skb->inner_network_header = skb->data - skb->head;
1510 }
1511 
1512 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1513 						const int offset)
1514 {
1515 	skb_reset_inner_network_header(skb);
1516 	skb->inner_network_header += offset;
1517 }
1518 
1519 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1520 {
1521 	return skb->transport_header != ~0U;
1522 }
1523 
1524 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1525 {
1526 	return skb->head + skb->transport_header;
1527 }
1528 
1529 static inline void skb_reset_transport_header(struct sk_buff *skb)
1530 {
1531 	skb->transport_header = skb->data - skb->head;
1532 }
1533 
1534 static inline void skb_set_transport_header(struct sk_buff *skb,
1535 					    const int offset)
1536 {
1537 	skb_reset_transport_header(skb);
1538 	skb->transport_header += offset;
1539 }
1540 
1541 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1542 {
1543 	return skb->head + skb->network_header;
1544 }
1545 
1546 static inline void skb_reset_network_header(struct sk_buff *skb)
1547 {
1548 	skb->network_header = skb->data - skb->head;
1549 }
1550 
1551 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1552 {
1553 	skb_reset_network_header(skb);
1554 	skb->network_header += offset;
1555 }
1556 
1557 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1558 {
1559 	return skb->head + skb->mac_header;
1560 }
1561 
1562 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1563 {
1564 	return skb->mac_header != ~0U;
1565 }
1566 
1567 static inline void skb_reset_mac_header(struct sk_buff *skb)
1568 {
1569 	skb->mac_header = skb->data - skb->head;
1570 }
1571 
1572 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1573 {
1574 	skb_reset_mac_header(skb);
1575 	skb->mac_header += offset;
1576 }
1577 
1578 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1579 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1580 							*skb)
1581 {
1582 	return skb->inner_transport_header;
1583 }
1584 
1585 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1586 {
1587 	skb->inner_transport_header = skb->data;
1588 }
1589 
1590 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1591 						   const int offset)
1592 {
1593 	skb->inner_transport_header = skb->data + offset;
1594 }
1595 
1596 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1597 {
1598 	return skb->inner_network_header;
1599 }
1600 
1601 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1602 {
1603 	skb->inner_network_header = skb->data;
1604 }
1605 
1606 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1607 						const int offset)
1608 {
1609 	skb->inner_network_header = skb->data + offset;
1610 }
1611 
1612 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1613 {
1614 	return skb->transport_header != NULL;
1615 }
1616 
1617 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1618 {
1619 	return skb->transport_header;
1620 }
1621 
1622 static inline void skb_reset_transport_header(struct sk_buff *skb)
1623 {
1624 	skb->transport_header = skb->data;
1625 }
1626 
1627 static inline void skb_set_transport_header(struct sk_buff *skb,
1628 					    const int offset)
1629 {
1630 	skb->transport_header = skb->data + offset;
1631 }
1632 
1633 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1634 {
1635 	return skb->network_header;
1636 }
1637 
1638 static inline void skb_reset_network_header(struct sk_buff *skb)
1639 {
1640 	skb->network_header = skb->data;
1641 }
1642 
1643 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1644 {
1645 	skb->network_header = skb->data + offset;
1646 }
1647 
1648 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1649 {
1650 	return skb->mac_header;
1651 }
1652 
1653 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1654 {
1655 	return skb->mac_header != NULL;
1656 }
1657 
1658 static inline void skb_reset_mac_header(struct sk_buff *skb)
1659 {
1660 	skb->mac_header = skb->data;
1661 }
1662 
1663 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1664 {
1665 	skb->mac_header = skb->data + offset;
1666 }
1667 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1668 
1669 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1670 {
1671 	if (skb_mac_header_was_set(skb)) {
1672 		const unsigned char *old_mac = skb_mac_header(skb);
1673 
1674 		skb_set_mac_header(skb, -skb->mac_len);
1675 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1676 	}
1677 }
1678 
1679 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1680 {
1681 	return skb->csum_start - skb_headroom(skb);
1682 }
1683 
1684 static inline int skb_transport_offset(const struct sk_buff *skb)
1685 {
1686 	return skb_transport_header(skb) - skb->data;
1687 }
1688 
1689 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1690 {
1691 	return skb->transport_header - skb->network_header;
1692 }
1693 
1694 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1695 {
1696 	return skb->inner_transport_header - skb->inner_network_header;
1697 }
1698 
1699 static inline int skb_network_offset(const struct sk_buff *skb)
1700 {
1701 	return skb_network_header(skb) - skb->data;
1702 }
1703 
1704 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1705 {
1706 	return skb_inner_network_header(skb) - skb->data;
1707 }
1708 
1709 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1710 {
1711 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1712 }
1713 
1714 /*
1715  * CPUs often take a performance hit when accessing unaligned memory
1716  * locations. The actual performance hit varies, it can be small if the
1717  * hardware handles it or large if we have to take an exception and fix it
1718  * in software.
1719  *
1720  * Since an ethernet header is 14 bytes network drivers often end up with
1721  * the IP header at an unaligned offset. The IP header can be aligned by
1722  * shifting the start of the packet by 2 bytes. Drivers should do this
1723  * with:
1724  *
1725  * skb_reserve(skb, NET_IP_ALIGN);
1726  *
1727  * The downside to this alignment of the IP header is that the DMA is now
1728  * unaligned. On some architectures the cost of an unaligned DMA is high
1729  * and this cost outweighs the gains made by aligning the IP header.
1730  *
1731  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1732  * to be overridden.
1733  */
1734 #ifndef NET_IP_ALIGN
1735 #define NET_IP_ALIGN	2
1736 #endif
1737 
1738 /*
1739  * The networking layer reserves some headroom in skb data (via
1740  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1741  * the header has to grow. In the default case, if the header has to grow
1742  * 32 bytes or less we avoid the reallocation.
1743  *
1744  * Unfortunately this headroom changes the DMA alignment of the resulting
1745  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1746  * on some architectures. An architecture can override this value,
1747  * perhaps setting it to a cacheline in size (since that will maintain
1748  * cacheline alignment of the DMA). It must be a power of 2.
1749  *
1750  * Various parts of the networking layer expect at least 32 bytes of
1751  * headroom, you should not reduce this.
1752  *
1753  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1754  * to reduce average number of cache lines per packet.
1755  * get_rps_cpus() for example only access one 64 bytes aligned block :
1756  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1757  */
1758 #ifndef NET_SKB_PAD
1759 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1760 #endif
1761 
1762 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1763 
1764 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1765 {
1766 	if (unlikely(skb_is_nonlinear(skb))) {
1767 		WARN_ON(1);
1768 		return;
1769 	}
1770 	skb->len = len;
1771 	skb_set_tail_pointer(skb, len);
1772 }
1773 
1774 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1775 
1776 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1777 {
1778 	if (skb->data_len)
1779 		return ___pskb_trim(skb, len);
1780 	__skb_trim(skb, len);
1781 	return 0;
1782 }
1783 
1784 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1785 {
1786 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1787 }
1788 
1789 /**
1790  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1791  *	@skb: buffer to alter
1792  *	@len: new length
1793  *
1794  *	This is identical to pskb_trim except that the caller knows that
1795  *	the skb is not cloned so we should never get an error due to out-
1796  *	of-memory.
1797  */
1798 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1799 {
1800 	int err = pskb_trim(skb, len);
1801 	BUG_ON(err);
1802 }
1803 
1804 /**
1805  *	skb_orphan - orphan a buffer
1806  *	@skb: buffer to orphan
1807  *
1808  *	If a buffer currently has an owner then we call the owner's
1809  *	destructor function and make the @skb unowned. The buffer continues
1810  *	to exist but is no longer charged to its former owner.
1811  */
1812 static inline void skb_orphan(struct sk_buff *skb)
1813 {
1814 	if (skb->destructor)
1815 		skb->destructor(skb);
1816 	skb->destructor = NULL;
1817 	skb->sk		= NULL;
1818 }
1819 
1820 /**
1821  *	skb_orphan_frags - orphan the frags contained in a buffer
1822  *	@skb: buffer to orphan frags from
1823  *	@gfp_mask: allocation mask for replacement pages
1824  *
1825  *	For each frag in the SKB which needs a destructor (i.e. has an
1826  *	owner) create a copy of that frag and release the original
1827  *	page by calling the destructor.
1828  */
1829 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1830 {
1831 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1832 		return 0;
1833 	return skb_copy_ubufs(skb, gfp_mask);
1834 }
1835 
1836 /**
1837  *	__skb_queue_purge - empty a list
1838  *	@list: list to empty
1839  *
1840  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1841  *	the list and one reference dropped. This function does not take the
1842  *	list lock and the caller must hold the relevant locks to use it.
1843  */
1844 extern void skb_queue_purge(struct sk_buff_head *list);
1845 static inline void __skb_queue_purge(struct sk_buff_head *list)
1846 {
1847 	struct sk_buff *skb;
1848 	while ((skb = __skb_dequeue(list)) != NULL)
1849 		kfree_skb(skb);
1850 }
1851 
1852 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
1853 #define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
1854 #define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE
1855 
1856 extern void *netdev_alloc_frag(unsigned int fragsz);
1857 
1858 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1859 					  unsigned int length,
1860 					  gfp_t gfp_mask);
1861 
1862 /**
1863  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1864  *	@dev: network device to receive on
1865  *	@length: length to allocate
1866  *
1867  *	Allocate a new &sk_buff and assign it a usage count of one. The
1868  *	buffer has unspecified headroom built in. Users should allocate
1869  *	the headroom they think they need without accounting for the
1870  *	built in space. The built in space is used for optimisations.
1871  *
1872  *	%NULL is returned if there is no free memory. Although this function
1873  *	allocates memory it can be called from an interrupt.
1874  */
1875 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1876 					       unsigned int length)
1877 {
1878 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1879 }
1880 
1881 /* legacy helper around __netdev_alloc_skb() */
1882 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1883 					      gfp_t gfp_mask)
1884 {
1885 	return __netdev_alloc_skb(NULL, length, gfp_mask);
1886 }
1887 
1888 /* legacy helper around netdev_alloc_skb() */
1889 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1890 {
1891 	return netdev_alloc_skb(NULL, length);
1892 }
1893 
1894 
1895 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1896 		unsigned int length, gfp_t gfp)
1897 {
1898 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1899 
1900 	if (NET_IP_ALIGN && skb)
1901 		skb_reserve(skb, NET_IP_ALIGN);
1902 	return skb;
1903 }
1904 
1905 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1906 		unsigned int length)
1907 {
1908 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1909 }
1910 
1911 /*
1912  *	__skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data
1913  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1914  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1915  *	@order: size of the allocation
1916  *
1917  * 	Allocate a new page.
1918  *
1919  * 	%NULL is returned if there is no free memory.
1920 */
1921 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
1922 					      struct sk_buff *skb,
1923 					      unsigned int order)
1924 {
1925 	struct page *page;
1926 
1927 	gfp_mask |= __GFP_COLD;
1928 
1929 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1930 		gfp_mask |= __GFP_MEMALLOC;
1931 
1932 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
1933 	if (skb && page && page->pfmemalloc)
1934 		skb->pfmemalloc = true;
1935 
1936 	return page;
1937 }
1938 
1939 /**
1940  *	__skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
1941  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1942  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1943  *
1944  * 	Allocate a new page.
1945  *
1946  * 	%NULL is returned if there is no free memory.
1947  */
1948 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
1949 					     struct sk_buff *skb)
1950 {
1951 	return __skb_alloc_pages(gfp_mask, skb, 0);
1952 }
1953 
1954 /**
1955  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
1956  *	@page: The page that was allocated from skb_alloc_page
1957  *	@skb: The skb that may need pfmemalloc set
1958  */
1959 static inline void skb_propagate_pfmemalloc(struct page *page,
1960 					     struct sk_buff *skb)
1961 {
1962 	if (page && page->pfmemalloc)
1963 		skb->pfmemalloc = true;
1964 }
1965 
1966 /**
1967  * skb_frag_page - retrieve the page refered to by a paged fragment
1968  * @frag: the paged fragment
1969  *
1970  * Returns the &struct page associated with @frag.
1971  */
1972 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1973 {
1974 	return frag->page.p;
1975 }
1976 
1977 /**
1978  * __skb_frag_ref - take an addition reference on a paged fragment.
1979  * @frag: the paged fragment
1980  *
1981  * Takes an additional reference on the paged fragment @frag.
1982  */
1983 static inline void __skb_frag_ref(skb_frag_t *frag)
1984 {
1985 	get_page(skb_frag_page(frag));
1986 }
1987 
1988 /**
1989  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1990  * @skb: the buffer
1991  * @f: the fragment offset.
1992  *
1993  * Takes an additional reference on the @f'th paged fragment of @skb.
1994  */
1995 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1996 {
1997 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1998 }
1999 
2000 /**
2001  * __skb_frag_unref - release a reference on a paged fragment.
2002  * @frag: the paged fragment
2003  *
2004  * Releases a reference on the paged fragment @frag.
2005  */
2006 static inline void __skb_frag_unref(skb_frag_t *frag)
2007 {
2008 	put_page(skb_frag_page(frag));
2009 }
2010 
2011 /**
2012  * skb_frag_unref - release a reference on a paged fragment of an skb.
2013  * @skb: the buffer
2014  * @f: the fragment offset
2015  *
2016  * Releases a reference on the @f'th paged fragment of @skb.
2017  */
2018 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2019 {
2020 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2021 }
2022 
2023 /**
2024  * skb_frag_address - gets the address of the data contained in a paged fragment
2025  * @frag: the paged fragment buffer
2026  *
2027  * Returns the address of the data within @frag. The page must already
2028  * be mapped.
2029  */
2030 static inline void *skb_frag_address(const skb_frag_t *frag)
2031 {
2032 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2033 }
2034 
2035 /**
2036  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2037  * @frag: the paged fragment buffer
2038  *
2039  * Returns the address of the data within @frag. Checks that the page
2040  * is mapped and returns %NULL otherwise.
2041  */
2042 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2043 {
2044 	void *ptr = page_address(skb_frag_page(frag));
2045 	if (unlikely(!ptr))
2046 		return NULL;
2047 
2048 	return ptr + frag->page_offset;
2049 }
2050 
2051 /**
2052  * __skb_frag_set_page - sets the page contained in a paged fragment
2053  * @frag: the paged fragment
2054  * @page: the page to set
2055  *
2056  * Sets the fragment @frag to contain @page.
2057  */
2058 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2059 {
2060 	frag->page.p = page;
2061 }
2062 
2063 /**
2064  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2065  * @skb: the buffer
2066  * @f: the fragment offset
2067  * @page: the page to set
2068  *
2069  * Sets the @f'th fragment of @skb to contain @page.
2070  */
2071 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2072 				     struct page *page)
2073 {
2074 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2075 }
2076 
2077 /**
2078  * skb_frag_dma_map - maps a paged fragment via the DMA API
2079  * @dev: the device to map the fragment to
2080  * @frag: the paged fragment to map
2081  * @offset: the offset within the fragment (starting at the
2082  *          fragment's own offset)
2083  * @size: the number of bytes to map
2084  * @dir: the direction of the mapping (%PCI_DMA_*)
2085  *
2086  * Maps the page associated with @frag to @device.
2087  */
2088 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2089 					  const skb_frag_t *frag,
2090 					  size_t offset, size_t size,
2091 					  enum dma_data_direction dir)
2092 {
2093 	return dma_map_page(dev, skb_frag_page(frag),
2094 			    frag->page_offset + offset, size, dir);
2095 }
2096 
2097 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2098 					gfp_t gfp_mask)
2099 {
2100 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2101 }
2102 
2103 /**
2104  *	skb_clone_writable - is the header of a clone writable
2105  *	@skb: buffer to check
2106  *	@len: length up to which to write
2107  *
2108  *	Returns true if modifying the header part of the cloned buffer
2109  *	does not requires the data to be copied.
2110  */
2111 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2112 {
2113 	return !skb_header_cloned(skb) &&
2114 	       skb_headroom(skb) + len <= skb->hdr_len;
2115 }
2116 
2117 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2118 			    int cloned)
2119 {
2120 	int delta = 0;
2121 
2122 	if (headroom > skb_headroom(skb))
2123 		delta = headroom - skb_headroom(skb);
2124 
2125 	if (delta || cloned)
2126 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2127 					GFP_ATOMIC);
2128 	return 0;
2129 }
2130 
2131 /**
2132  *	skb_cow - copy header of skb when it is required
2133  *	@skb: buffer to cow
2134  *	@headroom: needed headroom
2135  *
2136  *	If the skb passed lacks sufficient headroom or its data part
2137  *	is shared, data is reallocated. If reallocation fails, an error
2138  *	is returned and original skb is not changed.
2139  *
2140  *	The result is skb with writable area skb->head...skb->tail
2141  *	and at least @headroom of space at head.
2142  */
2143 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2144 {
2145 	return __skb_cow(skb, headroom, skb_cloned(skb));
2146 }
2147 
2148 /**
2149  *	skb_cow_head - skb_cow but only making the head writable
2150  *	@skb: buffer to cow
2151  *	@headroom: needed headroom
2152  *
2153  *	This function is identical to skb_cow except that we replace the
2154  *	skb_cloned check by skb_header_cloned.  It should be used when
2155  *	you only need to push on some header and do not need to modify
2156  *	the data.
2157  */
2158 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2159 {
2160 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2161 }
2162 
2163 /**
2164  *	skb_padto	- pad an skbuff up to a minimal size
2165  *	@skb: buffer to pad
2166  *	@len: minimal length
2167  *
2168  *	Pads up a buffer to ensure the trailing bytes exist and are
2169  *	blanked. If the buffer already contains sufficient data it
2170  *	is untouched. Otherwise it is extended. Returns zero on
2171  *	success. The skb is freed on error.
2172  */
2173 
2174 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2175 {
2176 	unsigned int size = skb->len;
2177 	if (likely(size >= len))
2178 		return 0;
2179 	return skb_pad(skb, len - size);
2180 }
2181 
2182 static inline int skb_add_data(struct sk_buff *skb,
2183 			       char __user *from, int copy)
2184 {
2185 	const int off = skb->len;
2186 
2187 	if (skb->ip_summed == CHECKSUM_NONE) {
2188 		int err = 0;
2189 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2190 							    copy, 0, &err);
2191 		if (!err) {
2192 			skb->csum = csum_block_add(skb->csum, csum, off);
2193 			return 0;
2194 		}
2195 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
2196 		return 0;
2197 
2198 	__skb_trim(skb, off);
2199 	return -EFAULT;
2200 }
2201 
2202 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2203 				    const struct page *page, int off)
2204 {
2205 	if (i) {
2206 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2207 
2208 		return page == skb_frag_page(frag) &&
2209 		       off == frag->page_offset + skb_frag_size(frag);
2210 	}
2211 	return false;
2212 }
2213 
2214 static inline int __skb_linearize(struct sk_buff *skb)
2215 {
2216 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2217 }
2218 
2219 /**
2220  *	skb_linearize - convert paged skb to linear one
2221  *	@skb: buffer to linarize
2222  *
2223  *	If there is no free memory -ENOMEM is returned, otherwise zero
2224  *	is returned and the old skb data released.
2225  */
2226 static inline int skb_linearize(struct sk_buff *skb)
2227 {
2228 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2229 }
2230 
2231 /**
2232  * skb_has_shared_frag - can any frag be overwritten
2233  * @skb: buffer to test
2234  *
2235  * Return true if the skb has at least one frag that might be modified
2236  * by an external entity (as in vmsplice()/sendfile())
2237  */
2238 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2239 {
2240 	return skb_is_nonlinear(skb) &&
2241 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2242 }
2243 
2244 /**
2245  *	skb_linearize_cow - make sure skb is linear and writable
2246  *	@skb: buffer to process
2247  *
2248  *	If there is no free memory -ENOMEM is returned, otherwise zero
2249  *	is returned and the old skb data released.
2250  */
2251 static inline int skb_linearize_cow(struct sk_buff *skb)
2252 {
2253 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2254 	       __skb_linearize(skb) : 0;
2255 }
2256 
2257 /**
2258  *	skb_postpull_rcsum - update checksum for received skb after pull
2259  *	@skb: buffer to update
2260  *	@start: start of data before pull
2261  *	@len: length of data pulled
2262  *
2263  *	After doing a pull on a received packet, you need to call this to
2264  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2265  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2266  */
2267 
2268 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2269 				      const void *start, unsigned int len)
2270 {
2271 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2272 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2273 }
2274 
2275 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2276 
2277 /**
2278  *	pskb_trim_rcsum - trim received skb and update checksum
2279  *	@skb: buffer to trim
2280  *	@len: new length
2281  *
2282  *	This is exactly the same as pskb_trim except that it ensures the
2283  *	checksum of received packets are still valid after the operation.
2284  */
2285 
2286 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2287 {
2288 	if (likely(len >= skb->len))
2289 		return 0;
2290 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2291 		skb->ip_summed = CHECKSUM_NONE;
2292 	return __pskb_trim(skb, len);
2293 }
2294 
2295 #define skb_queue_walk(queue, skb) \
2296 		for (skb = (queue)->next;					\
2297 		     skb != (struct sk_buff *)(queue);				\
2298 		     skb = skb->next)
2299 
2300 #define skb_queue_walk_safe(queue, skb, tmp)					\
2301 		for (skb = (queue)->next, tmp = skb->next;			\
2302 		     skb != (struct sk_buff *)(queue);				\
2303 		     skb = tmp, tmp = skb->next)
2304 
2305 #define skb_queue_walk_from(queue, skb)						\
2306 		for (; skb != (struct sk_buff *)(queue);			\
2307 		     skb = skb->next)
2308 
2309 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2310 		for (tmp = skb->next;						\
2311 		     skb != (struct sk_buff *)(queue);				\
2312 		     skb = tmp, tmp = skb->next)
2313 
2314 #define skb_queue_reverse_walk(queue, skb) \
2315 		for (skb = (queue)->prev;					\
2316 		     skb != (struct sk_buff *)(queue);				\
2317 		     skb = skb->prev)
2318 
2319 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2320 		for (skb = (queue)->prev, tmp = skb->prev;			\
2321 		     skb != (struct sk_buff *)(queue);				\
2322 		     skb = tmp, tmp = skb->prev)
2323 
2324 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2325 		for (tmp = skb->prev;						\
2326 		     skb != (struct sk_buff *)(queue);				\
2327 		     skb = tmp, tmp = skb->prev)
2328 
2329 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2330 {
2331 	return skb_shinfo(skb)->frag_list != NULL;
2332 }
2333 
2334 static inline void skb_frag_list_init(struct sk_buff *skb)
2335 {
2336 	skb_shinfo(skb)->frag_list = NULL;
2337 }
2338 
2339 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2340 {
2341 	frag->next = skb_shinfo(skb)->frag_list;
2342 	skb_shinfo(skb)->frag_list = frag;
2343 }
2344 
2345 #define skb_walk_frags(skb, iter)	\
2346 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2347 
2348 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2349 					   int *peeked, int *off, int *err);
2350 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2351 					 int noblock, int *err);
2352 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2353 				     struct poll_table_struct *wait);
2354 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
2355 					       int offset, struct iovec *to,
2356 					       int size);
2357 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2358 							int hlen,
2359 							struct iovec *iov);
2360 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
2361 						    int offset,
2362 						    const struct iovec *from,
2363 						    int from_offset,
2364 						    int len);
2365 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
2366 						     int offset,
2367 						     const struct iovec *to,
2368 						     int to_offset,
2369 						     int size);
2370 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2371 extern void	       skb_free_datagram_locked(struct sock *sk,
2372 						struct sk_buff *skb);
2373 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2374 					 unsigned int flags);
2375 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
2376 				    int len, __wsum csum);
2377 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
2378 				     void *to, int len);
2379 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
2380 				      const void *from, int len);
2381 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
2382 					      int offset, u8 *to, int len,
2383 					      __wsum csum);
2384 extern int             skb_splice_bits(struct sk_buff *skb,
2385 						unsigned int offset,
2386 						struct pipe_inode_info *pipe,
2387 						unsigned int len,
2388 						unsigned int flags);
2389 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2390 extern void	       skb_split(struct sk_buff *skb,
2391 				 struct sk_buff *skb1, const u32 len);
2392 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2393 				 int shiftlen);
2394 
2395 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2396 				   netdev_features_t features);
2397 
2398 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2399 				       int len, void *buffer)
2400 {
2401 	int hlen = skb_headlen(skb);
2402 
2403 	if (hlen - offset >= len)
2404 		return skb->data + offset;
2405 
2406 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
2407 		return NULL;
2408 
2409 	return buffer;
2410 }
2411 
2412 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2413 					     void *to,
2414 					     const unsigned int len)
2415 {
2416 	memcpy(to, skb->data, len);
2417 }
2418 
2419 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2420 						    const int offset, void *to,
2421 						    const unsigned int len)
2422 {
2423 	memcpy(to, skb->data + offset, len);
2424 }
2425 
2426 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2427 					   const void *from,
2428 					   const unsigned int len)
2429 {
2430 	memcpy(skb->data, from, len);
2431 }
2432 
2433 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2434 						  const int offset,
2435 						  const void *from,
2436 						  const unsigned int len)
2437 {
2438 	memcpy(skb->data + offset, from, len);
2439 }
2440 
2441 extern void skb_init(void);
2442 
2443 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2444 {
2445 	return skb->tstamp;
2446 }
2447 
2448 /**
2449  *	skb_get_timestamp - get timestamp from a skb
2450  *	@skb: skb to get stamp from
2451  *	@stamp: pointer to struct timeval to store stamp in
2452  *
2453  *	Timestamps are stored in the skb as offsets to a base timestamp.
2454  *	This function converts the offset back to a struct timeval and stores
2455  *	it in stamp.
2456  */
2457 static inline void skb_get_timestamp(const struct sk_buff *skb,
2458 				     struct timeval *stamp)
2459 {
2460 	*stamp = ktime_to_timeval(skb->tstamp);
2461 }
2462 
2463 static inline void skb_get_timestampns(const struct sk_buff *skb,
2464 				       struct timespec *stamp)
2465 {
2466 	*stamp = ktime_to_timespec(skb->tstamp);
2467 }
2468 
2469 static inline void __net_timestamp(struct sk_buff *skb)
2470 {
2471 	skb->tstamp = ktime_get_real();
2472 }
2473 
2474 static inline ktime_t net_timedelta(ktime_t t)
2475 {
2476 	return ktime_sub(ktime_get_real(), t);
2477 }
2478 
2479 static inline ktime_t net_invalid_timestamp(void)
2480 {
2481 	return ktime_set(0, 0);
2482 }
2483 
2484 extern void skb_timestamping_init(void);
2485 
2486 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2487 
2488 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2489 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2490 
2491 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2492 
2493 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2494 {
2495 }
2496 
2497 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2498 {
2499 	return false;
2500 }
2501 
2502 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2503 
2504 /**
2505  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2506  *
2507  * PHY drivers may accept clones of transmitted packets for
2508  * timestamping via their phy_driver.txtstamp method. These drivers
2509  * must call this function to return the skb back to the stack, with
2510  * or without a timestamp.
2511  *
2512  * @skb: clone of the the original outgoing packet
2513  * @hwtstamps: hardware time stamps, may be NULL if not available
2514  *
2515  */
2516 void skb_complete_tx_timestamp(struct sk_buff *skb,
2517 			       struct skb_shared_hwtstamps *hwtstamps);
2518 
2519 /**
2520  * skb_tstamp_tx - queue clone of skb with send time stamps
2521  * @orig_skb:	the original outgoing packet
2522  * @hwtstamps:	hardware time stamps, may be NULL if not available
2523  *
2524  * If the skb has a socket associated, then this function clones the
2525  * skb (thus sharing the actual data and optional structures), stores
2526  * the optional hardware time stamping information (if non NULL) or
2527  * generates a software time stamp (otherwise), then queues the clone
2528  * to the error queue of the socket.  Errors are silently ignored.
2529  */
2530 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2531 			struct skb_shared_hwtstamps *hwtstamps);
2532 
2533 static inline void sw_tx_timestamp(struct sk_buff *skb)
2534 {
2535 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2536 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2537 		skb_tstamp_tx(skb, NULL);
2538 }
2539 
2540 /**
2541  * skb_tx_timestamp() - Driver hook for transmit timestamping
2542  *
2543  * Ethernet MAC Drivers should call this function in their hard_xmit()
2544  * function immediately before giving the sk_buff to the MAC hardware.
2545  *
2546  * @skb: A socket buffer.
2547  */
2548 static inline void skb_tx_timestamp(struct sk_buff *skb)
2549 {
2550 	skb_clone_tx_timestamp(skb);
2551 	sw_tx_timestamp(skb);
2552 }
2553 
2554 /**
2555  * skb_complete_wifi_ack - deliver skb with wifi status
2556  *
2557  * @skb: the original outgoing packet
2558  * @acked: ack status
2559  *
2560  */
2561 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2562 
2563 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2564 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2565 
2566 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2567 {
2568 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2569 }
2570 
2571 /**
2572  *	skb_checksum_complete - Calculate checksum of an entire packet
2573  *	@skb: packet to process
2574  *
2575  *	This function calculates the checksum over the entire packet plus
2576  *	the value of skb->csum.  The latter can be used to supply the
2577  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2578  *	checksum.
2579  *
2580  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2581  *	this function can be used to verify that checksum on received
2582  *	packets.  In that case the function should return zero if the
2583  *	checksum is correct.  In particular, this function will return zero
2584  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2585  *	hardware has already verified the correctness of the checksum.
2586  */
2587 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2588 {
2589 	return skb_csum_unnecessary(skb) ?
2590 	       0 : __skb_checksum_complete(skb);
2591 }
2592 
2593 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2594 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2595 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2596 {
2597 	if (nfct && atomic_dec_and_test(&nfct->use))
2598 		nf_conntrack_destroy(nfct);
2599 }
2600 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2601 {
2602 	if (nfct)
2603 		atomic_inc(&nfct->use);
2604 }
2605 #endif
2606 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2607 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2608 {
2609 	if (skb)
2610 		atomic_inc(&skb->users);
2611 }
2612 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2613 {
2614 	if (skb)
2615 		kfree_skb(skb);
2616 }
2617 #endif
2618 #ifdef CONFIG_BRIDGE_NETFILTER
2619 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2620 {
2621 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2622 		kfree(nf_bridge);
2623 }
2624 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2625 {
2626 	if (nf_bridge)
2627 		atomic_inc(&nf_bridge->use);
2628 }
2629 #endif /* CONFIG_BRIDGE_NETFILTER */
2630 static inline void nf_reset(struct sk_buff *skb)
2631 {
2632 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2633 	nf_conntrack_put(skb->nfct);
2634 	skb->nfct = NULL;
2635 #endif
2636 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2637 	nf_conntrack_put_reasm(skb->nfct_reasm);
2638 	skb->nfct_reasm = NULL;
2639 #endif
2640 #ifdef CONFIG_BRIDGE_NETFILTER
2641 	nf_bridge_put(skb->nf_bridge);
2642 	skb->nf_bridge = NULL;
2643 #endif
2644 }
2645 
2646 static inline void nf_reset_trace(struct sk_buff *skb)
2647 {
2648 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
2649 	skb->nf_trace = 0;
2650 #endif
2651 }
2652 
2653 /* Note: This doesn't put any conntrack and bridge info in dst. */
2654 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2655 {
2656 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2657 	dst->nfct = src->nfct;
2658 	nf_conntrack_get(src->nfct);
2659 	dst->nfctinfo = src->nfctinfo;
2660 #endif
2661 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2662 	dst->nfct_reasm = src->nfct_reasm;
2663 	nf_conntrack_get_reasm(src->nfct_reasm);
2664 #endif
2665 #ifdef CONFIG_BRIDGE_NETFILTER
2666 	dst->nf_bridge  = src->nf_bridge;
2667 	nf_bridge_get(src->nf_bridge);
2668 #endif
2669 }
2670 
2671 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2672 {
2673 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2674 	nf_conntrack_put(dst->nfct);
2675 #endif
2676 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2677 	nf_conntrack_put_reasm(dst->nfct_reasm);
2678 #endif
2679 #ifdef CONFIG_BRIDGE_NETFILTER
2680 	nf_bridge_put(dst->nf_bridge);
2681 #endif
2682 	__nf_copy(dst, src);
2683 }
2684 
2685 #ifdef CONFIG_NETWORK_SECMARK
2686 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2687 {
2688 	to->secmark = from->secmark;
2689 }
2690 
2691 static inline void skb_init_secmark(struct sk_buff *skb)
2692 {
2693 	skb->secmark = 0;
2694 }
2695 #else
2696 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2697 { }
2698 
2699 static inline void skb_init_secmark(struct sk_buff *skb)
2700 { }
2701 #endif
2702 
2703 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2704 {
2705 	skb->queue_mapping = queue_mapping;
2706 }
2707 
2708 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2709 {
2710 	return skb->queue_mapping;
2711 }
2712 
2713 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2714 {
2715 	to->queue_mapping = from->queue_mapping;
2716 }
2717 
2718 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2719 {
2720 	skb->queue_mapping = rx_queue + 1;
2721 }
2722 
2723 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2724 {
2725 	return skb->queue_mapping - 1;
2726 }
2727 
2728 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2729 {
2730 	return skb->queue_mapping != 0;
2731 }
2732 
2733 extern u16 __skb_tx_hash(const struct net_device *dev,
2734 			 const struct sk_buff *skb,
2735 			 unsigned int num_tx_queues);
2736 
2737 #ifdef CONFIG_XFRM
2738 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2739 {
2740 	return skb->sp;
2741 }
2742 #else
2743 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2744 {
2745 	return NULL;
2746 }
2747 #endif
2748 
2749 /* Keeps track of mac header offset relative to skb->head.
2750  * It is useful for TSO of Tunneling protocol. e.g. GRE.
2751  * For non-tunnel skb it points to skb_mac_header() and for
2752  * tunnel skb it points to outer mac header. */
2753 struct skb_gso_cb {
2754 	int mac_offset;
2755 };
2756 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
2757 
2758 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
2759 {
2760 	return (skb_mac_header(inner_skb) - inner_skb->head) -
2761 		SKB_GSO_CB(inner_skb)->mac_offset;
2762 }
2763 
2764 static inline bool skb_is_gso(const struct sk_buff *skb)
2765 {
2766 	return skb_shinfo(skb)->gso_size;
2767 }
2768 
2769 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2770 {
2771 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2772 }
2773 
2774 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2775 
2776 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2777 {
2778 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2779 	 * wanted then gso_type will be set. */
2780 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2781 
2782 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2783 	    unlikely(shinfo->gso_type == 0)) {
2784 		__skb_warn_lro_forwarding(skb);
2785 		return true;
2786 	}
2787 	return false;
2788 }
2789 
2790 static inline void skb_forward_csum(struct sk_buff *skb)
2791 {
2792 	/* Unfortunately we don't support this one.  Any brave souls? */
2793 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2794 		skb->ip_summed = CHECKSUM_NONE;
2795 }
2796 
2797 /**
2798  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2799  * @skb: skb to check
2800  *
2801  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2802  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2803  * use this helper, to document places where we make this assertion.
2804  */
2805 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2806 {
2807 #ifdef DEBUG
2808 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2809 #endif
2810 }
2811 
2812 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2813 
2814 /**
2815  * skb_head_is_locked - Determine if the skb->head is locked down
2816  * @skb: skb to check
2817  *
2818  * The head on skbs build around a head frag can be removed if they are
2819  * not cloned.  This function returns true if the skb head is locked down
2820  * due to either being allocated via kmalloc, or by being a clone with
2821  * multiple references to the head.
2822  */
2823 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2824 {
2825 	return !skb->head_frag || skb_cloned(skb);
2826 }
2827 #endif	/* __KERNEL__ */
2828 #endif	/* _LINUX_SKBUFF_H */
2829