1 /* 2 * Linux Security plug 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <[email protected]> 5 * Copyright (C) 2001 Greg Kroah-Hartman <[email protected]> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]> 7 * Copyright (C) 2001 James Morris <[email protected]> 8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * Due to this file being licensed under the GPL there is controversy over 16 * whether this permits you to write a module that #includes this file 17 * without placing your module under the GPL. Please consult a lawyer for 18 * advice before doing this. 19 * 20 */ 21 22 #ifndef __LINUX_SECURITY_H 23 #define __LINUX_SECURITY_H 24 25 #include <linux/fs.h> 26 #include <linux/binfmts.h> 27 #include <linux/signal.h> 28 #include <linux/resource.h> 29 #include <linux/sem.h> 30 #include <linux/shm.h> 31 #include <linux/msg.h> 32 #include <linux/sched.h> 33 #include <linux/key.h> 34 #include <linux/xfrm.h> 35 #include <net/flow.h> 36 37 struct ctl_table; 38 39 /* 40 * These functions are in security/capability.c and are used 41 * as the default capabilities functions 42 */ 43 extern int cap_capable (struct task_struct *tsk, int cap); 44 extern int cap_settime (struct timespec *ts, struct timezone *tz); 45 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child); 46 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 47 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 48 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 49 extern int cap_bprm_set_security (struct linux_binprm *bprm); 50 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe); 51 extern int cap_bprm_secureexec(struct linux_binprm *bprm); 52 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags); 53 extern int cap_inode_removexattr(struct dentry *dentry, char *name); 54 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags); 55 extern void cap_task_reparent_to_init (struct task_struct *p); 56 extern int cap_syslog (int type); 57 extern int cap_vm_enough_memory (struct mm_struct *mm, long pages); 58 59 struct msghdr; 60 struct sk_buff; 61 struct sock; 62 struct sockaddr; 63 struct socket; 64 struct flowi; 65 struct dst_entry; 66 struct xfrm_selector; 67 struct xfrm_policy; 68 struct xfrm_state; 69 struct xfrm_user_sec_ctx; 70 71 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); 72 extern int cap_netlink_recv(struct sk_buff *skb, int cap); 73 74 extern unsigned long mmap_min_addr; 75 /* 76 * Values used in the task_security_ops calls 77 */ 78 /* setuid or setgid, id0 == uid or gid */ 79 #define LSM_SETID_ID 1 80 81 /* setreuid or setregid, id0 == real, id1 == eff */ 82 #define LSM_SETID_RE 2 83 84 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ 85 #define LSM_SETID_RES 4 86 87 /* setfsuid or setfsgid, id0 == fsuid or fsgid */ 88 #define LSM_SETID_FS 8 89 90 /* forward declares to avoid warnings */ 91 struct nfsctl_arg; 92 struct sched_param; 93 struct swap_info_struct; 94 struct request_sock; 95 96 /* bprm_apply_creds unsafe reasons */ 97 #define LSM_UNSAFE_SHARE 1 98 #define LSM_UNSAFE_PTRACE 2 99 #define LSM_UNSAFE_PTRACE_CAP 4 100 101 #ifdef CONFIG_SECURITY 102 103 /** 104 * struct security_operations - main security structure 105 * 106 * Security hooks for program execution operations. 107 * 108 * @bprm_alloc_security: 109 * Allocate and attach a security structure to the @bprm->security field. 110 * The security field is initialized to NULL when the bprm structure is 111 * allocated. 112 * @bprm contains the linux_binprm structure to be modified. 113 * Return 0 if operation was successful. 114 * @bprm_free_security: 115 * @bprm contains the linux_binprm structure to be modified. 116 * Deallocate and clear the @bprm->security field. 117 * @bprm_apply_creds: 118 * Compute and set the security attributes of a process being transformed 119 * by an execve operation based on the old attributes (current->security) 120 * and the information saved in @bprm->security by the set_security hook. 121 * Since this hook function (and its caller) are void, this hook can not 122 * return an error. However, it can leave the security attributes of the 123 * process unchanged if an access failure occurs at this point. 124 * bprm_apply_creds is called under task_lock. @unsafe indicates various 125 * reasons why it may be unsafe to change security state. 126 * @bprm contains the linux_binprm structure. 127 * @bprm_post_apply_creds: 128 * Runs after bprm_apply_creds with the task_lock dropped, so that 129 * functions which cannot be called safely under the task_lock can 130 * be used. This hook is a good place to perform state changes on 131 * the process such as closing open file descriptors to which access 132 * is no longer granted if the attributes were changed. 133 * Note that a security module might need to save state between 134 * bprm_apply_creds and bprm_post_apply_creds to store the decision 135 * on whether the process may proceed. 136 * @bprm contains the linux_binprm structure. 137 * @bprm_set_security: 138 * Save security information in the bprm->security field, typically based 139 * on information about the bprm->file, for later use by the apply_creds 140 * hook. This hook may also optionally check permissions (e.g. for 141 * transitions between security domains). 142 * This hook may be called multiple times during a single execve, e.g. for 143 * interpreters. The hook can tell whether it has already been called by 144 * checking to see if @bprm->security is non-NULL. If so, then the hook 145 * may decide either to retain the security information saved earlier or 146 * to replace it. 147 * @bprm contains the linux_binprm structure. 148 * Return 0 if the hook is successful and permission is granted. 149 * @bprm_check_security: 150 * This hook mediates the point when a search for a binary handler will 151 * begin. It allows a check the @bprm->security value which is set in 152 * the preceding set_security call. The primary difference from 153 * set_security is that the argv list and envp list are reliably 154 * available in @bprm. This hook may be called multiple times 155 * during a single execve; and in each pass set_security is called 156 * first. 157 * @bprm contains the linux_binprm structure. 158 * Return 0 if the hook is successful and permission is granted. 159 * @bprm_secureexec: 160 * Return a boolean value (0 or 1) indicating whether a "secure exec" 161 * is required. The flag is passed in the auxiliary table 162 * on the initial stack to the ELF interpreter to indicate whether libc 163 * should enable secure mode. 164 * @bprm contains the linux_binprm structure. 165 * 166 * Security hooks for filesystem operations. 167 * 168 * @sb_alloc_security: 169 * Allocate and attach a security structure to the sb->s_security field. 170 * The s_security field is initialized to NULL when the structure is 171 * allocated. 172 * @sb contains the super_block structure to be modified. 173 * Return 0 if operation was successful. 174 * @sb_free_security: 175 * Deallocate and clear the sb->s_security field. 176 * @sb contains the super_block structure to be modified. 177 * @sb_statfs: 178 * Check permission before obtaining filesystem statistics for the @mnt 179 * mountpoint. 180 * @dentry is a handle on the superblock for the filesystem. 181 * Return 0 if permission is granted. 182 * @sb_mount: 183 * Check permission before an object specified by @dev_name is mounted on 184 * the mount point named by @nd. For an ordinary mount, @dev_name 185 * identifies a device if the file system type requires a device. For a 186 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a 187 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the 188 * pathname of the object being mounted. 189 * @dev_name contains the name for object being mounted. 190 * @nd contains the nameidata structure for mount point object. 191 * @type contains the filesystem type. 192 * @flags contains the mount flags. 193 * @data contains the filesystem-specific data. 194 * Return 0 if permission is granted. 195 * @sb_copy_data: 196 * Allow mount option data to be copied prior to parsing by the filesystem, 197 * so that the security module can extract security-specific mount 198 * options cleanly (a filesystem may modify the data e.g. with strsep()). 199 * This also allows the original mount data to be stripped of security- 200 * specific options to avoid having to make filesystems aware of them. 201 * @type the type of filesystem being mounted. 202 * @orig the original mount data copied from userspace. 203 * @copy copied data which will be passed to the security module. 204 * Returns 0 if the copy was successful. 205 * @sb_check_sb: 206 * Check permission before the device with superblock @mnt->sb is mounted 207 * on the mount point named by @nd. 208 * @mnt contains the vfsmount for device being mounted. 209 * @nd contains the nameidata object for the mount point. 210 * Return 0 if permission is granted. 211 * @sb_umount: 212 * Check permission before the @mnt file system is unmounted. 213 * @mnt contains the mounted file system. 214 * @flags contains the unmount flags, e.g. MNT_FORCE. 215 * Return 0 if permission is granted. 216 * @sb_umount_close: 217 * Close any files in the @mnt mounted filesystem that are held open by 218 * the security module. This hook is called during an umount operation 219 * prior to checking whether the filesystem is still busy. 220 * @mnt contains the mounted filesystem. 221 * @sb_umount_busy: 222 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening 223 * any files that were closed by umount_close. This hook is called during 224 * an umount operation if the umount fails after a call to the 225 * umount_close hook. 226 * @mnt contains the mounted filesystem. 227 * @sb_post_remount: 228 * Update the security module's state when a filesystem is remounted. 229 * This hook is only called if the remount was successful. 230 * @mnt contains the mounted file system. 231 * @flags contains the new filesystem flags. 232 * @data contains the filesystem-specific data. 233 * @sb_post_mountroot: 234 * Update the security module's state when the root filesystem is mounted. 235 * This hook is only called if the mount was successful. 236 * @sb_post_addmount: 237 * Update the security module's state when a filesystem is mounted. 238 * This hook is called any time a mount is successfully grafetd to 239 * the tree. 240 * @mnt contains the mounted filesystem. 241 * @mountpoint_nd contains the nameidata structure for the mount point. 242 * @sb_pivotroot: 243 * Check permission before pivoting the root filesystem. 244 * @old_nd contains the nameidata structure for the new location of the current root (put_old). 245 * @new_nd contains the nameidata structure for the new root (new_root). 246 * Return 0 if permission is granted. 247 * @sb_post_pivotroot: 248 * Update module state after a successful pivot. 249 * @old_nd contains the nameidata structure for the old root. 250 * @new_nd contains the nameidata structure for the new root. 251 * 252 * Security hooks for inode operations. 253 * 254 * @inode_alloc_security: 255 * Allocate and attach a security structure to @inode->i_security. The 256 * i_security field is initialized to NULL when the inode structure is 257 * allocated. 258 * @inode contains the inode structure. 259 * Return 0 if operation was successful. 260 * @inode_free_security: 261 * @inode contains the inode structure. 262 * Deallocate the inode security structure and set @inode->i_security to 263 * NULL. 264 * @inode_init_security: 265 * Obtain the security attribute name suffix and value to set on a newly 266 * created inode and set up the incore security field for the new inode. 267 * This hook is called by the fs code as part of the inode creation 268 * transaction and provides for atomic labeling of the inode, unlike 269 * the post_create/mkdir/... hooks called by the VFS. The hook function 270 * is expected to allocate the name and value via kmalloc, with the caller 271 * being responsible for calling kfree after using them. 272 * If the security module does not use security attributes or does 273 * not wish to put a security attribute on this particular inode, 274 * then it should return -EOPNOTSUPP to skip this processing. 275 * @inode contains the inode structure of the newly created inode. 276 * @dir contains the inode structure of the parent directory. 277 * @name will be set to the allocated name suffix (e.g. selinux). 278 * @value will be set to the allocated attribute value. 279 * @len will be set to the length of the value. 280 * Returns 0 if @name and @value have been successfully set, 281 * -EOPNOTSUPP if no security attribute is needed, or 282 * -ENOMEM on memory allocation failure. 283 * @inode_create: 284 * Check permission to create a regular file. 285 * @dir contains inode structure of the parent of the new file. 286 * @dentry contains the dentry structure for the file to be created. 287 * @mode contains the file mode of the file to be created. 288 * Return 0 if permission is granted. 289 * @inode_link: 290 * Check permission before creating a new hard link to a file. 291 * @old_dentry contains the dentry structure for an existing link to the file. 292 * @dir contains the inode structure of the parent directory of the new link. 293 * @new_dentry contains the dentry structure for the new link. 294 * Return 0 if permission is granted. 295 * @inode_unlink: 296 * Check the permission to remove a hard link to a file. 297 * @dir contains the inode structure of parent directory of the file. 298 * @dentry contains the dentry structure for file to be unlinked. 299 * Return 0 if permission is granted. 300 * @inode_symlink: 301 * Check the permission to create a symbolic link to a file. 302 * @dir contains the inode structure of parent directory of the symbolic link. 303 * @dentry contains the dentry structure of the symbolic link. 304 * @old_name contains the pathname of file. 305 * Return 0 if permission is granted. 306 * @inode_mkdir: 307 * Check permissions to create a new directory in the existing directory 308 * associated with inode strcture @dir. 309 * @dir containst the inode structure of parent of the directory to be created. 310 * @dentry contains the dentry structure of new directory. 311 * @mode contains the mode of new directory. 312 * Return 0 if permission is granted. 313 * @inode_rmdir: 314 * Check the permission to remove a directory. 315 * @dir contains the inode structure of parent of the directory to be removed. 316 * @dentry contains the dentry structure of directory to be removed. 317 * Return 0 if permission is granted. 318 * @inode_mknod: 319 * Check permissions when creating a special file (or a socket or a fifo 320 * file created via the mknod system call). Note that if mknod operation 321 * is being done for a regular file, then the create hook will be called 322 * and not this hook. 323 * @dir contains the inode structure of parent of the new file. 324 * @dentry contains the dentry structure of the new file. 325 * @mode contains the mode of the new file. 326 * @dev contains the device number. 327 * Return 0 if permission is granted. 328 * @inode_rename: 329 * Check for permission to rename a file or directory. 330 * @old_dir contains the inode structure for parent of the old link. 331 * @old_dentry contains the dentry structure of the old link. 332 * @new_dir contains the inode structure for parent of the new link. 333 * @new_dentry contains the dentry structure of the new link. 334 * Return 0 if permission is granted. 335 * @inode_readlink: 336 * Check the permission to read the symbolic link. 337 * @dentry contains the dentry structure for the file link. 338 * Return 0 if permission is granted. 339 * @inode_follow_link: 340 * Check permission to follow a symbolic link when looking up a pathname. 341 * @dentry contains the dentry structure for the link. 342 * @nd contains the nameidata structure for the parent directory. 343 * Return 0 if permission is granted. 344 * @inode_permission: 345 * Check permission before accessing an inode. This hook is called by the 346 * existing Linux permission function, so a security module can use it to 347 * provide additional checking for existing Linux permission checks. 348 * Notice that this hook is called when a file is opened (as well as many 349 * other operations), whereas the file_security_ops permission hook is 350 * called when the actual read/write operations are performed. 351 * @inode contains the inode structure to check. 352 * @mask contains the permission mask. 353 * @nd contains the nameidata (may be NULL). 354 * Return 0 if permission is granted. 355 * @inode_setattr: 356 * Check permission before setting file attributes. Note that the kernel 357 * call to notify_change is performed from several locations, whenever 358 * file attributes change (such as when a file is truncated, chown/chmod 359 * operations, transferring disk quotas, etc). 360 * @dentry contains the dentry structure for the file. 361 * @attr is the iattr structure containing the new file attributes. 362 * Return 0 if permission is granted. 363 * @inode_getattr: 364 * Check permission before obtaining file attributes. 365 * @mnt is the vfsmount where the dentry was looked up 366 * @dentry contains the dentry structure for the file. 367 * Return 0 if permission is granted. 368 * @inode_delete: 369 * @inode contains the inode structure for deleted inode. 370 * This hook is called when a deleted inode is released (i.e. an inode 371 * with no hard links has its use count drop to zero). A security module 372 * can use this hook to release any persistent label associated with the 373 * inode. 374 * @inode_setxattr: 375 * Check permission before setting the extended attributes 376 * @value identified by @name for @dentry. 377 * Return 0 if permission is granted. 378 * @inode_post_setxattr: 379 * Update inode security field after successful setxattr operation. 380 * @value identified by @name for @dentry. 381 * @inode_getxattr: 382 * Check permission before obtaining the extended attributes 383 * identified by @name for @dentry. 384 * Return 0 if permission is granted. 385 * @inode_listxattr: 386 * Check permission before obtaining the list of extended attribute 387 * names for @dentry. 388 * Return 0 if permission is granted. 389 * @inode_removexattr: 390 * Check permission before removing the extended attribute 391 * identified by @name for @dentry. 392 * Return 0 if permission is granted. 393 * @inode_getsecurity: 394 * Copy the extended attribute representation of the security label 395 * associated with @name for @inode into @buffer. @buffer may be 396 * NULL to request the size of the buffer required. @size indicates 397 * the size of @buffer in bytes. Note that @name is the remainder 398 * of the attribute name after the security. prefix has been removed. 399 * @err is the return value from the preceding fs getxattr call, 400 * and can be used by the security module to determine whether it 401 * should try and canonicalize the attribute value. 402 * Return number of bytes used/required on success. 403 * @inode_setsecurity: 404 * Set the security label associated with @name for @inode from the 405 * extended attribute value @value. @size indicates the size of the 406 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. 407 * Note that @name is the remainder of the attribute name after the 408 * security. prefix has been removed. 409 * Return 0 on success. 410 * @inode_listsecurity: 411 * Copy the extended attribute names for the security labels 412 * associated with @inode into @buffer. The maximum size of @buffer 413 * is specified by @buffer_size. @buffer may be NULL to request 414 * the size of the buffer required. 415 * Returns number of bytes used/required on success. 416 * 417 * Security hooks for file operations 418 * 419 * @file_permission: 420 * Check file permissions before accessing an open file. This hook is 421 * called by various operations that read or write files. A security 422 * module can use this hook to perform additional checking on these 423 * operations, e.g. to revalidate permissions on use to support privilege 424 * bracketing or policy changes. Notice that this hook is used when the 425 * actual read/write operations are performed, whereas the 426 * inode_security_ops hook is called when a file is opened (as well as 427 * many other operations). 428 * Caveat: Although this hook can be used to revalidate permissions for 429 * various system call operations that read or write files, it does not 430 * address the revalidation of permissions for memory-mapped files. 431 * Security modules must handle this separately if they need such 432 * revalidation. 433 * @file contains the file structure being accessed. 434 * @mask contains the requested permissions. 435 * Return 0 if permission is granted. 436 * @file_alloc_security: 437 * Allocate and attach a security structure to the file->f_security field. 438 * The security field is initialized to NULL when the structure is first 439 * created. 440 * @file contains the file structure to secure. 441 * Return 0 if the hook is successful and permission is granted. 442 * @file_free_security: 443 * Deallocate and free any security structures stored in file->f_security. 444 * @file contains the file structure being modified. 445 * @file_ioctl: 446 * @file contains the file structure. 447 * @cmd contains the operation to perform. 448 * @arg contains the operational arguments. 449 * Check permission for an ioctl operation on @file. Note that @arg can 450 * sometimes represents a user space pointer; in other cases, it may be a 451 * simple integer value. When @arg represents a user space pointer, it 452 * should never be used by the security module. 453 * Return 0 if permission is granted. 454 * @file_mmap : 455 * Check permissions for a mmap operation. The @file may be NULL, e.g. 456 * if mapping anonymous memory. 457 * @file contains the file structure for file to map (may be NULL). 458 * @reqprot contains the protection requested by the application. 459 * @prot contains the protection that will be applied by the kernel. 460 * @flags contains the operational flags. 461 * Return 0 if permission is granted. 462 * @file_mprotect: 463 * Check permissions before changing memory access permissions. 464 * @vma contains the memory region to modify. 465 * @reqprot contains the protection requested by the application. 466 * @prot contains the protection that will be applied by the kernel. 467 * Return 0 if permission is granted. 468 * @file_lock: 469 * Check permission before performing file locking operations. 470 * Note: this hook mediates both flock and fcntl style locks. 471 * @file contains the file structure. 472 * @cmd contains the posix-translated lock operation to perform 473 * (e.g. F_RDLCK, F_WRLCK). 474 * Return 0 if permission is granted. 475 * @file_fcntl: 476 * Check permission before allowing the file operation specified by @cmd 477 * from being performed on the file @file. Note that @arg can sometimes 478 * represents a user space pointer; in other cases, it may be a simple 479 * integer value. When @arg represents a user space pointer, it should 480 * never be used by the security module. 481 * @file contains the file structure. 482 * @cmd contains the operation to be performed. 483 * @arg contains the operational arguments. 484 * Return 0 if permission is granted. 485 * @file_set_fowner: 486 * Save owner security information (typically from current->security) in 487 * file->f_security for later use by the send_sigiotask hook. 488 * @file contains the file structure to update. 489 * Return 0 on success. 490 * @file_send_sigiotask: 491 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 492 * process @tsk. Note that this hook is sometimes called from interrupt. 493 * Note that the fown_struct, @fown, is never outside the context of a 494 * struct file, so the file structure (and associated security information) 495 * can always be obtained: 496 * container_of(fown, struct file, f_owner) 497 * @tsk contains the structure of task receiving signal. 498 * @fown contains the file owner information. 499 * @sig is the signal that will be sent. When 0, kernel sends SIGIO. 500 * Return 0 if permission is granted. 501 * @file_receive: 502 * This hook allows security modules to control the ability of a process 503 * to receive an open file descriptor via socket IPC. 504 * @file contains the file structure being received. 505 * Return 0 if permission is granted. 506 * 507 * Security hook for dentry 508 * 509 * @dentry_open 510 * Save open-time permission checking state for later use upon 511 * file_permission, and recheck access if anything has changed 512 * since inode_permission. 513 * 514 * Security hooks for task operations. 515 * 516 * @task_create: 517 * Check permission before creating a child process. See the clone(2) 518 * manual page for definitions of the @clone_flags. 519 * @clone_flags contains the flags indicating what should be shared. 520 * Return 0 if permission is granted. 521 * @task_alloc_security: 522 * @p contains the task_struct for child process. 523 * Allocate and attach a security structure to the p->security field. The 524 * security field is initialized to NULL when the task structure is 525 * allocated. 526 * Return 0 if operation was successful. 527 * @task_free_security: 528 * @p contains the task_struct for process. 529 * Deallocate and clear the p->security field. 530 * @task_setuid: 531 * Check permission before setting one or more of the user identity 532 * attributes of the current process. The @flags parameter indicates 533 * which of the set*uid system calls invoked this hook and how to 534 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 535 * definitions at the beginning of this file for the @flags values and 536 * their meanings. 537 * @id0 contains a uid. 538 * @id1 contains a uid. 539 * @id2 contains a uid. 540 * @flags contains one of the LSM_SETID_* values. 541 * Return 0 if permission is granted. 542 * @task_post_setuid: 543 * Update the module's state after setting one or more of the user 544 * identity attributes of the current process. The @flags parameter 545 * indicates which of the set*uid system calls invoked this hook. If 546 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other 547 * parameters are not used. 548 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS). 549 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS). 550 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS). 551 * @flags contains one of the LSM_SETID_* values. 552 * Return 0 on success. 553 * @task_setgid: 554 * Check permission before setting one or more of the group identity 555 * attributes of the current process. The @flags parameter indicates 556 * which of the set*gid system calls invoked this hook and how to 557 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 558 * definitions at the beginning of this file for the @flags values and 559 * their meanings. 560 * @id0 contains a gid. 561 * @id1 contains a gid. 562 * @id2 contains a gid. 563 * @flags contains one of the LSM_SETID_* values. 564 * Return 0 if permission is granted. 565 * @task_setpgid: 566 * Check permission before setting the process group identifier of the 567 * process @p to @pgid. 568 * @p contains the task_struct for process being modified. 569 * @pgid contains the new pgid. 570 * Return 0 if permission is granted. 571 * @task_getpgid: 572 * Check permission before getting the process group identifier of the 573 * process @p. 574 * @p contains the task_struct for the process. 575 * Return 0 if permission is granted. 576 * @task_getsid: 577 * Check permission before getting the session identifier of the process 578 * @p. 579 * @p contains the task_struct for the process. 580 * Return 0 if permission is granted. 581 * @task_getsecid: 582 * Retrieve the security identifier of the process @p. 583 * @p contains the task_struct for the process and place is into @secid. 584 * @task_setgroups: 585 * Check permission before setting the supplementary group set of the 586 * current process. 587 * @group_info contains the new group information. 588 * Return 0 if permission is granted. 589 * @task_setnice: 590 * Check permission before setting the nice value of @p to @nice. 591 * @p contains the task_struct of process. 592 * @nice contains the new nice value. 593 * Return 0 if permission is granted. 594 * @task_setioprio 595 * Check permission before setting the ioprio value of @p to @ioprio. 596 * @p contains the task_struct of process. 597 * @ioprio contains the new ioprio value 598 * Return 0 if permission is granted. 599 * @task_getioprio 600 * Check permission before getting the ioprio value of @p. 601 * @p contains the task_struct of process. 602 * Return 0 if permission is granted. 603 * @task_setrlimit: 604 * Check permission before setting the resource limits of the current 605 * process for @resource to @new_rlim. The old resource limit values can 606 * be examined by dereferencing (current->signal->rlim + resource). 607 * @resource contains the resource whose limit is being set. 608 * @new_rlim contains the new limits for @resource. 609 * Return 0 if permission is granted. 610 * @task_setscheduler: 611 * Check permission before setting scheduling policy and/or parameters of 612 * process @p based on @policy and @lp. 613 * @p contains the task_struct for process. 614 * @policy contains the scheduling policy. 615 * @lp contains the scheduling parameters. 616 * Return 0 if permission is granted. 617 * @task_getscheduler: 618 * Check permission before obtaining scheduling information for process 619 * @p. 620 * @p contains the task_struct for process. 621 * Return 0 if permission is granted. 622 * @task_movememory 623 * Check permission before moving memory owned by process @p. 624 * @p contains the task_struct for process. 625 * Return 0 if permission is granted. 626 * @task_kill: 627 * Check permission before sending signal @sig to @p. @info can be NULL, 628 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or 629 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming 630 * from the kernel and should typically be permitted. 631 * SIGIO signals are handled separately by the send_sigiotask hook in 632 * file_security_ops. 633 * @p contains the task_struct for process. 634 * @info contains the signal information. 635 * @sig contains the signal value. 636 * @secid contains the sid of the process where the signal originated 637 * Return 0 if permission is granted. 638 * @task_wait: 639 * Check permission before allowing a process to reap a child process @p 640 * and collect its status information. 641 * @p contains the task_struct for process. 642 * Return 0 if permission is granted. 643 * @task_prctl: 644 * Check permission before performing a process control operation on the 645 * current process. 646 * @option contains the operation. 647 * @arg2 contains a argument. 648 * @arg3 contains a argument. 649 * @arg4 contains a argument. 650 * @arg5 contains a argument. 651 * Return 0 if permission is granted. 652 * @task_reparent_to_init: 653 * Set the security attributes in @p->security for a kernel thread that 654 * is being reparented to the init task. 655 * @p contains the task_struct for the kernel thread. 656 * @task_to_inode: 657 * Set the security attributes for an inode based on an associated task's 658 * security attributes, e.g. for /proc/pid inodes. 659 * @p contains the task_struct for the task. 660 * @inode contains the inode structure for the inode. 661 * 662 * Security hooks for Netlink messaging. 663 * 664 * @netlink_send: 665 * Save security information for a netlink message so that permission 666 * checking can be performed when the message is processed. The security 667 * information can be saved using the eff_cap field of the 668 * netlink_skb_parms structure. Also may be used to provide fine 669 * grained control over message transmission. 670 * @sk associated sock of task sending the message., 671 * @skb contains the sk_buff structure for the netlink message. 672 * Return 0 if the information was successfully saved and message 673 * is allowed to be transmitted. 674 * @netlink_recv: 675 * Check permission before processing the received netlink message in 676 * @skb. 677 * @skb contains the sk_buff structure for the netlink message. 678 * @cap indicates the capability required 679 * Return 0 if permission is granted. 680 * 681 * Security hooks for Unix domain networking. 682 * 683 * @unix_stream_connect: 684 * Check permissions before establishing a Unix domain stream connection 685 * between @sock and @other. 686 * @sock contains the socket structure. 687 * @other contains the peer socket structure. 688 * Return 0 if permission is granted. 689 * @unix_may_send: 690 * Check permissions before connecting or sending datagrams from @sock to 691 * @other. 692 * @sock contains the socket structure. 693 * @sock contains the peer socket structure. 694 * Return 0 if permission is granted. 695 * 696 * The @unix_stream_connect and @unix_may_send hooks were necessary because 697 * Linux provides an alternative to the conventional file name space for Unix 698 * domain sockets. Whereas binding and connecting to sockets in the file name 699 * space is mediated by the typical file permissions (and caught by the mknod 700 * and permission hooks in inode_security_ops), binding and connecting to 701 * sockets in the abstract name space is completely unmediated. Sufficient 702 * control of Unix domain sockets in the abstract name space isn't possible 703 * using only the socket layer hooks, since we need to know the actual target 704 * socket, which is not looked up until we are inside the af_unix code. 705 * 706 * Security hooks for socket operations. 707 * 708 * @socket_create: 709 * Check permissions prior to creating a new socket. 710 * @family contains the requested protocol family. 711 * @type contains the requested communications type. 712 * @protocol contains the requested protocol. 713 * @kern set to 1 if a kernel socket. 714 * Return 0 if permission is granted. 715 * @socket_post_create: 716 * This hook allows a module to update or allocate a per-socket security 717 * structure. Note that the security field was not added directly to the 718 * socket structure, but rather, the socket security information is stored 719 * in the associated inode. Typically, the inode alloc_security hook will 720 * allocate and and attach security information to 721 * sock->inode->i_security. This hook may be used to update the 722 * sock->inode->i_security field with additional information that wasn't 723 * available when the inode was allocated. 724 * @sock contains the newly created socket structure. 725 * @family contains the requested protocol family. 726 * @type contains the requested communications type. 727 * @protocol contains the requested protocol. 728 * @kern set to 1 if a kernel socket. 729 * @socket_bind: 730 * Check permission before socket protocol layer bind operation is 731 * performed and the socket @sock is bound to the address specified in the 732 * @address parameter. 733 * @sock contains the socket structure. 734 * @address contains the address to bind to. 735 * @addrlen contains the length of address. 736 * Return 0 if permission is granted. 737 * @socket_connect: 738 * Check permission before socket protocol layer connect operation 739 * attempts to connect socket @sock to a remote address, @address. 740 * @sock contains the socket structure. 741 * @address contains the address of remote endpoint. 742 * @addrlen contains the length of address. 743 * Return 0 if permission is granted. 744 * @socket_listen: 745 * Check permission before socket protocol layer listen operation. 746 * @sock contains the socket structure. 747 * @backlog contains the maximum length for the pending connection queue. 748 * Return 0 if permission is granted. 749 * @socket_accept: 750 * Check permission before accepting a new connection. Note that the new 751 * socket, @newsock, has been created and some information copied to it, 752 * but the accept operation has not actually been performed. 753 * @sock contains the listening socket structure. 754 * @newsock contains the newly created server socket for connection. 755 * Return 0 if permission is granted. 756 * @socket_post_accept: 757 * This hook allows a security module to copy security 758 * information into the newly created socket's inode. 759 * @sock contains the listening socket structure. 760 * @newsock contains the newly created server socket for connection. 761 * @socket_sendmsg: 762 * Check permission before transmitting a message to another socket. 763 * @sock contains the socket structure. 764 * @msg contains the message to be transmitted. 765 * @size contains the size of message. 766 * Return 0 if permission is granted. 767 * @socket_recvmsg: 768 * Check permission before receiving a message from a socket. 769 * @sock contains the socket structure. 770 * @msg contains the message structure. 771 * @size contains the size of message structure. 772 * @flags contains the operational flags. 773 * Return 0 if permission is granted. 774 * @socket_getsockname: 775 * Check permission before the local address (name) of the socket object 776 * @sock is retrieved. 777 * @sock contains the socket structure. 778 * Return 0 if permission is granted. 779 * @socket_getpeername: 780 * Check permission before the remote address (name) of a socket object 781 * @sock is retrieved. 782 * @sock contains the socket structure. 783 * Return 0 if permission is granted. 784 * @socket_getsockopt: 785 * Check permissions before retrieving the options associated with socket 786 * @sock. 787 * @sock contains the socket structure. 788 * @level contains the protocol level to retrieve option from. 789 * @optname contains the name of option to retrieve. 790 * Return 0 if permission is granted. 791 * @socket_setsockopt: 792 * Check permissions before setting the options associated with socket 793 * @sock. 794 * @sock contains the socket structure. 795 * @level contains the protocol level to set options for. 796 * @optname contains the name of the option to set. 797 * Return 0 if permission is granted. 798 * @socket_shutdown: 799 * Checks permission before all or part of a connection on the socket 800 * @sock is shut down. 801 * @sock contains the socket structure. 802 * @how contains the flag indicating how future sends and receives are handled. 803 * Return 0 if permission is granted. 804 * @socket_sock_rcv_skb: 805 * Check permissions on incoming network packets. This hook is distinct 806 * from Netfilter's IP input hooks since it is the first time that the 807 * incoming sk_buff @skb has been associated with a particular socket, @sk. 808 * @sk contains the sock (not socket) associated with the incoming sk_buff. 809 * @skb contains the incoming network data. 810 * @socket_getpeersec: 811 * This hook allows the security module to provide peer socket security 812 * state to userspace via getsockopt SO_GETPEERSEC. 813 * @sock is the local socket. 814 * @optval userspace memory where the security state is to be copied. 815 * @optlen userspace int where the module should copy the actual length 816 * of the security state. 817 * @len as input is the maximum length to copy to userspace provided 818 * by the caller. 819 * Return 0 if all is well, otherwise, typical getsockopt return 820 * values. 821 * @sk_alloc_security: 822 * Allocate and attach a security structure to the sk->sk_security field, 823 * which is used to copy security attributes between local stream sockets. 824 * @sk_free_security: 825 * Deallocate security structure. 826 * @sk_clone_security: 827 * Clone/copy security structure. 828 * @sk_getsecid: 829 * Retrieve the LSM-specific secid for the sock to enable caching of network 830 * authorizations. 831 * @sock_graft: 832 * Sets the socket's isec sid to the sock's sid. 833 * @inet_conn_request: 834 * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid. 835 * @inet_csk_clone: 836 * Sets the new child socket's sid to the openreq sid. 837 * @inet_conn_established: 838 * Sets the connection's peersid to the secmark on skb. 839 * @req_classify_flow: 840 * Sets the flow's sid to the openreq sid. 841 * 842 * Security hooks for XFRM operations. 843 * 844 * @xfrm_policy_alloc_security: 845 * @xp contains the xfrm_policy being added to Security Policy Database 846 * used by the XFRM system. 847 * @sec_ctx contains the security context information being provided by 848 * the user-level policy update program (e.g., setkey). 849 * Allocate a security structure to the xp->security field; the security 850 * field is initialized to NULL when the xfrm_policy is allocated. 851 * Return 0 if operation was successful (memory to allocate, legal context) 852 * @xfrm_policy_clone_security: 853 * @old contains an existing xfrm_policy in the SPD. 854 * @new contains a new xfrm_policy being cloned from old. 855 * Allocate a security structure to the new->security field 856 * that contains the information from the old->security field. 857 * Return 0 if operation was successful (memory to allocate). 858 * @xfrm_policy_free_security: 859 * @xp contains the xfrm_policy 860 * Deallocate xp->security. 861 * @xfrm_policy_delete_security: 862 * @xp contains the xfrm_policy. 863 * Authorize deletion of xp->security. 864 * @xfrm_state_alloc_security: 865 * @x contains the xfrm_state being added to the Security Association 866 * Database by the XFRM system. 867 * @sec_ctx contains the security context information being provided by 868 * the user-level SA generation program (e.g., setkey or racoon). 869 * @secid contains the secid from which to take the mls portion of the context. 870 * Allocate a security structure to the x->security field; the security 871 * field is initialized to NULL when the xfrm_state is allocated. Set the 872 * context to correspond to either sec_ctx or polsec, with the mls portion 873 * taken from secid in the latter case. 874 * Return 0 if operation was successful (memory to allocate, legal context). 875 * @xfrm_state_free_security: 876 * @x contains the xfrm_state. 877 * Deallocate x->security. 878 * @xfrm_state_delete_security: 879 * @x contains the xfrm_state. 880 * Authorize deletion of x->security. 881 * @xfrm_policy_lookup: 882 * @xp contains the xfrm_policy for which the access control is being 883 * checked. 884 * @fl_secid contains the flow security label that is used to authorize 885 * access to the policy xp. 886 * @dir contains the direction of the flow (input or output). 887 * Check permission when a flow selects a xfrm_policy for processing 888 * XFRMs on a packet. The hook is called when selecting either a 889 * per-socket policy or a generic xfrm policy. 890 * Return 0 if permission is granted, -ESRCH otherwise, or -errno 891 * on other errors. 892 * @xfrm_state_pol_flow_match: 893 * @x contains the state to match. 894 * @xp contains the policy to check for a match. 895 * @fl contains the flow to check for a match. 896 * Return 1 if there is a match. 897 * @xfrm_decode_session: 898 * @skb points to skb to decode. 899 * @secid points to the flow key secid to set. 900 * @ckall says if all xfrms used should be checked for same secid. 901 * Return 0 if ckall is zero or all xfrms used have the same secid. 902 * 903 * Security hooks affecting all Key Management operations 904 * 905 * @key_alloc: 906 * Permit allocation of a key and assign security data. Note that key does 907 * not have a serial number assigned at this point. 908 * @key points to the key. 909 * @flags is the allocation flags 910 * Return 0 if permission is granted, -ve error otherwise. 911 * @key_free: 912 * Notification of destruction; free security data. 913 * @key points to the key. 914 * No return value. 915 * @key_permission: 916 * See whether a specific operational right is granted to a process on a 917 * key. 918 * @key_ref refers to the key (key pointer + possession attribute bit). 919 * @context points to the process to provide the context against which to 920 * evaluate the security data on the key. 921 * @perm describes the combination of permissions required of this key. 922 * Return 1 if permission granted, 0 if permission denied and -ve it the 923 * normal permissions model should be effected. 924 * 925 * Security hooks affecting all System V IPC operations. 926 * 927 * @ipc_permission: 928 * Check permissions for access to IPC 929 * @ipcp contains the kernel IPC permission structure 930 * @flag contains the desired (requested) permission set 931 * Return 0 if permission is granted. 932 * 933 * Security hooks for individual messages held in System V IPC message queues 934 * @msg_msg_alloc_security: 935 * Allocate and attach a security structure to the msg->security field. 936 * The security field is initialized to NULL when the structure is first 937 * created. 938 * @msg contains the message structure to be modified. 939 * Return 0 if operation was successful and permission is granted. 940 * @msg_msg_free_security: 941 * Deallocate the security structure for this message. 942 * @msg contains the message structure to be modified. 943 * 944 * Security hooks for System V IPC Message Queues 945 * 946 * @msg_queue_alloc_security: 947 * Allocate and attach a security structure to the 948 * msq->q_perm.security field. The security field is initialized to 949 * NULL when the structure is first created. 950 * @msq contains the message queue structure to be modified. 951 * Return 0 if operation was successful and permission is granted. 952 * @msg_queue_free_security: 953 * Deallocate security structure for this message queue. 954 * @msq contains the message queue structure to be modified. 955 * @msg_queue_associate: 956 * Check permission when a message queue is requested through the 957 * msgget system call. This hook is only called when returning the 958 * message queue identifier for an existing message queue, not when a 959 * new message queue is created. 960 * @msq contains the message queue to act upon. 961 * @msqflg contains the operation control flags. 962 * Return 0 if permission is granted. 963 * @msg_queue_msgctl: 964 * Check permission when a message control operation specified by @cmd 965 * is to be performed on the message queue @msq. 966 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. 967 * @msq contains the message queue to act upon. May be NULL. 968 * @cmd contains the operation to be performed. 969 * Return 0 if permission is granted. 970 * @msg_queue_msgsnd: 971 * Check permission before a message, @msg, is enqueued on the message 972 * queue, @msq. 973 * @msq contains the message queue to send message to. 974 * @msg contains the message to be enqueued. 975 * @msqflg contains operational flags. 976 * Return 0 if permission is granted. 977 * @msg_queue_msgrcv: 978 * Check permission before a message, @msg, is removed from the message 979 * queue, @msq. The @target task structure contains a pointer to the 980 * process that will be receiving the message (not equal to the current 981 * process when inline receives are being performed). 982 * @msq contains the message queue to retrieve message from. 983 * @msg contains the message destination. 984 * @target contains the task structure for recipient process. 985 * @type contains the type of message requested. 986 * @mode contains the operational flags. 987 * Return 0 if permission is granted. 988 * 989 * Security hooks for System V Shared Memory Segments 990 * 991 * @shm_alloc_security: 992 * Allocate and attach a security structure to the shp->shm_perm.security 993 * field. The security field is initialized to NULL when the structure is 994 * first created. 995 * @shp contains the shared memory structure to be modified. 996 * Return 0 if operation was successful and permission is granted. 997 * @shm_free_security: 998 * Deallocate the security struct for this memory segment. 999 * @shp contains the shared memory structure to be modified. 1000 * @shm_associate: 1001 * Check permission when a shared memory region is requested through the 1002 * shmget system call. This hook is only called when returning the shared 1003 * memory region identifier for an existing region, not when a new shared 1004 * memory region is created. 1005 * @shp contains the shared memory structure to be modified. 1006 * @shmflg contains the operation control flags. 1007 * Return 0 if permission is granted. 1008 * @shm_shmctl: 1009 * Check permission when a shared memory control operation specified by 1010 * @cmd is to be performed on the shared memory region @shp. 1011 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. 1012 * @shp contains shared memory structure to be modified. 1013 * @cmd contains the operation to be performed. 1014 * Return 0 if permission is granted. 1015 * @shm_shmat: 1016 * Check permissions prior to allowing the shmat system call to attach the 1017 * shared memory segment @shp to the data segment of the calling process. 1018 * The attaching address is specified by @shmaddr. 1019 * @shp contains the shared memory structure to be modified. 1020 * @shmaddr contains the address to attach memory region to. 1021 * @shmflg contains the operational flags. 1022 * Return 0 if permission is granted. 1023 * 1024 * Security hooks for System V Semaphores 1025 * 1026 * @sem_alloc_security: 1027 * Allocate and attach a security structure to the sma->sem_perm.security 1028 * field. The security field is initialized to NULL when the structure is 1029 * first created. 1030 * @sma contains the semaphore structure 1031 * Return 0 if operation was successful and permission is granted. 1032 * @sem_free_security: 1033 * deallocate security struct for this semaphore 1034 * @sma contains the semaphore structure. 1035 * @sem_associate: 1036 * Check permission when a semaphore is requested through the semget 1037 * system call. This hook is only called when returning the semaphore 1038 * identifier for an existing semaphore, not when a new one must be 1039 * created. 1040 * @sma contains the semaphore structure. 1041 * @semflg contains the operation control flags. 1042 * Return 0 if permission is granted. 1043 * @sem_semctl: 1044 * Check permission when a semaphore operation specified by @cmd is to be 1045 * performed on the semaphore @sma. The @sma may be NULL, e.g. for 1046 * IPC_INFO or SEM_INFO. 1047 * @sma contains the semaphore structure. May be NULL. 1048 * @cmd contains the operation to be performed. 1049 * Return 0 if permission is granted. 1050 * @sem_semop 1051 * Check permissions before performing operations on members of the 1052 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set 1053 * may be modified. 1054 * @sma contains the semaphore structure. 1055 * @sops contains the operations to perform. 1056 * @nsops contains the number of operations to perform. 1057 * @alter contains the flag indicating whether changes are to be made. 1058 * Return 0 if permission is granted. 1059 * 1060 * @ptrace: 1061 * Check permission before allowing the @parent process to trace the 1062 * @child process. 1063 * Security modules may also want to perform a process tracing check 1064 * during an execve in the set_security or apply_creds hooks of 1065 * binprm_security_ops if the process is being traced and its security 1066 * attributes would be changed by the execve. 1067 * @parent contains the task_struct structure for parent process. 1068 * @child contains the task_struct structure for child process. 1069 * Return 0 if permission is granted. 1070 * @capget: 1071 * Get the @effective, @inheritable, and @permitted capability sets for 1072 * the @target process. The hook may also perform permission checking to 1073 * determine if the current process is allowed to see the capability sets 1074 * of the @target process. 1075 * @target contains the task_struct structure for target process. 1076 * @effective contains the effective capability set. 1077 * @inheritable contains the inheritable capability set. 1078 * @permitted contains the permitted capability set. 1079 * Return 0 if the capability sets were successfully obtained. 1080 * @capset_check: 1081 * Check permission before setting the @effective, @inheritable, and 1082 * @permitted capability sets for the @target process. 1083 * Caveat: @target is also set to current if a set of processes is 1084 * specified (i.e. all processes other than current and init or a 1085 * particular process group). Hence, the capset_set hook may need to 1086 * revalidate permission to the actual target process. 1087 * @target contains the task_struct structure for target process. 1088 * @effective contains the effective capability set. 1089 * @inheritable contains the inheritable capability set. 1090 * @permitted contains the permitted capability set. 1091 * Return 0 if permission is granted. 1092 * @capset_set: 1093 * Set the @effective, @inheritable, and @permitted capability sets for 1094 * the @target process. Since capset_check cannot always check permission 1095 * to the real @target process, this hook may also perform permission 1096 * checking to determine if the current process is allowed to set the 1097 * capability sets of the @target process. However, this hook has no way 1098 * of returning an error due to the structure of the sys_capset code. 1099 * @target contains the task_struct structure for target process. 1100 * @effective contains the effective capability set. 1101 * @inheritable contains the inheritable capability set. 1102 * @permitted contains the permitted capability set. 1103 * @capable: 1104 * Check whether the @tsk process has the @cap capability. 1105 * @tsk contains the task_struct for the process. 1106 * @cap contains the capability <include/linux/capability.h>. 1107 * Return 0 if the capability is granted for @tsk. 1108 * @acct: 1109 * Check permission before enabling or disabling process accounting. If 1110 * accounting is being enabled, then @file refers to the open file used to 1111 * store accounting records. If accounting is being disabled, then @file 1112 * is NULL. 1113 * @file contains the file structure for the accounting file (may be NULL). 1114 * Return 0 if permission is granted. 1115 * @sysctl: 1116 * Check permission before accessing the @table sysctl variable in the 1117 * manner specified by @op. 1118 * @table contains the ctl_table structure for the sysctl variable. 1119 * @op contains the operation (001 = search, 002 = write, 004 = read). 1120 * Return 0 if permission is granted. 1121 * @syslog: 1122 * Check permission before accessing the kernel message ring or changing 1123 * logging to the console. 1124 * See the syslog(2) manual page for an explanation of the @type values. 1125 * @type contains the type of action. 1126 * Return 0 if permission is granted. 1127 * @settime: 1128 * Check permission to change the system time. 1129 * struct timespec and timezone are defined in include/linux/time.h 1130 * @ts contains new time 1131 * @tz contains new timezone 1132 * Return 0 if permission is granted. 1133 * @vm_enough_memory: 1134 * Check permissions for allocating a new virtual mapping. 1135 * @mm contains the mm struct it is being added to. 1136 * @pages contains the number of pages. 1137 * Return 0 if permission is granted. 1138 * 1139 * @register_security: 1140 * allow module stacking. 1141 * @name contains the name of the security module being stacked. 1142 * @ops contains a pointer to the struct security_operations of the module to stack. 1143 * @unregister_security: 1144 * remove a stacked module. 1145 * @name contains the name of the security module being unstacked. 1146 * @ops contains a pointer to the struct security_operations of the module to unstack. 1147 * 1148 * @secid_to_secctx: 1149 * Convert secid to security context. 1150 * @secid contains the security ID. 1151 * @secdata contains the pointer that stores the converted security context. 1152 * 1153 * @release_secctx: 1154 * Release the security context. 1155 * @secdata contains the security context. 1156 * @seclen contains the length of the security context. 1157 * 1158 * This is the main security structure. 1159 */ 1160 struct security_operations { 1161 int (*ptrace) (struct task_struct * parent, struct task_struct * child); 1162 int (*capget) (struct task_struct * target, 1163 kernel_cap_t * effective, 1164 kernel_cap_t * inheritable, kernel_cap_t * permitted); 1165 int (*capset_check) (struct task_struct * target, 1166 kernel_cap_t * effective, 1167 kernel_cap_t * inheritable, 1168 kernel_cap_t * permitted); 1169 void (*capset_set) (struct task_struct * target, 1170 kernel_cap_t * effective, 1171 kernel_cap_t * inheritable, 1172 kernel_cap_t * permitted); 1173 int (*capable) (struct task_struct * tsk, int cap); 1174 int (*acct) (struct file * file); 1175 int (*sysctl) (struct ctl_table * table, int op); 1176 int (*quotactl) (int cmds, int type, int id, struct super_block * sb); 1177 int (*quota_on) (struct dentry * dentry); 1178 int (*syslog) (int type); 1179 int (*settime) (struct timespec *ts, struct timezone *tz); 1180 int (*vm_enough_memory) (struct mm_struct *mm, long pages); 1181 1182 int (*bprm_alloc_security) (struct linux_binprm * bprm); 1183 void (*bprm_free_security) (struct linux_binprm * bprm); 1184 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe); 1185 void (*bprm_post_apply_creds) (struct linux_binprm * bprm); 1186 int (*bprm_set_security) (struct linux_binprm * bprm); 1187 int (*bprm_check_security) (struct linux_binprm * bprm); 1188 int (*bprm_secureexec) (struct linux_binprm * bprm); 1189 1190 int (*sb_alloc_security) (struct super_block * sb); 1191 void (*sb_free_security) (struct super_block * sb); 1192 int (*sb_copy_data)(struct file_system_type *type, 1193 void *orig, void *copy); 1194 int (*sb_kern_mount) (struct super_block *sb, void *data); 1195 int (*sb_statfs) (struct dentry *dentry); 1196 int (*sb_mount) (char *dev_name, struct nameidata * nd, 1197 char *type, unsigned long flags, void *data); 1198 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd); 1199 int (*sb_umount) (struct vfsmount * mnt, int flags); 1200 void (*sb_umount_close) (struct vfsmount * mnt); 1201 void (*sb_umount_busy) (struct vfsmount * mnt); 1202 void (*sb_post_remount) (struct vfsmount * mnt, 1203 unsigned long flags, void *data); 1204 void (*sb_post_mountroot) (void); 1205 void (*sb_post_addmount) (struct vfsmount * mnt, 1206 struct nameidata * mountpoint_nd); 1207 int (*sb_pivotroot) (struct nameidata * old_nd, 1208 struct nameidata * new_nd); 1209 void (*sb_post_pivotroot) (struct nameidata * old_nd, 1210 struct nameidata * new_nd); 1211 1212 int (*inode_alloc_security) (struct inode *inode); 1213 void (*inode_free_security) (struct inode *inode); 1214 int (*inode_init_security) (struct inode *inode, struct inode *dir, 1215 char **name, void **value, size_t *len); 1216 int (*inode_create) (struct inode *dir, 1217 struct dentry *dentry, int mode); 1218 int (*inode_link) (struct dentry *old_dentry, 1219 struct inode *dir, struct dentry *new_dentry); 1220 int (*inode_unlink) (struct inode *dir, struct dentry *dentry); 1221 int (*inode_symlink) (struct inode *dir, 1222 struct dentry *dentry, const char *old_name); 1223 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); 1224 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); 1225 int (*inode_mknod) (struct inode *dir, struct dentry *dentry, 1226 int mode, dev_t dev); 1227 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, 1228 struct inode *new_dir, struct dentry *new_dentry); 1229 int (*inode_readlink) (struct dentry *dentry); 1230 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); 1231 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd); 1232 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); 1233 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); 1234 void (*inode_delete) (struct inode *inode); 1235 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value, 1236 size_t size, int flags); 1237 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value, 1238 size_t size, int flags); 1239 int (*inode_getxattr) (struct dentry *dentry, char *name); 1240 int (*inode_listxattr) (struct dentry *dentry); 1241 int (*inode_removexattr) (struct dentry *dentry, char *name); 1242 const char *(*inode_xattr_getsuffix) (void); 1243 int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err); 1244 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags); 1245 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size); 1246 1247 int (*file_permission) (struct file * file, int mask); 1248 int (*file_alloc_security) (struct file * file); 1249 void (*file_free_security) (struct file * file); 1250 int (*file_ioctl) (struct file * file, unsigned int cmd, 1251 unsigned long arg); 1252 int (*file_mmap) (struct file * file, 1253 unsigned long reqprot, unsigned long prot, 1254 unsigned long flags, unsigned long addr, 1255 unsigned long addr_only); 1256 int (*file_mprotect) (struct vm_area_struct * vma, 1257 unsigned long reqprot, 1258 unsigned long prot); 1259 int (*file_lock) (struct file * file, unsigned int cmd); 1260 int (*file_fcntl) (struct file * file, unsigned int cmd, 1261 unsigned long arg); 1262 int (*file_set_fowner) (struct file * file); 1263 int (*file_send_sigiotask) (struct task_struct * tsk, 1264 struct fown_struct * fown, int sig); 1265 int (*file_receive) (struct file * file); 1266 int (*dentry_open) (struct file *file); 1267 1268 int (*task_create) (unsigned long clone_flags); 1269 int (*task_alloc_security) (struct task_struct * p); 1270 void (*task_free_security) (struct task_struct * p); 1271 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags); 1272 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ , 1273 uid_t old_euid, uid_t old_suid, int flags); 1274 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags); 1275 int (*task_setpgid) (struct task_struct * p, pid_t pgid); 1276 int (*task_getpgid) (struct task_struct * p); 1277 int (*task_getsid) (struct task_struct * p); 1278 void (*task_getsecid) (struct task_struct * p, u32 * secid); 1279 int (*task_setgroups) (struct group_info *group_info); 1280 int (*task_setnice) (struct task_struct * p, int nice); 1281 int (*task_setioprio) (struct task_struct * p, int ioprio); 1282 int (*task_getioprio) (struct task_struct * p); 1283 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim); 1284 int (*task_setscheduler) (struct task_struct * p, int policy, 1285 struct sched_param * lp); 1286 int (*task_getscheduler) (struct task_struct * p); 1287 int (*task_movememory) (struct task_struct * p); 1288 int (*task_kill) (struct task_struct * p, 1289 struct siginfo * info, int sig, u32 secid); 1290 int (*task_wait) (struct task_struct * p); 1291 int (*task_prctl) (int option, unsigned long arg2, 1292 unsigned long arg3, unsigned long arg4, 1293 unsigned long arg5); 1294 void (*task_reparent_to_init) (struct task_struct * p); 1295 void (*task_to_inode)(struct task_struct *p, struct inode *inode); 1296 1297 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag); 1298 1299 int (*msg_msg_alloc_security) (struct msg_msg * msg); 1300 void (*msg_msg_free_security) (struct msg_msg * msg); 1301 1302 int (*msg_queue_alloc_security) (struct msg_queue * msq); 1303 void (*msg_queue_free_security) (struct msg_queue * msq); 1304 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg); 1305 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd); 1306 int (*msg_queue_msgsnd) (struct msg_queue * msq, 1307 struct msg_msg * msg, int msqflg); 1308 int (*msg_queue_msgrcv) (struct msg_queue * msq, 1309 struct msg_msg * msg, 1310 struct task_struct * target, 1311 long type, int mode); 1312 1313 int (*shm_alloc_security) (struct shmid_kernel * shp); 1314 void (*shm_free_security) (struct shmid_kernel * shp); 1315 int (*shm_associate) (struct shmid_kernel * shp, int shmflg); 1316 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd); 1317 int (*shm_shmat) (struct shmid_kernel * shp, 1318 char __user *shmaddr, int shmflg); 1319 1320 int (*sem_alloc_security) (struct sem_array * sma); 1321 void (*sem_free_security) (struct sem_array * sma); 1322 int (*sem_associate) (struct sem_array * sma, int semflg); 1323 int (*sem_semctl) (struct sem_array * sma, int cmd); 1324 int (*sem_semop) (struct sem_array * sma, 1325 struct sembuf * sops, unsigned nsops, int alter); 1326 1327 int (*netlink_send) (struct sock * sk, struct sk_buff * skb); 1328 int (*netlink_recv) (struct sk_buff * skb, int cap); 1329 1330 /* allow module stacking */ 1331 int (*register_security) (const char *name, 1332 struct security_operations *ops); 1333 int (*unregister_security) (const char *name, 1334 struct security_operations *ops); 1335 1336 void (*d_instantiate) (struct dentry *dentry, struct inode *inode); 1337 1338 int (*getprocattr)(struct task_struct *p, char *name, char **value); 1339 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1340 int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen); 1341 void (*release_secctx)(char *secdata, u32 seclen); 1342 1343 #ifdef CONFIG_SECURITY_NETWORK 1344 int (*unix_stream_connect) (struct socket * sock, 1345 struct socket * other, struct sock * newsk); 1346 int (*unix_may_send) (struct socket * sock, struct socket * other); 1347 1348 int (*socket_create) (int family, int type, int protocol, int kern); 1349 int (*socket_post_create) (struct socket * sock, int family, 1350 int type, int protocol, int kern); 1351 int (*socket_bind) (struct socket * sock, 1352 struct sockaddr * address, int addrlen); 1353 int (*socket_connect) (struct socket * sock, 1354 struct sockaddr * address, int addrlen); 1355 int (*socket_listen) (struct socket * sock, int backlog); 1356 int (*socket_accept) (struct socket * sock, struct socket * newsock); 1357 void (*socket_post_accept) (struct socket * sock, 1358 struct socket * newsock); 1359 int (*socket_sendmsg) (struct socket * sock, 1360 struct msghdr * msg, int size); 1361 int (*socket_recvmsg) (struct socket * sock, 1362 struct msghdr * msg, int size, int flags); 1363 int (*socket_getsockname) (struct socket * sock); 1364 int (*socket_getpeername) (struct socket * sock); 1365 int (*socket_getsockopt) (struct socket * sock, int level, int optname); 1366 int (*socket_setsockopt) (struct socket * sock, int level, int optname); 1367 int (*socket_shutdown) (struct socket * sock, int how); 1368 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb); 1369 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); 1370 int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid); 1371 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); 1372 void (*sk_free_security) (struct sock *sk); 1373 void (*sk_clone_security) (const struct sock *sk, struct sock *newsk); 1374 void (*sk_getsecid) (struct sock *sk, u32 *secid); 1375 void (*sock_graft)(struct sock* sk, struct socket *parent); 1376 int (*inet_conn_request)(struct sock *sk, struct sk_buff *skb, 1377 struct request_sock *req); 1378 void (*inet_csk_clone)(struct sock *newsk, const struct request_sock *req); 1379 void (*inet_conn_established)(struct sock *sk, struct sk_buff *skb); 1380 void (*req_classify_flow)(const struct request_sock *req, struct flowi *fl); 1381 #endif /* CONFIG_SECURITY_NETWORK */ 1382 1383 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1384 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, 1385 struct xfrm_user_sec_ctx *sec_ctx); 1386 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new); 1387 void (*xfrm_policy_free_security) (struct xfrm_policy *xp); 1388 int (*xfrm_policy_delete_security) (struct xfrm_policy *xp); 1389 int (*xfrm_state_alloc_security) (struct xfrm_state *x, 1390 struct xfrm_user_sec_ctx *sec_ctx, 1391 u32 secid); 1392 void (*xfrm_state_free_security) (struct xfrm_state *x); 1393 int (*xfrm_state_delete_security) (struct xfrm_state *x); 1394 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 fl_secid, u8 dir); 1395 int (*xfrm_state_pol_flow_match)(struct xfrm_state *x, 1396 struct xfrm_policy *xp, struct flowi *fl); 1397 int (*xfrm_decode_session)(struct sk_buff *skb, u32 *secid, int ckall); 1398 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1399 1400 /* key management security hooks */ 1401 #ifdef CONFIG_KEYS 1402 int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags); 1403 void (*key_free)(struct key *key); 1404 int (*key_permission)(key_ref_t key_ref, 1405 struct task_struct *context, 1406 key_perm_t perm); 1407 1408 #endif /* CONFIG_KEYS */ 1409 1410 }; 1411 1412 /* global variables */ 1413 extern struct security_operations *security_ops; 1414 1415 /* inline stuff */ 1416 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child) 1417 { 1418 return security_ops->ptrace (parent, child); 1419 } 1420 1421 static inline int security_capget (struct task_struct *target, 1422 kernel_cap_t *effective, 1423 kernel_cap_t *inheritable, 1424 kernel_cap_t *permitted) 1425 { 1426 return security_ops->capget (target, effective, inheritable, permitted); 1427 } 1428 1429 static inline int security_capset_check (struct task_struct *target, 1430 kernel_cap_t *effective, 1431 kernel_cap_t *inheritable, 1432 kernel_cap_t *permitted) 1433 { 1434 return security_ops->capset_check (target, effective, inheritable, permitted); 1435 } 1436 1437 static inline void security_capset_set (struct task_struct *target, 1438 kernel_cap_t *effective, 1439 kernel_cap_t *inheritable, 1440 kernel_cap_t *permitted) 1441 { 1442 security_ops->capset_set (target, effective, inheritable, permitted); 1443 } 1444 1445 static inline int security_capable(struct task_struct *tsk, int cap) 1446 { 1447 return security_ops->capable(tsk, cap); 1448 } 1449 1450 static inline int security_acct (struct file *file) 1451 { 1452 return security_ops->acct (file); 1453 } 1454 1455 static inline int security_sysctl(struct ctl_table *table, int op) 1456 { 1457 return security_ops->sysctl(table, op); 1458 } 1459 1460 static inline int security_quotactl (int cmds, int type, int id, 1461 struct super_block *sb) 1462 { 1463 return security_ops->quotactl (cmds, type, id, sb); 1464 } 1465 1466 static inline int security_quota_on (struct dentry * dentry) 1467 { 1468 return security_ops->quota_on (dentry); 1469 } 1470 1471 static inline int security_syslog(int type) 1472 { 1473 return security_ops->syslog(type); 1474 } 1475 1476 static inline int security_settime(struct timespec *ts, struct timezone *tz) 1477 { 1478 return security_ops->settime(ts, tz); 1479 } 1480 1481 static inline int security_vm_enough_memory(long pages) 1482 { 1483 return security_ops->vm_enough_memory(current->mm, pages); 1484 } 1485 1486 static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1487 { 1488 return security_ops->vm_enough_memory(mm, pages); 1489 } 1490 1491 static inline int security_bprm_alloc (struct linux_binprm *bprm) 1492 { 1493 return security_ops->bprm_alloc_security (bprm); 1494 } 1495 static inline void security_bprm_free (struct linux_binprm *bprm) 1496 { 1497 security_ops->bprm_free_security (bprm); 1498 } 1499 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 1500 { 1501 security_ops->bprm_apply_creds (bprm, unsafe); 1502 } 1503 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 1504 { 1505 security_ops->bprm_post_apply_creds (bprm); 1506 } 1507 static inline int security_bprm_set (struct linux_binprm *bprm) 1508 { 1509 return security_ops->bprm_set_security (bprm); 1510 } 1511 1512 static inline int security_bprm_check (struct linux_binprm *bprm) 1513 { 1514 return security_ops->bprm_check_security (bprm); 1515 } 1516 1517 static inline int security_bprm_secureexec (struct linux_binprm *bprm) 1518 { 1519 return security_ops->bprm_secureexec (bprm); 1520 } 1521 1522 static inline int security_sb_alloc (struct super_block *sb) 1523 { 1524 return security_ops->sb_alloc_security (sb); 1525 } 1526 1527 static inline void security_sb_free (struct super_block *sb) 1528 { 1529 security_ops->sb_free_security (sb); 1530 } 1531 1532 static inline int security_sb_copy_data (struct file_system_type *type, 1533 void *orig, void *copy) 1534 { 1535 return security_ops->sb_copy_data (type, orig, copy); 1536 } 1537 1538 static inline int security_sb_kern_mount (struct super_block *sb, void *data) 1539 { 1540 return security_ops->sb_kern_mount (sb, data); 1541 } 1542 1543 static inline int security_sb_statfs (struct dentry *dentry) 1544 { 1545 return security_ops->sb_statfs (dentry); 1546 } 1547 1548 static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 1549 char *type, unsigned long flags, 1550 void *data) 1551 { 1552 return security_ops->sb_mount (dev_name, nd, type, flags, data); 1553 } 1554 1555 static inline int security_sb_check_sb (struct vfsmount *mnt, 1556 struct nameidata *nd) 1557 { 1558 return security_ops->sb_check_sb (mnt, nd); 1559 } 1560 1561 static inline int security_sb_umount (struct vfsmount *mnt, int flags) 1562 { 1563 return security_ops->sb_umount (mnt, flags); 1564 } 1565 1566 static inline void security_sb_umount_close (struct vfsmount *mnt) 1567 { 1568 security_ops->sb_umount_close (mnt); 1569 } 1570 1571 static inline void security_sb_umount_busy (struct vfsmount *mnt) 1572 { 1573 security_ops->sb_umount_busy (mnt); 1574 } 1575 1576 static inline void security_sb_post_remount (struct vfsmount *mnt, 1577 unsigned long flags, void *data) 1578 { 1579 security_ops->sb_post_remount (mnt, flags, data); 1580 } 1581 1582 static inline void security_sb_post_mountroot (void) 1583 { 1584 security_ops->sb_post_mountroot (); 1585 } 1586 1587 static inline void security_sb_post_addmount (struct vfsmount *mnt, 1588 struct nameidata *mountpoint_nd) 1589 { 1590 security_ops->sb_post_addmount (mnt, mountpoint_nd); 1591 } 1592 1593 static inline int security_sb_pivotroot (struct nameidata *old_nd, 1594 struct nameidata *new_nd) 1595 { 1596 return security_ops->sb_pivotroot (old_nd, new_nd); 1597 } 1598 1599 static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 1600 struct nameidata *new_nd) 1601 { 1602 security_ops->sb_post_pivotroot (old_nd, new_nd); 1603 } 1604 1605 static inline int security_inode_alloc (struct inode *inode) 1606 { 1607 inode->i_security = NULL; 1608 return security_ops->inode_alloc_security (inode); 1609 } 1610 1611 static inline void security_inode_free (struct inode *inode) 1612 { 1613 security_ops->inode_free_security (inode); 1614 } 1615 1616 static inline int security_inode_init_security (struct inode *inode, 1617 struct inode *dir, 1618 char **name, 1619 void **value, 1620 size_t *len) 1621 { 1622 if (unlikely (IS_PRIVATE (inode))) 1623 return -EOPNOTSUPP; 1624 return security_ops->inode_init_security (inode, dir, name, value, len); 1625 } 1626 1627 static inline int security_inode_create (struct inode *dir, 1628 struct dentry *dentry, 1629 int mode) 1630 { 1631 if (unlikely (IS_PRIVATE (dir))) 1632 return 0; 1633 return security_ops->inode_create (dir, dentry, mode); 1634 } 1635 1636 static inline int security_inode_link (struct dentry *old_dentry, 1637 struct inode *dir, 1638 struct dentry *new_dentry) 1639 { 1640 if (unlikely (IS_PRIVATE (old_dentry->d_inode))) 1641 return 0; 1642 return security_ops->inode_link (old_dentry, dir, new_dentry); 1643 } 1644 1645 static inline int security_inode_unlink (struct inode *dir, 1646 struct dentry *dentry) 1647 { 1648 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1649 return 0; 1650 return security_ops->inode_unlink (dir, dentry); 1651 } 1652 1653 static inline int security_inode_symlink (struct inode *dir, 1654 struct dentry *dentry, 1655 const char *old_name) 1656 { 1657 if (unlikely (IS_PRIVATE (dir))) 1658 return 0; 1659 return security_ops->inode_symlink (dir, dentry, old_name); 1660 } 1661 1662 static inline int security_inode_mkdir (struct inode *dir, 1663 struct dentry *dentry, 1664 int mode) 1665 { 1666 if (unlikely (IS_PRIVATE (dir))) 1667 return 0; 1668 return security_ops->inode_mkdir (dir, dentry, mode); 1669 } 1670 1671 static inline int security_inode_rmdir (struct inode *dir, 1672 struct dentry *dentry) 1673 { 1674 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1675 return 0; 1676 return security_ops->inode_rmdir (dir, dentry); 1677 } 1678 1679 static inline int security_inode_mknod (struct inode *dir, 1680 struct dentry *dentry, 1681 int mode, dev_t dev) 1682 { 1683 if (unlikely (IS_PRIVATE (dir))) 1684 return 0; 1685 return security_ops->inode_mknod (dir, dentry, mode, dev); 1686 } 1687 1688 static inline int security_inode_rename (struct inode *old_dir, 1689 struct dentry *old_dentry, 1690 struct inode *new_dir, 1691 struct dentry *new_dentry) 1692 { 1693 if (unlikely (IS_PRIVATE (old_dentry->d_inode) || 1694 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode)))) 1695 return 0; 1696 return security_ops->inode_rename (old_dir, old_dentry, 1697 new_dir, new_dentry); 1698 } 1699 1700 static inline int security_inode_readlink (struct dentry *dentry) 1701 { 1702 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1703 return 0; 1704 return security_ops->inode_readlink (dentry); 1705 } 1706 1707 static inline int security_inode_follow_link (struct dentry *dentry, 1708 struct nameidata *nd) 1709 { 1710 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1711 return 0; 1712 return security_ops->inode_follow_link (dentry, nd); 1713 } 1714 1715 static inline int security_inode_permission (struct inode *inode, int mask, 1716 struct nameidata *nd) 1717 { 1718 if (unlikely (IS_PRIVATE (inode))) 1719 return 0; 1720 return security_ops->inode_permission (inode, mask, nd); 1721 } 1722 1723 static inline int security_inode_setattr (struct dentry *dentry, 1724 struct iattr *attr) 1725 { 1726 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1727 return 0; 1728 return security_ops->inode_setattr (dentry, attr); 1729 } 1730 1731 static inline int security_inode_getattr (struct vfsmount *mnt, 1732 struct dentry *dentry) 1733 { 1734 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1735 return 0; 1736 return security_ops->inode_getattr (mnt, dentry); 1737 } 1738 1739 static inline void security_inode_delete (struct inode *inode) 1740 { 1741 if (unlikely (IS_PRIVATE (inode))) 1742 return; 1743 security_ops->inode_delete (inode); 1744 } 1745 1746 static inline int security_inode_setxattr (struct dentry *dentry, char *name, 1747 void *value, size_t size, int flags) 1748 { 1749 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1750 return 0; 1751 return security_ops->inode_setxattr (dentry, name, value, size, flags); 1752 } 1753 1754 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 1755 void *value, size_t size, int flags) 1756 { 1757 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1758 return; 1759 security_ops->inode_post_setxattr (dentry, name, value, size, flags); 1760 } 1761 1762 static inline int security_inode_getxattr (struct dentry *dentry, char *name) 1763 { 1764 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1765 return 0; 1766 return security_ops->inode_getxattr (dentry, name); 1767 } 1768 1769 static inline int security_inode_listxattr (struct dentry *dentry) 1770 { 1771 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1772 return 0; 1773 return security_ops->inode_listxattr (dentry); 1774 } 1775 1776 static inline int security_inode_removexattr (struct dentry *dentry, char *name) 1777 { 1778 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1779 return 0; 1780 return security_ops->inode_removexattr (dentry, name); 1781 } 1782 1783 static inline const char *security_inode_xattr_getsuffix(void) 1784 { 1785 return security_ops->inode_xattr_getsuffix(); 1786 } 1787 1788 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 1789 { 1790 if (unlikely (IS_PRIVATE (inode))) 1791 return 0; 1792 return security_ops->inode_getsecurity(inode, name, buffer, size, err); 1793 } 1794 1795 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1796 { 1797 if (unlikely (IS_PRIVATE (inode))) 1798 return 0; 1799 return security_ops->inode_setsecurity(inode, name, value, size, flags); 1800 } 1801 1802 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1803 { 1804 if (unlikely (IS_PRIVATE (inode))) 1805 return 0; 1806 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 1807 } 1808 1809 static inline int security_file_permission (struct file *file, int mask) 1810 { 1811 return security_ops->file_permission (file, mask); 1812 } 1813 1814 static inline int security_file_alloc (struct file *file) 1815 { 1816 return security_ops->file_alloc_security (file); 1817 } 1818 1819 static inline void security_file_free (struct file *file) 1820 { 1821 security_ops->file_free_security (file); 1822 } 1823 1824 static inline int security_file_ioctl (struct file *file, unsigned int cmd, 1825 unsigned long arg) 1826 { 1827 return security_ops->file_ioctl (file, cmd, arg); 1828 } 1829 1830 static inline int security_file_mmap (struct file *file, unsigned long reqprot, 1831 unsigned long prot, 1832 unsigned long flags, 1833 unsigned long addr, 1834 unsigned long addr_only) 1835 { 1836 return security_ops->file_mmap (file, reqprot, prot, flags, addr, 1837 addr_only); 1838 } 1839 1840 static inline int security_file_mprotect (struct vm_area_struct *vma, 1841 unsigned long reqprot, 1842 unsigned long prot) 1843 { 1844 return security_ops->file_mprotect (vma, reqprot, prot); 1845 } 1846 1847 static inline int security_file_lock (struct file *file, unsigned int cmd) 1848 { 1849 return security_ops->file_lock (file, cmd); 1850 } 1851 1852 static inline int security_file_fcntl (struct file *file, unsigned int cmd, 1853 unsigned long arg) 1854 { 1855 return security_ops->file_fcntl (file, cmd, arg); 1856 } 1857 1858 static inline int security_file_set_fowner (struct file *file) 1859 { 1860 return security_ops->file_set_fowner (file); 1861 } 1862 1863 static inline int security_file_send_sigiotask (struct task_struct *tsk, 1864 struct fown_struct *fown, 1865 int sig) 1866 { 1867 return security_ops->file_send_sigiotask (tsk, fown, sig); 1868 } 1869 1870 static inline int security_file_receive (struct file *file) 1871 { 1872 return security_ops->file_receive (file); 1873 } 1874 1875 static inline int security_dentry_open (struct file *file) 1876 { 1877 return security_ops->dentry_open (file); 1878 } 1879 1880 static inline int security_task_create (unsigned long clone_flags) 1881 { 1882 return security_ops->task_create (clone_flags); 1883 } 1884 1885 static inline int security_task_alloc (struct task_struct *p) 1886 { 1887 return security_ops->task_alloc_security (p); 1888 } 1889 1890 static inline void security_task_free (struct task_struct *p) 1891 { 1892 security_ops->task_free_security (p); 1893 } 1894 1895 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 1896 int flags) 1897 { 1898 return security_ops->task_setuid (id0, id1, id2, flags); 1899 } 1900 1901 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 1902 uid_t old_suid, int flags) 1903 { 1904 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags); 1905 } 1906 1907 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 1908 int flags) 1909 { 1910 return security_ops->task_setgid (id0, id1, id2, flags); 1911 } 1912 1913 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 1914 { 1915 return security_ops->task_setpgid (p, pgid); 1916 } 1917 1918 static inline int security_task_getpgid (struct task_struct *p) 1919 { 1920 return security_ops->task_getpgid (p); 1921 } 1922 1923 static inline int security_task_getsid (struct task_struct *p) 1924 { 1925 return security_ops->task_getsid (p); 1926 } 1927 1928 static inline void security_task_getsecid (struct task_struct *p, u32 *secid) 1929 { 1930 security_ops->task_getsecid (p, secid); 1931 } 1932 1933 static inline int security_task_setgroups (struct group_info *group_info) 1934 { 1935 return security_ops->task_setgroups (group_info); 1936 } 1937 1938 static inline int security_task_setnice (struct task_struct *p, int nice) 1939 { 1940 return security_ops->task_setnice (p, nice); 1941 } 1942 1943 static inline int security_task_setioprio (struct task_struct *p, int ioprio) 1944 { 1945 return security_ops->task_setioprio (p, ioprio); 1946 } 1947 1948 static inline int security_task_getioprio (struct task_struct *p) 1949 { 1950 return security_ops->task_getioprio (p); 1951 } 1952 1953 static inline int security_task_setrlimit (unsigned int resource, 1954 struct rlimit *new_rlim) 1955 { 1956 return security_ops->task_setrlimit (resource, new_rlim); 1957 } 1958 1959 static inline int security_task_setscheduler (struct task_struct *p, 1960 int policy, 1961 struct sched_param *lp) 1962 { 1963 return security_ops->task_setscheduler (p, policy, lp); 1964 } 1965 1966 static inline int security_task_getscheduler (struct task_struct *p) 1967 { 1968 return security_ops->task_getscheduler (p); 1969 } 1970 1971 static inline int security_task_movememory (struct task_struct *p) 1972 { 1973 return security_ops->task_movememory (p); 1974 } 1975 1976 static inline int security_task_kill (struct task_struct *p, 1977 struct siginfo *info, int sig, 1978 u32 secid) 1979 { 1980 return security_ops->task_kill (p, info, sig, secid); 1981 } 1982 1983 static inline int security_task_wait (struct task_struct *p) 1984 { 1985 return security_ops->task_wait (p); 1986 } 1987 1988 static inline int security_task_prctl (int option, unsigned long arg2, 1989 unsigned long arg3, 1990 unsigned long arg4, 1991 unsigned long arg5) 1992 { 1993 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5); 1994 } 1995 1996 static inline void security_task_reparent_to_init (struct task_struct *p) 1997 { 1998 security_ops->task_reparent_to_init (p); 1999 } 2000 2001 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 2002 { 2003 security_ops->task_to_inode(p, inode); 2004 } 2005 2006 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 2007 short flag) 2008 { 2009 return security_ops->ipc_permission (ipcp, flag); 2010 } 2011 2012 static inline int security_msg_msg_alloc (struct msg_msg * msg) 2013 { 2014 return security_ops->msg_msg_alloc_security (msg); 2015 } 2016 2017 static inline void security_msg_msg_free (struct msg_msg * msg) 2018 { 2019 security_ops->msg_msg_free_security(msg); 2020 } 2021 2022 static inline int security_msg_queue_alloc (struct msg_queue *msq) 2023 { 2024 return security_ops->msg_queue_alloc_security (msq); 2025 } 2026 2027 static inline void security_msg_queue_free (struct msg_queue *msq) 2028 { 2029 security_ops->msg_queue_free_security (msq); 2030 } 2031 2032 static inline int security_msg_queue_associate (struct msg_queue * msq, 2033 int msqflg) 2034 { 2035 return security_ops->msg_queue_associate (msq, msqflg); 2036 } 2037 2038 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 2039 { 2040 return security_ops->msg_queue_msgctl (msq, cmd); 2041 } 2042 2043 static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 2044 struct msg_msg * msg, int msqflg) 2045 { 2046 return security_ops->msg_queue_msgsnd (msq, msg, msqflg); 2047 } 2048 2049 static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 2050 struct msg_msg * msg, 2051 struct task_struct * target, 2052 long type, int mode) 2053 { 2054 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode); 2055 } 2056 2057 static inline int security_shm_alloc (struct shmid_kernel *shp) 2058 { 2059 return security_ops->shm_alloc_security (shp); 2060 } 2061 2062 static inline void security_shm_free (struct shmid_kernel *shp) 2063 { 2064 security_ops->shm_free_security (shp); 2065 } 2066 2067 static inline int security_shm_associate (struct shmid_kernel * shp, 2068 int shmflg) 2069 { 2070 return security_ops->shm_associate(shp, shmflg); 2071 } 2072 2073 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 2074 { 2075 return security_ops->shm_shmctl (shp, cmd); 2076 } 2077 2078 static inline int security_shm_shmat (struct shmid_kernel * shp, 2079 char __user *shmaddr, int shmflg) 2080 { 2081 return security_ops->shm_shmat(shp, shmaddr, shmflg); 2082 } 2083 2084 static inline int security_sem_alloc (struct sem_array *sma) 2085 { 2086 return security_ops->sem_alloc_security (sma); 2087 } 2088 2089 static inline void security_sem_free (struct sem_array *sma) 2090 { 2091 security_ops->sem_free_security (sma); 2092 } 2093 2094 static inline int security_sem_associate (struct sem_array * sma, int semflg) 2095 { 2096 return security_ops->sem_associate (sma, semflg); 2097 } 2098 2099 static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2100 { 2101 return security_ops->sem_semctl(sma, cmd); 2102 } 2103 2104 static inline int security_sem_semop (struct sem_array * sma, 2105 struct sembuf * sops, unsigned nsops, 2106 int alter) 2107 { 2108 return security_ops->sem_semop(sma, sops, nsops, alter); 2109 } 2110 2111 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2112 { 2113 if (unlikely (inode && IS_PRIVATE (inode))) 2114 return; 2115 security_ops->d_instantiate (dentry, inode); 2116 } 2117 2118 static inline int security_getprocattr(struct task_struct *p, char *name, char **value) 2119 { 2120 return security_ops->getprocattr(p, name, value); 2121 } 2122 2123 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2124 { 2125 return security_ops->setprocattr(p, name, value, size); 2126 } 2127 2128 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb) 2129 { 2130 return security_ops->netlink_send(sk, skb); 2131 } 2132 2133 static inline int security_netlink_recv(struct sk_buff * skb, int cap) 2134 { 2135 return security_ops->netlink_recv(skb, cap); 2136 } 2137 2138 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2139 { 2140 return security_ops->secid_to_secctx(secid, secdata, seclen); 2141 } 2142 2143 static inline void security_release_secctx(char *secdata, u32 seclen) 2144 { 2145 return security_ops->release_secctx(secdata, seclen); 2146 } 2147 2148 /* prototypes */ 2149 extern int security_init (void); 2150 extern int register_security (struct security_operations *ops); 2151 extern int unregister_security (struct security_operations *ops); 2152 extern int mod_reg_security (const char *name, struct security_operations *ops); 2153 extern int mod_unreg_security (const char *name, struct security_operations *ops); 2154 extern struct dentry *securityfs_create_file(const char *name, mode_t mode, 2155 struct dentry *parent, void *data, 2156 const struct file_operations *fops); 2157 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); 2158 extern void securityfs_remove(struct dentry *dentry); 2159 2160 2161 #else /* CONFIG_SECURITY */ 2162 2163 /* 2164 * This is the default capabilities functionality. Most of these functions 2165 * are just stubbed out, but a few must call the proper capable code. 2166 */ 2167 2168 static inline int security_init(void) 2169 { 2170 return 0; 2171 } 2172 2173 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child) 2174 { 2175 return cap_ptrace (parent, child); 2176 } 2177 2178 static inline int security_capget (struct task_struct *target, 2179 kernel_cap_t *effective, 2180 kernel_cap_t *inheritable, 2181 kernel_cap_t *permitted) 2182 { 2183 return cap_capget (target, effective, inheritable, permitted); 2184 } 2185 2186 static inline int security_capset_check (struct task_struct *target, 2187 kernel_cap_t *effective, 2188 kernel_cap_t *inheritable, 2189 kernel_cap_t *permitted) 2190 { 2191 return cap_capset_check (target, effective, inheritable, permitted); 2192 } 2193 2194 static inline void security_capset_set (struct task_struct *target, 2195 kernel_cap_t *effective, 2196 kernel_cap_t *inheritable, 2197 kernel_cap_t *permitted) 2198 { 2199 cap_capset_set (target, effective, inheritable, permitted); 2200 } 2201 2202 static inline int security_capable(struct task_struct *tsk, int cap) 2203 { 2204 return cap_capable(tsk, cap); 2205 } 2206 2207 static inline int security_acct (struct file *file) 2208 { 2209 return 0; 2210 } 2211 2212 static inline int security_sysctl(struct ctl_table *table, int op) 2213 { 2214 return 0; 2215 } 2216 2217 static inline int security_quotactl (int cmds, int type, int id, 2218 struct super_block * sb) 2219 { 2220 return 0; 2221 } 2222 2223 static inline int security_quota_on (struct dentry * dentry) 2224 { 2225 return 0; 2226 } 2227 2228 static inline int security_syslog(int type) 2229 { 2230 return cap_syslog(type); 2231 } 2232 2233 static inline int security_settime(struct timespec *ts, struct timezone *tz) 2234 { 2235 return cap_settime(ts, tz); 2236 } 2237 2238 static inline int security_vm_enough_memory(long pages) 2239 { 2240 return cap_vm_enough_memory(current->mm, pages); 2241 } 2242 2243 static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 2244 { 2245 return cap_vm_enough_memory(mm, pages); 2246 } 2247 2248 static inline int security_bprm_alloc (struct linux_binprm *bprm) 2249 { 2250 return 0; 2251 } 2252 2253 static inline void security_bprm_free (struct linux_binprm *bprm) 2254 { } 2255 2256 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 2257 { 2258 cap_bprm_apply_creds (bprm, unsafe); 2259 } 2260 2261 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 2262 { 2263 return; 2264 } 2265 2266 static inline int security_bprm_set (struct linux_binprm *bprm) 2267 { 2268 return cap_bprm_set_security (bprm); 2269 } 2270 2271 static inline int security_bprm_check (struct linux_binprm *bprm) 2272 { 2273 return 0; 2274 } 2275 2276 static inline int security_bprm_secureexec (struct linux_binprm *bprm) 2277 { 2278 return cap_bprm_secureexec(bprm); 2279 } 2280 2281 static inline int security_sb_alloc (struct super_block *sb) 2282 { 2283 return 0; 2284 } 2285 2286 static inline void security_sb_free (struct super_block *sb) 2287 { } 2288 2289 static inline int security_sb_copy_data (struct file_system_type *type, 2290 void *orig, void *copy) 2291 { 2292 return 0; 2293 } 2294 2295 static inline int security_sb_kern_mount (struct super_block *sb, void *data) 2296 { 2297 return 0; 2298 } 2299 2300 static inline int security_sb_statfs (struct dentry *dentry) 2301 { 2302 return 0; 2303 } 2304 2305 static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 2306 char *type, unsigned long flags, 2307 void *data) 2308 { 2309 return 0; 2310 } 2311 2312 static inline int security_sb_check_sb (struct vfsmount *mnt, 2313 struct nameidata *nd) 2314 { 2315 return 0; 2316 } 2317 2318 static inline int security_sb_umount (struct vfsmount *mnt, int flags) 2319 { 2320 return 0; 2321 } 2322 2323 static inline void security_sb_umount_close (struct vfsmount *mnt) 2324 { } 2325 2326 static inline void security_sb_umount_busy (struct vfsmount *mnt) 2327 { } 2328 2329 static inline void security_sb_post_remount (struct vfsmount *mnt, 2330 unsigned long flags, void *data) 2331 { } 2332 2333 static inline void security_sb_post_mountroot (void) 2334 { } 2335 2336 static inline void security_sb_post_addmount (struct vfsmount *mnt, 2337 struct nameidata *mountpoint_nd) 2338 { } 2339 2340 static inline int security_sb_pivotroot (struct nameidata *old_nd, 2341 struct nameidata *new_nd) 2342 { 2343 return 0; 2344 } 2345 2346 static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 2347 struct nameidata *new_nd) 2348 { } 2349 2350 static inline int security_inode_alloc (struct inode *inode) 2351 { 2352 return 0; 2353 } 2354 2355 static inline void security_inode_free (struct inode *inode) 2356 { } 2357 2358 static inline int security_inode_init_security (struct inode *inode, 2359 struct inode *dir, 2360 char **name, 2361 void **value, 2362 size_t *len) 2363 { 2364 return -EOPNOTSUPP; 2365 } 2366 2367 static inline int security_inode_create (struct inode *dir, 2368 struct dentry *dentry, 2369 int mode) 2370 { 2371 return 0; 2372 } 2373 2374 static inline int security_inode_link (struct dentry *old_dentry, 2375 struct inode *dir, 2376 struct dentry *new_dentry) 2377 { 2378 return 0; 2379 } 2380 2381 static inline int security_inode_unlink (struct inode *dir, 2382 struct dentry *dentry) 2383 { 2384 return 0; 2385 } 2386 2387 static inline int security_inode_symlink (struct inode *dir, 2388 struct dentry *dentry, 2389 const char *old_name) 2390 { 2391 return 0; 2392 } 2393 2394 static inline int security_inode_mkdir (struct inode *dir, 2395 struct dentry *dentry, 2396 int mode) 2397 { 2398 return 0; 2399 } 2400 2401 static inline int security_inode_rmdir (struct inode *dir, 2402 struct dentry *dentry) 2403 { 2404 return 0; 2405 } 2406 2407 static inline int security_inode_mknod (struct inode *dir, 2408 struct dentry *dentry, 2409 int mode, dev_t dev) 2410 { 2411 return 0; 2412 } 2413 2414 static inline int security_inode_rename (struct inode *old_dir, 2415 struct dentry *old_dentry, 2416 struct inode *new_dir, 2417 struct dentry *new_dentry) 2418 { 2419 return 0; 2420 } 2421 2422 static inline int security_inode_readlink (struct dentry *dentry) 2423 { 2424 return 0; 2425 } 2426 2427 static inline int security_inode_follow_link (struct dentry *dentry, 2428 struct nameidata *nd) 2429 { 2430 return 0; 2431 } 2432 2433 static inline int security_inode_permission (struct inode *inode, int mask, 2434 struct nameidata *nd) 2435 { 2436 return 0; 2437 } 2438 2439 static inline int security_inode_setattr (struct dentry *dentry, 2440 struct iattr *attr) 2441 { 2442 return 0; 2443 } 2444 2445 static inline int security_inode_getattr (struct vfsmount *mnt, 2446 struct dentry *dentry) 2447 { 2448 return 0; 2449 } 2450 2451 static inline void security_inode_delete (struct inode *inode) 2452 { } 2453 2454 static inline int security_inode_setxattr (struct dentry *dentry, char *name, 2455 void *value, size_t size, int flags) 2456 { 2457 return cap_inode_setxattr(dentry, name, value, size, flags); 2458 } 2459 2460 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 2461 void *value, size_t size, int flags) 2462 { } 2463 2464 static inline int security_inode_getxattr (struct dentry *dentry, char *name) 2465 { 2466 return 0; 2467 } 2468 2469 static inline int security_inode_listxattr (struct dentry *dentry) 2470 { 2471 return 0; 2472 } 2473 2474 static inline int security_inode_removexattr (struct dentry *dentry, char *name) 2475 { 2476 return cap_inode_removexattr(dentry, name); 2477 } 2478 2479 static inline const char *security_inode_xattr_getsuffix (void) 2480 { 2481 return NULL ; 2482 } 2483 2484 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 2485 { 2486 return -EOPNOTSUPP; 2487 } 2488 2489 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 2490 { 2491 return -EOPNOTSUPP; 2492 } 2493 2494 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2495 { 2496 return 0; 2497 } 2498 2499 static inline int security_file_permission (struct file *file, int mask) 2500 { 2501 return 0; 2502 } 2503 2504 static inline int security_file_alloc (struct file *file) 2505 { 2506 return 0; 2507 } 2508 2509 static inline void security_file_free (struct file *file) 2510 { } 2511 2512 static inline int security_file_ioctl (struct file *file, unsigned int cmd, 2513 unsigned long arg) 2514 { 2515 return 0; 2516 } 2517 2518 static inline int security_file_mmap (struct file *file, unsigned long reqprot, 2519 unsigned long prot, 2520 unsigned long flags, 2521 unsigned long addr, 2522 unsigned long addr_only) 2523 { 2524 return 0; 2525 } 2526 2527 static inline int security_file_mprotect (struct vm_area_struct *vma, 2528 unsigned long reqprot, 2529 unsigned long prot) 2530 { 2531 return 0; 2532 } 2533 2534 static inline int security_file_lock (struct file *file, unsigned int cmd) 2535 { 2536 return 0; 2537 } 2538 2539 static inline int security_file_fcntl (struct file *file, unsigned int cmd, 2540 unsigned long arg) 2541 { 2542 return 0; 2543 } 2544 2545 static inline int security_file_set_fowner (struct file *file) 2546 { 2547 return 0; 2548 } 2549 2550 static inline int security_file_send_sigiotask (struct task_struct *tsk, 2551 struct fown_struct *fown, 2552 int sig) 2553 { 2554 return 0; 2555 } 2556 2557 static inline int security_file_receive (struct file *file) 2558 { 2559 return 0; 2560 } 2561 2562 static inline int security_dentry_open (struct file *file) 2563 { 2564 return 0; 2565 } 2566 2567 static inline int security_task_create (unsigned long clone_flags) 2568 { 2569 return 0; 2570 } 2571 2572 static inline int security_task_alloc (struct task_struct *p) 2573 { 2574 return 0; 2575 } 2576 2577 static inline void security_task_free (struct task_struct *p) 2578 { } 2579 2580 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 2581 int flags) 2582 { 2583 return 0; 2584 } 2585 2586 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 2587 uid_t old_suid, int flags) 2588 { 2589 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags); 2590 } 2591 2592 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 2593 int flags) 2594 { 2595 return 0; 2596 } 2597 2598 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 2599 { 2600 return 0; 2601 } 2602 2603 static inline int security_task_getpgid (struct task_struct *p) 2604 { 2605 return 0; 2606 } 2607 2608 static inline int security_task_getsid (struct task_struct *p) 2609 { 2610 return 0; 2611 } 2612 2613 static inline void security_task_getsecid (struct task_struct *p, u32 *secid) 2614 { } 2615 2616 static inline int security_task_setgroups (struct group_info *group_info) 2617 { 2618 return 0; 2619 } 2620 2621 static inline int security_task_setnice (struct task_struct *p, int nice) 2622 { 2623 return 0; 2624 } 2625 2626 static inline int security_task_setioprio (struct task_struct *p, int ioprio) 2627 { 2628 return 0; 2629 } 2630 2631 static inline int security_task_getioprio (struct task_struct *p) 2632 { 2633 return 0; 2634 } 2635 2636 static inline int security_task_setrlimit (unsigned int resource, 2637 struct rlimit *new_rlim) 2638 { 2639 return 0; 2640 } 2641 2642 static inline int security_task_setscheduler (struct task_struct *p, 2643 int policy, 2644 struct sched_param *lp) 2645 { 2646 return 0; 2647 } 2648 2649 static inline int security_task_getscheduler (struct task_struct *p) 2650 { 2651 return 0; 2652 } 2653 2654 static inline int security_task_movememory (struct task_struct *p) 2655 { 2656 return 0; 2657 } 2658 2659 static inline int security_task_kill (struct task_struct *p, 2660 struct siginfo *info, int sig, 2661 u32 secid) 2662 { 2663 return 0; 2664 } 2665 2666 static inline int security_task_wait (struct task_struct *p) 2667 { 2668 return 0; 2669 } 2670 2671 static inline int security_task_prctl (int option, unsigned long arg2, 2672 unsigned long arg3, 2673 unsigned long arg4, 2674 unsigned long arg5) 2675 { 2676 return 0; 2677 } 2678 2679 static inline void security_task_reparent_to_init (struct task_struct *p) 2680 { 2681 cap_task_reparent_to_init (p); 2682 } 2683 2684 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 2685 { } 2686 2687 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 2688 short flag) 2689 { 2690 return 0; 2691 } 2692 2693 static inline int security_msg_msg_alloc (struct msg_msg * msg) 2694 { 2695 return 0; 2696 } 2697 2698 static inline void security_msg_msg_free (struct msg_msg * msg) 2699 { } 2700 2701 static inline int security_msg_queue_alloc (struct msg_queue *msq) 2702 { 2703 return 0; 2704 } 2705 2706 static inline void security_msg_queue_free (struct msg_queue *msq) 2707 { } 2708 2709 static inline int security_msg_queue_associate (struct msg_queue * msq, 2710 int msqflg) 2711 { 2712 return 0; 2713 } 2714 2715 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 2716 { 2717 return 0; 2718 } 2719 2720 static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 2721 struct msg_msg * msg, int msqflg) 2722 { 2723 return 0; 2724 } 2725 2726 static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 2727 struct msg_msg * msg, 2728 struct task_struct * target, 2729 long type, int mode) 2730 { 2731 return 0; 2732 } 2733 2734 static inline int security_shm_alloc (struct shmid_kernel *shp) 2735 { 2736 return 0; 2737 } 2738 2739 static inline void security_shm_free (struct shmid_kernel *shp) 2740 { } 2741 2742 static inline int security_shm_associate (struct shmid_kernel * shp, 2743 int shmflg) 2744 { 2745 return 0; 2746 } 2747 2748 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 2749 { 2750 return 0; 2751 } 2752 2753 static inline int security_shm_shmat (struct shmid_kernel * shp, 2754 char __user *shmaddr, int shmflg) 2755 { 2756 return 0; 2757 } 2758 2759 static inline int security_sem_alloc (struct sem_array *sma) 2760 { 2761 return 0; 2762 } 2763 2764 static inline void security_sem_free (struct sem_array *sma) 2765 { } 2766 2767 static inline int security_sem_associate (struct sem_array * sma, int semflg) 2768 { 2769 return 0; 2770 } 2771 2772 static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2773 { 2774 return 0; 2775 } 2776 2777 static inline int security_sem_semop (struct sem_array * sma, 2778 struct sembuf * sops, unsigned nsops, 2779 int alter) 2780 { 2781 return 0; 2782 } 2783 2784 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2785 { } 2786 2787 static inline int security_getprocattr(struct task_struct *p, char *name, char **value) 2788 { 2789 return -EINVAL; 2790 } 2791 2792 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2793 { 2794 return -EINVAL; 2795 } 2796 2797 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb) 2798 { 2799 return cap_netlink_send (sk, skb); 2800 } 2801 2802 static inline int security_netlink_recv (struct sk_buff *skb, int cap) 2803 { 2804 return cap_netlink_recv (skb, cap); 2805 } 2806 2807 static inline struct dentry *securityfs_create_dir(const char *name, 2808 struct dentry *parent) 2809 { 2810 return ERR_PTR(-ENODEV); 2811 } 2812 2813 static inline struct dentry *securityfs_create_file(const char *name, 2814 mode_t mode, 2815 struct dentry *parent, 2816 void *data, 2817 struct file_operations *fops) 2818 { 2819 return ERR_PTR(-ENODEV); 2820 } 2821 2822 static inline void securityfs_remove(struct dentry *dentry) 2823 { 2824 } 2825 2826 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2827 { 2828 return -EOPNOTSUPP; 2829 } 2830 2831 static inline void security_release_secctx(char *secdata, u32 seclen) 2832 { 2833 } 2834 #endif /* CONFIG_SECURITY */ 2835 2836 #ifdef CONFIG_SECURITY_NETWORK 2837 static inline int security_unix_stream_connect(struct socket * sock, 2838 struct socket * other, 2839 struct sock * newsk) 2840 { 2841 return security_ops->unix_stream_connect(sock, other, newsk); 2842 } 2843 2844 2845 static inline int security_unix_may_send(struct socket * sock, 2846 struct socket * other) 2847 { 2848 return security_ops->unix_may_send(sock, other); 2849 } 2850 2851 static inline int security_socket_create (int family, int type, 2852 int protocol, int kern) 2853 { 2854 return security_ops->socket_create(family, type, protocol, kern); 2855 } 2856 2857 static inline int security_socket_post_create(struct socket * sock, 2858 int family, 2859 int type, 2860 int protocol, int kern) 2861 { 2862 return security_ops->socket_post_create(sock, family, type, 2863 protocol, kern); 2864 } 2865 2866 static inline int security_socket_bind(struct socket * sock, 2867 struct sockaddr * address, 2868 int addrlen) 2869 { 2870 return security_ops->socket_bind(sock, address, addrlen); 2871 } 2872 2873 static inline int security_socket_connect(struct socket * sock, 2874 struct sockaddr * address, 2875 int addrlen) 2876 { 2877 return security_ops->socket_connect(sock, address, addrlen); 2878 } 2879 2880 static inline int security_socket_listen(struct socket * sock, int backlog) 2881 { 2882 return security_ops->socket_listen(sock, backlog); 2883 } 2884 2885 static inline int security_socket_accept(struct socket * sock, 2886 struct socket * newsock) 2887 { 2888 return security_ops->socket_accept(sock, newsock); 2889 } 2890 2891 static inline void security_socket_post_accept(struct socket * sock, 2892 struct socket * newsock) 2893 { 2894 security_ops->socket_post_accept(sock, newsock); 2895 } 2896 2897 static inline int security_socket_sendmsg(struct socket * sock, 2898 struct msghdr * msg, int size) 2899 { 2900 return security_ops->socket_sendmsg(sock, msg, size); 2901 } 2902 2903 static inline int security_socket_recvmsg(struct socket * sock, 2904 struct msghdr * msg, int size, 2905 int flags) 2906 { 2907 return security_ops->socket_recvmsg(sock, msg, size, flags); 2908 } 2909 2910 static inline int security_socket_getsockname(struct socket * sock) 2911 { 2912 return security_ops->socket_getsockname(sock); 2913 } 2914 2915 static inline int security_socket_getpeername(struct socket * sock) 2916 { 2917 return security_ops->socket_getpeername(sock); 2918 } 2919 2920 static inline int security_socket_getsockopt(struct socket * sock, 2921 int level, int optname) 2922 { 2923 return security_ops->socket_getsockopt(sock, level, optname); 2924 } 2925 2926 static inline int security_socket_setsockopt(struct socket * sock, 2927 int level, int optname) 2928 { 2929 return security_ops->socket_setsockopt(sock, level, optname); 2930 } 2931 2932 static inline int security_socket_shutdown(struct socket * sock, int how) 2933 { 2934 return security_ops->socket_shutdown(sock, how); 2935 } 2936 2937 static inline int security_sock_rcv_skb (struct sock * sk, 2938 struct sk_buff * skb) 2939 { 2940 return security_ops->socket_sock_rcv_skb (sk, skb); 2941 } 2942 2943 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2944 int __user *optlen, unsigned len) 2945 { 2946 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 2947 } 2948 2949 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2950 { 2951 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 2952 } 2953 2954 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2955 { 2956 return security_ops->sk_alloc_security(sk, family, priority); 2957 } 2958 2959 static inline void security_sk_free(struct sock *sk) 2960 { 2961 return security_ops->sk_free_security(sk); 2962 } 2963 2964 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) 2965 { 2966 return security_ops->sk_clone_security(sk, newsk); 2967 } 2968 2969 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2970 { 2971 security_ops->sk_getsecid(sk, &fl->secid); 2972 } 2973 2974 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2975 { 2976 security_ops->req_classify_flow(req, fl); 2977 } 2978 2979 static inline void security_sock_graft(struct sock* sk, struct socket *parent) 2980 { 2981 security_ops->sock_graft(sk, parent); 2982 } 2983 2984 static inline int security_inet_conn_request(struct sock *sk, 2985 struct sk_buff *skb, struct request_sock *req) 2986 { 2987 return security_ops->inet_conn_request(sk, skb, req); 2988 } 2989 2990 static inline void security_inet_csk_clone(struct sock *newsk, 2991 const struct request_sock *req) 2992 { 2993 security_ops->inet_csk_clone(newsk, req); 2994 } 2995 2996 static inline void security_inet_conn_established(struct sock *sk, 2997 struct sk_buff *skb) 2998 { 2999 security_ops->inet_conn_established(sk, skb); 3000 } 3001 #else /* CONFIG_SECURITY_NETWORK */ 3002 static inline int security_unix_stream_connect(struct socket * sock, 3003 struct socket * other, 3004 struct sock * newsk) 3005 { 3006 return 0; 3007 } 3008 3009 static inline int security_unix_may_send(struct socket * sock, 3010 struct socket * other) 3011 { 3012 return 0; 3013 } 3014 3015 static inline int security_socket_create (int family, int type, 3016 int protocol, int kern) 3017 { 3018 return 0; 3019 } 3020 3021 static inline int security_socket_post_create(struct socket * sock, 3022 int family, 3023 int type, 3024 int protocol, int kern) 3025 { 3026 return 0; 3027 } 3028 3029 static inline int security_socket_bind(struct socket * sock, 3030 struct sockaddr * address, 3031 int addrlen) 3032 { 3033 return 0; 3034 } 3035 3036 static inline int security_socket_connect(struct socket * sock, 3037 struct sockaddr * address, 3038 int addrlen) 3039 { 3040 return 0; 3041 } 3042 3043 static inline int security_socket_listen(struct socket * sock, int backlog) 3044 { 3045 return 0; 3046 } 3047 3048 static inline int security_socket_accept(struct socket * sock, 3049 struct socket * newsock) 3050 { 3051 return 0; 3052 } 3053 3054 static inline void security_socket_post_accept(struct socket * sock, 3055 struct socket * newsock) 3056 { 3057 } 3058 3059 static inline int security_socket_sendmsg(struct socket * sock, 3060 struct msghdr * msg, int size) 3061 { 3062 return 0; 3063 } 3064 3065 static inline int security_socket_recvmsg(struct socket * sock, 3066 struct msghdr * msg, int size, 3067 int flags) 3068 { 3069 return 0; 3070 } 3071 3072 static inline int security_socket_getsockname(struct socket * sock) 3073 { 3074 return 0; 3075 } 3076 3077 static inline int security_socket_getpeername(struct socket * sock) 3078 { 3079 return 0; 3080 } 3081 3082 static inline int security_socket_getsockopt(struct socket * sock, 3083 int level, int optname) 3084 { 3085 return 0; 3086 } 3087 3088 static inline int security_socket_setsockopt(struct socket * sock, 3089 int level, int optname) 3090 { 3091 return 0; 3092 } 3093 3094 static inline int security_socket_shutdown(struct socket * sock, int how) 3095 { 3096 return 0; 3097 } 3098 static inline int security_sock_rcv_skb (struct sock * sk, 3099 struct sk_buff * skb) 3100 { 3101 return 0; 3102 } 3103 3104 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 3105 int __user *optlen, unsigned len) 3106 { 3107 return -ENOPROTOOPT; 3108 } 3109 3110 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 3111 { 3112 return -ENOPROTOOPT; 3113 } 3114 3115 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 3116 { 3117 return 0; 3118 } 3119 3120 static inline void security_sk_free(struct sock *sk) 3121 { 3122 } 3123 3124 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) 3125 { 3126 } 3127 3128 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 3129 { 3130 } 3131 3132 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 3133 { 3134 } 3135 3136 static inline void security_sock_graft(struct sock* sk, struct socket *parent) 3137 { 3138 } 3139 3140 static inline int security_inet_conn_request(struct sock *sk, 3141 struct sk_buff *skb, struct request_sock *req) 3142 { 3143 return 0; 3144 } 3145 3146 static inline void security_inet_csk_clone(struct sock *newsk, 3147 const struct request_sock *req) 3148 { 3149 } 3150 3151 static inline void security_inet_conn_established(struct sock *sk, 3152 struct sk_buff *skb) 3153 { 3154 } 3155 #endif /* CONFIG_SECURITY_NETWORK */ 3156 3157 #ifdef CONFIG_SECURITY_NETWORK_XFRM 3158 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 3159 { 3160 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx); 3161 } 3162 3163 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 3164 { 3165 return security_ops->xfrm_policy_clone_security(old, new); 3166 } 3167 3168 static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 3169 { 3170 security_ops->xfrm_policy_free_security(xp); 3171 } 3172 3173 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) 3174 { 3175 return security_ops->xfrm_policy_delete_security(xp); 3176 } 3177 3178 static inline int security_xfrm_state_alloc(struct xfrm_state *x, 3179 struct xfrm_user_sec_ctx *sec_ctx) 3180 { 3181 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 3182 } 3183 3184 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 3185 struct xfrm_sec_ctx *polsec, u32 secid) 3186 { 3187 if (!polsec) 3188 return 0; 3189 /* 3190 * We want the context to be taken from secid which is usually 3191 * from the sock. 3192 */ 3193 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 3194 } 3195 3196 static inline int security_xfrm_state_delete(struct xfrm_state *x) 3197 { 3198 return security_ops->xfrm_state_delete_security(x); 3199 } 3200 3201 static inline void security_xfrm_state_free(struct xfrm_state *x) 3202 { 3203 security_ops->xfrm_state_free_security(x); 3204 } 3205 3206 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) 3207 { 3208 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir); 3209 } 3210 3211 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 3212 struct xfrm_policy *xp, struct flowi *fl) 3213 { 3214 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 3215 } 3216 3217 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 3218 { 3219 return security_ops->xfrm_decode_session(skb, secid, 1); 3220 } 3221 3222 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 3223 { 3224 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 3225 3226 BUG_ON(rc); 3227 } 3228 #else /* CONFIG_SECURITY_NETWORK_XFRM */ 3229 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 3230 { 3231 return 0; 3232 } 3233 3234 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 3235 { 3236 return 0; 3237 } 3238 3239 static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 3240 { 3241 } 3242 3243 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) 3244 { 3245 return 0; 3246 } 3247 3248 static inline int security_xfrm_state_alloc(struct xfrm_state *x, 3249 struct xfrm_user_sec_ctx *sec_ctx) 3250 { 3251 return 0; 3252 } 3253 3254 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 3255 struct xfrm_sec_ctx *polsec, u32 secid) 3256 { 3257 return 0; 3258 } 3259 3260 static inline void security_xfrm_state_free(struct xfrm_state *x) 3261 { 3262 } 3263 3264 static inline int security_xfrm_state_delete(struct xfrm_state *x) 3265 { 3266 return 0; 3267 } 3268 3269 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) 3270 { 3271 return 0; 3272 } 3273 3274 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 3275 struct xfrm_policy *xp, struct flowi *fl) 3276 { 3277 return 1; 3278 } 3279 3280 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 3281 { 3282 return 0; 3283 } 3284 3285 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 3286 { 3287 } 3288 3289 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 3290 3291 #ifdef CONFIG_KEYS 3292 #ifdef CONFIG_SECURITY 3293 static inline int security_key_alloc(struct key *key, 3294 struct task_struct *tsk, 3295 unsigned long flags) 3296 { 3297 return security_ops->key_alloc(key, tsk, flags); 3298 } 3299 3300 static inline void security_key_free(struct key *key) 3301 { 3302 security_ops->key_free(key); 3303 } 3304 3305 static inline int security_key_permission(key_ref_t key_ref, 3306 struct task_struct *context, 3307 key_perm_t perm) 3308 { 3309 return security_ops->key_permission(key_ref, context, perm); 3310 } 3311 3312 #else 3313 3314 static inline int security_key_alloc(struct key *key, 3315 struct task_struct *tsk, 3316 unsigned long flags) 3317 { 3318 return 0; 3319 } 3320 3321 static inline void security_key_free(struct key *key) 3322 { 3323 } 3324 3325 static inline int security_key_permission(key_ref_t key_ref, 3326 struct task_struct *context, 3327 key_perm_t perm) 3328 { 3329 return 0; 3330 } 3331 3332 #endif 3333 #endif /* CONFIG_KEYS */ 3334 3335 #endif /* ! __LINUX_SECURITY_H */ 3336 3337