1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/bug.h> 21 #include <linux/cache.h> 22 #include <linux/rbtree.h> 23 #include <linux/socket.h> 24 #include <linux/refcount.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <net/flow_dissector.h> 39 #include <linux/splice.h> 40 #include <linux/in6.h> 41 #include <linux/if_packet.h> 42 #include <net/flow.h> 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct net_device; 242 struct scatterlist; 243 struct pipe_inode_info; 244 struct iov_iter; 245 struct napi_struct; 246 247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 248 struct nf_conntrack { 249 atomic_t use; 250 }; 251 #endif 252 253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 254 struct nf_bridge_info { 255 refcount_t use; 256 enum { 257 BRNF_PROTO_UNCHANGED, 258 BRNF_PROTO_8021Q, 259 BRNF_PROTO_PPPOE 260 } orig_proto:8; 261 u8 pkt_otherhost:1; 262 u8 in_prerouting:1; 263 u8 bridged_dnat:1; 264 __u16 frag_max_size; 265 struct net_device *physindev; 266 267 /* always valid & non-NULL from FORWARD on, for physdev match */ 268 struct net_device *physoutdev; 269 union { 270 /* prerouting: detect dnat in orig/reply direction */ 271 __be32 ipv4_daddr; 272 struct in6_addr ipv6_daddr; 273 274 /* after prerouting + nat detected: store original source 275 * mac since neigh resolution overwrites it, only used while 276 * skb is out in neigh layer. 277 */ 278 char neigh_header[8]; 279 }; 280 }; 281 #endif 282 283 struct sk_buff_head { 284 /* These two members must be first. */ 285 struct sk_buff *next; 286 struct sk_buff *prev; 287 288 __u32 qlen; 289 spinlock_t lock; 290 }; 291 292 struct sk_buff; 293 294 /* To allow 64K frame to be packed as single skb without frag_list we 295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 296 * buffers which do not start on a page boundary. 297 * 298 * Since GRO uses frags we allocate at least 16 regardless of page 299 * size. 300 */ 301 #if (65536/PAGE_SIZE + 1) < 16 302 #define MAX_SKB_FRAGS 16UL 303 #else 304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 305 #endif 306 extern int sysctl_max_skb_frags; 307 308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 309 * segment using its current segmentation instead. 310 */ 311 #define GSO_BY_FRAGS 0xFFFF 312 313 typedef struct skb_frag_struct skb_frag_t; 314 315 struct skb_frag_struct { 316 struct { 317 struct page *p; 318 } page; 319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 320 __u32 page_offset; 321 __u32 size; 322 #else 323 __u16 page_offset; 324 __u16 size; 325 #endif 326 }; 327 328 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 329 { 330 return frag->size; 331 } 332 333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 334 { 335 frag->size = size; 336 } 337 338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 339 { 340 frag->size += delta; 341 } 342 343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 344 { 345 frag->size -= delta; 346 } 347 348 static inline bool skb_frag_must_loop(struct page *p) 349 { 350 #if defined(CONFIG_HIGHMEM) 351 if (PageHighMem(p)) 352 return true; 353 #endif 354 return false; 355 } 356 357 /** 358 * skb_frag_foreach_page - loop over pages in a fragment 359 * 360 * @f: skb frag to operate on 361 * @f_off: offset from start of f->page.p 362 * @f_len: length from f_off to loop over 363 * @p: (temp var) current page 364 * @p_off: (temp var) offset from start of current page, 365 * non-zero only on first page. 366 * @p_len: (temp var) length in current page, 367 * < PAGE_SIZE only on first and last page. 368 * @copied: (temp var) length so far, excluding current p_len. 369 * 370 * A fragment can hold a compound page, in which case per-page 371 * operations, notably kmap_atomic, must be called for each 372 * regular page. 373 */ 374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 376 p_off = (f_off) & (PAGE_SIZE - 1), \ 377 p_len = skb_frag_must_loop(p) ? \ 378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 379 copied = 0; \ 380 copied < f_len; \ 381 copied += p_len, p++, p_off = 0, \ 382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 383 384 #define HAVE_HW_TIME_STAMP 385 386 /** 387 * struct skb_shared_hwtstamps - hardware time stamps 388 * @hwtstamp: hardware time stamp transformed into duration 389 * since arbitrary point in time 390 * 391 * Software time stamps generated by ktime_get_real() are stored in 392 * skb->tstamp. 393 * 394 * hwtstamps can only be compared against other hwtstamps from 395 * the same device. 396 * 397 * This structure is attached to packets as part of the 398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 399 */ 400 struct skb_shared_hwtstamps { 401 ktime_t hwtstamp; 402 }; 403 404 /* Definitions for tx_flags in struct skb_shared_info */ 405 enum { 406 /* generate hardware time stamp */ 407 SKBTX_HW_TSTAMP = 1 << 0, 408 409 /* generate software time stamp when queueing packet to NIC */ 410 SKBTX_SW_TSTAMP = 1 << 1, 411 412 /* device driver is going to provide hardware time stamp */ 413 SKBTX_IN_PROGRESS = 1 << 2, 414 415 /* device driver supports TX zero-copy buffers */ 416 SKBTX_DEV_ZEROCOPY = 1 << 3, 417 418 /* generate wifi status information (where possible) */ 419 SKBTX_WIFI_STATUS = 1 << 4, 420 421 /* This indicates at least one fragment might be overwritten 422 * (as in vmsplice(), sendfile() ...) 423 * If we need to compute a TX checksum, we'll need to copy 424 * all frags to avoid possible bad checksum 425 */ 426 SKBTX_SHARED_FRAG = 1 << 5, 427 428 /* generate software time stamp when entering packet scheduling */ 429 SKBTX_SCHED_TSTAMP = 1 << 6, 430 }; 431 432 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 433 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 434 SKBTX_SCHED_TSTAMP) 435 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 436 437 /* 438 * The callback notifies userspace to release buffers when skb DMA is done in 439 * lower device, the skb last reference should be 0 when calling this. 440 * The zerocopy_success argument is true if zero copy transmit occurred, 441 * false on data copy or out of memory error caused by data copy attempt. 442 * The ctx field is used to track device context. 443 * The desc field is used to track userspace buffer index. 444 */ 445 struct ubuf_info { 446 void (*callback)(struct ubuf_info *, bool zerocopy_success); 447 union { 448 struct { 449 unsigned long desc; 450 void *ctx; 451 }; 452 struct { 453 u32 id; 454 u16 len; 455 u16 zerocopy:1; 456 u32 bytelen; 457 }; 458 }; 459 refcount_t refcnt; 460 461 struct mmpin { 462 struct user_struct *user; 463 unsigned int num_pg; 464 } mmp; 465 }; 466 467 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 468 469 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 470 void mm_unaccount_pinned_pages(struct mmpin *mmp); 471 472 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 473 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 474 struct ubuf_info *uarg); 475 476 static inline void sock_zerocopy_get(struct ubuf_info *uarg) 477 { 478 refcount_inc(&uarg->refcnt); 479 } 480 481 void sock_zerocopy_put(struct ubuf_info *uarg); 482 void sock_zerocopy_put_abort(struct ubuf_info *uarg); 483 484 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 485 486 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 487 struct msghdr *msg, int len, 488 struct ubuf_info *uarg); 489 490 /* This data is invariant across clones and lives at 491 * the end of the header data, ie. at skb->end. 492 */ 493 struct skb_shared_info { 494 __u8 __unused; 495 __u8 meta_len; 496 __u8 nr_frags; 497 __u8 tx_flags; 498 unsigned short gso_size; 499 /* Warning: this field is not always filled in (UFO)! */ 500 unsigned short gso_segs; 501 struct sk_buff *frag_list; 502 struct skb_shared_hwtstamps hwtstamps; 503 unsigned int gso_type; 504 u32 tskey; 505 506 /* 507 * Warning : all fields before dataref are cleared in __alloc_skb() 508 */ 509 atomic_t dataref; 510 511 /* Intermediate layers must ensure that destructor_arg 512 * remains valid until skb destructor */ 513 void * destructor_arg; 514 515 /* must be last field, see pskb_expand_head() */ 516 skb_frag_t frags[MAX_SKB_FRAGS]; 517 }; 518 519 /* We divide dataref into two halves. The higher 16 bits hold references 520 * to the payload part of skb->data. The lower 16 bits hold references to 521 * the entire skb->data. A clone of a headerless skb holds the length of 522 * the header in skb->hdr_len. 523 * 524 * All users must obey the rule that the skb->data reference count must be 525 * greater than or equal to the payload reference count. 526 * 527 * Holding a reference to the payload part means that the user does not 528 * care about modifications to the header part of skb->data. 529 */ 530 #define SKB_DATAREF_SHIFT 16 531 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 532 533 534 enum { 535 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 536 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 537 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 538 }; 539 540 enum { 541 SKB_GSO_TCPV4 = 1 << 0, 542 543 /* This indicates the skb is from an untrusted source. */ 544 SKB_GSO_DODGY = 1 << 1, 545 546 /* This indicates the tcp segment has CWR set. */ 547 SKB_GSO_TCP_ECN = 1 << 2, 548 549 SKB_GSO_TCP_FIXEDID = 1 << 3, 550 551 SKB_GSO_TCPV6 = 1 << 4, 552 553 SKB_GSO_FCOE = 1 << 5, 554 555 SKB_GSO_GRE = 1 << 6, 556 557 SKB_GSO_GRE_CSUM = 1 << 7, 558 559 SKB_GSO_IPXIP4 = 1 << 8, 560 561 SKB_GSO_IPXIP6 = 1 << 9, 562 563 SKB_GSO_UDP_TUNNEL = 1 << 10, 564 565 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 566 567 SKB_GSO_PARTIAL = 1 << 12, 568 569 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 570 571 SKB_GSO_SCTP = 1 << 14, 572 573 SKB_GSO_ESP = 1 << 15, 574 575 SKB_GSO_UDP = 1 << 16, 576 }; 577 578 #if BITS_PER_LONG > 32 579 #define NET_SKBUFF_DATA_USES_OFFSET 1 580 #endif 581 582 #ifdef NET_SKBUFF_DATA_USES_OFFSET 583 typedef unsigned int sk_buff_data_t; 584 #else 585 typedef unsigned char *sk_buff_data_t; 586 #endif 587 588 /** 589 * struct sk_buff - socket buffer 590 * @next: Next buffer in list 591 * @prev: Previous buffer in list 592 * @tstamp: Time we arrived/left 593 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 594 * @sk: Socket we are owned by 595 * @dev: Device we arrived on/are leaving by 596 * @cb: Control buffer. Free for use by every layer. Put private vars here 597 * @_skb_refdst: destination entry (with norefcount bit) 598 * @sp: the security path, used for xfrm 599 * @len: Length of actual data 600 * @data_len: Data length 601 * @mac_len: Length of link layer header 602 * @hdr_len: writable header length of cloned skb 603 * @csum: Checksum (must include start/offset pair) 604 * @csum_start: Offset from skb->head where checksumming should start 605 * @csum_offset: Offset from csum_start where checksum should be stored 606 * @priority: Packet queueing priority 607 * @ignore_df: allow local fragmentation 608 * @cloned: Head may be cloned (check refcnt to be sure) 609 * @ip_summed: Driver fed us an IP checksum 610 * @nohdr: Payload reference only, must not modify header 611 * @pkt_type: Packet class 612 * @fclone: skbuff clone status 613 * @ipvs_property: skbuff is owned by ipvs 614 * @tc_skip_classify: do not classify packet. set by IFB device 615 * @tc_at_ingress: used within tc_classify to distinguish in/egress 616 * @tc_redirected: packet was redirected by a tc action 617 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 618 * @peeked: this packet has been seen already, so stats have been 619 * done for it, don't do them again 620 * @nf_trace: netfilter packet trace flag 621 * @protocol: Packet protocol from driver 622 * @destructor: Destruct function 623 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 624 * @_nfct: Associated connection, if any (with nfctinfo bits) 625 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 626 * @skb_iif: ifindex of device we arrived on 627 * @tc_index: Traffic control index 628 * @hash: the packet hash 629 * @queue_mapping: Queue mapping for multiqueue devices 630 * @xmit_more: More SKBs are pending for this queue 631 * @ndisc_nodetype: router type (from link layer) 632 * @ooo_okay: allow the mapping of a socket to a queue to be changed 633 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 634 * ports. 635 * @sw_hash: indicates hash was computed in software stack 636 * @wifi_acked_valid: wifi_acked was set 637 * @wifi_acked: whether frame was acked on wifi or not 638 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 639 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 640 * @dst_pending_confirm: need to confirm neighbour 641 * @napi_id: id of the NAPI struct this skb came from 642 * @secmark: security marking 643 * @mark: Generic packet mark 644 * @vlan_proto: vlan encapsulation protocol 645 * @vlan_tci: vlan tag control information 646 * @inner_protocol: Protocol (encapsulation) 647 * @inner_transport_header: Inner transport layer header (encapsulation) 648 * @inner_network_header: Network layer header (encapsulation) 649 * @inner_mac_header: Link layer header (encapsulation) 650 * @transport_header: Transport layer header 651 * @network_header: Network layer header 652 * @mac_header: Link layer header 653 * @tail: Tail pointer 654 * @end: End pointer 655 * @head: Head of buffer 656 * @data: Data head pointer 657 * @truesize: Buffer size 658 * @users: User count - see {datagram,tcp}.c 659 */ 660 661 struct sk_buff { 662 union { 663 struct { 664 /* These two members must be first. */ 665 struct sk_buff *next; 666 struct sk_buff *prev; 667 668 union { 669 struct net_device *dev; 670 /* Some protocols might use this space to store information, 671 * while device pointer would be NULL. 672 * UDP receive path is one user. 673 */ 674 unsigned long dev_scratch; 675 int ip_defrag_offset; 676 }; 677 }; 678 struct rb_node rbnode; /* used in netem & tcp stack */ 679 }; 680 struct sock *sk; 681 682 union { 683 ktime_t tstamp; 684 u64 skb_mstamp; 685 }; 686 /* 687 * This is the control buffer. It is free to use for every 688 * layer. Please put your private variables there. If you 689 * want to keep them across layers you have to do a skb_clone() 690 * first. This is owned by whoever has the skb queued ATM. 691 */ 692 char cb[48] __aligned(8); 693 694 union { 695 struct { 696 unsigned long _skb_refdst; 697 void (*destructor)(struct sk_buff *skb); 698 }; 699 struct list_head tcp_tsorted_anchor; 700 }; 701 702 #ifdef CONFIG_XFRM 703 struct sec_path *sp; 704 #endif 705 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 706 unsigned long _nfct; 707 #endif 708 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 709 struct nf_bridge_info *nf_bridge; 710 #endif 711 unsigned int len, 712 data_len; 713 __u16 mac_len, 714 hdr_len; 715 716 /* Following fields are _not_ copied in __copy_skb_header() 717 * Note that queue_mapping is here mostly to fill a hole. 718 */ 719 __u16 queue_mapping; 720 721 /* if you move cloned around you also must adapt those constants */ 722 #ifdef __BIG_ENDIAN_BITFIELD 723 #define CLONED_MASK (1 << 7) 724 #else 725 #define CLONED_MASK 1 726 #endif 727 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 728 729 __u8 __cloned_offset[0]; 730 __u8 cloned:1, 731 nohdr:1, 732 fclone:2, 733 peeked:1, 734 head_frag:1, 735 xmit_more:1, 736 __unused:1; /* one bit hole */ 737 738 /* fields enclosed in headers_start/headers_end are copied 739 * using a single memcpy() in __copy_skb_header() 740 */ 741 /* private: */ 742 __u32 headers_start[0]; 743 /* public: */ 744 745 /* if you move pkt_type around you also must adapt those constants */ 746 #ifdef __BIG_ENDIAN_BITFIELD 747 #define PKT_TYPE_MAX (7 << 5) 748 #else 749 #define PKT_TYPE_MAX 7 750 #endif 751 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 752 753 __u8 __pkt_type_offset[0]; 754 __u8 pkt_type:3; 755 __u8 pfmemalloc:1; 756 __u8 ignore_df:1; 757 758 __u8 nf_trace:1; 759 __u8 ip_summed:2; 760 __u8 ooo_okay:1; 761 __u8 l4_hash:1; 762 __u8 sw_hash:1; 763 __u8 wifi_acked_valid:1; 764 __u8 wifi_acked:1; 765 766 __u8 no_fcs:1; 767 /* Indicates the inner headers are valid in the skbuff. */ 768 __u8 encapsulation:1; 769 __u8 encap_hdr_csum:1; 770 __u8 csum_valid:1; 771 __u8 csum_complete_sw:1; 772 __u8 csum_level:2; 773 __u8 csum_not_inet:1; 774 775 __u8 dst_pending_confirm:1; 776 #ifdef CONFIG_IPV6_NDISC_NODETYPE 777 __u8 ndisc_nodetype:2; 778 #endif 779 __u8 ipvs_property:1; 780 __u8 inner_protocol_type:1; 781 __u8 remcsum_offload:1; 782 #ifdef CONFIG_NET_SWITCHDEV 783 __u8 offload_fwd_mark:1; 784 __u8 offload_mr_fwd_mark:1; 785 #endif 786 #ifdef CONFIG_NET_CLS_ACT 787 __u8 tc_skip_classify:1; 788 __u8 tc_at_ingress:1; 789 __u8 tc_redirected:1; 790 __u8 tc_from_ingress:1; 791 #endif 792 793 #ifdef CONFIG_NET_SCHED 794 __u16 tc_index; /* traffic control index */ 795 #endif 796 797 union { 798 __wsum csum; 799 struct { 800 __u16 csum_start; 801 __u16 csum_offset; 802 }; 803 }; 804 __u32 priority; 805 int skb_iif; 806 __u32 hash; 807 __be16 vlan_proto; 808 __u16 vlan_tci; 809 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 810 union { 811 unsigned int napi_id; 812 unsigned int sender_cpu; 813 }; 814 #endif 815 #ifdef CONFIG_NETWORK_SECMARK 816 __u32 secmark; 817 #endif 818 819 union { 820 __u32 mark; 821 __u32 reserved_tailroom; 822 }; 823 824 union { 825 __be16 inner_protocol; 826 __u8 inner_ipproto; 827 }; 828 829 __u16 inner_transport_header; 830 __u16 inner_network_header; 831 __u16 inner_mac_header; 832 833 __be16 protocol; 834 __u16 transport_header; 835 __u16 network_header; 836 __u16 mac_header; 837 838 /* private: */ 839 __u32 headers_end[0]; 840 /* public: */ 841 842 /* These elements must be at the end, see alloc_skb() for details. */ 843 sk_buff_data_t tail; 844 sk_buff_data_t end; 845 unsigned char *head, 846 *data; 847 unsigned int truesize; 848 refcount_t users; 849 }; 850 851 #ifdef __KERNEL__ 852 /* 853 * Handling routines are only of interest to the kernel 854 */ 855 #include <linux/slab.h> 856 857 858 #define SKB_ALLOC_FCLONE 0x01 859 #define SKB_ALLOC_RX 0x02 860 #define SKB_ALLOC_NAPI 0x04 861 862 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 863 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 864 { 865 return unlikely(skb->pfmemalloc); 866 } 867 868 /* 869 * skb might have a dst pointer attached, refcounted or not. 870 * _skb_refdst low order bit is set if refcount was _not_ taken 871 */ 872 #define SKB_DST_NOREF 1UL 873 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 874 875 #define SKB_NFCT_PTRMASK ~(7UL) 876 /** 877 * skb_dst - returns skb dst_entry 878 * @skb: buffer 879 * 880 * Returns skb dst_entry, regardless of reference taken or not. 881 */ 882 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 883 { 884 /* If refdst was not refcounted, check we still are in a 885 * rcu_read_lock section 886 */ 887 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 888 !rcu_read_lock_held() && 889 !rcu_read_lock_bh_held()); 890 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 891 } 892 893 /** 894 * skb_dst_set - sets skb dst 895 * @skb: buffer 896 * @dst: dst entry 897 * 898 * Sets skb dst, assuming a reference was taken on dst and should 899 * be released by skb_dst_drop() 900 */ 901 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 902 { 903 skb->_skb_refdst = (unsigned long)dst; 904 } 905 906 /** 907 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 908 * @skb: buffer 909 * @dst: dst entry 910 * 911 * Sets skb dst, assuming a reference was not taken on dst. 912 * If dst entry is cached, we do not take reference and dst_release 913 * will be avoided by refdst_drop. If dst entry is not cached, we take 914 * reference, so that last dst_release can destroy the dst immediately. 915 */ 916 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 917 { 918 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 919 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 920 } 921 922 /** 923 * skb_dst_is_noref - Test if skb dst isn't refcounted 924 * @skb: buffer 925 */ 926 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 927 { 928 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 929 } 930 931 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 932 { 933 return (struct rtable *)skb_dst(skb); 934 } 935 936 /* For mangling skb->pkt_type from user space side from applications 937 * such as nft, tc, etc, we only allow a conservative subset of 938 * possible pkt_types to be set. 939 */ 940 static inline bool skb_pkt_type_ok(u32 ptype) 941 { 942 return ptype <= PACKET_OTHERHOST; 943 } 944 945 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 946 { 947 #ifdef CONFIG_NET_RX_BUSY_POLL 948 return skb->napi_id; 949 #else 950 return 0; 951 #endif 952 } 953 954 /* decrement the reference count and return true if we can free the skb */ 955 static inline bool skb_unref(struct sk_buff *skb) 956 { 957 if (unlikely(!skb)) 958 return false; 959 if (likely(refcount_read(&skb->users) == 1)) 960 smp_rmb(); 961 else if (likely(!refcount_dec_and_test(&skb->users))) 962 return false; 963 964 return true; 965 } 966 967 void skb_release_head_state(struct sk_buff *skb); 968 void kfree_skb(struct sk_buff *skb); 969 void kfree_skb_list(struct sk_buff *segs); 970 void skb_tx_error(struct sk_buff *skb); 971 void consume_skb(struct sk_buff *skb); 972 void __consume_stateless_skb(struct sk_buff *skb); 973 void __kfree_skb(struct sk_buff *skb); 974 extern struct kmem_cache *skbuff_head_cache; 975 976 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 977 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 978 bool *fragstolen, int *delta_truesize); 979 980 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 981 int node); 982 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 983 struct sk_buff *build_skb(void *data, unsigned int frag_size); 984 static inline struct sk_buff *alloc_skb(unsigned int size, 985 gfp_t priority) 986 { 987 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 988 } 989 990 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 991 unsigned long data_len, 992 int max_page_order, 993 int *errcode, 994 gfp_t gfp_mask); 995 996 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 997 struct sk_buff_fclones { 998 struct sk_buff skb1; 999 1000 struct sk_buff skb2; 1001 1002 refcount_t fclone_ref; 1003 }; 1004 1005 /** 1006 * skb_fclone_busy - check if fclone is busy 1007 * @sk: socket 1008 * @skb: buffer 1009 * 1010 * Returns true if skb is a fast clone, and its clone is not freed. 1011 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1012 * so we also check that this didnt happen. 1013 */ 1014 static inline bool skb_fclone_busy(const struct sock *sk, 1015 const struct sk_buff *skb) 1016 { 1017 const struct sk_buff_fclones *fclones; 1018 1019 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1020 1021 return skb->fclone == SKB_FCLONE_ORIG && 1022 refcount_read(&fclones->fclone_ref) > 1 && 1023 fclones->skb2.sk == sk; 1024 } 1025 1026 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1027 gfp_t priority) 1028 { 1029 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1030 } 1031 1032 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1033 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1034 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1035 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1036 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1037 gfp_t gfp_mask, bool fclone); 1038 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1039 gfp_t gfp_mask) 1040 { 1041 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1042 } 1043 1044 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1045 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1046 unsigned int headroom); 1047 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1048 int newtailroom, gfp_t priority); 1049 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1050 int offset, int len); 1051 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1052 int offset, int len); 1053 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1054 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1055 1056 /** 1057 * skb_pad - zero pad the tail of an skb 1058 * @skb: buffer to pad 1059 * @pad: space to pad 1060 * 1061 * Ensure that a buffer is followed by a padding area that is zero 1062 * filled. Used by network drivers which may DMA or transfer data 1063 * beyond the buffer end onto the wire. 1064 * 1065 * May return error in out of memory cases. The skb is freed on error. 1066 */ 1067 static inline int skb_pad(struct sk_buff *skb, int pad) 1068 { 1069 return __skb_pad(skb, pad, true); 1070 } 1071 #define dev_kfree_skb(a) consume_skb(a) 1072 1073 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1074 int getfrag(void *from, char *to, int offset, 1075 int len, int odd, struct sk_buff *skb), 1076 void *from, int length); 1077 1078 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1079 int offset, size_t size); 1080 1081 struct skb_seq_state { 1082 __u32 lower_offset; 1083 __u32 upper_offset; 1084 __u32 frag_idx; 1085 __u32 stepped_offset; 1086 struct sk_buff *root_skb; 1087 struct sk_buff *cur_skb; 1088 __u8 *frag_data; 1089 }; 1090 1091 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1092 unsigned int to, struct skb_seq_state *st); 1093 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1094 struct skb_seq_state *st); 1095 void skb_abort_seq_read(struct skb_seq_state *st); 1096 1097 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1098 unsigned int to, struct ts_config *config); 1099 1100 /* 1101 * Packet hash types specify the type of hash in skb_set_hash. 1102 * 1103 * Hash types refer to the protocol layer addresses which are used to 1104 * construct a packet's hash. The hashes are used to differentiate or identify 1105 * flows of the protocol layer for the hash type. Hash types are either 1106 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1107 * 1108 * Properties of hashes: 1109 * 1110 * 1) Two packets in different flows have different hash values 1111 * 2) Two packets in the same flow should have the same hash value 1112 * 1113 * A hash at a higher layer is considered to be more specific. A driver should 1114 * set the most specific hash possible. 1115 * 1116 * A driver cannot indicate a more specific hash than the layer at which a hash 1117 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1118 * 1119 * A driver may indicate a hash level which is less specific than the 1120 * actual layer the hash was computed on. For instance, a hash computed 1121 * at L4 may be considered an L3 hash. This should only be done if the 1122 * driver can't unambiguously determine that the HW computed the hash at 1123 * the higher layer. Note that the "should" in the second property above 1124 * permits this. 1125 */ 1126 enum pkt_hash_types { 1127 PKT_HASH_TYPE_NONE, /* Undefined type */ 1128 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1129 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1130 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1131 }; 1132 1133 static inline void skb_clear_hash(struct sk_buff *skb) 1134 { 1135 skb->hash = 0; 1136 skb->sw_hash = 0; 1137 skb->l4_hash = 0; 1138 } 1139 1140 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1141 { 1142 if (!skb->l4_hash) 1143 skb_clear_hash(skb); 1144 } 1145 1146 static inline void 1147 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1148 { 1149 skb->l4_hash = is_l4; 1150 skb->sw_hash = is_sw; 1151 skb->hash = hash; 1152 } 1153 1154 static inline void 1155 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1156 { 1157 /* Used by drivers to set hash from HW */ 1158 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1159 } 1160 1161 static inline void 1162 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1163 { 1164 __skb_set_hash(skb, hash, true, is_l4); 1165 } 1166 1167 void __skb_get_hash(struct sk_buff *skb); 1168 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1169 u32 skb_get_poff(const struct sk_buff *skb); 1170 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1171 const struct flow_keys *keys, int hlen); 1172 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1173 void *data, int hlen_proto); 1174 1175 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1176 int thoff, u8 ip_proto) 1177 { 1178 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1179 } 1180 1181 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1182 const struct flow_dissector_key *key, 1183 unsigned int key_count); 1184 1185 bool __skb_flow_dissect(const struct sk_buff *skb, 1186 struct flow_dissector *flow_dissector, 1187 void *target_container, 1188 void *data, __be16 proto, int nhoff, int hlen, 1189 unsigned int flags); 1190 1191 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1192 struct flow_dissector *flow_dissector, 1193 void *target_container, unsigned int flags) 1194 { 1195 return __skb_flow_dissect(skb, flow_dissector, target_container, 1196 NULL, 0, 0, 0, flags); 1197 } 1198 1199 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1200 struct flow_keys *flow, 1201 unsigned int flags) 1202 { 1203 memset(flow, 0, sizeof(*flow)); 1204 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1205 NULL, 0, 0, 0, flags); 1206 } 1207 1208 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, 1209 void *data, __be16 proto, 1210 int nhoff, int hlen, 1211 unsigned int flags) 1212 { 1213 memset(flow, 0, sizeof(*flow)); 1214 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, 1215 data, proto, nhoff, hlen, flags); 1216 } 1217 1218 void 1219 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1220 struct flow_dissector *flow_dissector, 1221 void *target_container); 1222 1223 static inline __u32 skb_get_hash(struct sk_buff *skb) 1224 { 1225 if (!skb->l4_hash && !skb->sw_hash) 1226 __skb_get_hash(skb); 1227 1228 return skb->hash; 1229 } 1230 1231 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1232 { 1233 if (!skb->l4_hash && !skb->sw_hash) { 1234 struct flow_keys keys; 1235 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1236 1237 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1238 } 1239 1240 return skb->hash; 1241 } 1242 1243 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1244 1245 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1246 { 1247 return skb->hash; 1248 } 1249 1250 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1251 { 1252 to->hash = from->hash; 1253 to->sw_hash = from->sw_hash; 1254 to->l4_hash = from->l4_hash; 1255 }; 1256 1257 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1258 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1259 { 1260 return skb->head + skb->end; 1261 } 1262 1263 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1264 { 1265 return skb->end; 1266 } 1267 #else 1268 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1269 { 1270 return skb->end; 1271 } 1272 1273 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1274 { 1275 return skb->end - skb->head; 1276 } 1277 #endif 1278 1279 /* Internal */ 1280 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1281 1282 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1283 { 1284 return &skb_shinfo(skb)->hwtstamps; 1285 } 1286 1287 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1288 { 1289 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1290 1291 return is_zcopy ? skb_uarg(skb) : NULL; 1292 } 1293 1294 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg) 1295 { 1296 if (skb && uarg && !skb_zcopy(skb)) { 1297 sock_zerocopy_get(uarg); 1298 skb_shinfo(skb)->destructor_arg = uarg; 1299 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1300 } 1301 } 1302 1303 /* Release a reference on a zerocopy structure */ 1304 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1305 { 1306 struct ubuf_info *uarg = skb_zcopy(skb); 1307 1308 if (uarg) { 1309 if (uarg->callback == sock_zerocopy_callback) { 1310 uarg->zerocopy = uarg->zerocopy && zerocopy; 1311 sock_zerocopy_put(uarg); 1312 } else { 1313 uarg->callback(uarg, zerocopy); 1314 } 1315 1316 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1317 } 1318 } 1319 1320 /* Abort a zerocopy operation and revert zckey on error in send syscall */ 1321 static inline void skb_zcopy_abort(struct sk_buff *skb) 1322 { 1323 struct ubuf_info *uarg = skb_zcopy(skb); 1324 1325 if (uarg) { 1326 sock_zerocopy_put_abort(uarg); 1327 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1328 } 1329 } 1330 1331 /** 1332 * skb_queue_empty - check if a queue is empty 1333 * @list: queue head 1334 * 1335 * Returns true if the queue is empty, false otherwise. 1336 */ 1337 static inline int skb_queue_empty(const struct sk_buff_head *list) 1338 { 1339 return list->next == (const struct sk_buff *) list; 1340 } 1341 1342 /** 1343 * skb_queue_is_last - check if skb is the last entry in the queue 1344 * @list: queue head 1345 * @skb: buffer 1346 * 1347 * Returns true if @skb is the last buffer on the list. 1348 */ 1349 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1350 const struct sk_buff *skb) 1351 { 1352 return skb->next == (const struct sk_buff *) list; 1353 } 1354 1355 /** 1356 * skb_queue_is_first - check if skb is the first entry in the queue 1357 * @list: queue head 1358 * @skb: buffer 1359 * 1360 * Returns true if @skb is the first buffer on the list. 1361 */ 1362 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1363 const struct sk_buff *skb) 1364 { 1365 return skb->prev == (const struct sk_buff *) list; 1366 } 1367 1368 /** 1369 * skb_queue_next - return the next packet in the queue 1370 * @list: queue head 1371 * @skb: current buffer 1372 * 1373 * Return the next packet in @list after @skb. It is only valid to 1374 * call this if skb_queue_is_last() evaluates to false. 1375 */ 1376 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1377 const struct sk_buff *skb) 1378 { 1379 /* This BUG_ON may seem severe, but if we just return then we 1380 * are going to dereference garbage. 1381 */ 1382 BUG_ON(skb_queue_is_last(list, skb)); 1383 return skb->next; 1384 } 1385 1386 /** 1387 * skb_queue_prev - return the prev packet in the queue 1388 * @list: queue head 1389 * @skb: current buffer 1390 * 1391 * Return the prev packet in @list before @skb. It is only valid to 1392 * call this if skb_queue_is_first() evaluates to false. 1393 */ 1394 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1395 const struct sk_buff *skb) 1396 { 1397 /* This BUG_ON may seem severe, but if we just return then we 1398 * are going to dereference garbage. 1399 */ 1400 BUG_ON(skb_queue_is_first(list, skb)); 1401 return skb->prev; 1402 } 1403 1404 /** 1405 * skb_get - reference buffer 1406 * @skb: buffer to reference 1407 * 1408 * Makes another reference to a socket buffer and returns a pointer 1409 * to the buffer. 1410 */ 1411 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1412 { 1413 refcount_inc(&skb->users); 1414 return skb; 1415 } 1416 1417 /* 1418 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1419 */ 1420 1421 /** 1422 * skb_cloned - is the buffer a clone 1423 * @skb: buffer to check 1424 * 1425 * Returns true if the buffer was generated with skb_clone() and is 1426 * one of multiple shared copies of the buffer. Cloned buffers are 1427 * shared data so must not be written to under normal circumstances. 1428 */ 1429 static inline int skb_cloned(const struct sk_buff *skb) 1430 { 1431 return skb->cloned && 1432 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1433 } 1434 1435 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1436 { 1437 might_sleep_if(gfpflags_allow_blocking(pri)); 1438 1439 if (skb_cloned(skb)) 1440 return pskb_expand_head(skb, 0, 0, pri); 1441 1442 return 0; 1443 } 1444 1445 /** 1446 * skb_header_cloned - is the header a clone 1447 * @skb: buffer to check 1448 * 1449 * Returns true if modifying the header part of the buffer requires 1450 * the data to be copied. 1451 */ 1452 static inline int skb_header_cloned(const struct sk_buff *skb) 1453 { 1454 int dataref; 1455 1456 if (!skb->cloned) 1457 return 0; 1458 1459 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1460 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1461 return dataref != 1; 1462 } 1463 1464 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1465 { 1466 might_sleep_if(gfpflags_allow_blocking(pri)); 1467 1468 if (skb_header_cloned(skb)) 1469 return pskb_expand_head(skb, 0, 0, pri); 1470 1471 return 0; 1472 } 1473 1474 /** 1475 * __skb_header_release - release reference to header 1476 * @skb: buffer to operate on 1477 */ 1478 static inline void __skb_header_release(struct sk_buff *skb) 1479 { 1480 skb->nohdr = 1; 1481 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1482 } 1483 1484 1485 /** 1486 * skb_shared - is the buffer shared 1487 * @skb: buffer to check 1488 * 1489 * Returns true if more than one person has a reference to this 1490 * buffer. 1491 */ 1492 static inline int skb_shared(const struct sk_buff *skb) 1493 { 1494 return refcount_read(&skb->users) != 1; 1495 } 1496 1497 /** 1498 * skb_share_check - check if buffer is shared and if so clone it 1499 * @skb: buffer to check 1500 * @pri: priority for memory allocation 1501 * 1502 * If the buffer is shared the buffer is cloned and the old copy 1503 * drops a reference. A new clone with a single reference is returned. 1504 * If the buffer is not shared the original buffer is returned. When 1505 * being called from interrupt status or with spinlocks held pri must 1506 * be GFP_ATOMIC. 1507 * 1508 * NULL is returned on a memory allocation failure. 1509 */ 1510 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1511 { 1512 might_sleep_if(gfpflags_allow_blocking(pri)); 1513 if (skb_shared(skb)) { 1514 struct sk_buff *nskb = skb_clone(skb, pri); 1515 1516 if (likely(nskb)) 1517 consume_skb(skb); 1518 else 1519 kfree_skb(skb); 1520 skb = nskb; 1521 } 1522 return skb; 1523 } 1524 1525 /* 1526 * Copy shared buffers into a new sk_buff. We effectively do COW on 1527 * packets to handle cases where we have a local reader and forward 1528 * and a couple of other messy ones. The normal one is tcpdumping 1529 * a packet thats being forwarded. 1530 */ 1531 1532 /** 1533 * skb_unshare - make a copy of a shared buffer 1534 * @skb: buffer to check 1535 * @pri: priority for memory allocation 1536 * 1537 * If the socket buffer is a clone then this function creates a new 1538 * copy of the data, drops a reference count on the old copy and returns 1539 * the new copy with the reference count at 1. If the buffer is not a clone 1540 * the original buffer is returned. When called with a spinlock held or 1541 * from interrupt state @pri must be %GFP_ATOMIC 1542 * 1543 * %NULL is returned on a memory allocation failure. 1544 */ 1545 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1546 gfp_t pri) 1547 { 1548 might_sleep_if(gfpflags_allow_blocking(pri)); 1549 if (skb_cloned(skb)) { 1550 struct sk_buff *nskb = skb_copy(skb, pri); 1551 1552 /* Free our shared copy */ 1553 if (likely(nskb)) 1554 consume_skb(skb); 1555 else 1556 kfree_skb(skb); 1557 skb = nskb; 1558 } 1559 return skb; 1560 } 1561 1562 /** 1563 * skb_peek - peek at the head of an &sk_buff_head 1564 * @list_: list to peek at 1565 * 1566 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1567 * be careful with this one. A peek leaves the buffer on the 1568 * list and someone else may run off with it. You must hold 1569 * the appropriate locks or have a private queue to do this. 1570 * 1571 * Returns %NULL for an empty list or a pointer to the head element. 1572 * The reference count is not incremented and the reference is therefore 1573 * volatile. Use with caution. 1574 */ 1575 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1576 { 1577 struct sk_buff *skb = list_->next; 1578 1579 if (skb == (struct sk_buff *)list_) 1580 skb = NULL; 1581 return skb; 1582 } 1583 1584 /** 1585 * skb_peek_next - peek skb following the given one from a queue 1586 * @skb: skb to start from 1587 * @list_: list to peek at 1588 * 1589 * Returns %NULL when the end of the list is met or a pointer to the 1590 * next element. The reference count is not incremented and the 1591 * reference is therefore volatile. Use with caution. 1592 */ 1593 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1594 const struct sk_buff_head *list_) 1595 { 1596 struct sk_buff *next = skb->next; 1597 1598 if (next == (struct sk_buff *)list_) 1599 next = NULL; 1600 return next; 1601 } 1602 1603 /** 1604 * skb_peek_tail - peek at the tail of an &sk_buff_head 1605 * @list_: list to peek at 1606 * 1607 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1608 * be careful with this one. A peek leaves the buffer on the 1609 * list and someone else may run off with it. You must hold 1610 * the appropriate locks or have a private queue to do this. 1611 * 1612 * Returns %NULL for an empty list or a pointer to the tail element. 1613 * The reference count is not incremented and the reference is therefore 1614 * volatile. Use with caution. 1615 */ 1616 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1617 { 1618 struct sk_buff *skb = list_->prev; 1619 1620 if (skb == (struct sk_buff *)list_) 1621 skb = NULL; 1622 return skb; 1623 1624 } 1625 1626 /** 1627 * skb_queue_len - get queue length 1628 * @list_: list to measure 1629 * 1630 * Return the length of an &sk_buff queue. 1631 */ 1632 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1633 { 1634 return list_->qlen; 1635 } 1636 1637 /** 1638 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1639 * @list: queue to initialize 1640 * 1641 * This initializes only the list and queue length aspects of 1642 * an sk_buff_head object. This allows to initialize the list 1643 * aspects of an sk_buff_head without reinitializing things like 1644 * the spinlock. It can also be used for on-stack sk_buff_head 1645 * objects where the spinlock is known to not be used. 1646 */ 1647 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1648 { 1649 list->prev = list->next = (struct sk_buff *)list; 1650 list->qlen = 0; 1651 } 1652 1653 /* 1654 * This function creates a split out lock class for each invocation; 1655 * this is needed for now since a whole lot of users of the skb-queue 1656 * infrastructure in drivers have different locking usage (in hardirq) 1657 * than the networking core (in softirq only). In the long run either the 1658 * network layer or drivers should need annotation to consolidate the 1659 * main types of usage into 3 classes. 1660 */ 1661 static inline void skb_queue_head_init(struct sk_buff_head *list) 1662 { 1663 spin_lock_init(&list->lock); 1664 __skb_queue_head_init(list); 1665 } 1666 1667 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1668 struct lock_class_key *class) 1669 { 1670 skb_queue_head_init(list); 1671 lockdep_set_class(&list->lock, class); 1672 } 1673 1674 /* 1675 * Insert an sk_buff on a list. 1676 * 1677 * The "__skb_xxxx()" functions are the non-atomic ones that 1678 * can only be called with interrupts disabled. 1679 */ 1680 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1681 struct sk_buff_head *list); 1682 static inline void __skb_insert(struct sk_buff *newsk, 1683 struct sk_buff *prev, struct sk_buff *next, 1684 struct sk_buff_head *list) 1685 { 1686 newsk->next = next; 1687 newsk->prev = prev; 1688 next->prev = prev->next = newsk; 1689 list->qlen++; 1690 } 1691 1692 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1693 struct sk_buff *prev, 1694 struct sk_buff *next) 1695 { 1696 struct sk_buff *first = list->next; 1697 struct sk_buff *last = list->prev; 1698 1699 first->prev = prev; 1700 prev->next = first; 1701 1702 last->next = next; 1703 next->prev = last; 1704 } 1705 1706 /** 1707 * skb_queue_splice - join two skb lists, this is designed for stacks 1708 * @list: the new list to add 1709 * @head: the place to add it in the first list 1710 */ 1711 static inline void skb_queue_splice(const struct sk_buff_head *list, 1712 struct sk_buff_head *head) 1713 { 1714 if (!skb_queue_empty(list)) { 1715 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1716 head->qlen += list->qlen; 1717 } 1718 } 1719 1720 /** 1721 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1722 * @list: the new list to add 1723 * @head: the place to add it in the first list 1724 * 1725 * The list at @list is reinitialised 1726 */ 1727 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1728 struct sk_buff_head *head) 1729 { 1730 if (!skb_queue_empty(list)) { 1731 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1732 head->qlen += list->qlen; 1733 __skb_queue_head_init(list); 1734 } 1735 } 1736 1737 /** 1738 * skb_queue_splice_tail - join two skb lists, each list being a queue 1739 * @list: the new list to add 1740 * @head: the place to add it in the first list 1741 */ 1742 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1743 struct sk_buff_head *head) 1744 { 1745 if (!skb_queue_empty(list)) { 1746 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1747 head->qlen += list->qlen; 1748 } 1749 } 1750 1751 /** 1752 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1753 * @list: the new list to add 1754 * @head: the place to add it in the first list 1755 * 1756 * Each of the lists is a queue. 1757 * The list at @list is reinitialised 1758 */ 1759 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1760 struct sk_buff_head *head) 1761 { 1762 if (!skb_queue_empty(list)) { 1763 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1764 head->qlen += list->qlen; 1765 __skb_queue_head_init(list); 1766 } 1767 } 1768 1769 /** 1770 * __skb_queue_after - queue a buffer at the list head 1771 * @list: list to use 1772 * @prev: place after this buffer 1773 * @newsk: buffer to queue 1774 * 1775 * Queue a buffer int the middle of a list. This function takes no locks 1776 * and you must therefore hold required locks before calling it. 1777 * 1778 * A buffer cannot be placed on two lists at the same time. 1779 */ 1780 static inline void __skb_queue_after(struct sk_buff_head *list, 1781 struct sk_buff *prev, 1782 struct sk_buff *newsk) 1783 { 1784 __skb_insert(newsk, prev, prev->next, list); 1785 } 1786 1787 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1788 struct sk_buff_head *list); 1789 1790 static inline void __skb_queue_before(struct sk_buff_head *list, 1791 struct sk_buff *next, 1792 struct sk_buff *newsk) 1793 { 1794 __skb_insert(newsk, next->prev, next, list); 1795 } 1796 1797 /** 1798 * __skb_queue_head - queue a buffer at the list head 1799 * @list: list to use 1800 * @newsk: buffer to queue 1801 * 1802 * Queue a buffer at the start of a list. This function takes no locks 1803 * and you must therefore hold required locks before calling it. 1804 * 1805 * A buffer cannot be placed on two lists at the same time. 1806 */ 1807 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1808 static inline void __skb_queue_head(struct sk_buff_head *list, 1809 struct sk_buff *newsk) 1810 { 1811 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1812 } 1813 1814 /** 1815 * __skb_queue_tail - queue a buffer at the list tail 1816 * @list: list to use 1817 * @newsk: buffer to queue 1818 * 1819 * Queue a buffer at the end of a list. This function takes no locks 1820 * and you must therefore hold required locks before calling it. 1821 * 1822 * A buffer cannot be placed on two lists at the same time. 1823 */ 1824 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1825 static inline void __skb_queue_tail(struct sk_buff_head *list, 1826 struct sk_buff *newsk) 1827 { 1828 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1829 } 1830 1831 /* 1832 * remove sk_buff from list. _Must_ be called atomically, and with 1833 * the list known.. 1834 */ 1835 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1836 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1837 { 1838 struct sk_buff *next, *prev; 1839 1840 list->qlen--; 1841 next = skb->next; 1842 prev = skb->prev; 1843 skb->next = skb->prev = NULL; 1844 next->prev = prev; 1845 prev->next = next; 1846 } 1847 1848 /** 1849 * __skb_dequeue - remove from the head of the queue 1850 * @list: list to dequeue from 1851 * 1852 * Remove the head of the list. This function does not take any locks 1853 * so must be used with appropriate locks held only. The head item is 1854 * returned or %NULL if the list is empty. 1855 */ 1856 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1857 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1858 { 1859 struct sk_buff *skb = skb_peek(list); 1860 if (skb) 1861 __skb_unlink(skb, list); 1862 return skb; 1863 } 1864 1865 /** 1866 * __skb_dequeue_tail - remove from the tail of the queue 1867 * @list: list to dequeue from 1868 * 1869 * Remove the tail of the list. This function does not take any locks 1870 * so must be used with appropriate locks held only. The tail item is 1871 * returned or %NULL if the list is empty. 1872 */ 1873 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1874 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1875 { 1876 struct sk_buff *skb = skb_peek_tail(list); 1877 if (skb) 1878 __skb_unlink(skb, list); 1879 return skb; 1880 } 1881 1882 1883 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1884 { 1885 return skb->data_len; 1886 } 1887 1888 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1889 { 1890 return skb->len - skb->data_len; 1891 } 1892 1893 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 1894 { 1895 unsigned int i, len = 0; 1896 1897 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 1898 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1899 return len; 1900 } 1901 1902 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 1903 { 1904 return skb_headlen(skb) + __skb_pagelen(skb); 1905 } 1906 1907 /** 1908 * __skb_fill_page_desc - initialise a paged fragment in an skb 1909 * @skb: buffer containing fragment to be initialised 1910 * @i: paged fragment index to initialise 1911 * @page: the page to use for this fragment 1912 * @off: the offset to the data with @page 1913 * @size: the length of the data 1914 * 1915 * Initialises the @i'th fragment of @skb to point to &size bytes at 1916 * offset @off within @page. 1917 * 1918 * Does not take any additional reference on the fragment. 1919 */ 1920 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1921 struct page *page, int off, int size) 1922 { 1923 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1924 1925 /* 1926 * Propagate page pfmemalloc to the skb if we can. The problem is 1927 * that not all callers have unique ownership of the page but rely 1928 * on page_is_pfmemalloc doing the right thing(tm). 1929 */ 1930 frag->page.p = page; 1931 frag->page_offset = off; 1932 skb_frag_size_set(frag, size); 1933 1934 page = compound_head(page); 1935 if (page_is_pfmemalloc(page)) 1936 skb->pfmemalloc = true; 1937 } 1938 1939 /** 1940 * skb_fill_page_desc - initialise a paged fragment in an skb 1941 * @skb: buffer containing fragment to be initialised 1942 * @i: paged fragment index to initialise 1943 * @page: the page to use for this fragment 1944 * @off: the offset to the data with @page 1945 * @size: the length of the data 1946 * 1947 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1948 * @skb to point to @size bytes at offset @off within @page. In 1949 * addition updates @skb such that @i is the last fragment. 1950 * 1951 * Does not take any additional reference on the fragment. 1952 */ 1953 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1954 struct page *page, int off, int size) 1955 { 1956 __skb_fill_page_desc(skb, i, page, off, size); 1957 skb_shinfo(skb)->nr_frags = i + 1; 1958 } 1959 1960 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1961 int size, unsigned int truesize); 1962 1963 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1964 unsigned int truesize); 1965 1966 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1967 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1968 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1969 1970 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1971 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1972 { 1973 return skb->head + skb->tail; 1974 } 1975 1976 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1977 { 1978 skb->tail = skb->data - skb->head; 1979 } 1980 1981 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1982 { 1983 skb_reset_tail_pointer(skb); 1984 skb->tail += offset; 1985 } 1986 1987 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1988 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1989 { 1990 return skb->tail; 1991 } 1992 1993 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1994 { 1995 skb->tail = skb->data; 1996 } 1997 1998 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1999 { 2000 skb->tail = skb->data + offset; 2001 } 2002 2003 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2004 2005 /* 2006 * Add data to an sk_buff 2007 */ 2008 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2009 void *skb_put(struct sk_buff *skb, unsigned int len); 2010 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2011 { 2012 void *tmp = skb_tail_pointer(skb); 2013 SKB_LINEAR_ASSERT(skb); 2014 skb->tail += len; 2015 skb->len += len; 2016 return tmp; 2017 } 2018 2019 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2020 { 2021 void *tmp = __skb_put(skb, len); 2022 2023 memset(tmp, 0, len); 2024 return tmp; 2025 } 2026 2027 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2028 unsigned int len) 2029 { 2030 void *tmp = __skb_put(skb, len); 2031 2032 memcpy(tmp, data, len); 2033 return tmp; 2034 } 2035 2036 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2037 { 2038 *(u8 *)__skb_put(skb, 1) = val; 2039 } 2040 2041 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2042 { 2043 void *tmp = skb_put(skb, len); 2044 2045 memset(tmp, 0, len); 2046 2047 return tmp; 2048 } 2049 2050 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2051 unsigned int len) 2052 { 2053 void *tmp = skb_put(skb, len); 2054 2055 memcpy(tmp, data, len); 2056 2057 return tmp; 2058 } 2059 2060 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2061 { 2062 *(u8 *)skb_put(skb, 1) = val; 2063 } 2064 2065 void *skb_push(struct sk_buff *skb, unsigned int len); 2066 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2067 { 2068 skb->data -= len; 2069 skb->len += len; 2070 return skb->data; 2071 } 2072 2073 void *skb_pull(struct sk_buff *skb, unsigned int len); 2074 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2075 { 2076 skb->len -= len; 2077 BUG_ON(skb->len < skb->data_len); 2078 return skb->data += len; 2079 } 2080 2081 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2082 { 2083 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2084 } 2085 2086 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2087 2088 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2089 { 2090 if (len > skb_headlen(skb) && 2091 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2092 return NULL; 2093 skb->len -= len; 2094 return skb->data += len; 2095 } 2096 2097 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2098 { 2099 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2100 } 2101 2102 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 2103 { 2104 if (likely(len <= skb_headlen(skb))) 2105 return 1; 2106 if (unlikely(len > skb->len)) 2107 return 0; 2108 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2109 } 2110 2111 void skb_condense(struct sk_buff *skb); 2112 2113 /** 2114 * skb_headroom - bytes at buffer head 2115 * @skb: buffer to check 2116 * 2117 * Return the number of bytes of free space at the head of an &sk_buff. 2118 */ 2119 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2120 { 2121 return skb->data - skb->head; 2122 } 2123 2124 /** 2125 * skb_tailroom - bytes at buffer end 2126 * @skb: buffer to check 2127 * 2128 * Return the number of bytes of free space at the tail of an sk_buff 2129 */ 2130 static inline int skb_tailroom(const struct sk_buff *skb) 2131 { 2132 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2133 } 2134 2135 /** 2136 * skb_availroom - bytes at buffer end 2137 * @skb: buffer to check 2138 * 2139 * Return the number of bytes of free space at the tail of an sk_buff 2140 * allocated by sk_stream_alloc() 2141 */ 2142 static inline int skb_availroom(const struct sk_buff *skb) 2143 { 2144 if (skb_is_nonlinear(skb)) 2145 return 0; 2146 2147 return skb->end - skb->tail - skb->reserved_tailroom; 2148 } 2149 2150 /** 2151 * skb_reserve - adjust headroom 2152 * @skb: buffer to alter 2153 * @len: bytes to move 2154 * 2155 * Increase the headroom of an empty &sk_buff by reducing the tail 2156 * room. This is only allowed for an empty buffer. 2157 */ 2158 static inline void skb_reserve(struct sk_buff *skb, int len) 2159 { 2160 skb->data += len; 2161 skb->tail += len; 2162 } 2163 2164 /** 2165 * skb_tailroom_reserve - adjust reserved_tailroom 2166 * @skb: buffer to alter 2167 * @mtu: maximum amount of headlen permitted 2168 * @needed_tailroom: minimum amount of reserved_tailroom 2169 * 2170 * Set reserved_tailroom so that headlen can be as large as possible but 2171 * not larger than mtu and tailroom cannot be smaller than 2172 * needed_tailroom. 2173 * The required headroom should already have been reserved before using 2174 * this function. 2175 */ 2176 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2177 unsigned int needed_tailroom) 2178 { 2179 SKB_LINEAR_ASSERT(skb); 2180 if (mtu < skb_tailroom(skb) - needed_tailroom) 2181 /* use at most mtu */ 2182 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2183 else 2184 /* use up to all available space */ 2185 skb->reserved_tailroom = needed_tailroom; 2186 } 2187 2188 #define ENCAP_TYPE_ETHER 0 2189 #define ENCAP_TYPE_IPPROTO 1 2190 2191 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2192 __be16 protocol) 2193 { 2194 skb->inner_protocol = protocol; 2195 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2196 } 2197 2198 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2199 __u8 ipproto) 2200 { 2201 skb->inner_ipproto = ipproto; 2202 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2203 } 2204 2205 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2206 { 2207 skb->inner_mac_header = skb->mac_header; 2208 skb->inner_network_header = skb->network_header; 2209 skb->inner_transport_header = skb->transport_header; 2210 } 2211 2212 static inline void skb_reset_mac_len(struct sk_buff *skb) 2213 { 2214 skb->mac_len = skb->network_header - skb->mac_header; 2215 } 2216 2217 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2218 *skb) 2219 { 2220 return skb->head + skb->inner_transport_header; 2221 } 2222 2223 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2224 { 2225 return skb_inner_transport_header(skb) - skb->data; 2226 } 2227 2228 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2229 { 2230 skb->inner_transport_header = skb->data - skb->head; 2231 } 2232 2233 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2234 const int offset) 2235 { 2236 skb_reset_inner_transport_header(skb); 2237 skb->inner_transport_header += offset; 2238 } 2239 2240 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2241 { 2242 return skb->head + skb->inner_network_header; 2243 } 2244 2245 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2246 { 2247 skb->inner_network_header = skb->data - skb->head; 2248 } 2249 2250 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2251 const int offset) 2252 { 2253 skb_reset_inner_network_header(skb); 2254 skb->inner_network_header += offset; 2255 } 2256 2257 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2258 { 2259 return skb->head + skb->inner_mac_header; 2260 } 2261 2262 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2263 { 2264 skb->inner_mac_header = skb->data - skb->head; 2265 } 2266 2267 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2268 const int offset) 2269 { 2270 skb_reset_inner_mac_header(skb); 2271 skb->inner_mac_header += offset; 2272 } 2273 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2274 { 2275 return skb->transport_header != (typeof(skb->transport_header))~0U; 2276 } 2277 2278 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2279 { 2280 return skb->head + skb->transport_header; 2281 } 2282 2283 static inline void skb_reset_transport_header(struct sk_buff *skb) 2284 { 2285 skb->transport_header = skb->data - skb->head; 2286 } 2287 2288 static inline void skb_set_transport_header(struct sk_buff *skb, 2289 const int offset) 2290 { 2291 skb_reset_transport_header(skb); 2292 skb->transport_header += offset; 2293 } 2294 2295 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2296 { 2297 return skb->head + skb->network_header; 2298 } 2299 2300 static inline void skb_reset_network_header(struct sk_buff *skb) 2301 { 2302 skb->network_header = skb->data - skb->head; 2303 } 2304 2305 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2306 { 2307 skb_reset_network_header(skb); 2308 skb->network_header += offset; 2309 } 2310 2311 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2312 { 2313 return skb->head + skb->mac_header; 2314 } 2315 2316 static inline int skb_mac_offset(const struct sk_buff *skb) 2317 { 2318 return skb_mac_header(skb) - skb->data; 2319 } 2320 2321 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2322 { 2323 return skb->network_header - skb->mac_header; 2324 } 2325 2326 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2327 { 2328 return skb->mac_header != (typeof(skb->mac_header))~0U; 2329 } 2330 2331 static inline void skb_reset_mac_header(struct sk_buff *skb) 2332 { 2333 skb->mac_header = skb->data - skb->head; 2334 } 2335 2336 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2337 { 2338 skb_reset_mac_header(skb); 2339 skb->mac_header += offset; 2340 } 2341 2342 static inline void skb_pop_mac_header(struct sk_buff *skb) 2343 { 2344 skb->mac_header = skb->network_header; 2345 } 2346 2347 static inline void skb_probe_transport_header(struct sk_buff *skb, 2348 const int offset_hint) 2349 { 2350 struct flow_keys keys; 2351 2352 if (skb_transport_header_was_set(skb)) 2353 return; 2354 else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) 2355 skb_set_transport_header(skb, keys.control.thoff); 2356 else 2357 skb_set_transport_header(skb, offset_hint); 2358 } 2359 2360 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2361 { 2362 if (skb_mac_header_was_set(skb)) { 2363 const unsigned char *old_mac = skb_mac_header(skb); 2364 2365 skb_set_mac_header(skb, -skb->mac_len); 2366 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2367 } 2368 } 2369 2370 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2371 { 2372 return skb->csum_start - skb_headroom(skb); 2373 } 2374 2375 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2376 { 2377 return skb->head + skb->csum_start; 2378 } 2379 2380 static inline int skb_transport_offset(const struct sk_buff *skb) 2381 { 2382 return skb_transport_header(skb) - skb->data; 2383 } 2384 2385 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2386 { 2387 return skb->transport_header - skb->network_header; 2388 } 2389 2390 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2391 { 2392 return skb->inner_transport_header - skb->inner_network_header; 2393 } 2394 2395 static inline int skb_network_offset(const struct sk_buff *skb) 2396 { 2397 return skb_network_header(skb) - skb->data; 2398 } 2399 2400 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2401 { 2402 return skb_inner_network_header(skb) - skb->data; 2403 } 2404 2405 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2406 { 2407 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2408 } 2409 2410 /* 2411 * CPUs often take a performance hit when accessing unaligned memory 2412 * locations. The actual performance hit varies, it can be small if the 2413 * hardware handles it or large if we have to take an exception and fix it 2414 * in software. 2415 * 2416 * Since an ethernet header is 14 bytes network drivers often end up with 2417 * the IP header at an unaligned offset. The IP header can be aligned by 2418 * shifting the start of the packet by 2 bytes. Drivers should do this 2419 * with: 2420 * 2421 * skb_reserve(skb, NET_IP_ALIGN); 2422 * 2423 * The downside to this alignment of the IP header is that the DMA is now 2424 * unaligned. On some architectures the cost of an unaligned DMA is high 2425 * and this cost outweighs the gains made by aligning the IP header. 2426 * 2427 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2428 * to be overridden. 2429 */ 2430 #ifndef NET_IP_ALIGN 2431 #define NET_IP_ALIGN 2 2432 #endif 2433 2434 /* 2435 * The networking layer reserves some headroom in skb data (via 2436 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2437 * the header has to grow. In the default case, if the header has to grow 2438 * 32 bytes or less we avoid the reallocation. 2439 * 2440 * Unfortunately this headroom changes the DMA alignment of the resulting 2441 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2442 * on some architectures. An architecture can override this value, 2443 * perhaps setting it to a cacheline in size (since that will maintain 2444 * cacheline alignment of the DMA). It must be a power of 2. 2445 * 2446 * Various parts of the networking layer expect at least 32 bytes of 2447 * headroom, you should not reduce this. 2448 * 2449 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2450 * to reduce average number of cache lines per packet. 2451 * get_rps_cpus() for example only access one 64 bytes aligned block : 2452 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2453 */ 2454 #ifndef NET_SKB_PAD 2455 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2456 #endif 2457 2458 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2459 2460 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2461 { 2462 if (unlikely(skb_is_nonlinear(skb))) { 2463 WARN_ON(1); 2464 return; 2465 } 2466 skb->len = len; 2467 skb_set_tail_pointer(skb, len); 2468 } 2469 2470 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2471 { 2472 __skb_set_length(skb, len); 2473 } 2474 2475 void skb_trim(struct sk_buff *skb, unsigned int len); 2476 2477 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2478 { 2479 if (skb->data_len) 2480 return ___pskb_trim(skb, len); 2481 __skb_trim(skb, len); 2482 return 0; 2483 } 2484 2485 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2486 { 2487 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2488 } 2489 2490 /** 2491 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2492 * @skb: buffer to alter 2493 * @len: new length 2494 * 2495 * This is identical to pskb_trim except that the caller knows that 2496 * the skb is not cloned so we should never get an error due to out- 2497 * of-memory. 2498 */ 2499 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2500 { 2501 int err = pskb_trim(skb, len); 2502 BUG_ON(err); 2503 } 2504 2505 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2506 { 2507 unsigned int diff = len - skb->len; 2508 2509 if (skb_tailroom(skb) < diff) { 2510 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2511 GFP_ATOMIC); 2512 if (ret) 2513 return ret; 2514 } 2515 __skb_set_length(skb, len); 2516 return 0; 2517 } 2518 2519 /** 2520 * skb_orphan - orphan a buffer 2521 * @skb: buffer to orphan 2522 * 2523 * If a buffer currently has an owner then we call the owner's 2524 * destructor function and make the @skb unowned. The buffer continues 2525 * to exist but is no longer charged to its former owner. 2526 */ 2527 static inline void skb_orphan(struct sk_buff *skb) 2528 { 2529 if (skb->destructor) { 2530 skb->destructor(skb); 2531 skb->destructor = NULL; 2532 skb->sk = NULL; 2533 } else { 2534 BUG_ON(skb->sk); 2535 } 2536 } 2537 2538 /** 2539 * skb_orphan_frags - orphan the frags contained in a buffer 2540 * @skb: buffer to orphan frags from 2541 * @gfp_mask: allocation mask for replacement pages 2542 * 2543 * For each frag in the SKB which needs a destructor (i.e. has an 2544 * owner) create a copy of that frag and release the original 2545 * page by calling the destructor. 2546 */ 2547 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2548 { 2549 if (likely(!skb_zcopy(skb))) 2550 return 0; 2551 if (skb_uarg(skb)->callback == sock_zerocopy_callback) 2552 return 0; 2553 return skb_copy_ubufs(skb, gfp_mask); 2554 } 2555 2556 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2557 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2558 { 2559 if (likely(!skb_zcopy(skb))) 2560 return 0; 2561 return skb_copy_ubufs(skb, gfp_mask); 2562 } 2563 2564 /** 2565 * __skb_queue_purge - empty a list 2566 * @list: list to empty 2567 * 2568 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2569 * the list and one reference dropped. This function does not take the 2570 * list lock and the caller must hold the relevant locks to use it. 2571 */ 2572 void skb_queue_purge(struct sk_buff_head *list); 2573 static inline void __skb_queue_purge(struct sk_buff_head *list) 2574 { 2575 struct sk_buff *skb; 2576 while ((skb = __skb_dequeue(list)) != NULL) 2577 kfree_skb(skb); 2578 } 2579 2580 void skb_rbtree_purge(struct rb_root *root); 2581 2582 void *netdev_alloc_frag(unsigned int fragsz); 2583 2584 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2585 gfp_t gfp_mask); 2586 2587 /** 2588 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2589 * @dev: network device to receive on 2590 * @length: length to allocate 2591 * 2592 * Allocate a new &sk_buff and assign it a usage count of one. The 2593 * buffer has unspecified headroom built in. Users should allocate 2594 * the headroom they think they need without accounting for the 2595 * built in space. The built in space is used for optimisations. 2596 * 2597 * %NULL is returned if there is no free memory. Although this function 2598 * allocates memory it can be called from an interrupt. 2599 */ 2600 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2601 unsigned int length) 2602 { 2603 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2604 } 2605 2606 /* legacy helper around __netdev_alloc_skb() */ 2607 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2608 gfp_t gfp_mask) 2609 { 2610 return __netdev_alloc_skb(NULL, length, gfp_mask); 2611 } 2612 2613 /* legacy helper around netdev_alloc_skb() */ 2614 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2615 { 2616 return netdev_alloc_skb(NULL, length); 2617 } 2618 2619 2620 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2621 unsigned int length, gfp_t gfp) 2622 { 2623 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2624 2625 if (NET_IP_ALIGN && skb) 2626 skb_reserve(skb, NET_IP_ALIGN); 2627 return skb; 2628 } 2629 2630 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2631 unsigned int length) 2632 { 2633 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2634 } 2635 2636 static inline void skb_free_frag(void *addr) 2637 { 2638 page_frag_free(addr); 2639 } 2640 2641 void *napi_alloc_frag(unsigned int fragsz); 2642 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2643 unsigned int length, gfp_t gfp_mask); 2644 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2645 unsigned int length) 2646 { 2647 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2648 } 2649 void napi_consume_skb(struct sk_buff *skb, int budget); 2650 2651 void __kfree_skb_flush(void); 2652 void __kfree_skb_defer(struct sk_buff *skb); 2653 2654 /** 2655 * __dev_alloc_pages - allocate page for network Rx 2656 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2657 * @order: size of the allocation 2658 * 2659 * Allocate a new page. 2660 * 2661 * %NULL is returned if there is no free memory. 2662 */ 2663 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2664 unsigned int order) 2665 { 2666 /* This piece of code contains several assumptions. 2667 * 1. This is for device Rx, therefor a cold page is preferred. 2668 * 2. The expectation is the user wants a compound page. 2669 * 3. If requesting a order 0 page it will not be compound 2670 * due to the check to see if order has a value in prep_new_page 2671 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2672 * code in gfp_to_alloc_flags that should be enforcing this. 2673 */ 2674 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2675 2676 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2677 } 2678 2679 static inline struct page *dev_alloc_pages(unsigned int order) 2680 { 2681 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2682 } 2683 2684 /** 2685 * __dev_alloc_page - allocate a page for network Rx 2686 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2687 * 2688 * Allocate a new page. 2689 * 2690 * %NULL is returned if there is no free memory. 2691 */ 2692 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2693 { 2694 return __dev_alloc_pages(gfp_mask, 0); 2695 } 2696 2697 static inline struct page *dev_alloc_page(void) 2698 { 2699 return dev_alloc_pages(0); 2700 } 2701 2702 /** 2703 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2704 * @page: The page that was allocated from skb_alloc_page 2705 * @skb: The skb that may need pfmemalloc set 2706 */ 2707 static inline void skb_propagate_pfmemalloc(struct page *page, 2708 struct sk_buff *skb) 2709 { 2710 if (page_is_pfmemalloc(page)) 2711 skb->pfmemalloc = true; 2712 } 2713 2714 /** 2715 * skb_frag_page - retrieve the page referred to by a paged fragment 2716 * @frag: the paged fragment 2717 * 2718 * Returns the &struct page associated with @frag. 2719 */ 2720 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2721 { 2722 return frag->page.p; 2723 } 2724 2725 /** 2726 * __skb_frag_ref - take an addition reference on a paged fragment. 2727 * @frag: the paged fragment 2728 * 2729 * Takes an additional reference on the paged fragment @frag. 2730 */ 2731 static inline void __skb_frag_ref(skb_frag_t *frag) 2732 { 2733 get_page(skb_frag_page(frag)); 2734 } 2735 2736 /** 2737 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2738 * @skb: the buffer 2739 * @f: the fragment offset. 2740 * 2741 * Takes an additional reference on the @f'th paged fragment of @skb. 2742 */ 2743 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2744 { 2745 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2746 } 2747 2748 /** 2749 * __skb_frag_unref - release a reference on a paged fragment. 2750 * @frag: the paged fragment 2751 * 2752 * Releases a reference on the paged fragment @frag. 2753 */ 2754 static inline void __skb_frag_unref(skb_frag_t *frag) 2755 { 2756 put_page(skb_frag_page(frag)); 2757 } 2758 2759 /** 2760 * skb_frag_unref - release a reference on a paged fragment of an skb. 2761 * @skb: the buffer 2762 * @f: the fragment offset 2763 * 2764 * Releases a reference on the @f'th paged fragment of @skb. 2765 */ 2766 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2767 { 2768 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2769 } 2770 2771 /** 2772 * skb_frag_address - gets the address of the data contained in a paged fragment 2773 * @frag: the paged fragment buffer 2774 * 2775 * Returns the address of the data within @frag. The page must already 2776 * be mapped. 2777 */ 2778 static inline void *skb_frag_address(const skb_frag_t *frag) 2779 { 2780 return page_address(skb_frag_page(frag)) + frag->page_offset; 2781 } 2782 2783 /** 2784 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2785 * @frag: the paged fragment buffer 2786 * 2787 * Returns the address of the data within @frag. Checks that the page 2788 * is mapped and returns %NULL otherwise. 2789 */ 2790 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2791 { 2792 void *ptr = page_address(skb_frag_page(frag)); 2793 if (unlikely(!ptr)) 2794 return NULL; 2795 2796 return ptr + frag->page_offset; 2797 } 2798 2799 /** 2800 * __skb_frag_set_page - sets the page contained in a paged fragment 2801 * @frag: the paged fragment 2802 * @page: the page to set 2803 * 2804 * Sets the fragment @frag to contain @page. 2805 */ 2806 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2807 { 2808 frag->page.p = page; 2809 } 2810 2811 /** 2812 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2813 * @skb: the buffer 2814 * @f: the fragment offset 2815 * @page: the page to set 2816 * 2817 * Sets the @f'th fragment of @skb to contain @page. 2818 */ 2819 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2820 struct page *page) 2821 { 2822 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2823 } 2824 2825 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2826 2827 /** 2828 * skb_frag_dma_map - maps a paged fragment via the DMA API 2829 * @dev: the device to map the fragment to 2830 * @frag: the paged fragment to map 2831 * @offset: the offset within the fragment (starting at the 2832 * fragment's own offset) 2833 * @size: the number of bytes to map 2834 * @dir: the direction of the mapping (``PCI_DMA_*``) 2835 * 2836 * Maps the page associated with @frag to @device. 2837 */ 2838 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2839 const skb_frag_t *frag, 2840 size_t offset, size_t size, 2841 enum dma_data_direction dir) 2842 { 2843 return dma_map_page(dev, skb_frag_page(frag), 2844 frag->page_offset + offset, size, dir); 2845 } 2846 2847 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2848 gfp_t gfp_mask) 2849 { 2850 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2851 } 2852 2853 2854 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2855 gfp_t gfp_mask) 2856 { 2857 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2858 } 2859 2860 2861 /** 2862 * skb_clone_writable - is the header of a clone writable 2863 * @skb: buffer to check 2864 * @len: length up to which to write 2865 * 2866 * Returns true if modifying the header part of the cloned buffer 2867 * does not requires the data to be copied. 2868 */ 2869 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2870 { 2871 return !skb_header_cloned(skb) && 2872 skb_headroom(skb) + len <= skb->hdr_len; 2873 } 2874 2875 static inline int skb_try_make_writable(struct sk_buff *skb, 2876 unsigned int write_len) 2877 { 2878 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2879 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2880 } 2881 2882 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2883 int cloned) 2884 { 2885 int delta = 0; 2886 2887 if (headroom > skb_headroom(skb)) 2888 delta = headroom - skb_headroom(skb); 2889 2890 if (delta || cloned) 2891 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2892 GFP_ATOMIC); 2893 return 0; 2894 } 2895 2896 /** 2897 * skb_cow - copy header of skb when it is required 2898 * @skb: buffer to cow 2899 * @headroom: needed headroom 2900 * 2901 * If the skb passed lacks sufficient headroom or its data part 2902 * is shared, data is reallocated. If reallocation fails, an error 2903 * is returned and original skb is not changed. 2904 * 2905 * The result is skb with writable area skb->head...skb->tail 2906 * and at least @headroom of space at head. 2907 */ 2908 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2909 { 2910 return __skb_cow(skb, headroom, skb_cloned(skb)); 2911 } 2912 2913 /** 2914 * skb_cow_head - skb_cow but only making the head writable 2915 * @skb: buffer to cow 2916 * @headroom: needed headroom 2917 * 2918 * This function is identical to skb_cow except that we replace the 2919 * skb_cloned check by skb_header_cloned. It should be used when 2920 * you only need to push on some header and do not need to modify 2921 * the data. 2922 */ 2923 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2924 { 2925 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2926 } 2927 2928 /** 2929 * skb_padto - pad an skbuff up to a minimal size 2930 * @skb: buffer to pad 2931 * @len: minimal length 2932 * 2933 * Pads up a buffer to ensure the trailing bytes exist and are 2934 * blanked. If the buffer already contains sufficient data it 2935 * is untouched. Otherwise it is extended. Returns zero on 2936 * success. The skb is freed on error. 2937 */ 2938 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2939 { 2940 unsigned int size = skb->len; 2941 if (likely(size >= len)) 2942 return 0; 2943 return skb_pad(skb, len - size); 2944 } 2945 2946 /** 2947 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2948 * @skb: buffer to pad 2949 * @len: minimal length 2950 * @free_on_error: free buffer on error 2951 * 2952 * Pads up a buffer to ensure the trailing bytes exist and are 2953 * blanked. If the buffer already contains sufficient data it 2954 * is untouched. Otherwise it is extended. Returns zero on 2955 * success. The skb is freed on error if @free_on_error is true. 2956 */ 2957 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 2958 bool free_on_error) 2959 { 2960 unsigned int size = skb->len; 2961 2962 if (unlikely(size < len)) { 2963 len -= size; 2964 if (__skb_pad(skb, len, free_on_error)) 2965 return -ENOMEM; 2966 __skb_put(skb, len); 2967 } 2968 return 0; 2969 } 2970 2971 /** 2972 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2973 * @skb: buffer to pad 2974 * @len: minimal length 2975 * 2976 * Pads up a buffer to ensure the trailing bytes exist and are 2977 * blanked. If the buffer already contains sufficient data it 2978 * is untouched. Otherwise it is extended. Returns zero on 2979 * success. The skb is freed on error. 2980 */ 2981 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2982 { 2983 return __skb_put_padto(skb, len, true); 2984 } 2985 2986 static inline int skb_add_data(struct sk_buff *skb, 2987 struct iov_iter *from, int copy) 2988 { 2989 const int off = skb->len; 2990 2991 if (skb->ip_summed == CHECKSUM_NONE) { 2992 __wsum csum = 0; 2993 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 2994 &csum, from)) { 2995 skb->csum = csum_block_add(skb->csum, csum, off); 2996 return 0; 2997 } 2998 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 2999 return 0; 3000 3001 __skb_trim(skb, off); 3002 return -EFAULT; 3003 } 3004 3005 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3006 const struct page *page, int off) 3007 { 3008 if (skb_zcopy(skb)) 3009 return false; 3010 if (i) { 3011 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 3012 3013 return page == skb_frag_page(frag) && 3014 off == frag->page_offset + skb_frag_size(frag); 3015 } 3016 return false; 3017 } 3018 3019 static inline int __skb_linearize(struct sk_buff *skb) 3020 { 3021 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3022 } 3023 3024 /** 3025 * skb_linearize - convert paged skb to linear one 3026 * @skb: buffer to linarize 3027 * 3028 * If there is no free memory -ENOMEM is returned, otherwise zero 3029 * is returned and the old skb data released. 3030 */ 3031 static inline int skb_linearize(struct sk_buff *skb) 3032 { 3033 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3034 } 3035 3036 /** 3037 * skb_has_shared_frag - can any frag be overwritten 3038 * @skb: buffer to test 3039 * 3040 * Return true if the skb has at least one frag that might be modified 3041 * by an external entity (as in vmsplice()/sendfile()) 3042 */ 3043 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3044 { 3045 return skb_is_nonlinear(skb) && 3046 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3047 } 3048 3049 /** 3050 * skb_linearize_cow - make sure skb is linear and writable 3051 * @skb: buffer to process 3052 * 3053 * If there is no free memory -ENOMEM is returned, otherwise zero 3054 * is returned and the old skb data released. 3055 */ 3056 static inline int skb_linearize_cow(struct sk_buff *skb) 3057 { 3058 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3059 __skb_linearize(skb) : 0; 3060 } 3061 3062 static __always_inline void 3063 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3064 unsigned int off) 3065 { 3066 if (skb->ip_summed == CHECKSUM_COMPLETE) 3067 skb->csum = csum_block_sub(skb->csum, 3068 csum_partial(start, len, 0), off); 3069 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3070 skb_checksum_start_offset(skb) < 0) 3071 skb->ip_summed = CHECKSUM_NONE; 3072 } 3073 3074 /** 3075 * skb_postpull_rcsum - update checksum for received skb after pull 3076 * @skb: buffer to update 3077 * @start: start of data before pull 3078 * @len: length of data pulled 3079 * 3080 * After doing a pull on a received packet, you need to call this to 3081 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3082 * CHECKSUM_NONE so that it can be recomputed from scratch. 3083 */ 3084 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3085 const void *start, unsigned int len) 3086 { 3087 __skb_postpull_rcsum(skb, start, len, 0); 3088 } 3089 3090 static __always_inline void 3091 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3092 unsigned int off) 3093 { 3094 if (skb->ip_summed == CHECKSUM_COMPLETE) 3095 skb->csum = csum_block_add(skb->csum, 3096 csum_partial(start, len, 0), off); 3097 } 3098 3099 /** 3100 * skb_postpush_rcsum - update checksum for received skb after push 3101 * @skb: buffer to update 3102 * @start: start of data after push 3103 * @len: length of data pushed 3104 * 3105 * After doing a push on a received packet, you need to call this to 3106 * update the CHECKSUM_COMPLETE checksum. 3107 */ 3108 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3109 const void *start, unsigned int len) 3110 { 3111 __skb_postpush_rcsum(skb, start, len, 0); 3112 } 3113 3114 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3115 3116 /** 3117 * skb_push_rcsum - push skb and update receive checksum 3118 * @skb: buffer to update 3119 * @len: length of data pulled 3120 * 3121 * This function performs an skb_push on the packet and updates 3122 * the CHECKSUM_COMPLETE checksum. It should be used on 3123 * receive path processing instead of skb_push unless you know 3124 * that the checksum difference is zero (e.g., a valid IP header) 3125 * or you are setting ip_summed to CHECKSUM_NONE. 3126 */ 3127 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3128 { 3129 skb_push(skb, len); 3130 skb_postpush_rcsum(skb, skb->data, len); 3131 return skb->data; 3132 } 3133 3134 /** 3135 * pskb_trim_rcsum - trim received skb and update checksum 3136 * @skb: buffer to trim 3137 * @len: new length 3138 * 3139 * This is exactly the same as pskb_trim except that it ensures the 3140 * checksum of received packets are still valid after the operation. 3141 */ 3142 3143 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3144 { 3145 if (likely(len >= skb->len)) 3146 return 0; 3147 if (skb->ip_summed == CHECKSUM_COMPLETE) 3148 skb->ip_summed = CHECKSUM_NONE; 3149 return __pskb_trim(skb, len); 3150 } 3151 3152 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3153 { 3154 if (skb->ip_summed == CHECKSUM_COMPLETE) 3155 skb->ip_summed = CHECKSUM_NONE; 3156 __skb_trim(skb, len); 3157 return 0; 3158 } 3159 3160 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3161 { 3162 if (skb->ip_summed == CHECKSUM_COMPLETE) 3163 skb->ip_summed = CHECKSUM_NONE; 3164 return __skb_grow(skb, len); 3165 } 3166 3167 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3168 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3169 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3170 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3171 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3172 3173 #define skb_queue_walk(queue, skb) \ 3174 for (skb = (queue)->next; \ 3175 skb != (struct sk_buff *)(queue); \ 3176 skb = skb->next) 3177 3178 #define skb_queue_walk_safe(queue, skb, tmp) \ 3179 for (skb = (queue)->next, tmp = skb->next; \ 3180 skb != (struct sk_buff *)(queue); \ 3181 skb = tmp, tmp = skb->next) 3182 3183 #define skb_queue_walk_from(queue, skb) \ 3184 for (; skb != (struct sk_buff *)(queue); \ 3185 skb = skb->next) 3186 3187 #define skb_rbtree_walk(skb, root) \ 3188 for (skb = skb_rb_first(root); skb != NULL; \ 3189 skb = skb_rb_next(skb)) 3190 3191 #define skb_rbtree_walk_from(skb) \ 3192 for (; skb != NULL; \ 3193 skb = skb_rb_next(skb)) 3194 3195 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3196 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3197 skb = tmp) 3198 3199 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3200 for (tmp = skb->next; \ 3201 skb != (struct sk_buff *)(queue); \ 3202 skb = tmp, tmp = skb->next) 3203 3204 #define skb_queue_reverse_walk(queue, skb) \ 3205 for (skb = (queue)->prev; \ 3206 skb != (struct sk_buff *)(queue); \ 3207 skb = skb->prev) 3208 3209 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3210 for (skb = (queue)->prev, tmp = skb->prev; \ 3211 skb != (struct sk_buff *)(queue); \ 3212 skb = tmp, tmp = skb->prev) 3213 3214 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3215 for (tmp = skb->prev; \ 3216 skb != (struct sk_buff *)(queue); \ 3217 skb = tmp, tmp = skb->prev) 3218 3219 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3220 { 3221 return skb_shinfo(skb)->frag_list != NULL; 3222 } 3223 3224 static inline void skb_frag_list_init(struct sk_buff *skb) 3225 { 3226 skb_shinfo(skb)->frag_list = NULL; 3227 } 3228 3229 #define skb_walk_frags(skb, iter) \ 3230 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3231 3232 3233 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3234 const struct sk_buff *skb); 3235 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3236 struct sk_buff_head *queue, 3237 unsigned int flags, 3238 void (*destructor)(struct sock *sk, 3239 struct sk_buff *skb), 3240 int *peeked, int *off, int *err, 3241 struct sk_buff **last); 3242 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3243 void (*destructor)(struct sock *sk, 3244 struct sk_buff *skb), 3245 int *peeked, int *off, int *err, 3246 struct sk_buff **last); 3247 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3248 void (*destructor)(struct sock *sk, 3249 struct sk_buff *skb), 3250 int *peeked, int *off, int *err); 3251 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3252 int *err); 3253 __poll_t datagram_poll(struct file *file, struct socket *sock, 3254 struct poll_table_struct *wait); 3255 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3256 struct iov_iter *to, int size); 3257 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3258 struct msghdr *msg, int size) 3259 { 3260 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3261 } 3262 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3263 struct msghdr *msg); 3264 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3265 struct iov_iter *from, int len); 3266 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3267 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3268 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3269 static inline void skb_free_datagram_locked(struct sock *sk, 3270 struct sk_buff *skb) 3271 { 3272 __skb_free_datagram_locked(sk, skb, 0); 3273 } 3274 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3275 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3276 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3277 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3278 int len, __wsum csum); 3279 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3280 struct pipe_inode_info *pipe, unsigned int len, 3281 unsigned int flags); 3282 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3283 int len); 3284 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3285 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3286 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3287 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3288 int len, int hlen); 3289 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3290 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3291 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3292 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3293 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3294 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3295 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3296 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3297 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3298 int skb_vlan_pop(struct sk_buff *skb); 3299 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3300 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3301 gfp_t gfp); 3302 3303 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3304 { 3305 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3306 } 3307 3308 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3309 { 3310 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3311 } 3312 3313 struct skb_checksum_ops { 3314 __wsum (*update)(const void *mem, int len, __wsum wsum); 3315 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3316 }; 3317 3318 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3319 3320 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3321 __wsum csum, const struct skb_checksum_ops *ops); 3322 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3323 __wsum csum); 3324 3325 static inline void * __must_check 3326 __skb_header_pointer(const struct sk_buff *skb, int offset, 3327 int len, void *data, int hlen, void *buffer) 3328 { 3329 if (hlen - offset >= len) 3330 return data + offset; 3331 3332 if (!skb || 3333 skb_copy_bits(skb, offset, buffer, len) < 0) 3334 return NULL; 3335 3336 return buffer; 3337 } 3338 3339 static inline void * __must_check 3340 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3341 { 3342 return __skb_header_pointer(skb, offset, len, skb->data, 3343 skb_headlen(skb), buffer); 3344 } 3345 3346 /** 3347 * skb_needs_linearize - check if we need to linearize a given skb 3348 * depending on the given device features. 3349 * @skb: socket buffer to check 3350 * @features: net device features 3351 * 3352 * Returns true if either: 3353 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3354 * 2. skb is fragmented and the device does not support SG. 3355 */ 3356 static inline bool skb_needs_linearize(struct sk_buff *skb, 3357 netdev_features_t features) 3358 { 3359 return skb_is_nonlinear(skb) && 3360 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3361 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3362 } 3363 3364 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3365 void *to, 3366 const unsigned int len) 3367 { 3368 memcpy(to, skb->data, len); 3369 } 3370 3371 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3372 const int offset, void *to, 3373 const unsigned int len) 3374 { 3375 memcpy(to, skb->data + offset, len); 3376 } 3377 3378 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3379 const void *from, 3380 const unsigned int len) 3381 { 3382 memcpy(skb->data, from, len); 3383 } 3384 3385 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3386 const int offset, 3387 const void *from, 3388 const unsigned int len) 3389 { 3390 memcpy(skb->data + offset, from, len); 3391 } 3392 3393 void skb_init(void); 3394 3395 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3396 { 3397 return skb->tstamp; 3398 } 3399 3400 /** 3401 * skb_get_timestamp - get timestamp from a skb 3402 * @skb: skb to get stamp from 3403 * @stamp: pointer to struct timeval to store stamp in 3404 * 3405 * Timestamps are stored in the skb as offsets to a base timestamp. 3406 * This function converts the offset back to a struct timeval and stores 3407 * it in stamp. 3408 */ 3409 static inline void skb_get_timestamp(const struct sk_buff *skb, 3410 struct timeval *stamp) 3411 { 3412 *stamp = ktime_to_timeval(skb->tstamp); 3413 } 3414 3415 static inline void skb_get_timestampns(const struct sk_buff *skb, 3416 struct timespec *stamp) 3417 { 3418 *stamp = ktime_to_timespec(skb->tstamp); 3419 } 3420 3421 static inline void __net_timestamp(struct sk_buff *skb) 3422 { 3423 skb->tstamp = ktime_get_real(); 3424 } 3425 3426 static inline ktime_t net_timedelta(ktime_t t) 3427 { 3428 return ktime_sub(ktime_get_real(), t); 3429 } 3430 3431 static inline ktime_t net_invalid_timestamp(void) 3432 { 3433 return 0; 3434 } 3435 3436 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3437 { 3438 return skb_shinfo(skb)->meta_len; 3439 } 3440 3441 static inline void *skb_metadata_end(const struct sk_buff *skb) 3442 { 3443 return skb_mac_header(skb); 3444 } 3445 3446 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3447 const struct sk_buff *skb_b, 3448 u8 meta_len) 3449 { 3450 const void *a = skb_metadata_end(skb_a); 3451 const void *b = skb_metadata_end(skb_b); 3452 /* Using more efficient varaiant than plain call to memcmp(). */ 3453 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3454 u64 diffs = 0; 3455 3456 switch (meta_len) { 3457 #define __it(x, op) (x -= sizeof(u##op)) 3458 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3459 case 32: diffs |= __it_diff(a, b, 64); 3460 case 24: diffs |= __it_diff(a, b, 64); 3461 case 16: diffs |= __it_diff(a, b, 64); 3462 case 8: diffs |= __it_diff(a, b, 64); 3463 break; 3464 case 28: diffs |= __it_diff(a, b, 64); 3465 case 20: diffs |= __it_diff(a, b, 64); 3466 case 12: diffs |= __it_diff(a, b, 64); 3467 case 4: diffs |= __it_diff(a, b, 32); 3468 break; 3469 } 3470 return diffs; 3471 #else 3472 return memcmp(a - meta_len, b - meta_len, meta_len); 3473 #endif 3474 } 3475 3476 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3477 const struct sk_buff *skb_b) 3478 { 3479 u8 len_a = skb_metadata_len(skb_a); 3480 u8 len_b = skb_metadata_len(skb_b); 3481 3482 if (!(len_a | len_b)) 3483 return false; 3484 3485 return len_a != len_b ? 3486 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3487 } 3488 3489 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3490 { 3491 skb_shinfo(skb)->meta_len = meta_len; 3492 } 3493 3494 static inline void skb_metadata_clear(struct sk_buff *skb) 3495 { 3496 skb_metadata_set(skb, 0); 3497 } 3498 3499 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3500 3501 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3502 3503 void skb_clone_tx_timestamp(struct sk_buff *skb); 3504 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3505 3506 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3507 3508 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3509 { 3510 } 3511 3512 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3513 { 3514 return false; 3515 } 3516 3517 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3518 3519 /** 3520 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3521 * 3522 * PHY drivers may accept clones of transmitted packets for 3523 * timestamping via their phy_driver.txtstamp method. These drivers 3524 * must call this function to return the skb back to the stack with a 3525 * timestamp. 3526 * 3527 * @skb: clone of the the original outgoing packet 3528 * @hwtstamps: hardware time stamps 3529 * 3530 */ 3531 void skb_complete_tx_timestamp(struct sk_buff *skb, 3532 struct skb_shared_hwtstamps *hwtstamps); 3533 3534 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3535 struct skb_shared_hwtstamps *hwtstamps, 3536 struct sock *sk, int tstype); 3537 3538 /** 3539 * skb_tstamp_tx - queue clone of skb with send time stamps 3540 * @orig_skb: the original outgoing packet 3541 * @hwtstamps: hardware time stamps, may be NULL if not available 3542 * 3543 * If the skb has a socket associated, then this function clones the 3544 * skb (thus sharing the actual data and optional structures), stores 3545 * the optional hardware time stamping information (if non NULL) or 3546 * generates a software time stamp (otherwise), then queues the clone 3547 * to the error queue of the socket. Errors are silently ignored. 3548 */ 3549 void skb_tstamp_tx(struct sk_buff *orig_skb, 3550 struct skb_shared_hwtstamps *hwtstamps); 3551 3552 /** 3553 * skb_tx_timestamp() - Driver hook for transmit timestamping 3554 * 3555 * Ethernet MAC Drivers should call this function in their hard_xmit() 3556 * function immediately before giving the sk_buff to the MAC hardware. 3557 * 3558 * Specifically, one should make absolutely sure that this function is 3559 * called before TX completion of this packet can trigger. Otherwise 3560 * the packet could potentially already be freed. 3561 * 3562 * @skb: A socket buffer. 3563 */ 3564 static inline void skb_tx_timestamp(struct sk_buff *skb) 3565 { 3566 skb_clone_tx_timestamp(skb); 3567 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3568 skb_tstamp_tx(skb, NULL); 3569 } 3570 3571 /** 3572 * skb_complete_wifi_ack - deliver skb with wifi status 3573 * 3574 * @skb: the original outgoing packet 3575 * @acked: ack status 3576 * 3577 */ 3578 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3579 3580 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3581 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3582 3583 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3584 { 3585 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3586 skb->csum_valid || 3587 (skb->ip_summed == CHECKSUM_PARTIAL && 3588 skb_checksum_start_offset(skb) >= 0)); 3589 } 3590 3591 /** 3592 * skb_checksum_complete - Calculate checksum of an entire packet 3593 * @skb: packet to process 3594 * 3595 * This function calculates the checksum over the entire packet plus 3596 * the value of skb->csum. The latter can be used to supply the 3597 * checksum of a pseudo header as used by TCP/UDP. It returns the 3598 * checksum. 3599 * 3600 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3601 * this function can be used to verify that checksum on received 3602 * packets. In that case the function should return zero if the 3603 * checksum is correct. In particular, this function will return zero 3604 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3605 * hardware has already verified the correctness of the checksum. 3606 */ 3607 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3608 { 3609 return skb_csum_unnecessary(skb) ? 3610 0 : __skb_checksum_complete(skb); 3611 } 3612 3613 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3614 { 3615 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3616 if (skb->csum_level == 0) 3617 skb->ip_summed = CHECKSUM_NONE; 3618 else 3619 skb->csum_level--; 3620 } 3621 } 3622 3623 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3624 { 3625 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3626 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3627 skb->csum_level++; 3628 } else if (skb->ip_summed == CHECKSUM_NONE) { 3629 skb->ip_summed = CHECKSUM_UNNECESSARY; 3630 skb->csum_level = 0; 3631 } 3632 } 3633 3634 /* Check if we need to perform checksum complete validation. 3635 * 3636 * Returns true if checksum complete is needed, false otherwise 3637 * (either checksum is unnecessary or zero checksum is allowed). 3638 */ 3639 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3640 bool zero_okay, 3641 __sum16 check) 3642 { 3643 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3644 skb->csum_valid = 1; 3645 __skb_decr_checksum_unnecessary(skb); 3646 return false; 3647 } 3648 3649 return true; 3650 } 3651 3652 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3653 * in checksum_init. 3654 */ 3655 #define CHECKSUM_BREAK 76 3656 3657 /* Unset checksum-complete 3658 * 3659 * Unset checksum complete can be done when packet is being modified 3660 * (uncompressed for instance) and checksum-complete value is 3661 * invalidated. 3662 */ 3663 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3664 { 3665 if (skb->ip_summed == CHECKSUM_COMPLETE) 3666 skb->ip_summed = CHECKSUM_NONE; 3667 } 3668 3669 /* Validate (init) checksum based on checksum complete. 3670 * 3671 * Return values: 3672 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3673 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3674 * checksum is stored in skb->csum for use in __skb_checksum_complete 3675 * non-zero: value of invalid checksum 3676 * 3677 */ 3678 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3679 bool complete, 3680 __wsum psum) 3681 { 3682 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3683 if (!csum_fold(csum_add(psum, skb->csum))) { 3684 skb->csum_valid = 1; 3685 return 0; 3686 } 3687 } 3688 3689 skb->csum = psum; 3690 3691 if (complete || skb->len <= CHECKSUM_BREAK) { 3692 __sum16 csum; 3693 3694 csum = __skb_checksum_complete(skb); 3695 skb->csum_valid = !csum; 3696 return csum; 3697 } 3698 3699 return 0; 3700 } 3701 3702 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3703 { 3704 return 0; 3705 } 3706 3707 /* Perform checksum validate (init). Note that this is a macro since we only 3708 * want to calculate the pseudo header which is an input function if necessary. 3709 * First we try to validate without any computation (checksum unnecessary) and 3710 * then calculate based on checksum complete calling the function to compute 3711 * pseudo header. 3712 * 3713 * Return values: 3714 * 0: checksum is validated or try to in skb_checksum_complete 3715 * non-zero: value of invalid checksum 3716 */ 3717 #define __skb_checksum_validate(skb, proto, complete, \ 3718 zero_okay, check, compute_pseudo) \ 3719 ({ \ 3720 __sum16 __ret = 0; \ 3721 skb->csum_valid = 0; \ 3722 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3723 __ret = __skb_checksum_validate_complete(skb, \ 3724 complete, compute_pseudo(skb, proto)); \ 3725 __ret; \ 3726 }) 3727 3728 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3729 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3730 3731 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3732 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3733 3734 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3735 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3736 3737 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3738 compute_pseudo) \ 3739 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3740 3741 #define skb_checksum_simple_validate(skb) \ 3742 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3743 3744 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3745 { 3746 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3747 } 3748 3749 static inline void __skb_checksum_convert(struct sk_buff *skb, 3750 __sum16 check, __wsum pseudo) 3751 { 3752 skb->csum = ~pseudo; 3753 skb->ip_summed = CHECKSUM_COMPLETE; 3754 } 3755 3756 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3757 do { \ 3758 if (__skb_checksum_convert_check(skb)) \ 3759 __skb_checksum_convert(skb, check, \ 3760 compute_pseudo(skb, proto)); \ 3761 } while (0) 3762 3763 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3764 u16 start, u16 offset) 3765 { 3766 skb->ip_summed = CHECKSUM_PARTIAL; 3767 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3768 skb->csum_offset = offset - start; 3769 } 3770 3771 /* Update skbuf and packet to reflect the remote checksum offload operation. 3772 * When called, ptr indicates the starting point for skb->csum when 3773 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3774 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3775 */ 3776 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3777 int start, int offset, bool nopartial) 3778 { 3779 __wsum delta; 3780 3781 if (!nopartial) { 3782 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3783 return; 3784 } 3785 3786 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3787 __skb_checksum_complete(skb); 3788 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3789 } 3790 3791 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3792 3793 /* Adjust skb->csum since we changed the packet */ 3794 skb->csum = csum_add(skb->csum, delta); 3795 } 3796 3797 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3798 { 3799 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3800 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3801 #else 3802 return NULL; 3803 #endif 3804 } 3805 3806 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3807 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3808 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3809 { 3810 if (nfct && atomic_dec_and_test(&nfct->use)) 3811 nf_conntrack_destroy(nfct); 3812 } 3813 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3814 { 3815 if (nfct) 3816 atomic_inc(&nfct->use); 3817 } 3818 #endif 3819 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3820 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3821 { 3822 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use)) 3823 kfree(nf_bridge); 3824 } 3825 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3826 { 3827 if (nf_bridge) 3828 refcount_inc(&nf_bridge->use); 3829 } 3830 #endif /* CONFIG_BRIDGE_NETFILTER */ 3831 static inline void nf_reset(struct sk_buff *skb) 3832 { 3833 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3834 nf_conntrack_put(skb_nfct(skb)); 3835 skb->_nfct = 0; 3836 #endif 3837 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3838 nf_bridge_put(skb->nf_bridge); 3839 skb->nf_bridge = NULL; 3840 #endif 3841 } 3842 3843 static inline void nf_reset_trace(struct sk_buff *skb) 3844 { 3845 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3846 skb->nf_trace = 0; 3847 #endif 3848 } 3849 3850 static inline void ipvs_reset(struct sk_buff *skb) 3851 { 3852 #if IS_ENABLED(CONFIG_IP_VS) 3853 skb->ipvs_property = 0; 3854 #endif 3855 } 3856 3857 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3858 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3859 bool copy) 3860 { 3861 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3862 dst->_nfct = src->_nfct; 3863 nf_conntrack_get(skb_nfct(src)); 3864 #endif 3865 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3866 dst->nf_bridge = src->nf_bridge; 3867 nf_bridge_get(src->nf_bridge); 3868 #endif 3869 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3870 if (copy) 3871 dst->nf_trace = src->nf_trace; 3872 #endif 3873 } 3874 3875 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3876 { 3877 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3878 nf_conntrack_put(skb_nfct(dst)); 3879 #endif 3880 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3881 nf_bridge_put(dst->nf_bridge); 3882 #endif 3883 __nf_copy(dst, src, true); 3884 } 3885 3886 #ifdef CONFIG_NETWORK_SECMARK 3887 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3888 { 3889 to->secmark = from->secmark; 3890 } 3891 3892 static inline void skb_init_secmark(struct sk_buff *skb) 3893 { 3894 skb->secmark = 0; 3895 } 3896 #else 3897 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3898 { } 3899 3900 static inline void skb_init_secmark(struct sk_buff *skb) 3901 { } 3902 #endif 3903 3904 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3905 { 3906 return !skb->destructor && 3907 #if IS_ENABLED(CONFIG_XFRM) 3908 !skb->sp && 3909 #endif 3910 !skb_nfct(skb) && 3911 !skb->_skb_refdst && 3912 !skb_has_frag_list(skb); 3913 } 3914 3915 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3916 { 3917 skb->queue_mapping = queue_mapping; 3918 } 3919 3920 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3921 { 3922 return skb->queue_mapping; 3923 } 3924 3925 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3926 { 3927 to->queue_mapping = from->queue_mapping; 3928 } 3929 3930 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3931 { 3932 skb->queue_mapping = rx_queue + 1; 3933 } 3934 3935 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3936 { 3937 return skb->queue_mapping - 1; 3938 } 3939 3940 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3941 { 3942 return skb->queue_mapping != 0; 3943 } 3944 3945 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 3946 { 3947 skb->dst_pending_confirm = val; 3948 } 3949 3950 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 3951 { 3952 return skb->dst_pending_confirm != 0; 3953 } 3954 3955 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3956 { 3957 #ifdef CONFIG_XFRM 3958 return skb->sp; 3959 #else 3960 return NULL; 3961 #endif 3962 } 3963 3964 /* Keeps track of mac header offset relative to skb->head. 3965 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3966 * For non-tunnel skb it points to skb_mac_header() and for 3967 * tunnel skb it points to outer mac header. 3968 * Keeps track of level of encapsulation of network headers. 3969 */ 3970 struct skb_gso_cb { 3971 union { 3972 int mac_offset; 3973 int data_offset; 3974 }; 3975 int encap_level; 3976 __wsum csum; 3977 __u16 csum_start; 3978 }; 3979 #define SKB_SGO_CB_OFFSET 32 3980 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3981 3982 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3983 { 3984 return (skb_mac_header(inner_skb) - inner_skb->head) - 3985 SKB_GSO_CB(inner_skb)->mac_offset; 3986 } 3987 3988 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3989 { 3990 int new_headroom, headroom; 3991 int ret; 3992 3993 headroom = skb_headroom(skb); 3994 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3995 if (ret) 3996 return ret; 3997 3998 new_headroom = skb_headroom(skb); 3999 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4000 return 0; 4001 } 4002 4003 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4004 { 4005 /* Do not update partial checksums if remote checksum is enabled. */ 4006 if (skb->remcsum_offload) 4007 return; 4008 4009 SKB_GSO_CB(skb)->csum = res; 4010 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4011 } 4012 4013 /* Compute the checksum for a gso segment. First compute the checksum value 4014 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4015 * then add in skb->csum (checksum from csum_start to end of packet). 4016 * skb->csum and csum_start are then updated to reflect the checksum of the 4017 * resultant packet starting from the transport header-- the resultant checksum 4018 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4019 * header. 4020 */ 4021 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4022 { 4023 unsigned char *csum_start = skb_transport_header(skb); 4024 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4025 __wsum partial = SKB_GSO_CB(skb)->csum; 4026 4027 SKB_GSO_CB(skb)->csum = res; 4028 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4029 4030 return csum_fold(csum_partial(csum_start, plen, partial)); 4031 } 4032 4033 static inline bool skb_is_gso(const struct sk_buff *skb) 4034 { 4035 return skb_shinfo(skb)->gso_size; 4036 } 4037 4038 /* Note: Should be called only if skb_is_gso(skb) is true */ 4039 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4040 { 4041 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4042 } 4043 4044 /* Note: Should be called only if skb_is_gso(skb) is true */ 4045 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4046 { 4047 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4048 } 4049 4050 static inline void skb_gso_reset(struct sk_buff *skb) 4051 { 4052 skb_shinfo(skb)->gso_size = 0; 4053 skb_shinfo(skb)->gso_segs = 0; 4054 skb_shinfo(skb)->gso_type = 0; 4055 } 4056 4057 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4058 u16 increment) 4059 { 4060 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4061 return; 4062 shinfo->gso_size += increment; 4063 } 4064 4065 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4066 u16 decrement) 4067 { 4068 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4069 return; 4070 shinfo->gso_size -= decrement; 4071 } 4072 4073 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4074 4075 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4076 { 4077 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4078 * wanted then gso_type will be set. */ 4079 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4080 4081 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4082 unlikely(shinfo->gso_type == 0)) { 4083 __skb_warn_lro_forwarding(skb); 4084 return true; 4085 } 4086 return false; 4087 } 4088 4089 static inline void skb_forward_csum(struct sk_buff *skb) 4090 { 4091 /* Unfortunately we don't support this one. Any brave souls? */ 4092 if (skb->ip_summed == CHECKSUM_COMPLETE) 4093 skb->ip_summed = CHECKSUM_NONE; 4094 } 4095 4096 /** 4097 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4098 * @skb: skb to check 4099 * 4100 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4101 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4102 * use this helper, to document places where we make this assertion. 4103 */ 4104 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4105 { 4106 #ifdef DEBUG 4107 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4108 #endif 4109 } 4110 4111 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4112 4113 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4114 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4115 unsigned int transport_len, 4116 __sum16(*skb_chkf)(struct sk_buff *skb)); 4117 4118 /** 4119 * skb_head_is_locked - Determine if the skb->head is locked down 4120 * @skb: skb to check 4121 * 4122 * The head on skbs build around a head frag can be removed if they are 4123 * not cloned. This function returns true if the skb head is locked down 4124 * due to either being allocated via kmalloc, or by being a clone with 4125 * multiple references to the head. 4126 */ 4127 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4128 { 4129 return !skb->head_frag || skb_cloned(skb); 4130 } 4131 4132 /* Local Checksum Offload. 4133 * Compute outer checksum based on the assumption that the 4134 * inner checksum will be offloaded later. 4135 * See Documentation/networking/checksum-offloads.txt for 4136 * explanation of how this works. 4137 * Fill in outer checksum adjustment (e.g. with sum of outer 4138 * pseudo-header) before calling. 4139 * Also ensure that inner checksum is in linear data area. 4140 */ 4141 static inline __wsum lco_csum(struct sk_buff *skb) 4142 { 4143 unsigned char *csum_start = skb_checksum_start(skb); 4144 unsigned char *l4_hdr = skb_transport_header(skb); 4145 __wsum partial; 4146 4147 /* Start with complement of inner checksum adjustment */ 4148 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4149 skb->csum_offset)); 4150 4151 /* Add in checksum of our headers (incl. outer checksum 4152 * adjustment filled in by caller) and return result. 4153 */ 4154 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4155 } 4156 4157 #endif /* __KERNEL__ */ 4158 #endif /* _LINUX_SKBUFF_H */ 4159