1 #ifndef __LINUX_SEQLOCK_H 2 #define __LINUX_SEQLOCK_H 3 /* 4 * Reader/writer consistent mechanism without starving writers. This type of 5 * lock for data where the reader wants a consistent set of information 6 * and is willing to retry if the information changes. There are two types 7 * of readers: 8 * 1. Sequence readers which never block a writer but they may have to retry 9 * if a writer is in progress by detecting change in sequence number. 10 * Writers do not wait for a sequence reader. 11 * 2. Locking readers which will wait if a writer or another locking reader 12 * is in progress. A locking reader in progress will also block a writer 13 * from going forward. Unlike the regular rwlock, the read lock here is 14 * exclusive so that only one locking reader can get it. 15 * 16 * This is not as cache friendly as brlock. Also, this may not work well 17 * for data that contains pointers, because any writer could 18 * invalidate a pointer that a reader was following. 19 * 20 * Expected non-blocking reader usage: 21 * do { 22 * seq = read_seqbegin(&foo); 23 * ... 24 * } while (read_seqretry(&foo, seq)); 25 * 26 * 27 * On non-SMP the spin locks disappear but the writer still needs 28 * to increment the sequence variables because an interrupt routine could 29 * change the state of the data. 30 * 31 * Based on x86_64 vsyscall gettimeofday 32 * by Keith Owens and Andrea Arcangeli 33 */ 34 35 #include <linux/spinlock.h> 36 #include <linux/preempt.h> 37 #include <asm/processor.h> 38 39 /* 40 * Version using sequence counter only. 41 * This can be used when code has its own mutex protecting the 42 * updating starting before the write_seqcountbeqin() and ending 43 * after the write_seqcount_end(). 44 */ 45 typedef struct seqcount { 46 unsigned sequence; 47 } seqcount_t; 48 49 #define SEQCNT_ZERO { 0 } 50 #define seqcount_init(x) do { *(x) = (seqcount_t) SEQCNT_ZERO; } while (0) 51 52 /** 53 * __read_seqcount_begin - begin a seq-read critical section (without barrier) 54 * @s: pointer to seqcount_t 55 * Returns: count to be passed to read_seqcount_retry 56 * 57 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() 58 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is 59 * provided before actually loading any of the variables that are to be 60 * protected in this critical section. 61 * 62 * Use carefully, only in critical code, and comment how the barrier is 63 * provided. 64 */ 65 static inline unsigned __read_seqcount_begin(const seqcount_t *s) 66 { 67 unsigned ret; 68 69 repeat: 70 ret = ACCESS_ONCE(s->sequence); 71 if (unlikely(ret & 1)) { 72 cpu_relax(); 73 goto repeat; 74 } 75 return ret; 76 } 77 78 /** 79 * read_seqcount_begin - begin a seq-read critical section 80 * @s: pointer to seqcount_t 81 * Returns: count to be passed to read_seqcount_retry 82 * 83 * read_seqcount_begin opens a read critical section of the given seqcount. 84 * Validity of the critical section is tested by checking read_seqcount_retry 85 * function. 86 */ 87 static inline unsigned read_seqcount_begin(const seqcount_t *s) 88 { 89 unsigned ret = __read_seqcount_begin(s); 90 smp_rmb(); 91 return ret; 92 } 93 94 /** 95 * raw_seqcount_begin - begin a seq-read critical section 96 * @s: pointer to seqcount_t 97 * Returns: count to be passed to read_seqcount_retry 98 * 99 * raw_seqcount_begin opens a read critical section of the given seqcount. 100 * Validity of the critical section is tested by checking read_seqcount_retry 101 * function. 102 * 103 * Unlike read_seqcount_begin(), this function will not wait for the count 104 * to stabilize. If a writer is active when we begin, we will fail the 105 * read_seqcount_retry() instead of stabilizing at the beginning of the 106 * critical section. 107 */ 108 static inline unsigned raw_seqcount_begin(const seqcount_t *s) 109 { 110 unsigned ret = ACCESS_ONCE(s->sequence); 111 smp_rmb(); 112 return ret & ~1; 113 } 114 115 /** 116 * __read_seqcount_retry - end a seq-read critical section (without barrier) 117 * @s: pointer to seqcount_t 118 * @start: count, from read_seqcount_begin 119 * Returns: 1 if retry is required, else 0 120 * 121 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() 122 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is 123 * provided before actually loading any of the variables that are to be 124 * protected in this critical section. 125 * 126 * Use carefully, only in critical code, and comment how the barrier is 127 * provided. 128 */ 129 static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start) 130 { 131 return unlikely(s->sequence != start); 132 } 133 134 /** 135 * read_seqcount_retry - end a seq-read critical section 136 * @s: pointer to seqcount_t 137 * @start: count, from read_seqcount_begin 138 * Returns: 1 if retry is required, else 0 139 * 140 * read_seqcount_retry closes a read critical section of the given seqcount. 141 * If the critical section was invalid, it must be ignored (and typically 142 * retried). 143 */ 144 static inline int read_seqcount_retry(const seqcount_t *s, unsigned start) 145 { 146 smp_rmb(); 147 return __read_seqcount_retry(s, start); 148 } 149 150 151 /* 152 * Sequence counter only version assumes that callers are using their 153 * own mutexing. 154 */ 155 static inline void write_seqcount_begin(seqcount_t *s) 156 { 157 s->sequence++; 158 smp_wmb(); 159 } 160 161 static inline void write_seqcount_end(seqcount_t *s) 162 { 163 smp_wmb(); 164 s->sequence++; 165 } 166 167 /** 168 * write_seqcount_barrier - invalidate in-progress read-side seq operations 169 * @s: pointer to seqcount_t 170 * 171 * After write_seqcount_barrier, no read-side seq operations will complete 172 * successfully and see data older than this. 173 */ 174 static inline void write_seqcount_barrier(seqcount_t *s) 175 { 176 smp_wmb(); 177 s->sequence+=2; 178 } 179 180 typedef struct { 181 struct seqcount seqcount; 182 spinlock_t lock; 183 } seqlock_t; 184 185 /* 186 * These macros triggered gcc-3.x compile-time problems. We think these are 187 * OK now. Be cautious. 188 */ 189 #define __SEQLOCK_UNLOCKED(lockname) \ 190 { \ 191 .seqcount = SEQCNT_ZERO, \ 192 .lock = __SPIN_LOCK_UNLOCKED(lockname) \ 193 } 194 195 #define seqlock_init(x) \ 196 do { \ 197 seqcount_init(&(x)->seqcount); \ 198 spin_lock_init(&(x)->lock); \ 199 } while (0) 200 201 #define DEFINE_SEQLOCK(x) \ 202 seqlock_t x = __SEQLOCK_UNLOCKED(x) 203 204 /* 205 * Read side functions for starting and finalizing a read side section. 206 */ 207 static inline unsigned read_seqbegin(const seqlock_t *sl) 208 { 209 return read_seqcount_begin(&sl->seqcount); 210 } 211 212 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) 213 { 214 return read_seqcount_retry(&sl->seqcount, start); 215 } 216 217 /* 218 * Lock out other writers and update the count. 219 * Acts like a normal spin_lock/unlock. 220 * Don't need preempt_disable() because that is in the spin_lock already. 221 */ 222 static inline void write_seqlock(seqlock_t *sl) 223 { 224 spin_lock(&sl->lock); 225 write_seqcount_begin(&sl->seqcount); 226 } 227 228 static inline void write_sequnlock(seqlock_t *sl) 229 { 230 write_seqcount_end(&sl->seqcount); 231 spin_unlock(&sl->lock); 232 } 233 234 static inline void write_seqlock_bh(seqlock_t *sl) 235 { 236 spin_lock_bh(&sl->lock); 237 write_seqcount_begin(&sl->seqcount); 238 } 239 240 static inline void write_sequnlock_bh(seqlock_t *sl) 241 { 242 write_seqcount_end(&sl->seqcount); 243 spin_unlock_bh(&sl->lock); 244 } 245 246 static inline void write_seqlock_irq(seqlock_t *sl) 247 { 248 spin_lock_irq(&sl->lock); 249 write_seqcount_begin(&sl->seqcount); 250 } 251 252 static inline void write_sequnlock_irq(seqlock_t *sl) 253 { 254 write_seqcount_end(&sl->seqcount); 255 spin_unlock_irq(&sl->lock); 256 } 257 258 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) 259 { 260 unsigned long flags; 261 262 spin_lock_irqsave(&sl->lock, flags); 263 write_seqcount_begin(&sl->seqcount); 264 return flags; 265 } 266 267 #define write_seqlock_irqsave(lock, flags) \ 268 do { flags = __write_seqlock_irqsave(lock); } while (0) 269 270 static inline void 271 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) 272 { 273 write_seqcount_end(&sl->seqcount); 274 spin_unlock_irqrestore(&sl->lock, flags); 275 } 276 277 /* 278 * A locking reader exclusively locks out other writers and locking readers, 279 * but doesn't update the sequence number. Acts like a normal spin_lock/unlock. 280 * Don't need preempt_disable() because that is in the spin_lock already. 281 */ 282 static inline void read_seqlock_excl(seqlock_t *sl) 283 { 284 spin_lock(&sl->lock); 285 } 286 287 static inline void read_sequnlock_excl(seqlock_t *sl) 288 { 289 spin_unlock(&sl->lock); 290 } 291 292 static inline void read_seqlock_excl_bh(seqlock_t *sl) 293 { 294 spin_lock_bh(&sl->lock); 295 } 296 297 static inline void read_sequnlock_excl_bh(seqlock_t *sl) 298 { 299 spin_unlock_bh(&sl->lock); 300 } 301 302 static inline void read_seqlock_excl_irq(seqlock_t *sl) 303 { 304 spin_lock_irq(&sl->lock); 305 } 306 307 static inline void read_sequnlock_excl_irq(seqlock_t *sl) 308 { 309 spin_unlock_irq(&sl->lock); 310 } 311 312 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl) 313 { 314 unsigned long flags; 315 316 spin_lock_irqsave(&sl->lock, flags); 317 return flags; 318 } 319 320 #define read_seqlock_excl_irqsave(lock, flags) \ 321 do { flags = __read_seqlock_excl_irqsave(lock); } while (0) 322 323 static inline void 324 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) 325 { 326 spin_unlock_irqrestore(&sl->lock, flags); 327 } 328 329 #endif /* __LINUX_SEQLOCK_H */ 330