1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_SEQLOCK_H 3 #define __LINUX_SEQLOCK_H 4 5 /* 6 * seqcount_t / seqlock_t - a reader-writer consistency mechanism with 7 * lockless readers (read-only retry loops), and no writer starvation. 8 * 9 * See Documentation/locking/seqlock.rst 10 * 11 * Copyrights: 12 * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli 13 * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH 14 */ 15 16 #include <linux/compiler.h> 17 #include <linux/kcsan-checks.h> 18 #include <linux/lockdep.h> 19 #include <linux/mutex.h> 20 #include <linux/preempt.h> 21 #include <linux/spinlock.h> 22 23 #include <asm/processor.h> 24 25 /* 26 * The seqlock seqcount_t interface does not prescribe a precise sequence of 27 * read begin/retry/end. For readers, typically there is a call to 28 * read_seqcount_begin() and read_seqcount_retry(), however, there are more 29 * esoteric cases which do not follow this pattern. 30 * 31 * As a consequence, we take the following best-effort approach for raw usage 32 * via seqcount_t under KCSAN: upon beginning a seq-reader critical section, 33 * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as 34 * atomics; if there is a matching read_seqcount_retry() call, no following 35 * memory operations are considered atomic. Usage of the seqlock_t interface 36 * is not affected. 37 */ 38 #define KCSAN_SEQLOCK_REGION_MAX 1000 39 40 /* 41 * Sequence counters (seqcount_t) 42 * 43 * This is the raw counting mechanism, without any writer protection. 44 * 45 * Write side critical sections must be serialized and non-preemptible. 46 * 47 * If readers can be invoked from hardirq or softirq contexts, 48 * interrupts or bottom halves must also be respectively disabled before 49 * entering the write section. 50 * 51 * This mechanism can't be used if the protected data contains pointers, 52 * as the writer can invalidate a pointer that a reader is following. 53 * 54 * If the write serialization mechanism is one of the common kernel 55 * locking primitives, use a sequence counter with associated lock 56 * (seqcount_LOCKNAME_t) instead. 57 * 58 * If it's desired to automatically handle the sequence counter writer 59 * serialization and non-preemptibility requirements, use a sequential 60 * lock (seqlock_t) instead. 61 * 62 * See Documentation/locking/seqlock.rst 63 */ 64 typedef struct seqcount { 65 unsigned sequence; 66 #ifdef CONFIG_DEBUG_LOCK_ALLOC 67 struct lockdep_map dep_map; 68 #endif 69 } seqcount_t; 70 71 static inline void __seqcount_init(seqcount_t *s, const char *name, 72 struct lock_class_key *key) 73 { 74 /* 75 * Make sure we are not reinitializing a held lock: 76 */ 77 lockdep_init_map(&s->dep_map, name, key, 0); 78 s->sequence = 0; 79 } 80 81 #ifdef CONFIG_DEBUG_LOCK_ALLOC 82 83 # define SEQCOUNT_DEP_MAP_INIT(lockname) \ 84 .dep_map = { .name = #lockname } 85 86 /** 87 * seqcount_init() - runtime initializer for seqcount_t 88 * @s: Pointer to the seqcount_t instance 89 */ 90 # define seqcount_init(s) \ 91 do { \ 92 static struct lock_class_key __key; \ 93 __seqcount_init((s), #s, &__key); \ 94 } while (0) 95 96 static inline void seqcount_lockdep_reader_access(const seqcount_t *s) 97 { 98 seqcount_t *l = (seqcount_t *)s; 99 unsigned long flags; 100 101 local_irq_save(flags); 102 seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_); 103 seqcount_release(&l->dep_map, _RET_IP_); 104 local_irq_restore(flags); 105 } 106 107 #else 108 # define SEQCOUNT_DEP_MAP_INIT(lockname) 109 # define seqcount_init(s) __seqcount_init(s, NULL, NULL) 110 # define seqcount_lockdep_reader_access(x) 111 #endif 112 113 /** 114 * SEQCNT_ZERO() - static initializer for seqcount_t 115 * @name: Name of the seqcount_t instance 116 */ 117 #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) } 118 119 /* 120 * Sequence counters with associated locks (seqcount_LOCKNAME_t) 121 * 122 * A sequence counter which associates the lock used for writer 123 * serialization at initialization time. This enables lockdep to validate 124 * that the write side critical section is properly serialized. 125 * 126 * For associated locks which do not implicitly disable preemption, 127 * preemption protection is enforced in the write side function. 128 * 129 * Lockdep is never used in any for the raw write variants. 130 * 131 * See Documentation/locking/seqlock.rst 132 */ 133 134 /* 135 * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot 136 * disable preemption. It can lead to higher latencies, and the write side 137 * sections will not be able to acquire locks which become sleeping locks 138 * (e.g. spinlock_t). 139 * 140 * To remain preemptible while avoiding a possible livelock caused by the 141 * reader preempting the writer, use a different technique: let the reader 142 * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the 143 * case, acquire then release the associated LOCKNAME writer serialization 144 * lock. This will allow any possibly-preempted writer to make progress 145 * until the end of its writer serialization lock critical section. 146 * 147 * This lock-unlock technique must be implemented for all of PREEMPT_RT 148 * sleeping locks. See Documentation/locking/locktypes.rst 149 */ 150 #if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT) 151 #define __SEQ_LOCK(expr) expr 152 #else 153 #define __SEQ_LOCK(expr) 154 #endif 155 156 /* 157 * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated 158 * @seqcount: The real sequence counter 159 * @lock: Pointer to the associated lock 160 * 161 * A plain sequence counter with external writer synchronization by 162 * LOCKNAME @lock. The lock is associated to the sequence counter in the 163 * static initializer or init function. This enables lockdep to validate 164 * that the write side critical section is properly serialized. 165 * 166 * LOCKNAME: raw_spinlock, spinlock, rwlock or mutex 167 */ 168 169 /* 170 * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t 171 * @s: Pointer to the seqcount_LOCKNAME_t instance 172 * @lock: Pointer to the associated lock 173 */ 174 175 #define seqcount_LOCKNAME_init(s, _lock, lockname) \ 176 do { \ 177 seqcount_##lockname##_t *____s = (s); \ 178 seqcount_init(&____s->seqcount); \ 179 __SEQ_LOCK(____s->lock = (_lock)); \ 180 } while (0) 181 182 #define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock) 183 #define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock) 184 #define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock) 185 #define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex) 186 187 /* 188 * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers 189 * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t 190 * 191 * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t 192 * @locktype: LOCKNAME canonical C data type 193 * @preemptible: preemptibility of above locktype 194 * @lockbase: prefix for associated lock/unlock 195 */ 196 #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockbase) \ 197 typedef struct seqcount_##lockname { \ 198 seqcount_t seqcount; \ 199 __SEQ_LOCK(locktype *lock); \ 200 } seqcount_##lockname##_t; \ 201 \ 202 static __always_inline seqcount_t * \ 203 __seqprop_##lockname##_ptr(const seqcount_##lockname##_t *s) \ 204 { \ 205 return (void *)&s->seqcount; /* drop const */ \ 206 } \ 207 \ 208 static __always_inline unsigned \ 209 __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \ 210 { \ 211 unsigned seq = READ_ONCE(s->seqcount.sequence); \ 212 \ 213 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 214 return seq; \ 215 \ 216 if (preemptible && unlikely(seq & 1)) { \ 217 __SEQ_LOCK(lockbase##_lock(s->lock)); \ 218 __SEQ_LOCK(lockbase##_unlock(s->lock)); \ 219 \ 220 /* \ 221 * Re-read the sequence counter since the (possibly \ 222 * preempted) writer made progress. \ 223 */ \ 224 seq = READ_ONCE(s->seqcount.sequence); \ 225 } \ 226 \ 227 return seq; \ 228 } \ 229 \ 230 static __always_inline bool \ 231 __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \ 232 { \ 233 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 234 return preemptible; \ 235 \ 236 /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \ 237 return false; \ 238 } \ 239 \ 240 static __always_inline void \ 241 __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \ 242 { \ 243 __SEQ_LOCK(lockdep_assert_held(s->lock)); \ 244 } 245 246 /* 247 * __seqprop() for seqcount_t 248 */ 249 250 static inline seqcount_t *__seqprop_ptr(const seqcount_t *s) 251 { 252 return (void *)s; /* drop const */ 253 } 254 255 static inline unsigned __seqprop_sequence(const seqcount_t *s) 256 { 257 return READ_ONCE(s->sequence); 258 } 259 260 static inline bool __seqprop_preemptible(const seqcount_t *s) 261 { 262 return false; 263 } 264 265 static inline void __seqprop_assert(const seqcount_t *s) 266 { 267 lockdep_assert_preemption_disabled(); 268 } 269 270 #define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT) 271 272 SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, raw_spin) 273 SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, spin) 274 SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, read) 275 SEQCOUNT_LOCKNAME(mutex, struct mutex, true, mutex) 276 277 /* 278 * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t 279 * @name: Name of the seqcount_LOCKNAME_t instance 280 * @lock: Pointer to the associated LOCKNAME 281 */ 282 283 #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \ 284 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ 285 __SEQ_LOCK(.lock = (assoc_lock)) \ 286 } 287 288 #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 289 #define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 290 #define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 291 #define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 292 #define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 293 294 #define __seqprop_case(s, lockname, prop) \ 295 seqcount_##lockname##_t: __seqprop_##lockname##_##prop 296 297 #define __seqprop(s, prop) _Generic(*(s), \ 298 seqcount_t: __seqprop_##prop, \ 299 __seqprop_case((s), raw_spinlock, prop), \ 300 __seqprop_case((s), spinlock, prop), \ 301 __seqprop_case((s), rwlock, prop), \ 302 __seqprop_case((s), mutex, prop)) 303 304 #define seqprop_ptr(s) __seqprop(s, ptr)(s) 305 #define seqprop_sequence(s) __seqprop(s, sequence)(s) 306 #define seqprop_preemptible(s) __seqprop(s, preemptible)(s) 307 #define seqprop_assert(s) __seqprop(s, assert)(s) 308 309 /** 310 * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier 311 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 312 * 313 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() 314 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is 315 * provided before actually loading any of the variables that are to be 316 * protected in this critical section. 317 * 318 * Use carefully, only in critical code, and comment how the barrier is 319 * provided. 320 * 321 * Return: count to be passed to read_seqcount_retry() 322 */ 323 #define __read_seqcount_begin(s) \ 324 ({ \ 325 unsigned __seq; \ 326 \ 327 while ((__seq = seqprop_sequence(s)) & 1) \ 328 cpu_relax(); \ 329 \ 330 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ 331 __seq; \ 332 }) 333 334 /** 335 * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep 336 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 337 * 338 * Return: count to be passed to read_seqcount_retry() 339 */ 340 #define raw_read_seqcount_begin(s) \ 341 ({ \ 342 unsigned _seq = __read_seqcount_begin(s); \ 343 \ 344 smp_rmb(); \ 345 _seq; \ 346 }) 347 348 /** 349 * read_seqcount_begin() - begin a seqcount_t read critical section 350 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 351 * 352 * Return: count to be passed to read_seqcount_retry() 353 */ 354 #define read_seqcount_begin(s) \ 355 ({ \ 356 seqcount_lockdep_reader_access(seqprop_ptr(s)); \ 357 raw_read_seqcount_begin(s); \ 358 }) 359 360 /** 361 * raw_read_seqcount() - read the raw seqcount_t counter value 362 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 363 * 364 * raw_read_seqcount opens a read critical section of the given 365 * seqcount_t, without any lockdep checking, and without checking or 366 * masking the sequence counter LSB. Calling code is responsible for 367 * handling that. 368 * 369 * Return: count to be passed to read_seqcount_retry() 370 */ 371 #define raw_read_seqcount(s) \ 372 ({ \ 373 unsigned __seq = seqprop_sequence(s); \ 374 \ 375 smp_rmb(); \ 376 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ 377 __seq; \ 378 }) 379 380 /** 381 * raw_seqcount_begin() - begin a seqcount_t read critical section w/o 382 * lockdep and w/o counter stabilization 383 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 384 * 385 * raw_seqcount_begin opens a read critical section of the given 386 * seqcount_t. Unlike read_seqcount_begin(), this function will not wait 387 * for the count to stabilize. If a writer is active when it begins, it 388 * will fail the read_seqcount_retry() at the end of the read critical 389 * section instead of stabilizing at the beginning of it. 390 * 391 * Use this only in special kernel hot paths where the read section is 392 * small and has a high probability of success through other external 393 * means. It will save a single branching instruction. 394 * 395 * Return: count to be passed to read_seqcount_retry() 396 */ 397 #define raw_seqcount_begin(s) \ 398 ({ \ 399 /* \ 400 * If the counter is odd, let read_seqcount_retry() fail \ 401 * by decrementing the counter. \ 402 */ \ 403 raw_read_seqcount(s) & ~1; \ 404 }) 405 406 /** 407 * __read_seqcount_retry() - end a seqcount_t read section w/o barrier 408 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 409 * @start: count, from read_seqcount_begin() 410 * 411 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() 412 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is 413 * provided before actually loading any of the variables that are to be 414 * protected in this critical section. 415 * 416 * Use carefully, only in critical code, and comment how the barrier is 417 * provided. 418 * 419 * Return: true if a read section retry is required, else false 420 */ 421 #define __read_seqcount_retry(s, start) \ 422 do___read_seqcount_retry(seqprop_ptr(s), start) 423 424 static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start) 425 { 426 kcsan_atomic_next(0); 427 return unlikely(READ_ONCE(s->sequence) != start); 428 } 429 430 /** 431 * read_seqcount_retry() - end a seqcount_t read critical section 432 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 433 * @start: count, from read_seqcount_begin() 434 * 435 * read_seqcount_retry closes the read critical section of given 436 * seqcount_t. If the critical section was invalid, it must be ignored 437 * (and typically retried). 438 * 439 * Return: true if a read section retry is required, else false 440 */ 441 #define read_seqcount_retry(s, start) \ 442 do_read_seqcount_retry(seqprop_ptr(s), start) 443 444 static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start) 445 { 446 smp_rmb(); 447 return do___read_seqcount_retry(s, start); 448 } 449 450 /** 451 * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep 452 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 453 * 454 * Context: check write_seqcount_begin() 455 */ 456 #define raw_write_seqcount_begin(s) \ 457 do { \ 458 if (seqprop_preemptible(s)) \ 459 preempt_disable(); \ 460 \ 461 do_raw_write_seqcount_begin(seqprop_ptr(s)); \ 462 } while (0) 463 464 static inline void do_raw_write_seqcount_begin(seqcount_t *s) 465 { 466 kcsan_nestable_atomic_begin(); 467 s->sequence++; 468 smp_wmb(); 469 } 470 471 /** 472 * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep 473 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 474 * 475 * Context: check write_seqcount_end() 476 */ 477 #define raw_write_seqcount_end(s) \ 478 do { \ 479 do_raw_write_seqcount_end(seqprop_ptr(s)); \ 480 \ 481 if (seqprop_preemptible(s)) \ 482 preempt_enable(); \ 483 } while (0) 484 485 static inline void do_raw_write_seqcount_end(seqcount_t *s) 486 { 487 smp_wmb(); 488 s->sequence++; 489 kcsan_nestable_atomic_end(); 490 } 491 492 /** 493 * write_seqcount_begin_nested() - start a seqcount_t write section with 494 * custom lockdep nesting level 495 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 496 * @subclass: lockdep nesting level 497 * 498 * See Documentation/locking/lockdep-design.rst 499 * Context: check write_seqcount_begin() 500 */ 501 #define write_seqcount_begin_nested(s, subclass) \ 502 do { \ 503 seqprop_assert(s); \ 504 \ 505 if (seqprop_preemptible(s)) \ 506 preempt_disable(); \ 507 \ 508 do_write_seqcount_begin_nested(seqprop_ptr(s), subclass); \ 509 } while (0) 510 511 static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass) 512 { 513 seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_); 514 do_raw_write_seqcount_begin(s); 515 } 516 517 /** 518 * write_seqcount_begin() - start a seqcount_t write side critical section 519 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 520 * 521 * Context: sequence counter write side sections must be serialized and 522 * non-preemptible. Preemption will be automatically disabled if and 523 * only if the seqcount write serialization lock is associated, and 524 * preemptible. If readers can be invoked from hardirq or softirq 525 * context, interrupts or bottom halves must be respectively disabled. 526 */ 527 #define write_seqcount_begin(s) \ 528 do { \ 529 seqprop_assert(s); \ 530 \ 531 if (seqprop_preemptible(s)) \ 532 preempt_disable(); \ 533 \ 534 do_write_seqcount_begin(seqprop_ptr(s)); \ 535 } while (0) 536 537 static inline void do_write_seqcount_begin(seqcount_t *s) 538 { 539 do_write_seqcount_begin_nested(s, 0); 540 } 541 542 /** 543 * write_seqcount_end() - end a seqcount_t write side critical section 544 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 545 * 546 * Context: Preemption will be automatically re-enabled if and only if 547 * the seqcount write serialization lock is associated, and preemptible. 548 */ 549 #define write_seqcount_end(s) \ 550 do { \ 551 do_write_seqcount_end(seqprop_ptr(s)); \ 552 \ 553 if (seqprop_preemptible(s)) \ 554 preempt_enable(); \ 555 } while (0) 556 557 static inline void do_write_seqcount_end(seqcount_t *s) 558 { 559 seqcount_release(&s->dep_map, _RET_IP_); 560 do_raw_write_seqcount_end(s); 561 } 562 563 /** 564 * raw_write_seqcount_barrier() - do a seqcount_t write barrier 565 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 566 * 567 * This can be used to provide an ordering guarantee instead of the usual 568 * consistency guarantee. It is one wmb cheaper, because it can collapse 569 * the two back-to-back wmb()s. 570 * 571 * Note that writes surrounding the barrier should be declared atomic (e.g. 572 * via WRITE_ONCE): a) to ensure the writes become visible to other threads 573 * atomically, avoiding compiler optimizations; b) to document which writes are 574 * meant to propagate to the reader critical section. This is necessary because 575 * neither writes before and after the barrier are enclosed in a seq-writer 576 * critical section that would ensure readers are aware of ongoing writes:: 577 * 578 * seqcount_t seq; 579 * bool X = true, Y = false; 580 * 581 * void read(void) 582 * { 583 * bool x, y; 584 * 585 * do { 586 * int s = read_seqcount_begin(&seq); 587 * 588 * x = X; y = Y; 589 * 590 * } while (read_seqcount_retry(&seq, s)); 591 * 592 * BUG_ON(!x && !y); 593 * } 594 * 595 * void write(void) 596 * { 597 * WRITE_ONCE(Y, true); 598 * 599 * raw_write_seqcount_barrier(seq); 600 * 601 * WRITE_ONCE(X, false); 602 * } 603 */ 604 #define raw_write_seqcount_barrier(s) \ 605 do_raw_write_seqcount_barrier(seqprop_ptr(s)) 606 607 static inline void do_raw_write_seqcount_barrier(seqcount_t *s) 608 { 609 kcsan_nestable_atomic_begin(); 610 s->sequence++; 611 smp_wmb(); 612 s->sequence++; 613 kcsan_nestable_atomic_end(); 614 } 615 616 /** 617 * write_seqcount_invalidate() - invalidate in-progress seqcount_t read 618 * side operations 619 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 620 * 621 * After write_seqcount_invalidate, no seqcount_t read side operations 622 * will complete successfully and see data older than this. 623 */ 624 #define write_seqcount_invalidate(s) \ 625 do_write_seqcount_invalidate(seqprop_ptr(s)) 626 627 static inline void do_write_seqcount_invalidate(seqcount_t *s) 628 { 629 smp_wmb(); 630 kcsan_nestable_atomic_begin(); 631 s->sequence+=2; 632 kcsan_nestable_atomic_end(); 633 } 634 635 /* 636 * Latch sequence counters (seqcount_latch_t) 637 * 638 * A sequence counter variant where the counter even/odd value is used to 639 * switch between two copies of protected data. This allows the read path, 640 * typically NMIs, to safely interrupt the write side critical section. 641 * 642 * As the write sections are fully preemptible, no special handling for 643 * PREEMPT_RT is needed. 644 */ 645 typedef struct { 646 seqcount_t seqcount; 647 } seqcount_latch_t; 648 649 /** 650 * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t 651 * @seq_name: Name of the seqcount_latch_t instance 652 */ 653 #define SEQCNT_LATCH_ZERO(seq_name) { \ 654 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ 655 } 656 657 /** 658 * seqcount_latch_init() - runtime initializer for seqcount_latch_t 659 * @s: Pointer to the seqcount_latch_t instance 660 */ 661 #define seqcount_latch_init(s) seqcount_init(&(s)->seqcount) 662 663 /** 664 * raw_read_seqcount_latch() - pick even/odd latch data copy 665 * @s: Pointer to seqcount_latch_t 666 * 667 * See raw_write_seqcount_latch() for details and a full reader/writer 668 * usage example. 669 * 670 * Return: sequence counter raw value. Use the lowest bit as an index for 671 * picking which data copy to read. The full counter must then be checked 672 * with raw_read_seqcount_latch_retry(). 673 */ 674 static __always_inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s) 675 { 676 /* 677 * Pairs with the first smp_wmb() in raw_write_seqcount_latch(). 678 * Due to the dependent load, a full smp_rmb() is not needed. 679 */ 680 return READ_ONCE(s->seqcount.sequence); 681 } 682 683 /** 684 * raw_read_seqcount_latch_retry() - end a seqcount_latch_t read section 685 * @s: Pointer to seqcount_latch_t 686 * @start: count, from raw_read_seqcount_latch() 687 * 688 * Return: true if a read section retry is required, else false 689 */ 690 static __always_inline int 691 raw_read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) 692 { 693 smp_rmb(); 694 return unlikely(READ_ONCE(s->seqcount.sequence) != start); 695 } 696 697 /** 698 * raw_write_seqcount_latch() - redirect latch readers to even/odd copy 699 * @s: Pointer to seqcount_latch_t 700 * 701 * The latch technique is a multiversion concurrency control method that allows 702 * queries during non-atomic modifications. If you can guarantee queries never 703 * interrupt the modification -- e.g. the concurrency is strictly between CPUs 704 * -- you most likely do not need this. 705 * 706 * Where the traditional RCU/lockless data structures rely on atomic 707 * modifications to ensure queries observe either the old or the new state the 708 * latch allows the same for non-atomic updates. The trade-off is doubling the 709 * cost of storage; we have to maintain two copies of the entire data 710 * structure. 711 * 712 * Very simply put: we first modify one copy and then the other. This ensures 713 * there is always one copy in a stable state, ready to give us an answer. 714 * 715 * The basic form is a data structure like:: 716 * 717 * struct latch_struct { 718 * seqcount_latch_t seq; 719 * struct data_struct data[2]; 720 * }; 721 * 722 * Where a modification, which is assumed to be externally serialized, does the 723 * following:: 724 * 725 * void latch_modify(struct latch_struct *latch, ...) 726 * { 727 * smp_wmb(); // Ensure that the last data[1] update is visible 728 * latch->seq.sequence++; 729 * smp_wmb(); // Ensure that the seqcount update is visible 730 * 731 * modify(latch->data[0], ...); 732 * 733 * smp_wmb(); // Ensure that the data[0] update is visible 734 * latch->seq.sequence++; 735 * smp_wmb(); // Ensure that the seqcount update is visible 736 * 737 * modify(latch->data[1], ...); 738 * } 739 * 740 * The query will have a form like:: 741 * 742 * struct entry *latch_query(struct latch_struct *latch, ...) 743 * { 744 * struct entry *entry; 745 * unsigned seq, idx; 746 * 747 * do { 748 * seq = raw_read_seqcount_latch(&latch->seq); 749 * 750 * idx = seq & 0x01; 751 * entry = data_query(latch->data[idx], ...); 752 * 753 * // This includes needed smp_rmb() 754 * } while (raw_read_seqcount_latch_retry(&latch->seq, seq)); 755 * 756 * return entry; 757 * } 758 * 759 * So during the modification, queries are first redirected to data[1]. Then we 760 * modify data[0]. When that is complete, we redirect queries back to data[0] 761 * and we can modify data[1]. 762 * 763 * NOTE: 764 * 765 * The non-requirement for atomic modifications does _NOT_ include 766 * the publishing of new entries in the case where data is a dynamic 767 * data structure. 768 * 769 * An iteration might start in data[0] and get suspended long enough 770 * to miss an entire modification sequence, once it resumes it might 771 * observe the new entry. 772 * 773 * NOTE2: 774 * 775 * When data is a dynamic data structure; one should use regular RCU 776 * patterns to manage the lifetimes of the objects within. 777 */ 778 static inline void raw_write_seqcount_latch(seqcount_latch_t *s) 779 { 780 smp_wmb(); /* prior stores before incrementing "sequence" */ 781 s->seqcount.sequence++; 782 smp_wmb(); /* increment "sequence" before following stores */ 783 } 784 785 /* 786 * Sequential locks (seqlock_t) 787 * 788 * Sequence counters with an embedded spinlock for writer serialization 789 * and non-preemptibility. 790 * 791 * For more info, see: 792 * - Comments on top of seqcount_t 793 * - Documentation/locking/seqlock.rst 794 */ 795 typedef struct { 796 /* 797 * Make sure that readers don't starve writers on PREEMPT_RT: use 798 * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK(). 799 */ 800 seqcount_spinlock_t seqcount; 801 spinlock_t lock; 802 } seqlock_t; 803 804 #define __SEQLOCK_UNLOCKED(lockname) \ 805 { \ 806 .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \ 807 .lock = __SPIN_LOCK_UNLOCKED(lockname) \ 808 } 809 810 /** 811 * seqlock_init() - dynamic initializer for seqlock_t 812 * @sl: Pointer to the seqlock_t instance 813 */ 814 #define seqlock_init(sl) \ 815 do { \ 816 spin_lock_init(&(sl)->lock); \ 817 seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \ 818 } while (0) 819 820 /** 821 * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t 822 * @sl: Name of the seqlock_t instance 823 */ 824 #define DEFINE_SEQLOCK(sl) \ 825 seqlock_t sl = __SEQLOCK_UNLOCKED(sl) 826 827 /** 828 * read_seqbegin() - start a seqlock_t read side critical section 829 * @sl: Pointer to seqlock_t 830 * 831 * Return: count, to be passed to read_seqretry() 832 */ 833 static inline unsigned read_seqbegin(const seqlock_t *sl) 834 { 835 unsigned ret = read_seqcount_begin(&sl->seqcount); 836 837 kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */ 838 kcsan_flat_atomic_begin(); 839 return ret; 840 } 841 842 /** 843 * read_seqretry() - end a seqlock_t read side section 844 * @sl: Pointer to seqlock_t 845 * @start: count, from read_seqbegin() 846 * 847 * read_seqretry closes the read side critical section of given seqlock_t. 848 * If the critical section was invalid, it must be ignored (and typically 849 * retried). 850 * 851 * Return: true if a read section retry is required, else false 852 */ 853 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) 854 { 855 /* 856 * Assume not nested: read_seqretry() may be called multiple times when 857 * completing read critical section. 858 */ 859 kcsan_flat_atomic_end(); 860 861 return read_seqcount_retry(&sl->seqcount, start); 862 } 863 864 /* 865 * For all seqlock_t write side functions, use the internal 866 * do_write_seqcount_begin() instead of generic write_seqcount_begin(). 867 * This way, no redundant lockdep_assert_held() checks are added. 868 */ 869 870 /** 871 * write_seqlock() - start a seqlock_t write side critical section 872 * @sl: Pointer to seqlock_t 873 * 874 * write_seqlock opens a write side critical section for the given 875 * seqlock_t. It also implicitly acquires the spinlock_t embedded inside 876 * that sequential lock. All seqlock_t write side sections are thus 877 * automatically serialized and non-preemptible. 878 * 879 * Context: if the seqlock_t read section, or other write side critical 880 * sections, can be invoked from hardirq or softirq contexts, use the 881 * _irqsave or _bh variants of this function instead. 882 */ 883 static inline void write_seqlock(seqlock_t *sl) 884 { 885 spin_lock(&sl->lock); 886 do_write_seqcount_begin(&sl->seqcount.seqcount); 887 } 888 889 /** 890 * write_sequnlock() - end a seqlock_t write side critical section 891 * @sl: Pointer to seqlock_t 892 * 893 * write_sequnlock closes the (serialized and non-preemptible) write side 894 * critical section of given seqlock_t. 895 */ 896 static inline void write_sequnlock(seqlock_t *sl) 897 { 898 do_write_seqcount_end(&sl->seqcount.seqcount); 899 spin_unlock(&sl->lock); 900 } 901 902 /** 903 * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section 904 * @sl: Pointer to seqlock_t 905 * 906 * _bh variant of write_seqlock(). Use only if the read side section, or 907 * other write side sections, can be invoked from softirq contexts. 908 */ 909 static inline void write_seqlock_bh(seqlock_t *sl) 910 { 911 spin_lock_bh(&sl->lock); 912 do_write_seqcount_begin(&sl->seqcount.seqcount); 913 } 914 915 /** 916 * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section 917 * @sl: Pointer to seqlock_t 918 * 919 * write_sequnlock_bh closes the serialized, non-preemptible, and 920 * softirqs-disabled, seqlock_t write side critical section opened with 921 * write_seqlock_bh(). 922 */ 923 static inline void write_sequnlock_bh(seqlock_t *sl) 924 { 925 do_write_seqcount_end(&sl->seqcount.seqcount); 926 spin_unlock_bh(&sl->lock); 927 } 928 929 /** 930 * write_seqlock_irq() - start a non-interruptible seqlock_t write section 931 * @sl: Pointer to seqlock_t 932 * 933 * _irq variant of write_seqlock(). Use only if the read side section, or 934 * other write sections, can be invoked from hardirq contexts. 935 */ 936 static inline void write_seqlock_irq(seqlock_t *sl) 937 { 938 spin_lock_irq(&sl->lock); 939 do_write_seqcount_begin(&sl->seqcount.seqcount); 940 } 941 942 /** 943 * write_sequnlock_irq() - end a non-interruptible seqlock_t write section 944 * @sl: Pointer to seqlock_t 945 * 946 * write_sequnlock_irq closes the serialized and non-interruptible 947 * seqlock_t write side section opened with write_seqlock_irq(). 948 */ 949 static inline void write_sequnlock_irq(seqlock_t *sl) 950 { 951 do_write_seqcount_end(&sl->seqcount.seqcount); 952 spin_unlock_irq(&sl->lock); 953 } 954 955 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) 956 { 957 unsigned long flags; 958 959 spin_lock_irqsave(&sl->lock, flags); 960 do_write_seqcount_begin(&sl->seqcount.seqcount); 961 return flags; 962 } 963 964 /** 965 * write_seqlock_irqsave() - start a non-interruptible seqlock_t write 966 * section 967 * @lock: Pointer to seqlock_t 968 * @flags: Stack-allocated storage for saving caller's local interrupt 969 * state, to be passed to write_sequnlock_irqrestore(). 970 * 971 * _irqsave variant of write_seqlock(). Use it only if the read side 972 * section, or other write sections, can be invoked from hardirq context. 973 */ 974 #define write_seqlock_irqsave(lock, flags) \ 975 do { flags = __write_seqlock_irqsave(lock); } while (0) 976 977 /** 978 * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write 979 * section 980 * @sl: Pointer to seqlock_t 981 * @flags: Caller's saved interrupt state, from write_seqlock_irqsave() 982 * 983 * write_sequnlock_irqrestore closes the serialized and non-interruptible 984 * seqlock_t write section previously opened with write_seqlock_irqsave(). 985 */ 986 static inline void 987 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) 988 { 989 do_write_seqcount_end(&sl->seqcount.seqcount); 990 spin_unlock_irqrestore(&sl->lock, flags); 991 } 992 993 /** 994 * read_seqlock_excl() - begin a seqlock_t locking reader section 995 * @sl: Pointer to seqlock_t 996 * 997 * read_seqlock_excl opens a seqlock_t locking reader critical section. A 998 * locking reader exclusively locks out *both* other writers *and* other 999 * locking readers, but it does not update the embedded sequence number. 1000 * 1001 * Locking readers act like a normal spin_lock()/spin_unlock(). 1002 * 1003 * Context: if the seqlock_t write section, *or other read sections*, can 1004 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh 1005 * variant of this function instead. 1006 * 1007 * The opened read section must be closed with read_sequnlock_excl(). 1008 */ 1009 static inline void read_seqlock_excl(seqlock_t *sl) 1010 { 1011 spin_lock(&sl->lock); 1012 } 1013 1014 /** 1015 * read_sequnlock_excl() - end a seqlock_t locking reader critical section 1016 * @sl: Pointer to seqlock_t 1017 */ 1018 static inline void read_sequnlock_excl(seqlock_t *sl) 1019 { 1020 spin_unlock(&sl->lock); 1021 } 1022 1023 /** 1024 * read_seqlock_excl_bh() - start a seqlock_t locking reader section with 1025 * softirqs disabled 1026 * @sl: Pointer to seqlock_t 1027 * 1028 * _bh variant of read_seqlock_excl(). Use this variant only if the 1029 * seqlock_t write side section, *or other read sections*, can be invoked 1030 * from softirq contexts. 1031 */ 1032 static inline void read_seqlock_excl_bh(seqlock_t *sl) 1033 { 1034 spin_lock_bh(&sl->lock); 1035 } 1036 1037 /** 1038 * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking 1039 * reader section 1040 * @sl: Pointer to seqlock_t 1041 */ 1042 static inline void read_sequnlock_excl_bh(seqlock_t *sl) 1043 { 1044 spin_unlock_bh(&sl->lock); 1045 } 1046 1047 /** 1048 * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking 1049 * reader section 1050 * @sl: Pointer to seqlock_t 1051 * 1052 * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t 1053 * write side section, *or other read sections*, can be invoked from a 1054 * hardirq context. 1055 */ 1056 static inline void read_seqlock_excl_irq(seqlock_t *sl) 1057 { 1058 spin_lock_irq(&sl->lock); 1059 } 1060 1061 /** 1062 * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t 1063 * locking reader section 1064 * @sl: Pointer to seqlock_t 1065 */ 1066 static inline void read_sequnlock_excl_irq(seqlock_t *sl) 1067 { 1068 spin_unlock_irq(&sl->lock); 1069 } 1070 1071 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl) 1072 { 1073 unsigned long flags; 1074 1075 spin_lock_irqsave(&sl->lock, flags); 1076 return flags; 1077 } 1078 1079 /** 1080 * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t 1081 * locking reader section 1082 * @lock: Pointer to seqlock_t 1083 * @flags: Stack-allocated storage for saving caller's local interrupt 1084 * state, to be passed to read_sequnlock_excl_irqrestore(). 1085 * 1086 * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t 1087 * write side section, *or other read sections*, can be invoked from a 1088 * hardirq context. 1089 */ 1090 #define read_seqlock_excl_irqsave(lock, flags) \ 1091 do { flags = __read_seqlock_excl_irqsave(lock); } while (0) 1092 1093 /** 1094 * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t 1095 * locking reader section 1096 * @sl: Pointer to seqlock_t 1097 * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave() 1098 */ 1099 static inline void 1100 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) 1101 { 1102 spin_unlock_irqrestore(&sl->lock, flags); 1103 } 1104 1105 /** 1106 * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader 1107 * @lock: Pointer to seqlock_t 1108 * @seq : Marker and return parameter. If the passed value is even, the 1109 * reader will become a *lockless* seqlock_t reader as in read_seqbegin(). 1110 * If the passed value is odd, the reader will become a *locking* reader 1111 * as in read_seqlock_excl(). In the first call to this function, the 1112 * caller *must* initialize and pass an even value to @seq; this way, a 1113 * lockless read can be optimistically tried first. 1114 * 1115 * read_seqbegin_or_lock is an API designed to optimistically try a normal 1116 * lockless seqlock_t read section first. If an odd counter is found, the 1117 * lockless read trial has failed, and the next read iteration transforms 1118 * itself into a full seqlock_t locking reader. 1119 * 1120 * This is typically used to avoid seqlock_t lockless readers starvation 1121 * (too much retry loops) in the case of a sharp spike in write side 1122 * activity. 1123 * 1124 * Context: if the seqlock_t write section, *or other read sections*, can 1125 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh 1126 * variant of this function instead. 1127 * 1128 * Check Documentation/locking/seqlock.rst for template example code. 1129 * 1130 * Return: the encountered sequence counter value, through the @seq 1131 * parameter, which is overloaded as a return parameter. This returned 1132 * value must be checked with need_seqretry(). If the read section need to 1133 * be retried, this returned value must also be passed as the @seq 1134 * parameter of the next read_seqbegin_or_lock() iteration. 1135 */ 1136 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) 1137 { 1138 if (!(*seq & 1)) /* Even */ 1139 *seq = read_seqbegin(lock); 1140 else /* Odd */ 1141 read_seqlock_excl(lock); 1142 } 1143 1144 /** 1145 * need_seqretry() - validate seqlock_t "locking or lockless" read section 1146 * @lock: Pointer to seqlock_t 1147 * @seq: sequence count, from read_seqbegin_or_lock() 1148 * 1149 * Return: true if a read section retry is required, false otherwise 1150 */ 1151 static inline int need_seqretry(seqlock_t *lock, int seq) 1152 { 1153 return !(seq & 1) && read_seqretry(lock, seq); 1154 } 1155 1156 /** 1157 * done_seqretry() - end seqlock_t "locking or lockless" reader section 1158 * @lock: Pointer to seqlock_t 1159 * @seq: count, from read_seqbegin_or_lock() 1160 * 1161 * done_seqretry finishes the seqlock_t read side critical section started 1162 * with read_seqbegin_or_lock() and validated by need_seqretry(). 1163 */ 1164 static inline void done_seqretry(seqlock_t *lock, int seq) 1165 { 1166 if (seq & 1) 1167 read_sequnlock_excl(lock); 1168 } 1169 1170 /** 1171 * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or 1172 * a non-interruptible locking reader 1173 * @lock: Pointer to seqlock_t 1174 * @seq: Marker and return parameter. Check read_seqbegin_or_lock(). 1175 * 1176 * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if 1177 * the seqlock_t write section, *or other read sections*, can be invoked 1178 * from hardirq context. 1179 * 1180 * Note: Interrupts will be disabled only for "locking reader" mode. 1181 * 1182 * Return: 1183 * 1184 * 1. The saved local interrupts state in case of a locking reader, to 1185 * be passed to done_seqretry_irqrestore(). 1186 * 1187 * 2. The encountered sequence counter value, returned through @seq 1188 * overloaded as a return parameter. Check read_seqbegin_or_lock(). 1189 */ 1190 static inline unsigned long 1191 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq) 1192 { 1193 unsigned long flags = 0; 1194 1195 if (!(*seq & 1)) /* Even */ 1196 *seq = read_seqbegin(lock); 1197 else /* Odd */ 1198 read_seqlock_excl_irqsave(lock, flags); 1199 1200 return flags; 1201 } 1202 1203 /** 1204 * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a 1205 * non-interruptible locking reader section 1206 * @lock: Pointer to seqlock_t 1207 * @seq: Count, from read_seqbegin_or_lock_irqsave() 1208 * @flags: Caller's saved local interrupt state in case of a locking 1209 * reader, also from read_seqbegin_or_lock_irqsave() 1210 * 1211 * This is the _irqrestore variant of done_seqretry(). The read section 1212 * must've been opened with read_seqbegin_or_lock_irqsave(), and validated 1213 * by need_seqretry(). 1214 */ 1215 static inline void 1216 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags) 1217 { 1218 if (seq & 1) 1219 read_sequnlock_excl_irqrestore(lock, flags); 1220 } 1221 #endif /* __LINUX_SEQLOCK_H */ 1222