xref: /linux-6.15/include/linux/security.h (revision ba6e8564)
1 /*
2  * Linux Security plug
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <[email protected]>
5  * Copyright (C) 2001 Greg Kroah-Hartman <[email protected]>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
7  * Copyright (C) 2001 James Morris <[email protected]>
8  * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9  *
10  *	This program is free software; you can redistribute it and/or modify
11  *	it under the terms of the GNU General Public License as published by
12  *	the Free Software Foundation; either version 2 of the License, or
13  *	(at your option) any later version.
14  *
15  *	Due to this file being licensed under the GPL there is controversy over
16  *	whether this permits you to write a module that #includes this file
17  *	without placing your module under the GPL.  Please consult a lawyer for
18  *	advice before doing this.
19  *
20  */
21 
22 #ifndef __LINUX_SECURITY_H
23 #define __LINUX_SECURITY_H
24 
25 #include <linux/fs.h>
26 #include <linux/binfmts.h>
27 #include <linux/signal.h>
28 #include <linux/resource.h>
29 #include <linux/sem.h>
30 #include <linux/shm.h>
31 #include <linux/msg.h>
32 #include <linux/sched.h>
33 #include <linux/key.h>
34 #include <linux/xfrm.h>
35 #include <net/flow.h>
36 
37 struct ctl_table;
38 
39 /*
40  * These functions are in security/capability.c and are used
41  * as the default capabilities functions
42  */
43 extern int cap_capable (struct task_struct *tsk, int cap);
44 extern int cap_settime (struct timespec *ts, struct timezone *tz);
45 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child);
46 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
47 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
48 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
49 extern int cap_bprm_set_security (struct linux_binprm *bprm);
50 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe);
51 extern int cap_bprm_secureexec(struct linux_binprm *bprm);
52 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags);
53 extern int cap_inode_removexattr(struct dentry *dentry, char *name);
54 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
55 extern void cap_task_reparent_to_init (struct task_struct *p);
56 extern int cap_syslog (int type);
57 extern int cap_vm_enough_memory (long pages);
58 
59 struct msghdr;
60 struct sk_buff;
61 struct sock;
62 struct sockaddr;
63 struct socket;
64 struct flowi;
65 struct dst_entry;
66 struct xfrm_selector;
67 struct xfrm_policy;
68 struct xfrm_state;
69 struct xfrm_user_sec_ctx;
70 
71 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
72 extern int cap_netlink_recv(struct sk_buff *skb, int cap);
73 
74 /*
75  * Values used in the task_security_ops calls
76  */
77 /* setuid or setgid, id0 == uid or gid */
78 #define LSM_SETID_ID	1
79 
80 /* setreuid or setregid, id0 == real, id1 == eff */
81 #define LSM_SETID_RE	2
82 
83 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
84 #define LSM_SETID_RES	4
85 
86 /* setfsuid or setfsgid, id0 == fsuid or fsgid */
87 #define LSM_SETID_FS	8
88 
89 /* forward declares to avoid warnings */
90 struct nfsctl_arg;
91 struct sched_param;
92 struct swap_info_struct;
93 struct request_sock;
94 
95 /* bprm_apply_creds unsafe reasons */
96 #define LSM_UNSAFE_SHARE	1
97 #define LSM_UNSAFE_PTRACE	2
98 #define LSM_UNSAFE_PTRACE_CAP	4
99 
100 #ifdef CONFIG_SECURITY
101 
102 /**
103  * struct security_operations - main security structure
104  *
105  * Security hooks for program execution operations.
106  *
107  * @bprm_alloc_security:
108  *	Allocate and attach a security structure to the @bprm->security field.
109  *	The security field is initialized to NULL when the bprm structure is
110  *	allocated.
111  *	@bprm contains the linux_binprm structure to be modified.
112  *	Return 0 if operation was successful.
113  * @bprm_free_security:
114  *	@bprm contains the linux_binprm structure to be modified.
115  *	Deallocate and clear the @bprm->security field.
116  * @bprm_apply_creds:
117  *	Compute and set the security attributes of a process being transformed
118  *	by an execve operation based on the old attributes (current->security)
119  *	and the information saved in @bprm->security by the set_security hook.
120  *	Since this hook function (and its caller) are void, this hook can not
121  *	return an error.  However, it can leave the security attributes of the
122  *	process unchanged if an access failure occurs at this point.
123  *	bprm_apply_creds is called under task_lock.  @unsafe indicates various
124  *	reasons why it may be unsafe to change security state.
125  *	@bprm contains the linux_binprm structure.
126  * @bprm_post_apply_creds:
127  *	Runs after bprm_apply_creds with the task_lock dropped, so that
128  *	functions which cannot be called safely under the task_lock can
129  *	be used.  This hook is a good place to perform state changes on
130  *	the process such as closing open file descriptors to which access
131  *	is no longer granted if the attributes were changed.
132  *	Note that a security module might need to save state between
133  *	bprm_apply_creds and bprm_post_apply_creds to store the decision
134  *	on whether the process may proceed.
135  *	@bprm contains the linux_binprm structure.
136  * @bprm_set_security:
137  *	Save security information in the bprm->security field, typically based
138  *	on information about the bprm->file, for later use by the apply_creds
139  *	hook.  This hook may also optionally check permissions (e.g. for
140  *	transitions between security domains).
141  *	This hook may be called multiple times during a single execve, e.g. for
142  *	interpreters.  The hook can tell whether it has already been called by
143  *	checking to see if @bprm->security is non-NULL.  If so, then the hook
144  *	may decide either to retain the security information saved earlier or
145  *	to replace it.
146  *	@bprm contains the linux_binprm structure.
147  *	Return 0 if the hook is successful and permission is granted.
148  * @bprm_check_security:
149  * 	This hook mediates the point when a search for a binary handler	will
150  * 	begin.  It allows a check the @bprm->security value which is set in
151  * 	the preceding set_security call.  The primary difference from
152  * 	set_security is that the argv list and envp list are reliably
153  * 	available in @bprm.  This hook may be called multiple times
154  * 	during a single execve; and in each pass set_security is called
155  * 	first.
156  * 	@bprm contains the linux_binprm structure.
157  *	Return 0 if the hook is successful and permission is granted.
158  * @bprm_secureexec:
159  *      Return a boolean value (0 or 1) indicating whether a "secure exec"
160  *      is required.  The flag is passed in the auxiliary table
161  *      on the initial stack to the ELF interpreter to indicate whether libc
162  *      should enable secure mode.
163  *      @bprm contains the linux_binprm structure.
164  *
165  * Security hooks for filesystem operations.
166  *
167  * @sb_alloc_security:
168  *	Allocate and attach a security structure to the sb->s_security field.
169  *	The s_security field is initialized to NULL when the structure is
170  *	allocated.
171  *	@sb contains the super_block structure to be modified.
172  *	Return 0 if operation was successful.
173  * @sb_free_security:
174  *	Deallocate and clear the sb->s_security field.
175  *	@sb contains the super_block structure to be modified.
176  * @sb_statfs:
177  *	Check permission before obtaining filesystem statistics for the @mnt
178  *	mountpoint.
179  *	@dentry is a handle on the superblock for the filesystem.
180  *	Return 0 if permission is granted.
181  * @sb_mount:
182  *	Check permission before an object specified by @dev_name is mounted on
183  *	the mount point named by @nd.  For an ordinary mount, @dev_name
184  *	identifies a device if the file system type requires a device.  For a
185  *	remount (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a
186  *	loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
187  *	pathname of the object being mounted.
188  *	@dev_name contains the name for object being mounted.
189  *	@nd contains the nameidata structure for mount point object.
190  *	@type contains the filesystem type.
191  *	@flags contains the mount flags.
192  *	@data contains the filesystem-specific data.
193  *	Return 0 if permission is granted.
194  * @sb_copy_data:
195  *	Allow mount option data to be copied prior to parsing by the filesystem,
196  *	so that the security module can extract security-specific mount
197  *	options cleanly (a filesystem may modify the data e.g. with strsep()).
198  *	This also allows the original mount data to be stripped of security-
199  *	specific options to avoid having to make filesystems aware of them.
200  *	@type the type of filesystem being mounted.
201  *	@orig the original mount data copied from userspace.
202  *	@copy copied data which will be passed to the security module.
203  *	Returns 0 if the copy was successful.
204  * @sb_check_sb:
205  *	Check permission before the device with superblock @mnt->sb is mounted
206  *	on the mount point named by @nd.
207  *	@mnt contains the vfsmount for device being mounted.
208  *	@nd contains the nameidata object for the mount point.
209  *	Return 0 if permission is granted.
210  * @sb_umount:
211  *	Check permission before the @mnt file system is unmounted.
212  *	@mnt contains the mounted file system.
213  *	@flags contains the unmount flags, e.g. MNT_FORCE.
214  *	Return 0 if permission is granted.
215  * @sb_umount_close:
216  *	Close any files in the @mnt mounted filesystem that are held open by
217  *	the security module.  This hook is called during an umount operation
218  *	prior to checking whether the filesystem is still busy.
219  *	@mnt contains the mounted filesystem.
220  * @sb_umount_busy:
221  *	Handle a failed umount of the @mnt mounted filesystem, e.g.  re-opening
222  *	any files that were closed by umount_close.  This hook is called during
223  *	an umount operation if the umount fails after a call to the
224  *	umount_close hook.
225  *	@mnt contains the mounted filesystem.
226  * @sb_post_remount:
227  *	Update the security module's state when a filesystem is remounted.
228  *	This hook is only called if the remount was successful.
229  *	@mnt contains the mounted file system.
230  *	@flags contains the new filesystem flags.
231  *	@data contains the filesystem-specific data.
232  * @sb_post_mountroot:
233  *	Update the security module's state when the root filesystem is mounted.
234  *	This hook is only called if the mount was successful.
235  * @sb_post_addmount:
236  *	Update the security module's state when a filesystem is mounted.
237  *	This hook is called any time a mount is successfully grafetd to
238  *	the tree.
239  *	@mnt contains the mounted filesystem.
240  *	@mountpoint_nd contains the nameidata structure for the mount point.
241  * @sb_pivotroot:
242  *	Check permission before pivoting the root filesystem.
243  *	@old_nd contains the nameidata structure for the new location of the current root (put_old).
244  *      @new_nd contains the nameidata structure for the new root (new_root).
245  *	Return 0 if permission is granted.
246  * @sb_post_pivotroot:
247  *	Update module state after a successful pivot.
248  *	@old_nd contains the nameidata structure for the old root.
249  *      @new_nd contains the nameidata structure for the new root.
250  *
251  * Security hooks for inode operations.
252  *
253  * @inode_alloc_security:
254  *	Allocate and attach a security structure to @inode->i_security.  The
255  *	i_security field is initialized to NULL when the inode structure is
256  *	allocated.
257  *	@inode contains the inode structure.
258  *	Return 0 if operation was successful.
259  * @inode_free_security:
260  *	@inode contains the inode structure.
261  *	Deallocate the inode security structure and set @inode->i_security to
262  *	NULL.
263  * @inode_init_security:
264  * 	Obtain the security attribute name suffix and value to set on a newly
265  *	created inode and set up the incore security field for the new inode.
266  *	This hook is called by the fs code as part of the inode creation
267  *	transaction and provides for atomic labeling of the inode, unlike
268  *	the post_create/mkdir/... hooks called by the VFS.  The hook function
269  *	is expected to allocate the name and value via kmalloc, with the caller
270  *	being responsible for calling kfree after using them.
271  *	If the security module does not use security attributes or does
272  *	not wish to put a security attribute on this particular inode,
273  *	then it should return -EOPNOTSUPP to skip this processing.
274  *	@inode contains the inode structure of the newly created inode.
275  *	@dir contains the inode structure of the parent directory.
276  *	@name will be set to the allocated name suffix (e.g. selinux).
277  *	@value will be set to the allocated attribute value.
278  *	@len will be set to the length of the value.
279  *	Returns 0 if @name and @value have been successfully set,
280  *		-EOPNOTSUPP if no security attribute is needed, or
281  *		-ENOMEM on memory allocation failure.
282  * @inode_create:
283  *	Check permission to create a regular file.
284  *	@dir contains inode structure of the parent of the new file.
285  *	@dentry contains the dentry structure for the file to be created.
286  *	@mode contains the file mode of the file to be created.
287  *	Return 0 if permission is granted.
288  * @inode_link:
289  *	Check permission before creating a new hard link to a file.
290  *	@old_dentry contains the dentry structure for an existing link to the file.
291  *	@dir contains the inode structure of the parent directory of the new link.
292  *	@new_dentry contains the dentry structure for the new link.
293  *	Return 0 if permission is granted.
294  * @inode_unlink:
295  *	Check the permission to remove a hard link to a file.
296  *	@dir contains the inode structure of parent directory of the file.
297  *	@dentry contains the dentry structure for file to be unlinked.
298  *	Return 0 if permission is granted.
299  * @inode_symlink:
300  *	Check the permission to create a symbolic link to a file.
301  *	@dir contains the inode structure of parent directory of the symbolic link.
302  *	@dentry contains the dentry structure of the symbolic link.
303  *	@old_name contains the pathname of file.
304  *	Return 0 if permission is granted.
305  * @inode_mkdir:
306  *	Check permissions to create a new directory in the existing directory
307  *	associated with inode strcture @dir.
308  *	@dir containst the inode structure of parent of the directory to be created.
309  *	@dentry contains the dentry structure of new directory.
310  *	@mode contains the mode of new directory.
311  *	Return 0 if permission is granted.
312  * @inode_rmdir:
313  *	Check the permission to remove a directory.
314  *	@dir contains the inode structure of parent of the directory to be removed.
315  *	@dentry contains the dentry structure of directory to be removed.
316  *	Return 0 if permission is granted.
317  * @inode_mknod:
318  *	Check permissions when creating a special file (or a socket or a fifo
319  *	file created via the mknod system call).  Note that if mknod operation
320  *	is being done for a regular file, then the create hook will be called
321  *	and not this hook.
322  *	@dir contains the inode structure of parent of the new file.
323  *	@dentry contains the dentry structure of the new file.
324  *	@mode contains the mode of the new file.
325  *	@dev contains the the device number.
326  *	Return 0 if permission is granted.
327  * @inode_rename:
328  *	Check for permission to rename a file or directory.
329  *	@old_dir contains the inode structure for parent of the old link.
330  *	@old_dentry contains the dentry structure of the old link.
331  *	@new_dir contains the inode structure for parent of the new link.
332  *	@new_dentry contains the dentry structure of the new link.
333  *	Return 0 if permission is granted.
334  * @inode_readlink:
335  *	Check the permission to read the symbolic link.
336  *	@dentry contains the dentry structure for the file link.
337  *	Return 0 if permission is granted.
338  * @inode_follow_link:
339  *	Check permission to follow a symbolic link when looking up a pathname.
340  *	@dentry contains the dentry structure for the link.
341  *	@nd contains the nameidata structure for the parent directory.
342  *	Return 0 if permission is granted.
343  * @inode_permission:
344  *	Check permission before accessing an inode.  This hook is called by the
345  *	existing Linux permission function, so a security module can use it to
346  *	provide additional checking for existing Linux permission checks.
347  *	Notice that this hook is called when a file is opened (as well as many
348  *	other operations), whereas the file_security_ops permission hook is
349  *	called when the actual read/write operations are performed.
350  *	@inode contains the inode structure to check.
351  *	@mask contains the permission mask.
352  *     @nd contains the nameidata (may be NULL).
353  *	Return 0 if permission is granted.
354  * @inode_setattr:
355  *	Check permission before setting file attributes.  Note that the kernel
356  *	call to notify_change is performed from several locations, whenever
357  *	file attributes change (such as when a file is truncated, chown/chmod
358  *	operations, transferring disk quotas, etc).
359  *	@dentry contains the dentry structure for the file.
360  *	@attr is the iattr structure containing the new file attributes.
361  *	Return 0 if permission is granted.
362  * @inode_getattr:
363  *	Check permission before obtaining file attributes.
364  *	@mnt is the vfsmount where the dentry was looked up
365  *	@dentry contains the dentry structure for the file.
366  *	Return 0 if permission is granted.
367  * @inode_delete:
368  *	@inode contains the inode structure for deleted inode.
369  *	This hook is called when a deleted inode is released (i.e. an inode
370  *	with no hard links has its use count drop to zero).  A security module
371  *	can use this hook to release any persistent label associated with the
372  *	inode.
373  * @inode_setxattr:
374  * 	Check permission before setting the extended attributes
375  * 	@value identified by @name for @dentry.
376  * 	Return 0 if permission is granted.
377  * @inode_post_setxattr:
378  * 	Update inode security field after successful setxattr operation.
379  * 	@value identified by @name for @dentry.
380  * @inode_getxattr:
381  * 	Check permission before obtaining the extended attributes
382  * 	identified by @name for @dentry.
383  * 	Return 0 if permission is granted.
384  * @inode_listxattr:
385  * 	Check permission before obtaining the list of extended attribute
386  * 	names for @dentry.
387  * 	Return 0 if permission is granted.
388  * @inode_removexattr:
389  * 	Check permission before removing the extended attribute
390  * 	identified by @name for @dentry.
391  * 	Return 0 if permission is granted.
392  * @inode_getsecurity:
393  *	Copy the extended attribute representation of the security label
394  *	associated with @name for @inode into @buffer.  @buffer may be
395  *	NULL to request the size of the buffer required.  @size indicates
396  *	the size of @buffer in bytes.  Note that @name is the remainder
397  *	of the attribute name after the security. prefix has been removed.
398  *	@err is the return value from the preceding fs getxattr call,
399  *	and can be used by the security module to determine whether it
400  *	should try and canonicalize the attribute value.
401  *	Return number of bytes used/required on success.
402  * @inode_setsecurity:
403  *	Set the security label associated with @name for @inode from the
404  *	extended attribute value @value.  @size indicates the size of the
405  *	@value in bytes.  @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
406  *	Note that @name is the remainder of the attribute name after the
407  *	security. prefix has been removed.
408  *	Return 0 on success.
409  * @inode_listsecurity:
410  *	Copy the extended attribute names for the security labels
411  *	associated with @inode into @buffer.  The maximum size of @buffer
412  *	is specified by @buffer_size.  @buffer may be NULL to request
413  *	the size of the buffer required.
414  *	Returns number of bytes used/required on success.
415  *
416  * Security hooks for file operations
417  *
418  * @file_permission:
419  *	Check file permissions before accessing an open file.  This hook is
420  *	called by various operations that read or write files.  A security
421  *	module can use this hook to perform additional checking on these
422  *	operations, e.g.  to revalidate permissions on use to support privilege
423  *	bracketing or policy changes.  Notice that this hook is used when the
424  *	actual read/write operations are performed, whereas the
425  *	inode_security_ops hook is called when a file is opened (as well as
426  *	many other operations).
427  *	Caveat:  Although this hook can be used to revalidate permissions for
428  *	various system call operations that read or write files, it does not
429  *	address the revalidation of permissions for memory-mapped files.
430  *	Security modules must handle this separately if they need such
431  *	revalidation.
432  *	@file contains the file structure being accessed.
433  *	@mask contains the requested permissions.
434  *	Return 0 if permission is granted.
435  * @file_alloc_security:
436  *	Allocate and attach a security structure to the file->f_security field.
437  *	The security field is initialized to NULL when the structure is first
438  *	created.
439  *	@file contains the file structure to secure.
440  *	Return 0 if the hook is successful and permission is granted.
441  * @file_free_security:
442  *	Deallocate and free any security structures stored in file->f_security.
443  *	@file contains the file structure being modified.
444  * @file_ioctl:
445  *	@file contains the file structure.
446  *	@cmd contains the operation to perform.
447  *	@arg contains the operational arguments.
448  *	Check permission for an ioctl operation on @file.  Note that @arg can
449  *	sometimes represents a user space pointer; in other cases, it may be a
450  *	simple integer value.  When @arg represents a user space pointer, it
451  *	should never be used by the security module.
452  *	Return 0 if permission is granted.
453  * @file_mmap :
454  *	Check permissions for a mmap operation.  The @file may be NULL, e.g.
455  *	if mapping anonymous memory.
456  *	@file contains the file structure for file to map (may be NULL).
457  *	@reqprot contains the protection requested by the application.
458  *	@prot contains the protection that will be applied by the kernel.
459  *	@flags contains the operational flags.
460  *	Return 0 if permission is granted.
461  * @file_mprotect:
462  *	Check permissions before changing memory access permissions.
463  *	@vma contains the memory region to modify.
464  *	@reqprot contains the protection requested by the application.
465  *	@prot contains the protection that will be applied by the kernel.
466  *	Return 0 if permission is granted.
467  * @file_lock:
468  *	Check permission before performing file locking operations.
469  *	Note: this hook mediates both flock and fcntl style locks.
470  *	@file contains the file structure.
471  *	@cmd contains the posix-translated lock operation to perform
472  *	(e.g. F_RDLCK, F_WRLCK).
473  *	Return 0 if permission is granted.
474  * @file_fcntl:
475  *	Check permission before allowing the file operation specified by @cmd
476  *	from being performed on the file @file.  Note that @arg can sometimes
477  *	represents a user space pointer; in other cases, it may be a simple
478  *	integer value.  When @arg represents a user space pointer, it should
479  *	never be used by the security module.
480  *	@file contains the file structure.
481  *	@cmd contains the operation to be performed.
482  *	@arg contains the operational arguments.
483  *	Return 0 if permission is granted.
484  * @file_set_fowner:
485  *	Save owner security information (typically from current->security) in
486  *	file->f_security for later use by the send_sigiotask hook.
487  *	@file contains the file structure to update.
488  *	Return 0 on success.
489  * @file_send_sigiotask:
490  *	Check permission for the file owner @fown to send SIGIO or SIGURG to the
491  *	process @tsk.  Note that this hook is sometimes called from interrupt.
492  *	Note that the fown_struct, @fown, is never outside the context of a
493  *	struct file, so the file structure (and associated security information)
494  *	can always be obtained:
495  *		container_of(fown, struct file, f_owner)
496  * 	@tsk contains the structure of task receiving signal.
497  *	@fown contains the file owner information.
498  *	@sig is the signal that will be sent.  When 0, kernel sends SIGIO.
499  *	Return 0 if permission is granted.
500  * @file_receive:
501  *	This hook allows security modules to control the ability of a process
502  *	to receive an open file descriptor via socket IPC.
503  *	@file contains the file structure being received.
504  *	Return 0 if permission is granted.
505  *
506  * Security hooks for task operations.
507  *
508  * @task_create:
509  *	Check permission before creating a child process.  See the clone(2)
510  *	manual page for definitions of the @clone_flags.
511  *	@clone_flags contains the flags indicating what should be shared.
512  *	Return 0 if permission is granted.
513  * @task_alloc_security:
514  *	@p contains the task_struct for child process.
515  *	Allocate and attach a security structure to the p->security field. The
516  *	security field is initialized to NULL when the task structure is
517  *	allocated.
518  *	Return 0 if operation was successful.
519  * @task_free_security:
520  *	@p contains the task_struct for process.
521  *	Deallocate and clear the p->security field.
522  * @task_setuid:
523  *	Check permission before setting one or more of the user identity
524  *	attributes of the current process.  The @flags parameter indicates
525  *	which of the set*uid system calls invoked this hook and how to
526  *	interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
527  *	definitions at the beginning of this file for the @flags values and
528  *	their meanings.
529  *	@id0 contains a uid.
530  *	@id1 contains a uid.
531  *	@id2 contains a uid.
532  *	@flags contains one of the LSM_SETID_* values.
533  *	Return 0 if permission is granted.
534  * @task_post_setuid:
535  *	Update the module's state after setting one or more of the user
536  *	identity attributes of the current process.  The @flags parameter
537  *	indicates which of the set*uid system calls invoked this hook.  If
538  *	@flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
539  *	parameters are not used.
540  *	@old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
541  *	@old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
542  *	@old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
543  *	@flags contains one of the LSM_SETID_* values.
544  *	Return 0 on success.
545  * @task_setgid:
546  *	Check permission before setting one or more of the group identity
547  *	attributes of the current process.  The @flags parameter indicates
548  *	which of the set*gid system calls invoked this hook and how to
549  *	interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
550  *	definitions at the beginning of this file for the @flags values and
551  *	their meanings.
552  *	@id0 contains a gid.
553  *	@id1 contains a gid.
554  *	@id2 contains a gid.
555  *	@flags contains one of the LSM_SETID_* values.
556  *	Return 0 if permission is granted.
557  * @task_setpgid:
558  *	Check permission before setting the process group identifier of the
559  *	process @p to @pgid.
560  *	@p contains the task_struct for process being modified.
561  *	@pgid contains the new pgid.
562  *	Return 0 if permission is granted.
563  * @task_getpgid:
564  *	Check permission before getting the process group identifier of the
565  *	process @p.
566  *	@p contains the task_struct for the process.
567  *	Return 0 if permission is granted.
568  * @task_getsid:
569  *	Check permission before getting the session identifier of the process
570  *	@p.
571  *	@p contains the task_struct for the process.
572  *	Return 0 if permission is granted.
573  * @task_getsecid:
574  *	Retrieve the security identifier of the process @p.
575  *	@p contains the task_struct for the process and place is into @secid.
576  * @task_setgroups:
577  *	Check permission before setting the supplementary group set of the
578  *	current process.
579  *	@group_info contains the new group information.
580  *	Return 0 if permission is granted.
581  * @task_setnice:
582  *	Check permission before setting the nice value of @p to @nice.
583  *	@p contains the task_struct of process.
584  *	@nice contains the new nice value.
585  *	Return 0 if permission is granted.
586  * @task_setioprio
587  *	Check permission before setting the ioprio value of @p to @ioprio.
588  *	@p contains the task_struct of process.
589  *	@ioprio contains the new ioprio value
590  *	Return 0 if permission is granted.
591  * @task_getioprio
592  *	Check permission before getting the ioprio value of @p.
593  *	@p contains the task_struct of process.
594  *	Return 0 if permission is granted.
595  * @task_setrlimit:
596  *	Check permission before setting the resource limits of the current
597  *	process for @resource to @new_rlim.  The old resource limit values can
598  *	be examined by dereferencing (current->signal->rlim + resource).
599  *	@resource contains the resource whose limit is being set.
600  *	@new_rlim contains the new limits for @resource.
601  *	Return 0 if permission is granted.
602  * @task_setscheduler:
603  *	Check permission before setting scheduling policy and/or parameters of
604  *	process @p based on @policy and @lp.
605  *	@p contains the task_struct for process.
606  *	@policy contains the scheduling policy.
607  *	@lp contains the scheduling parameters.
608  *	Return 0 if permission is granted.
609  * @task_getscheduler:
610  *	Check permission before obtaining scheduling information for process
611  *	@p.
612  *	@p contains the task_struct for process.
613  *	Return 0 if permission is granted.
614  * @task_movememory
615  *	Check permission before moving memory owned by process @p.
616  *	@p contains the task_struct for process.
617  *	Return 0 if permission is granted.
618  * @task_kill:
619  *	Check permission before sending signal @sig to @p.  @info can be NULL,
620  *	the constant 1, or a pointer to a siginfo structure.  If @info is 1 or
621  *	SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
622  *	from the kernel and should typically be permitted.
623  *	SIGIO signals are handled separately by the send_sigiotask hook in
624  *	file_security_ops.
625  *	@p contains the task_struct for process.
626  *	@info contains the signal information.
627  *	@sig contains the signal value.
628  *	@secid contains the sid of the process where the signal originated
629  *	Return 0 if permission is granted.
630  * @task_wait:
631  *	Check permission before allowing a process to reap a child process @p
632  *	and collect its status information.
633  *	@p contains the task_struct for process.
634  *	Return 0 if permission is granted.
635  * @task_prctl:
636  *	Check permission before performing a process control operation on the
637  *	current process.
638  *	@option contains the operation.
639  *	@arg2 contains a argument.
640  *	@arg3 contains a argument.
641  *	@arg4 contains a argument.
642  *	@arg5 contains a argument.
643  *	Return 0 if permission is granted.
644  * @task_reparent_to_init:
645  * 	Set the security attributes in @p->security for a kernel thread that
646  * 	is being reparented to the init task.
647  *	@p contains the task_struct for the kernel thread.
648  * @task_to_inode:
649  * 	Set the security attributes for an inode based on an associated task's
650  * 	security attributes, e.g. for /proc/pid inodes.
651  *	@p contains the task_struct for the task.
652  *	@inode contains the inode structure for the inode.
653  *
654  * Security hooks for Netlink messaging.
655  *
656  * @netlink_send:
657  *	Save security information for a netlink message so that permission
658  *	checking can be performed when the message is processed.  The security
659  *	information can be saved using the eff_cap field of the
660  *      netlink_skb_parms structure.  Also may be used to provide fine
661  *	grained control over message transmission.
662  *	@sk associated sock of task sending the message.,
663  *	@skb contains the sk_buff structure for the netlink message.
664  *	Return 0 if the information was successfully saved and message
665  *	is allowed to be transmitted.
666  * @netlink_recv:
667  *	Check permission before processing the received netlink message in
668  *	@skb.
669  *	@skb contains the sk_buff structure for the netlink message.
670  *	@cap indicates the capability required
671  *	Return 0 if permission is granted.
672  *
673  * Security hooks for Unix domain networking.
674  *
675  * @unix_stream_connect:
676  *	Check permissions before establishing a Unix domain stream connection
677  *	between @sock and @other.
678  *	@sock contains the socket structure.
679  *	@other contains the peer socket structure.
680  *	Return 0 if permission is granted.
681  * @unix_may_send:
682  *	Check permissions before connecting or sending datagrams from @sock to
683  *	@other.
684  *	@sock contains the socket structure.
685  *	@sock contains the peer socket structure.
686  *	Return 0 if permission is granted.
687  *
688  * The @unix_stream_connect and @unix_may_send hooks were necessary because
689  * Linux provides an alternative to the conventional file name space for Unix
690  * domain sockets.  Whereas binding and connecting to sockets in the file name
691  * space is mediated by the typical file permissions (and caught by the mknod
692  * and permission hooks in inode_security_ops), binding and connecting to
693  * sockets in the abstract name space is completely unmediated.  Sufficient
694  * control of Unix domain sockets in the abstract name space isn't possible
695  * using only the socket layer hooks, since we need to know the actual target
696  * socket, which is not looked up until we are inside the af_unix code.
697  *
698  * Security hooks for socket operations.
699  *
700  * @socket_create:
701  *	Check permissions prior to creating a new socket.
702  *	@family contains the requested protocol family.
703  *	@type contains the requested communications type.
704  *	@protocol contains the requested protocol.
705  *	@kern set to 1 if a kernel socket.
706  *	Return 0 if permission is granted.
707  * @socket_post_create:
708  *	This hook allows a module to update or allocate a per-socket security
709  *	structure. Note that the security field was not added directly to the
710  *	socket structure, but rather, the socket security information is stored
711  *	in the associated inode.  Typically, the inode alloc_security hook will
712  *	allocate and and attach security information to
713  *	sock->inode->i_security.  This hook may be used to update the
714  *	sock->inode->i_security field with additional information that wasn't
715  *	available when the inode was allocated.
716  *	@sock contains the newly created socket structure.
717  *	@family contains the requested protocol family.
718  *	@type contains the requested communications type.
719  *	@protocol contains the requested protocol.
720  *	@kern set to 1 if a kernel socket.
721  * @socket_bind:
722  *	Check permission before socket protocol layer bind operation is
723  *	performed and the socket @sock is bound to the address specified in the
724  *	@address parameter.
725  *	@sock contains the socket structure.
726  *	@address contains the address to bind to.
727  *	@addrlen contains the length of address.
728  *	Return 0 if permission is granted.
729  * @socket_connect:
730  *	Check permission before socket protocol layer connect operation
731  *	attempts to connect socket @sock to a remote address, @address.
732  *	@sock contains the socket structure.
733  *	@address contains the address of remote endpoint.
734  *	@addrlen contains the length of address.
735  *	Return 0 if permission is granted.
736  * @socket_listen:
737  *	Check permission before socket protocol layer listen operation.
738  *	@sock contains the socket structure.
739  *	@backlog contains the maximum length for the pending connection queue.
740  *	Return 0 if permission is granted.
741  * @socket_accept:
742  *	Check permission before accepting a new connection.  Note that the new
743  *	socket, @newsock, has been created and some information copied to it,
744  *	but the accept operation has not actually been performed.
745  *	@sock contains the listening socket structure.
746  *	@newsock contains the newly created server socket for connection.
747  *	Return 0 if permission is granted.
748  * @socket_post_accept:
749  *	This hook allows a security module to copy security
750  *	information into the newly created socket's inode.
751  *	@sock contains the listening socket structure.
752  *	@newsock contains the newly created server socket for connection.
753  * @socket_sendmsg:
754  *	Check permission before transmitting a message to another socket.
755  *	@sock contains the socket structure.
756  *	@msg contains the message to be transmitted.
757  *	@size contains the size of message.
758  *	Return 0 if permission is granted.
759  * @socket_recvmsg:
760  *	Check permission before receiving a message from a socket.
761  *	@sock contains the socket structure.
762  *	@msg contains the message structure.
763  *	@size contains the size of message structure.
764  *	@flags contains the operational flags.
765  *	Return 0 if permission is granted.
766  * @socket_getsockname:
767  *	Check permission before the local address (name) of the socket object
768  *	@sock is retrieved.
769  *	@sock contains the socket structure.
770  *	Return 0 if permission is granted.
771  * @socket_getpeername:
772  *	Check permission before the remote address (name) of a socket object
773  *	@sock is retrieved.
774  *	@sock contains the socket structure.
775  *	Return 0 if permission is granted.
776  * @socket_getsockopt:
777  *	Check permissions before retrieving the options associated with socket
778  *	@sock.
779  *	@sock contains the socket structure.
780  *	@level contains the protocol level to retrieve option from.
781  *	@optname contains the name of option to retrieve.
782  *	Return 0 if permission is granted.
783  * @socket_setsockopt:
784  *	Check permissions before setting the options associated with socket
785  *	@sock.
786  *	@sock contains the socket structure.
787  *	@level contains the protocol level to set options for.
788  *	@optname contains the name of the option to set.
789  *	Return 0 if permission is granted.
790  * @socket_shutdown:
791  *	Checks permission before all or part of a connection on the socket
792  *	@sock is shut down.
793  *	@sock contains the socket structure.
794  *	@how contains the flag indicating how future sends and receives are handled.
795  *	Return 0 if permission is granted.
796  * @socket_sock_rcv_skb:
797  *	Check permissions on incoming network packets.  This hook is distinct
798  *	from Netfilter's IP input hooks since it is the first time that the
799  *	incoming sk_buff @skb has been associated with a particular socket, @sk.
800  *	@sk contains the sock (not socket) associated with the incoming sk_buff.
801  *	@skb contains the incoming network data.
802  * @socket_getpeersec:
803  *	This hook allows the security module to provide peer socket security
804  *	state to userspace via getsockopt SO_GETPEERSEC.
805  *	@sock is the local socket.
806  *	@optval userspace memory where the security state is to be copied.
807  *	@optlen userspace int where the module should copy the actual length
808  *	of the security state.
809  *	@len as input is the maximum length to copy to userspace provided
810  *	by the caller.
811  *	Return 0 if all is well, otherwise, typical getsockopt return
812  *	values.
813  * @sk_alloc_security:
814  *      Allocate and attach a security structure to the sk->sk_security field,
815  *      which is used to copy security attributes between local stream sockets.
816  * @sk_free_security:
817  *	Deallocate security structure.
818  * @sk_clone_security:
819  *	Clone/copy security structure.
820  * @sk_getsecid:
821  *	Retrieve the LSM-specific secid for the sock to enable caching of network
822  *	authorizations.
823  * @sock_graft:
824  *	Sets the socket's isec sid to the sock's sid.
825  * @inet_conn_request:
826  *	Sets the openreq's sid to socket's sid with MLS portion taken from peer sid.
827  * @inet_csk_clone:
828  *	Sets the new child socket's sid to the openreq sid.
829  * @inet_conn_established:
830  *     Sets the connection's peersid to the secmark on skb.
831  * @req_classify_flow:
832  *	Sets the flow's sid to the openreq sid.
833  *
834  * Security hooks for XFRM operations.
835  *
836  * @xfrm_policy_alloc_security:
837  *	@xp contains the xfrm_policy being added to Security Policy Database
838  *	used by the XFRM system.
839  *	@sec_ctx contains the security context information being provided by
840  *	the user-level policy update program (e.g., setkey).
841  *	Allocate a security structure to the xp->security field; the security
842  *	field is initialized to NULL when the xfrm_policy is allocated.
843  *	Return 0 if operation was successful (memory to allocate, legal context)
844  * @xfrm_policy_clone_security:
845  *	@old contains an existing xfrm_policy in the SPD.
846  *	@new contains a new xfrm_policy being cloned from old.
847  *	Allocate a security structure to the new->security field
848  *	that contains the information from the old->security field.
849  *	Return 0 if operation was successful (memory to allocate).
850  * @xfrm_policy_free_security:
851  *	@xp contains the xfrm_policy
852  *	Deallocate xp->security.
853  * @xfrm_policy_delete_security:
854  *	@xp contains the xfrm_policy.
855  *	Authorize deletion of xp->security.
856  * @xfrm_state_alloc_security:
857  *	@x contains the xfrm_state being added to the Security Association
858  *	Database by the XFRM system.
859  *	@sec_ctx contains the security context information being provided by
860  *	the user-level SA generation program (e.g., setkey or racoon).
861  *	@secid contains the secid from which to take the mls portion of the context.
862  *	Allocate a security structure to the x->security field; the security
863  *	field is initialized to NULL when the xfrm_state is allocated. Set the
864  *	context to correspond to either sec_ctx or polsec, with the mls portion
865  *	taken from secid in the latter case.
866  *	Return 0 if operation was successful (memory to allocate, legal context).
867  * @xfrm_state_free_security:
868  *	@x contains the xfrm_state.
869  *	Deallocate x->security.
870  * @xfrm_state_delete_security:
871  *	@x contains the xfrm_state.
872  *	Authorize deletion of x->security.
873  * @xfrm_policy_lookup:
874  *	@xp contains the xfrm_policy for which the access control is being
875  *	checked.
876  *	@fl_secid contains the flow security label that is used to authorize
877  *	access to the policy xp.
878  *	@dir contains the direction of the flow (input or output).
879  *	Check permission when a flow selects a xfrm_policy for processing
880  *	XFRMs on a packet.  The hook is called when selecting either a
881  *	per-socket policy or a generic xfrm policy.
882  *	Return 0 if permission is granted, -ESRCH otherwise, or -errno
883  *	on other errors.
884  * @xfrm_state_pol_flow_match:
885  *	@x contains the state to match.
886  *	@xp contains the policy to check for a match.
887  *	@fl contains the flow to check for a match.
888  *	Return 1 if there is a match.
889  * @xfrm_decode_session:
890  *	@skb points to skb to decode.
891  *	@secid points to the flow key secid to set.
892  *	@ckall says if all xfrms used should be checked for same secid.
893  *	Return 0 if ckall is zero or all xfrms used have the same secid.
894  *
895  * Security hooks affecting all Key Management operations
896  *
897  * @key_alloc:
898  *	Permit allocation of a key and assign security data. Note that key does
899  *	not have a serial number assigned at this point.
900  *	@key points to the key.
901  *	@flags is the allocation flags
902  *	Return 0 if permission is granted, -ve error otherwise.
903  * @key_free:
904  *	Notification of destruction; free security data.
905  *	@key points to the key.
906  *	No return value.
907  * @key_permission:
908  *	See whether a specific operational right is granted to a process on a
909  *      key.
910  *	@key_ref refers to the key (key pointer + possession attribute bit).
911  *	@context points to the process to provide the context against which to
912  *       evaluate the security data on the key.
913  *	@perm describes the combination of permissions required of this key.
914  *	Return 1 if permission granted, 0 if permission denied and -ve it the
915  *      normal permissions model should be effected.
916  *
917  * Security hooks affecting all System V IPC operations.
918  *
919  * @ipc_permission:
920  *	Check permissions for access to IPC
921  *	@ipcp contains the kernel IPC permission structure
922  *	@flag contains the desired (requested) permission set
923  *	Return 0 if permission is granted.
924  *
925  * Security hooks for individual messages held in System V IPC message queues
926  * @msg_msg_alloc_security:
927  *	Allocate and attach a security structure to the msg->security field.
928  *	The security field is initialized to NULL when the structure is first
929  *	created.
930  *	@msg contains the message structure to be modified.
931  *	Return 0 if operation was successful and permission is granted.
932  * @msg_msg_free_security:
933  *	Deallocate the security structure for this message.
934  *	@msg contains the message structure to be modified.
935  *
936  * Security hooks for System V IPC Message Queues
937  *
938  * @msg_queue_alloc_security:
939  *	Allocate and attach a security structure to the
940  *	msq->q_perm.security field. The security field is initialized to
941  *	NULL when the structure is first created.
942  *	@msq contains the message queue structure to be modified.
943  *	Return 0 if operation was successful and permission is granted.
944  * @msg_queue_free_security:
945  *	Deallocate security structure for this message queue.
946  *	@msq contains the message queue structure to be modified.
947  * @msg_queue_associate:
948  *	Check permission when a message queue is requested through the
949  *	msgget system call.  This hook is only called when returning the
950  *	message queue identifier for an existing message queue, not when a
951  *	new message queue is created.
952  *	@msq contains the message queue to act upon.
953  *	@msqflg contains the operation control flags.
954  *	Return 0 if permission is granted.
955  * @msg_queue_msgctl:
956  *	Check permission when a message control operation specified by @cmd
957  *	is to be performed on the message queue @msq.
958  *	The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
959  *	@msq contains the message queue to act upon.  May be NULL.
960  *	@cmd contains the operation to be performed.
961  *	Return 0 if permission is granted.
962  * @msg_queue_msgsnd:
963  *	Check permission before a message, @msg, is enqueued on the message
964  *	queue, @msq.
965  *	@msq contains the message queue to send message to.
966  *	@msg contains the message to be enqueued.
967  *	@msqflg contains operational flags.
968  *	Return 0 if permission is granted.
969  * @msg_queue_msgrcv:
970  *	Check permission before a message, @msg, is removed from the message
971  *	queue, @msq.  The @target task structure contains a pointer to the
972  *	process that will be receiving the message (not equal to the current
973  *	process when inline receives are being performed).
974  *	@msq contains the message queue to retrieve message from.
975  *	@msg contains the message destination.
976  *	@target contains the task structure for recipient process.
977  *	@type contains the type of message requested.
978  *	@mode contains the operational flags.
979  *	Return 0 if permission is granted.
980  *
981  * Security hooks for System V Shared Memory Segments
982  *
983  * @shm_alloc_security:
984  *	Allocate and attach a security structure to the shp->shm_perm.security
985  *	field.  The security field is initialized to NULL when the structure is
986  *	first created.
987  *	@shp contains the shared memory structure to be modified.
988  *	Return 0 if operation was successful and permission is granted.
989  * @shm_free_security:
990  *	Deallocate the security struct for this memory segment.
991  *	@shp contains the shared memory structure to be modified.
992  * @shm_associate:
993  *	Check permission when a shared memory region is requested through the
994  *	shmget system call.  This hook is only called when returning the shared
995  *	memory region identifier for an existing region, not when a new shared
996  *	memory region is created.
997  *	@shp contains the shared memory structure to be modified.
998  *	@shmflg contains the operation control flags.
999  *	Return 0 if permission is granted.
1000  * @shm_shmctl:
1001  *	Check permission when a shared memory control operation specified by
1002  *	@cmd is to be performed on the shared memory region @shp.
1003  *	The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
1004  *	@shp contains shared memory structure to be modified.
1005  *	@cmd contains the operation to be performed.
1006  *	Return 0 if permission is granted.
1007  * @shm_shmat:
1008  *	Check permissions prior to allowing the shmat system call to attach the
1009  *	shared memory segment @shp to the data segment of the calling process.
1010  *	The attaching address is specified by @shmaddr.
1011  *	@shp contains the shared memory structure to be modified.
1012  *	@shmaddr contains the address to attach memory region to.
1013  *	@shmflg contains the operational flags.
1014  *	Return 0 if permission is granted.
1015  *
1016  * Security hooks for System V Semaphores
1017  *
1018  * @sem_alloc_security:
1019  *	Allocate and attach a security structure to the sma->sem_perm.security
1020  *	field.  The security field is initialized to NULL when the structure is
1021  *	first created.
1022  *	@sma contains the semaphore structure
1023  *	Return 0 if operation was successful and permission is granted.
1024  * @sem_free_security:
1025  *	deallocate security struct for this semaphore
1026  *	@sma contains the semaphore structure.
1027  * @sem_associate:
1028  *	Check permission when a semaphore is requested through the semget
1029  *	system call.  This hook is only called when returning the semaphore
1030  *	identifier for an existing semaphore, not when a new one must be
1031  *	created.
1032  *	@sma contains the semaphore structure.
1033  *	@semflg contains the operation control flags.
1034  *	Return 0 if permission is granted.
1035  * @sem_semctl:
1036  *	Check permission when a semaphore operation specified by @cmd is to be
1037  *	performed on the semaphore @sma.  The @sma may be NULL, e.g. for
1038  *	IPC_INFO or SEM_INFO.
1039  *	@sma contains the semaphore structure.  May be NULL.
1040  *	@cmd contains the operation to be performed.
1041  *	Return 0 if permission is granted.
1042  * @sem_semop
1043  *	Check permissions before performing operations on members of the
1044  *	semaphore set @sma.  If the @alter flag is nonzero, the semaphore set
1045  *      may be modified.
1046  *	@sma contains the semaphore structure.
1047  *	@sops contains the operations to perform.
1048  *	@nsops contains the number of operations to perform.
1049  *	@alter contains the flag indicating whether changes are to be made.
1050  *	Return 0 if permission is granted.
1051  *
1052  * @ptrace:
1053  *	Check permission before allowing the @parent process to trace the
1054  *	@child process.
1055  *	Security modules may also want to perform a process tracing check
1056  *	during an execve in the set_security or apply_creds hooks of
1057  *	binprm_security_ops if the process is being traced and its security
1058  *	attributes would be changed by the execve.
1059  *	@parent contains the task_struct structure for parent process.
1060  *	@child contains the task_struct structure for child process.
1061  *	Return 0 if permission is granted.
1062  * @capget:
1063  *	Get the @effective, @inheritable, and @permitted capability sets for
1064  *	the @target process.  The hook may also perform permission checking to
1065  *	determine if the current process is allowed to see the capability sets
1066  *	of the @target process.
1067  *	@target contains the task_struct structure for target process.
1068  *	@effective contains the effective capability set.
1069  *	@inheritable contains the inheritable capability set.
1070  *	@permitted contains the permitted capability set.
1071  *	Return 0 if the capability sets were successfully obtained.
1072  * @capset_check:
1073  *	Check permission before setting the @effective, @inheritable, and
1074  *	@permitted capability sets for the @target process.
1075  *	Caveat:  @target is also set to current if a set of processes is
1076  *	specified (i.e. all processes other than current and init or a
1077  *	particular process group).  Hence, the capset_set hook may need to
1078  *	revalidate permission to the actual target process.
1079  *	@target contains the task_struct structure for target process.
1080  *	@effective contains the effective capability set.
1081  *	@inheritable contains the inheritable capability set.
1082  *	@permitted contains the permitted capability set.
1083  *	Return 0 if permission is granted.
1084  * @capset_set:
1085  *	Set the @effective, @inheritable, and @permitted capability sets for
1086  *	the @target process.  Since capset_check cannot always check permission
1087  *	to the real @target process, this hook may also perform permission
1088  *	checking to determine if the current process is allowed to set the
1089  *	capability sets of the @target process.  However, this hook has no way
1090  *	of returning an error due to the structure of the sys_capset code.
1091  *	@target contains the task_struct structure for target process.
1092  *	@effective contains the effective capability set.
1093  *	@inheritable contains the inheritable capability set.
1094  *	@permitted contains the permitted capability set.
1095  * @capable:
1096  *	Check whether the @tsk process has the @cap capability.
1097  *	@tsk contains the task_struct for the process.
1098  *	@cap contains the capability <include/linux/capability.h>.
1099  *	Return 0 if the capability is granted for @tsk.
1100  * @acct:
1101  *	Check permission before enabling or disabling process accounting.  If
1102  *	accounting is being enabled, then @file refers to the open file used to
1103  *	store accounting records.  If accounting is being disabled, then @file
1104  *	is NULL.
1105  *	@file contains the file structure for the accounting file (may be NULL).
1106  *	Return 0 if permission is granted.
1107  * @sysctl:
1108  *	Check permission before accessing the @table sysctl variable in the
1109  *	manner specified by @op.
1110  *	@table contains the ctl_table structure for the sysctl variable.
1111  *	@op contains the operation (001 = search, 002 = write, 004 = read).
1112  *	Return 0 if permission is granted.
1113  * @syslog:
1114  *	Check permission before accessing the kernel message ring or changing
1115  *	logging to the console.
1116  *	See the syslog(2) manual page for an explanation of the @type values.
1117  *	@type contains the type of action.
1118  *	Return 0 if permission is granted.
1119  * @settime:
1120  *	Check permission to change the system time.
1121  *	struct timespec and timezone are defined in include/linux/time.h
1122  *	@ts contains new time
1123  *	@tz contains new timezone
1124  *	Return 0 if permission is granted.
1125  * @vm_enough_memory:
1126  *	Check permissions for allocating a new virtual mapping.
1127  *      @pages contains the number of pages.
1128  *	Return 0 if permission is granted.
1129  *
1130  * @register_security:
1131  * 	allow module stacking.
1132  * 	@name contains the name of the security module being stacked.
1133  * 	@ops contains a pointer to the struct security_operations of the module to stack.
1134  * @unregister_security:
1135  *	remove a stacked module.
1136  *	@name contains the name of the security module being unstacked.
1137  *	@ops contains a pointer to the struct security_operations of the module to unstack.
1138  *
1139  * @secid_to_secctx:
1140  *	Convert secid to security context.
1141  *	@secid contains the security ID.
1142  *	@secdata contains the pointer that stores the converted security context.
1143  *
1144  * @release_secctx:
1145  *	Release the security context.
1146  *	@secdata contains the security context.
1147  *	@seclen contains the length of the security context.
1148  *
1149  * This is the main security structure.
1150  */
1151 struct security_operations {
1152 	int (*ptrace) (struct task_struct * parent, struct task_struct * child);
1153 	int (*capget) (struct task_struct * target,
1154 		       kernel_cap_t * effective,
1155 		       kernel_cap_t * inheritable, kernel_cap_t * permitted);
1156 	int (*capset_check) (struct task_struct * target,
1157 			     kernel_cap_t * effective,
1158 			     kernel_cap_t * inheritable,
1159 			     kernel_cap_t * permitted);
1160 	void (*capset_set) (struct task_struct * target,
1161 			    kernel_cap_t * effective,
1162 			    kernel_cap_t * inheritable,
1163 			    kernel_cap_t * permitted);
1164 	int (*capable) (struct task_struct * tsk, int cap);
1165 	int (*acct) (struct file * file);
1166 	int (*sysctl) (struct ctl_table * table, int op);
1167 	int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
1168 	int (*quota_on) (struct dentry * dentry);
1169 	int (*syslog) (int type);
1170 	int (*settime) (struct timespec *ts, struct timezone *tz);
1171 	int (*vm_enough_memory) (long pages);
1172 
1173 	int (*bprm_alloc_security) (struct linux_binprm * bprm);
1174 	void (*bprm_free_security) (struct linux_binprm * bprm);
1175 	void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
1176 	void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
1177 	int (*bprm_set_security) (struct linux_binprm * bprm);
1178 	int (*bprm_check_security) (struct linux_binprm * bprm);
1179 	int (*bprm_secureexec) (struct linux_binprm * bprm);
1180 
1181 	int (*sb_alloc_security) (struct super_block * sb);
1182 	void (*sb_free_security) (struct super_block * sb);
1183 	int (*sb_copy_data)(struct file_system_type *type,
1184 			    void *orig, void *copy);
1185 	int (*sb_kern_mount) (struct super_block *sb, void *data);
1186 	int (*sb_statfs) (struct dentry *dentry);
1187 	int (*sb_mount) (char *dev_name, struct nameidata * nd,
1188 			 char *type, unsigned long flags, void *data);
1189 	int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
1190 	int (*sb_umount) (struct vfsmount * mnt, int flags);
1191 	void (*sb_umount_close) (struct vfsmount * mnt);
1192 	void (*sb_umount_busy) (struct vfsmount * mnt);
1193 	void (*sb_post_remount) (struct vfsmount * mnt,
1194 				 unsigned long flags, void *data);
1195 	void (*sb_post_mountroot) (void);
1196 	void (*sb_post_addmount) (struct vfsmount * mnt,
1197 				  struct nameidata * mountpoint_nd);
1198 	int (*sb_pivotroot) (struct nameidata * old_nd,
1199 			     struct nameidata * new_nd);
1200 	void (*sb_post_pivotroot) (struct nameidata * old_nd,
1201 				   struct nameidata * new_nd);
1202 
1203 	int (*inode_alloc_security) (struct inode *inode);
1204 	void (*inode_free_security) (struct inode *inode);
1205 	int (*inode_init_security) (struct inode *inode, struct inode *dir,
1206 				    char **name, void **value, size_t *len);
1207 	int (*inode_create) (struct inode *dir,
1208 	                     struct dentry *dentry, int mode);
1209 	int (*inode_link) (struct dentry *old_dentry,
1210 	                   struct inode *dir, struct dentry *new_dentry);
1211 	int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1212 	int (*inode_symlink) (struct inode *dir,
1213 	                      struct dentry *dentry, const char *old_name);
1214 	int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
1215 	int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1216 	int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1217 	                    int mode, dev_t dev);
1218 	int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1219 	                     struct inode *new_dir, struct dentry *new_dentry);
1220 	int (*inode_readlink) (struct dentry *dentry);
1221 	int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1222 	int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
1223 	int (*inode_setattr)	(struct dentry *dentry, struct iattr *attr);
1224 	int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1225         void (*inode_delete) (struct inode *inode);
1226 	int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
1227 			       size_t size, int flags);
1228 	void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
1229 				     size_t size, int flags);
1230 	int (*inode_getxattr) (struct dentry *dentry, char *name);
1231 	int (*inode_listxattr) (struct dentry *dentry);
1232 	int (*inode_removexattr) (struct dentry *dentry, char *name);
1233 	const char *(*inode_xattr_getsuffix) (void);
1234   	int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err);
1235   	int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1236   	int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
1237 
1238 	int (*file_permission) (struct file * file, int mask);
1239 	int (*file_alloc_security) (struct file * file);
1240 	void (*file_free_security) (struct file * file);
1241 	int (*file_ioctl) (struct file * file, unsigned int cmd,
1242 			   unsigned long arg);
1243 	int (*file_mmap) (struct file * file,
1244 			  unsigned long reqprot,
1245 			  unsigned long prot, unsigned long flags);
1246 	int (*file_mprotect) (struct vm_area_struct * vma,
1247 			      unsigned long reqprot,
1248 			      unsigned long prot);
1249 	int (*file_lock) (struct file * file, unsigned int cmd);
1250 	int (*file_fcntl) (struct file * file, unsigned int cmd,
1251 			   unsigned long arg);
1252 	int (*file_set_fowner) (struct file * file);
1253 	int (*file_send_sigiotask) (struct task_struct * tsk,
1254 				    struct fown_struct * fown, int sig);
1255 	int (*file_receive) (struct file * file);
1256 
1257 	int (*task_create) (unsigned long clone_flags);
1258 	int (*task_alloc_security) (struct task_struct * p);
1259 	void (*task_free_security) (struct task_struct * p);
1260 	int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
1261 	int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
1262 				 uid_t old_euid, uid_t old_suid, int flags);
1263 	int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
1264 	int (*task_setpgid) (struct task_struct * p, pid_t pgid);
1265 	int (*task_getpgid) (struct task_struct * p);
1266 	int (*task_getsid) (struct task_struct * p);
1267 	void (*task_getsecid) (struct task_struct * p, u32 * secid);
1268 	int (*task_setgroups) (struct group_info *group_info);
1269 	int (*task_setnice) (struct task_struct * p, int nice);
1270 	int (*task_setioprio) (struct task_struct * p, int ioprio);
1271 	int (*task_getioprio) (struct task_struct * p);
1272 	int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
1273 	int (*task_setscheduler) (struct task_struct * p, int policy,
1274 				  struct sched_param * lp);
1275 	int (*task_getscheduler) (struct task_struct * p);
1276 	int (*task_movememory) (struct task_struct * p);
1277 	int (*task_kill) (struct task_struct * p,
1278 			  struct siginfo * info, int sig, u32 secid);
1279 	int (*task_wait) (struct task_struct * p);
1280 	int (*task_prctl) (int option, unsigned long arg2,
1281 			   unsigned long arg3, unsigned long arg4,
1282 			   unsigned long arg5);
1283 	void (*task_reparent_to_init) (struct task_struct * p);
1284 	void (*task_to_inode)(struct task_struct *p, struct inode *inode);
1285 
1286 	int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
1287 
1288 	int (*msg_msg_alloc_security) (struct msg_msg * msg);
1289 	void (*msg_msg_free_security) (struct msg_msg * msg);
1290 
1291 	int (*msg_queue_alloc_security) (struct msg_queue * msq);
1292 	void (*msg_queue_free_security) (struct msg_queue * msq);
1293 	int (*msg_queue_associate) (struct msg_queue * msq, int msqflg);
1294 	int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd);
1295 	int (*msg_queue_msgsnd) (struct msg_queue * msq,
1296 				 struct msg_msg * msg, int msqflg);
1297 	int (*msg_queue_msgrcv) (struct msg_queue * msq,
1298 				 struct msg_msg * msg,
1299 				 struct task_struct * target,
1300 				 long type, int mode);
1301 
1302 	int (*shm_alloc_security) (struct shmid_kernel * shp);
1303 	void (*shm_free_security) (struct shmid_kernel * shp);
1304 	int (*shm_associate) (struct shmid_kernel * shp, int shmflg);
1305 	int (*shm_shmctl) (struct shmid_kernel * shp, int cmd);
1306 	int (*shm_shmat) (struct shmid_kernel * shp,
1307 			  char __user *shmaddr, int shmflg);
1308 
1309 	int (*sem_alloc_security) (struct sem_array * sma);
1310 	void (*sem_free_security) (struct sem_array * sma);
1311 	int (*sem_associate) (struct sem_array * sma, int semflg);
1312 	int (*sem_semctl) (struct sem_array * sma, int cmd);
1313 	int (*sem_semop) (struct sem_array * sma,
1314 			  struct sembuf * sops, unsigned nsops, int alter);
1315 
1316 	int (*netlink_send) (struct sock * sk, struct sk_buff * skb);
1317 	int (*netlink_recv) (struct sk_buff * skb, int cap);
1318 
1319 	/* allow module stacking */
1320 	int (*register_security) (const char *name,
1321 	                          struct security_operations *ops);
1322 	int (*unregister_security) (const char *name,
1323 	                            struct security_operations *ops);
1324 
1325 	void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1326 
1327  	int (*getprocattr)(struct task_struct *p, char *name, char **value);
1328  	int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1329 	int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen);
1330 	void (*release_secctx)(char *secdata, u32 seclen);
1331 
1332 #ifdef CONFIG_SECURITY_NETWORK
1333 	int (*unix_stream_connect) (struct socket * sock,
1334 				    struct socket * other, struct sock * newsk);
1335 	int (*unix_may_send) (struct socket * sock, struct socket * other);
1336 
1337 	int (*socket_create) (int family, int type, int protocol, int kern);
1338 	int (*socket_post_create) (struct socket * sock, int family,
1339 				   int type, int protocol, int kern);
1340 	int (*socket_bind) (struct socket * sock,
1341 			    struct sockaddr * address, int addrlen);
1342 	int (*socket_connect) (struct socket * sock,
1343 			       struct sockaddr * address, int addrlen);
1344 	int (*socket_listen) (struct socket * sock, int backlog);
1345 	int (*socket_accept) (struct socket * sock, struct socket * newsock);
1346 	void (*socket_post_accept) (struct socket * sock,
1347 				    struct socket * newsock);
1348 	int (*socket_sendmsg) (struct socket * sock,
1349 			       struct msghdr * msg, int size);
1350 	int (*socket_recvmsg) (struct socket * sock,
1351 			       struct msghdr * msg, int size, int flags);
1352 	int (*socket_getsockname) (struct socket * sock);
1353 	int (*socket_getpeername) (struct socket * sock);
1354 	int (*socket_getsockopt) (struct socket * sock, int level, int optname);
1355 	int (*socket_setsockopt) (struct socket * sock, int level, int optname);
1356 	int (*socket_shutdown) (struct socket * sock, int how);
1357 	int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb);
1358 	int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1359 	int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
1360 	int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1361 	void (*sk_free_security) (struct sock *sk);
1362 	void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
1363 	void (*sk_getsecid) (struct sock *sk, u32 *secid);
1364 	void (*sock_graft)(struct sock* sk, struct socket *parent);
1365 	int (*inet_conn_request)(struct sock *sk, struct sk_buff *skb,
1366 					struct request_sock *req);
1367 	void (*inet_csk_clone)(struct sock *newsk, const struct request_sock *req);
1368 	void (*inet_conn_established)(struct sock *sk, struct sk_buff *skb);
1369 	void (*req_classify_flow)(const struct request_sock *req, struct flowi *fl);
1370 #endif	/* CONFIG_SECURITY_NETWORK */
1371 
1372 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1373 	int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp,
1374 			struct xfrm_user_sec_ctx *sec_ctx);
1375 	int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new);
1376 	void (*xfrm_policy_free_security) (struct xfrm_policy *xp);
1377 	int (*xfrm_policy_delete_security) (struct xfrm_policy *xp);
1378 	int (*xfrm_state_alloc_security) (struct xfrm_state *x,
1379 		struct xfrm_user_sec_ctx *sec_ctx,
1380 		u32 secid);
1381 	void (*xfrm_state_free_security) (struct xfrm_state *x);
1382 	int (*xfrm_state_delete_security) (struct xfrm_state *x);
1383 	int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 fl_secid, u8 dir);
1384 	int (*xfrm_state_pol_flow_match)(struct xfrm_state *x,
1385 			struct xfrm_policy *xp, struct flowi *fl);
1386 	int (*xfrm_decode_session)(struct sk_buff *skb, u32 *secid, int ckall);
1387 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1388 
1389 	/* key management security hooks */
1390 #ifdef CONFIG_KEYS
1391 	int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags);
1392 	void (*key_free)(struct key *key);
1393 	int (*key_permission)(key_ref_t key_ref,
1394 			      struct task_struct *context,
1395 			      key_perm_t perm);
1396 
1397 #endif	/* CONFIG_KEYS */
1398 
1399 };
1400 
1401 /* global variables */
1402 extern struct security_operations *security_ops;
1403 
1404 /* inline stuff */
1405 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child)
1406 {
1407 	return security_ops->ptrace (parent, child);
1408 }
1409 
1410 static inline int security_capget (struct task_struct *target,
1411 				   kernel_cap_t *effective,
1412 				   kernel_cap_t *inheritable,
1413 				   kernel_cap_t *permitted)
1414 {
1415 	return security_ops->capget (target, effective, inheritable, permitted);
1416 }
1417 
1418 static inline int security_capset_check (struct task_struct *target,
1419 					 kernel_cap_t *effective,
1420 					 kernel_cap_t *inheritable,
1421 					 kernel_cap_t *permitted)
1422 {
1423 	return security_ops->capset_check (target, effective, inheritable, permitted);
1424 }
1425 
1426 static inline void security_capset_set (struct task_struct *target,
1427 					kernel_cap_t *effective,
1428 					kernel_cap_t *inheritable,
1429 					kernel_cap_t *permitted)
1430 {
1431 	security_ops->capset_set (target, effective, inheritable, permitted);
1432 }
1433 
1434 static inline int security_capable(struct task_struct *tsk, int cap)
1435 {
1436 	return security_ops->capable(tsk, cap);
1437 }
1438 
1439 static inline int security_acct (struct file *file)
1440 {
1441 	return security_ops->acct (file);
1442 }
1443 
1444 static inline int security_sysctl(struct ctl_table *table, int op)
1445 {
1446 	return security_ops->sysctl(table, op);
1447 }
1448 
1449 static inline int security_quotactl (int cmds, int type, int id,
1450 				     struct super_block *sb)
1451 {
1452 	return security_ops->quotactl (cmds, type, id, sb);
1453 }
1454 
1455 static inline int security_quota_on (struct dentry * dentry)
1456 {
1457 	return security_ops->quota_on (dentry);
1458 }
1459 
1460 static inline int security_syslog(int type)
1461 {
1462 	return security_ops->syslog(type);
1463 }
1464 
1465 static inline int security_settime(struct timespec *ts, struct timezone *tz)
1466 {
1467 	return security_ops->settime(ts, tz);
1468 }
1469 
1470 
1471 static inline int security_vm_enough_memory(long pages)
1472 {
1473 	return security_ops->vm_enough_memory(pages);
1474 }
1475 
1476 static inline int security_bprm_alloc (struct linux_binprm *bprm)
1477 {
1478 	return security_ops->bprm_alloc_security (bprm);
1479 }
1480 static inline void security_bprm_free (struct linux_binprm *bprm)
1481 {
1482 	security_ops->bprm_free_security (bprm);
1483 }
1484 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
1485 {
1486 	security_ops->bprm_apply_creds (bprm, unsafe);
1487 }
1488 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
1489 {
1490 	security_ops->bprm_post_apply_creds (bprm);
1491 }
1492 static inline int security_bprm_set (struct linux_binprm *bprm)
1493 {
1494 	return security_ops->bprm_set_security (bprm);
1495 }
1496 
1497 static inline int security_bprm_check (struct linux_binprm *bprm)
1498 {
1499 	return security_ops->bprm_check_security (bprm);
1500 }
1501 
1502 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
1503 {
1504 	return security_ops->bprm_secureexec (bprm);
1505 }
1506 
1507 static inline int security_sb_alloc (struct super_block *sb)
1508 {
1509 	return security_ops->sb_alloc_security (sb);
1510 }
1511 
1512 static inline void security_sb_free (struct super_block *sb)
1513 {
1514 	security_ops->sb_free_security (sb);
1515 }
1516 
1517 static inline int security_sb_copy_data (struct file_system_type *type,
1518 					 void *orig, void *copy)
1519 {
1520 	return security_ops->sb_copy_data (type, orig, copy);
1521 }
1522 
1523 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
1524 {
1525 	return security_ops->sb_kern_mount (sb, data);
1526 }
1527 
1528 static inline int security_sb_statfs (struct dentry *dentry)
1529 {
1530 	return security_ops->sb_statfs (dentry);
1531 }
1532 
1533 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
1534 				    char *type, unsigned long flags,
1535 				    void *data)
1536 {
1537 	return security_ops->sb_mount (dev_name, nd, type, flags, data);
1538 }
1539 
1540 static inline int security_sb_check_sb (struct vfsmount *mnt,
1541 					struct nameidata *nd)
1542 {
1543 	return security_ops->sb_check_sb (mnt, nd);
1544 }
1545 
1546 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
1547 {
1548 	return security_ops->sb_umount (mnt, flags);
1549 }
1550 
1551 static inline void security_sb_umount_close (struct vfsmount *mnt)
1552 {
1553 	security_ops->sb_umount_close (mnt);
1554 }
1555 
1556 static inline void security_sb_umount_busy (struct vfsmount *mnt)
1557 {
1558 	security_ops->sb_umount_busy (mnt);
1559 }
1560 
1561 static inline void security_sb_post_remount (struct vfsmount *mnt,
1562 					     unsigned long flags, void *data)
1563 {
1564 	security_ops->sb_post_remount (mnt, flags, data);
1565 }
1566 
1567 static inline void security_sb_post_mountroot (void)
1568 {
1569 	security_ops->sb_post_mountroot ();
1570 }
1571 
1572 static inline void security_sb_post_addmount (struct vfsmount *mnt,
1573 					      struct nameidata *mountpoint_nd)
1574 {
1575 	security_ops->sb_post_addmount (mnt, mountpoint_nd);
1576 }
1577 
1578 static inline int security_sb_pivotroot (struct nameidata *old_nd,
1579 					 struct nameidata *new_nd)
1580 {
1581 	return security_ops->sb_pivotroot (old_nd, new_nd);
1582 }
1583 
1584 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
1585 					       struct nameidata *new_nd)
1586 {
1587 	security_ops->sb_post_pivotroot (old_nd, new_nd);
1588 }
1589 
1590 static inline int security_inode_alloc (struct inode *inode)
1591 {
1592 	inode->i_security = NULL;
1593 	return security_ops->inode_alloc_security (inode);
1594 }
1595 
1596 static inline void security_inode_free (struct inode *inode)
1597 {
1598 	security_ops->inode_free_security (inode);
1599 }
1600 
1601 static inline int security_inode_init_security (struct inode *inode,
1602 						struct inode *dir,
1603 						char **name,
1604 						void **value,
1605 						size_t *len)
1606 {
1607 	if (unlikely (IS_PRIVATE (inode)))
1608 		return -EOPNOTSUPP;
1609 	return security_ops->inode_init_security (inode, dir, name, value, len);
1610 }
1611 
1612 static inline int security_inode_create (struct inode *dir,
1613 					 struct dentry *dentry,
1614 					 int mode)
1615 {
1616 	if (unlikely (IS_PRIVATE (dir)))
1617 		return 0;
1618 	return security_ops->inode_create (dir, dentry, mode);
1619 }
1620 
1621 static inline int security_inode_link (struct dentry *old_dentry,
1622 				       struct inode *dir,
1623 				       struct dentry *new_dentry)
1624 {
1625 	if (unlikely (IS_PRIVATE (old_dentry->d_inode)))
1626 		return 0;
1627 	return security_ops->inode_link (old_dentry, dir, new_dentry);
1628 }
1629 
1630 static inline int security_inode_unlink (struct inode *dir,
1631 					 struct dentry *dentry)
1632 {
1633 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1634 		return 0;
1635 	return security_ops->inode_unlink (dir, dentry);
1636 }
1637 
1638 static inline int security_inode_symlink (struct inode *dir,
1639 					  struct dentry *dentry,
1640 					  const char *old_name)
1641 {
1642 	if (unlikely (IS_PRIVATE (dir)))
1643 		return 0;
1644 	return security_ops->inode_symlink (dir, dentry, old_name);
1645 }
1646 
1647 static inline int security_inode_mkdir (struct inode *dir,
1648 					struct dentry *dentry,
1649 					int mode)
1650 {
1651 	if (unlikely (IS_PRIVATE (dir)))
1652 		return 0;
1653 	return security_ops->inode_mkdir (dir, dentry, mode);
1654 }
1655 
1656 static inline int security_inode_rmdir (struct inode *dir,
1657 					struct dentry *dentry)
1658 {
1659 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1660 		return 0;
1661 	return security_ops->inode_rmdir (dir, dentry);
1662 }
1663 
1664 static inline int security_inode_mknod (struct inode *dir,
1665 					struct dentry *dentry,
1666 					int mode, dev_t dev)
1667 {
1668 	if (unlikely (IS_PRIVATE (dir)))
1669 		return 0;
1670 	return security_ops->inode_mknod (dir, dentry, mode, dev);
1671 }
1672 
1673 static inline int security_inode_rename (struct inode *old_dir,
1674 					 struct dentry *old_dentry,
1675 					 struct inode *new_dir,
1676 					 struct dentry *new_dentry)
1677 {
1678         if (unlikely (IS_PRIVATE (old_dentry->d_inode) ||
1679             (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode))))
1680 		return 0;
1681 	return security_ops->inode_rename (old_dir, old_dentry,
1682 					   new_dir, new_dentry);
1683 }
1684 
1685 static inline int security_inode_readlink (struct dentry *dentry)
1686 {
1687 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1688 		return 0;
1689 	return security_ops->inode_readlink (dentry);
1690 }
1691 
1692 static inline int security_inode_follow_link (struct dentry *dentry,
1693 					      struct nameidata *nd)
1694 {
1695 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1696 		return 0;
1697 	return security_ops->inode_follow_link (dentry, nd);
1698 }
1699 
1700 static inline int security_inode_permission (struct inode *inode, int mask,
1701 					     struct nameidata *nd)
1702 {
1703 	if (unlikely (IS_PRIVATE (inode)))
1704 		return 0;
1705 	return security_ops->inode_permission (inode, mask, nd);
1706 }
1707 
1708 static inline int security_inode_setattr (struct dentry *dentry,
1709 					  struct iattr *attr)
1710 {
1711 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1712 		return 0;
1713 	return security_ops->inode_setattr (dentry, attr);
1714 }
1715 
1716 static inline int security_inode_getattr (struct vfsmount *mnt,
1717 					  struct dentry *dentry)
1718 {
1719 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1720 		return 0;
1721 	return security_ops->inode_getattr (mnt, dentry);
1722 }
1723 
1724 static inline void security_inode_delete (struct inode *inode)
1725 {
1726 	if (unlikely (IS_PRIVATE (inode)))
1727 		return;
1728 	security_ops->inode_delete (inode);
1729 }
1730 
1731 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
1732 					   void *value, size_t size, int flags)
1733 {
1734 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1735 		return 0;
1736 	return security_ops->inode_setxattr (dentry, name, value, size, flags);
1737 }
1738 
1739 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
1740 						void *value, size_t size, int flags)
1741 {
1742 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1743 		return;
1744 	security_ops->inode_post_setxattr (dentry, name, value, size, flags);
1745 }
1746 
1747 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
1748 {
1749 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1750 		return 0;
1751 	return security_ops->inode_getxattr (dentry, name);
1752 }
1753 
1754 static inline int security_inode_listxattr (struct dentry *dentry)
1755 {
1756 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1757 		return 0;
1758 	return security_ops->inode_listxattr (dentry);
1759 }
1760 
1761 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
1762 {
1763 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1764 		return 0;
1765 	return security_ops->inode_removexattr (dentry, name);
1766 }
1767 
1768 static inline const char *security_inode_xattr_getsuffix(void)
1769 {
1770 	return security_ops->inode_xattr_getsuffix();
1771 }
1772 
1773 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
1774 {
1775 	if (unlikely (IS_PRIVATE (inode)))
1776 		return 0;
1777 	return security_ops->inode_getsecurity(inode, name, buffer, size, err);
1778 }
1779 
1780 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1781 {
1782 	if (unlikely (IS_PRIVATE (inode)))
1783 		return 0;
1784 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
1785 }
1786 
1787 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1788 {
1789 	if (unlikely (IS_PRIVATE (inode)))
1790 		return 0;
1791 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
1792 }
1793 
1794 static inline int security_file_permission (struct file *file, int mask)
1795 {
1796 	return security_ops->file_permission (file, mask);
1797 }
1798 
1799 static inline int security_file_alloc (struct file *file)
1800 {
1801 	return security_ops->file_alloc_security (file);
1802 }
1803 
1804 static inline void security_file_free (struct file *file)
1805 {
1806 	security_ops->file_free_security (file);
1807 }
1808 
1809 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
1810 				       unsigned long arg)
1811 {
1812 	return security_ops->file_ioctl (file, cmd, arg);
1813 }
1814 
1815 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
1816 				      unsigned long prot,
1817 				      unsigned long flags)
1818 {
1819 	return security_ops->file_mmap (file, reqprot, prot, flags);
1820 }
1821 
1822 static inline int security_file_mprotect (struct vm_area_struct *vma,
1823 					  unsigned long reqprot,
1824 					  unsigned long prot)
1825 {
1826 	return security_ops->file_mprotect (vma, reqprot, prot);
1827 }
1828 
1829 static inline int security_file_lock (struct file *file, unsigned int cmd)
1830 {
1831 	return security_ops->file_lock (file, cmd);
1832 }
1833 
1834 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
1835 				       unsigned long arg)
1836 {
1837 	return security_ops->file_fcntl (file, cmd, arg);
1838 }
1839 
1840 static inline int security_file_set_fowner (struct file *file)
1841 {
1842 	return security_ops->file_set_fowner (file);
1843 }
1844 
1845 static inline int security_file_send_sigiotask (struct task_struct *tsk,
1846 						struct fown_struct *fown,
1847 						int sig)
1848 {
1849 	return security_ops->file_send_sigiotask (tsk, fown, sig);
1850 }
1851 
1852 static inline int security_file_receive (struct file *file)
1853 {
1854 	return security_ops->file_receive (file);
1855 }
1856 
1857 static inline int security_task_create (unsigned long clone_flags)
1858 {
1859 	return security_ops->task_create (clone_flags);
1860 }
1861 
1862 static inline int security_task_alloc (struct task_struct *p)
1863 {
1864 	return security_ops->task_alloc_security (p);
1865 }
1866 
1867 static inline void security_task_free (struct task_struct *p)
1868 {
1869 	security_ops->task_free_security (p);
1870 }
1871 
1872 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
1873 					int flags)
1874 {
1875 	return security_ops->task_setuid (id0, id1, id2, flags);
1876 }
1877 
1878 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
1879 					     uid_t old_suid, int flags)
1880 {
1881 	return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags);
1882 }
1883 
1884 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
1885 					int flags)
1886 {
1887 	return security_ops->task_setgid (id0, id1, id2, flags);
1888 }
1889 
1890 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
1891 {
1892 	return security_ops->task_setpgid (p, pgid);
1893 }
1894 
1895 static inline int security_task_getpgid (struct task_struct *p)
1896 {
1897 	return security_ops->task_getpgid (p);
1898 }
1899 
1900 static inline int security_task_getsid (struct task_struct *p)
1901 {
1902 	return security_ops->task_getsid (p);
1903 }
1904 
1905 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
1906 {
1907 	security_ops->task_getsecid (p, secid);
1908 }
1909 
1910 static inline int security_task_setgroups (struct group_info *group_info)
1911 {
1912 	return security_ops->task_setgroups (group_info);
1913 }
1914 
1915 static inline int security_task_setnice (struct task_struct *p, int nice)
1916 {
1917 	return security_ops->task_setnice (p, nice);
1918 }
1919 
1920 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
1921 {
1922 	return security_ops->task_setioprio (p, ioprio);
1923 }
1924 
1925 static inline int security_task_getioprio (struct task_struct *p)
1926 {
1927 	return security_ops->task_getioprio (p);
1928 }
1929 
1930 static inline int security_task_setrlimit (unsigned int resource,
1931 					   struct rlimit *new_rlim)
1932 {
1933 	return security_ops->task_setrlimit (resource, new_rlim);
1934 }
1935 
1936 static inline int security_task_setscheduler (struct task_struct *p,
1937 					      int policy,
1938 					      struct sched_param *lp)
1939 {
1940 	return security_ops->task_setscheduler (p, policy, lp);
1941 }
1942 
1943 static inline int security_task_getscheduler (struct task_struct *p)
1944 {
1945 	return security_ops->task_getscheduler (p);
1946 }
1947 
1948 static inline int security_task_movememory (struct task_struct *p)
1949 {
1950 	return security_ops->task_movememory (p);
1951 }
1952 
1953 static inline int security_task_kill (struct task_struct *p,
1954 				      struct siginfo *info, int sig,
1955 				      u32 secid)
1956 {
1957 	return security_ops->task_kill (p, info, sig, secid);
1958 }
1959 
1960 static inline int security_task_wait (struct task_struct *p)
1961 {
1962 	return security_ops->task_wait (p);
1963 }
1964 
1965 static inline int security_task_prctl (int option, unsigned long arg2,
1966 				       unsigned long arg3,
1967 				       unsigned long arg4,
1968 				       unsigned long arg5)
1969 {
1970 	return security_ops->task_prctl (option, arg2, arg3, arg4, arg5);
1971 }
1972 
1973 static inline void security_task_reparent_to_init (struct task_struct *p)
1974 {
1975 	security_ops->task_reparent_to_init (p);
1976 }
1977 
1978 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
1979 {
1980 	security_ops->task_to_inode(p, inode);
1981 }
1982 
1983 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
1984 					   short flag)
1985 {
1986 	return security_ops->ipc_permission (ipcp, flag);
1987 }
1988 
1989 static inline int security_msg_msg_alloc (struct msg_msg * msg)
1990 {
1991 	return security_ops->msg_msg_alloc_security (msg);
1992 }
1993 
1994 static inline void security_msg_msg_free (struct msg_msg * msg)
1995 {
1996 	security_ops->msg_msg_free_security(msg);
1997 }
1998 
1999 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2000 {
2001 	return security_ops->msg_queue_alloc_security (msq);
2002 }
2003 
2004 static inline void security_msg_queue_free (struct msg_queue *msq)
2005 {
2006 	security_ops->msg_queue_free_security (msq);
2007 }
2008 
2009 static inline int security_msg_queue_associate (struct msg_queue * msq,
2010 						int msqflg)
2011 {
2012 	return security_ops->msg_queue_associate (msq, msqflg);
2013 }
2014 
2015 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2016 {
2017 	return security_ops->msg_queue_msgctl (msq, cmd);
2018 }
2019 
2020 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2021 					     struct msg_msg * msg, int msqflg)
2022 {
2023 	return security_ops->msg_queue_msgsnd (msq, msg, msqflg);
2024 }
2025 
2026 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2027 					     struct msg_msg * msg,
2028 					     struct task_struct * target,
2029 					     long type, int mode)
2030 {
2031 	return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode);
2032 }
2033 
2034 static inline int security_shm_alloc (struct shmid_kernel *shp)
2035 {
2036 	return security_ops->shm_alloc_security (shp);
2037 }
2038 
2039 static inline void security_shm_free (struct shmid_kernel *shp)
2040 {
2041 	security_ops->shm_free_security (shp);
2042 }
2043 
2044 static inline int security_shm_associate (struct shmid_kernel * shp,
2045 					  int shmflg)
2046 {
2047 	return security_ops->shm_associate(shp, shmflg);
2048 }
2049 
2050 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2051 {
2052 	return security_ops->shm_shmctl (shp, cmd);
2053 }
2054 
2055 static inline int security_shm_shmat (struct shmid_kernel * shp,
2056 				      char __user *shmaddr, int shmflg)
2057 {
2058 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
2059 }
2060 
2061 static inline int security_sem_alloc (struct sem_array *sma)
2062 {
2063 	return security_ops->sem_alloc_security (sma);
2064 }
2065 
2066 static inline void security_sem_free (struct sem_array *sma)
2067 {
2068 	security_ops->sem_free_security (sma);
2069 }
2070 
2071 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2072 {
2073 	return security_ops->sem_associate (sma, semflg);
2074 }
2075 
2076 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2077 {
2078 	return security_ops->sem_semctl(sma, cmd);
2079 }
2080 
2081 static inline int security_sem_semop (struct sem_array * sma,
2082 				      struct sembuf * sops, unsigned nsops,
2083 				      int alter)
2084 {
2085 	return security_ops->sem_semop(sma, sops, nsops, alter);
2086 }
2087 
2088 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2089 {
2090 	if (unlikely (inode && IS_PRIVATE (inode)))
2091 		return;
2092 	security_ops->d_instantiate (dentry, inode);
2093 }
2094 
2095 static inline int security_getprocattr(struct task_struct *p, char *name, char **value)
2096 {
2097 	return security_ops->getprocattr(p, name, value);
2098 }
2099 
2100 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2101 {
2102 	return security_ops->setprocattr(p, name, value, size);
2103 }
2104 
2105 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb)
2106 {
2107 	return security_ops->netlink_send(sk, skb);
2108 }
2109 
2110 static inline int security_netlink_recv(struct sk_buff * skb, int cap)
2111 {
2112 	return security_ops->netlink_recv(skb, cap);
2113 }
2114 
2115 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2116 {
2117 	return security_ops->secid_to_secctx(secid, secdata, seclen);
2118 }
2119 
2120 static inline void security_release_secctx(char *secdata, u32 seclen)
2121 {
2122 	return security_ops->release_secctx(secdata, seclen);
2123 }
2124 
2125 /* prototypes */
2126 extern int security_init	(void);
2127 extern int register_security	(struct security_operations *ops);
2128 extern int unregister_security	(struct security_operations *ops);
2129 extern int mod_reg_security	(const char *name, struct security_operations *ops);
2130 extern int mod_unreg_security	(const char *name, struct security_operations *ops);
2131 extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
2132 					     struct dentry *parent, void *data,
2133 					     const struct file_operations *fops);
2134 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
2135 extern void securityfs_remove(struct dentry *dentry);
2136 
2137 
2138 #else /* CONFIG_SECURITY */
2139 
2140 /*
2141  * This is the default capabilities functionality.  Most of these functions
2142  * are just stubbed out, but a few must call the proper capable code.
2143  */
2144 
2145 static inline int security_init(void)
2146 {
2147 	return 0;
2148 }
2149 
2150 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child)
2151 {
2152 	return cap_ptrace (parent, child);
2153 }
2154 
2155 static inline int security_capget (struct task_struct *target,
2156 				   kernel_cap_t *effective,
2157 				   kernel_cap_t *inheritable,
2158 				   kernel_cap_t *permitted)
2159 {
2160 	return cap_capget (target, effective, inheritable, permitted);
2161 }
2162 
2163 static inline int security_capset_check (struct task_struct *target,
2164 					 kernel_cap_t *effective,
2165 					 kernel_cap_t *inheritable,
2166 					 kernel_cap_t *permitted)
2167 {
2168 	return cap_capset_check (target, effective, inheritable, permitted);
2169 }
2170 
2171 static inline void security_capset_set (struct task_struct *target,
2172 					kernel_cap_t *effective,
2173 					kernel_cap_t *inheritable,
2174 					kernel_cap_t *permitted)
2175 {
2176 	cap_capset_set (target, effective, inheritable, permitted);
2177 }
2178 
2179 static inline int security_capable(struct task_struct *tsk, int cap)
2180 {
2181 	return cap_capable(tsk, cap);
2182 }
2183 
2184 static inline int security_acct (struct file *file)
2185 {
2186 	return 0;
2187 }
2188 
2189 static inline int security_sysctl(struct ctl_table *table, int op)
2190 {
2191 	return 0;
2192 }
2193 
2194 static inline int security_quotactl (int cmds, int type, int id,
2195 				     struct super_block * sb)
2196 {
2197 	return 0;
2198 }
2199 
2200 static inline int security_quota_on (struct dentry * dentry)
2201 {
2202 	return 0;
2203 }
2204 
2205 static inline int security_syslog(int type)
2206 {
2207 	return cap_syslog(type);
2208 }
2209 
2210 static inline int security_settime(struct timespec *ts, struct timezone *tz)
2211 {
2212 	return cap_settime(ts, tz);
2213 }
2214 
2215 static inline int security_vm_enough_memory(long pages)
2216 {
2217 	return cap_vm_enough_memory(pages);
2218 }
2219 
2220 static inline int security_bprm_alloc (struct linux_binprm *bprm)
2221 {
2222 	return 0;
2223 }
2224 
2225 static inline void security_bprm_free (struct linux_binprm *bprm)
2226 { }
2227 
2228 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
2229 {
2230 	cap_bprm_apply_creds (bprm, unsafe);
2231 }
2232 
2233 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
2234 {
2235 	return;
2236 }
2237 
2238 static inline int security_bprm_set (struct linux_binprm *bprm)
2239 {
2240 	return cap_bprm_set_security (bprm);
2241 }
2242 
2243 static inline int security_bprm_check (struct linux_binprm *bprm)
2244 {
2245 	return 0;
2246 }
2247 
2248 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
2249 {
2250 	return cap_bprm_secureexec(bprm);
2251 }
2252 
2253 static inline int security_sb_alloc (struct super_block *sb)
2254 {
2255 	return 0;
2256 }
2257 
2258 static inline void security_sb_free (struct super_block *sb)
2259 { }
2260 
2261 static inline int security_sb_copy_data (struct file_system_type *type,
2262 					 void *orig, void *copy)
2263 {
2264 	return 0;
2265 }
2266 
2267 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
2268 {
2269 	return 0;
2270 }
2271 
2272 static inline int security_sb_statfs (struct dentry *dentry)
2273 {
2274 	return 0;
2275 }
2276 
2277 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
2278 				    char *type, unsigned long flags,
2279 				    void *data)
2280 {
2281 	return 0;
2282 }
2283 
2284 static inline int security_sb_check_sb (struct vfsmount *mnt,
2285 					struct nameidata *nd)
2286 {
2287 	return 0;
2288 }
2289 
2290 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
2291 {
2292 	return 0;
2293 }
2294 
2295 static inline void security_sb_umount_close (struct vfsmount *mnt)
2296 { }
2297 
2298 static inline void security_sb_umount_busy (struct vfsmount *mnt)
2299 { }
2300 
2301 static inline void security_sb_post_remount (struct vfsmount *mnt,
2302 					     unsigned long flags, void *data)
2303 { }
2304 
2305 static inline void security_sb_post_mountroot (void)
2306 { }
2307 
2308 static inline void security_sb_post_addmount (struct vfsmount *mnt,
2309 					      struct nameidata *mountpoint_nd)
2310 { }
2311 
2312 static inline int security_sb_pivotroot (struct nameidata *old_nd,
2313 					 struct nameidata *new_nd)
2314 {
2315 	return 0;
2316 }
2317 
2318 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
2319 					       struct nameidata *new_nd)
2320 { }
2321 
2322 static inline int security_inode_alloc (struct inode *inode)
2323 {
2324 	return 0;
2325 }
2326 
2327 static inline void security_inode_free (struct inode *inode)
2328 { }
2329 
2330 static inline int security_inode_init_security (struct inode *inode,
2331 						struct inode *dir,
2332 						char **name,
2333 						void **value,
2334 						size_t *len)
2335 {
2336 	return -EOPNOTSUPP;
2337 }
2338 
2339 static inline int security_inode_create (struct inode *dir,
2340 					 struct dentry *dentry,
2341 					 int mode)
2342 {
2343 	return 0;
2344 }
2345 
2346 static inline int security_inode_link (struct dentry *old_dentry,
2347 				       struct inode *dir,
2348 				       struct dentry *new_dentry)
2349 {
2350 	return 0;
2351 }
2352 
2353 static inline int security_inode_unlink (struct inode *dir,
2354 					 struct dentry *dentry)
2355 {
2356 	return 0;
2357 }
2358 
2359 static inline int security_inode_symlink (struct inode *dir,
2360 					  struct dentry *dentry,
2361 					  const char *old_name)
2362 {
2363 	return 0;
2364 }
2365 
2366 static inline int security_inode_mkdir (struct inode *dir,
2367 					struct dentry *dentry,
2368 					int mode)
2369 {
2370 	return 0;
2371 }
2372 
2373 static inline int security_inode_rmdir (struct inode *dir,
2374 					struct dentry *dentry)
2375 {
2376 	return 0;
2377 }
2378 
2379 static inline int security_inode_mknod (struct inode *dir,
2380 					struct dentry *dentry,
2381 					int mode, dev_t dev)
2382 {
2383 	return 0;
2384 }
2385 
2386 static inline int security_inode_rename (struct inode *old_dir,
2387 					 struct dentry *old_dentry,
2388 					 struct inode *new_dir,
2389 					 struct dentry *new_dentry)
2390 {
2391 	return 0;
2392 }
2393 
2394 static inline int security_inode_readlink (struct dentry *dentry)
2395 {
2396 	return 0;
2397 }
2398 
2399 static inline int security_inode_follow_link (struct dentry *dentry,
2400 					      struct nameidata *nd)
2401 {
2402 	return 0;
2403 }
2404 
2405 static inline int security_inode_permission (struct inode *inode, int mask,
2406 					     struct nameidata *nd)
2407 {
2408 	return 0;
2409 }
2410 
2411 static inline int security_inode_setattr (struct dentry *dentry,
2412 					  struct iattr *attr)
2413 {
2414 	return 0;
2415 }
2416 
2417 static inline int security_inode_getattr (struct vfsmount *mnt,
2418 					  struct dentry *dentry)
2419 {
2420 	return 0;
2421 }
2422 
2423 static inline void security_inode_delete (struct inode *inode)
2424 { }
2425 
2426 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
2427 					   void *value, size_t size, int flags)
2428 {
2429 	return cap_inode_setxattr(dentry, name, value, size, flags);
2430 }
2431 
2432 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
2433 						 void *value, size_t size, int flags)
2434 { }
2435 
2436 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
2437 {
2438 	return 0;
2439 }
2440 
2441 static inline int security_inode_listxattr (struct dentry *dentry)
2442 {
2443 	return 0;
2444 }
2445 
2446 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
2447 {
2448 	return cap_inode_removexattr(dentry, name);
2449 }
2450 
2451 static inline const char *security_inode_xattr_getsuffix (void)
2452 {
2453 	return NULL ;
2454 }
2455 
2456 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2457 {
2458 	return -EOPNOTSUPP;
2459 }
2460 
2461 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2462 {
2463 	return -EOPNOTSUPP;
2464 }
2465 
2466 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2467 {
2468 	return 0;
2469 }
2470 
2471 static inline int security_file_permission (struct file *file, int mask)
2472 {
2473 	return 0;
2474 }
2475 
2476 static inline int security_file_alloc (struct file *file)
2477 {
2478 	return 0;
2479 }
2480 
2481 static inline void security_file_free (struct file *file)
2482 { }
2483 
2484 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
2485 				       unsigned long arg)
2486 {
2487 	return 0;
2488 }
2489 
2490 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
2491 				      unsigned long prot,
2492 				      unsigned long flags)
2493 {
2494 	return 0;
2495 }
2496 
2497 static inline int security_file_mprotect (struct vm_area_struct *vma,
2498 					  unsigned long reqprot,
2499 					  unsigned long prot)
2500 {
2501 	return 0;
2502 }
2503 
2504 static inline int security_file_lock (struct file *file, unsigned int cmd)
2505 {
2506 	return 0;
2507 }
2508 
2509 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
2510 				       unsigned long arg)
2511 {
2512 	return 0;
2513 }
2514 
2515 static inline int security_file_set_fowner (struct file *file)
2516 {
2517 	return 0;
2518 }
2519 
2520 static inline int security_file_send_sigiotask (struct task_struct *tsk,
2521 						struct fown_struct *fown,
2522 						int sig)
2523 {
2524 	return 0;
2525 }
2526 
2527 static inline int security_file_receive (struct file *file)
2528 {
2529 	return 0;
2530 }
2531 
2532 static inline int security_task_create (unsigned long clone_flags)
2533 {
2534 	return 0;
2535 }
2536 
2537 static inline int security_task_alloc (struct task_struct *p)
2538 {
2539 	return 0;
2540 }
2541 
2542 static inline void security_task_free (struct task_struct *p)
2543 { }
2544 
2545 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
2546 					int flags)
2547 {
2548 	return 0;
2549 }
2550 
2551 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
2552 					     uid_t old_suid, int flags)
2553 {
2554 	return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags);
2555 }
2556 
2557 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
2558 					int flags)
2559 {
2560 	return 0;
2561 }
2562 
2563 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
2564 {
2565 	return 0;
2566 }
2567 
2568 static inline int security_task_getpgid (struct task_struct *p)
2569 {
2570 	return 0;
2571 }
2572 
2573 static inline int security_task_getsid (struct task_struct *p)
2574 {
2575 	return 0;
2576 }
2577 
2578 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
2579 { }
2580 
2581 static inline int security_task_setgroups (struct group_info *group_info)
2582 {
2583 	return 0;
2584 }
2585 
2586 static inline int security_task_setnice (struct task_struct *p, int nice)
2587 {
2588 	return 0;
2589 }
2590 
2591 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
2592 {
2593 	return 0;
2594 }
2595 
2596 static inline int security_task_getioprio (struct task_struct *p)
2597 {
2598 	return 0;
2599 }
2600 
2601 static inline int security_task_setrlimit (unsigned int resource,
2602 					   struct rlimit *new_rlim)
2603 {
2604 	return 0;
2605 }
2606 
2607 static inline int security_task_setscheduler (struct task_struct *p,
2608 					      int policy,
2609 					      struct sched_param *lp)
2610 {
2611 	return 0;
2612 }
2613 
2614 static inline int security_task_getscheduler (struct task_struct *p)
2615 {
2616 	return 0;
2617 }
2618 
2619 static inline int security_task_movememory (struct task_struct *p)
2620 {
2621 	return 0;
2622 }
2623 
2624 static inline int security_task_kill (struct task_struct *p,
2625 				      struct siginfo *info, int sig,
2626 				      u32 secid)
2627 {
2628 	return 0;
2629 }
2630 
2631 static inline int security_task_wait (struct task_struct *p)
2632 {
2633 	return 0;
2634 }
2635 
2636 static inline int security_task_prctl (int option, unsigned long arg2,
2637 				       unsigned long arg3,
2638 				       unsigned long arg4,
2639 				       unsigned long arg5)
2640 {
2641 	return 0;
2642 }
2643 
2644 static inline void security_task_reparent_to_init (struct task_struct *p)
2645 {
2646 	cap_task_reparent_to_init (p);
2647 }
2648 
2649 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2650 { }
2651 
2652 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
2653 					   short flag)
2654 {
2655 	return 0;
2656 }
2657 
2658 static inline int security_msg_msg_alloc (struct msg_msg * msg)
2659 {
2660 	return 0;
2661 }
2662 
2663 static inline void security_msg_msg_free (struct msg_msg * msg)
2664 { }
2665 
2666 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2667 {
2668 	return 0;
2669 }
2670 
2671 static inline void security_msg_queue_free (struct msg_queue *msq)
2672 { }
2673 
2674 static inline int security_msg_queue_associate (struct msg_queue * msq,
2675 						int msqflg)
2676 {
2677 	return 0;
2678 }
2679 
2680 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2681 {
2682 	return 0;
2683 }
2684 
2685 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2686 					     struct msg_msg * msg, int msqflg)
2687 {
2688 	return 0;
2689 }
2690 
2691 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2692 					     struct msg_msg * msg,
2693 					     struct task_struct * target,
2694 					     long type, int mode)
2695 {
2696 	return 0;
2697 }
2698 
2699 static inline int security_shm_alloc (struct shmid_kernel *shp)
2700 {
2701 	return 0;
2702 }
2703 
2704 static inline void security_shm_free (struct shmid_kernel *shp)
2705 { }
2706 
2707 static inline int security_shm_associate (struct shmid_kernel * shp,
2708 					  int shmflg)
2709 {
2710 	return 0;
2711 }
2712 
2713 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2714 {
2715 	return 0;
2716 }
2717 
2718 static inline int security_shm_shmat (struct shmid_kernel * shp,
2719 				      char __user *shmaddr, int shmflg)
2720 {
2721 	return 0;
2722 }
2723 
2724 static inline int security_sem_alloc (struct sem_array *sma)
2725 {
2726 	return 0;
2727 }
2728 
2729 static inline void security_sem_free (struct sem_array *sma)
2730 { }
2731 
2732 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2733 {
2734 	return 0;
2735 }
2736 
2737 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2738 {
2739 	return 0;
2740 }
2741 
2742 static inline int security_sem_semop (struct sem_array * sma,
2743 				      struct sembuf * sops, unsigned nsops,
2744 				      int alter)
2745 {
2746 	return 0;
2747 }
2748 
2749 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2750 { }
2751 
2752 static inline int security_getprocattr(struct task_struct *p, char *name, char **value)
2753 {
2754 	return -EINVAL;
2755 }
2756 
2757 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2758 {
2759 	return -EINVAL;
2760 }
2761 
2762 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb)
2763 {
2764 	return cap_netlink_send (sk, skb);
2765 }
2766 
2767 static inline int security_netlink_recv (struct sk_buff *skb, int cap)
2768 {
2769 	return cap_netlink_recv (skb, cap);
2770 }
2771 
2772 static inline struct dentry *securityfs_create_dir(const char *name,
2773 					struct dentry *parent)
2774 {
2775 	return ERR_PTR(-ENODEV);
2776 }
2777 
2778 static inline struct dentry *securityfs_create_file(const char *name,
2779 						mode_t mode,
2780 						struct dentry *parent,
2781 						void *data,
2782 						struct file_operations *fops)
2783 {
2784 	return ERR_PTR(-ENODEV);
2785 }
2786 
2787 static inline void securityfs_remove(struct dentry *dentry)
2788 {
2789 }
2790 
2791 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2792 {
2793 	return -EOPNOTSUPP;
2794 }
2795 
2796 static inline void security_release_secctx(char *secdata, u32 seclen)
2797 {
2798 }
2799 #endif	/* CONFIG_SECURITY */
2800 
2801 #ifdef CONFIG_SECURITY_NETWORK
2802 static inline int security_unix_stream_connect(struct socket * sock,
2803 					       struct socket * other,
2804 					       struct sock * newsk)
2805 {
2806 	return security_ops->unix_stream_connect(sock, other, newsk);
2807 }
2808 
2809 
2810 static inline int security_unix_may_send(struct socket * sock,
2811 					 struct socket * other)
2812 {
2813 	return security_ops->unix_may_send(sock, other);
2814 }
2815 
2816 static inline int security_socket_create (int family, int type,
2817 					  int protocol, int kern)
2818 {
2819 	return security_ops->socket_create(family, type, protocol, kern);
2820 }
2821 
2822 static inline int security_socket_post_create(struct socket * sock,
2823 					      int family,
2824 					      int type,
2825 					      int protocol, int kern)
2826 {
2827 	return security_ops->socket_post_create(sock, family, type,
2828 						protocol, kern);
2829 }
2830 
2831 static inline int security_socket_bind(struct socket * sock,
2832 				       struct sockaddr * address,
2833 				       int addrlen)
2834 {
2835 	return security_ops->socket_bind(sock, address, addrlen);
2836 }
2837 
2838 static inline int security_socket_connect(struct socket * sock,
2839 					  struct sockaddr * address,
2840 					  int addrlen)
2841 {
2842 	return security_ops->socket_connect(sock, address, addrlen);
2843 }
2844 
2845 static inline int security_socket_listen(struct socket * sock, int backlog)
2846 {
2847 	return security_ops->socket_listen(sock, backlog);
2848 }
2849 
2850 static inline int security_socket_accept(struct socket * sock,
2851 					 struct socket * newsock)
2852 {
2853 	return security_ops->socket_accept(sock, newsock);
2854 }
2855 
2856 static inline void security_socket_post_accept(struct socket * sock,
2857 					       struct socket * newsock)
2858 {
2859 	security_ops->socket_post_accept(sock, newsock);
2860 }
2861 
2862 static inline int security_socket_sendmsg(struct socket * sock,
2863 					  struct msghdr * msg, int size)
2864 {
2865 	return security_ops->socket_sendmsg(sock, msg, size);
2866 }
2867 
2868 static inline int security_socket_recvmsg(struct socket * sock,
2869 					  struct msghdr * msg, int size,
2870 					  int flags)
2871 {
2872 	return security_ops->socket_recvmsg(sock, msg, size, flags);
2873 }
2874 
2875 static inline int security_socket_getsockname(struct socket * sock)
2876 {
2877 	return security_ops->socket_getsockname(sock);
2878 }
2879 
2880 static inline int security_socket_getpeername(struct socket * sock)
2881 {
2882 	return security_ops->socket_getpeername(sock);
2883 }
2884 
2885 static inline int security_socket_getsockopt(struct socket * sock,
2886 					     int level, int optname)
2887 {
2888 	return security_ops->socket_getsockopt(sock, level, optname);
2889 }
2890 
2891 static inline int security_socket_setsockopt(struct socket * sock,
2892 					     int level, int optname)
2893 {
2894 	return security_ops->socket_setsockopt(sock, level, optname);
2895 }
2896 
2897 static inline int security_socket_shutdown(struct socket * sock, int how)
2898 {
2899 	return security_ops->socket_shutdown(sock, how);
2900 }
2901 
2902 static inline int security_sock_rcv_skb (struct sock * sk,
2903 					 struct sk_buff * skb)
2904 {
2905 	return security_ops->socket_sock_rcv_skb (sk, skb);
2906 }
2907 
2908 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2909 						    int __user *optlen, unsigned len)
2910 {
2911 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
2912 }
2913 
2914 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2915 {
2916 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
2917 }
2918 
2919 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2920 {
2921 	return security_ops->sk_alloc_security(sk, family, priority);
2922 }
2923 
2924 static inline void security_sk_free(struct sock *sk)
2925 {
2926 	return security_ops->sk_free_security(sk);
2927 }
2928 
2929 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
2930 {
2931 	return security_ops->sk_clone_security(sk, newsk);
2932 }
2933 
2934 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2935 {
2936 	security_ops->sk_getsecid(sk, &fl->secid);
2937 }
2938 
2939 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2940 {
2941 	security_ops->req_classify_flow(req, fl);
2942 }
2943 
2944 static inline void security_sock_graft(struct sock* sk, struct socket *parent)
2945 {
2946 	security_ops->sock_graft(sk, parent);
2947 }
2948 
2949 static inline int security_inet_conn_request(struct sock *sk,
2950 			struct sk_buff *skb, struct request_sock *req)
2951 {
2952 	return security_ops->inet_conn_request(sk, skb, req);
2953 }
2954 
2955 static inline void security_inet_csk_clone(struct sock *newsk,
2956 			const struct request_sock *req)
2957 {
2958 	security_ops->inet_csk_clone(newsk, req);
2959 }
2960 
2961 static inline void security_inet_conn_established(struct sock *sk,
2962 			struct sk_buff *skb)
2963 {
2964 	security_ops->inet_conn_established(sk, skb);
2965 }
2966 #else	/* CONFIG_SECURITY_NETWORK */
2967 static inline int security_unix_stream_connect(struct socket * sock,
2968 					       struct socket * other,
2969 					       struct sock * newsk)
2970 {
2971 	return 0;
2972 }
2973 
2974 static inline int security_unix_may_send(struct socket * sock,
2975 					 struct socket * other)
2976 {
2977 	return 0;
2978 }
2979 
2980 static inline int security_socket_create (int family, int type,
2981 					  int protocol, int kern)
2982 {
2983 	return 0;
2984 }
2985 
2986 static inline int security_socket_post_create(struct socket * sock,
2987 					      int family,
2988 					      int type,
2989 					      int protocol, int kern)
2990 {
2991 	return 0;
2992 }
2993 
2994 static inline int security_socket_bind(struct socket * sock,
2995 				       struct sockaddr * address,
2996 				       int addrlen)
2997 {
2998 	return 0;
2999 }
3000 
3001 static inline int security_socket_connect(struct socket * sock,
3002 					  struct sockaddr * address,
3003 					  int addrlen)
3004 {
3005 	return 0;
3006 }
3007 
3008 static inline int security_socket_listen(struct socket * sock, int backlog)
3009 {
3010 	return 0;
3011 }
3012 
3013 static inline int security_socket_accept(struct socket * sock,
3014 					 struct socket * newsock)
3015 {
3016 	return 0;
3017 }
3018 
3019 static inline void security_socket_post_accept(struct socket * sock,
3020 					       struct socket * newsock)
3021 {
3022 }
3023 
3024 static inline int security_socket_sendmsg(struct socket * sock,
3025 					  struct msghdr * msg, int size)
3026 {
3027 	return 0;
3028 }
3029 
3030 static inline int security_socket_recvmsg(struct socket * sock,
3031 					  struct msghdr * msg, int size,
3032 					  int flags)
3033 {
3034 	return 0;
3035 }
3036 
3037 static inline int security_socket_getsockname(struct socket * sock)
3038 {
3039 	return 0;
3040 }
3041 
3042 static inline int security_socket_getpeername(struct socket * sock)
3043 {
3044 	return 0;
3045 }
3046 
3047 static inline int security_socket_getsockopt(struct socket * sock,
3048 					     int level, int optname)
3049 {
3050 	return 0;
3051 }
3052 
3053 static inline int security_socket_setsockopt(struct socket * sock,
3054 					     int level, int optname)
3055 {
3056 	return 0;
3057 }
3058 
3059 static inline int security_socket_shutdown(struct socket * sock, int how)
3060 {
3061 	return 0;
3062 }
3063 static inline int security_sock_rcv_skb (struct sock * sk,
3064 					 struct sk_buff * skb)
3065 {
3066 	return 0;
3067 }
3068 
3069 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3070 						    int __user *optlen, unsigned len)
3071 {
3072 	return -ENOPROTOOPT;
3073 }
3074 
3075 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3076 {
3077 	return -ENOPROTOOPT;
3078 }
3079 
3080 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
3081 {
3082 	return 0;
3083 }
3084 
3085 static inline void security_sk_free(struct sock *sk)
3086 {
3087 }
3088 
3089 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
3090 {
3091 }
3092 
3093 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
3094 {
3095 }
3096 
3097 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
3098 {
3099 }
3100 
3101 static inline void security_sock_graft(struct sock* sk, struct socket *parent)
3102 {
3103 }
3104 
3105 static inline int security_inet_conn_request(struct sock *sk,
3106 			struct sk_buff *skb, struct request_sock *req)
3107 {
3108 	return 0;
3109 }
3110 
3111 static inline void security_inet_csk_clone(struct sock *newsk,
3112 			const struct request_sock *req)
3113 {
3114 }
3115 
3116 static inline void security_inet_conn_established(struct sock *sk,
3117 			struct sk_buff *skb)
3118 {
3119 }
3120 #endif	/* CONFIG_SECURITY_NETWORK */
3121 
3122 #ifdef CONFIG_SECURITY_NETWORK_XFRM
3123 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3124 {
3125 	return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
3126 }
3127 
3128 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3129 {
3130 	return security_ops->xfrm_policy_clone_security(old, new);
3131 }
3132 
3133 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3134 {
3135 	security_ops->xfrm_policy_free_security(xp);
3136 }
3137 
3138 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3139 {
3140 	return security_ops->xfrm_policy_delete_security(xp);
3141 }
3142 
3143 static inline int security_xfrm_state_alloc(struct xfrm_state *x,
3144 			struct xfrm_user_sec_ctx *sec_ctx)
3145 {
3146 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
3147 }
3148 
3149 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
3150 				struct xfrm_sec_ctx *polsec, u32 secid)
3151 {
3152 	if (!polsec)
3153 		return 0;
3154 	/*
3155 	 * We want the context to be taken from secid which is usually
3156 	 * from the sock.
3157 	 */
3158 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
3159 }
3160 
3161 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3162 {
3163 	return security_ops->xfrm_state_delete_security(x);
3164 }
3165 
3166 static inline void security_xfrm_state_free(struct xfrm_state *x)
3167 {
3168 	security_ops->xfrm_state_free_security(x);
3169 }
3170 
3171 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
3172 {
3173 	return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
3174 }
3175 
3176 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
3177 			struct xfrm_policy *xp, struct flowi *fl)
3178 {
3179 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
3180 }
3181 
3182 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
3183 {
3184 	return security_ops->xfrm_decode_session(skb, secid, 1);
3185 }
3186 
3187 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
3188 {
3189 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
3190 
3191 	BUG_ON(rc);
3192 }
3193 #else	/* CONFIG_SECURITY_NETWORK_XFRM */
3194 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3195 {
3196 	return 0;
3197 }
3198 
3199 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3200 {
3201 	return 0;
3202 }
3203 
3204 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3205 {
3206 }
3207 
3208 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3209 {
3210 	return 0;
3211 }
3212 
3213 static inline int security_xfrm_state_alloc(struct xfrm_state *x,
3214 					struct xfrm_user_sec_ctx *sec_ctx)
3215 {
3216 	return 0;
3217 }
3218 
3219 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
3220 					struct xfrm_sec_ctx *polsec, u32 secid)
3221 {
3222 	return 0;
3223 }
3224 
3225 static inline void security_xfrm_state_free(struct xfrm_state *x)
3226 {
3227 }
3228 
3229 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3230 {
3231 	return 0;
3232 }
3233 
3234 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
3235 {
3236 	return 0;
3237 }
3238 
3239 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
3240 			struct xfrm_policy *xp, struct flowi *fl)
3241 {
3242 	return 1;
3243 }
3244 
3245 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
3246 {
3247 	return 0;
3248 }
3249 
3250 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
3251 {
3252 }
3253 
3254 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
3255 
3256 #ifdef CONFIG_KEYS
3257 #ifdef CONFIG_SECURITY
3258 static inline int security_key_alloc(struct key *key,
3259 				     struct task_struct *tsk,
3260 				     unsigned long flags)
3261 {
3262 	return security_ops->key_alloc(key, tsk, flags);
3263 }
3264 
3265 static inline void security_key_free(struct key *key)
3266 {
3267 	security_ops->key_free(key);
3268 }
3269 
3270 static inline int security_key_permission(key_ref_t key_ref,
3271 					  struct task_struct *context,
3272 					  key_perm_t perm)
3273 {
3274 	return security_ops->key_permission(key_ref, context, perm);
3275 }
3276 
3277 #else
3278 
3279 static inline int security_key_alloc(struct key *key,
3280 				     struct task_struct *tsk,
3281 				     unsigned long flags)
3282 {
3283 	return 0;
3284 }
3285 
3286 static inline void security_key_free(struct key *key)
3287 {
3288 }
3289 
3290 static inline int security_key_permission(key_ref_t key_ref,
3291 					  struct task_struct *context,
3292 					  key_perm_t perm)
3293 {
3294 	return 0;
3295 }
3296 
3297 #endif
3298 #endif /* CONFIG_KEYS */
3299 
3300 #endif /* ! __LINUX_SECURITY_H */
3301 
3302