xref: /linux-6.15/include/linux/seqlock.h (revision 9ca4efec)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_SEQLOCK_H
3 #define __LINUX_SEQLOCK_H
4 
5 /*
6  * seqcount_t / seqlock_t - a reader-writer consistency mechanism with
7  * lockless readers (read-only retry loops), and no writer starvation.
8  *
9  * See Documentation/locking/seqlock.rst
10  *
11  * Copyrights:
12  * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli
13  * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH
14  */
15 
16 #include <linux/compiler.h>
17 #include <linux/kcsan-checks.h>
18 #include <linux/lockdep.h>
19 #include <linux/mutex.h>
20 #include <linux/ww_mutex.h>
21 #include <linux/preempt.h>
22 #include <linux/spinlock.h>
23 
24 #include <asm/processor.h>
25 
26 /*
27  * The seqlock seqcount_t interface does not prescribe a precise sequence of
28  * read begin/retry/end. For readers, typically there is a call to
29  * read_seqcount_begin() and read_seqcount_retry(), however, there are more
30  * esoteric cases which do not follow this pattern.
31  *
32  * As a consequence, we take the following best-effort approach for raw usage
33  * via seqcount_t under KCSAN: upon beginning a seq-reader critical section,
34  * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as
35  * atomics; if there is a matching read_seqcount_retry() call, no following
36  * memory operations are considered atomic. Usage of the seqlock_t interface
37  * is not affected.
38  */
39 #define KCSAN_SEQLOCK_REGION_MAX 1000
40 
41 /*
42  * Sequence counters (seqcount_t)
43  *
44  * This is the raw counting mechanism, without any writer protection.
45  *
46  * Write side critical sections must be serialized and non-preemptible.
47  *
48  * If readers can be invoked from hardirq or softirq contexts,
49  * interrupts or bottom halves must also be respectively disabled before
50  * entering the write section.
51  *
52  * This mechanism can't be used if the protected data contains pointers,
53  * as the writer can invalidate a pointer that a reader is following.
54  *
55  * If the write serialization mechanism is one of the common kernel
56  * locking primitives, use a sequence counter with associated lock
57  * (seqcount_LOCKNAME_t) instead.
58  *
59  * If it's desired to automatically handle the sequence counter writer
60  * serialization and non-preemptibility requirements, use a sequential
61  * lock (seqlock_t) instead.
62  *
63  * See Documentation/locking/seqlock.rst
64  */
65 typedef struct seqcount {
66 	unsigned sequence;
67 #ifdef CONFIG_DEBUG_LOCK_ALLOC
68 	struct lockdep_map dep_map;
69 #endif
70 } seqcount_t;
71 
72 static inline void __seqcount_init(seqcount_t *s, const char *name,
73 					  struct lock_class_key *key)
74 {
75 	/*
76 	 * Make sure we are not reinitializing a held lock:
77 	 */
78 	lockdep_init_map(&s->dep_map, name, key, 0);
79 	s->sequence = 0;
80 }
81 
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83 
84 # define SEQCOUNT_DEP_MAP_INIT(lockname)				\
85 		.dep_map = { .name = #lockname }
86 
87 /**
88  * seqcount_init() - runtime initializer for seqcount_t
89  * @s: Pointer to the seqcount_t instance
90  */
91 # define seqcount_init(s)						\
92 	do {								\
93 		static struct lock_class_key __key;			\
94 		__seqcount_init((s), #s, &__key);			\
95 	} while (0)
96 
97 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
98 {
99 	seqcount_t *l = (seqcount_t *)s;
100 	unsigned long flags;
101 
102 	local_irq_save(flags);
103 	seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
104 	seqcount_release(&l->dep_map, _RET_IP_);
105 	local_irq_restore(flags);
106 }
107 
108 #else
109 # define SEQCOUNT_DEP_MAP_INIT(lockname)
110 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
111 # define seqcount_lockdep_reader_access(x)
112 #endif
113 
114 /**
115  * SEQCNT_ZERO() - static initializer for seqcount_t
116  * @name: Name of the seqcount_t instance
117  */
118 #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) }
119 
120 /*
121  * Sequence counters with associated locks (seqcount_LOCKNAME_t)
122  *
123  * A sequence counter which associates the lock used for writer
124  * serialization at initialization time. This enables lockdep to validate
125  * that the write side critical section is properly serialized.
126  *
127  * For associated locks which do not implicitly disable preemption,
128  * preemption protection is enforced in the write side function.
129  *
130  * Lockdep is never used in any for the raw write variants.
131  *
132  * See Documentation/locking/seqlock.rst
133  */
134 
135 /*
136  * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot
137  * disable preemption. It can lead to higher latencies, and the write side
138  * sections will not be able to acquire locks which become sleeping locks
139  * (e.g. spinlock_t).
140  *
141  * To remain preemptible while avoiding a possible livelock caused by the
142  * reader preempting the writer, use a different technique: let the reader
143  * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the
144  * case, acquire then release the associated LOCKNAME writer serialization
145  * lock. This will allow any possibly-preempted writer to make progress
146  * until the end of its writer serialization lock critical section.
147  *
148  * This lock-unlock technique must be implemented for all of PREEMPT_RT
149  * sleeping locks.  See Documentation/locking/locktypes.rst
150  */
151 #if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT)
152 #define __SEQ_LOCK(expr)	expr
153 #else
154 #define __SEQ_LOCK(expr)
155 #endif
156 
157 /*
158  * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated
159  * @seqcount:	The real sequence counter
160  * @lock:	Pointer to the associated lock
161  *
162  * A plain sequence counter with external writer synchronization by
163  * LOCKNAME @lock. The lock is associated to the sequence counter in the
164  * static initializer or init function. This enables lockdep to validate
165  * that the write side critical section is properly serialized.
166  *
167  * LOCKNAME:	raw_spinlock, spinlock, rwlock, mutex, or ww_mutex.
168  */
169 
170 /*
171  * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t
172  * @s:		Pointer to the seqcount_LOCKNAME_t instance
173  * @lock:	Pointer to the associated lock
174  */
175 
176 #define seqcount_LOCKNAME_init(s, _lock, lockname)			\
177 	do {								\
178 		seqcount_##lockname##_t *____s = (s);			\
179 		seqcount_init(&____s->seqcount);			\
180 		__SEQ_LOCK(____s->lock = (_lock));			\
181 	} while (0)
182 
183 #define seqcount_raw_spinlock_init(s, lock)	seqcount_LOCKNAME_init(s, lock, raw_spinlock)
184 #define seqcount_spinlock_init(s, lock)		seqcount_LOCKNAME_init(s, lock, spinlock)
185 #define seqcount_rwlock_init(s, lock)		seqcount_LOCKNAME_init(s, lock, rwlock);
186 #define seqcount_mutex_init(s, lock)		seqcount_LOCKNAME_init(s, lock, mutex);
187 #define seqcount_ww_mutex_init(s, lock)		seqcount_LOCKNAME_init(s, lock, ww_mutex);
188 
189 /*
190  * SEQCOUNT_LOCKNAME()	- Instantiate seqcount_LOCKNAME_t and helpers
191  * seqprop_LOCKNAME_*()	- Property accessors for seqcount_LOCKNAME_t
192  *
193  * @lockname:		"LOCKNAME" part of seqcount_LOCKNAME_t
194  * @locktype:		LOCKNAME canonical C data type
195  * @preemptible:	preemptibility of above locktype
196  * @lockmember:		argument for lockdep_assert_held()
197  * @lockbase:		associated lock release function (prefix only)
198  * @lock_acquire:	associated lock acquisition function (full call)
199  */
200 #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockmember, lockbase, lock_acquire) \
201 typedef struct seqcount_##lockname {					\
202 	seqcount_t		seqcount;				\
203 	__SEQ_LOCK(locktype	*lock);					\
204 } seqcount_##lockname##_t;						\
205 									\
206 static __always_inline seqcount_t *					\
207 __seqprop_##lockname##_ptr(seqcount_##lockname##_t *s)			\
208 {									\
209 	return &s->seqcount;						\
210 }									\
211 									\
212 static __always_inline unsigned						\
213 __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s)	\
214 {									\
215 	unsigned seq = READ_ONCE(s->seqcount.sequence);			\
216 									\
217 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))				\
218 		return seq;						\
219 									\
220 	if (preemptible && unlikely(seq & 1)) {				\
221 		__SEQ_LOCK(lock_acquire);				\
222 		__SEQ_LOCK(lockbase##_unlock(s->lock));			\
223 									\
224 		/*							\
225 		 * Re-read the sequence counter since the (possibly	\
226 		 * preempted) writer made progress.			\
227 		 */							\
228 		seq = READ_ONCE(s->seqcount.sequence);			\
229 	}								\
230 									\
231 	return seq;							\
232 }									\
233 									\
234 static __always_inline bool						\
235 __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s)	\
236 {									\
237 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))				\
238 		return preemptible;					\
239 									\
240 	/* PREEMPT_RT relies on the above LOCK+UNLOCK */		\
241 	return false;							\
242 }									\
243 									\
244 static __always_inline void						\
245 __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s)		\
246 {									\
247 	__SEQ_LOCK(lockdep_assert_held(lockmember));			\
248 }
249 
250 /*
251  * __seqprop() for seqcount_t
252  */
253 
254 static inline seqcount_t *__seqprop_ptr(seqcount_t *s)
255 {
256 	return s;
257 }
258 
259 static inline unsigned __seqprop_sequence(const seqcount_t *s)
260 {
261 	return READ_ONCE(s->sequence);
262 }
263 
264 static inline bool __seqprop_preemptible(const seqcount_t *s)
265 {
266 	return false;
267 }
268 
269 static inline void __seqprop_assert(const seqcount_t *s)
270 {
271 	lockdep_assert_preemption_disabled();
272 }
273 
274 #define __SEQ_RT	IS_ENABLED(CONFIG_PREEMPT_RT)
275 
276 SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t,  false,    s->lock,        raw_spin, raw_spin_lock(s->lock))
277 SEQCOUNT_LOCKNAME(spinlock,     spinlock_t,      __SEQ_RT, s->lock,        spin,     spin_lock(s->lock))
278 SEQCOUNT_LOCKNAME(rwlock,       rwlock_t,        __SEQ_RT, s->lock,        read,     read_lock(s->lock))
279 SEQCOUNT_LOCKNAME(mutex,        struct mutex,    true,     s->lock,        mutex,    mutex_lock(s->lock))
280 SEQCOUNT_LOCKNAME(ww_mutex,     struct ww_mutex, true,     &s->lock->base, ww_mutex, ww_mutex_lock(s->lock, NULL))
281 
282 /*
283  * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t
284  * @name:	Name of the seqcount_LOCKNAME_t instance
285  * @lock:	Pointer to the associated LOCKNAME
286  */
287 
288 #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) {			\
289 	.seqcount		= SEQCNT_ZERO(seq_name.seqcount),	\
290 	__SEQ_LOCK(.lock	= (assoc_lock))				\
291 }
292 
293 #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock)	SEQCOUNT_LOCKNAME_ZERO(name, lock)
294 #define SEQCNT_SPINLOCK_ZERO(name, lock)	SEQCOUNT_LOCKNAME_ZERO(name, lock)
295 #define SEQCNT_RWLOCK_ZERO(name, lock)		SEQCOUNT_LOCKNAME_ZERO(name, lock)
296 #define SEQCNT_MUTEX_ZERO(name, lock)		SEQCOUNT_LOCKNAME_ZERO(name, lock)
297 #define SEQCNT_WW_MUTEX_ZERO(name, lock) 	SEQCOUNT_LOCKNAME_ZERO(name, lock)
298 
299 #define __seqprop_case(s, lockname, prop)				\
300 	seqcount_##lockname##_t: __seqprop_##lockname##_##prop((void *)(s))
301 
302 #define __seqprop(s, prop) _Generic(*(s),				\
303 	seqcount_t:		__seqprop_##prop((void *)(s)),		\
304 	__seqprop_case((s),	raw_spinlock,	prop),			\
305 	__seqprop_case((s),	spinlock,	prop),			\
306 	__seqprop_case((s),	rwlock,		prop),			\
307 	__seqprop_case((s),	mutex,		prop),			\
308 	__seqprop_case((s),	ww_mutex,	prop))
309 
310 #define seqprop_ptr(s)			__seqprop(s, ptr)
311 #define seqprop_sequence(s)		__seqprop(s, sequence)
312 #define seqprop_preemptible(s)		__seqprop(s, preemptible)
313 #define seqprop_assert(s)		__seqprop(s, assert)
314 
315 /**
316  * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier
317  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
318  *
319  * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
320  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
321  * provided before actually loading any of the variables that are to be
322  * protected in this critical section.
323  *
324  * Use carefully, only in critical code, and comment how the barrier is
325  * provided.
326  *
327  * Return: count to be passed to read_seqcount_retry()
328  */
329 #define __read_seqcount_begin(s)					\
330 ({									\
331 	unsigned __seq;							\
332 									\
333 	while ((__seq = seqprop_sequence(s)) & 1)			\
334 		cpu_relax();						\
335 									\
336 	kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);			\
337 	__seq;								\
338 })
339 
340 /**
341  * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep
342  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
343  *
344  * Return: count to be passed to read_seqcount_retry()
345  */
346 #define raw_read_seqcount_begin(s)					\
347 ({									\
348 	unsigned _seq = __read_seqcount_begin(s);			\
349 									\
350 	smp_rmb();							\
351 	_seq;								\
352 })
353 
354 /**
355  * read_seqcount_begin() - begin a seqcount_t read critical section
356  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
357  *
358  * Return: count to be passed to read_seqcount_retry()
359  */
360 #define read_seqcount_begin(s)						\
361 ({									\
362 	seqcount_lockdep_reader_access(seqprop_ptr(s));			\
363 	raw_read_seqcount_begin(s);					\
364 })
365 
366 /**
367  * raw_read_seqcount() - read the raw seqcount_t counter value
368  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
369  *
370  * raw_read_seqcount opens a read critical section of the given
371  * seqcount_t, without any lockdep checking, and without checking or
372  * masking the sequence counter LSB. Calling code is responsible for
373  * handling that.
374  *
375  * Return: count to be passed to read_seqcount_retry()
376  */
377 #define raw_read_seqcount(s)						\
378 ({									\
379 	unsigned __seq = seqprop_sequence(s);				\
380 									\
381 	smp_rmb();							\
382 	kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);			\
383 	__seq;								\
384 })
385 
386 /**
387  * raw_seqcount_begin() - begin a seqcount_t read critical section w/o
388  *                        lockdep and w/o counter stabilization
389  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
390  *
391  * raw_seqcount_begin opens a read critical section of the given
392  * seqcount_t. Unlike read_seqcount_begin(), this function will not wait
393  * for the count to stabilize. If a writer is active when it begins, it
394  * will fail the read_seqcount_retry() at the end of the read critical
395  * section instead of stabilizing at the beginning of it.
396  *
397  * Use this only in special kernel hot paths where the read section is
398  * small and has a high probability of success through other external
399  * means. It will save a single branching instruction.
400  *
401  * Return: count to be passed to read_seqcount_retry()
402  */
403 #define raw_seqcount_begin(s)						\
404 ({									\
405 	/*								\
406 	 * If the counter is odd, let read_seqcount_retry() fail	\
407 	 * by decrementing the counter.					\
408 	 */								\
409 	raw_read_seqcount(s) & ~1;					\
410 })
411 
412 /**
413  * __read_seqcount_retry() - end a seqcount_t read section w/o barrier
414  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
415  * @start: count, from read_seqcount_begin()
416  *
417  * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
418  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
419  * provided before actually loading any of the variables that are to be
420  * protected in this critical section.
421  *
422  * Use carefully, only in critical code, and comment how the barrier is
423  * provided.
424  *
425  * Return: true if a read section retry is required, else false
426  */
427 #define __read_seqcount_retry(s, start)					\
428 	do___read_seqcount_retry(seqprop_ptr(s), start)
429 
430 static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start)
431 {
432 	kcsan_atomic_next(0);
433 	return unlikely(READ_ONCE(s->sequence) != start);
434 }
435 
436 /**
437  * read_seqcount_retry() - end a seqcount_t read critical section
438  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
439  * @start: count, from read_seqcount_begin()
440  *
441  * read_seqcount_retry closes the read critical section of given
442  * seqcount_t.  If the critical section was invalid, it must be ignored
443  * (and typically retried).
444  *
445  * Return: true if a read section retry is required, else false
446  */
447 #define read_seqcount_retry(s, start)					\
448 	do_read_seqcount_retry(seqprop_ptr(s), start)
449 
450 static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start)
451 {
452 	smp_rmb();
453 	return do___read_seqcount_retry(s, start);
454 }
455 
456 /**
457  * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep
458  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
459  *
460  * Context: check write_seqcount_begin()
461  */
462 #define raw_write_seqcount_begin(s)					\
463 do {									\
464 	if (seqprop_preemptible(s))					\
465 		preempt_disable();					\
466 									\
467 	do_raw_write_seqcount_begin(seqprop_ptr(s));			\
468 } while (0)
469 
470 static inline void do_raw_write_seqcount_begin(seqcount_t *s)
471 {
472 	kcsan_nestable_atomic_begin();
473 	s->sequence++;
474 	smp_wmb();
475 }
476 
477 /**
478  * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep
479  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
480  *
481  * Context: check write_seqcount_end()
482  */
483 #define raw_write_seqcount_end(s)					\
484 do {									\
485 	do_raw_write_seqcount_end(seqprop_ptr(s));			\
486 									\
487 	if (seqprop_preemptible(s))					\
488 		preempt_enable();					\
489 } while (0)
490 
491 static inline void do_raw_write_seqcount_end(seqcount_t *s)
492 {
493 	smp_wmb();
494 	s->sequence++;
495 	kcsan_nestable_atomic_end();
496 }
497 
498 /**
499  * write_seqcount_begin_nested() - start a seqcount_t write section with
500  *                                 custom lockdep nesting level
501  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
502  * @subclass: lockdep nesting level
503  *
504  * See Documentation/locking/lockdep-design.rst
505  * Context: check write_seqcount_begin()
506  */
507 #define write_seqcount_begin_nested(s, subclass)			\
508 do {									\
509 	seqprop_assert(s);						\
510 									\
511 	if (seqprop_preemptible(s))					\
512 		preempt_disable();					\
513 									\
514 	do_write_seqcount_begin_nested(seqprop_ptr(s), subclass);	\
515 } while (0)
516 
517 static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass)
518 {
519 	do_raw_write_seqcount_begin(s);
520 	seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
521 }
522 
523 /**
524  * write_seqcount_begin() - start a seqcount_t write side critical section
525  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
526  *
527  * Context: sequence counter write side sections must be serialized and
528  * non-preemptible. Preemption will be automatically disabled if and
529  * only if the seqcount write serialization lock is associated, and
530  * preemptible.  If readers can be invoked from hardirq or softirq
531  * context, interrupts or bottom halves must be respectively disabled.
532  */
533 #define write_seqcount_begin(s)						\
534 do {									\
535 	seqprop_assert(s);						\
536 									\
537 	if (seqprop_preemptible(s))					\
538 		preempt_disable();					\
539 									\
540 	do_write_seqcount_begin(seqprop_ptr(s));			\
541 } while (0)
542 
543 static inline void do_write_seqcount_begin(seqcount_t *s)
544 {
545 	do_write_seqcount_begin_nested(s, 0);
546 }
547 
548 /**
549  * write_seqcount_end() - end a seqcount_t write side critical section
550  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
551  *
552  * Context: Preemption will be automatically re-enabled if and only if
553  * the seqcount write serialization lock is associated, and preemptible.
554  */
555 #define write_seqcount_end(s)						\
556 do {									\
557 	do_write_seqcount_end(seqprop_ptr(s));				\
558 									\
559 	if (seqprop_preemptible(s))					\
560 		preempt_enable();					\
561 } while (0)
562 
563 static inline void do_write_seqcount_end(seqcount_t *s)
564 {
565 	seqcount_release(&s->dep_map, _RET_IP_);
566 	do_raw_write_seqcount_end(s);
567 }
568 
569 /**
570  * raw_write_seqcount_barrier() - do a seqcount_t write barrier
571  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
572  *
573  * This can be used to provide an ordering guarantee instead of the usual
574  * consistency guarantee. It is one wmb cheaper, because it can collapse
575  * the two back-to-back wmb()s.
576  *
577  * Note that writes surrounding the barrier should be declared atomic (e.g.
578  * via WRITE_ONCE): a) to ensure the writes become visible to other threads
579  * atomically, avoiding compiler optimizations; b) to document which writes are
580  * meant to propagate to the reader critical section. This is necessary because
581  * neither writes before and after the barrier are enclosed in a seq-writer
582  * critical section that would ensure readers are aware of ongoing writes::
583  *
584  *	seqcount_t seq;
585  *	bool X = true, Y = false;
586  *
587  *	void read(void)
588  *	{
589  *		bool x, y;
590  *
591  *		do {
592  *			int s = read_seqcount_begin(&seq);
593  *
594  *			x = X; y = Y;
595  *
596  *		} while (read_seqcount_retry(&seq, s));
597  *
598  *		BUG_ON(!x && !y);
599  *      }
600  *
601  *      void write(void)
602  *      {
603  *		WRITE_ONCE(Y, true);
604  *
605  *		raw_write_seqcount_barrier(seq);
606  *
607  *		WRITE_ONCE(X, false);
608  *      }
609  */
610 #define raw_write_seqcount_barrier(s)					\
611 	do_raw_write_seqcount_barrier(seqprop_ptr(s))
612 
613 static inline void do_raw_write_seqcount_barrier(seqcount_t *s)
614 {
615 	kcsan_nestable_atomic_begin();
616 	s->sequence++;
617 	smp_wmb();
618 	s->sequence++;
619 	kcsan_nestable_atomic_end();
620 }
621 
622 /**
623  * write_seqcount_invalidate() - invalidate in-progress seqcount_t read
624  *                               side operations
625  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
626  *
627  * After write_seqcount_invalidate, no seqcount_t read side operations
628  * will complete successfully and see data older than this.
629  */
630 #define write_seqcount_invalidate(s)					\
631 	do_write_seqcount_invalidate(seqprop_ptr(s))
632 
633 static inline void do_write_seqcount_invalidate(seqcount_t *s)
634 {
635 	smp_wmb();
636 	kcsan_nestable_atomic_begin();
637 	s->sequence+=2;
638 	kcsan_nestable_atomic_end();
639 }
640 
641 /*
642  * Latch sequence counters (seqcount_latch_t)
643  *
644  * A sequence counter variant where the counter even/odd value is used to
645  * switch between two copies of protected data. This allows the read path,
646  * typically NMIs, to safely interrupt the write side critical section.
647  *
648  * As the write sections are fully preemptible, no special handling for
649  * PREEMPT_RT is needed.
650  */
651 typedef struct {
652 	seqcount_t seqcount;
653 } seqcount_latch_t;
654 
655 /**
656  * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t
657  * @seq_name: Name of the seqcount_latch_t instance
658  */
659 #define SEQCNT_LATCH_ZERO(seq_name) {					\
660 	.seqcount		= SEQCNT_ZERO(seq_name.seqcount),	\
661 }
662 
663 /**
664  * seqcount_latch_init() - runtime initializer for seqcount_latch_t
665  * @s: Pointer to the seqcount_latch_t instance
666  */
667 static inline void seqcount_latch_init(seqcount_latch_t *s)
668 {
669 	seqcount_init(&s->seqcount);
670 }
671 
672 /**
673  * raw_read_seqcount_latch() - pick even/odd latch data copy
674  * @s: Pointer to seqcount_latch_t
675  *
676  * See raw_write_seqcount_latch() for details and a full reader/writer
677  * usage example.
678  *
679  * Return: sequence counter raw value. Use the lowest bit as an index for
680  * picking which data copy to read. The full counter must then be checked
681  * with read_seqcount_latch_retry().
682  */
683 static inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s)
684 {
685 	/*
686 	 * Pairs with the first smp_wmb() in raw_write_seqcount_latch().
687 	 * Due to the dependent load, a full smp_rmb() is not needed.
688 	 */
689 	return READ_ONCE(s->seqcount.sequence);
690 }
691 
692 /**
693  * read_seqcount_latch_retry() - end a seqcount_latch_t read section
694  * @s:		Pointer to seqcount_latch_t
695  * @start:	count, from raw_read_seqcount_latch()
696  *
697  * Return: true if a read section retry is required, else false
698  */
699 static inline int
700 read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start)
701 {
702 	return read_seqcount_retry(&s->seqcount, start);
703 }
704 
705 /**
706  * raw_write_seqcount_latch() - redirect latch readers to even/odd copy
707  * @s: Pointer to seqcount_latch_t
708  *
709  * The latch technique is a multiversion concurrency control method that allows
710  * queries during non-atomic modifications. If you can guarantee queries never
711  * interrupt the modification -- e.g. the concurrency is strictly between CPUs
712  * -- you most likely do not need this.
713  *
714  * Where the traditional RCU/lockless data structures rely on atomic
715  * modifications to ensure queries observe either the old or the new state the
716  * latch allows the same for non-atomic updates. The trade-off is doubling the
717  * cost of storage; we have to maintain two copies of the entire data
718  * structure.
719  *
720  * Very simply put: we first modify one copy and then the other. This ensures
721  * there is always one copy in a stable state, ready to give us an answer.
722  *
723  * The basic form is a data structure like::
724  *
725  *	struct latch_struct {
726  *		seqcount_latch_t	seq;
727  *		struct data_struct	data[2];
728  *	};
729  *
730  * Where a modification, which is assumed to be externally serialized, does the
731  * following::
732  *
733  *	void latch_modify(struct latch_struct *latch, ...)
734  *	{
735  *		smp_wmb();	// Ensure that the last data[1] update is visible
736  *		latch->seq.sequence++;
737  *		smp_wmb();	// Ensure that the seqcount update is visible
738  *
739  *		modify(latch->data[0], ...);
740  *
741  *		smp_wmb();	// Ensure that the data[0] update is visible
742  *		latch->seq.sequence++;
743  *		smp_wmb();	// Ensure that the seqcount update is visible
744  *
745  *		modify(latch->data[1], ...);
746  *	}
747  *
748  * The query will have a form like::
749  *
750  *	struct entry *latch_query(struct latch_struct *latch, ...)
751  *	{
752  *		struct entry *entry;
753  *		unsigned seq, idx;
754  *
755  *		do {
756  *			seq = raw_read_seqcount_latch(&latch->seq);
757  *
758  *			idx = seq & 0x01;
759  *			entry = data_query(latch->data[idx], ...);
760  *
761  *		// This includes needed smp_rmb()
762  *		} while (read_seqcount_latch_retry(&latch->seq, seq));
763  *
764  *		return entry;
765  *	}
766  *
767  * So during the modification, queries are first redirected to data[1]. Then we
768  * modify data[0]. When that is complete, we redirect queries back to data[0]
769  * and we can modify data[1].
770  *
771  * NOTE:
772  *
773  *	The non-requirement for atomic modifications does _NOT_ include
774  *	the publishing of new entries in the case where data is a dynamic
775  *	data structure.
776  *
777  *	An iteration might start in data[0] and get suspended long enough
778  *	to miss an entire modification sequence, once it resumes it might
779  *	observe the new entry.
780  *
781  * NOTE2:
782  *
783  *	When data is a dynamic data structure; one should use regular RCU
784  *	patterns to manage the lifetimes of the objects within.
785  */
786 static inline void raw_write_seqcount_latch(seqcount_latch_t *s)
787 {
788 	smp_wmb();	/* prior stores before incrementing "sequence" */
789 	s->seqcount.sequence++;
790 	smp_wmb();      /* increment "sequence" before following stores */
791 }
792 
793 /*
794  * Sequential locks (seqlock_t)
795  *
796  * Sequence counters with an embedded spinlock for writer serialization
797  * and non-preemptibility.
798  *
799  * For more info, see:
800  *    - Comments on top of seqcount_t
801  *    - Documentation/locking/seqlock.rst
802  */
803 typedef struct {
804 	/*
805 	 * Make sure that readers don't starve writers on PREEMPT_RT: use
806 	 * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK().
807 	 */
808 	seqcount_spinlock_t seqcount;
809 	spinlock_t lock;
810 } seqlock_t;
811 
812 #define __SEQLOCK_UNLOCKED(lockname)					\
813 	{								\
814 		.seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \
815 		.lock =	__SPIN_LOCK_UNLOCKED(lockname)			\
816 	}
817 
818 /**
819  * seqlock_init() - dynamic initializer for seqlock_t
820  * @sl: Pointer to the seqlock_t instance
821  */
822 #define seqlock_init(sl)						\
823 	do {								\
824 		spin_lock_init(&(sl)->lock);				\
825 		seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock);	\
826 	} while (0)
827 
828 /**
829  * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t
830  * @sl: Name of the seqlock_t instance
831  */
832 #define DEFINE_SEQLOCK(sl) \
833 		seqlock_t sl = __SEQLOCK_UNLOCKED(sl)
834 
835 /**
836  * read_seqbegin() - start a seqlock_t read side critical section
837  * @sl: Pointer to seqlock_t
838  *
839  * Return: count, to be passed to read_seqretry()
840  */
841 static inline unsigned read_seqbegin(const seqlock_t *sl)
842 {
843 	unsigned ret = read_seqcount_begin(&sl->seqcount);
844 
845 	kcsan_atomic_next(0);  /* non-raw usage, assume closing read_seqretry() */
846 	kcsan_flat_atomic_begin();
847 	return ret;
848 }
849 
850 /**
851  * read_seqretry() - end a seqlock_t read side section
852  * @sl: Pointer to seqlock_t
853  * @start: count, from read_seqbegin()
854  *
855  * read_seqretry closes the read side critical section of given seqlock_t.
856  * If the critical section was invalid, it must be ignored (and typically
857  * retried).
858  *
859  * Return: true if a read section retry is required, else false
860  */
861 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
862 {
863 	/*
864 	 * Assume not nested: read_seqretry() may be called multiple times when
865 	 * completing read critical section.
866 	 */
867 	kcsan_flat_atomic_end();
868 
869 	return read_seqcount_retry(&sl->seqcount, start);
870 }
871 
872 /*
873  * For all seqlock_t write side functions, use the the internal
874  * do_write_seqcount_begin() instead of generic write_seqcount_begin().
875  * This way, no redundant lockdep_assert_held() checks are added.
876  */
877 
878 /**
879  * write_seqlock() - start a seqlock_t write side critical section
880  * @sl: Pointer to seqlock_t
881  *
882  * write_seqlock opens a write side critical section for the given
883  * seqlock_t.  It also implicitly acquires the spinlock_t embedded inside
884  * that sequential lock. All seqlock_t write side sections are thus
885  * automatically serialized and non-preemptible.
886  *
887  * Context: if the seqlock_t read section, or other write side critical
888  * sections, can be invoked from hardirq or softirq contexts, use the
889  * _irqsave or _bh variants of this function instead.
890  */
891 static inline void write_seqlock(seqlock_t *sl)
892 {
893 	spin_lock(&sl->lock);
894 	do_write_seqcount_begin(&sl->seqcount.seqcount);
895 }
896 
897 /**
898  * write_sequnlock() - end a seqlock_t write side critical section
899  * @sl: Pointer to seqlock_t
900  *
901  * write_sequnlock closes the (serialized and non-preemptible) write side
902  * critical section of given seqlock_t.
903  */
904 static inline void write_sequnlock(seqlock_t *sl)
905 {
906 	do_write_seqcount_end(&sl->seqcount.seqcount);
907 	spin_unlock(&sl->lock);
908 }
909 
910 /**
911  * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section
912  * @sl: Pointer to seqlock_t
913  *
914  * _bh variant of write_seqlock(). Use only if the read side section, or
915  * other write side sections, can be invoked from softirq contexts.
916  */
917 static inline void write_seqlock_bh(seqlock_t *sl)
918 {
919 	spin_lock_bh(&sl->lock);
920 	do_write_seqcount_begin(&sl->seqcount.seqcount);
921 }
922 
923 /**
924  * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section
925  * @sl: Pointer to seqlock_t
926  *
927  * write_sequnlock_bh closes the serialized, non-preemptible, and
928  * softirqs-disabled, seqlock_t write side critical section opened with
929  * write_seqlock_bh().
930  */
931 static inline void write_sequnlock_bh(seqlock_t *sl)
932 {
933 	do_write_seqcount_end(&sl->seqcount.seqcount);
934 	spin_unlock_bh(&sl->lock);
935 }
936 
937 /**
938  * write_seqlock_irq() - start a non-interruptible seqlock_t write section
939  * @sl: Pointer to seqlock_t
940  *
941  * _irq variant of write_seqlock(). Use only if the read side section, or
942  * other write sections, can be invoked from hardirq contexts.
943  */
944 static inline void write_seqlock_irq(seqlock_t *sl)
945 {
946 	spin_lock_irq(&sl->lock);
947 	do_write_seqcount_begin(&sl->seqcount.seqcount);
948 }
949 
950 /**
951  * write_sequnlock_irq() - end a non-interruptible seqlock_t write section
952  * @sl: Pointer to seqlock_t
953  *
954  * write_sequnlock_irq closes the serialized and non-interruptible
955  * seqlock_t write side section opened with write_seqlock_irq().
956  */
957 static inline void write_sequnlock_irq(seqlock_t *sl)
958 {
959 	do_write_seqcount_end(&sl->seqcount.seqcount);
960 	spin_unlock_irq(&sl->lock);
961 }
962 
963 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
964 {
965 	unsigned long flags;
966 
967 	spin_lock_irqsave(&sl->lock, flags);
968 	do_write_seqcount_begin(&sl->seqcount.seqcount);
969 	return flags;
970 }
971 
972 /**
973  * write_seqlock_irqsave() - start a non-interruptible seqlock_t write
974  *                           section
975  * @lock:  Pointer to seqlock_t
976  * @flags: Stack-allocated storage for saving caller's local interrupt
977  *         state, to be passed to write_sequnlock_irqrestore().
978  *
979  * _irqsave variant of write_seqlock(). Use it only if the read side
980  * section, or other write sections, can be invoked from hardirq context.
981  */
982 #define write_seqlock_irqsave(lock, flags)				\
983 	do { flags = __write_seqlock_irqsave(lock); } while (0)
984 
985 /**
986  * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write
987  *                                section
988  * @sl:    Pointer to seqlock_t
989  * @flags: Caller's saved interrupt state, from write_seqlock_irqsave()
990  *
991  * write_sequnlock_irqrestore closes the serialized and non-interruptible
992  * seqlock_t write section previously opened with write_seqlock_irqsave().
993  */
994 static inline void
995 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
996 {
997 	do_write_seqcount_end(&sl->seqcount.seqcount);
998 	spin_unlock_irqrestore(&sl->lock, flags);
999 }
1000 
1001 /**
1002  * read_seqlock_excl() - begin a seqlock_t locking reader section
1003  * @sl:	Pointer to seqlock_t
1004  *
1005  * read_seqlock_excl opens a seqlock_t locking reader critical section.  A
1006  * locking reader exclusively locks out *both* other writers *and* other
1007  * locking readers, but it does not update the embedded sequence number.
1008  *
1009  * Locking readers act like a normal spin_lock()/spin_unlock().
1010  *
1011  * Context: if the seqlock_t write section, *or other read sections*, can
1012  * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
1013  * variant of this function instead.
1014  *
1015  * The opened read section must be closed with read_sequnlock_excl().
1016  */
1017 static inline void read_seqlock_excl(seqlock_t *sl)
1018 {
1019 	spin_lock(&sl->lock);
1020 }
1021 
1022 /**
1023  * read_sequnlock_excl() - end a seqlock_t locking reader critical section
1024  * @sl: Pointer to seqlock_t
1025  */
1026 static inline void read_sequnlock_excl(seqlock_t *sl)
1027 {
1028 	spin_unlock(&sl->lock);
1029 }
1030 
1031 /**
1032  * read_seqlock_excl_bh() - start a seqlock_t locking reader section with
1033  *			    softirqs disabled
1034  * @sl: Pointer to seqlock_t
1035  *
1036  * _bh variant of read_seqlock_excl(). Use this variant only if the
1037  * seqlock_t write side section, *or other read sections*, can be invoked
1038  * from softirq contexts.
1039  */
1040 static inline void read_seqlock_excl_bh(seqlock_t *sl)
1041 {
1042 	spin_lock_bh(&sl->lock);
1043 }
1044 
1045 /**
1046  * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking
1047  *			      reader section
1048  * @sl: Pointer to seqlock_t
1049  */
1050 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
1051 {
1052 	spin_unlock_bh(&sl->lock);
1053 }
1054 
1055 /**
1056  * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking
1057  *			     reader section
1058  * @sl: Pointer to seqlock_t
1059  *
1060  * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t
1061  * write side section, *or other read sections*, can be invoked from a
1062  * hardirq context.
1063  */
1064 static inline void read_seqlock_excl_irq(seqlock_t *sl)
1065 {
1066 	spin_lock_irq(&sl->lock);
1067 }
1068 
1069 /**
1070  * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t
1071  *                             locking reader section
1072  * @sl: Pointer to seqlock_t
1073  */
1074 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
1075 {
1076 	spin_unlock_irq(&sl->lock);
1077 }
1078 
1079 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
1080 {
1081 	unsigned long flags;
1082 
1083 	spin_lock_irqsave(&sl->lock, flags);
1084 	return flags;
1085 }
1086 
1087 /**
1088  * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t
1089  *				 locking reader section
1090  * @lock:  Pointer to seqlock_t
1091  * @flags: Stack-allocated storage for saving caller's local interrupt
1092  *         state, to be passed to read_sequnlock_excl_irqrestore().
1093  *
1094  * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t
1095  * write side section, *or other read sections*, can be invoked from a
1096  * hardirq context.
1097  */
1098 #define read_seqlock_excl_irqsave(lock, flags)				\
1099 	do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
1100 
1101 /**
1102  * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t
1103  *				      locking reader section
1104  * @sl:    Pointer to seqlock_t
1105  * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave()
1106  */
1107 static inline void
1108 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
1109 {
1110 	spin_unlock_irqrestore(&sl->lock, flags);
1111 }
1112 
1113 /**
1114  * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader
1115  * @lock: Pointer to seqlock_t
1116  * @seq : Marker and return parameter. If the passed value is even, the
1117  * reader will become a *lockless* seqlock_t reader as in read_seqbegin().
1118  * If the passed value is odd, the reader will become a *locking* reader
1119  * as in read_seqlock_excl().  In the first call to this function, the
1120  * caller *must* initialize and pass an even value to @seq; this way, a
1121  * lockless read can be optimistically tried first.
1122  *
1123  * read_seqbegin_or_lock is an API designed to optimistically try a normal
1124  * lockless seqlock_t read section first.  If an odd counter is found, the
1125  * lockless read trial has failed, and the next read iteration transforms
1126  * itself into a full seqlock_t locking reader.
1127  *
1128  * This is typically used to avoid seqlock_t lockless readers starvation
1129  * (too much retry loops) in the case of a sharp spike in write side
1130  * activity.
1131  *
1132  * Context: if the seqlock_t write section, *or other read sections*, can
1133  * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
1134  * variant of this function instead.
1135  *
1136  * Check Documentation/locking/seqlock.rst for template example code.
1137  *
1138  * Return: the encountered sequence counter value, through the @seq
1139  * parameter, which is overloaded as a return parameter. This returned
1140  * value must be checked with need_seqretry(). If the read section need to
1141  * be retried, this returned value must also be passed as the @seq
1142  * parameter of the next read_seqbegin_or_lock() iteration.
1143  */
1144 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
1145 {
1146 	if (!(*seq & 1))	/* Even */
1147 		*seq = read_seqbegin(lock);
1148 	else			/* Odd */
1149 		read_seqlock_excl(lock);
1150 }
1151 
1152 /**
1153  * need_seqretry() - validate seqlock_t "locking or lockless" read section
1154  * @lock: Pointer to seqlock_t
1155  * @seq: sequence count, from read_seqbegin_or_lock()
1156  *
1157  * Return: true if a read section retry is required, false otherwise
1158  */
1159 static inline int need_seqretry(seqlock_t *lock, int seq)
1160 {
1161 	return !(seq & 1) && read_seqretry(lock, seq);
1162 }
1163 
1164 /**
1165  * done_seqretry() - end seqlock_t "locking or lockless" reader section
1166  * @lock: Pointer to seqlock_t
1167  * @seq: count, from read_seqbegin_or_lock()
1168  *
1169  * done_seqretry finishes the seqlock_t read side critical section started
1170  * with read_seqbegin_or_lock() and validated by need_seqretry().
1171  */
1172 static inline void done_seqretry(seqlock_t *lock, int seq)
1173 {
1174 	if (seq & 1)
1175 		read_sequnlock_excl(lock);
1176 }
1177 
1178 /**
1179  * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or
1180  *                                   a non-interruptible locking reader
1181  * @lock: Pointer to seqlock_t
1182  * @seq:  Marker and return parameter. Check read_seqbegin_or_lock().
1183  *
1184  * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if
1185  * the seqlock_t write section, *or other read sections*, can be invoked
1186  * from hardirq context.
1187  *
1188  * Note: Interrupts will be disabled only for "locking reader" mode.
1189  *
1190  * Return:
1191  *
1192  *   1. The saved local interrupts state in case of a locking reader, to
1193  *      be passed to done_seqretry_irqrestore().
1194  *
1195  *   2. The encountered sequence counter value, returned through @seq
1196  *      overloaded as a return parameter. Check read_seqbegin_or_lock().
1197  */
1198 static inline unsigned long
1199 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
1200 {
1201 	unsigned long flags = 0;
1202 
1203 	if (!(*seq & 1))	/* Even */
1204 		*seq = read_seqbegin(lock);
1205 	else			/* Odd */
1206 		read_seqlock_excl_irqsave(lock, flags);
1207 
1208 	return flags;
1209 }
1210 
1211 /**
1212  * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a
1213  *				non-interruptible locking reader section
1214  * @lock:  Pointer to seqlock_t
1215  * @seq:   Count, from read_seqbegin_or_lock_irqsave()
1216  * @flags: Caller's saved local interrupt state in case of a locking
1217  *	   reader, also from read_seqbegin_or_lock_irqsave()
1218  *
1219  * This is the _irqrestore variant of done_seqretry(). The read section
1220  * must've been opened with read_seqbegin_or_lock_irqsave(), and validated
1221  * by need_seqretry().
1222  */
1223 static inline void
1224 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
1225 {
1226 	if (seq & 1)
1227 		read_sequnlock_excl_irqrestore(lock, flags);
1228 }
1229 #endif /* __LINUX_SEQLOCK_H */
1230