xref: /linux-6.15/include/linux/seqlock.h (revision 5bb7889f)
1 #ifndef __LINUX_SEQLOCK_H
2 #define __LINUX_SEQLOCK_H
3 /*
4  * Reader/writer consistent mechanism without starving writers. This type of
5  * lock for data where the reader wants a consistent set of information
6  * and is willing to retry if the information changes. There are two types
7  * of readers:
8  * 1. Sequence readers which never block a writer but they may have to retry
9  *    if a writer is in progress by detecting change in sequence number.
10  *    Writers do not wait for a sequence reader.
11  * 2. Locking readers which will wait if a writer or another locking reader
12  *    is in progress. A locking reader in progress will also block a writer
13  *    from going forward. Unlike the regular rwlock, the read lock here is
14  *    exclusive so that only one locking reader can get it.
15  *
16  * This is not as cache friendly as brlock. Also, this may not work well
17  * for data that contains pointers, because any writer could
18  * invalidate a pointer that a reader was following.
19  *
20  * Expected non-blocking reader usage:
21  * 	do {
22  *	    seq = read_seqbegin(&foo);
23  * 	...
24  *      } while (read_seqretry(&foo, seq));
25  *
26  *
27  * On non-SMP the spin locks disappear but the writer still needs
28  * to increment the sequence variables because an interrupt routine could
29  * change the state of the data.
30  *
31  * Based on x86_64 vsyscall gettimeofday
32  * by Keith Owens and Andrea Arcangeli
33  */
34 
35 #include <linux/spinlock.h>
36 #include <linux/preempt.h>
37 #include <linux/lockdep.h>
38 #include <asm/processor.h>
39 
40 /*
41  * Version using sequence counter only.
42  * This can be used when code has its own mutex protecting the
43  * updating starting before the write_seqcountbeqin() and ending
44  * after the write_seqcount_end().
45  */
46 typedef struct seqcount {
47 	unsigned sequence;
48 #ifdef CONFIG_DEBUG_LOCK_ALLOC
49 	struct lockdep_map dep_map;
50 #endif
51 } seqcount_t;
52 
53 static inline void __seqcount_init(seqcount_t *s, const char *name,
54 					  struct lock_class_key *key)
55 {
56 	/*
57 	 * Make sure we are not reinitializing a held lock:
58 	 */
59 	lockdep_init_map(&s->dep_map, name, key, 0);
60 	s->sequence = 0;
61 }
62 
63 #ifdef CONFIG_DEBUG_LOCK_ALLOC
64 # define SEQCOUNT_DEP_MAP_INIT(lockname) \
65 		.dep_map = { .name = #lockname } \
66 
67 # define seqcount_init(s)				\
68 	do {						\
69 		static struct lock_class_key __key;	\
70 		__seqcount_init((s), #s, &__key);	\
71 	} while (0)
72 
73 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
74 {
75 	seqcount_t *l = (seqcount_t *)s;
76 	unsigned long flags;
77 
78 	local_irq_save(flags);
79 	seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
80 	seqcount_release(&l->dep_map, 1, _RET_IP_);
81 	local_irq_restore(flags);
82 }
83 
84 #else
85 # define SEQCOUNT_DEP_MAP_INIT(lockname)
86 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
87 # define seqcount_lockdep_reader_access(x)
88 #endif
89 
90 #define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}
91 
92 
93 /**
94  * __read_seqcount_begin - begin a seq-read critical section (without barrier)
95  * @s: pointer to seqcount_t
96  * Returns: count to be passed to read_seqcount_retry
97  *
98  * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
99  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
100  * provided before actually loading any of the variables that are to be
101  * protected in this critical section.
102  *
103  * Use carefully, only in critical code, and comment how the barrier is
104  * provided.
105  */
106 static inline unsigned __read_seqcount_begin(const seqcount_t *s)
107 {
108 	unsigned ret;
109 
110 repeat:
111 	ret = ACCESS_ONCE(s->sequence);
112 	if (unlikely(ret & 1)) {
113 		cpu_relax();
114 		goto repeat;
115 	}
116 	return ret;
117 }
118 
119 /**
120  * raw_read_seqcount_begin - start seq-read critical section w/o lockdep
121  * @s: pointer to seqcount_t
122  * Returns: count to be passed to read_seqcount_retry
123  *
124  * raw_read_seqcount_begin opens a read critical section of the given
125  * seqcount, but without any lockdep checking. Validity of the critical
126  * section is tested by checking read_seqcount_retry function.
127  */
128 static inline unsigned raw_read_seqcount_begin(const seqcount_t *s)
129 {
130 	unsigned ret = __read_seqcount_begin(s);
131 	smp_rmb();
132 	return ret;
133 }
134 
135 /**
136  * read_seqcount_begin - begin a seq-read critical section
137  * @s: pointer to seqcount_t
138  * Returns: count to be passed to read_seqcount_retry
139  *
140  * read_seqcount_begin opens a read critical section of the given seqcount.
141  * Validity of the critical section is tested by checking read_seqcount_retry
142  * function.
143  */
144 static inline unsigned read_seqcount_begin(const seqcount_t *s)
145 {
146 	seqcount_lockdep_reader_access(s);
147 	return raw_read_seqcount_begin(s);
148 }
149 
150 /**
151  * raw_seqcount_begin - begin a seq-read critical section
152  * @s: pointer to seqcount_t
153  * Returns: count to be passed to read_seqcount_retry
154  *
155  * raw_seqcount_begin opens a read critical section of the given seqcount.
156  * Validity of the critical section is tested by checking read_seqcount_retry
157  * function.
158  *
159  * Unlike read_seqcount_begin(), this function will not wait for the count
160  * to stabilize. If a writer is active when we begin, we will fail the
161  * read_seqcount_retry() instead of stabilizing at the beginning of the
162  * critical section.
163  */
164 static inline unsigned raw_seqcount_begin(const seqcount_t *s)
165 {
166 	unsigned ret = ACCESS_ONCE(s->sequence);
167 
168 	seqcount_lockdep_reader_access(s);
169 	smp_rmb();
170 	return ret & ~1;
171 }
172 
173 /**
174  * __read_seqcount_retry - end a seq-read critical section (without barrier)
175  * @s: pointer to seqcount_t
176  * @start: count, from read_seqcount_begin
177  * Returns: 1 if retry is required, else 0
178  *
179  * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
180  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
181  * provided before actually loading any of the variables that are to be
182  * protected in this critical section.
183  *
184  * Use carefully, only in critical code, and comment how the barrier is
185  * provided.
186  */
187 static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
188 {
189 	return unlikely(s->sequence != start);
190 }
191 
192 /**
193  * read_seqcount_retry - end a seq-read critical section
194  * @s: pointer to seqcount_t
195  * @start: count, from read_seqcount_begin
196  * Returns: 1 if retry is required, else 0
197  *
198  * read_seqcount_retry closes a read critical section of the given seqcount.
199  * If the critical section was invalid, it must be ignored (and typically
200  * retried).
201  */
202 static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
203 {
204 	smp_rmb();
205 	return __read_seqcount_retry(s, start);
206 }
207 
208 
209 
210 static inline void raw_write_seqcount_begin(seqcount_t *s)
211 {
212 	s->sequence++;
213 	smp_wmb();
214 }
215 
216 static inline void raw_write_seqcount_end(seqcount_t *s)
217 {
218 	smp_wmb();
219 	s->sequence++;
220 }
221 
222 /*
223  * Sequence counter only version assumes that callers are using their
224  * own mutexing.
225  */
226 static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass)
227 {
228 	raw_write_seqcount_begin(s);
229 	seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
230 }
231 
232 static inline void write_seqcount_begin(seqcount_t *s)
233 {
234 	write_seqcount_begin_nested(s, 0);
235 }
236 
237 static inline void write_seqcount_end(seqcount_t *s)
238 {
239 	seqcount_release(&s->dep_map, 1, _RET_IP_);
240 	raw_write_seqcount_end(s);
241 }
242 
243 /**
244  * write_seqcount_barrier - invalidate in-progress read-side seq operations
245  * @s: pointer to seqcount_t
246  *
247  * After write_seqcount_barrier, no read-side seq operations will complete
248  * successfully and see data older than this.
249  */
250 static inline void write_seqcount_barrier(seqcount_t *s)
251 {
252 	smp_wmb();
253 	s->sequence+=2;
254 }
255 
256 typedef struct {
257 	struct seqcount seqcount;
258 	spinlock_t lock;
259 } seqlock_t;
260 
261 /*
262  * These macros triggered gcc-3.x compile-time problems.  We think these are
263  * OK now.  Be cautious.
264  */
265 #define __SEQLOCK_UNLOCKED(lockname)			\
266 	{						\
267 		.seqcount = SEQCNT_ZERO(lockname),	\
268 		.lock =	__SPIN_LOCK_UNLOCKED(lockname)	\
269 	}
270 
271 #define seqlock_init(x)					\
272 	do {						\
273 		seqcount_init(&(x)->seqcount);		\
274 		spin_lock_init(&(x)->lock);		\
275 	} while (0)
276 
277 #define DEFINE_SEQLOCK(x) \
278 		seqlock_t x = __SEQLOCK_UNLOCKED(x)
279 
280 /*
281  * Read side functions for starting and finalizing a read side section.
282  */
283 static inline unsigned read_seqbegin(const seqlock_t *sl)
284 {
285 	return read_seqcount_begin(&sl->seqcount);
286 }
287 
288 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
289 {
290 	return read_seqcount_retry(&sl->seqcount, start);
291 }
292 
293 /*
294  * Lock out other writers and update the count.
295  * Acts like a normal spin_lock/unlock.
296  * Don't need preempt_disable() because that is in the spin_lock already.
297  */
298 static inline void write_seqlock(seqlock_t *sl)
299 {
300 	spin_lock(&sl->lock);
301 	write_seqcount_begin(&sl->seqcount);
302 }
303 
304 static inline void write_sequnlock(seqlock_t *sl)
305 {
306 	write_seqcount_end(&sl->seqcount);
307 	spin_unlock(&sl->lock);
308 }
309 
310 static inline void write_seqlock_bh(seqlock_t *sl)
311 {
312 	spin_lock_bh(&sl->lock);
313 	write_seqcount_begin(&sl->seqcount);
314 }
315 
316 static inline void write_sequnlock_bh(seqlock_t *sl)
317 {
318 	write_seqcount_end(&sl->seqcount);
319 	spin_unlock_bh(&sl->lock);
320 }
321 
322 static inline void write_seqlock_irq(seqlock_t *sl)
323 {
324 	spin_lock_irq(&sl->lock);
325 	write_seqcount_begin(&sl->seqcount);
326 }
327 
328 static inline void write_sequnlock_irq(seqlock_t *sl)
329 {
330 	write_seqcount_end(&sl->seqcount);
331 	spin_unlock_irq(&sl->lock);
332 }
333 
334 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
335 {
336 	unsigned long flags;
337 
338 	spin_lock_irqsave(&sl->lock, flags);
339 	write_seqcount_begin(&sl->seqcount);
340 	return flags;
341 }
342 
343 #define write_seqlock_irqsave(lock, flags)				\
344 	do { flags = __write_seqlock_irqsave(lock); } while (0)
345 
346 static inline void
347 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
348 {
349 	write_seqcount_end(&sl->seqcount);
350 	spin_unlock_irqrestore(&sl->lock, flags);
351 }
352 
353 /*
354  * A locking reader exclusively locks out other writers and locking readers,
355  * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
356  * Don't need preempt_disable() because that is in the spin_lock already.
357  */
358 static inline void read_seqlock_excl(seqlock_t *sl)
359 {
360 	spin_lock(&sl->lock);
361 }
362 
363 static inline void read_sequnlock_excl(seqlock_t *sl)
364 {
365 	spin_unlock(&sl->lock);
366 }
367 
368 /**
369  * read_seqbegin_or_lock - begin a sequence number check or locking block
370  * @lock: sequence lock
371  * @seq : sequence number to be checked
372  *
373  * First try it once optimistically without taking the lock. If that fails,
374  * take the lock. The sequence number is also used as a marker for deciding
375  * whether to be a reader (even) or writer (odd).
376  * N.B. seq must be initialized to an even number to begin with.
377  */
378 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
379 {
380 	if (!(*seq & 1))	/* Even */
381 		*seq = read_seqbegin(lock);
382 	else			/* Odd */
383 		read_seqlock_excl(lock);
384 }
385 
386 static inline int need_seqretry(seqlock_t *lock, int seq)
387 {
388 	return !(seq & 1) && read_seqretry(lock, seq);
389 }
390 
391 static inline void done_seqretry(seqlock_t *lock, int seq)
392 {
393 	if (seq & 1)
394 		read_sequnlock_excl(lock);
395 }
396 
397 static inline void read_seqlock_excl_bh(seqlock_t *sl)
398 {
399 	spin_lock_bh(&sl->lock);
400 }
401 
402 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
403 {
404 	spin_unlock_bh(&sl->lock);
405 }
406 
407 static inline void read_seqlock_excl_irq(seqlock_t *sl)
408 {
409 	spin_lock_irq(&sl->lock);
410 }
411 
412 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
413 {
414 	spin_unlock_irq(&sl->lock);
415 }
416 
417 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
418 {
419 	unsigned long flags;
420 
421 	spin_lock_irqsave(&sl->lock, flags);
422 	return flags;
423 }
424 
425 #define read_seqlock_excl_irqsave(lock, flags)				\
426 	do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
427 
428 static inline void
429 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
430 {
431 	spin_unlock_irqrestore(&sl->lock, flags);
432 }
433 
434 #endif /* __LINUX_SEQLOCK_H */
435