1 /* 2 * Linux Security plug 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <[email protected]> 5 * Copyright (C) 2001 Greg Kroah-Hartman <[email protected]> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]> 7 * Copyright (C) 2001 James Morris <[email protected]> 8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * Due to this file being licensed under the GPL there is controversy over 16 * whether this permits you to write a module that #includes this file 17 * without placing your module under the GPL. Please consult a lawyer for 18 * advice before doing this. 19 * 20 */ 21 22 #ifndef __LINUX_SECURITY_H 23 #define __LINUX_SECURITY_H 24 25 #include <linux/fs.h> 26 #include <linux/binfmts.h> 27 #include <linux/signal.h> 28 #include <linux/resource.h> 29 #include <linux/sem.h> 30 #include <linux/shm.h> 31 #include <linux/msg.h> 32 #include <linux/sched.h> 33 #include <linux/key.h> 34 #include <linux/xfrm.h> 35 #include <net/flow.h> 36 37 /* Maximum number of letters for an LSM name string */ 38 #define SECURITY_NAME_MAX 10 39 40 /* If capable should audit the security request */ 41 #define SECURITY_CAP_NOAUDIT 0 42 #define SECURITY_CAP_AUDIT 1 43 44 struct ctl_table; 45 struct audit_krule; 46 47 /* 48 * These functions are in security/capability.c and are used 49 * as the default capabilities functions 50 */ 51 extern int cap_capable(struct task_struct *tsk, const struct cred *cred, 52 int cap, int audit); 53 extern int cap_settime(struct timespec *ts, struct timezone *tz); 54 extern int cap_ptrace_may_access(struct task_struct *child, unsigned int mode); 55 extern int cap_ptrace_traceme(struct task_struct *parent); 56 extern int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 57 extern int cap_capset(struct cred *new, const struct cred *old, 58 const kernel_cap_t *effective, 59 const kernel_cap_t *inheritable, 60 const kernel_cap_t *permitted); 61 extern int cap_bprm_set_creds(struct linux_binprm *bprm); 62 extern int cap_bprm_secureexec(struct linux_binprm *bprm); 63 extern int cap_inode_setxattr(struct dentry *dentry, const char *name, 64 const void *value, size_t size, int flags); 65 extern int cap_inode_removexattr(struct dentry *dentry, const char *name); 66 extern int cap_inode_need_killpriv(struct dentry *dentry); 67 extern int cap_inode_killpriv(struct dentry *dentry); 68 extern int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags); 69 extern int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, 70 unsigned long arg4, unsigned long arg5); 71 extern int cap_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp); 72 extern int cap_task_setioprio(struct task_struct *p, int ioprio); 73 extern int cap_task_setnice(struct task_struct *p, int nice); 74 extern int cap_syslog(int type); 75 extern int cap_vm_enough_memory(struct mm_struct *mm, long pages); 76 77 struct msghdr; 78 struct sk_buff; 79 struct sock; 80 struct sockaddr; 81 struct socket; 82 struct flowi; 83 struct dst_entry; 84 struct xfrm_selector; 85 struct xfrm_policy; 86 struct xfrm_state; 87 struct xfrm_user_sec_ctx; 88 struct seq_file; 89 90 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); 91 extern int cap_netlink_recv(struct sk_buff *skb, int cap); 92 93 extern unsigned long mmap_min_addr; 94 /* 95 * Values used in the task_security_ops calls 96 */ 97 /* setuid or setgid, id0 == uid or gid */ 98 #define LSM_SETID_ID 1 99 100 /* setreuid or setregid, id0 == real, id1 == eff */ 101 #define LSM_SETID_RE 2 102 103 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ 104 #define LSM_SETID_RES 4 105 106 /* setfsuid or setfsgid, id0 == fsuid or fsgid */ 107 #define LSM_SETID_FS 8 108 109 /* forward declares to avoid warnings */ 110 struct sched_param; 111 struct request_sock; 112 113 /* bprm->unsafe reasons */ 114 #define LSM_UNSAFE_SHARE 1 115 #define LSM_UNSAFE_PTRACE 2 116 #define LSM_UNSAFE_PTRACE_CAP 4 117 118 #ifdef CONFIG_SECURITY 119 120 struct security_mnt_opts { 121 char **mnt_opts; 122 int *mnt_opts_flags; 123 int num_mnt_opts; 124 }; 125 126 static inline void security_init_mnt_opts(struct security_mnt_opts *opts) 127 { 128 opts->mnt_opts = NULL; 129 opts->mnt_opts_flags = NULL; 130 opts->num_mnt_opts = 0; 131 } 132 133 static inline void security_free_mnt_opts(struct security_mnt_opts *opts) 134 { 135 int i; 136 if (opts->mnt_opts) 137 for (i = 0; i < opts->num_mnt_opts; i++) 138 kfree(opts->mnt_opts[i]); 139 kfree(opts->mnt_opts); 140 opts->mnt_opts = NULL; 141 kfree(opts->mnt_opts_flags); 142 opts->mnt_opts_flags = NULL; 143 opts->num_mnt_opts = 0; 144 } 145 146 /** 147 * struct security_operations - main security structure 148 * 149 * Security module identifier. 150 * 151 * @name: 152 * A string that acts as a unique identifeir for the LSM with max number 153 * of characters = SECURITY_NAME_MAX. 154 * 155 * Security hooks for program execution operations. 156 * 157 * @bprm_set_creds: 158 * Save security information in the bprm->security field, typically based 159 * on information about the bprm->file, for later use by the apply_creds 160 * hook. This hook may also optionally check permissions (e.g. for 161 * transitions between security domains). 162 * This hook may be called multiple times during a single execve, e.g. for 163 * interpreters. The hook can tell whether it has already been called by 164 * checking to see if @bprm->security is non-NULL. If so, then the hook 165 * may decide either to retain the security information saved earlier or 166 * to replace it. 167 * @bprm contains the linux_binprm structure. 168 * Return 0 if the hook is successful and permission is granted. 169 * @bprm_check_security: 170 * This hook mediates the point when a search for a binary handler will 171 * begin. It allows a check the @bprm->security value which is set in the 172 * preceding set_creds call. The primary difference from set_creds is 173 * that the argv list and envp list are reliably available in @bprm. This 174 * hook may be called multiple times during a single execve; and in each 175 * pass set_creds is called first. 176 * @bprm contains the linux_binprm structure. 177 * Return 0 if the hook is successful and permission is granted. 178 * @bprm_committing_creds: 179 * Prepare to install the new security attributes of a process being 180 * transformed by an execve operation, based on the old credentials 181 * pointed to by @current->cred and the information set in @bprm->cred by 182 * the bprm_set_creds hook. @bprm points to the linux_binprm structure. 183 * This hook is a good place to perform state changes on the process such 184 * as closing open file descriptors to which access will no longer be 185 * granted when the attributes are changed. This is called immediately 186 * before commit_creds(). 187 * @bprm_committed_creds: 188 * Tidy up after the installation of the new security attributes of a 189 * process being transformed by an execve operation. The new credentials 190 * have, by this point, been set to @current->cred. @bprm points to the 191 * linux_binprm structure. This hook is a good place to perform state 192 * changes on the process such as clearing out non-inheritable signal 193 * state. This is called immediately after commit_creds(). 194 * @bprm_secureexec: 195 * Return a boolean value (0 or 1) indicating whether a "secure exec" 196 * is required. The flag is passed in the auxiliary table 197 * on the initial stack to the ELF interpreter to indicate whether libc 198 * should enable secure mode. 199 * @bprm contains the linux_binprm structure. 200 * 201 * Security hooks for filesystem operations. 202 * 203 * @sb_alloc_security: 204 * Allocate and attach a security structure to the sb->s_security field. 205 * The s_security field is initialized to NULL when the structure is 206 * allocated. 207 * @sb contains the super_block structure to be modified. 208 * Return 0 if operation was successful. 209 * @sb_free_security: 210 * Deallocate and clear the sb->s_security field. 211 * @sb contains the super_block structure to be modified. 212 * @sb_statfs: 213 * Check permission before obtaining filesystem statistics for the @mnt 214 * mountpoint. 215 * @dentry is a handle on the superblock for the filesystem. 216 * Return 0 if permission is granted. 217 * @sb_mount: 218 * Check permission before an object specified by @dev_name is mounted on 219 * the mount point named by @nd. For an ordinary mount, @dev_name 220 * identifies a device if the file system type requires a device. For a 221 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a 222 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the 223 * pathname of the object being mounted. 224 * @dev_name contains the name for object being mounted. 225 * @path contains the path for mount point object. 226 * @type contains the filesystem type. 227 * @flags contains the mount flags. 228 * @data contains the filesystem-specific data. 229 * Return 0 if permission is granted. 230 * @sb_copy_data: 231 * Allow mount option data to be copied prior to parsing by the filesystem, 232 * so that the security module can extract security-specific mount 233 * options cleanly (a filesystem may modify the data e.g. with strsep()). 234 * This also allows the original mount data to be stripped of security- 235 * specific options to avoid having to make filesystems aware of them. 236 * @type the type of filesystem being mounted. 237 * @orig the original mount data copied from userspace. 238 * @copy copied data which will be passed to the security module. 239 * Returns 0 if the copy was successful. 240 * @sb_check_sb: 241 * Check permission before the device with superblock @mnt->sb is mounted 242 * on the mount point named by @nd. 243 * @mnt contains the vfsmount for device being mounted. 244 * @path contains the path for the mount point. 245 * Return 0 if permission is granted. 246 * @sb_umount: 247 * Check permission before the @mnt file system is unmounted. 248 * @mnt contains the mounted file system. 249 * @flags contains the unmount flags, e.g. MNT_FORCE. 250 * Return 0 if permission is granted. 251 * @sb_umount_close: 252 * Close any files in the @mnt mounted filesystem that are held open by 253 * the security module. This hook is called during an umount operation 254 * prior to checking whether the filesystem is still busy. 255 * @mnt contains the mounted filesystem. 256 * @sb_umount_busy: 257 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening 258 * any files that were closed by umount_close. This hook is called during 259 * an umount operation if the umount fails after a call to the 260 * umount_close hook. 261 * @mnt contains the mounted filesystem. 262 * @sb_post_remount: 263 * Update the security module's state when a filesystem is remounted. 264 * This hook is only called if the remount was successful. 265 * @mnt contains the mounted file system. 266 * @flags contains the new filesystem flags. 267 * @data contains the filesystem-specific data. 268 * @sb_post_addmount: 269 * Update the security module's state when a filesystem is mounted. 270 * This hook is called any time a mount is successfully grafetd to 271 * the tree. 272 * @mnt contains the mounted filesystem. 273 * @mountpoint contains the path for the mount point. 274 * @sb_pivotroot: 275 * Check permission before pivoting the root filesystem. 276 * @old_path contains the path for the new location of the current root (put_old). 277 * @new_path contains the path for the new root (new_root). 278 * Return 0 if permission is granted. 279 * @sb_post_pivotroot: 280 * Update module state after a successful pivot. 281 * @old_path contains the path for the old root. 282 * @new_path contains the path for the new root. 283 * @sb_set_mnt_opts: 284 * Set the security relevant mount options used for a superblock 285 * @sb the superblock to set security mount options for 286 * @opts binary data structure containing all lsm mount data 287 * @sb_clone_mnt_opts: 288 * Copy all security options from a given superblock to another 289 * @oldsb old superblock which contain information to clone 290 * @newsb new superblock which needs filled in 291 * @sb_parse_opts_str: 292 * Parse a string of security data filling in the opts structure 293 * @options string containing all mount options known by the LSM 294 * @opts binary data structure usable by the LSM 295 * 296 * Security hooks for inode operations. 297 * 298 * @inode_alloc_security: 299 * Allocate and attach a security structure to @inode->i_security. The 300 * i_security field is initialized to NULL when the inode structure is 301 * allocated. 302 * @inode contains the inode structure. 303 * Return 0 if operation was successful. 304 * @inode_free_security: 305 * @inode contains the inode structure. 306 * Deallocate the inode security structure and set @inode->i_security to 307 * NULL. 308 * @inode_init_security: 309 * Obtain the security attribute name suffix and value to set on a newly 310 * created inode and set up the incore security field for the new inode. 311 * This hook is called by the fs code as part of the inode creation 312 * transaction and provides for atomic labeling of the inode, unlike 313 * the post_create/mkdir/... hooks called by the VFS. The hook function 314 * is expected to allocate the name and value via kmalloc, with the caller 315 * being responsible for calling kfree after using them. 316 * If the security module does not use security attributes or does 317 * not wish to put a security attribute on this particular inode, 318 * then it should return -EOPNOTSUPP to skip this processing. 319 * @inode contains the inode structure of the newly created inode. 320 * @dir contains the inode structure of the parent directory. 321 * @name will be set to the allocated name suffix (e.g. selinux). 322 * @value will be set to the allocated attribute value. 323 * @len will be set to the length of the value. 324 * Returns 0 if @name and @value have been successfully set, 325 * -EOPNOTSUPP if no security attribute is needed, or 326 * -ENOMEM on memory allocation failure. 327 * @inode_create: 328 * Check permission to create a regular file. 329 * @dir contains inode structure of the parent of the new file. 330 * @dentry contains the dentry structure for the file to be created. 331 * @mode contains the file mode of the file to be created. 332 * Return 0 if permission is granted. 333 * @inode_link: 334 * Check permission before creating a new hard link to a file. 335 * @old_dentry contains the dentry structure for an existing link to the file. 336 * @dir contains the inode structure of the parent directory of the new link. 337 * @new_dentry contains the dentry structure for the new link. 338 * Return 0 if permission is granted. 339 * @path_link: 340 * Check permission before creating a new hard link to a file. 341 * @old_dentry contains the dentry structure for an existing link 342 * to the file. 343 * @new_dir contains the path structure of the parent directory of 344 * the new link. 345 * @new_dentry contains the dentry structure for the new link. 346 * Return 0 if permission is granted. 347 * @inode_unlink: 348 * Check the permission to remove a hard link to a file. 349 * @dir contains the inode structure of parent directory of the file. 350 * @dentry contains the dentry structure for file to be unlinked. 351 * Return 0 if permission is granted. 352 * @path_unlink: 353 * Check the permission to remove a hard link to a file. 354 * @dir contains the path structure of parent directory of the file. 355 * @dentry contains the dentry structure for file to be unlinked. 356 * Return 0 if permission is granted. 357 * @inode_symlink: 358 * Check the permission to create a symbolic link to a file. 359 * @dir contains the inode structure of parent directory of the symbolic link. 360 * @dentry contains the dentry structure of the symbolic link. 361 * @old_name contains the pathname of file. 362 * Return 0 if permission is granted. 363 * @path_symlink: 364 * Check the permission to create a symbolic link to a file. 365 * @dir contains the path structure of parent directory of 366 * the symbolic link. 367 * @dentry contains the dentry structure of the symbolic link. 368 * @old_name contains the pathname of file. 369 * Return 0 if permission is granted. 370 * @inode_mkdir: 371 * Check permissions to create a new directory in the existing directory 372 * associated with inode strcture @dir. 373 * @dir containst the inode structure of parent of the directory to be created. 374 * @dentry contains the dentry structure of new directory. 375 * @mode contains the mode of new directory. 376 * Return 0 if permission is granted. 377 * @path_mkdir: 378 * Check permissions to create a new directory in the existing directory 379 * associated with path strcture @path. 380 * @dir containst the path structure of parent of the directory 381 * to be created. 382 * @dentry contains the dentry structure of new directory. 383 * @mode contains the mode of new directory. 384 * Return 0 if permission is granted. 385 * @inode_rmdir: 386 * Check the permission to remove a directory. 387 * @dir contains the inode structure of parent of the directory to be removed. 388 * @dentry contains the dentry structure of directory to be removed. 389 * Return 0 if permission is granted. 390 * @path_rmdir: 391 * Check the permission to remove a directory. 392 * @dir contains the path structure of parent of the directory to be 393 * removed. 394 * @dentry contains the dentry structure of directory to be removed. 395 * Return 0 if permission is granted. 396 * @inode_mknod: 397 * Check permissions when creating a special file (or a socket or a fifo 398 * file created via the mknod system call). Note that if mknod operation 399 * is being done for a regular file, then the create hook will be called 400 * and not this hook. 401 * @dir contains the inode structure of parent of the new file. 402 * @dentry contains the dentry structure of the new file. 403 * @mode contains the mode of the new file. 404 * @dev contains the device number. 405 * Return 0 if permission is granted. 406 * @path_mknod: 407 * Check permissions when creating a file. Note that this hook is called 408 * even if mknod operation is being done for a regular file. 409 * @dir contains the path structure of parent of the new file. 410 * @dentry contains the dentry structure of the new file. 411 * @mode contains the mode of the new file. 412 * @dev contains the undecoded device number. Use new_decode_dev() to get 413 * the decoded device number. 414 * Return 0 if permission is granted. 415 * @inode_rename: 416 * Check for permission to rename a file or directory. 417 * @old_dir contains the inode structure for parent of the old link. 418 * @old_dentry contains the dentry structure of the old link. 419 * @new_dir contains the inode structure for parent of the new link. 420 * @new_dentry contains the dentry structure of the new link. 421 * Return 0 if permission is granted. 422 * @path_rename: 423 * Check for permission to rename a file or directory. 424 * @old_dir contains the path structure for parent of the old link. 425 * @old_dentry contains the dentry structure of the old link. 426 * @new_dir contains the path structure for parent of the new link. 427 * @new_dentry contains the dentry structure of the new link. 428 * Return 0 if permission is granted. 429 * @inode_readlink: 430 * Check the permission to read the symbolic link. 431 * @dentry contains the dentry structure for the file link. 432 * Return 0 if permission is granted. 433 * @inode_follow_link: 434 * Check permission to follow a symbolic link when looking up a pathname. 435 * @dentry contains the dentry structure for the link. 436 * @nd contains the nameidata structure for the parent directory. 437 * Return 0 if permission is granted. 438 * @inode_permission: 439 * Check permission before accessing an inode. This hook is called by the 440 * existing Linux permission function, so a security module can use it to 441 * provide additional checking for existing Linux permission checks. 442 * Notice that this hook is called when a file is opened (as well as many 443 * other operations), whereas the file_security_ops permission hook is 444 * called when the actual read/write operations are performed. 445 * @inode contains the inode structure to check. 446 * @mask contains the permission mask. 447 * @nd contains the nameidata (may be NULL). 448 * Return 0 if permission is granted. 449 * @inode_setattr: 450 * Check permission before setting file attributes. Note that the kernel 451 * call to notify_change is performed from several locations, whenever 452 * file attributes change (such as when a file is truncated, chown/chmod 453 * operations, transferring disk quotas, etc). 454 * @dentry contains the dentry structure for the file. 455 * @attr is the iattr structure containing the new file attributes. 456 * Return 0 if permission is granted. 457 * @path_truncate: 458 * Check permission before truncating a file. 459 * @path contains the path structure for the file. 460 * @length is the new length of the file. 461 * @time_attrs is the flags passed to do_truncate(). 462 * Return 0 if permission is granted. 463 * @inode_getattr: 464 * Check permission before obtaining file attributes. 465 * @mnt is the vfsmount where the dentry was looked up 466 * @dentry contains the dentry structure for the file. 467 * Return 0 if permission is granted. 468 * @inode_delete: 469 * @inode contains the inode structure for deleted inode. 470 * This hook is called when a deleted inode is released (i.e. an inode 471 * with no hard links has its use count drop to zero). A security module 472 * can use this hook to release any persistent label associated with the 473 * inode. 474 * @inode_setxattr: 475 * Check permission before setting the extended attributes 476 * @value identified by @name for @dentry. 477 * Return 0 if permission is granted. 478 * @inode_post_setxattr: 479 * Update inode security field after successful setxattr operation. 480 * @value identified by @name for @dentry. 481 * @inode_getxattr: 482 * Check permission before obtaining the extended attributes 483 * identified by @name for @dentry. 484 * Return 0 if permission is granted. 485 * @inode_listxattr: 486 * Check permission before obtaining the list of extended attribute 487 * names for @dentry. 488 * Return 0 if permission is granted. 489 * @inode_removexattr: 490 * Check permission before removing the extended attribute 491 * identified by @name for @dentry. 492 * Return 0 if permission is granted. 493 * @inode_getsecurity: 494 * Retrieve a copy of the extended attribute representation of the 495 * security label associated with @name for @inode via @buffer. Note that 496 * @name is the remainder of the attribute name after the security prefix 497 * has been removed. @alloc is used to specify of the call should return a 498 * value via the buffer or just the value length Return size of buffer on 499 * success. 500 * @inode_setsecurity: 501 * Set the security label associated with @name for @inode from the 502 * extended attribute value @value. @size indicates the size of the 503 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. 504 * Note that @name is the remainder of the attribute name after the 505 * security. prefix has been removed. 506 * Return 0 on success. 507 * @inode_listsecurity: 508 * Copy the extended attribute names for the security labels 509 * associated with @inode into @buffer. The maximum size of @buffer 510 * is specified by @buffer_size. @buffer may be NULL to request 511 * the size of the buffer required. 512 * Returns number of bytes used/required on success. 513 * @inode_need_killpriv: 514 * Called when an inode has been changed. 515 * @dentry is the dentry being changed. 516 * Return <0 on error to abort the inode change operation. 517 * Return 0 if inode_killpriv does not need to be called. 518 * Return >0 if inode_killpriv does need to be called. 519 * @inode_killpriv: 520 * The setuid bit is being removed. Remove similar security labels. 521 * Called with the dentry->d_inode->i_mutex held. 522 * @dentry is the dentry being changed. 523 * Return 0 on success. If error is returned, then the operation 524 * causing setuid bit removal is failed. 525 * @inode_getsecid: 526 * Get the secid associated with the node. 527 * @inode contains a pointer to the inode. 528 * @secid contains a pointer to the location where result will be saved. 529 * In case of failure, @secid will be set to zero. 530 * 531 * Security hooks for file operations 532 * 533 * @file_permission: 534 * Check file permissions before accessing an open file. This hook is 535 * called by various operations that read or write files. A security 536 * module can use this hook to perform additional checking on these 537 * operations, e.g. to revalidate permissions on use to support privilege 538 * bracketing or policy changes. Notice that this hook is used when the 539 * actual read/write operations are performed, whereas the 540 * inode_security_ops hook is called when a file is opened (as well as 541 * many other operations). 542 * Caveat: Although this hook can be used to revalidate permissions for 543 * various system call operations that read or write files, it does not 544 * address the revalidation of permissions for memory-mapped files. 545 * Security modules must handle this separately if they need such 546 * revalidation. 547 * @file contains the file structure being accessed. 548 * @mask contains the requested permissions. 549 * Return 0 if permission is granted. 550 * @file_alloc_security: 551 * Allocate and attach a security structure to the file->f_security field. 552 * The security field is initialized to NULL when the structure is first 553 * created. 554 * @file contains the file structure to secure. 555 * Return 0 if the hook is successful and permission is granted. 556 * @file_free_security: 557 * Deallocate and free any security structures stored in file->f_security. 558 * @file contains the file structure being modified. 559 * @file_ioctl: 560 * @file contains the file structure. 561 * @cmd contains the operation to perform. 562 * @arg contains the operational arguments. 563 * Check permission for an ioctl operation on @file. Note that @arg can 564 * sometimes represents a user space pointer; in other cases, it may be a 565 * simple integer value. When @arg represents a user space pointer, it 566 * should never be used by the security module. 567 * Return 0 if permission is granted. 568 * @file_mmap : 569 * Check permissions for a mmap operation. The @file may be NULL, e.g. 570 * if mapping anonymous memory. 571 * @file contains the file structure for file to map (may be NULL). 572 * @reqprot contains the protection requested by the application. 573 * @prot contains the protection that will be applied by the kernel. 574 * @flags contains the operational flags. 575 * Return 0 if permission is granted. 576 * @file_mprotect: 577 * Check permissions before changing memory access permissions. 578 * @vma contains the memory region to modify. 579 * @reqprot contains the protection requested by the application. 580 * @prot contains the protection that will be applied by the kernel. 581 * Return 0 if permission is granted. 582 * @file_lock: 583 * Check permission before performing file locking operations. 584 * Note: this hook mediates both flock and fcntl style locks. 585 * @file contains the file structure. 586 * @cmd contains the posix-translated lock operation to perform 587 * (e.g. F_RDLCK, F_WRLCK). 588 * Return 0 if permission is granted. 589 * @file_fcntl: 590 * Check permission before allowing the file operation specified by @cmd 591 * from being performed on the file @file. Note that @arg can sometimes 592 * represents a user space pointer; in other cases, it may be a simple 593 * integer value. When @arg represents a user space pointer, it should 594 * never be used by the security module. 595 * @file contains the file structure. 596 * @cmd contains the operation to be performed. 597 * @arg contains the operational arguments. 598 * Return 0 if permission is granted. 599 * @file_set_fowner: 600 * Save owner security information (typically from current->security) in 601 * file->f_security for later use by the send_sigiotask hook. 602 * @file contains the file structure to update. 603 * Return 0 on success. 604 * @file_send_sigiotask: 605 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 606 * process @tsk. Note that this hook is sometimes called from interrupt. 607 * Note that the fown_struct, @fown, is never outside the context of a 608 * struct file, so the file structure (and associated security information) 609 * can always be obtained: 610 * container_of(fown, struct file, f_owner) 611 * @tsk contains the structure of task receiving signal. 612 * @fown contains the file owner information. 613 * @sig is the signal that will be sent. When 0, kernel sends SIGIO. 614 * Return 0 if permission is granted. 615 * @file_receive: 616 * This hook allows security modules to control the ability of a process 617 * to receive an open file descriptor via socket IPC. 618 * @file contains the file structure being received. 619 * Return 0 if permission is granted. 620 * 621 * Security hook for dentry 622 * 623 * @dentry_open 624 * Save open-time permission checking state for later use upon 625 * file_permission, and recheck access if anything has changed 626 * since inode_permission. 627 * 628 * Security hooks for task operations. 629 * 630 * @task_create: 631 * Check permission before creating a child process. See the clone(2) 632 * manual page for definitions of the @clone_flags. 633 * @clone_flags contains the flags indicating what should be shared. 634 * Return 0 if permission is granted. 635 * @cred_free: 636 * @cred points to the credentials. 637 * Deallocate and clear the cred->security field in a set of credentials. 638 * @cred_prepare: 639 * @new points to the new credentials. 640 * @old points to the original credentials. 641 * @gfp indicates the atomicity of any memory allocations. 642 * Prepare a new set of credentials by copying the data from the old set. 643 * @cred_commit: 644 * @new points to the new credentials. 645 * @old points to the original credentials. 646 * Install a new set of credentials. 647 * @kernel_act_as: 648 * Set the credentials for a kernel service to act as (subjective context). 649 * @new points to the credentials to be modified. 650 * @secid specifies the security ID to be set 651 * The current task must be the one that nominated @secid. 652 * Return 0 if successful. 653 * @kernel_create_files_as: 654 * Set the file creation context in a set of credentials to be the same as 655 * the objective context of the specified inode. 656 * @new points to the credentials to be modified. 657 * @inode points to the inode to use as a reference. 658 * The current task must be the one that nominated @inode. 659 * Return 0 if successful. 660 * @task_setuid: 661 * Check permission before setting one or more of the user identity 662 * attributes of the current process. The @flags parameter indicates 663 * which of the set*uid system calls invoked this hook and how to 664 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 665 * definitions at the beginning of this file for the @flags values and 666 * their meanings. 667 * @id0 contains a uid. 668 * @id1 contains a uid. 669 * @id2 contains a uid. 670 * @flags contains one of the LSM_SETID_* values. 671 * Return 0 if permission is granted. 672 * @task_fix_setuid: 673 * Update the module's state after setting one or more of the user 674 * identity attributes of the current process. The @flags parameter 675 * indicates which of the set*uid system calls invoked this hook. If 676 * @new is the set of credentials that will be installed. Modifications 677 * should be made to this rather than to @current->cred. 678 * @old is the set of credentials that are being replaces 679 * @flags contains one of the LSM_SETID_* values. 680 * Return 0 on success. 681 * @task_setgid: 682 * Check permission before setting one or more of the group identity 683 * attributes of the current process. The @flags parameter indicates 684 * which of the set*gid system calls invoked this hook and how to 685 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 686 * definitions at the beginning of this file for the @flags values and 687 * their meanings. 688 * @id0 contains a gid. 689 * @id1 contains a gid. 690 * @id2 contains a gid. 691 * @flags contains one of the LSM_SETID_* values. 692 * Return 0 if permission is granted. 693 * @task_setpgid: 694 * Check permission before setting the process group identifier of the 695 * process @p to @pgid. 696 * @p contains the task_struct for process being modified. 697 * @pgid contains the new pgid. 698 * Return 0 if permission is granted. 699 * @task_getpgid: 700 * Check permission before getting the process group identifier of the 701 * process @p. 702 * @p contains the task_struct for the process. 703 * Return 0 if permission is granted. 704 * @task_getsid: 705 * Check permission before getting the session identifier of the process 706 * @p. 707 * @p contains the task_struct for the process. 708 * Return 0 if permission is granted. 709 * @task_getsecid: 710 * Retrieve the security identifier of the process @p. 711 * @p contains the task_struct for the process and place is into @secid. 712 * In case of failure, @secid will be set to zero. 713 * 714 * @task_setgroups: 715 * Check permission before setting the supplementary group set of the 716 * current process. 717 * @group_info contains the new group information. 718 * Return 0 if permission is granted. 719 * @task_setnice: 720 * Check permission before setting the nice value of @p to @nice. 721 * @p contains the task_struct of process. 722 * @nice contains the new nice value. 723 * Return 0 if permission is granted. 724 * @task_setioprio 725 * Check permission before setting the ioprio value of @p to @ioprio. 726 * @p contains the task_struct of process. 727 * @ioprio contains the new ioprio value 728 * Return 0 if permission is granted. 729 * @task_getioprio 730 * Check permission before getting the ioprio value of @p. 731 * @p contains the task_struct of process. 732 * Return 0 if permission is granted. 733 * @task_setrlimit: 734 * Check permission before setting the resource limits of the current 735 * process for @resource to @new_rlim. The old resource limit values can 736 * be examined by dereferencing (current->signal->rlim + resource). 737 * @resource contains the resource whose limit is being set. 738 * @new_rlim contains the new limits for @resource. 739 * Return 0 if permission is granted. 740 * @task_setscheduler: 741 * Check permission before setting scheduling policy and/or parameters of 742 * process @p based on @policy and @lp. 743 * @p contains the task_struct for process. 744 * @policy contains the scheduling policy. 745 * @lp contains the scheduling parameters. 746 * Return 0 if permission is granted. 747 * @task_getscheduler: 748 * Check permission before obtaining scheduling information for process 749 * @p. 750 * @p contains the task_struct for process. 751 * Return 0 if permission is granted. 752 * @task_movememory 753 * Check permission before moving memory owned by process @p. 754 * @p contains the task_struct for process. 755 * Return 0 if permission is granted. 756 * @task_kill: 757 * Check permission before sending signal @sig to @p. @info can be NULL, 758 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or 759 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming 760 * from the kernel and should typically be permitted. 761 * SIGIO signals are handled separately by the send_sigiotask hook in 762 * file_security_ops. 763 * @p contains the task_struct for process. 764 * @info contains the signal information. 765 * @sig contains the signal value. 766 * @secid contains the sid of the process where the signal originated 767 * Return 0 if permission is granted. 768 * @task_wait: 769 * Check permission before allowing a process to reap a child process @p 770 * and collect its status information. 771 * @p contains the task_struct for process. 772 * Return 0 if permission is granted. 773 * @task_prctl: 774 * Check permission before performing a process control operation on the 775 * current process. 776 * @option contains the operation. 777 * @arg2 contains a argument. 778 * @arg3 contains a argument. 779 * @arg4 contains a argument. 780 * @arg5 contains a argument. 781 * Return -ENOSYS if no-one wanted to handle this op, any other value to 782 * cause prctl() to return immediately with that value. 783 * @task_to_inode: 784 * Set the security attributes for an inode based on an associated task's 785 * security attributes, e.g. for /proc/pid inodes. 786 * @p contains the task_struct for the task. 787 * @inode contains the inode structure for the inode. 788 * 789 * Security hooks for Netlink messaging. 790 * 791 * @netlink_send: 792 * Save security information for a netlink message so that permission 793 * checking can be performed when the message is processed. The security 794 * information can be saved using the eff_cap field of the 795 * netlink_skb_parms structure. Also may be used to provide fine 796 * grained control over message transmission. 797 * @sk associated sock of task sending the message., 798 * @skb contains the sk_buff structure for the netlink message. 799 * Return 0 if the information was successfully saved and message 800 * is allowed to be transmitted. 801 * @netlink_recv: 802 * Check permission before processing the received netlink message in 803 * @skb. 804 * @skb contains the sk_buff structure for the netlink message. 805 * @cap indicates the capability required 806 * Return 0 if permission is granted. 807 * 808 * Security hooks for Unix domain networking. 809 * 810 * @unix_stream_connect: 811 * Check permissions before establishing a Unix domain stream connection 812 * between @sock and @other. 813 * @sock contains the socket structure. 814 * @other contains the peer socket structure. 815 * Return 0 if permission is granted. 816 * @unix_may_send: 817 * Check permissions before connecting or sending datagrams from @sock to 818 * @other. 819 * @sock contains the socket structure. 820 * @sock contains the peer socket structure. 821 * Return 0 if permission is granted. 822 * 823 * The @unix_stream_connect and @unix_may_send hooks were necessary because 824 * Linux provides an alternative to the conventional file name space for Unix 825 * domain sockets. Whereas binding and connecting to sockets in the file name 826 * space is mediated by the typical file permissions (and caught by the mknod 827 * and permission hooks in inode_security_ops), binding and connecting to 828 * sockets in the abstract name space is completely unmediated. Sufficient 829 * control of Unix domain sockets in the abstract name space isn't possible 830 * using only the socket layer hooks, since we need to know the actual target 831 * socket, which is not looked up until we are inside the af_unix code. 832 * 833 * Security hooks for socket operations. 834 * 835 * @socket_create: 836 * Check permissions prior to creating a new socket. 837 * @family contains the requested protocol family. 838 * @type contains the requested communications type. 839 * @protocol contains the requested protocol. 840 * @kern set to 1 if a kernel socket. 841 * Return 0 if permission is granted. 842 * @socket_post_create: 843 * This hook allows a module to update or allocate a per-socket security 844 * structure. Note that the security field was not added directly to the 845 * socket structure, but rather, the socket security information is stored 846 * in the associated inode. Typically, the inode alloc_security hook will 847 * allocate and and attach security information to 848 * sock->inode->i_security. This hook may be used to update the 849 * sock->inode->i_security field with additional information that wasn't 850 * available when the inode was allocated. 851 * @sock contains the newly created socket structure. 852 * @family contains the requested protocol family. 853 * @type contains the requested communications type. 854 * @protocol contains the requested protocol. 855 * @kern set to 1 if a kernel socket. 856 * @socket_bind: 857 * Check permission before socket protocol layer bind operation is 858 * performed and the socket @sock is bound to the address specified in the 859 * @address parameter. 860 * @sock contains the socket structure. 861 * @address contains the address to bind to. 862 * @addrlen contains the length of address. 863 * Return 0 if permission is granted. 864 * @socket_connect: 865 * Check permission before socket protocol layer connect operation 866 * attempts to connect socket @sock to a remote address, @address. 867 * @sock contains the socket structure. 868 * @address contains the address of remote endpoint. 869 * @addrlen contains the length of address. 870 * Return 0 if permission is granted. 871 * @socket_listen: 872 * Check permission before socket protocol layer listen operation. 873 * @sock contains the socket structure. 874 * @backlog contains the maximum length for the pending connection queue. 875 * Return 0 if permission is granted. 876 * @socket_accept: 877 * Check permission before accepting a new connection. Note that the new 878 * socket, @newsock, has been created and some information copied to it, 879 * but the accept operation has not actually been performed. 880 * @sock contains the listening socket structure. 881 * @newsock contains the newly created server socket for connection. 882 * Return 0 if permission is granted. 883 * @socket_sendmsg: 884 * Check permission before transmitting a message to another socket. 885 * @sock contains the socket structure. 886 * @msg contains the message to be transmitted. 887 * @size contains the size of message. 888 * Return 0 if permission is granted. 889 * @socket_recvmsg: 890 * Check permission before receiving a message from a socket. 891 * @sock contains the socket structure. 892 * @msg contains the message structure. 893 * @size contains the size of message structure. 894 * @flags contains the operational flags. 895 * Return 0 if permission is granted. 896 * @socket_getsockname: 897 * Check permission before the local address (name) of the socket object 898 * @sock is retrieved. 899 * @sock contains the socket structure. 900 * Return 0 if permission is granted. 901 * @socket_getpeername: 902 * Check permission before the remote address (name) of a socket object 903 * @sock is retrieved. 904 * @sock contains the socket structure. 905 * Return 0 if permission is granted. 906 * @socket_getsockopt: 907 * Check permissions before retrieving the options associated with socket 908 * @sock. 909 * @sock contains the socket structure. 910 * @level contains the protocol level to retrieve option from. 911 * @optname contains the name of option to retrieve. 912 * Return 0 if permission is granted. 913 * @socket_setsockopt: 914 * Check permissions before setting the options associated with socket 915 * @sock. 916 * @sock contains the socket structure. 917 * @level contains the protocol level to set options for. 918 * @optname contains the name of the option to set. 919 * Return 0 if permission is granted. 920 * @socket_shutdown: 921 * Checks permission before all or part of a connection on the socket 922 * @sock is shut down. 923 * @sock contains the socket structure. 924 * @how contains the flag indicating how future sends and receives are handled. 925 * Return 0 if permission is granted. 926 * @socket_sock_rcv_skb: 927 * Check permissions on incoming network packets. This hook is distinct 928 * from Netfilter's IP input hooks since it is the first time that the 929 * incoming sk_buff @skb has been associated with a particular socket, @sk. 930 * @sk contains the sock (not socket) associated with the incoming sk_buff. 931 * @skb contains the incoming network data. 932 * @socket_getpeersec_stream: 933 * This hook allows the security module to provide peer socket security 934 * state for unix or connected tcp sockets to userspace via getsockopt 935 * SO_GETPEERSEC. For tcp sockets this can be meaningful if the 936 * socket is associated with an ipsec SA. 937 * @sock is the local socket. 938 * @optval userspace memory where the security state is to be copied. 939 * @optlen userspace int where the module should copy the actual length 940 * of the security state. 941 * @len as input is the maximum length to copy to userspace provided 942 * by the caller. 943 * Return 0 if all is well, otherwise, typical getsockopt return 944 * values. 945 * @socket_getpeersec_dgram: 946 * This hook allows the security module to provide peer socket security 947 * state for udp sockets on a per-packet basis to userspace via 948 * getsockopt SO_GETPEERSEC. The application must first have indicated 949 * the IP_PASSSEC option via getsockopt. It can then retrieve the 950 * security state returned by this hook for a packet via the SCM_SECURITY 951 * ancillary message type. 952 * @skb is the skbuff for the packet being queried 953 * @secdata is a pointer to a buffer in which to copy the security data 954 * @seclen is the maximum length for @secdata 955 * Return 0 on success, error on failure. 956 * @sk_alloc_security: 957 * Allocate and attach a security structure to the sk->sk_security field, 958 * which is used to copy security attributes between local stream sockets. 959 * @sk_free_security: 960 * Deallocate security structure. 961 * @sk_clone_security: 962 * Clone/copy security structure. 963 * @sk_getsecid: 964 * Retrieve the LSM-specific secid for the sock to enable caching of network 965 * authorizations. 966 * @sock_graft: 967 * Sets the socket's isec sid to the sock's sid. 968 * @inet_conn_request: 969 * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid. 970 * @inet_csk_clone: 971 * Sets the new child socket's sid to the openreq sid. 972 * @inet_conn_established: 973 * Sets the connection's peersid to the secmark on skb. 974 * @req_classify_flow: 975 * Sets the flow's sid to the openreq sid. 976 * 977 * Security hooks for XFRM operations. 978 * 979 * @xfrm_policy_alloc_security: 980 * @ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy 981 * Database used by the XFRM system. 982 * @sec_ctx contains the security context information being provided by 983 * the user-level policy update program (e.g., setkey). 984 * Allocate a security structure to the xp->security field; the security 985 * field is initialized to NULL when the xfrm_policy is allocated. 986 * Return 0 if operation was successful (memory to allocate, legal context) 987 * @xfrm_policy_clone_security: 988 * @old_ctx contains an existing xfrm_sec_ctx. 989 * @new_ctxp contains a new xfrm_sec_ctx being cloned from old. 990 * Allocate a security structure in new_ctxp that contains the 991 * information from the old_ctx structure. 992 * Return 0 if operation was successful (memory to allocate). 993 * @xfrm_policy_free_security: 994 * @ctx contains the xfrm_sec_ctx 995 * Deallocate xp->security. 996 * @xfrm_policy_delete_security: 997 * @ctx contains the xfrm_sec_ctx. 998 * Authorize deletion of xp->security. 999 * @xfrm_state_alloc_security: 1000 * @x contains the xfrm_state being added to the Security Association 1001 * Database by the XFRM system. 1002 * @sec_ctx contains the security context information being provided by 1003 * the user-level SA generation program (e.g., setkey or racoon). 1004 * @secid contains the secid from which to take the mls portion of the context. 1005 * Allocate a security structure to the x->security field; the security 1006 * field is initialized to NULL when the xfrm_state is allocated. Set the 1007 * context to correspond to either sec_ctx or polsec, with the mls portion 1008 * taken from secid in the latter case. 1009 * Return 0 if operation was successful (memory to allocate, legal context). 1010 * @xfrm_state_free_security: 1011 * @x contains the xfrm_state. 1012 * Deallocate x->security. 1013 * @xfrm_state_delete_security: 1014 * @x contains the xfrm_state. 1015 * Authorize deletion of x->security. 1016 * @xfrm_policy_lookup: 1017 * @ctx contains the xfrm_sec_ctx for which the access control is being 1018 * checked. 1019 * @fl_secid contains the flow security label that is used to authorize 1020 * access to the policy xp. 1021 * @dir contains the direction of the flow (input or output). 1022 * Check permission when a flow selects a xfrm_policy for processing 1023 * XFRMs on a packet. The hook is called when selecting either a 1024 * per-socket policy or a generic xfrm policy. 1025 * Return 0 if permission is granted, -ESRCH otherwise, or -errno 1026 * on other errors. 1027 * @xfrm_state_pol_flow_match: 1028 * @x contains the state to match. 1029 * @xp contains the policy to check for a match. 1030 * @fl contains the flow to check for a match. 1031 * Return 1 if there is a match. 1032 * @xfrm_decode_session: 1033 * @skb points to skb to decode. 1034 * @secid points to the flow key secid to set. 1035 * @ckall says if all xfrms used should be checked for same secid. 1036 * Return 0 if ckall is zero or all xfrms used have the same secid. 1037 * 1038 * Security hooks affecting all Key Management operations 1039 * 1040 * @key_alloc: 1041 * Permit allocation of a key and assign security data. Note that key does 1042 * not have a serial number assigned at this point. 1043 * @key points to the key. 1044 * @flags is the allocation flags 1045 * Return 0 if permission is granted, -ve error otherwise. 1046 * @key_free: 1047 * Notification of destruction; free security data. 1048 * @key points to the key. 1049 * No return value. 1050 * @key_permission: 1051 * See whether a specific operational right is granted to a process on a 1052 * key. 1053 * @key_ref refers to the key (key pointer + possession attribute bit). 1054 * @cred points to the credentials to provide the context against which to 1055 * evaluate the security data on the key. 1056 * @perm describes the combination of permissions required of this key. 1057 * Return 1 if permission granted, 0 if permission denied and -ve it the 1058 * normal permissions model should be effected. 1059 * @key_getsecurity: 1060 * Get a textual representation of the security context attached to a key 1061 * for the purposes of honouring KEYCTL_GETSECURITY. This function 1062 * allocates the storage for the NUL-terminated string and the caller 1063 * should free it. 1064 * @key points to the key to be queried. 1065 * @_buffer points to a pointer that should be set to point to the 1066 * resulting string (if no label or an error occurs). 1067 * Return the length of the string (including terminating NUL) or -ve if 1068 * an error. 1069 * May also return 0 (and a NULL buffer pointer) if there is no label. 1070 * 1071 * Security hooks affecting all System V IPC operations. 1072 * 1073 * @ipc_permission: 1074 * Check permissions for access to IPC 1075 * @ipcp contains the kernel IPC permission structure 1076 * @flag contains the desired (requested) permission set 1077 * Return 0 if permission is granted. 1078 * @ipc_getsecid: 1079 * Get the secid associated with the ipc object. 1080 * @ipcp contains the kernel IPC permission structure. 1081 * @secid contains a pointer to the location where result will be saved. 1082 * In case of failure, @secid will be set to zero. 1083 * 1084 * Security hooks for individual messages held in System V IPC message queues 1085 * @msg_msg_alloc_security: 1086 * Allocate and attach a security structure to the msg->security field. 1087 * The security field is initialized to NULL when the structure is first 1088 * created. 1089 * @msg contains the message structure to be modified. 1090 * Return 0 if operation was successful and permission is granted. 1091 * @msg_msg_free_security: 1092 * Deallocate the security structure for this message. 1093 * @msg contains the message structure to be modified. 1094 * 1095 * Security hooks for System V IPC Message Queues 1096 * 1097 * @msg_queue_alloc_security: 1098 * Allocate and attach a security structure to the 1099 * msq->q_perm.security field. The security field is initialized to 1100 * NULL when the structure is first created. 1101 * @msq contains the message queue structure to be modified. 1102 * Return 0 if operation was successful and permission is granted. 1103 * @msg_queue_free_security: 1104 * Deallocate security structure for this message queue. 1105 * @msq contains the message queue structure to be modified. 1106 * @msg_queue_associate: 1107 * Check permission when a message queue is requested through the 1108 * msgget system call. This hook is only called when returning the 1109 * message queue identifier for an existing message queue, not when a 1110 * new message queue is created. 1111 * @msq contains the message queue to act upon. 1112 * @msqflg contains the operation control flags. 1113 * Return 0 if permission is granted. 1114 * @msg_queue_msgctl: 1115 * Check permission when a message control operation specified by @cmd 1116 * is to be performed on the message queue @msq. 1117 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. 1118 * @msq contains the message queue to act upon. May be NULL. 1119 * @cmd contains the operation to be performed. 1120 * Return 0 if permission is granted. 1121 * @msg_queue_msgsnd: 1122 * Check permission before a message, @msg, is enqueued on the message 1123 * queue, @msq. 1124 * @msq contains the message queue to send message to. 1125 * @msg contains the message to be enqueued. 1126 * @msqflg contains operational flags. 1127 * Return 0 if permission is granted. 1128 * @msg_queue_msgrcv: 1129 * Check permission before a message, @msg, is removed from the message 1130 * queue, @msq. The @target task structure contains a pointer to the 1131 * process that will be receiving the message (not equal to the current 1132 * process when inline receives are being performed). 1133 * @msq contains the message queue to retrieve message from. 1134 * @msg contains the message destination. 1135 * @target contains the task structure for recipient process. 1136 * @type contains the type of message requested. 1137 * @mode contains the operational flags. 1138 * Return 0 if permission is granted. 1139 * 1140 * Security hooks for System V Shared Memory Segments 1141 * 1142 * @shm_alloc_security: 1143 * Allocate and attach a security structure to the shp->shm_perm.security 1144 * field. The security field is initialized to NULL when the structure is 1145 * first created. 1146 * @shp contains the shared memory structure to be modified. 1147 * Return 0 if operation was successful and permission is granted. 1148 * @shm_free_security: 1149 * Deallocate the security struct for this memory segment. 1150 * @shp contains the shared memory structure to be modified. 1151 * @shm_associate: 1152 * Check permission when a shared memory region is requested through the 1153 * shmget system call. This hook is only called when returning the shared 1154 * memory region identifier for an existing region, not when a new shared 1155 * memory region is created. 1156 * @shp contains the shared memory structure to be modified. 1157 * @shmflg contains the operation control flags. 1158 * Return 0 if permission is granted. 1159 * @shm_shmctl: 1160 * Check permission when a shared memory control operation specified by 1161 * @cmd is to be performed on the shared memory region @shp. 1162 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. 1163 * @shp contains shared memory structure to be modified. 1164 * @cmd contains the operation to be performed. 1165 * Return 0 if permission is granted. 1166 * @shm_shmat: 1167 * Check permissions prior to allowing the shmat system call to attach the 1168 * shared memory segment @shp to the data segment of the calling process. 1169 * The attaching address is specified by @shmaddr. 1170 * @shp contains the shared memory structure to be modified. 1171 * @shmaddr contains the address to attach memory region to. 1172 * @shmflg contains the operational flags. 1173 * Return 0 if permission is granted. 1174 * 1175 * Security hooks for System V Semaphores 1176 * 1177 * @sem_alloc_security: 1178 * Allocate and attach a security structure to the sma->sem_perm.security 1179 * field. The security field is initialized to NULL when the structure is 1180 * first created. 1181 * @sma contains the semaphore structure 1182 * Return 0 if operation was successful and permission is granted. 1183 * @sem_free_security: 1184 * deallocate security struct for this semaphore 1185 * @sma contains the semaphore structure. 1186 * @sem_associate: 1187 * Check permission when a semaphore is requested through the semget 1188 * system call. This hook is only called when returning the semaphore 1189 * identifier for an existing semaphore, not when a new one must be 1190 * created. 1191 * @sma contains the semaphore structure. 1192 * @semflg contains the operation control flags. 1193 * Return 0 if permission is granted. 1194 * @sem_semctl: 1195 * Check permission when a semaphore operation specified by @cmd is to be 1196 * performed on the semaphore @sma. The @sma may be NULL, e.g. for 1197 * IPC_INFO or SEM_INFO. 1198 * @sma contains the semaphore structure. May be NULL. 1199 * @cmd contains the operation to be performed. 1200 * Return 0 if permission is granted. 1201 * @sem_semop 1202 * Check permissions before performing operations on members of the 1203 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set 1204 * may be modified. 1205 * @sma contains the semaphore structure. 1206 * @sops contains the operations to perform. 1207 * @nsops contains the number of operations to perform. 1208 * @alter contains the flag indicating whether changes are to be made. 1209 * Return 0 if permission is granted. 1210 * 1211 * @ptrace_may_access: 1212 * Check permission before allowing the current process to trace the 1213 * @child process. 1214 * Security modules may also want to perform a process tracing check 1215 * during an execve in the set_security or apply_creds hooks of 1216 * tracing check during an execve in the bprm_set_creds hook of 1217 * binprm_security_ops if the process is being traced and its security 1218 * attributes would be changed by the execve. 1219 * @child contains the task_struct structure for the target process. 1220 * @mode contains the PTRACE_MODE flags indicating the form of access. 1221 * Return 0 if permission is granted. 1222 * @ptrace_traceme: 1223 * Check that the @parent process has sufficient permission to trace the 1224 * current process before allowing the current process to present itself 1225 * to the @parent process for tracing. 1226 * The parent process will still have to undergo the ptrace_may_access 1227 * checks before it is allowed to trace this one. 1228 * @parent contains the task_struct structure for debugger process. 1229 * Return 0 if permission is granted. 1230 * @capget: 1231 * Get the @effective, @inheritable, and @permitted capability sets for 1232 * the @target process. The hook may also perform permission checking to 1233 * determine if the current process is allowed to see the capability sets 1234 * of the @target process. 1235 * @target contains the task_struct structure for target process. 1236 * @effective contains the effective capability set. 1237 * @inheritable contains the inheritable capability set. 1238 * @permitted contains the permitted capability set. 1239 * Return 0 if the capability sets were successfully obtained. 1240 * @capset: 1241 * Set the @effective, @inheritable, and @permitted capability sets for 1242 * the current process. 1243 * @new contains the new credentials structure for target process. 1244 * @old contains the current credentials structure for target process. 1245 * @effective contains the effective capability set. 1246 * @inheritable contains the inheritable capability set. 1247 * @permitted contains the permitted capability set. 1248 * Return 0 and update @new if permission is granted. 1249 * @capable: 1250 * Check whether the @tsk process has the @cap capability in the indicated 1251 * credentials. 1252 * @tsk contains the task_struct for the process. 1253 * @cred contains the credentials to use. 1254 * @cap contains the capability <include/linux/capability.h>. 1255 * @audit: Whether to write an audit message or not 1256 * Return 0 if the capability is granted for @tsk. 1257 * @acct: 1258 * Check permission before enabling or disabling process accounting. If 1259 * accounting is being enabled, then @file refers to the open file used to 1260 * store accounting records. If accounting is being disabled, then @file 1261 * is NULL. 1262 * @file contains the file structure for the accounting file (may be NULL). 1263 * Return 0 if permission is granted. 1264 * @sysctl: 1265 * Check permission before accessing the @table sysctl variable in the 1266 * manner specified by @op. 1267 * @table contains the ctl_table structure for the sysctl variable. 1268 * @op contains the operation (001 = search, 002 = write, 004 = read). 1269 * Return 0 if permission is granted. 1270 * @syslog: 1271 * Check permission before accessing the kernel message ring or changing 1272 * logging to the console. 1273 * See the syslog(2) manual page for an explanation of the @type values. 1274 * @type contains the type of action. 1275 * Return 0 if permission is granted. 1276 * @settime: 1277 * Check permission to change the system time. 1278 * struct timespec and timezone are defined in include/linux/time.h 1279 * @ts contains new time 1280 * @tz contains new timezone 1281 * Return 0 if permission is granted. 1282 * @vm_enough_memory: 1283 * Check permissions for allocating a new virtual mapping. 1284 * @mm contains the mm struct it is being added to. 1285 * @pages contains the number of pages. 1286 * Return 0 if permission is granted. 1287 * 1288 * @secid_to_secctx: 1289 * Convert secid to security context. 1290 * @secid contains the security ID. 1291 * @secdata contains the pointer that stores the converted security context. 1292 * @secctx_to_secid: 1293 * Convert security context to secid. 1294 * @secid contains the pointer to the generated security ID. 1295 * @secdata contains the security context. 1296 * 1297 * @release_secctx: 1298 * Release the security context. 1299 * @secdata contains the security context. 1300 * @seclen contains the length of the security context. 1301 * 1302 * Security hooks for Audit 1303 * 1304 * @audit_rule_init: 1305 * Allocate and initialize an LSM audit rule structure. 1306 * @field contains the required Audit action. Fields flags are defined in include/linux/audit.h 1307 * @op contains the operator the rule uses. 1308 * @rulestr contains the context where the rule will be applied to. 1309 * @lsmrule contains a pointer to receive the result. 1310 * Return 0 if @lsmrule has been successfully set, 1311 * -EINVAL in case of an invalid rule. 1312 * 1313 * @audit_rule_known: 1314 * Specifies whether given @rule contains any fields related to current LSM. 1315 * @rule contains the audit rule of interest. 1316 * Return 1 in case of relation found, 0 otherwise. 1317 * 1318 * @audit_rule_match: 1319 * Determine if given @secid matches a rule previously approved 1320 * by @audit_rule_known. 1321 * @secid contains the security id in question. 1322 * @field contains the field which relates to current LSM. 1323 * @op contains the operator that will be used for matching. 1324 * @rule points to the audit rule that will be checked against. 1325 * @actx points to the audit context associated with the check. 1326 * Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure. 1327 * 1328 * @audit_rule_free: 1329 * Deallocate the LSM audit rule structure previously allocated by 1330 * audit_rule_init. 1331 * @rule contains the allocated rule 1332 * 1333 * This is the main security structure. 1334 */ 1335 struct security_operations { 1336 char name[SECURITY_NAME_MAX + 1]; 1337 1338 int (*ptrace_may_access) (struct task_struct *child, unsigned int mode); 1339 int (*ptrace_traceme) (struct task_struct *parent); 1340 int (*capget) (struct task_struct *target, 1341 kernel_cap_t *effective, 1342 kernel_cap_t *inheritable, kernel_cap_t *permitted); 1343 int (*capset) (struct cred *new, 1344 const struct cred *old, 1345 const kernel_cap_t *effective, 1346 const kernel_cap_t *inheritable, 1347 const kernel_cap_t *permitted); 1348 int (*capable) (struct task_struct *tsk, const struct cred *cred, 1349 int cap, int audit); 1350 int (*acct) (struct file *file); 1351 int (*sysctl) (struct ctl_table *table, int op); 1352 int (*quotactl) (int cmds, int type, int id, struct super_block *sb); 1353 int (*quota_on) (struct dentry *dentry); 1354 int (*syslog) (int type); 1355 int (*settime) (struct timespec *ts, struct timezone *tz); 1356 int (*vm_enough_memory) (struct mm_struct *mm, long pages); 1357 1358 int (*bprm_set_creds) (struct linux_binprm *bprm); 1359 int (*bprm_check_security) (struct linux_binprm *bprm); 1360 int (*bprm_secureexec) (struct linux_binprm *bprm); 1361 void (*bprm_committing_creds) (struct linux_binprm *bprm); 1362 void (*bprm_committed_creds) (struct linux_binprm *bprm); 1363 1364 int (*sb_alloc_security) (struct super_block *sb); 1365 void (*sb_free_security) (struct super_block *sb); 1366 int (*sb_copy_data) (char *orig, char *copy); 1367 int (*sb_kern_mount) (struct super_block *sb, int flags, void *data); 1368 int (*sb_show_options) (struct seq_file *m, struct super_block *sb); 1369 int (*sb_statfs) (struct dentry *dentry); 1370 int (*sb_mount) (char *dev_name, struct path *path, 1371 char *type, unsigned long flags, void *data); 1372 int (*sb_check_sb) (struct vfsmount *mnt, struct path *path); 1373 int (*sb_umount) (struct vfsmount *mnt, int flags); 1374 void (*sb_umount_close) (struct vfsmount *mnt); 1375 void (*sb_umount_busy) (struct vfsmount *mnt); 1376 void (*sb_post_remount) (struct vfsmount *mnt, 1377 unsigned long flags, void *data); 1378 void (*sb_post_addmount) (struct vfsmount *mnt, 1379 struct path *mountpoint); 1380 int (*sb_pivotroot) (struct path *old_path, 1381 struct path *new_path); 1382 void (*sb_post_pivotroot) (struct path *old_path, 1383 struct path *new_path); 1384 int (*sb_set_mnt_opts) (struct super_block *sb, 1385 struct security_mnt_opts *opts); 1386 void (*sb_clone_mnt_opts) (const struct super_block *oldsb, 1387 struct super_block *newsb); 1388 int (*sb_parse_opts_str) (char *options, struct security_mnt_opts *opts); 1389 1390 #ifdef CONFIG_SECURITY_PATH 1391 int (*path_unlink) (struct path *dir, struct dentry *dentry); 1392 int (*path_mkdir) (struct path *dir, struct dentry *dentry, int mode); 1393 int (*path_rmdir) (struct path *dir, struct dentry *dentry); 1394 int (*path_mknod) (struct path *dir, struct dentry *dentry, int mode, 1395 unsigned int dev); 1396 int (*path_truncate) (struct path *path, loff_t length, 1397 unsigned int time_attrs); 1398 int (*path_symlink) (struct path *dir, struct dentry *dentry, 1399 const char *old_name); 1400 int (*path_link) (struct dentry *old_dentry, struct path *new_dir, 1401 struct dentry *new_dentry); 1402 int (*path_rename) (struct path *old_dir, struct dentry *old_dentry, 1403 struct path *new_dir, struct dentry *new_dentry); 1404 #endif 1405 1406 int (*inode_alloc_security) (struct inode *inode); 1407 void (*inode_free_security) (struct inode *inode); 1408 int (*inode_init_security) (struct inode *inode, struct inode *dir, 1409 char **name, void **value, size_t *len); 1410 int (*inode_create) (struct inode *dir, 1411 struct dentry *dentry, int mode); 1412 int (*inode_link) (struct dentry *old_dentry, 1413 struct inode *dir, struct dentry *new_dentry); 1414 int (*inode_unlink) (struct inode *dir, struct dentry *dentry); 1415 int (*inode_symlink) (struct inode *dir, 1416 struct dentry *dentry, const char *old_name); 1417 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); 1418 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); 1419 int (*inode_mknod) (struct inode *dir, struct dentry *dentry, 1420 int mode, dev_t dev); 1421 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, 1422 struct inode *new_dir, struct dentry *new_dentry); 1423 int (*inode_readlink) (struct dentry *dentry); 1424 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); 1425 int (*inode_permission) (struct inode *inode, int mask); 1426 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); 1427 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); 1428 void (*inode_delete) (struct inode *inode); 1429 int (*inode_setxattr) (struct dentry *dentry, const char *name, 1430 const void *value, size_t size, int flags); 1431 void (*inode_post_setxattr) (struct dentry *dentry, const char *name, 1432 const void *value, size_t size, int flags); 1433 int (*inode_getxattr) (struct dentry *dentry, const char *name); 1434 int (*inode_listxattr) (struct dentry *dentry); 1435 int (*inode_removexattr) (struct dentry *dentry, const char *name); 1436 int (*inode_need_killpriv) (struct dentry *dentry); 1437 int (*inode_killpriv) (struct dentry *dentry); 1438 int (*inode_getsecurity) (const struct inode *inode, const char *name, void **buffer, bool alloc); 1439 int (*inode_setsecurity) (struct inode *inode, const char *name, const void *value, size_t size, int flags); 1440 int (*inode_listsecurity) (struct inode *inode, char *buffer, size_t buffer_size); 1441 void (*inode_getsecid) (const struct inode *inode, u32 *secid); 1442 1443 int (*file_permission) (struct file *file, int mask); 1444 int (*file_alloc_security) (struct file *file); 1445 void (*file_free_security) (struct file *file); 1446 int (*file_ioctl) (struct file *file, unsigned int cmd, 1447 unsigned long arg); 1448 int (*file_mmap) (struct file *file, 1449 unsigned long reqprot, unsigned long prot, 1450 unsigned long flags, unsigned long addr, 1451 unsigned long addr_only); 1452 int (*file_mprotect) (struct vm_area_struct *vma, 1453 unsigned long reqprot, 1454 unsigned long prot); 1455 int (*file_lock) (struct file *file, unsigned int cmd); 1456 int (*file_fcntl) (struct file *file, unsigned int cmd, 1457 unsigned long arg); 1458 int (*file_set_fowner) (struct file *file); 1459 int (*file_send_sigiotask) (struct task_struct *tsk, 1460 struct fown_struct *fown, int sig); 1461 int (*file_receive) (struct file *file); 1462 int (*dentry_open) (struct file *file, const struct cred *cred); 1463 1464 int (*task_create) (unsigned long clone_flags); 1465 void (*cred_free) (struct cred *cred); 1466 int (*cred_prepare)(struct cred *new, const struct cred *old, 1467 gfp_t gfp); 1468 void (*cred_commit)(struct cred *new, const struct cred *old); 1469 int (*kernel_act_as)(struct cred *new, u32 secid); 1470 int (*kernel_create_files_as)(struct cred *new, struct inode *inode); 1471 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags); 1472 int (*task_fix_setuid) (struct cred *new, const struct cred *old, 1473 int flags); 1474 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags); 1475 int (*task_setpgid) (struct task_struct *p, pid_t pgid); 1476 int (*task_getpgid) (struct task_struct *p); 1477 int (*task_getsid) (struct task_struct *p); 1478 void (*task_getsecid) (struct task_struct *p, u32 *secid); 1479 int (*task_setgroups) (struct group_info *group_info); 1480 int (*task_setnice) (struct task_struct *p, int nice); 1481 int (*task_setioprio) (struct task_struct *p, int ioprio); 1482 int (*task_getioprio) (struct task_struct *p); 1483 int (*task_setrlimit) (unsigned int resource, struct rlimit *new_rlim); 1484 int (*task_setscheduler) (struct task_struct *p, int policy, 1485 struct sched_param *lp); 1486 int (*task_getscheduler) (struct task_struct *p); 1487 int (*task_movememory) (struct task_struct *p); 1488 int (*task_kill) (struct task_struct *p, 1489 struct siginfo *info, int sig, u32 secid); 1490 int (*task_wait) (struct task_struct *p); 1491 int (*task_prctl) (int option, unsigned long arg2, 1492 unsigned long arg3, unsigned long arg4, 1493 unsigned long arg5); 1494 void (*task_to_inode) (struct task_struct *p, struct inode *inode); 1495 1496 int (*ipc_permission) (struct kern_ipc_perm *ipcp, short flag); 1497 void (*ipc_getsecid) (struct kern_ipc_perm *ipcp, u32 *secid); 1498 1499 int (*msg_msg_alloc_security) (struct msg_msg *msg); 1500 void (*msg_msg_free_security) (struct msg_msg *msg); 1501 1502 int (*msg_queue_alloc_security) (struct msg_queue *msq); 1503 void (*msg_queue_free_security) (struct msg_queue *msq); 1504 int (*msg_queue_associate) (struct msg_queue *msq, int msqflg); 1505 int (*msg_queue_msgctl) (struct msg_queue *msq, int cmd); 1506 int (*msg_queue_msgsnd) (struct msg_queue *msq, 1507 struct msg_msg *msg, int msqflg); 1508 int (*msg_queue_msgrcv) (struct msg_queue *msq, 1509 struct msg_msg *msg, 1510 struct task_struct *target, 1511 long type, int mode); 1512 1513 int (*shm_alloc_security) (struct shmid_kernel *shp); 1514 void (*shm_free_security) (struct shmid_kernel *shp); 1515 int (*shm_associate) (struct shmid_kernel *shp, int shmflg); 1516 int (*shm_shmctl) (struct shmid_kernel *shp, int cmd); 1517 int (*shm_shmat) (struct shmid_kernel *shp, 1518 char __user *shmaddr, int shmflg); 1519 1520 int (*sem_alloc_security) (struct sem_array *sma); 1521 void (*sem_free_security) (struct sem_array *sma); 1522 int (*sem_associate) (struct sem_array *sma, int semflg); 1523 int (*sem_semctl) (struct sem_array *sma, int cmd); 1524 int (*sem_semop) (struct sem_array *sma, 1525 struct sembuf *sops, unsigned nsops, int alter); 1526 1527 int (*netlink_send) (struct sock *sk, struct sk_buff *skb); 1528 int (*netlink_recv) (struct sk_buff *skb, int cap); 1529 1530 void (*d_instantiate) (struct dentry *dentry, struct inode *inode); 1531 1532 int (*getprocattr) (struct task_struct *p, char *name, char **value); 1533 int (*setprocattr) (struct task_struct *p, char *name, void *value, size_t size); 1534 int (*secid_to_secctx) (u32 secid, char **secdata, u32 *seclen); 1535 int (*secctx_to_secid) (const char *secdata, u32 seclen, u32 *secid); 1536 void (*release_secctx) (char *secdata, u32 seclen); 1537 1538 #ifdef CONFIG_SECURITY_NETWORK 1539 int (*unix_stream_connect) (struct socket *sock, 1540 struct socket *other, struct sock *newsk); 1541 int (*unix_may_send) (struct socket *sock, struct socket *other); 1542 1543 int (*socket_create) (int family, int type, int protocol, int kern); 1544 int (*socket_post_create) (struct socket *sock, int family, 1545 int type, int protocol, int kern); 1546 int (*socket_bind) (struct socket *sock, 1547 struct sockaddr *address, int addrlen); 1548 int (*socket_connect) (struct socket *sock, 1549 struct sockaddr *address, int addrlen); 1550 int (*socket_listen) (struct socket *sock, int backlog); 1551 int (*socket_accept) (struct socket *sock, struct socket *newsock); 1552 int (*socket_sendmsg) (struct socket *sock, 1553 struct msghdr *msg, int size); 1554 int (*socket_recvmsg) (struct socket *sock, 1555 struct msghdr *msg, int size, int flags); 1556 int (*socket_getsockname) (struct socket *sock); 1557 int (*socket_getpeername) (struct socket *sock); 1558 int (*socket_getsockopt) (struct socket *sock, int level, int optname); 1559 int (*socket_setsockopt) (struct socket *sock, int level, int optname); 1560 int (*socket_shutdown) (struct socket *sock, int how); 1561 int (*socket_sock_rcv_skb) (struct sock *sk, struct sk_buff *skb); 1562 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); 1563 int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid); 1564 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); 1565 void (*sk_free_security) (struct sock *sk); 1566 void (*sk_clone_security) (const struct sock *sk, struct sock *newsk); 1567 void (*sk_getsecid) (struct sock *sk, u32 *secid); 1568 void (*sock_graft) (struct sock *sk, struct socket *parent); 1569 int (*inet_conn_request) (struct sock *sk, struct sk_buff *skb, 1570 struct request_sock *req); 1571 void (*inet_csk_clone) (struct sock *newsk, const struct request_sock *req); 1572 void (*inet_conn_established) (struct sock *sk, struct sk_buff *skb); 1573 void (*req_classify_flow) (const struct request_sock *req, struct flowi *fl); 1574 #endif /* CONFIG_SECURITY_NETWORK */ 1575 1576 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1577 int (*xfrm_policy_alloc_security) (struct xfrm_sec_ctx **ctxp, 1578 struct xfrm_user_sec_ctx *sec_ctx); 1579 int (*xfrm_policy_clone_security) (struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctx); 1580 void (*xfrm_policy_free_security) (struct xfrm_sec_ctx *ctx); 1581 int (*xfrm_policy_delete_security) (struct xfrm_sec_ctx *ctx); 1582 int (*xfrm_state_alloc_security) (struct xfrm_state *x, 1583 struct xfrm_user_sec_ctx *sec_ctx, 1584 u32 secid); 1585 void (*xfrm_state_free_security) (struct xfrm_state *x); 1586 int (*xfrm_state_delete_security) (struct xfrm_state *x); 1587 int (*xfrm_policy_lookup) (struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir); 1588 int (*xfrm_state_pol_flow_match) (struct xfrm_state *x, 1589 struct xfrm_policy *xp, 1590 struct flowi *fl); 1591 int (*xfrm_decode_session) (struct sk_buff *skb, u32 *secid, int ckall); 1592 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1593 1594 /* key management security hooks */ 1595 #ifdef CONFIG_KEYS 1596 int (*key_alloc) (struct key *key, const struct cred *cred, unsigned long flags); 1597 void (*key_free) (struct key *key); 1598 int (*key_permission) (key_ref_t key_ref, 1599 const struct cred *cred, 1600 key_perm_t perm); 1601 int (*key_getsecurity)(struct key *key, char **_buffer); 1602 #endif /* CONFIG_KEYS */ 1603 1604 #ifdef CONFIG_AUDIT 1605 int (*audit_rule_init) (u32 field, u32 op, char *rulestr, void **lsmrule); 1606 int (*audit_rule_known) (struct audit_krule *krule); 1607 int (*audit_rule_match) (u32 secid, u32 field, u32 op, void *lsmrule, 1608 struct audit_context *actx); 1609 void (*audit_rule_free) (void *lsmrule); 1610 #endif /* CONFIG_AUDIT */ 1611 }; 1612 1613 /* prototypes */ 1614 extern int security_init(void); 1615 extern int security_module_enable(struct security_operations *ops); 1616 extern int register_security(struct security_operations *ops); 1617 1618 /* Security operations */ 1619 int security_ptrace_may_access(struct task_struct *child, unsigned int mode); 1620 int security_ptrace_traceme(struct task_struct *parent); 1621 int security_capget(struct task_struct *target, 1622 kernel_cap_t *effective, 1623 kernel_cap_t *inheritable, 1624 kernel_cap_t *permitted); 1625 int security_capset(struct cred *new, const struct cred *old, 1626 const kernel_cap_t *effective, 1627 const kernel_cap_t *inheritable, 1628 const kernel_cap_t *permitted); 1629 int security_capable(int cap); 1630 int security_real_capable(struct task_struct *tsk, int cap); 1631 int security_real_capable_noaudit(struct task_struct *tsk, int cap); 1632 int security_acct(struct file *file); 1633 int security_sysctl(struct ctl_table *table, int op); 1634 int security_quotactl(int cmds, int type, int id, struct super_block *sb); 1635 int security_quota_on(struct dentry *dentry); 1636 int security_syslog(int type); 1637 int security_settime(struct timespec *ts, struct timezone *tz); 1638 int security_vm_enough_memory(long pages); 1639 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages); 1640 int security_vm_enough_memory_kern(long pages); 1641 int security_bprm_set_creds(struct linux_binprm *bprm); 1642 int security_bprm_check(struct linux_binprm *bprm); 1643 void security_bprm_committing_creds(struct linux_binprm *bprm); 1644 void security_bprm_committed_creds(struct linux_binprm *bprm); 1645 int security_bprm_secureexec(struct linux_binprm *bprm); 1646 int security_sb_alloc(struct super_block *sb); 1647 void security_sb_free(struct super_block *sb); 1648 int security_sb_copy_data(char *orig, char *copy); 1649 int security_sb_kern_mount(struct super_block *sb, int flags, void *data); 1650 int security_sb_show_options(struct seq_file *m, struct super_block *sb); 1651 int security_sb_statfs(struct dentry *dentry); 1652 int security_sb_mount(char *dev_name, struct path *path, 1653 char *type, unsigned long flags, void *data); 1654 int security_sb_check_sb(struct vfsmount *mnt, struct path *path); 1655 int security_sb_umount(struct vfsmount *mnt, int flags); 1656 void security_sb_umount_close(struct vfsmount *mnt); 1657 void security_sb_umount_busy(struct vfsmount *mnt); 1658 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data); 1659 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint); 1660 int security_sb_pivotroot(struct path *old_path, struct path *new_path); 1661 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path); 1662 int security_sb_set_mnt_opts(struct super_block *sb, struct security_mnt_opts *opts); 1663 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 1664 struct super_block *newsb); 1665 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts); 1666 1667 int security_inode_alloc(struct inode *inode); 1668 void security_inode_free(struct inode *inode); 1669 int security_inode_init_security(struct inode *inode, struct inode *dir, 1670 char **name, void **value, size_t *len); 1671 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode); 1672 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1673 struct dentry *new_dentry); 1674 int security_inode_unlink(struct inode *dir, struct dentry *dentry); 1675 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1676 const char *old_name); 1677 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode); 1678 int security_inode_rmdir(struct inode *dir, struct dentry *dentry); 1679 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev); 1680 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1681 struct inode *new_dir, struct dentry *new_dentry); 1682 int security_inode_readlink(struct dentry *dentry); 1683 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd); 1684 int security_inode_permission(struct inode *inode, int mask); 1685 int security_inode_setattr(struct dentry *dentry, struct iattr *attr); 1686 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry); 1687 void security_inode_delete(struct inode *inode); 1688 int security_inode_setxattr(struct dentry *dentry, const char *name, 1689 const void *value, size_t size, int flags); 1690 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1691 const void *value, size_t size, int flags); 1692 int security_inode_getxattr(struct dentry *dentry, const char *name); 1693 int security_inode_listxattr(struct dentry *dentry); 1694 int security_inode_removexattr(struct dentry *dentry, const char *name); 1695 int security_inode_need_killpriv(struct dentry *dentry); 1696 int security_inode_killpriv(struct dentry *dentry); 1697 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc); 1698 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags); 1699 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size); 1700 void security_inode_getsecid(const struct inode *inode, u32 *secid); 1701 int security_file_permission(struct file *file, int mask); 1702 int security_file_alloc(struct file *file); 1703 void security_file_free(struct file *file); 1704 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1705 int security_file_mmap(struct file *file, unsigned long reqprot, 1706 unsigned long prot, unsigned long flags, 1707 unsigned long addr, unsigned long addr_only); 1708 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1709 unsigned long prot); 1710 int security_file_lock(struct file *file, unsigned int cmd); 1711 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg); 1712 int security_file_set_fowner(struct file *file); 1713 int security_file_send_sigiotask(struct task_struct *tsk, 1714 struct fown_struct *fown, int sig); 1715 int security_file_receive(struct file *file); 1716 int security_dentry_open(struct file *file, const struct cred *cred); 1717 int security_task_create(unsigned long clone_flags); 1718 void security_cred_free(struct cred *cred); 1719 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp); 1720 void security_commit_creds(struct cred *new, const struct cred *old); 1721 int security_kernel_act_as(struct cred *new, u32 secid); 1722 int security_kernel_create_files_as(struct cred *new, struct inode *inode); 1723 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags); 1724 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1725 int flags); 1726 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags); 1727 int security_task_setpgid(struct task_struct *p, pid_t pgid); 1728 int security_task_getpgid(struct task_struct *p); 1729 int security_task_getsid(struct task_struct *p); 1730 void security_task_getsecid(struct task_struct *p, u32 *secid); 1731 int security_task_setgroups(struct group_info *group_info); 1732 int security_task_setnice(struct task_struct *p, int nice); 1733 int security_task_setioprio(struct task_struct *p, int ioprio); 1734 int security_task_getioprio(struct task_struct *p); 1735 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim); 1736 int security_task_setscheduler(struct task_struct *p, 1737 int policy, struct sched_param *lp); 1738 int security_task_getscheduler(struct task_struct *p); 1739 int security_task_movememory(struct task_struct *p); 1740 int security_task_kill(struct task_struct *p, struct siginfo *info, 1741 int sig, u32 secid); 1742 int security_task_wait(struct task_struct *p); 1743 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1744 unsigned long arg4, unsigned long arg5); 1745 void security_task_to_inode(struct task_struct *p, struct inode *inode); 1746 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag); 1747 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid); 1748 int security_msg_msg_alloc(struct msg_msg *msg); 1749 void security_msg_msg_free(struct msg_msg *msg); 1750 int security_msg_queue_alloc(struct msg_queue *msq); 1751 void security_msg_queue_free(struct msg_queue *msq); 1752 int security_msg_queue_associate(struct msg_queue *msq, int msqflg); 1753 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd); 1754 int security_msg_queue_msgsnd(struct msg_queue *msq, 1755 struct msg_msg *msg, int msqflg); 1756 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 1757 struct task_struct *target, long type, int mode); 1758 int security_shm_alloc(struct shmid_kernel *shp); 1759 void security_shm_free(struct shmid_kernel *shp); 1760 int security_shm_associate(struct shmid_kernel *shp, int shmflg); 1761 int security_shm_shmctl(struct shmid_kernel *shp, int cmd); 1762 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg); 1763 int security_sem_alloc(struct sem_array *sma); 1764 void security_sem_free(struct sem_array *sma); 1765 int security_sem_associate(struct sem_array *sma, int semflg); 1766 int security_sem_semctl(struct sem_array *sma, int cmd); 1767 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 1768 unsigned nsops, int alter); 1769 void security_d_instantiate(struct dentry *dentry, struct inode *inode); 1770 int security_getprocattr(struct task_struct *p, char *name, char **value); 1771 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size); 1772 int security_netlink_send(struct sock *sk, struct sk_buff *skb); 1773 int security_netlink_recv(struct sk_buff *skb, int cap); 1774 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen); 1775 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid); 1776 void security_release_secctx(char *secdata, u32 seclen); 1777 1778 #else /* CONFIG_SECURITY */ 1779 struct security_mnt_opts { 1780 }; 1781 1782 static inline void security_init_mnt_opts(struct security_mnt_opts *opts) 1783 { 1784 } 1785 1786 static inline void security_free_mnt_opts(struct security_mnt_opts *opts) 1787 { 1788 } 1789 1790 /* 1791 * This is the default capabilities functionality. Most of these functions 1792 * are just stubbed out, but a few must call the proper capable code. 1793 */ 1794 1795 static inline int security_init(void) 1796 { 1797 return 0; 1798 } 1799 1800 static inline int security_ptrace_may_access(struct task_struct *child, 1801 unsigned int mode) 1802 { 1803 return cap_ptrace_may_access(child, mode); 1804 } 1805 1806 static inline int security_ptrace_traceme(struct task_struct *parent) 1807 { 1808 return cap_ptrace_traceme(parent); 1809 } 1810 1811 static inline int security_capget(struct task_struct *target, 1812 kernel_cap_t *effective, 1813 kernel_cap_t *inheritable, 1814 kernel_cap_t *permitted) 1815 { 1816 return cap_capget(target, effective, inheritable, permitted); 1817 } 1818 1819 static inline int security_capset(struct cred *new, 1820 const struct cred *old, 1821 const kernel_cap_t *effective, 1822 const kernel_cap_t *inheritable, 1823 const kernel_cap_t *permitted) 1824 { 1825 return cap_capset(new, old, effective, inheritable, permitted); 1826 } 1827 1828 static inline int security_capable(int cap) 1829 { 1830 return cap_capable(current, current_cred(), cap, SECURITY_CAP_AUDIT); 1831 } 1832 1833 static inline int security_real_capable(struct task_struct *tsk, int cap) 1834 { 1835 int ret; 1836 1837 rcu_read_lock(); 1838 ret = cap_capable(tsk, __task_cred(tsk), cap, SECURITY_CAP_AUDIT); 1839 rcu_read_unlock(); 1840 return ret; 1841 } 1842 1843 static inline 1844 int security_real_capable_noaudit(struct task_struct *tsk, int cap) 1845 { 1846 int ret; 1847 1848 rcu_read_lock(); 1849 ret = cap_capable(tsk, __task_cred(tsk), cap, 1850 SECURITY_CAP_NOAUDIT); 1851 rcu_read_unlock(); 1852 return ret; 1853 } 1854 1855 static inline int security_acct(struct file *file) 1856 { 1857 return 0; 1858 } 1859 1860 static inline int security_sysctl(struct ctl_table *table, int op) 1861 { 1862 return 0; 1863 } 1864 1865 static inline int security_quotactl(int cmds, int type, int id, 1866 struct super_block *sb) 1867 { 1868 return 0; 1869 } 1870 1871 static inline int security_quota_on(struct dentry *dentry) 1872 { 1873 return 0; 1874 } 1875 1876 static inline int security_syslog(int type) 1877 { 1878 return cap_syslog(type); 1879 } 1880 1881 static inline int security_settime(struct timespec *ts, struct timezone *tz) 1882 { 1883 return cap_settime(ts, tz); 1884 } 1885 1886 static inline int security_vm_enough_memory(long pages) 1887 { 1888 WARN_ON(current->mm == NULL); 1889 return cap_vm_enough_memory(current->mm, pages); 1890 } 1891 1892 static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1893 { 1894 WARN_ON(mm == NULL); 1895 return cap_vm_enough_memory(mm, pages); 1896 } 1897 1898 static inline int security_vm_enough_memory_kern(long pages) 1899 { 1900 /* If current->mm is a kernel thread then we will pass NULL, 1901 for this specific case that is fine */ 1902 return cap_vm_enough_memory(current->mm, pages); 1903 } 1904 1905 static inline int security_bprm_set_creds(struct linux_binprm *bprm) 1906 { 1907 return cap_bprm_set_creds(bprm); 1908 } 1909 1910 static inline int security_bprm_check(struct linux_binprm *bprm) 1911 { 1912 return 0; 1913 } 1914 1915 static inline void security_bprm_committing_creds(struct linux_binprm *bprm) 1916 { 1917 } 1918 1919 static inline void security_bprm_committed_creds(struct linux_binprm *bprm) 1920 { 1921 } 1922 1923 static inline int security_bprm_secureexec(struct linux_binprm *bprm) 1924 { 1925 return cap_bprm_secureexec(bprm); 1926 } 1927 1928 static inline int security_sb_alloc(struct super_block *sb) 1929 { 1930 return 0; 1931 } 1932 1933 static inline void security_sb_free(struct super_block *sb) 1934 { } 1935 1936 static inline int security_sb_copy_data(char *orig, char *copy) 1937 { 1938 return 0; 1939 } 1940 1941 static inline int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 1942 { 1943 return 0; 1944 } 1945 1946 static inline int security_sb_show_options(struct seq_file *m, 1947 struct super_block *sb) 1948 { 1949 return 0; 1950 } 1951 1952 static inline int security_sb_statfs(struct dentry *dentry) 1953 { 1954 return 0; 1955 } 1956 1957 static inline int security_sb_mount(char *dev_name, struct path *path, 1958 char *type, unsigned long flags, 1959 void *data) 1960 { 1961 return 0; 1962 } 1963 1964 static inline int security_sb_check_sb(struct vfsmount *mnt, 1965 struct path *path) 1966 { 1967 return 0; 1968 } 1969 1970 static inline int security_sb_umount(struct vfsmount *mnt, int flags) 1971 { 1972 return 0; 1973 } 1974 1975 static inline void security_sb_umount_close(struct vfsmount *mnt) 1976 { } 1977 1978 static inline void security_sb_umount_busy(struct vfsmount *mnt) 1979 { } 1980 1981 static inline void security_sb_post_remount(struct vfsmount *mnt, 1982 unsigned long flags, void *data) 1983 { } 1984 1985 static inline void security_sb_post_addmount(struct vfsmount *mnt, 1986 struct path *mountpoint) 1987 { } 1988 1989 static inline int security_sb_pivotroot(struct path *old_path, 1990 struct path *new_path) 1991 { 1992 return 0; 1993 } 1994 1995 static inline void security_sb_post_pivotroot(struct path *old_path, 1996 struct path *new_path) 1997 { } 1998 1999 static inline int security_sb_set_mnt_opts(struct super_block *sb, 2000 struct security_mnt_opts *opts) 2001 { 2002 return 0; 2003 } 2004 2005 static inline void security_sb_clone_mnt_opts(const struct super_block *oldsb, 2006 struct super_block *newsb) 2007 { } 2008 2009 static inline int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 2010 { 2011 return 0; 2012 } 2013 2014 static inline int security_inode_alloc(struct inode *inode) 2015 { 2016 return 0; 2017 } 2018 2019 static inline void security_inode_free(struct inode *inode) 2020 { } 2021 2022 static inline int security_inode_init_security(struct inode *inode, 2023 struct inode *dir, 2024 char **name, 2025 void **value, 2026 size_t *len) 2027 { 2028 return -EOPNOTSUPP; 2029 } 2030 2031 static inline int security_inode_create(struct inode *dir, 2032 struct dentry *dentry, 2033 int mode) 2034 { 2035 return 0; 2036 } 2037 2038 static inline int security_inode_link(struct dentry *old_dentry, 2039 struct inode *dir, 2040 struct dentry *new_dentry) 2041 { 2042 return 0; 2043 } 2044 2045 static inline int security_inode_unlink(struct inode *dir, 2046 struct dentry *dentry) 2047 { 2048 return 0; 2049 } 2050 2051 static inline int security_inode_symlink(struct inode *dir, 2052 struct dentry *dentry, 2053 const char *old_name) 2054 { 2055 return 0; 2056 } 2057 2058 static inline int security_inode_mkdir(struct inode *dir, 2059 struct dentry *dentry, 2060 int mode) 2061 { 2062 return 0; 2063 } 2064 2065 static inline int security_inode_rmdir(struct inode *dir, 2066 struct dentry *dentry) 2067 { 2068 return 0; 2069 } 2070 2071 static inline int security_inode_mknod(struct inode *dir, 2072 struct dentry *dentry, 2073 int mode, dev_t dev) 2074 { 2075 return 0; 2076 } 2077 2078 static inline int security_inode_rename(struct inode *old_dir, 2079 struct dentry *old_dentry, 2080 struct inode *new_dir, 2081 struct dentry *new_dentry) 2082 { 2083 return 0; 2084 } 2085 2086 static inline int security_inode_readlink(struct dentry *dentry) 2087 { 2088 return 0; 2089 } 2090 2091 static inline int security_inode_follow_link(struct dentry *dentry, 2092 struct nameidata *nd) 2093 { 2094 return 0; 2095 } 2096 2097 static inline int security_inode_permission(struct inode *inode, int mask) 2098 { 2099 return 0; 2100 } 2101 2102 static inline int security_inode_setattr(struct dentry *dentry, 2103 struct iattr *attr) 2104 { 2105 return 0; 2106 } 2107 2108 static inline int security_inode_getattr(struct vfsmount *mnt, 2109 struct dentry *dentry) 2110 { 2111 return 0; 2112 } 2113 2114 static inline void security_inode_delete(struct inode *inode) 2115 { } 2116 2117 static inline int security_inode_setxattr(struct dentry *dentry, 2118 const char *name, const void *value, size_t size, int flags) 2119 { 2120 return cap_inode_setxattr(dentry, name, value, size, flags); 2121 } 2122 2123 static inline void security_inode_post_setxattr(struct dentry *dentry, 2124 const char *name, const void *value, size_t size, int flags) 2125 { } 2126 2127 static inline int security_inode_getxattr(struct dentry *dentry, 2128 const char *name) 2129 { 2130 return 0; 2131 } 2132 2133 static inline int security_inode_listxattr(struct dentry *dentry) 2134 { 2135 return 0; 2136 } 2137 2138 static inline int security_inode_removexattr(struct dentry *dentry, 2139 const char *name) 2140 { 2141 return cap_inode_removexattr(dentry, name); 2142 } 2143 2144 static inline int security_inode_need_killpriv(struct dentry *dentry) 2145 { 2146 return cap_inode_need_killpriv(dentry); 2147 } 2148 2149 static inline int security_inode_killpriv(struct dentry *dentry) 2150 { 2151 return cap_inode_killpriv(dentry); 2152 } 2153 2154 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2155 { 2156 return -EOPNOTSUPP; 2157 } 2158 2159 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 2160 { 2161 return -EOPNOTSUPP; 2162 } 2163 2164 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2165 { 2166 return 0; 2167 } 2168 2169 static inline void security_inode_getsecid(const struct inode *inode, u32 *secid) 2170 { 2171 *secid = 0; 2172 } 2173 2174 static inline int security_file_permission(struct file *file, int mask) 2175 { 2176 return 0; 2177 } 2178 2179 static inline int security_file_alloc(struct file *file) 2180 { 2181 return 0; 2182 } 2183 2184 static inline void security_file_free(struct file *file) 2185 { } 2186 2187 static inline int security_file_ioctl(struct file *file, unsigned int cmd, 2188 unsigned long arg) 2189 { 2190 return 0; 2191 } 2192 2193 static inline int security_file_mmap(struct file *file, unsigned long reqprot, 2194 unsigned long prot, 2195 unsigned long flags, 2196 unsigned long addr, 2197 unsigned long addr_only) 2198 { 2199 return 0; 2200 } 2201 2202 static inline int security_file_mprotect(struct vm_area_struct *vma, 2203 unsigned long reqprot, 2204 unsigned long prot) 2205 { 2206 return 0; 2207 } 2208 2209 static inline int security_file_lock(struct file *file, unsigned int cmd) 2210 { 2211 return 0; 2212 } 2213 2214 static inline int security_file_fcntl(struct file *file, unsigned int cmd, 2215 unsigned long arg) 2216 { 2217 return 0; 2218 } 2219 2220 static inline int security_file_set_fowner(struct file *file) 2221 { 2222 return 0; 2223 } 2224 2225 static inline int security_file_send_sigiotask(struct task_struct *tsk, 2226 struct fown_struct *fown, 2227 int sig) 2228 { 2229 return 0; 2230 } 2231 2232 static inline int security_file_receive(struct file *file) 2233 { 2234 return 0; 2235 } 2236 2237 static inline int security_dentry_open(struct file *file, 2238 const struct cred *cred) 2239 { 2240 return 0; 2241 } 2242 2243 static inline int security_task_create(unsigned long clone_flags) 2244 { 2245 return 0; 2246 } 2247 2248 static inline void security_cred_free(struct cred *cred) 2249 { } 2250 2251 static inline int security_prepare_creds(struct cred *new, 2252 const struct cred *old, 2253 gfp_t gfp) 2254 { 2255 return 0; 2256 } 2257 2258 static inline void security_commit_creds(struct cred *new, 2259 const struct cred *old) 2260 { 2261 } 2262 2263 static inline int security_kernel_act_as(struct cred *cred, u32 secid) 2264 { 2265 return 0; 2266 } 2267 2268 static inline int security_kernel_create_files_as(struct cred *cred, 2269 struct inode *inode) 2270 { 2271 return 0; 2272 } 2273 2274 static inline int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, 2275 int flags) 2276 { 2277 return 0; 2278 } 2279 2280 static inline int security_task_fix_setuid(struct cred *new, 2281 const struct cred *old, 2282 int flags) 2283 { 2284 return cap_task_fix_setuid(new, old, flags); 2285 } 2286 2287 static inline int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, 2288 int flags) 2289 { 2290 return 0; 2291 } 2292 2293 static inline int security_task_setpgid(struct task_struct *p, pid_t pgid) 2294 { 2295 return 0; 2296 } 2297 2298 static inline int security_task_getpgid(struct task_struct *p) 2299 { 2300 return 0; 2301 } 2302 2303 static inline int security_task_getsid(struct task_struct *p) 2304 { 2305 return 0; 2306 } 2307 2308 static inline void security_task_getsecid(struct task_struct *p, u32 *secid) 2309 { 2310 *secid = 0; 2311 } 2312 2313 static inline int security_task_setgroups(struct group_info *group_info) 2314 { 2315 return 0; 2316 } 2317 2318 static inline int security_task_setnice(struct task_struct *p, int nice) 2319 { 2320 return cap_task_setnice(p, nice); 2321 } 2322 2323 static inline int security_task_setioprio(struct task_struct *p, int ioprio) 2324 { 2325 return cap_task_setioprio(p, ioprio); 2326 } 2327 2328 static inline int security_task_getioprio(struct task_struct *p) 2329 { 2330 return 0; 2331 } 2332 2333 static inline int security_task_setrlimit(unsigned int resource, 2334 struct rlimit *new_rlim) 2335 { 2336 return 0; 2337 } 2338 2339 static inline int security_task_setscheduler(struct task_struct *p, 2340 int policy, 2341 struct sched_param *lp) 2342 { 2343 return cap_task_setscheduler(p, policy, lp); 2344 } 2345 2346 static inline int security_task_getscheduler(struct task_struct *p) 2347 { 2348 return 0; 2349 } 2350 2351 static inline int security_task_movememory(struct task_struct *p) 2352 { 2353 return 0; 2354 } 2355 2356 static inline int security_task_kill(struct task_struct *p, 2357 struct siginfo *info, int sig, 2358 u32 secid) 2359 { 2360 return 0; 2361 } 2362 2363 static inline int security_task_wait(struct task_struct *p) 2364 { 2365 return 0; 2366 } 2367 2368 static inline int security_task_prctl(int option, unsigned long arg2, 2369 unsigned long arg3, 2370 unsigned long arg4, 2371 unsigned long arg5) 2372 { 2373 return cap_task_prctl(option, arg2, arg3, arg3, arg5); 2374 } 2375 2376 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 2377 { } 2378 2379 static inline int security_ipc_permission(struct kern_ipc_perm *ipcp, 2380 short flag) 2381 { 2382 return 0; 2383 } 2384 2385 static inline void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 2386 { 2387 *secid = 0; 2388 } 2389 2390 static inline int security_msg_msg_alloc(struct msg_msg *msg) 2391 { 2392 return 0; 2393 } 2394 2395 static inline void security_msg_msg_free(struct msg_msg *msg) 2396 { } 2397 2398 static inline int security_msg_queue_alloc(struct msg_queue *msq) 2399 { 2400 return 0; 2401 } 2402 2403 static inline void security_msg_queue_free(struct msg_queue *msq) 2404 { } 2405 2406 static inline int security_msg_queue_associate(struct msg_queue *msq, 2407 int msqflg) 2408 { 2409 return 0; 2410 } 2411 2412 static inline int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 2413 { 2414 return 0; 2415 } 2416 2417 static inline int security_msg_queue_msgsnd(struct msg_queue *msq, 2418 struct msg_msg *msg, int msqflg) 2419 { 2420 return 0; 2421 } 2422 2423 static inline int security_msg_queue_msgrcv(struct msg_queue *msq, 2424 struct msg_msg *msg, 2425 struct task_struct *target, 2426 long type, int mode) 2427 { 2428 return 0; 2429 } 2430 2431 static inline int security_shm_alloc(struct shmid_kernel *shp) 2432 { 2433 return 0; 2434 } 2435 2436 static inline void security_shm_free(struct shmid_kernel *shp) 2437 { } 2438 2439 static inline int security_shm_associate(struct shmid_kernel *shp, 2440 int shmflg) 2441 { 2442 return 0; 2443 } 2444 2445 static inline int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 2446 { 2447 return 0; 2448 } 2449 2450 static inline int security_shm_shmat(struct shmid_kernel *shp, 2451 char __user *shmaddr, int shmflg) 2452 { 2453 return 0; 2454 } 2455 2456 static inline int security_sem_alloc(struct sem_array *sma) 2457 { 2458 return 0; 2459 } 2460 2461 static inline void security_sem_free(struct sem_array *sma) 2462 { } 2463 2464 static inline int security_sem_associate(struct sem_array *sma, int semflg) 2465 { 2466 return 0; 2467 } 2468 2469 static inline int security_sem_semctl(struct sem_array *sma, int cmd) 2470 { 2471 return 0; 2472 } 2473 2474 static inline int security_sem_semop(struct sem_array *sma, 2475 struct sembuf *sops, unsigned nsops, 2476 int alter) 2477 { 2478 return 0; 2479 } 2480 2481 static inline void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2482 { } 2483 2484 static inline int security_getprocattr(struct task_struct *p, char *name, char **value) 2485 { 2486 return -EINVAL; 2487 } 2488 2489 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2490 { 2491 return -EINVAL; 2492 } 2493 2494 static inline int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2495 { 2496 return cap_netlink_send(sk, skb); 2497 } 2498 2499 static inline int security_netlink_recv(struct sk_buff *skb, int cap) 2500 { 2501 return cap_netlink_recv(skb, cap); 2502 } 2503 2504 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2505 { 2506 return -EOPNOTSUPP; 2507 } 2508 2509 static inline int security_secctx_to_secid(const char *secdata, 2510 u32 seclen, 2511 u32 *secid) 2512 { 2513 return -EOPNOTSUPP; 2514 } 2515 2516 static inline void security_release_secctx(char *secdata, u32 seclen) 2517 { 2518 } 2519 #endif /* CONFIG_SECURITY */ 2520 2521 #ifdef CONFIG_SECURITY_NETWORK 2522 2523 int security_unix_stream_connect(struct socket *sock, struct socket *other, 2524 struct sock *newsk); 2525 int security_unix_may_send(struct socket *sock, struct socket *other); 2526 int security_socket_create(int family, int type, int protocol, int kern); 2527 int security_socket_post_create(struct socket *sock, int family, 2528 int type, int protocol, int kern); 2529 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen); 2530 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen); 2531 int security_socket_listen(struct socket *sock, int backlog); 2532 int security_socket_accept(struct socket *sock, struct socket *newsock); 2533 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size); 2534 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2535 int size, int flags); 2536 int security_socket_getsockname(struct socket *sock); 2537 int security_socket_getpeername(struct socket *sock); 2538 int security_socket_getsockopt(struct socket *sock, int level, int optname); 2539 int security_socket_setsockopt(struct socket *sock, int level, int optname); 2540 int security_socket_shutdown(struct socket *sock, int how); 2541 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb); 2542 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2543 int __user *optlen, unsigned len); 2544 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid); 2545 int security_sk_alloc(struct sock *sk, int family, gfp_t priority); 2546 void security_sk_free(struct sock *sk); 2547 void security_sk_clone(const struct sock *sk, struct sock *newsk); 2548 void security_sk_classify_flow(struct sock *sk, struct flowi *fl); 2549 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl); 2550 void security_sock_graft(struct sock*sk, struct socket *parent); 2551 int security_inet_conn_request(struct sock *sk, 2552 struct sk_buff *skb, struct request_sock *req); 2553 void security_inet_csk_clone(struct sock *newsk, 2554 const struct request_sock *req); 2555 void security_inet_conn_established(struct sock *sk, 2556 struct sk_buff *skb); 2557 2558 #else /* CONFIG_SECURITY_NETWORK */ 2559 static inline int security_unix_stream_connect(struct socket *sock, 2560 struct socket *other, 2561 struct sock *newsk) 2562 { 2563 return 0; 2564 } 2565 2566 static inline int security_unix_may_send(struct socket *sock, 2567 struct socket *other) 2568 { 2569 return 0; 2570 } 2571 2572 static inline int security_socket_create(int family, int type, 2573 int protocol, int kern) 2574 { 2575 return 0; 2576 } 2577 2578 static inline int security_socket_post_create(struct socket *sock, 2579 int family, 2580 int type, 2581 int protocol, int kern) 2582 { 2583 return 0; 2584 } 2585 2586 static inline int security_socket_bind(struct socket *sock, 2587 struct sockaddr *address, 2588 int addrlen) 2589 { 2590 return 0; 2591 } 2592 2593 static inline int security_socket_connect(struct socket *sock, 2594 struct sockaddr *address, 2595 int addrlen) 2596 { 2597 return 0; 2598 } 2599 2600 static inline int security_socket_listen(struct socket *sock, int backlog) 2601 { 2602 return 0; 2603 } 2604 2605 static inline int security_socket_accept(struct socket *sock, 2606 struct socket *newsock) 2607 { 2608 return 0; 2609 } 2610 2611 static inline int security_socket_sendmsg(struct socket *sock, 2612 struct msghdr *msg, int size) 2613 { 2614 return 0; 2615 } 2616 2617 static inline int security_socket_recvmsg(struct socket *sock, 2618 struct msghdr *msg, int size, 2619 int flags) 2620 { 2621 return 0; 2622 } 2623 2624 static inline int security_socket_getsockname(struct socket *sock) 2625 { 2626 return 0; 2627 } 2628 2629 static inline int security_socket_getpeername(struct socket *sock) 2630 { 2631 return 0; 2632 } 2633 2634 static inline int security_socket_getsockopt(struct socket *sock, 2635 int level, int optname) 2636 { 2637 return 0; 2638 } 2639 2640 static inline int security_socket_setsockopt(struct socket *sock, 2641 int level, int optname) 2642 { 2643 return 0; 2644 } 2645 2646 static inline int security_socket_shutdown(struct socket *sock, int how) 2647 { 2648 return 0; 2649 } 2650 static inline int security_sock_rcv_skb(struct sock *sk, 2651 struct sk_buff *skb) 2652 { 2653 return 0; 2654 } 2655 2656 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2657 int __user *optlen, unsigned len) 2658 { 2659 return -ENOPROTOOPT; 2660 } 2661 2662 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2663 { 2664 return -ENOPROTOOPT; 2665 } 2666 2667 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2668 { 2669 return 0; 2670 } 2671 2672 static inline void security_sk_free(struct sock *sk) 2673 { 2674 } 2675 2676 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) 2677 { 2678 } 2679 2680 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2681 { 2682 } 2683 2684 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2685 { 2686 } 2687 2688 static inline void security_sock_graft(struct sock *sk, struct socket *parent) 2689 { 2690 } 2691 2692 static inline int security_inet_conn_request(struct sock *sk, 2693 struct sk_buff *skb, struct request_sock *req) 2694 { 2695 return 0; 2696 } 2697 2698 static inline void security_inet_csk_clone(struct sock *newsk, 2699 const struct request_sock *req) 2700 { 2701 } 2702 2703 static inline void security_inet_conn_established(struct sock *sk, 2704 struct sk_buff *skb) 2705 { 2706 } 2707 #endif /* CONFIG_SECURITY_NETWORK */ 2708 2709 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2710 2711 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx); 2712 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp); 2713 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx); 2714 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx); 2715 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx); 2716 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2717 struct xfrm_sec_ctx *polsec, u32 secid); 2718 int security_xfrm_state_delete(struct xfrm_state *x); 2719 void security_xfrm_state_free(struct xfrm_state *x); 2720 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir); 2721 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2722 struct xfrm_policy *xp, struct flowi *fl); 2723 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid); 2724 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl); 2725 2726 #else /* CONFIG_SECURITY_NETWORK_XFRM */ 2727 2728 static inline int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 2729 { 2730 return 0; 2731 } 2732 2733 static inline int security_xfrm_policy_clone(struct xfrm_sec_ctx *old, struct xfrm_sec_ctx **new_ctxp) 2734 { 2735 return 0; 2736 } 2737 2738 static inline void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2739 { 2740 } 2741 2742 static inline int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2743 { 2744 return 0; 2745 } 2746 2747 static inline int security_xfrm_state_alloc(struct xfrm_state *x, 2748 struct xfrm_user_sec_ctx *sec_ctx) 2749 { 2750 return 0; 2751 } 2752 2753 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2754 struct xfrm_sec_ctx *polsec, u32 secid) 2755 { 2756 return 0; 2757 } 2758 2759 static inline void security_xfrm_state_free(struct xfrm_state *x) 2760 { 2761 } 2762 2763 static inline int security_xfrm_state_delete(struct xfrm_state *x) 2764 { 2765 return 0; 2766 } 2767 2768 static inline int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2769 { 2770 return 0; 2771 } 2772 2773 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2774 struct xfrm_policy *xp, struct flowi *fl) 2775 { 2776 return 1; 2777 } 2778 2779 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2780 { 2781 return 0; 2782 } 2783 2784 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2785 { 2786 } 2787 2788 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2789 2790 #ifdef CONFIG_SECURITY_PATH 2791 int security_path_unlink(struct path *dir, struct dentry *dentry); 2792 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode); 2793 int security_path_rmdir(struct path *dir, struct dentry *dentry); 2794 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, 2795 unsigned int dev); 2796 int security_path_truncate(struct path *path, loff_t length, 2797 unsigned int time_attrs); 2798 int security_path_symlink(struct path *dir, struct dentry *dentry, 2799 const char *old_name); 2800 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 2801 struct dentry *new_dentry); 2802 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 2803 struct path *new_dir, struct dentry *new_dentry); 2804 #else /* CONFIG_SECURITY_PATH */ 2805 static inline int security_path_unlink(struct path *dir, struct dentry *dentry) 2806 { 2807 return 0; 2808 } 2809 2810 static inline int security_path_mkdir(struct path *dir, struct dentry *dentry, 2811 int mode) 2812 { 2813 return 0; 2814 } 2815 2816 static inline int security_path_rmdir(struct path *dir, struct dentry *dentry) 2817 { 2818 return 0; 2819 } 2820 2821 static inline int security_path_mknod(struct path *dir, struct dentry *dentry, 2822 int mode, unsigned int dev) 2823 { 2824 return 0; 2825 } 2826 2827 static inline int security_path_truncate(struct path *path, loff_t length, 2828 unsigned int time_attrs) 2829 { 2830 return 0; 2831 } 2832 2833 static inline int security_path_symlink(struct path *dir, struct dentry *dentry, 2834 const char *old_name) 2835 { 2836 return 0; 2837 } 2838 2839 static inline int security_path_link(struct dentry *old_dentry, 2840 struct path *new_dir, 2841 struct dentry *new_dentry) 2842 { 2843 return 0; 2844 } 2845 2846 static inline int security_path_rename(struct path *old_dir, 2847 struct dentry *old_dentry, 2848 struct path *new_dir, 2849 struct dentry *new_dentry) 2850 { 2851 return 0; 2852 } 2853 #endif /* CONFIG_SECURITY_PATH */ 2854 2855 #ifdef CONFIG_KEYS 2856 #ifdef CONFIG_SECURITY 2857 2858 int security_key_alloc(struct key *key, const struct cred *cred, unsigned long flags); 2859 void security_key_free(struct key *key); 2860 int security_key_permission(key_ref_t key_ref, 2861 const struct cred *cred, key_perm_t perm); 2862 int security_key_getsecurity(struct key *key, char **_buffer); 2863 2864 #else 2865 2866 static inline int security_key_alloc(struct key *key, 2867 const struct cred *cred, 2868 unsigned long flags) 2869 { 2870 return 0; 2871 } 2872 2873 static inline void security_key_free(struct key *key) 2874 { 2875 } 2876 2877 static inline int security_key_permission(key_ref_t key_ref, 2878 const struct cred *cred, 2879 key_perm_t perm) 2880 { 2881 return 0; 2882 } 2883 2884 static inline int security_key_getsecurity(struct key *key, char **_buffer) 2885 { 2886 *_buffer = NULL; 2887 return 0; 2888 } 2889 2890 #endif 2891 #endif /* CONFIG_KEYS */ 2892 2893 #ifdef CONFIG_AUDIT 2894 #ifdef CONFIG_SECURITY 2895 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule); 2896 int security_audit_rule_known(struct audit_krule *krule); 2897 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 2898 struct audit_context *actx); 2899 void security_audit_rule_free(void *lsmrule); 2900 2901 #else 2902 2903 static inline int security_audit_rule_init(u32 field, u32 op, char *rulestr, 2904 void **lsmrule) 2905 { 2906 return 0; 2907 } 2908 2909 static inline int security_audit_rule_known(struct audit_krule *krule) 2910 { 2911 return 0; 2912 } 2913 2914 static inline int security_audit_rule_match(u32 secid, u32 field, u32 op, 2915 void *lsmrule, struct audit_context *actx) 2916 { 2917 return 0; 2918 } 2919 2920 static inline void security_audit_rule_free(void *lsmrule) 2921 { } 2922 2923 #endif /* CONFIG_SECURITY */ 2924 #endif /* CONFIG_AUDIT */ 2925 2926 #ifdef CONFIG_SECURITYFS 2927 2928 extern struct dentry *securityfs_create_file(const char *name, mode_t mode, 2929 struct dentry *parent, void *data, 2930 const struct file_operations *fops); 2931 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); 2932 extern void securityfs_remove(struct dentry *dentry); 2933 2934 #else /* CONFIG_SECURITYFS */ 2935 2936 static inline struct dentry *securityfs_create_dir(const char *name, 2937 struct dentry *parent) 2938 { 2939 return ERR_PTR(-ENODEV); 2940 } 2941 2942 static inline struct dentry *securityfs_create_file(const char *name, 2943 mode_t mode, 2944 struct dentry *parent, 2945 void *data, 2946 const struct file_operations *fops) 2947 { 2948 return ERR_PTR(-ENODEV); 2949 } 2950 2951 static inline void securityfs_remove(struct dentry *dentry) 2952 {} 2953 2954 #endif 2955 2956 #endif /* ! __LINUX_SECURITY_H */ 2957 2958