xref: /linux-6.15/include/linux/skbuff.h (revision 01eadc8d)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver.
51  * A driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options.
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv6|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is set in skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum or because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills in skb->csum. This means the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, but it should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum -- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note that there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet, presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215  * csum_offset are set to refer to the outermost checksum being offloaded
216  * (two offloaded checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct ahash_request;
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247 struct bpf_prog;
248 union bpf_attr;
249 struct skb_ext;
250 
251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252 struct nf_bridge_info {
253 	enum {
254 		BRNF_PROTO_UNCHANGED,
255 		BRNF_PROTO_8021Q,
256 		BRNF_PROTO_PPPOE
257 	} orig_proto:8;
258 	u8			pkt_otherhost:1;
259 	u8			in_prerouting:1;
260 	u8			bridged_dnat:1;
261 	__u16			frag_max_size;
262 	struct net_device	*physindev;
263 
264 	/* always valid & non-NULL from FORWARD on, for physdev match */
265 	struct net_device	*physoutdev;
266 	union {
267 		/* prerouting: detect dnat in orig/reply direction */
268 		__be32          ipv4_daddr;
269 		struct in6_addr ipv6_daddr;
270 
271 		/* after prerouting + nat detected: store original source
272 		 * mac since neigh resolution overwrites it, only used while
273 		 * skb is out in neigh layer.
274 		 */
275 		char neigh_header[8];
276 	};
277 };
278 #endif
279 
280 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
281 /* Chain in tc_skb_ext will be used to share the tc chain with
282  * ovs recirc_id. It will be set to the current chain by tc
283  * and read by ovs to recirc_id.
284  */
285 struct tc_skb_ext {
286 	__u32 chain;
287 	__u16 mru;
288 };
289 #endif
290 
291 struct sk_buff_head {
292 	/* These two members must be first. */
293 	struct sk_buff	*next;
294 	struct sk_buff	*prev;
295 
296 	__u32		qlen;
297 	spinlock_t	lock;
298 };
299 
300 struct sk_buff;
301 
302 /* To allow 64K frame to be packed as single skb without frag_list we
303  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
304  * buffers which do not start on a page boundary.
305  *
306  * Since GRO uses frags we allocate at least 16 regardless of page
307  * size.
308  */
309 #if (65536/PAGE_SIZE + 1) < 16
310 #define MAX_SKB_FRAGS 16UL
311 #else
312 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
313 #endif
314 extern int sysctl_max_skb_frags;
315 
316 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
317  * segment using its current segmentation instead.
318  */
319 #define GSO_BY_FRAGS	0xFFFF
320 
321 typedef struct bio_vec skb_frag_t;
322 
323 /**
324  * skb_frag_size() - Returns the size of a skb fragment
325  * @frag: skb fragment
326  */
327 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
328 {
329 	return frag->bv_len;
330 }
331 
332 /**
333  * skb_frag_size_set() - Sets the size of a skb fragment
334  * @frag: skb fragment
335  * @size: size of fragment
336  */
337 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
338 {
339 	frag->bv_len = size;
340 }
341 
342 /**
343  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
344  * @frag: skb fragment
345  * @delta: value to add
346  */
347 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
348 {
349 	frag->bv_len += delta;
350 }
351 
352 /**
353  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
354  * @frag: skb fragment
355  * @delta: value to subtract
356  */
357 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
358 {
359 	frag->bv_len -= delta;
360 }
361 
362 /**
363  * skb_frag_must_loop - Test if %p is a high memory page
364  * @p: fragment's page
365  */
366 static inline bool skb_frag_must_loop(struct page *p)
367 {
368 #if defined(CONFIG_HIGHMEM)
369 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
370 		return true;
371 #endif
372 	return false;
373 }
374 
375 /**
376  *	skb_frag_foreach_page - loop over pages in a fragment
377  *
378  *	@f:		skb frag to operate on
379  *	@f_off:		offset from start of f->bv_page
380  *	@f_len:		length from f_off to loop over
381  *	@p:		(temp var) current page
382  *	@p_off:		(temp var) offset from start of current page,
383  *	                           non-zero only on first page.
384  *	@p_len:		(temp var) length in current page,
385  *				   < PAGE_SIZE only on first and last page.
386  *	@copied:	(temp var) length so far, excluding current p_len.
387  *
388  *	A fragment can hold a compound page, in which case per-page
389  *	operations, notably kmap_atomic, must be called for each
390  *	regular page.
391  */
392 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
393 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
394 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
395 	     p_len = skb_frag_must_loop(p) ?				\
396 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
397 	     copied = 0;						\
398 	     copied < f_len;						\
399 	     copied += p_len, p++, p_off = 0,				\
400 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
401 
402 #define HAVE_HW_TIME_STAMP
403 
404 /**
405  * struct skb_shared_hwtstamps - hardware time stamps
406  * @hwtstamp:	hardware time stamp transformed into duration
407  *		since arbitrary point in time
408  *
409  * Software time stamps generated by ktime_get_real() are stored in
410  * skb->tstamp.
411  *
412  * hwtstamps can only be compared against other hwtstamps from
413  * the same device.
414  *
415  * This structure is attached to packets as part of the
416  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
417  */
418 struct skb_shared_hwtstamps {
419 	ktime_t	hwtstamp;
420 };
421 
422 /* Definitions for tx_flags in struct skb_shared_info */
423 enum {
424 	/* generate hardware time stamp */
425 	SKBTX_HW_TSTAMP = 1 << 0,
426 
427 	/* generate software time stamp when queueing packet to NIC */
428 	SKBTX_SW_TSTAMP = 1 << 1,
429 
430 	/* device driver is going to provide hardware time stamp */
431 	SKBTX_IN_PROGRESS = 1 << 2,
432 
433 	/* device driver supports TX zero-copy buffers */
434 	SKBTX_DEV_ZEROCOPY = 1 << 3,
435 
436 	/* generate wifi status information (where possible) */
437 	SKBTX_WIFI_STATUS = 1 << 4,
438 
439 	/* This indicates at least one fragment might be overwritten
440 	 * (as in vmsplice(), sendfile() ...)
441 	 * If we need to compute a TX checksum, we'll need to copy
442 	 * all frags to avoid possible bad checksum
443 	 */
444 	SKBTX_SHARED_FRAG = 1 << 5,
445 
446 	/* generate software time stamp when entering packet scheduling */
447 	SKBTX_SCHED_TSTAMP = 1 << 6,
448 };
449 
450 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
451 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
452 				 SKBTX_SCHED_TSTAMP)
453 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
454 
455 /*
456  * The callback notifies userspace to release buffers when skb DMA is done in
457  * lower device, the skb last reference should be 0 when calling this.
458  * The zerocopy_success argument is true if zero copy transmit occurred,
459  * false on data copy or out of memory error caused by data copy attempt.
460  * The ctx field is used to track device context.
461  * The desc field is used to track userspace buffer index.
462  */
463 struct ubuf_info {
464 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
465 	union {
466 		struct {
467 			unsigned long desc;
468 			void *ctx;
469 		};
470 		struct {
471 			u32 id;
472 			u16 len;
473 			u16 zerocopy:1;
474 			u32 bytelen;
475 		};
476 	};
477 	refcount_t refcnt;
478 
479 	struct mmpin {
480 		struct user_struct *user;
481 		unsigned int num_pg;
482 	} mmp;
483 };
484 
485 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
486 
487 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
488 void mm_unaccount_pinned_pages(struct mmpin *mmp);
489 
490 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
491 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
492 					struct ubuf_info *uarg);
493 
494 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
495 {
496 	refcount_inc(&uarg->refcnt);
497 }
498 
499 void sock_zerocopy_put(struct ubuf_info *uarg);
500 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
501 
502 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
503 
504 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
505 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
506 			     struct msghdr *msg, int len,
507 			     struct ubuf_info *uarg);
508 
509 /* This data is invariant across clones and lives at
510  * the end of the header data, ie. at skb->end.
511  */
512 struct skb_shared_info {
513 	__u8		__unused;
514 	__u8		meta_len;
515 	__u8		nr_frags;
516 	__u8		tx_flags;
517 	unsigned short	gso_size;
518 	/* Warning: this field is not always filled in (UFO)! */
519 	unsigned short	gso_segs;
520 	struct sk_buff	*frag_list;
521 	struct skb_shared_hwtstamps hwtstamps;
522 	unsigned int	gso_type;
523 	u32		tskey;
524 
525 	/*
526 	 * Warning : all fields before dataref are cleared in __alloc_skb()
527 	 */
528 	atomic_t	dataref;
529 
530 	/* Intermediate layers must ensure that destructor_arg
531 	 * remains valid until skb destructor */
532 	void *		destructor_arg;
533 
534 	/* must be last field, see pskb_expand_head() */
535 	skb_frag_t	frags[MAX_SKB_FRAGS];
536 };
537 
538 /* We divide dataref into two halves.  The higher 16 bits hold references
539  * to the payload part of skb->data.  The lower 16 bits hold references to
540  * the entire skb->data.  A clone of a headerless skb holds the length of
541  * the header in skb->hdr_len.
542  *
543  * All users must obey the rule that the skb->data reference count must be
544  * greater than or equal to the payload reference count.
545  *
546  * Holding a reference to the payload part means that the user does not
547  * care about modifications to the header part of skb->data.
548  */
549 #define SKB_DATAREF_SHIFT 16
550 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
551 
552 
553 enum {
554 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
555 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
556 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
557 };
558 
559 enum {
560 	SKB_GSO_TCPV4 = 1 << 0,
561 
562 	/* This indicates the skb is from an untrusted source. */
563 	SKB_GSO_DODGY = 1 << 1,
564 
565 	/* This indicates the tcp segment has CWR set. */
566 	SKB_GSO_TCP_ECN = 1 << 2,
567 
568 	SKB_GSO_TCP_FIXEDID = 1 << 3,
569 
570 	SKB_GSO_TCPV6 = 1 << 4,
571 
572 	SKB_GSO_FCOE = 1 << 5,
573 
574 	SKB_GSO_GRE = 1 << 6,
575 
576 	SKB_GSO_GRE_CSUM = 1 << 7,
577 
578 	SKB_GSO_IPXIP4 = 1 << 8,
579 
580 	SKB_GSO_IPXIP6 = 1 << 9,
581 
582 	SKB_GSO_UDP_TUNNEL = 1 << 10,
583 
584 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
585 
586 	SKB_GSO_PARTIAL = 1 << 12,
587 
588 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
589 
590 	SKB_GSO_SCTP = 1 << 14,
591 
592 	SKB_GSO_ESP = 1 << 15,
593 
594 	SKB_GSO_UDP = 1 << 16,
595 
596 	SKB_GSO_UDP_L4 = 1 << 17,
597 
598 	SKB_GSO_FRAGLIST = 1 << 18,
599 };
600 
601 #if BITS_PER_LONG > 32
602 #define NET_SKBUFF_DATA_USES_OFFSET 1
603 #endif
604 
605 #ifdef NET_SKBUFF_DATA_USES_OFFSET
606 typedef unsigned int sk_buff_data_t;
607 #else
608 typedef unsigned char *sk_buff_data_t;
609 #endif
610 
611 /**
612  *	struct sk_buff - socket buffer
613  *	@next: Next buffer in list
614  *	@prev: Previous buffer in list
615  *	@tstamp: Time we arrived/left
616  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
617  *		for retransmit timer
618  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
619  *	@list: queue head
620  *	@sk: Socket we are owned by
621  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
622  *		fragmentation management
623  *	@dev: Device we arrived on/are leaving by
624  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
625  *	@cb: Control buffer. Free for use by every layer. Put private vars here
626  *	@_skb_refdst: destination entry (with norefcount bit)
627  *	@sp: the security path, used for xfrm
628  *	@len: Length of actual data
629  *	@data_len: Data length
630  *	@mac_len: Length of link layer header
631  *	@hdr_len: writable header length of cloned skb
632  *	@csum: Checksum (must include start/offset pair)
633  *	@csum_start: Offset from skb->head where checksumming should start
634  *	@csum_offset: Offset from csum_start where checksum should be stored
635  *	@priority: Packet queueing priority
636  *	@ignore_df: allow local fragmentation
637  *	@cloned: Head may be cloned (check refcnt to be sure)
638  *	@ip_summed: Driver fed us an IP checksum
639  *	@nohdr: Payload reference only, must not modify header
640  *	@pkt_type: Packet class
641  *	@fclone: skbuff clone status
642  *	@ipvs_property: skbuff is owned by ipvs
643  *	@inner_protocol_type: whether the inner protocol is
644  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
645  *	@remcsum_offload: remote checksum offload is enabled
646  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
647  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
648  *	@tc_skip_classify: do not classify packet. set by IFB device
649  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
650  *	@redirected: packet was redirected by packet classifier
651  *	@from_ingress: packet was redirected from the ingress path
652  *	@peeked: this packet has been seen already, so stats have been
653  *		done for it, don't do them again
654  *	@nf_trace: netfilter packet trace flag
655  *	@protocol: Packet protocol from driver
656  *	@destructor: Destruct function
657  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
658  *	@_nfct: Associated connection, if any (with nfctinfo bits)
659  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
660  *	@skb_iif: ifindex of device we arrived on
661  *	@tc_index: Traffic control index
662  *	@hash: the packet hash
663  *	@queue_mapping: Queue mapping for multiqueue devices
664  *	@head_frag: skb was allocated from page fragments,
665  *		not allocated by kmalloc() or vmalloc().
666  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
667  *	@active_extensions: active extensions (skb_ext_id types)
668  *	@ndisc_nodetype: router type (from link layer)
669  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
670  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
671  *		ports.
672  *	@sw_hash: indicates hash was computed in software stack
673  *	@wifi_acked_valid: wifi_acked was set
674  *	@wifi_acked: whether frame was acked on wifi or not
675  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
676  *	@encapsulation: indicates the inner headers in the skbuff are valid
677  *	@encap_hdr_csum: software checksum is needed
678  *	@csum_valid: checksum is already valid
679  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
680  *	@csum_complete_sw: checksum was completed by software
681  *	@csum_level: indicates the number of consecutive checksums found in
682  *		the packet minus one that have been verified as
683  *		CHECKSUM_UNNECESSARY (max 3)
684  *	@dst_pending_confirm: need to confirm neighbour
685  *	@decrypted: Decrypted SKB
686  *	@napi_id: id of the NAPI struct this skb came from
687  *	@sender_cpu: (aka @napi_id) source CPU in XPS
688  *	@secmark: security marking
689  *	@mark: Generic packet mark
690  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
691  *		at the tail of an sk_buff
692  *	@vlan_present: VLAN tag is present
693  *	@vlan_proto: vlan encapsulation protocol
694  *	@vlan_tci: vlan tag control information
695  *	@inner_protocol: Protocol (encapsulation)
696  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
697  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
698  *	@inner_transport_header: Inner transport layer header (encapsulation)
699  *	@inner_network_header: Network layer header (encapsulation)
700  *	@inner_mac_header: Link layer header (encapsulation)
701  *	@transport_header: Transport layer header
702  *	@network_header: Network layer header
703  *	@mac_header: Link layer header
704  *	@kcov_handle: KCOV remote handle for remote coverage collection
705  *	@tail: Tail pointer
706  *	@end: End pointer
707  *	@head: Head of buffer
708  *	@data: Data head pointer
709  *	@truesize: Buffer size
710  *	@users: User count - see {datagram,tcp}.c
711  *	@extensions: allocated extensions, valid if active_extensions is nonzero
712  */
713 
714 struct sk_buff {
715 	union {
716 		struct {
717 			/* These two members must be first. */
718 			struct sk_buff		*next;
719 			struct sk_buff		*prev;
720 
721 			union {
722 				struct net_device	*dev;
723 				/* Some protocols might use this space to store information,
724 				 * while device pointer would be NULL.
725 				 * UDP receive path is one user.
726 				 */
727 				unsigned long		dev_scratch;
728 			};
729 		};
730 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
731 		struct list_head	list;
732 	};
733 
734 	union {
735 		struct sock		*sk;
736 		int			ip_defrag_offset;
737 	};
738 
739 	union {
740 		ktime_t		tstamp;
741 		u64		skb_mstamp_ns; /* earliest departure time */
742 	};
743 	/*
744 	 * This is the control buffer. It is free to use for every
745 	 * layer. Please put your private variables there. If you
746 	 * want to keep them across layers you have to do a skb_clone()
747 	 * first. This is owned by whoever has the skb queued ATM.
748 	 */
749 	char			cb[48] __aligned(8);
750 
751 	union {
752 		struct {
753 			unsigned long	_skb_refdst;
754 			void		(*destructor)(struct sk_buff *skb);
755 		};
756 		struct list_head	tcp_tsorted_anchor;
757 	};
758 
759 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
760 	unsigned long		 _nfct;
761 #endif
762 	unsigned int		len,
763 				data_len;
764 	__u16			mac_len,
765 				hdr_len;
766 
767 	/* Following fields are _not_ copied in __copy_skb_header()
768 	 * Note that queue_mapping is here mostly to fill a hole.
769 	 */
770 	__u16			queue_mapping;
771 
772 /* if you move cloned around you also must adapt those constants */
773 #ifdef __BIG_ENDIAN_BITFIELD
774 #define CLONED_MASK	(1 << 7)
775 #else
776 #define CLONED_MASK	1
777 #endif
778 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
779 
780 	/* private: */
781 	__u8			__cloned_offset[0];
782 	/* public: */
783 	__u8			cloned:1,
784 				nohdr:1,
785 				fclone:2,
786 				peeked:1,
787 				head_frag:1,
788 				pfmemalloc:1;
789 #ifdef CONFIG_SKB_EXTENSIONS
790 	__u8			active_extensions;
791 #endif
792 	/* fields enclosed in headers_start/headers_end are copied
793 	 * using a single memcpy() in __copy_skb_header()
794 	 */
795 	/* private: */
796 	__u32			headers_start[0];
797 	/* public: */
798 
799 /* if you move pkt_type around you also must adapt those constants */
800 #ifdef __BIG_ENDIAN_BITFIELD
801 #define PKT_TYPE_MAX	(7 << 5)
802 #else
803 #define PKT_TYPE_MAX	7
804 #endif
805 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
806 
807 	/* private: */
808 	__u8			__pkt_type_offset[0];
809 	/* public: */
810 	__u8			pkt_type:3;
811 	__u8			ignore_df:1;
812 	__u8			nf_trace:1;
813 	__u8			ip_summed:2;
814 	__u8			ooo_okay:1;
815 
816 	__u8			l4_hash:1;
817 	__u8			sw_hash:1;
818 	__u8			wifi_acked_valid:1;
819 	__u8			wifi_acked:1;
820 	__u8			no_fcs:1;
821 	/* Indicates the inner headers are valid in the skbuff. */
822 	__u8			encapsulation:1;
823 	__u8			encap_hdr_csum:1;
824 	__u8			csum_valid:1;
825 
826 #ifdef __BIG_ENDIAN_BITFIELD
827 #define PKT_VLAN_PRESENT_BIT	7
828 #else
829 #define PKT_VLAN_PRESENT_BIT	0
830 #endif
831 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
832 	/* private: */
833 	__u8			__pkt_vlan_present_offset[0];
834 	/* public: */
835 	__u8			vlan_present:1;
836 	__u8			csum_complete_sw:1;
837 	__u8			csum_level:2;
838 	__u8			csum_not_inet:1;
839 	__u8			dst_pending_confirm:1;
840 #ifdef CONFIG_IPV6_NDISC_NODETYPE
841 	__u8			ndisc_nodetype:2;
842 #endif
843 
844 	__u8			ipvs_property:1;
845 	__u8			inner_protocol_type:1;
846 	__u8			remcsum_offload:1;
847 #ifdef CONFIG_NET_SWITCHDEV
848 	__u8			offload_fwd_mark:1;
849 	__u8			offload_l3_fwd_mark:1;
850 #endif
851 #ifdef CONFIG_NET_CLS_ACT
852 	__u8			tc_skip_classify:1;
853 	__u8			tc_at_ingress:1;
854 #endif
855 #ifdef CONFIG_NET_REDIRECT
856 	__u8			redirected:1;
857 	__u8			from_ingress:1;
858 #endif
859 #ifdef CONFIG_TLS_DEVICE
860 	__u8			decrypted:1;
861 #endif
862 
863 #ifdef CONFIG_NET_SCHED
864 	__u16			tc_index;	/* traffic control index */
865 #endif
866 
867 	union {
868 		__wsum		csum;
869 		struct {
870 			__u16	csum_start;
871 			__u16	csum_offset;
872 		};
873 	};
874 	__u32			priority;
875 	int			skb_iif;
876 	__u32			hash;
877 	__be16			vlan_proto;
878 	__u16			vlan_tci;
879 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
880 	union {
881 		unsigned int	napi_id;
882 		unsigned int	sender_cpu;
883 	};
884 #endif
885 #ifdef CONFIG_NETWORK_SECMARK
886 	__u32		secmark;
887 #endif
888 
889 	union {
890 		__u32		mark;
891 		__u32		reserved_tailroom;
892 	};
893 
894 	union {
895 		__be16		inner_protocol;
896 		__u8		inner_ipproto;
897 	};
898 
899 	__u16			inner_transport_header;
900 	__u16			inner_network_header;
901 	__u16			inner_mac_header;
902 
903 	__be16			protocol;
904 	__u16			transport_header;
905 	__u16			network_header;
906 	__u16			mac_header;
907 
908 #ifdef CONFIG_KCOV
909 	u64			kcov_handle;
910 #endif
911 
912 	/* private: */
913 	__u32			headers_end[0];
914 	/* public: */
915 
916 	/* These elements must be at the end, see alloc_skb() for details.  */
917 	sk_buff_data_t		tail;
918 	sk_buff_data_t		end;
919 	unsigned char		*head,
920 				*data;
921 	unsigned int		truesize;
922 	refcount_t		users;
923 
924 #ifdef CONFIG_SKB_EXTENSIONS
925 	/* only useable after checking ->active_extensions != 0 */
926 	struct skb_ext		*extensions;
927 #endif
928 };
929 
930 #ifdef __KERNEL__
931 /*
932  *	Handling routines are only of interest to the kernel
933  */
934 
935 #define SKB_ALLOC_FCLONE	0x01
936 #define SKB_ALLOC_RX		0x02
937 #define SKB_ALLOC_NAPI		0x04
938 
939 /**
940  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
941  * @skb: buffer
942  */
943 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
944 {
945 	return unlikely(skb->pfmemalloc);
946 }
947 
948 /*
949  * skb might have a dst pointer attached, refcounted or not.
950  * _skb_refdst low order bit is set if refcount was _not_ taken
951  */
952 #define SKB_DST_NOREF	1UL
953 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
954 
955 /**
956  * skb_dst - returns skb dst_entry
957  * @skb: buffer
958  *
959  * Returns skb dst_entry, regardless of reference taken or not.
960  */
961 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
962 {
963 	/* If refdst was not refcounted, check we still are in a
964 	 * rcu_read_lock section
965 	 */
966 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
967 		!rcu_read_lock_held() &&
968 		!rcu_read_lock_bh_held());
969 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
970 }
971 
972 /**
973  * skb_dst_set - sets skb dst
974  * @skb: buffer
975  * @dst: dst entry
976  *
977  * Sets skb dst, assuming a reference was taken on dst and should
978  * be released by skb_dst_drop()
979  */
980 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
981 {
982 	skb->_skb_refdst = (unsigned long)dst;
983 }
984 
985 /**
986  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
987  * @skb: buffer
988  * @dst: dst entry
989  *
990  * Sets skb dst, assuming a reference was not taken on dst.
991  * If dst entry is cached, we do not take reference and dst_release
992  * will be avoided by refdst_drop. If dst entry is not cached, we take
993  * reference, so that last dst_release can destroy the dst immediately.
994  */
995 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
996 {
997 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
998 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
999 }
1000 
1001 /**
1002  * skb_dst_is_noref - Test if skb dst isn't refcounted
1003  * @skb: buffer
1004  */
1005 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1006 {
1007 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1008 }
1009 
1010 /**
1011  * skb_rtable - Returns the skb &rtable
1012  * @skb: buffer
1013  */
1014 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1015 {
1016 	return (struct rtable *)skb_dst(skb);
1017 }
1018 
1019 /* For mangling skb->pkt_type from user space side from applications
1020  * such as nft, tc, etc, we only allow a conservative subset of
1021  * possible pkt_types to be set.
1022 */
1023 static inline bool skb_pkt_type_ok(u32 ptype)
1024 {
1025 	return ptype <= PACKET_OTHERHOST;
1026 }
1027 
1028 /**
1029  * skb_napi_id - Returns the skb's NAPI id
1030  * @skb: buffer
1031  */
1032 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1033 {
1034 #ifdef CONFIG_NET_RX_BUSY_POLL
1035 	return skb->napi_id;
1036 #else
1037 	return 0;
1038 #endif
1039 }
1040 
1041 /**
1042  * skb_unref - decrement the skb's reference count
1043  * @skb: buffer
1044  *
1045  * Returns true if we can free the skb.
1046  */
1047 static inline bool skb_unref(struct sk_buff *skb)
1048 {
1049 	if (unlikely(!skb))
1050 		return false;
1051 	if (likely(refcount_read(&skb->users) == 1))
1052 		smp_rmb();
1053 	else if (likely(!refcount_dec_and_test(&skb->users)))
1054 		return false;
1055 
1056 	return true;
1057 }
1058 
1059 void skb_release_head_state(struct sk_buff *skb);
1060 void kfree_skb(struct sk_buff *skb);
1061 void kfree_skb_list(struct sk_buff *segs);
1062 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1063 void skb_tx_error(struct sk_buff *skb);
1064 
1065 #ifdef CONFIG_TRACEPOINTS
1066 void consume_skb(struct sk_buff *skb);
1067 #else
1068 static inline void consume_skb(struct sk_buff *skb)
1069 {
1070 	return kfree_skb(skb);
1071 }
1072 #endif
1073 
1074 void __consume_stateless_skb(struct sk_buff *skb);
1075 void  __kfree_skb(struct sk_buff *skb);
1076 extern struct kmem_cache *skbuff_head_cache;
1077 
1078 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1079 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1080 		      bool *fragstolen, int *delta_truesize);
1081 
1082 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1083 			    int node);
1084 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1085 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1086 struct sk_buff *build_skb_around(struct sk_buff *skb,
1087 				 void *data, unsigned int frag_size);
1088 
1089 /**
1090  * alloc_skb - allocate a network buffer
1091  * @size: size to allocate
1092  * @priority: allocation mask
1093  *
1094  * This function is a convenient wrapper around __alloc_skb().
1095  */
1096 static inline struct sk_buff *alloc_skb(unsigned int size,
1097 					gfp_t priority)
1098 {
1099 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1100 }
1101 
1102 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1103 				     unsigned long data_len,
1104 				     int max_page_order,
1105 				     int *errcode,
1106 				     gfp_t gfp_mask);
1107 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1108 
1109 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1110 struct sk_buff_fclones {
1111 	struct sk_buff	skb1;
1112 
1113 	struct sk_buff	skb2;
1114 
1115 	refcount_t	fclone_ref;
1116 };
1117 
1118 /**
1119  *	skb_fclone_busy - check if fclone is busy
1120  *	@sk: socket
1121  *	@skb: buffer
1122  *
1123  * Returns true if skb is a fast clone, and its clone is not freed.
1124  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1125  * so we also check that this didnt happen.
1126  */
1127 static inline bool skb_fclone_busy(const struct sock *sk,
1128 				   const struct sk_buff *skb)
1129 {
1130 	const struct sk_buff_fclones *fclones;
1131 
1132 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1133 
1134 	return skb->fclone == SKB_FCLONE_ORIG &&
1135 	       refcount_read(&fclones->fclone_ref) > 1 &&
1136 	       fclones->skb2.sk == sk;
1137 }
1138 
1139 /**
1140  * alloc_skb_fclone - allocate a network buffer from fclone cache
1141  * @size: size to allocate
1142  * @priority: allocation mask
1143  *
1144  * This function is a convenient wrapper around __alloc_skb().
1145  */
1146 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1147 					       gfp_t priority)
1148 {
1149 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1150 }
1151 
1152 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1153 void skb_headers_offset_update(struct sk_buff *skb, int off);
1154 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1155 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1156 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1157 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1158 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1159 				   gfp_t gfp_mask, bool fclone);
1160 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1161 					  gfp_t gfp_mask)
1162 {
1163 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1164 }
1165 
1166 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1167 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1168 				     unsigned int headroom);
1169 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1170 				int newtailroom, gfp_t priority);
1171 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1172 				     int offset, int len);
1173 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1174 			      int offset, int len);
1175 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1176 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1177 
1178 /**
1179  *	skb_pad			-	zero pad the tail of an skb
1180  *	@skb: buffer to pad
1181  *	@pad: space to pad
1182  *
1183  *	Ensure that a buffer is followed by a padding area that is zero
1184  *	filled. Used by network drivers which may DMA or transfer data
1185  *	beyond the buffer end onto the wire.
1186  *
1187  *	May return error in out of memory cases. The skb is freed on error.
1188  */
1189 static inline int skb_pad(struct sk_buff *skb, int pad)
1190 {
1191 	return __skb_pad(skb, pad, true);
1192 }
1193 #define dev_kfree_skb(a)	consume_skb(a)
1194 
1195 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1196 			 int offset, size_t size);
1197 
1198 struct skb_seq_state {
1199 	__u32		lower_offset;
1200 	__u32		upper_offset;
1201 	__u32		frag_idx;
1202 	__u32		stepped_offset;
1203 	struct sk_buff	*root_skb;
1204 	struct sk_buff	*cur_skb;
1205 	__u8		*frag_data;
1206 	__u32		frag_off;
1207 };
1208 
1209 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1210 			  unsigned int to, struct skb_seq_state *st);
1211 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1212 			  struct skb_seq_state *st);
1213 void skb_abort_seq_read(struct skb_seq_state *st);
1214 
1215 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1216 			   unsigned int to, struct ts_config *config);
1217 
1218 /*
1219  * Packet hash types specify the type of hash in skb_set_hash.
1220  *
1221  * Hash types refer to the protocol layer addresses which are used to
1222  * construct a packet's hash. The hashes are used to differentiate or identify
1223  * flows of the protocol layer for the hash type. Hash types are either
1224  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1225  *
1226  * Properties of hashes:
1227  *
1228  * 1) Two packets in different flows have different hash values
1229  * 2) Two packets in the same flow should have the same hash value
1230  *
1231  * A hash at a higher layer is considered to be more specific. A driver should
1232  * set the most specific hash possible.
1233  *
1234  * A driver cannot indicate a more specific hash than the layer at which a hash
1235  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1236  *
1237  * A driver may indicate a hash level which is less specific than the
1238  * actual layer the hash was computed on. For instance, a hash computed
1239  * at L4 may be considered an L3 hash. This should only be done if the
1240  * driver can't unambiguously determine that the HW computed the hash at
1241  * the higher layer. Note that the "should" in the second property above
1242  * permits this.
1243  */
1244 enum pkt_hash_types {
1245 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1246 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1247 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1248 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1249 };
1250 
1251 static inline void skb_clear_hash(struct sk_buff *skb)
1252 {
1253 	skb->hash = 0;
1254 	skb->sw_hash = 0;
1255 	skb->l4_hash = 0;
1256 }
1257 
1258 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1259 {
1260 	if (!skb->l4_hash)
1261 		skb_clear_hash(skb);
1262 }
1263 
1264 static inline void
1265 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1266 {
1267 	skb->l4_hash = is_l4;
1268 	skb->sw_hash = is_sw;
1269 	skb->hash = hash;
1270 }
1271 
1272 static inline void
1273 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1274 {
1275 	/* Used by drivers to set hash from HW */
1276 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1277 }
1278 
1279 static inline void
1280 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1281 {
1282 	__skb_set_hash(skb, hash, true, is_l4);
1283 }
1284 
1285 void __skb_get_hash(struct sk_buff *skb);
1286 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1287 u32 skb_get_poff(const struct sk_buff *skb);
1288 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1289 		   const struct flow_keys_basic *keys, int hlen);
1290 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1291 			    void *data, int hlen_proto);
1292 
1293 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1294 					int thoff, u8 ip_proto)
1295 {
1296 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1297 }
1298 
1299 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1300 			     const struct flow_dissector_key *key,
1301 			     unsigned int key_count);
1302 
1303 struct bpf_flow_dissector;
1304 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1305 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1306 
1307 bool __skb_flow_dissect(const struct net *net,
1308 			const struct sk_buff *skb,
1309 			struct flow_dissector *flow_dissector,
1310 			void *target_container,
1311 			void *data, __be16 proto, int nhoff, int hlen,
1312 			unsigned int flags);
1313 
1314 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1315 				    struct flow_dissector *flow_dissector,
1316 				    void *target_container, unsigned int flags)
1317 {
1318 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1319 				  target_container, NULL, 0, 0, 0, flags);
1320 }
1321 
1322 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1323 					      struct flow_keys *flow,
1324 					      unsigned int flags)
1325 {
1326 	memset(flow, 0, sizeof(*flow));
1327 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1328 				  flow, NULL, 0, 0, 0, flags);
1329 }
1330 
1331 static inline bool
1332 skb_flow_dissect_flow_keys_basic(const struct net *net,
1333 				 const struct sk_buff *skb,
1334 				 struct flow_keys_basic *flow, void *data,
1335 				 __be16 proto, int nhoff, int hlen,
1336 				 unsigned int flags)
1337 {
1338 	memset(flow, 0, sizeof(*flow));
1339 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1340 				  data, proto, nhoff, hlen, flags);
1341 }
1342 
1343 void skb_flow_dissect_meta(const struct sk_buff *skb,
1344 			   struct flow_dissector *flow_dissector,
1345 			   void *target_container);
1346 
1347 /* Gets a skb connection tracking info, ctinfo map should be a
1348  * map of mapsize to translate enum ip_conntrack_info states
1349  * to user states.
1350  */
1351 void
1352 skb_flow_dissect_ct(const struct sk_buff *skb,
1353 		    struct flow_dissector *flow_dissector,
1354 		    void *target_container,
1355 		    u16 *ctinfo_map,
1356 		    size_t mapsize);
1357 void
1358 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1359 			     struct flow_dissector *flow_dissector,
1360 			     void *target_container);
1361 
1362 void skb_flow_dissect_hash(const struct sk_buff *skb,
1363 			   struct flow_dissector *flow_dissector,
1364 			   void *target_container);
1365 
1366 static inline __u32 skb_get_hash(struct sk_buff *skb)
1367 {
1368 	if (!skb->l4_hash && !skb->sw_hash)
1369 		__skb_get_hash(skb);
1370 
1371 	return skb->hash;
1372 }
1373 
1374 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1375 {
1376 	if (!skb->l4_hash && !skb->sw_hash) {
1377 		struct flow_keys keys;
1378 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1379 
1380 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1381 	}
1382 
1383 	return skb->hash;
1384 }
1385 
1386 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1387 			   const siphash_key_t *perturb);
1388 
1389 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1390 {
1391 	return skb->hash;
1392 }
1393 
1394 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1395 {
1396 	to->hash = from->hash;
1397 	to->sw_hash = from->sw_hash;
1398 	to->l4_hash = from->l4_hash;
1399 };
1400 
1401 static inline void skb_copy_decrypted(struct sk_buff *to,
1402 				      const struct sk_buff *from)
1403 {
1404 #ifdef CONFIG_TLS_DEVICE
1405 	to->decrypted = from->decrypted;
1406 #endif
1407 }
1408 
1409 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1410 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1411 {
1412 	return skb->head + skb->end;
1413 }
1414 
1415 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1416 {
1417 	return skb->end;
1418 }
1419 #else
1420 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1421 {
1422 	return skb->end;
1423 }
1424 
1425 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1426 {
1427 	return skb->end - skb->head;
1428 }
1429 #endif
1430 
1431 /* Internal */
1432 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1433 
1434 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1435 {
1436 	return &skb_shinfo(skb)->hwtstamps;
1437 }
1438 
1439 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1440 {
1441 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1442 
1443 	return is_zcopy ? skb_uarg(skb) : NULL;
1444 }
1445 
1446 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1447 				 bool *have_ref)
1448 {
1449 	if (skb && uarg && !skb_zcopy(skb)) {
1450 		if (unlikely(have_ref && *have_ref))
1451 			*have_ref = false;
1452 		else
1453 			sock_zerocopy_get(uarg);
1454 		skb_shinfo(skb)->destructor_arg = uarg;
1455 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1456 	}
1457 }
1458 
1459 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1460 {
1461 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1462 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1463 }
1464 
1465 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1466 {
1467 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1468 }
1469 
1470 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1471 {
1472 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1473 }
1474 
1475 /* Release a reference on a zerocopy structure */
1476 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1477 {
1478 	struct ubuf_info *uarg = skb_zcopy(skb);
1479 
1480 	if (uarg) {
1481 		if (skb_zcopy_is_nouarg(skb)) {
1482 			/* no notification callback */
1483 		} else if (uarg->callback == sock_zerocopy_callback) {
1484 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1485 			sock_zerocopy_put(uarg);
1486 		} else {
1487 			uarg->callback(uarg, zerocopy);
1488 		}
1489 
1490 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1491 	}
1492 }
1493 
1494 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1495 static inline void skb_zcopy_abort(struct sk_buff *skb)
1496 {
1497 	struct ubuf_info *uarg = skb_zcopy(skb);
1498 
1499 	if (uarg) {
1500 		sock_zerocopy_put_abort(uarg, false);
1501 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1502 	}
1503 }
1504 
1505 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1506 {
1507 	skb->next = NULL;
1508 }
1509 
1510 /* Iterate through singly-linked GSO fragments of an skb. */
1511 #define skb_list_walk_safe(first, skb, next_skb)                               \
1512 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1513 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1514 
1515 static inline void skb_list_del_init(struct sk_buff *skb)
1516 {
1517 	__list_del_entry(&skb->list);
1518 	skb_mark_not_on_list(skb);
1519 }
1520 
1521 /**
1522  *	skb_queue_empty - check if a queue is empty
1523  *	@list: queue head
1524  *
1525  *	Returns true if the queue is empty, false otherwise.
1526  */
1527 static inline int skb_queue_empty(const struct sk_buff_head *list)
1528 {
1529 	return list->next == (const struct sk_buff *) list;
1530 }
1531 
1532 /**
1533  *	skb_queue_empty_lockless - check if a queue is empty
1534  *	@list: queue head
1535  *
1536  *	Returns true if the queue is empty, false otherwise.
1537  *	This variant can be used in lockless contexts.
1538  */
1539 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1540 {
1541 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1542 }
1543 
1544 
1545 /**
1546  *	skb_queue_is_last - check if skb is the last entry in the queue
1547  *	@list: queue head
1548  *	@skb: buffer
1549  *
1550  *	Returns true if @skb is the last buffer on the list.
1551  */
1552 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1553 				     const struct sk_buff *skb)
1554 {
1555 	return skb->next == (const struct sk_buff *) list;
1556 }
1557 
1558 /**
1559  *	skb_queue_is_first - check if skb is the first entry in the queue
1560  *	@list: queue head
1561  *	@skb: buffer
1562  *
1563  *	Returns true if @skb is the first buffer on the list.
1564  */
1565 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1566 				      const struct sk_buff *skb)
1567 {
1568 	return skb->prev == (const struct sk_buff *) list;
1569 }
1570 
1571 /**
1572  *	skb_queue_next - return the next packet in the queue
1573  *	@list: queue head
1574  *	@skb: current buffer
1575  *
1576  *	Return the next packet in @list after @skb.  It is only valid to
1577  *	call this if skb_queue_is_last() evaluates to false.
1578  */
1579 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1580 					     const struct sk_buff *skb)
1581 {
1582 	/* This BUG_ON may seem severe, but if we just return then we
1583 	 * are going to dereference garbage.
1584 	 */
1585 	BUG_ON(skb_queue_is_last(list, skb));
1586 	return skb->next;
1587 }
1588 
1589 /**
1590  *	skb_queue_prev - return the prev packet in the queue
1591  *	@list: queue head
1592  *	@skb: current buffer
1593  *
1594  *	Return the prev packet in @list before @skb.  It is only valid to
1595  *	call this if skb_queue_is_first() evaluates to false.
1596  */
1597 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1598 					     const struct sk_buff *skb)
1599 {
1600 	/* This BUG_ON may seem severe, but if we just return then we
1601 	 * are going to dereference garbage.
1602 	 */
1603 	BUG_ON(skb_queue_is_first(list, skb));
1604 	return skb->prev;
1605 }
1606 
1607 /**
1608  *	skb_get - reference buffer
1609  *	@skb: buffer to reference
1610  *
1611  *	Makes another reference to a socket buffer and returns a pointer
1612  *	to the buffer.
1613  */
1614 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1615 {
1616 	refcount_inc(&skb->users);
1617 	return skb;
1618 }
1619 
1620 /*
1621  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1622  */
1623 
1624 /**
1625  *	skb_cloned - is the buffer a clone
1626  *	@skb: buffer to check
1627  *
1628  *	Returns true if the buffer was generated with skb_clone() and is
1629  *	one of multiple shared copies of the buffer. Cloned buffers are
1630  *	shared data so must not be written to under normal circumstances.
1631  */
1632 static inline int skb_cloned(const struct sk_buff *skb)
1633 {
1634 	return skb->cloned &&
1635 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1636 }
1637 
1638 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1639 {
1640 	might_sleep_if(gfpflags_allow_blocking(pri));
1641 
1642 	if (skb_cloned(skb))
1643 		return pskb_expand_head(skb, 0, 0, pri);
1644 
1645 	return 0;
1646 }
1647 
1648 /**
1649  *	skb_header_cloned - is the header a clone
1650  *	@skb: buffer to check
1651  *
1652  *	Returns true if modifying the header part of the buffer requires
1653  *	the data to be copied.
1654  */
1655 static inline int skb_header_cloned(const struct sk_buff *skb)
1656 {
1657 	int dataref;
1658 
1659 	if (!skb->cloned)
1660 		return 0;
1661 
1662 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1663 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1664 	return dataref != 1;
1665 }
1666 
1667 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1668 {
1669 	might_sleep_if(gfpflags_allow_blocking(pri));
1670 
1671 	if (skb_header_cloned(skb))
1672 		return pskb_expand_head(skb, 0, 0, pri);
1673 
1674 	return 0;
1675 }
1676 
1677 /**
1678  *	__skb_header_release - release reference to header
1679  *	@skb: buffer to operate on
1680  */
1681 static inline void __skb_header_release(struct sk_buff *skb)
1682 {
1683 	skb->nohdr = 1;
1684 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1685 }
1686 
1687 
1688 /**
1689  *	skb_shared - is the buffer shared
1690  *	@skb: buffer to check
1691  *
1692  *	Returns true if more than one person has a reference to this
1693  *	buffer.
1694  */
1695 static inline int skb_shared(const struct sk_buff *skb)
1696 {
1697 	return refcount_read(&skb->users) != 1;
1698 }
1699 
1700 /**
1701  *	skb_share_check - check if buffer is shared and if so clone it
1702  *	@skb: buffer to check
1703  *	@pri: priority for memory allocation
1704  *
1705  *	If the buffer is shared the buffer is cloned and the old copy
1706  *	drops a reference. A new clone with a single reference is returned.
1707  *	If the buffer is not shared the original buffer is returned. When
1708  *	being called from interrupt status or with spinlocks held pri must
1709  *	be GFP_ATOMIC.
1710  *
1711  *	NULL is returned on a memory allocation failure.
1712  */
1713 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1714 {
1715 	might_sleep_if(gfpflags_allow_blocking(pri));
1716 	if (skb_shared(skb)) {
1717 		struct sk_buff *nskb = skb_clone(skb, pri);
1718 
1719 		if (likely(nskb))
1720 			consume_skb(skb);
1721 		else
1722 			kfree_skb(skb);
1723 		skb = nskb;
1724 	}
1725 	return skb;
1726 }
1727 
1728 /*
1729  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1730  *	packets to handle cases where we have a local reader and forward
1731  *	and a couple of other messy ones. The normal one is tcpdumping
1732  *	a packet thats being forwarded.
1733  */
1734 
1735 /**
1736  *	skb_unshare - make a copy of a shared buffer
1737  *	@skb: buffer to check
1738  *	@pri: priority for memory allocation
1739  *
1740  *	If the socket buffer is a clone then this function creates a new
1741  *	copy of the data, drops a reference count on the old copy and returns
1742  *	the new copy with the reference count at 1. If the buffer is not a clone
1743  *	the original buffer is returned. When called with a spinlock held or
1744  *	from interrupt state @pri must be %GFP_ATOMIC
1745  *
1746  *	%NULL is returned on a memory allocation failure.
1747  */
1748 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1749 					  gfp_t pri)
1750 {
1751 	might_sleep_if(gfpflags_allow_blocking(pri));
1752 	if (skb_cloned(skb)) {
1753 		struct sk_buff *nskb = skb_copy(skb, pri);
1754 
1755 		/* Free our shared copy */
1756 		if (likely(nskb))
1757 			consume_skb(skb);
1758 		else
1759 			kfree_skb(skb);
1760 		skb = nskb;
1761 	}
1762 	return skb;
1763 }
1764 
1765 /**
1766  *	skb_peek - peek at the head of an &sk_buff_head
1767  *	@list_: list to peek at
1768  *
1769  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1770  *	be careful with this one. A peek leaves the buffer on the
1771  *	list and someone else may run off with it. You must hold
1772  *	the appropriate locks or have a private queue to do this.
1773  *
1774  *	Returns %NULL for an empty list or a pointer to the head element.
1775  *	The reference count is not incremented and the reference is therefore
1776  *	volatile. Use with caution.
1777  */
1778 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1779 {
1780 	struct sk_buff *skb = list_->next;
1781 
1782 	if (skb == (struct sk_buff *)list_)
1783 		skb = NULL;
1784 	return skb;
1785 }
1786 
1787 /**
1788  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1789  *	@list_: list to peek at
1790  *
1791  *	Like skb_peek(), but the caller knows that the list is not empty.
1792  */
1793 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1794 {
1795 	return list_->next;
1796 }
1797 
1798 /**
1799  *	skb_peek_next - peek skb following the given one from a queue
1800  *	@skb: skb to start from
1801  *	@list_: list to peek at
1802  *
1803  *	Returns %NULL when the end of the list is met or a pointer to the
1804  *	next element. The reference count is not incremented and the
1805  *	reference is therefore volatile. Use with caution.
1806  */
1807 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1808 		const struct sk_buff_head *list_)
1809 {
1810 	struct sk_buff *next = skb->next;
1811 
1812 	if (next == (struct sk_buff *)list_)
1813 		next = NULL;
1814 	return next;
1815 }
1816 
1817 /**
1818  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1819  *	@list_: list to peek at
1820  *
1821  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1822  *	be careful with this one. A peek leaves the buffer on the
1823  *	list and someone else may run off with it. You must hold
1824  *	the appropriate locks or have a private queue to do this.
1825  *
1826  *	Returns %NULL for an empty list or a pointer to the tail element.
1827  *	The reference count is not incremented and the reference is therefore
1828  *	volatile. Use with caution.
1829  */
1830 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1831 {
1832 	struct sk_buff *skb = READ_ONCE(list_->prev);
1833 
1834 	if (skb == (struct sk_buff *)list_)
1835 		skb = NULL;
1836 	return skb;
1837 
1838 }
1839 
1840 /**
1841  *	skb_queue_len	- get queue length
1842  *	@list_: list to measure
1843  *
1844  *	Return the length of an &sk_buff queue.
1845  */
1846 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1847 {
1848 	return list_->qlen;
1849 }
1850 
1851 /**
1852  *	skb_queue_len_lockless	- get queue length
1853  *	@list_: list to measure
1854  *
1855  *	Return the length of an &sk_buff queue.
1856  *	This variant can be used in lockless contexts.
1857  */
1858 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1859 {
1860 	return READ_ONCE(list_->qlen);
1861 }
1862 
1863 /**
1864  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1865  *	@list: queue to initialize
1866  *
1867  *	This initializes only the list and queue length aspects of
1868  *	an sk_buff_head object.  This allows to initialize the list
1869  *	aspects of an sk_buff_head without reinitializing things like
1870  *	the spinlock.  It can also be used for on-stack sk_buff_head
1871  *	objects where the spinlock is known to not be used.
1872  */
1873 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1874 {
1875 	list->prev = list->next = (struct sk_buff *)list;
1876 	list->qlen = 0;
1877 }
1878 
1879 /*
1880  * This function creates a split out lock class for each invocation;
1881  * this is needed for now since a whole lot of users of the skb-queue
1882  * infrastructure in drivers have different locking usage (in hardirq)
1883  * than the networking core (in softirq only). In the long run either the
1884  * network layer or drivers should need annotation to consolidate the
1885  * main types of usage into 3 classes.
1886  */
1887 static inline void skb_queue_head_init(struct sk_buff_head *list)
1888 {
1889 	spin_lock_init(&list->lock);
1890 	__skb_queue_head_init(list);
1891 }
1892 
1893 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1894 		struct lock_class_key *class)
1895 {
1896 	skb_queue_head_init(list);
1897 	lockdep_set_class(&list->lock, class);
1898 }
1899 
1900 /*
1901  *	Insert an sk_buff on a list.
1902  *
1903  *	The "__skb_xxxx()" functions are the non-atomic ones that
1904  *	can only be called with interrupts disabled.
1905  */
1906 static inline void __skb_insert(struct sk_buff *newsk,
1907 				struct sk_buff *prev, struct sk_buff *next,
1908 				struct sk_buff_head *list)
1909 {
1910 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1911 	 * for the opposite READ_ONCE()
1912 	 */
1913 	WRITE_ONCE(newsk->next, next);
1914 	WRITE_ONCE(newsk->prev, prev);
1915 	WRITE_ONCE(next->prev, newsk);
1916 	WRITE_ONCE(prev->next, newsk);
1917 	list->qlen++;
1918 }
1919 
1920 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1921 				      struct sk_buff *prev,
1922 				      struct sk_buff *next)
1923 {
1924 	struct sk_buff *first = list->next;
1925 	struct sk_buff *last = list->prev;
1926 
1927 	WRITE_ONCE(first->prev, prev);
1928 	WRITE_ONCE(prev->next, first);
1929 
1930 	WRITE_ONCE(last->next, next);
1931 	WRITE_ONCE(next->prev, last);
1932 }
1933 
1934 /**
1935  *	skb_queue_splice - join two skb lists, this is designed for stacks
1936  *	@list: the new list to add
1937  *	@head: the place to add it in the first list
1938  */
1939 static inline void skb_queue_splice(const struct sk_buff_head *list,
1940 				    struct sk_buff_head *head)
1941 {
1942 	if (!skb_queue_empty(list)) {
1943 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1944 		head->qlen += list->qlen;
1945 	}
1946 }
1947 
1948 /**
1949  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1950  *	@list: the new list to add
1951  *	@head: the place to add it in the first list
1952  *
1953  *	The list at @list is reinitialised
1954  */
1955 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1956 					 struct sk_buff_head *head)
1957 {
1958 	if (!skb_queue_empty(list)) {
1959 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1960 		head->qlen += list->qlen;
1961 		__skb_queue_head_init(list);
1962 	}
1963 }
1964 
1965 /**
1966  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1967  *	@list: the new list to add
1968  *	@head: the place to add it in the first list
1969  */
1970 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1971 					 struct sk_buff_head *head)
1972 {
1973 	if (!skb_queue_empty(list)) {
1974 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1975 		head->qlen += list->qlen;
1976 	}
1977 }
1978 
1979 /**
1980  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1981  *	@list: the new list to add
1982  *	@head: the place to add it in the first list
1983  *
1984  *	Each of the lists is a queue.
1985  *	The list at @list is reinitialised
1986  */
1987 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1988 					      struct sk_buff_head *head)
1989 {
1990 	if (!skb_queue_empty(list)) {
1991 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1992 		head->qlen += list->qlen;
1993 		__skb_queue_head_init(list);
1994 	}
1995 }
1996 
1997 /**
1998  *	__skb_queue_after - queue a buffer at the list head
1999  *	@list: list to use
2000  *	@prev: place after this buffer
2001  *	@newsk: buffer to queue
2002  *
2003  *	Queue a buffer int the middle of a list. This function takes no locks
2004  *	and you must therefore hold required locks before calling it.
2005  *
2006  *	A buffer cannot be placed on two lists at the same time.
2007  */
2008 static inline void __skb_queue_after(struct sk_buff_head *list,
2009 				     struct sk_buff *prev,
2010 				     struct sk_buff *newsk)
2011 {
2012 	__skb_insert(newsk, prev, prev->next, list);
2013 }
2014 
2015 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2016 		struct sk_buff_head *list);
2017 
2018 static inline void __skb_queue_before(struct sk_buff_head *list,
2019 				      struct sk_buff *next,
2020 				      struct sk_buff *newsk)
2021 {
2022 	__skb_insert(newsk, next->prev, next, list);
2023 }
2024 
2025 /**
2026  *	__skb_queue_head - queue a buffer at the list head
2027  *	@list: list to use
2028  *	@newsk: buffer to queue
2029  *
2030  *	Queue a buffer at the start of a list. This function takes no locks
2031  *	and you must therefore hold required locks before calling it.
2032  *
2033  *	A buffer cannot be placed on two lists at the same time.
2034  */
2035 static inline void __skb_queue_head(struct sk_buff_head *list,
2036 				    struct sk_buff *newsk)
2037 {
2038 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2039 }
2040 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2041 
2042 /**
2043  *	__skb_queue_tail - queue a buffer at the list tail
2044  *	@list: list to use
2045  *	@newsk: buffer to queue
2046  *
2047  *	Queue a buffer at the end of a list. This function takes no locks
2048  *	and you must therefore hold required locks before calling it.
2049  *
2050  *	A buffer cannot be placed on two lists at the same time.
2051  */
2052 static inline void __skb_queue_tail(struct sk_buff_head *list,
2053 				   struct sk_buff *newsk)
2054 {
2055 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2056 }
2057 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2058 
2059 /*
2060  * remove sk_buff from list. _Must_ be called atomically, and with
2061  * the list known..
2062  */
2063 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2064 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2065 {
2066 	struct sk_buff *next, *prev;
2067 
2068 	WRITE_ONCE(list->qlen, list->qlen - 1);
2069 	next	   = skb->next;
2070 	prev	   = skb->prev;
2071 	skb->next  = skb->prev = NULL;
2072 	WRITE_ONCE(next->prev, prev);
2073 	WRITE_ONCE(prev->next, next);
2074 }
2075 
2076 /**
2077  *	__skb_dequeue - remove from the head of the queue
2078  *	@list: list to dequeue from
2079  *
2080  *	Remove the head of the list. This function does not take any locks
2081  *	so must be used with appropriate locks held only. The head item is
2082  *	returned or %NULL if the list is empty.
2083  */
2084 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2085 {
2086 	struct sk_buff *skb = skb_peek(list);
2087 	if (skb)
2088 		__skb_unlink(skb, list);
2089 	return skb;
2090 }
2091 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2092 
2093 /**
2094  *	__skb_dequeue_tail - remove from the tail of the queue
2095  *	@list: list to dequeue from
2096  *
2097  *	Remove the tail of the list. This function does not take any locks
2098  *	so must be used with appropriate locks held only. The tail item is
2099  *	returned or %NULL if the list is empty.
2100  */
2101 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2102 {
2103 	struct sk_buff *skb = skb_peek_tail(list);
2104 	if (skb)
2105 		__skb_unlink(skb, list);
2106 	return skb;
2107 }
2108 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2109 
2110 
2111 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2112 {
2113 	return skb->data_len;
2114 }
2115 
2116 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2117 {
2118 	return skb->len - skb->data_len;
2119 }
2120 
2121 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2122 {
2123 	unsigned int i, len = 0;
2124 
2125 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2126 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2127 	return len;
2128 }
2129 
2130 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2131 {
2132 	return skb_headlen(skb) + __skb_pagelen(skb);
2133 }
2134 
2135 /**
2136  * __skb_fill_page_desc - initialise a paged fragment in an skb
2137  * @skb: buffer containing fragment to be initialised
2138  * @i: paged fragment index to initialise
2139  * @page: the page to use for this fragment
2140  * @off: the offset to the data with @page
2141  * @size: the length of the data
2142  *
2143  * Initialises the @i'th fragment of @skb to point to &size bytes at
2144  * offset @off within @page.
2145  *
2146  * Does not take any additional reference on the fragment.
2147  */
2148 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2149 					struct page *page, int off, int size)
2150 {
2151 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2152 
2153 	/*
2154 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2155 	 * that not all callers have unique ownership of the page but rely
2156 	 * on page_is_pfmemalloc doing the right thing(tm).
2157 	 */
2158 	frag->bv_page		  = page;
2159 	frag->bv_offset		  = off;
2160 	skb_frag_size_set(frag, size);
2161 
2162 	page = compound_head(page);
2163 	if (page_is_pfmemalloc(page))
2164 		skb->pfmemalloc	= true;
2165 }
2166 
2167 /**
2168  * skb_fill_page_desc - initialise a paged fragment in an skb
2169  * @skb: buffer containing fragment to be initialised
2170  * @i: paged fragment index to initialise
2171  * @page: the page to use for this fragment
2172  * @off: the offset to the data with @page
2173  * @size: the length of the data
2174  *
2175  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2176  * @skb to point to @size bytes at offset @off within @page. In
2177  * addition updates @skb such that @i is the last fragment.
2178  *
2179  * Does not take any additional reference on the fragment.
2180  */
2181 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2182 				      struct page *page, int off, int size)
2183 {
2184 	__skb_fill_page_desc(skb, i, page, off, size);
2185 	skb_shinfo(skb)->nr_frags = i + 1;
2186 }
2187 
2188 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2189 		     int size, unsigned int truesize);
2190 
2191 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2192 			  unsigned int truesize);
2193 
2194 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2195 
2196 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2197 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2198 {
2199 	return skb->head + skb->tail;
2200 }
2201 
2202 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2203 {
2204 	skb->tail = skb->data - skb->head;
2205 }
2206 
2207 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2208 {
2209 	skb_reset_tail_pointer(skb);
2210 	skb->tail += offset;
2211 }
2212 
2213 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2214 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2215 {
2216 	return skb->tail;
2217 }
2218 
2219 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2220 {
2221 	skb->tail = skb->data;
2222 }
2223 
2224 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2225 {
2226 	skb->tail = skb->data + offset;
2227 }
2228 
2229 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2230 
2231 /*
2232  *	Add data to an sk_buff
2233  */
2234 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2235 void *skb_put(struct sk_buff *skb, unsigned int len);
2236 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2237 {
2238 	void *tmp = skb_tail_pointer(skb);
2239 	SKB_LINEAR_ASSERT(skb);
2240 	skb->tail += len;
2241 	skb->len  += len;
2242 	return tmp;
2243 }
2244 
2245 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2246 {
2247 	void *tmp = __skb_put(skb, len);
2248 
2249 	memset(tmp, 0, len);
2250 	return tmp;
2251 }
2252 
2253 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2254 				   unsigned int len)
2255 {
2256 	void *tmp = __skb_put(skb, len);
2257 
2258 	memcpy(tmp, data, len);
2259 	return tmp;
2260 }
2261 
2262 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2263 {
2264 	*(u8 *)__skb_put(skb, 1) = val;
2265 }
2266 
2267 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2268 {
2269 	void *tmp = skb_put(skb, len);
2270 
2271 	memset(tmp, 0, len);
2272 
2273 	return tmp;
2274 }
2275 
2276 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2277 				 unsigned int len)
2278 {
2279 	void *tmp = skb_put(skb, len);
2280 
2281 	memcpy(tmp, data, len);
2282 
2283 	return tmp;
2284 }
2285 
2286 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2287 {
2288 	*(u8 *)skb_put(skb, 1) = val;
2289 }
2290 
2291 void *skb_push(struct sk_buff *skb, unsigned int len);
2292 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2293 {
2294 	skb->data -= len;
2295 	skb->len  += len;
2296 	return skb->data;
2297 }
2298 
2299 void *skb_pull(struct sk_buff *skb, unsigned int len);
2300 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2301 {
2302 	skb->len -= len;
2303 	BUG_ON(skb->len < skb->data_len);
2304 	return skb->data += len;
2305 }
2306 
2307 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2308 {
2309 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2310 }
2311 
2312 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2313 
2314 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2315 {
2316 	if (len > skb_headlen(skb) &&
2317 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2318 		return NULL;
2319 	skb->len -= len;
2320 	return skb->data += len;
2321 }
2322 
2323 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2324 {
2325 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2326 }
2327 
2328 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2329 {
2330 	if (likely(len <= skb_headlen(skb)))
2331 		return true;
2332 	if (unlikely(len > skb->len))
2333 		return false;
2334 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2335 }
2336 
2337 void skb_condense(struct sk_buff *skb);
2338 
2339 /**
2340  *	skb_headroom - bytes at buffer head
2341  *	@skb: buffer to check
2342  *
2343  *	Return the number of bytes of free space at the head of an &sk_buff.
2344  */
2345 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2346 {
2347 	return skb->data - skb->head;
2348 }
2349 
2350 /**
2351  *	skb_tailroom - bytes at buffer end
2352  *	@skb: buffer to check
2353  *
2354  *	Return the number of bytes of free space at the tail of an sk_buff
2355  */
2356 static inline int skb_tailroom(const struct sk_buff *skb)
2357 {
2358 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2359 }
2360 
2361 /**
2362  *	skb_availroom - bytes at buffer end
2363  *	@skb: buffer to check
2364  *
2365  *	Return the number of bytes of free space at the tail of an sk_buff
2366  *	allocated by sk_stream_alloc()
2367  */
2368 static inline int skb_availroom(const struct sk_buff *skb)
2369 {
2370 	if (skb_is_nonlinear(skb))
2371 		return 0;
2372 
2373 	return skb->end - skb->tail - skb->reserved_tailroom;
2374 }
2375 
2376 /**
2377  *	skb_reserve - adjust headroom
2378  *	@skb: buffer to alter
2379  *	@len: bytes to move
2380  *
2381  *	Increase the headroom of an empty &sk_buff by reducing the tail
2382  *	room. This is only allowed for an empty buffer.
2383  */
2384 static inline void skb_reserve(struct sk_buff *skb, int len)
2385 {
2386 	skb->data += len;
2387 	skb->tail += len;
2388 }
2389 
2390 /**
2391  *	skb_tailroom_reserve - adjust reserved_tailroom
2392  *	@skb: buffer to alter
2393  *	@mtu: maximum amount of headlen permitted
2394  *	@needed_tailroom: minimum amount of reserved_tailroom
2395  *
2396  *	Set reserved_tailroom so that headlen can be as large as possible but
2397  *	not larger than mtu and tailroom cannot be smaller than
2398  *	needed_tailroom.
2399  *	The required headroom should already have been reserved before using
2400  *	this function.
2401  */
2402 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2403 					unsigned int needed_tailroom)
2404 {
2405 	SKB_LINEAR_ASSERT(skb);
2406 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2407 		/* use at most mtu */
2408 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2409 	else
2410 		/* use up to all available space */
2411 		skb->reserved_tailroom = needed_tailroom;
2412 }
2413 
2414 #define ENCAP_TYPE_ETHER	0
2415 #define ENCAP_TYPE_IPPROTO	1
2416 
2417 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2418 					  __be16 protocol)
2419 {
2420 	skb->inner_protocol = protocol;
2421 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2422 }
2423 
2424 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2425 					 __u8 ipproto)
2426 {
2427 	skb->inner_ipproto = ipproto;
2428 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2429 }
2430 
2431 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2432 {
2433 	skb->inner_mac_header = skb->mac_header;
2434 	skb->inner_network_header = skb->network_header;
2435 	skb->inner_transport_header = skb->transport_header;
2436 }
2437 
2438 static inline void skb_reset_mac_len(struct sk_buff *skb)
2439 {
2440 	skb->mac_len = skb->network_header - skb->mac_header;
2441 }
2442 
2443 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2444 							*skb)
2445 {
2446 	return skb->head + skb->inner_transport_header;
2447 }
2448 
2449 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2450 {
2451 	return skb_inner_transport_header(skb) - skb->data;
2452 }
2453 
2454 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2455 {
2456 	skb->inner_transport_header = skb->data - skb->head;
2457 }
2458 
2459 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2460 						   const int offset)
2461 {
2462 	skb_reset_inner_transport_header(skb);
2463 	skb->inner_transport_header += offset;
2464 }
2465 
2466 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2467 {
2468 	return skb->head + skb->inner_network_header;
2469 }
2470 
2471 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2472 {
2473 	skb->inner_network_header = skb->data - skb->head;
2474 }
2475 
2476 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2477 						const int offset)
2478 {
2479 	skb_reset_inner_network_header(skb);
2480 	skb->inner_network_header += offset;
2481 }
2482 
2483 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2484 {
2485 	return skb->head + skb->inner_mac_header;
2486 }
2487 
2488 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2489 {
2490 	skb->inner_mac_header = skb->data - skb->head;
2491 }
2492 
2493 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2494 					    const int offset)
2495 {
2496 	skb_reset_inner_mac_header(skb);
2497 	skb->inner_mac_header += offset;
2498 }
2499 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2500 {
2501 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2502 }
2503 
2504 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2505 {
2506 	return skb->head + skb->transport_header;
2507 }
2508 
2509 static inline void skb_reset_transport_header(struct sk_buff *skb)
2510 {
2511 	skb->transport_header = skb->data - skb->head;
2512 }
2513 
2514 static inline void skb_set_transport_header(struct sk_buff *skb,
2515 					    const int offset)
2516 {
2517 	skb_reset_transport_header(skb);
2518 	skb->transport_header += offset;
2519 }
2520 
2521 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2522 {
2523 	return skb->head + skb->network_header;
2524 }
2525 
2526 static inline void skb_reset_network_header(struct sk_buff *skb)
2527 {
2528 	skb->network_header = skb->data - skb->head;
2529 }
2530 
2531 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2532 {
2533 	skb_reset_network_header(skb);
2534 	skb->network_header += offset;
2535 }
2536 
2537 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2538 {
2539 	return skb->head + skb->mac_header;
2540 }
2541 
2542 static inline int skb_mac_offset(const struct sk_buff *skb)
2543 {
2544 	return skb_mac_header(skb) - skb->data;
2545 }
2546 
2547 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2548 {
2549 	return skb->network_header - skb->mac_header;
2550 }
2551 
2552 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2553 {
2554 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2555 }
2556 
2557 static inline void skb_unset_mac_header(struct sk_buff *skb)
2558 {
2559 	skb->mac_header = (typeof(skb->mac_header))~0U;
2560 }
2561 
2562 static inline void skb_reset_mac_header(struct sk_buff *skb)
2563 {
2564 	skb->mac_header = skb->data - skb->head;
2565 }
2566 
2567 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2568 {
2569 	skb_reset_mac_header(skb);
2570 	skb->mac_header += offset;
2571 }
2572 
2573 static inline void skb_pop_mac_header(struct sk_buff *skb)
2574 {
2575 	skb->mac_header = skb->network_header;
2576 }
2577 
2578 static inline void skb_probe_transport_header(struct sk_buff *skb)
2579 {
2580 	struct flow_keys_basic keys;
2581 
2582 	if (skb_transport_header_was_set(skb))
2583 		return;
2584 
2585 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2586 					     NULL, 0, 0, 0, 0))
2587 		skb_set_transport_header(skb, keys.control.thoff);
2588 }
2589 
2590 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2591 {
2592 	if (skb_mac_header_was_set(skb)) {
2593 		const unsigned char *old_mac = skb_mac_header(skb);
2594 
2595 		skb_set_mac_header(skb, -skb->mac_len);
2596 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2597 	}
2598 }
2599 
2600 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2601 {
2602 	return skb->csum_start - skb_headroom(skb);
2603 }
2604 
2605 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2606 {
2607 	return skb->head + skb->csum_start;
2608 }
2609 
2610 static inline int skb_transport_offset(const struct sk_buff *skb)
2611 {
2612 	return skb_transport_header(skb) - skb->data;
2613 }
2614 
2615 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2616 {
2617 	return skb->transport_header - skb->network_header;
2618 }
2619 
2620 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2621 {
2622 	return skb->inner_transport_header - skb->inner_network_header;
2623 }
2624 
2625 static inline int skb_network_offset(const struct sk_buff *skb)
2626 {
2627 	return skb_network_header(skb) - skb->data;
2628 }
2629 
2630 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2631 {
2632 	return skb_inner_network_header(skb) - skb->data;
2633 }
2634 
2635 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2636 {
2637 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2638 }
2639 
2640 /*
2641  * CPUs often take a performance hit when accessing unaligned memory
2642  * locations. The actual performance hit varies, it can be small if the
2643  * hardware handles it or large if we have to take an exception and fix it
2644  * in software.
2645  *
2646  * Since an ethernet header is 14 bytes network drivers often end up with
2647  * the IP header at an unaligned offset. The IP header can be aligned by
2648  * shifting the start of the packet by 2 bytes. Drivers should do this
2649  * with:
2650  *
2651  * skb_reserve(skb, NET_IP_ALIGN);
2652  *
2653  * The downside to this alignment of the IP header is that the DMA is now
2654  * unaligned. On some architectures the cost of an unaligned DMA is high
2655  * and this cost outweighs the gains made by aligning the IP header.
2656  *
2657  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2658  * to be overridden.
2659  */
2660 #ifndef NET_IP_ALIGN
2661 #define NET_IP_ALIGN	2
2662 #endif
2663 
2664 /*
2665  * The networking layer reserves some headroom in skb data (via
2666  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2667  * the header has to grow. In the default case, if the header has to grow
2668  * 32 bytes or less we avoid the reallocation.
2669  *
2670  * Unfortunately this headroom changes the DMA alignment of the resulting
2671  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2672  * on some architectures. An architecture can override this value,
2673  * perhaps setting it to a cacheline in size (since that will maintain
2674  * cacheline alignment of the DMA). It must be a power of 2.
2675  *
2676  * Various parts of the networking layer expect at least 32 bytes of
2677  * headroom, you should not reduce this.
2678  *
2679  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2680  * to reduce average number of cache lines per packet.
2681  * get_rps_cpu() for example only access one 64 bytes aligned block :
2682  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2683  */
2684 #ifndef NET_SKB_PAD
2685 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2686 #endif
2687 
2688 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2689 
2690 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2691 {
2692 	if (WARN_ON(skb_is_nonlinear(skb)))
2693 		return;
2694 	skb->len = len;
2695 	skb_set_tail_pointer(skb, len);
2696 }
2697 
2698 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2699 {
2700 	__skb_set_length(skb, len);
2701 }
2702 
2703 void skb_trim(struct sk_buff *skb, unsigned int len);
2704 
2705 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2706 {
2707 	if (skb->data_len)
2708 		return ___pskb_trim(skb, len);
2709 	__skb_trim(skb, len);
2710 	return 0;
2711 }
2712 
2713 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2714 {
2715 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2716 }
2717 
2718 /**
2719  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2720  *	@skb: buffer to alter
2721  *	@len: new length
2722  *
2723  *	This is identical to pskb_trim except that the caller knows that
2724  *	the skb is not cloned so we should never get an error due to out-
2725  *	of-memory.
2726  */
2727 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2728 {
2729 	int err = pskb_trim(skb, len);
2730 	BUG_ON(err);
2731 }
2732 
2733 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2734 {
2735 	unsigned int diff = len - skb->len;
2736 
2737 	if (skb_tailroom(skb) < diff) {
2738 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2739 					   GFP_ATOMIC);
2740 		if (ret)
2741 			return ret;
2742 	}
2743 	__skb_set_length(skb, len);
2744 	return 0;
2745 }
2746 
2747 /**
2748  *	skb_orphan - orphan a buffer
2749  *	@skb: buffer to orphan
2750  *
2751  *	If a buffer currently has an owner then we call the owner's
2752  *	destructor function and make the @skb unowned. The buffer continues
2753  *	to exist but is no longer charged to its former owner.
2754  */
2755 static inline void skb_orphan(struct sk_buff *skb)
2756 {
2757 	if (skb->destructor) {
2758 		skb->destructor(skb);
2759 		skb->destructor = NULL;
2760 		skb->sk		= NULL;
2761 	} else {
2762 		BUG_ON(skb->sk);
2763 	}
2764 }
2765 
2766 /**
2767  *	skb_orphan_frags - orphan the frags contained in a buffer
2768  *	@skb: buffer to orphan frags from
2769  *	@gfp_mask: allocation mask for replacement pages
2770  *
2771  *	For each frag in the SKB which needs a destructor (i.e. has an
2772  *	owner) create a copy of that frag and release the original
2773  *	page by calling the destructor.
2774  */
2775 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2776 {
2777 	if (likely(!skb_zcopy(skb)))
2778 		return 0;
2779 	if (!skb_zcopy_is_nouarg(skb) &&
2780 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2781 		return 0;
2782 	return skb_copy_ubufs(skb, gfp_mask);
2783 }
2784 
2785 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2786 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2787 {
2788 	if (likely(!skb_zcopy(skb)))
2789 		return 0;
2790 	return skb_copy_ubufs(skb, gfp_mask);
2791 }
2792 
2793 /**
2794  *	__skb_queue_purge - empty a list
2795  *	@list: list to empty
2796  *
2797  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2798  *	the list and one reference dropped. This function does not take the
2799  *	list lock and the caller must hold the relevant locks to use it.
2800  */
2801 static inline void __skb_queue_purge(struct sk_buff_head *list)
2802 {
2803 	struct sk_buff *skb;
2804 	while ((skb = __skb_dequeue(list)) != NULL)
2805 		kfree_skb(skb);
2806 }
2807 void skb_queue_purge(struct sk_buff_head *list);
2808 
2809 unsigned int skb_rbtree_purge(struct rb_root *root);
2810 
2811 void *netdev_alloc_frag(unsigned int fragsz);
2812 
2813 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2814 				   gfp_t gfp_mask);
2815 
2816 /**
2817  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2818  *	@dev: network device to receive on
2819  *	@length: length to allocate
2820  *
2821  *	Allocate a new &sk_buff and assign it a usage count of one. The
2822  *	buffer has unspecified headroom built in. Users should allocate
2823  *	the headroom they think they need without accounting for the
2824  *	built in space. The built in space is used for optimisations.
2825  *
2826  *	%NULL is returned if there is no free memory. Although this function
2827  *	allocates memory it can be called from an interrupt.
2828  */
2829 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2830 					       unsigned int length)
2831 {
2832 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2833 }
2834 
2835 /* legacy helper around __netdev_alloc_skb() */
2836 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2837 					      gfp_t gfp_mask)
2838 {
2839 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2840 }
2841 
2842 /* legacy helper around netdev_alloc_skb() */
2843 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2844 {
2845 	return netdev_alloc_skb(NULL, length);
2846 }
2847 
2848 
2849 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2850 		unsigned int length, gfp_t gfp)
2851 {
2852 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2853 
2854 	if (NET_IP_ALIGN && skb)
2855 		skb_reserve(skb, NET_IP_ALIGN);
2856 	return skb;
2857 }
2858 
2859 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2860 		unsigned int length)
2861 {
2862 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2863 }
2864 
2865 static inline void skb_free_frag(void *addr)
2866 {
2867 	page_frag_free(addr);
2868 }
2869 
2870 void *napi_alloc_frag(unsigned int fragsz);
2871 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2872 				 unsigned int length, gfp_t gfp_mask);
2873 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2874 					     unsigned int length)
2875 {
2876 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2877 }
2878 void napi_consume_skb(struct sk_buff *skb, int budget);
2879 
2880 void __kfree_skb_flush(void);
2881 void __kfree_skb_defer(struct sk_buff *skb);
2882 
2883 /**
2884  * __dev_alloc_pages - allocate page for network Rx
2885  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2886  * @order: size of the allocation
2887  *
2888  * Allocate a new page.
2889  *
2890  * %NULL is returned if there is no free memory.
2891 */
2892 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2893 					     unsigned int order)
2894 {
2895 	/* This piece of code contains several assumptions.
2896 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2897 	 * 2.  The expectation is the user wants a compound page.
2898 	 * 3.  If requesting a order 0 page it will not be compound
2899 	 *     due to the check to see if order has a value in prep_new_page
2900 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2901 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2902 	 */
2903 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2904 
2905 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2906 }
2907 
2908 static inline struct page *dev_alloc_pages(unsigned int order)
2909 {
2910 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2911 }
2912 
2913 /**
2914  * __dev_alloc_page - allocate a page for network Rx
2915  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2916  *
2917  * Allocate a new page.
2918  *
2919  * %NULL is returned if there is no free memory.
2920  */
2921 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2922 {
2923 	return __dev_alloc_pages(gfp_mask, 0);
2924 }
2925 
2926 static inline struct page *dev_alloc_page(void)
2927 {
2928 	return dev_alloc_pages(0);
2929 }
2930 
2931 /**
2932  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2933  *	@page: The page that was allocated from skb_alloc_page
2934  *	@skb: The skb that may need pfmemalloc set
2935  */
2936 static inline void skb_propagate_pfmemalloc(struct page *page,
2937 					     struct sk_buff *skb)
2938 {
2939 	if (page_is_pfmemalloc(page))
2940 		skb->pfmemalloc = true;
2941 }
2942 
2943 /**
2944  * skb_frag_off() - Returns the offset of a skb fragment
2945  * @frag: the paged fragment
2946  */
2947 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2948 {
2949 	return frag->bv_offset;
2950 }
2951 
2952 /**
2953  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2954  * @frag: skb fragment
2955  * @delta: value to add
2956  */
2957 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2958 {
2959 	frag->bv_offset += delta;
2960 }
2961 
2962 /**
2963  * skb_frag_off_set() - Sets the offset of a skb fragment
2964  * @frag: skb fragment
2965  * @offset: offset of fragment
2966  */
2967 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2968 {
2969 	frag->bv_offset = offset;
2970 }
2971 
2972 /**
2973  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2974  * @fragto: skb fragment where offset is set
2975  * @fragfrom: skb fragment offset is copied from
2976  */
2977 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2978 				     const skb_frag_t *fragfrom)
2979 {
2980 	fragto->bv_offset = fragfrom->bv_offset;
2981 }
2982 
2983 /**
2984  * skb_frag_page - retrieve the page referred to by a paged fragment
2985  * @frag: the paged fragment
2986  *
2987  * Returns the &struct page associated with @frag.
2988  */
2989 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2990 {
2991 	return frag->bv_page;
2992 }
2993 
2994 /**
2995  * __skb_frag_ref - take an addition reference on a paged fragment.
2996  * @frag: the paged fragment
2997  *
2998  * Takes an additional reference on the paged fragment @frag.
2999  */
3000 static inline void __skb_frag_ref(skb_frag_t *frag)
3001 {
3002 	get_page(skb_frag_page(frag));
3003 }
3004 
3005 /**
3006  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3007  * @skb: the buffer
3008  * @f: the fragment offset.
3009  *
3010  * Takes an additional reference on the @f'th paged fragment of @skb.
3011  */
3012 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3013 {
3014 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3015 }
3016 
3017 /**
3018  * __skb_frag_unref - release a reference on a paged fragment.
3019  * @frag: the paged fragment
3020  *
3021  * Releases a reference on the paged fragment @frag.
3022  */
3023 static inline void __skb_frag_unref(skb_frag_t *frag)
3024 {
3025 	put_page(skb_frag_page(frag));
3026 }
3027 
3028 /**
3029  * skb_frag_unref - release a reference on a paged fragment of an skb.
3030  * @skb: the buffer
3031  * @f: the fragment offset
3032  *
3033  * Releases a reference on the @f'th paged fragment of @skb.
3034  */
3035 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3036 {
3037 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3038 }
3039 
3040 /**
3041  * skb_frag_address - gets the address of the data contained in a paged fragment
3042  * @frag: the paged fragment buffer
3043  *
3044  * Returns the address of the data within @frag. The page must already
3045  * be mapped.
3046  */
3047 static inline void *skb_frag_address(const skb_frag_t *frag)
3048 {
3049 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3050 }
3051 
3052 /**
3053  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3054  * @frag: the paged fragment buffer
3055  *
3056  * Returns the address of the data within @frag. Checks that the page
3057  * is mapped and returns %NULL otherwise.
3058  */
3059 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3060 {
3061 	void *ptr = page_address(skb_frag_page(frag));
3062 	if (unlikely(!ptr))
3063 		return NULL;
3064 
3065 	return ptr + skb_frag_off(frag);
3066 }
3067 
3068 /**
3069  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3070  * @fragto: skb fragment where page is set
3071  * @fragfrom: skb fragment page is copied from
3072  */
3073 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3074 				      const skb_frag_t *fragfrom)
3075 {
3076 	fragto->bv_page = fragfrom->bv_page;
3077 }
3078 
3079 /**
3080  * __skb_frag_set_page - sets the page contained in a paged fragment
3081  * @frag: the paged fragment
3082  * @page: the page to set
3083  *
3084  * Sets the fragment @frag to contain @page.
3085  */
3086 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3087 {
3088 	frag->bv_page = page;
3089 }
3090 
3091 /**
3092  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3093  * @skb: the buffer
3094  * @f: the fragment offset
3095  * @page: the page to set
3096  *
3097  * Sets the @f'th fragment of @skb to contain @page.
3098  */
3099 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3100 				     struct page *page)
3101 {
3102 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3103 }
3104 
3105 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3106 
3107 /**
3108  * skb_frag_dma_map - maps a paged fragment via the DMA API
3109  * @dev: the device to map the fragment to
3110  * @frag: the paged fragment to map
3111  * @offset: the offset within the fragment (starting at the
3112  *          fragment's own offset)
3113  * @size: the number of bytes to map
3114  * @dir: the direction of the mapping (``PCI_DMA_*``)
3115  *
3116  * Maps the page associated with @frag to @device.
3117  */
3118 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3119 					  const skb_frag_t *frag,
3120 					  size_t offset, size_t size,
3121 					  enum dma_data_direction dir)
3122 {
3123 	return dma_map_page(dev, skb_frag_page(frag),
3124 			    skb_frag_off(frag) + offset, size, dir);
3125 }
3126 
3127 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3128 					gfp_t gfp_mask)
3129 {
3130 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3131 }
3132 
3133 
3134 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3135 						  gfp_t gfp_mask)
3136 {
3137 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3138 }
3139 
3140 
3141 /**
3142  *	skb_clone_writable - is the header of a clone writable
3143  *	@skb: buffer to check
3144  *	@len: length up to which to write
3145  *
3146  *	Returns true if modifying the header part of the cloned buffer
3147  *	does not requires the data to be copied.
3148  */
3149 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3150 {
3151 	return !skb_header_cloned(skb) &&
3152 	       skb_headroom(skb) + len <= skb->hdr_len;
3153 }
3154 
3155 static inline int skb_try_make_writable(struct sk_buff *skb,
3156 					unsigned int write_len)
3157 {
3158 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3159 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3160 }
3161 
3162 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3163 			    int cloned)
3164 {
3165 	int delta = 0;
3166 
3167 	if (headroom > skb_headroom(skb))
3168 		delta = headroom - skb_headroom(skb);
3169 
3170 	if (delta || cloned)
3171 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3172 					GFP_ATOMIC);
3173 	return 0;
3174 }
3175 
3176 /**
3177  *	skb_cow - copy header of skb when it is required
3178  *	@skb: buffer to cow
3179  *	@headroom: needed headroom
3180  *
3181  *	If the skb passed lacks sufficient headroom or its data part
3182  *	is shared, data is reallocated. If reallocation fails, an error
3183  *	is returned and original skb is not changed.
3184  *
3185  *	The result is skb with writable area skb->head...skb->tail
3186  *	and at least @headroom of space at head.
3187  */
3188 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3189 {
3190 	return __skb_cow(skb, headroom, skb_cloned(skb));
3191 }
3192 
3193 /**
3194  *	skb_cow_head - skb_cow but only making the head writable
3195  *	@skb: buffer to cow
3196  *	@headroom: needed headroom
3197  *
3198  *	This function is identical to skb_cow except that we replace the
3199  *	skb_cloned check by skb_header_cloned.  It should be used when
3200  *	you only need to push on some header and do not need to modify
3201  *	the data.
3202  */
3203 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3204 {
3205 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3206 }
3207 
3208 /**
3209  *	skb_padto	- pad an skbuff up to a minimal size
3210  *	@skb: buffer to pad
3211  *	@len: minimal length
3212  *
3213  *	Pads up a buffer to ensure the trailing bytes exist and are
3214  *	blanked. If the buffer already contains sufficient data it
3215  *	is untouched. Otherwise it is extended. Returns zero on
3216  *	success. The skb is freed on error.
3217  */
3218 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3219 {
3220 	unsigned int size = skb->len;
3221 	if (likely(size >= len))
3222 		return 0;
3223 	return skb_pad(skb, len - size);
3224 }
3225 
3226 /**
3227  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3228  *	@skb: buffer to pad
3229  *	@len: minimal length
3230  *	@free_on_error: free buffer on error
3231  *
3232  *	Pads up a buffer to ensure the trailing bytes exist and are
3233  *	blanked. If the buffer already contains sufficient data it
3234  *	is untouched. Otherwise it is extended. Returns zero on
3235  *	success. The skb is freed on error if @free_on_error is true.
3236  */
3237 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3238 					       unsigned int len,
3239 					       bool free_on_error)
3240 {
3241 	unsigned int size = skb->len;
3242 
3243 	if (unlikely(size < len)) {
3244 		len -= size;
3245 		if (__skb_pad(skb, len, free_on_error))
3246 			return -ENOMEM;
3247 		__skb_put(skb, len);
3248 	}
3249 	return 0;
3250 }
3251 
3252 /**
3253  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3254  *	@skb: buffer to pad
3255  *	@len: minimal length
3256  *
3257  *	Pads up a buffer to ensure the trailing bytes exist and are
3258  *	blanked. If the buffer already contains sufficient data it
3259  *	is untouched. Otherwise it is extended. Returns zero on
3260  *	success. The skb is freed on error.
3261  */
3262 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3263 {
3264 	return __skb_put_padto(skb, len, true);
3265 }
3266 
3267 static inline int skb_add_data(struct sk_buff *skb,
3268 			       struct iov_iter *from, int copy)
3269 {
3270 	const int off = skb->len;
3271 
3272 	if (skb->ip_summed == CHECKSUM_NONE) {
3273 		__wsum csum = 0;
3274 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3275 					         &csum, from)) {
3276 			skb->csum = csum_block_add(skb->csum, csum, off);
3277 			return 0;
3278 		}
3279 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3280 		return 0;
3281 
3282 	__skb_trim(skb, off);
3283 	return -EFAULT;
3284 }
3285 
3286 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3287 				    const struct page *page, int off)
3288 {
3289 	if (skb_zcopy(skb))
3290 		return false;
3291 	if (i) {
3292 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3293 
3294 		return page == skb_frag_page(frag) &&
3295 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3296 	}
3297 	return false;
3298 }
3299 
3300 static inline int __skb_linearize(struct sk_buff *skb)
3301 {
3302 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3303 }
3304 
3305 /**
3306  *	skb_linearize - convert paged skb to linear one
3307  *	@skb: buffer to linarize
3308  *
3309  *	If there is no free memory -ENOMEM is returned, otherwise zero
3310  *	is returned and the old skb data released.
3311  */
3312 static inline int skb_linearize(struct sk_buff *skb)
3313 {
3314 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3315 }
3316 
3317 /**
3318  * skb_has_shared_frag - can any frag be overwritten
3319  * @skb: buffer to test
3320  *
3321  * Return true if the skb has at least one frag that might be modified
3322  * by an external entity (as in vmsplice()/sendfile())
3323  */
3324 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3325 {
3326 	return skb_is_nonlinear(skb) &&
3327 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3328 }
3329 
3330 /**
3331  *	skb_linearize_cow - make sure skb is linear and writable
3332  *	@skb: buffer to process
3333  *
3334  *	If there is no free memory -ENOMEM is returned, otherwise zero
3335  *	is returned and the old skb data released.
3336  */
3337 static inline int skb_linearize_cow(struct sk_buff *skb)
3338 {
3339 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3340 	       __skb_linearize(skb) : 0;
3341 }
3342 
3343 static __always_inline void
3344 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3345 		     unsigned int off)
3346 {
3347 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3348 		skb->csum = csum_block_sub(skb->csum,
3349 					   csum_partial(start, len, 0), off);
3350 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3351 		 skb_checksum_start_offset(skb) < 0)
3352 		skb->ip_summed = CHECKSUM_NONE;
3353 }
3354 
3355 /**
3356  *	skb_postpull_rcsum - update checksum for received skb after pull
3357  *	@skb: buffer to update
3358  *	@start: start of data before pull
3359  *	@len: length of data pulled
3360  *
3361  *	After doing a pull on a received packet, you need to call this to
3362  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3363  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3364  */
3365 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3366 				      const void *start, unsigned int len)
3367 {
3368 	__skb_postpull_rcsum(skb, start, len, 0);
3369 }
3370 
3371 static __always_inline void
3372 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3373 		     unsigned int off)
3374 {
3375 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3376 		skb->csum = csum_block_add(skb->csum,
3377 					   csum_partial(start, len, 0), off);
3378 }
3379 
3380 /**
3381  *	skb_postpush_rcsum - update checksum for received skb after push
3382  *	@skb: buffer to update
3383  *	@start: start of data after push
3384  *	@len: length of data pushed
3385  *
3386  *	After doing a push on a received packet, you need to call this to
3387  *	update the CHECKSUM_COMPLETE checksum.
3388  */
3389 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3390 				      const void *start, unsigned int len)
3391 {
3392 	__skb_postpush_rcsum(skb, start, len, 0);
3393 }
3394 
3395 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3396 
3397 /**
3398  *	skb_push_rcsum - push skb and update receive checksum
3399  *	@skb: buffer to update
3400  *	@len: length of data pulled
3401  *
3402  *	This function performs an skb_push on the packet and updates
3403  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3404  *	receive path processing instead of skb_push unless you know
3405  *	that the checksum difference is zero (e.g., a valid IP header)
3406  *	or you are setting ip_summed to CHECKSUM_NONE.
3407  */
3408 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3409 {
3410 	skb_push(skb, len);
3411 	skb_postpush_rcsum(skb, skb->data, len);
3412 	return skb->data;
3413 }
3414 
3415 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3416 /**
3417  *	pskb_trim_rcsum - trim received skb and update checksum
3418  *	@skb: buffer to trim
3419  *	@len: new length
3420  *
3421  *	This is exactly the same as pskb_trim except that it ensures the
3422  *	checksum of received packets are still valid after the operation.
3423  *	It can change skb pointers.
3424  */
3425 
3426 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3427 {
3428 	if (likely(len >= skb->len))
3429 		return 0;
3430 	return pskb_trim_rcsum_slow(skb, len);
3431 }
3432 
3433 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3434 {
3435 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3436 		skb->ip_summed = CHECKSUM_NONE;
3437 	__skb_trim(skb, len);
3438 	return 0;
3439 }
3440 
3441 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3442 {
3443 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3444 		skb->ip_summed = CHECKSUM_NONE;
3445 	return __skb_grow(skb, len);
3446 }
3447 
3448 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3449 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3450 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3451 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3452 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3453 
3454 #define skb_queue_walk(queue, skb) \
3455 		for (skb = (queue)->next;					\
3456 		     skb != (struct sk_buff *)(queue);				\
3457 		     skb = skb->next)
3458 
3459 #define skb_queue_walk_safe(queue, skb, tmp)					\
3460 		for (skb = (queue)->next, tmp = skb->next;			\
3461 		     skb != (struct sk_buff *)(queue);				\
3462 		     skb = tmp, tmp = skb->next)
3463 
3464 #define skb_queue_walk_from(queue, skb)						\
3465 		for (; skb != (struct sk_buff *)(queue);			\
3466 		     skb = skb->next)
3467 
3468 #define skb_rbtree_walk(skb, root)						\
3469 		for (skb = skb_rb_first(root); skb != NULL;			\
3470 		     skb = skb_rb_next(skb))
3471 
3472 #define skb_rbtree_walk_from(skb)						\
3473 		for (; skb != NULL;						\
3474 		     skb = skb_rb_next(skb))
3475 
3476 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3477 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3478 		     skb = tmp)
3479 
3480 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3481 		for (tmp = skb->next;						\
3482 		     skb != (struct sk_buff *)(queue);				\
3483 		     skb = tmp, tmp = skb->next)
3484 
3485 #define skb_queue_reverse_walk(queue, skb) \
3486 		for (skb = (queue)->prev;					\
3487 		     skb != (struct sk_buff *)(queue);				\
3488 		     skb = skb->prev)
3489 
3490 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3491 		for (skb = (queue)->prev, tmp = skb->prev;			\
3492 		     skb != (struct sk_buff *)(queue);				\
3493 		     skb = tmp, tmp = skb->prev)
3494 
3495 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3496 		for (tmp = skb->prev;						\
3497 		     skb != (struct sk_buff *)(queue);				\
3498 		     skb = tmp, tmp = skb->prev)
3499 
3500 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3501 {
3502 	return skb_shinfo(skb)->frag_list != NULL;
3503 }
3504 
3505 static inline void skb_frag_list_init(struct sk_buff *skb)
3506 {
3507 	skb_shinfo(skb)->frag_list = NULL;
3508 }
3509 
3510 #define skb_walk_frags(skb, iter)	\
3511 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3512 
3513 
3514 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3515 				int *err, long *timeo_p,
3516 				const struct sk_buff *skb);
3517 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3518 					  struct sk_buff_head *queue,
3519 					  unsigned int flags,
3520 					  int *off, int *err,
3521 					  struct sk_buff **last);
3522 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3523 					struct sk_buff_head *queue,
3524 					unsigned int flags, int *off, int *err,
3525 					struct sk_buff **last);
3526 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3527 				    struct sk_buff_head *sk_queue,
3528 				    unsigned int flags, int *off, int *err);
3529 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3530 				  int *err);
3531 __poll_t datagram_poll(struct file *file, struct socket *sock,
3532 			   struct poll_table_struct *wait);
3533 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3534 			   struct iov_iter *to, int size);
3535 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3536 					struct msghdr *msg, int size)
3537 {
3538 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3539 }
3540 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3541 				   struct msghdr *msg);
3542 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3543 			   struct iov_iter *to, int len,
3544 			   struct ahash_request *hash);
3545 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3546 				 struct iov_iter *from, int len);
3547 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3548 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3549 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3550 static inline void skb_free_datagram_locked(struct sock *sk,
3551 					    struct sk_buff *skb)
3552 {
3553 	__skb_free_datagram_locked(sk, skb, 0);
3554 }
3555 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3556 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3557 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3558 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3559 			      int len);
3560 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3561 		    struct pipe_inode_info *pipe, unsigned int len,
3562 		    unsigned int flags);
3563 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3564 			 int len);
3565 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3566 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3567 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3568 		 int len, int hlen);
3569 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3570 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3571 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3572 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3573 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3574 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3575 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3576 				 unsigned int offset);
3577 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3578 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3579 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3580 int skb_vlan_pop(struct sk_buff *skb);
3581 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3582 int skb_eth_pop(struct sk_buff *skb);
3583 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3584 		 const unsigned char *src);
3585 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3586 		  int mac_len, bool ethernet);
3587 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3588 		 bool ethernet);
3589 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3590 int skb_mpls_dec_ttl(struct sk_buff *skb);
3591 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3592 			     gfp_t gfp);
3593 
3594 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3595 {
3596 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3597 }
3598 
3599 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3600 {
3601 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3602 }
3603 
3604 struct skb_checksum_ops {
3605 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3606 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3607 };
3608 
3609 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3610 
3611 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3612 		      __wsum csum, const struct skb_checksum_ops *ops);
3613 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3614 		    __wsum csum);
3615 
3616 static inline void * __must_check
3617 __skb_header_pointer(const struct sk_buff *skb, int offset,
3618 		     int len, void *data, int hlen, void *buffer)
3619 {
3620 	if (hlen - offset >= len)
3621 		return data + offset;
3622 
3623 	if (!skb ||
3624 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3625 		return NULL;
3626 
3627 	return buffer;
3628 }
3629 
3630 static inline void * __must_check
3631 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3632 {
3633 	return __skb_header_pointer(skb, offset, len, skb->data,
3634 				    skb_headlen(skb), buffer);
3635 }
3636 
3637 /**
3638  *	skb_needs_linearize - check if we need to linearize a given skb
3639  *			      depending on the given device features.
3640  *	@skb: socket buffer to check
3641  *	@features: net device features
3642  *
3643  *	Returns true if either:
3644  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3645  *	2. skb is fragmented and the device does not support SG.
3646  */
3647 static inline bool skb_needs_linearize(struct sk_buff *skb,
3648 				       netdev_features_t features)
3649 {
3650 	return skb_is_nonlinear(skb) &&
3651 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3652 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3653 }
3654 
3655 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3656 					     void *to,
3657 					     const unsigned int len)
3658 {
3659 	memcpy(to, skb->data, len);
3660 }
3661 
3662 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3663 						    const int offset, void *to,
3664 						    const unsigned int len)
3665 {
3666 	memcpy(to, skb->data + offset, len);
3667 }
3668 
3669 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3670 					   const void *from,
3671 					   const unsigned int len)
3672 {
3673 	memcpy(skb->data, from, len);
3674 }
3675 
3676 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3677 						  const int offset,
3678 						  const void *from,
3679 						  const unsigned int len)
3680 {
3681 	memcpy(skb->data + offset, from, len);
3682 }
3683 
3684 void skb_init(void);
3685 
3686 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3687 {
3688 	return skb->tstamp;
3689 }
3690 
3691 /**
3692  *	skb_get_timestamp - get timestamp from a skb
3693  *	@skb: skb to get stamp from
3694  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3695  *
3696  *	Timestamps are stored in the skb as offsets to a base timestamp.
3697  *	This function converts the offset back to a struct timeval and stores
3698  *	it in stamp.
3699  */
3700 static inline void skb_get_timestamp(const struct sk_buff *skb,
3701 				     struct __kernel_old_timeval *stamp)
3702 {
3703 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3704 }
3705 
3706 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3707 					 struct __kernel_sock_timeval *stamp)
3708 {
3709 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3710 
3711 	stamp->tv_sec = ts.tv_sec;
3712 	stamp->tv_usec = ts.tv_nsec / 1000;
3713 }
3714 
3715 static inline void skb_get_timestampns(const struct sk_buff *skb,
3716 				       struct __kernel_old_timespec *stamp)
3717 {
3718 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3719 
3720 	stamp->tv_sec = ts.tv_sec;
3721 	stamp->tv_nsec = ts.tv_nsec;
3722 }
3723 
3724 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3725 					   struct __kernel_timespec *stamp)
3726 {
3727 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3728 
3729 	stamp->tv_sec = ts.tv_sec;
3730 	stamp->tv_nsec = ts.tv_nsec;
3731 }
3732 
3733 static inline void __net_timestamp(struct sk_buff *skb)
3734 {
3735 	skb->tstamp = ktime_get_real();
3736 }
3737 
3738 static inline ktime_t net_timedelta(ktime_t t)
3739 {
3740 	return ktime_sub(ktime_get_real(), t);
3741 }
3742 
3743 static inline ktime_t net_invalid_timestamp(void)
3744 {
3745 	return 0;
3746 }
3747 
3748 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3749 {
3750 	return skb_shinfo(skb)->meta_len;
3751 }
3752 
3753 static inline void *skb_metadata_end(const struct sk_buff *skb)
3754 {
3755 	return skb_mac_header(skb);
3756 }
3757 
3758 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3759 					  const struct sk_buff *skb_b,
3760 					  u8 meta_len)
3761 {
3762 	const void *a = skb_metadata_end(skb_a);
3763 	const void *b = skb_metadata_end(skb_b);
3764 	/* Using more efficient varaiant than plain call to memcmp(). */
3765 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3766 	u64 diffs = 0;
3767 
3768 	switch (meta_len) {
3769 #define __it(x, op) (x -= sizeof(u##op))
3770 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3771 	case 32: diffs |= __it_diff(a, b, 64);
3772 		fallthrough;
3773 	case 24: diffs |= __it_diff(a, b, 64);
3774 		fallthrough;
3775 	case 16: diffs |= __it_diff(a, b, 64);
3776 		fallthrough;
3777 	case  8: diffs |= __it_diff(a, b, 64);
3778 		break;
3779 	case 28: diffs |= __it_diff(a, b, 64);
3780 		fallthrough;
3781 	case 20: diffs |= __it_diff(a, b, 64);
3782 		fallthrough;
3783 	case 12: diffs |= __it_diff(a, b, 64);
3784 		fallthrough;
3785 	case  4: diffs |= __it_diff(a, b, 32);
3786 		break;
3787 	}
3788 	return diffs;
3789 #else
3790 	return memcmp(a - meta_len, b - meta_len, meta_len);
3791 #endif
3792 }
3793 
3794 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3795 					const struct sk_buff *skb_b)
3796 {
3797 	u8 len_a = skb_metadata_len(skb_a);
3798 	u8 len_b = skb_metadata_len(skb_b);
3799 
3800 	if (!(len_a | len_b))
3801 		return false;
3802 
3803 	return len_a != len_b ?
3804 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3805 }
3806 
3807 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3808 {
3809 	skb_shinfo(skb)->meta_len = meta_len;
3810 }
3811 
3812 static inline void skb_metadata_clear(struct sk_buff *skb)
3813 {
3814 	skb_metadata_set(skb, 0);
3815 }
3816 
3817 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3818 
3819 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3820 
3821 void skb_clone_tx_timestamp(struct sk_buff *skb);
3822 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3823 
3824 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3825 
3826 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3827 {
3828 }
3829 
3830 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3831 {
3832 	return false;
3833 }
3834 
3835 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3836 
3837 /**
3838  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3839  *
3840  * PHY drivers may accept clones of transmitted packets for
3841  * timestamping via their phy_driver.txtstamp method. These drivers
3842  * must call this function to return the skb back to the stack with a
3843  * timestamp.
3844  *
3845  * @skb: clone of the original outgoing packet
3846  * @hwtstamps: hardware time stamps
3847  *
3848  */
3849 void skb_complete_tx_timestamp(struct sk_buff *skb,
3850 			       struct skb_shared_hwtstamps *hwtstamps);
3851 
3852 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3853 		     struct skb_shared_hwtstamps *hwtstamps,
3854 		     struct sock *sk, int tstype);
3855 
3856 /**
3857  * skb_tstamp_tx - queue clone of skb with send time stamps
3858  * @orig_skb:	the original outgoing packet
3859  * @hwtstamps:	hardware time stamps, may be NULL if not available
3860  *
3861  * If the skb has a socket associated, then this function clones the
3862  * skb (thus sharing the actual data and optional structures), stores
3863  * the optional hardware time stamping information (if non NULL) or
3864  * generates a software time stamp (otherwise), then queues the clone
3865  * to the error queue of the socket.  Errors are silently ignored.
3866  */
3867 void skb_tstamp_tx(struct sk_buff *orig_skb,
3868 		   struct skb_shared_hwtstamps *hwtstamps);
3869 
3870 /**
3871  * skb_tx_timestamp() - Driver hook for transmit timestamping
3872  *
3873  * Ethernet MAC Drivers should call this function in their hard_xmit()
3874  * function immediately before giving the sk_buff to the MAC hardware.
3875  *
3876  * Specifically, one should make absolutely sure that this function is
3877  * called before TX completion of this packet can trigger.  Otherwise
3878  * the packet could potentially already be freed.
3879  *
3880  * @skb: A socket buffer.
3881  */
3882 static inline void skb_tx_timestamp(struct sk_buff *skb)
3883 {
3884 	skb_clone_tx_timestamp(skb);
3885 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3886 		skb_tstamp_tx(skb, NULL);
3887 }
3888 
3889 /**
3890  * skb_complete_wifi_ack - deliver skb with wifi status
3891  *
3892  * @skb: the original outgoing packet
3893  * @acked: ack status
3894  *
3895  */
3896 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3897 
3898 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3899 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3900 
3901 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3902 {
3903 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3904 		skb->csum_valid ||
3905 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3906 		 skb_checksum_start_offset(skb) >= 0));
3907 }
3908 
3909 /**
3910  *	skb_checksum_complete - Calculate checksum of an entire packet
3911  *	@skb: packet to process
3912  *
3913  *	This function calculates the checksum over the entire packet plus
3914  *	the value of skb->csum.  The latter can be used to supply the
3915  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3916  *	checksum.
3917  *
3918  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3919  *	this function can be used to verify that checksum on received
3920  *	packets.  In that case the function should return zero if the
3921  *	checksum is correct.  In particular, this function will return zero
3922  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3923  *	hardware has already verified the correctness of the checksum.
3924  */
3925 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3926 {
3927 	return skb_csum_unnecessary(skb) ?
3928 	       0 : __skb_checksum_complete(skb);
3929 }
3930 
3931 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3932 {
3933 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3934 		if (skb->csum_level == 0)
3935 			skb->ip_summed = CHECKSUM_NONE;
3936 		else
3937 			skb->csum_level--;
3938 	}
3939 }
3940 
3941 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3942 {
3943 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3944 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3945 			skb->csum_level++;
3946 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3947 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3948 		skb->csum_level = 0;
3949 	}
3950 }
3951 
3952 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3953 {
3954 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3955 		skb->ip_summed = CHECKSUM_NONE;
3956 		skb->csum_level = 0;
3957 	}
3958 }
3959 
3960 /* Check if we need to perform checksum complete validation.
3961  *
3962  * Returns true if checksum complete is needed, false otherwise
3963  * (either checksum is unnecessary or zero checksum is allowed).
3964  */
3965 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3966 						  bool zero_okay,
3967 						  __sum16 check)
3968 {
3969 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3970 		skb->csum_valid = 1;
3971 		__skb_decr_checksum_unnecessary(skb);
3972 		return false;
3973 	}
3974 
3975 	return true;
3976 }
3977 
3978 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3979  * in checksum_init.
3980  */
3981 #define CHECKSUM_BREAK 76
3982 
3983 /* Unset checksum-complete
3984  *
3985  * Unset checksum complete can be done when packet is being modified
3986  * (uncompressed for instance) and checksum-complete value is
3987  * invalidated.
3988  */
3989 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3990 {
3991 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3992 		skb->ip_summed = CHECKSUM_NONE;
3993 }
3994 
3995 /* Validate (init) checksum based on checksum complete.
3996  *
3997  * Return values:
3998  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3999  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4000  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4001  *   non-zero: value of invalid checksum
4002  *
4003  */
4004 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4005 						       bool complete,
4006 						       __wsum psum)
4007 {
4008 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4009 		if (!csum_fold(csum_add(psum, skb->csum))) {
4010 			skb->csum_valid = 1;
4011 			return 0;
4012 		}
4013 	}
4014 
4015 	skb->csum = psum;
4016 
4017 	if (complete || skb->len <= CHECKSUM_BREAK) {
4018 		__sum16 csum;
4019 
4020 		csum = __skb_checksum_complete(skb);
4021 		skb->csum_valid = !csum;
4022 		return csum;
4023 	}
4024 
4025 	return 0;
4026 }
4027 
4028 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4029 {
4030 	return 0;
4031 }
4032 
4033 /* Perform checksum validate (init). Note that this is a macro since we only
4034  * want to calculate the pseudo header which is an input function if necessary.
4035  * First we try to validate without any computation (checksum unnecessary) and
4036  * then calculate based on checksum complete calling the function to compute
4037  * pseudo header.
4038  *
4039  * Return values:
4040  *   0: checksum is validated or try to in skb_checksum_complete
4041  *   non-zero: value of invalid checksum
4042  */
4043 #define __skb_checksum_validate(skb, proto, complete,			\
4044 				zero_okay, check, compute_pseudo)	\
4045 ({									\
4046 	__sum16 __ret = 0;						\
4047 	skb->csum_valid = 0;						\
4048 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4049 		__ret = __skb_checksum_validate_complete(skb,		\
4050 				complete, compute_pseudo(skb, proto));	\
4051 	__ret;								\
4052 })
4053 
4054 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4055 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4056 
4057 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4058 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4059 
4060 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4061 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4062 
4063 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4064 					 compute_pseudo)		\
4065 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4066 
4067 #define skb_checksum_simple_validate(skb)				\
4068 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4069 
4070 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4071 {
4072 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4073 }
4074 
4075 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4076 {
4077 	skb->csum = ~pseudo;
4078 	skb->ip_summed = CHECKSUM_COMPLETE;
4079 }
4080 
4081 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4082 do {									\
4083 	if (__skb_checksum_convert_check(skb))				\
4084 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4085 } while (0)
4086 
4087 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4088 					      u16 start, u16 offset)
4089 {
4090 	skb->ip_summed = CHECKSUM_PARTIAL;
4091 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4092 	skb->csum_offset = offset - start;
4093 }
4094 
4095 /* Update skbuf and packet to reflect the remote checksum offload operation.
4096  * When called, ptr indicates the starting point for skb->csum when
4097  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4098  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4099  */
4100 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4101 				       int start, int offset, bool nopartial)
4102 {
4103 	__wsum delta;
4104 
4105 	if (!nopartial) {
4106 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4107 		return;
4108 	}
4109 
4110 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4111 		__skb_checksum_complete(skb);
4112 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4113 	}
4114 
4115 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4116 
4117 	/* Adjust skb->csum since we changed the packet */
4118 	skb->csum = csum_add(skb->csum, delta);
4119 }
4120 
4121 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4122 {
4123 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4124 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4125 #else
4126 	return NULL;
4127 #endif
4128 }
4129 
4130 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4131 {
4132 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4133 	return skb->_nfct;
4134 #else
4135 	return 0UL;
4136 #endif
4137 }
4138 
4139 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4140 {
4141 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4142 	skb->_nfct = nfct;
4143 #endif
4144 }
4145 
4146 #ifdef CONFIG_SKB_EXTENSIONS
4147 enum skb_ext_id {
4148 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4149 	SKB_EXT_BRIDGE_NF,
4150 #endif
4151 #ifdef CONFIG_XFRM
4152 	SKB_EXT_SEC_PATH,
4153 #endif
4154 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4155 	TC_SKB_EXT,
4156 #endif
4157 #if IS_ENABLED(CONFIG_MPTCP)
4158 	SKB_EXT_MPTCP,
4159 #endif
4160 	SKB_EXT_NUM, /* must be last */
4161 };
4162 
4163 /**
4164  *	struct skb_ext - sk_buff extensions
4165  *	@refcnt: 1 on allocation, deallocated on 0
4166  *	@offset: offset to add to @data to obtain extension address
4167  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4168  *	@data: start of extension data, variable sized
4169  *
4170  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4171  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4172  */
4173 struct skb_ext {
4174 	refcount_t refcnt;
4175 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4176 	u8 chunks;		/* same */
4177 	char data[] __aligned(8);
4178 };
4179 
4180 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4181 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4182 		    struct skb_ext *ext);
4183 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4184 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4185 void __skb_ext_put(struct skb_ext *ext);
4186 
4187 static inline void skb_ext_put(struct sk_buff *skb)
4188 {
4189 	if (skb->active_extensions)
4190 		__skb_ext_put(skb->extensions);
4191 }
4192 
4193 static inline void __skb_ext_copy(struct sk_buff *dst,
4194 				  const struct sk_buff *src)
4195 {
4196 	dst->active_extensions = src->active_extensions;
4197 
4198 	if (src->active_extensions) {
4199 		struct skb_ext *ext = src->extensions;
4200 
4201 		refcount_inc(&ext->refcnt);
4202 		dst->extensions = ext;
4203 	}
4204 }
4205 
4206 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4207 {
4208 	skb_ext_put(dst);
4209 	__skb_ext_copy(dst, src);
4210 }
4211 
4212 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4213 {
4214 	return !!ext->offset[i];
4215 }
4216 
4217 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4218 {
4219 	return skb->active_extensions & (1 << id);
4220 }
4221 
4222 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4223 {
4224 	if (skb_ext_exist(skb, id))
4225 		__skb_ext_del(skb, id);
4226 }
4227 
4228 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4229 {
4230 	if (skb_ext_exist(skb, id)) {
4231 		struct skb_ext *ext = skb->extensions;
4232 
4233 		return (void *)ext + (ext->offset[id] << 3);
4234 	}
4235 
4236 	return NULL;
4237 }
4238 
4239 static inline void skb_ext_reset(struct sk_buff *skb)
4240 {
4241 	if (unlikely(skb->active_extensions)) {
4242 		__skb_ext_put(skb->extensions);
4243 		skb->active_extensions = 0;
4244 	}
4245 }
4246 
4247 static inline bool skb_has_extensions(struct sk_buff *skb)
4248 {
4249 	return unlikely(skb->active_extensions);
4250 }
4251 #else
4252 static inline void skb_ext_put(struct sk_buff *skb) {}
4253 static inline void skb_ext_reset(struct sk_buff *skb) {}
4254 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4255 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4256 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4257 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4258 #endif /* CONFIG_SKB_EXTENSIONS */
4259 
4260 static inline void nf_reset_ct(struct sk_buff *skb)
4261 {
4262 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4263 	nf_conntrack_put(skb_nfct(skb));
4264 	skb->_nfct = 0;
4265 #endif
4266 }
4267 
4268 static inline void nf_reset_trace(struct sk_buff *skb)
4269 {
4270 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4271 	skb->nf_trace = 0;
4272 #endif
4273 }
4274 
4275 static inline void ipvs_reset(struct sk_buff *skb)
4276 {
4277 #if IS_ENABLED(CONFIG_IP_VS)
4278 	skb->ipvs_property = 0;
4279 #endif
4280 }
4281 
4282 /* Note: This doesn't put any conntrack info in dst. */
4283 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4284 			     bool copy)
4285 {
4286 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4287 	dst->_nfct = src->_nfct;
4288 	nf_conntrack_get(skb_nfct(src));
4289 #endif
4290 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4291 	if (copy)
4292 		dst->nf_trace = src->nf_trace;
4293 #endif
4294 }
4295 
4296 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4297 {
4298 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4299 	nf_conntrack_put(skb_nfct(dst));
4300 #endif
4301 	__nf_copy(dst, src, true);
4302 }
4303 
4304 #ifdef CONFIG_NETWORK_SECMARK
4305 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4306 {
4307 	to->secmark = from->secmark;
4308 }
4309 
4310 static inline void skb_init_secmark(struct sk_buff *skb)
4311 {
4312 	skb->secmark = 0;
4313 }
4314 #else
4315 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4316 { }
4317 
4318 static inline void skb_init_secmark(struct sk_buff *skb)
4319 { }
4320 #endif
4321 
4322 static inline int secpath_exists(const struct sk_buff *skb)
4323 {
4324 #ifdef CONFIG_XFRM
4325 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4326 #else
4327 	return 0;
4328 #endif
4329 }
4330 
4331 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4332 {
4333 	return !skb->destructor &&
4334 		!secpath_exists(skb) &&
4335 		!skb_nfct(skb) &&
4336 		!skb->_skb_refdst &&
4337 		!skb_has_frag_list(skb);
4338 }
4339 
4340 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4341 {
4342 	skb->queue_mapping = queue_mapping;
4343 }
4344 
4345 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4346 {
4347 	return skb->queue_mapping;
4348 }
4349 
4350 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4351 {
4352 	to->queue_mapping = from->queue_mapping;
4353 }
4354 
4355 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4356 {
4357 	skb->queue_mapping = rx_queue + 1;
4358 }
4359 
4360 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4361 {
4362 	return skb->queue_mapping - 1;
4363 }
4364 
4365 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4366 {
4367 	return skb->queue_mapping != 0;
4368 }
4369 
4370 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4371 {
4372 	skb->dst_pending_confirm = val;
4373 }
4374 
4375 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4376 {
4377 	return skb->dst_pending_confirm != 0;
4378 }
4379 
4380 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4381 {
4382 #ifdef CONFIG_XFRM
4383 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4384 #else
4385 	return NULL;
4386 #endif
4387 }
4388 
4389 /* Keeps track of mac header offset relative to skb->head.
4390  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4391  * For non-tunnel skb it points to skb_mac_header() and for
4392  * tunnel skb it points to outer mac header.
4393  * Keeps track of level of encapsulation of network headers.
4394  */
4395 struct skb_gso_cb {
4396 	union {
4397 		int	mac_offset;
4398 		int	data_offset;
4399 	};
4400 	int	encap_level;
4401 	__wsum	csum;
4402 	__u16	csum_start;
4403 };
4404 #define SKB_GSO_CB_OFFSET	32
4405 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4406 
4407 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4408 {
4409 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4410 		SKB_GSO_CB(inner_skb)->mac_offset;
4411 }
4412 
4413 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4414 {
4415 	int new_headroom, headroom;
4416 	int ret;
4417 
4418 	headroom = skb_headroom(skb);
4419 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4420 	if (ret)
4421 		return ret;
4422 
4423 	new_headroom = skb_headroom(skb);
4424 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4425 	return 0;
4426 }
4427 
4428 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4429 {
4430 	/* Do not update partial checksums if remote checksum is enabled. */
4431 	if (skb->remcsum_offload)
4432 		return;
4433 
4434 	SKB_GSO_CB(skb)->csum = res;
4435 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4436 }
4437 
4438 /* Compute the checksum for a gso segment. First compute the checksum value
4439  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4440  * then add in skb->csum (checksum from csum_start to end of packet).
4441  * skb->csum and csum_start are then updated to reflect the checksum of the
4442  * resultant packet starting from the transport header-- the resultant checksum
4443  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4444  * header.
4445  */
4446 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4447 {
4448 	unsigned char *csum_start = skb_transport_header(skb);
4449 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4450 	__wsum partial = SKB_GSO_CB(skb)->csum;
4451 
4452 	SKB_GSO_CB(skb)->csum = res;
4453 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4454 
4455 	return csum_fold(csum_partial(csum_start, plen, partial));
4456 }
4457 
4458 static inline bool skb_is_gso(const struct sk_buff *skb)
4459 {
4460 	return skb_shinfo(skb)->gso_size;
4461 }
4462 
4463 /* Note: Should be called only if skb_is_gso(skb) is true */
4464 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4465 {
4466 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4467 }
4468 
4469 /* Note: Should be called only if skb_is_gso(skb) is true */
4470 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4471 {
4472 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4473 }
4474 
4475 /* Note: Should be called only if skb_is_gso(skb) is true */
4476 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4477 {
4478 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4479 }
4480 
4481 static inline void skb_gso_reset(struct sk_buff *skb)
4482 {
4483 	skb_shinfo(skb)->gso_size = 0;
4484 	skb_shinfo(skb)->gso_segs = 0;
4485 	skb_shinfo(skb)->gso_type = 0;
4486 }
4487 
4488 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4489 					 u16 increment)
4490 {
4491 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4492 		return;
4493 	shinfo->gso_size += increment;
4494 }
4495 
4496 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4497 					 u16 decrement)
4498 {
4499 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4500 		return;
4501 	shinfo->gso_size -= decrement;
4502 }
4503 
4504 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4505 
4506 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4507 {
4508 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4509 	 * wanted then gso_type will be set. */
4510 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4511 
4512 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4513 	    unlikely(shinfo->gso_type == 0)) {
4514 		__skb_warn_lro_forwarding(skb);
4515 		return true;
4516 	}
4517 	return false;
4518 }
4519 
4520 static inline void skb_forward_csum(struct sk_buff *skb)
4521 {
4522 	/* Unfortunately we don't support this one.  Any brave souls? */
4523 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4524 		skb->ip_summed = CHECKSUM_NONE;
4525 }
4526 
4527 /**
4528  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4529  * @skb: skb to check
4530  *
4531  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4532  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4533  * use this helper, to document places where we make this assertion.
4534  */
4535 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4536 {
4537 #ifdef DEBUG
4538 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4539 #endif
4540 }
4541 
4542 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4543 
4544 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4545 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4546 				     unsigned int transport_len,
4547 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4548 
4549 /**
4550  * skb_head_is_locked - Determine if the skb->head is locked down
4551  * @skb: skb to check
4552  *
4553  * The head on skbs build around a head frag can be removed if they are
4554  * not cloned.  This function returns true if the skb head is locked down
4555  * due to either being allocated via kmalloc, or by being a clone with
4556  * multiple references to the head.
4557  */
4558 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4559 {
4560 	return !skb->head_frag || skb_cloned(skb);
4561 }
4562 
4563 /* Local Checksum Offload.
4564  * Compute outer checksum based on the assumption that the
4565  * inner checksum will be offloaded later.
4566  * See Documentation/networking/checksum-offloads.rst for
4567  * explanation of how this works.
4568  * Fill in outer checksum adjustment (e.g. with sum of outer
4569  * pseudo-header) before calling.
4570  * Also ensure that inner checksum is in linear data area.
4571  */
4572 static inline __wsum lco_csum(struct sk_buff *skb)
4573 {
4574 	unsigned char *csum_start = skb_checksum_start(skb);
4575 	unsigned char *l4_hdr = skb_transport_header(skb);
4576 	__wsum partial;
4577 
4578 	/* Start with complement of inner checksum adjustment */
4579 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4580 						    skb->csum_offset));
4581 
4582 	/* Add in checksum of our headers (incl. outer checksum
4583 	 * adjustment filled in by caller) and return result.
4584 	 */
4585 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4586 }
4587 
4588 static inline bool skb_is_redirected(const struct sk_buff *skb)
4589 {
4590 #ifdef CONFIG_NET_REDIRECT
4591 	return skb->redirected;
4592 #else
4593 	return false;
4594 #endif
4595 }
4596 
4597 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4598 {
4599 #ifdef CONFIG_NET_REDIRECT
4600 	skb->redirected = 1;
4601 	skb->from_ingress = from_ingress;
4602 	if (skb->from_ingress)
4603 		skb->tstamp = 0;
4604 #endif
4605 }
4606 
4607 static inline void skb_reset_redirect(struct sk_buff *skb)
4608 {
4609 #ifdef CONFIG_NET_REDIRECT
4610 	skb->redirected = 0;
4611 #endif
4612 }
4613 
4614 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4615 				       const u64 kcov_handle)
4616 {
4617 #ifdef CONFIG_KCOV
4618 	skb->kcov_handle = kcov_handle;
4619 #endif
4620 }
4621 
4622 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4623 {
4624 #ifdef CONFIG_KCOV
4625 	return skb->kcov_handle;
4626 #else
4627 	return 0;
4628 #endif
4629 }
4630 
4631 #endif	/* __KERNEL__ */
4632 #endif	/* _LINUX_SKBUFF_H */
4633