xref: /linux-6.15/include/linux/security.h (revision 930cc144)
1 /*
2  * Linux Security plug
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <[email protected]>
5  * Copyright (C) 2001 Greg Kroah-Hartman <[email protected]>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
7  * Copyright (C) 2001 James Morris <[email protected]>
8  * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9  *
10  *	This program is free software; you can redistribute it and/or modify
11  *	it under the terms of the GNU General Public License as published by
12  *	the Free Software Foundation; either version 2 of the License, or
13  *	(at your option) any later version.
14  *
15  *	Due to this file being licensed under the GPL there is controversy over
16  *	whether this permits you to write a module that #includes this file
17  *	without placing your module under the GPL.  Please consult a lawyer for
18  *	advice before doing this.
19  *
20  */
21 
22 #ifndef __LINUX_SECURITY_H
23 #define __LINUX_SECURITY_H
24 
25 #include <linux/fs.h>
26 #include <linux/binfmts.h>
27 #include <linux/signal.h>
28 #include <linux/resource.h>
29 #include <linux/sem.h>
30 #include <linux/shm.h>
31 #include <linux/msg.h>
32 #include <linux/sched.h>
33 #include <linux/key.h>
34 #include <linux/xfrm.h>
35 #include <net/flow.h>
36 
37 /* Maximum number of letters for an LSM name string */
38 #define SECURITY_NAME_MAX	10
39 
40 struct ctl_table;
41 struct audit_krule;
42 
43 /*
44  * These functions are in security/capability.c and are used
45  * as the default capabilities functions
46  */
47 extern int cap_capable(struct task_struct *tsk, int cap);
48 extern int cap_settime(struct timespec *ts, struct timezone *tz);
49 extern int cap_ptrace_may_access(struct task_struct *child, unsigned int mode);
50 extern int cap_ptrace_traceme(struct task_struct *parent);
51 extern int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
52 extern int cap_capset_check(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
53 extern void cap_capset_set(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
54 extern int cap_bprm_set_security(struct linux_binprm *bprm);
55 extern void cap_bprm_apply_creds(struct linux_binprm *bprm, int unsafe);
56 extern int cap_bprm_secureexec(struct linux_binprm *bprm);
57 extern int cap_inode_setxattr(struct dentry *dentry, const char *name,
58 			      const void *value, size_t size, int flags);
59 extern int cap_inode_removexattr(struct dentry *dentry, const char *name);
60 extern int cap_inode_need_killpriv(struct dentry *dentry);
61 extern int cap_inode_killpriv(struct dentry *dentry);
62 extern int cap_task_post_setuid(uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
63 extern void cap_task_reparent_to_init(struct task_struct *p);
64 extern int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
65 			  unsigned long arg4, unsigned long arg5, long *rc_p);
66 extern int cap_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp);
67 extern int cap_task_setioprio(struct task_struct *p, int ioprio);
68 extern int cap_task_setnice(struct task_struct *p, int nice);
69 extern int cap_syslog(int type);
70 extern int cap_vm_enough_memory(struct mm_struct *mm, long pages);
71 
72 struct msghdr;
73 struct sk_buff;
74 struct sock;
75 struct sockaddr;
76 struct socket;
77 struct flowi;
78 struct dst_entry;
79 struct xfrm_selector;
80 struct xfrm_policy;
81 struct xfrm_state;
82 struct xfrm_user_sec_ctx;
83 struct seq_file;
84 
85 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
86 extern int cap_netlink_recv(struct sk_buff *skb, int cap);
87 
88 extern unsigned long mmap_min_addr;
89 /*
90  * Values used in the task_security_ops calls
91  */
92 /* setuid or setgid, id0 == uid or gid */
93 #define LSM_SETID_ID	1
94 
95 /* setreuid or setregid, id0 == real, id1 == eff */
96 #define LSM_SETID_RE	2
97 
98 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
99 #define LSM_SETID_RES	4
100 
101 /* setfsuid or setfsgid, id0 == fsuid or fsgid */
102 #define LSM_SETID_FS	8
103 
104 /* forward declares to avoid warnings */
105 struct sched_param;
106 struct request_sock;
107 
108 /* bprm_apply_creds unsafe reasons */
109 #define LSM_UNSAFE_SHARE	1
110 #define LSM_UNSAFE_PTRACE	2
111 #define LSM_UNSAFE_PTRACE_CAP	4
112 
113 #ifdef CONFIG_SECURITY
114 
115 struct security_mnt_opts {
116 	char **mnt_opts;
117 	int *mnt_opts_flags;
118 	int num_mnt_opts;
119 };
120 
121 static inline void security_init_mnt_opts(struct security_mnt_opts *opts)
122 {
123 	opts->mnt_opts = NULL;
124 	opts->mnt_opts_flags = NULL;
125 	opts->num_mnt_opts = 0;
126 }
127 
128 static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
129 {
130 	int i;
131 	if (opts->mnt_opts)
132 		for (i = 0; i < opts->num_mnt_opts; i++)
133 			kfree(opts->mnt_opts[i]);
134 	kfree(opts->mnt_opts);
135 	opts->mnt_opts = NULL;
136 	kfree(opts->mnt_opts_flags);
137 	opts->mnt_opts_flags = NULL;
138 	opts->num_mnt_opts = 0;
139 }
140 
141 /**
142  * struct security_operations - main security structure
143  *
144  * Security module identifier.
145  *
146  * @name:
147  *	A string that acts as a unique identifeir for the LSM with max number
148  *	of characters = SECURITY_NAME_MAX.
149  *
150  * Security hooks for program execution operations.
151  *
152  * @bprm_alloc_security:
153  *	Allocate and attach a security structure to the @bprm->security field.
154  *	The security field is initialized to NULL when the bprm structure is
155  *	allocated.
156  *	@bprm contains the linux_binprm structure to be modified.
157  *	Return 0 if operation was successful.
158  * @bprm_free_security:
159  *	@bprm contains the linux_binprm structure to be modified.
160  *	Deallocate and clear the @bprm->security field.
161  * @bprm_apply_creds:
162  *	Compute and set the security attributes of a process being transformed
163  *	by an execve operation based on the old attributes (current->security)
164  *	and the information saved in @bprm->security by the set_security hook.
165  *	Since this hook function (and its caller) are void, this hook can not
166  *	return an error.  However, it can leave the security attributes of the
167  *	process unchanged if an access failure occurs at this point.
168  *	bprm_apply_creds is called under task_lock.  @unsafe indicates various
169  *	reasons why it may be unsafe to change security state.
170  *	@bprm contains the linux_binprm structure.
171  * @bprm_post_apply_creds:
172  *	Runs after bprm_apply_creds with the task_lock dropped, so that
173  *	functions which cannot be called safely under the task_lock can
174  *	be used.  This hook is a good place to perform state changes on
175  *	the process such as closing open file descriptors to which access
176  *	is no longer granted if the attributes were changed.
177  *	Note that a security module might need to save state between
178  *	bprm_apply_creds and bprm_post_apply_creds to store the decision
179  *	on whether the process may proceed.
180  *	@bprm contains the linux_binprm structure.
181  * @bprm_set_security:
182  *	Save security information in the bprm->security field, typically based
183  *	on information about the bprm->file, for later use by the apply_creds
184  *	hook.  This hook may also optionally check permissions (e.g. for
185  *	transitions between security domains).
186  *	This hook may be called multiple times during a single execve, e.g. for
187  *	interpreters.  The hook can tell whether it has already been called by
188  *	checking to see if @bprm->security is non-NULL.  If so, then the hook
189  *	may decide either to retain the security information saved earlier or
190  *	to replace it.
191  *	@bprm contains the linux_binprm structure.
192  *	Return 0 if the hook is successful and permission is granted.
193  * @bprm_check_security:
194  *	This hook mediates the point when a search for a binary handler	will
195  *	begin.  It allows a check the @bprm->security value which is set in
196  *	the preceding set_security call.  The primary difference from
197  *	set_security is that the argv list and envp list are reliably
198  *	available in @bprm.  This hook may be called multiple times
199  *	during a single execve; and in each pass set_security is called
200  *	first.
201  *	@bprm contains the linux_binprm structure.
202  *	Return 0 if the hook is successful and permission is granted.
203  * @bprm_secureexec:
204  *	Return a boolean value (0 or 1) indicating whether a "secure exec"
205  *	is required.  The flag is passed in the auxiliary table
206  *	on the initial stack to the ELF interpreter to indicate whether libc
207  *	should enable secure mode.
208  *	@bprm contains the linux_binprm structure.
209  *
210  * Security hooks for filesystem operations.
211  *
212  * @sb_alloc_security:
213  *	Allocate and attach a security structure to the sb->s_security field.
214  *	The s_security field is initialized to NULL when the structure is
215  *	allocated.
216  *	@sb contains the super_block structure to be modified.
217  *	Return 0 if operation was successful.
218  * @sb_free_security:
219  *	Deallocate and clear the sb->s_security field.
220  *	@sb contains the super_block structure to be modified.
221  * @sb_statfs:
222  *	Check permission before obtaining filesystem statistics for the @mnt
223  *	mountpoint.
224  *	@dentry is a handle on the superblock for the filesystem.
225  *	Return 0 if permission is granted.
226  * @sb_mount:
227  *	Check permission before an object specified by @dev_name is mounted on
228  *	the mount point named by @nd.  For an ordinary mount, @dev_name
229  *	identifies a device if the file system type requires a device.  For a
230  *	remount (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a
231  *	loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
232  *	pathname of the object being mounted.
233  *	@dev_name contains the name for object being mounted.
234  *	@path contains the path for mount point object.
235  *	@type contains the filesystem type.
236  *	@flags contains the mount flags.
237  *	@data contains the filesystem-specific data.
238  *	Return 0 if permission is granted.
239  * @sb_copy_data:
240  *	Allow mount option data to be copied prior to parsing by the filesystem,
241  *	so that the security module can extract security-specific mount
242  *	options cleanly (a filesystem may modify the data e.g. with strsep()).
243  *	This also allows the original mount data to be stripped of security-
244  *	specific options to avoid having to make filesystems aware of them.
245  *	@type the type of filesystem being mounted.
246  *	@orig the original mount data copied from userspace.
247  *	@copy copied data which will be passed to the security module.
248  *	Returns 0 if the copy was successful.
249  * @sb_check_sb:
250  *	Check permission before the device with superblock @mnt->sb is mounted
251  *	on the mount point named by @nd.
252  *	@mnt contains the vfsmount for device being mounted.
253  *	@path contains the path for the mount point.
254  *	Return 0 if permission is granted.
255  * @sb_umount:
256  *	Check permission before the @mnt file system is unmounted.
257  *	@mnt contains the mounted file system.
258  *	@flags contains the unmount flags, e.g. MNT_FORCE.
259  *	Return 0 if permission is granted.
260  * @sb_umount_close:
261  *	Close any files in the @mnt mounted filesystem that are held open by
262  *	the security module.  This hook is called during an umount operation
263  *	prior to checking whether the filesystem is still busy.
264  *	@mnt contains the mounted filesystem.
265  * @sb_umount_busy:
266  *	Handle a failed umount of the @mnt mounted filesystem, e.g.  re-opening
267  *	any files that were closed by umount_close.  This hook is called during
268  *	an umount operation if the umount fails after a call to the
269  *	umount_close hook.
270  *	@mnt contains the mounted filesystem.
271  * @sb_post_remount:
272  *	Update the security module's state when a filesystem is remounted.
273  *	This hook is only called if the remount was successful.
274  *	@mnt contains the mounted file system.
275  *	@flags contains the new filesystem flags.
276  *	@data contains the filesystem-specific data.
277  * @sb_post_addmount:
278  *	Update the security module's state when a filesystem is mounted.
279  *	This hook is called any time a mount is successfully grafetd to
280  *	the tree.
281  *	@mnt contains the mounted filesystem.
282  *	@mountpoint contains the path for the mount point.
283  * @sb_pivotroot:
284  *	Check permission before pivoting the root filesystem.
285  *	@old_path contains the path for the new location of the current root (put_old).
286  *	@new_path contains the path for the new root (new_root).
287  *	Return 0 if permission is granted.
288  * @sb_post_pivotroot:
289  *	Update module state after a successful pivot.
290  *	@old_path contains the path for the old root.
291  *	@new_path contains the path for the new root.
292  * @sb_set_mnt_opts:
293  *	Set the security relevant mount options used for a superblock
294  *	@sb the superblock to set security mount options for
295  *	@opts binary data structure containing all lsm mount data
296  * @sb_clone_mnt_opts:
297  *	Copy all security options from a given superblock to another
298  *	@oldsb old superblock which contain information to clone
299  *	@newsb new superblock which needs filled in
300  * @sb_parse_opts_str:
301  *	Parse a string of security data filling in the opts structure
302  *	@options string containing all mount options known by the LSM
303  *	@opts binary data structure usable by the LSM
304  *
305  * Security hooks for inode operations.
306  *
307  * @inode_alloc_security:
308  *	Allocate and attach a security structure to @inode->i_security.  The
309  *	i_security field is initialized to NULL when the inode structure is
310  *	allocated.
311  *	@inode contains the inode structure.
312  *	Return 0 if operation was successful.
313  * @inode_free_security:
314  *	@inode contains the inode structure.
315  *	Deallocate the inode security structure and set @inode->i_security to
316  *	NULL.
317  * @inode_init_security:
318  *	Obtain the security attribute name suffix and value to set on a newly
319  *	created inode and set up the incore security field for the new inode.
320  *	This hook is called by the fs code as part of the inode creation
321  *	transaction and provides for atomic labeling of the inode, unlike
322  *	the post_create/mkdir/... hooks called by the VFS.  The hook function
323  *	is expected to allocate the name and value via kmalloc, with the caller
324  *	being responsible for calling kfree after using them.
325  *	If the security module does not use security attributes or does
326  *	not wish to put a security attribute on this particular inode,
327  *	then it should return -EOPNOTSUPP to skip this processing.
328  *	@inode contains the inode structure of the newly created inode.
329  *	@dir contains the inode structure of the parent directory.
330  *	@name will be set to the allocated name suffix (e.g. selinux).
331  *	@value will be set to the allocated attribute value.
332  *	@len will be set to the length of the value.
333  *	Returns 0 if @name and @value have been successfully set,
334  *		-EOPNOTSUPP if no security attribute is needed, or
335  *		-ENOMEM on memory allocation failure.
336  * @inode_create:
337  *	Check permission to create a regular file.
338  *	@dir contains inode structure of the parent of the new file.
339  *	@dentry contains the dentry structure for the file to be created.
340  *	@mode contains the file mode of the file to be created.
341  *	Return 0 if permission is granted.
342  * @inode_link:
343  *	Check permission before creating a new hard link to a file.
344  *	@old_dentry contains the dentry structure for an existing link to the file.
345  *	@dir contains the inode structure of the parent directory of the new link.
346  *	@new_dentry contains the dentry structure for the new link.
347  *	Return 0 if permission is granted.
348  * @inode_unlink:
349  *	Check the permission to remove a hard link to a file.
350  *	@dir contains the inode structure of parent directory of the file.
351  *	@dentry contains the dentry structure for file to be unlinked.
352  *	Return 0 if permission is granted.
353  * @inode_symlink:
354  *	Check the permission to create a symbolic link to a file.
355  *	@dir contains the inode structure of parent directory of the symbolic link.
356  *	@dentry contains the dentry structure of the symbolic link.
357  *	@old_name contains the pathname of file.
358  *	Return 0 if permission is granted.
359  * @inode_mkdir:
360  *	Check permissions to create a new directory in the existing directory
361  *	associated with inode strcture @dir.
362  *	@dir containst the inode structure of parent of the directory to be created.
363  *	@dentry contains the dentry structure of new directory.
364  *	@mode contains the mode of new directory.
365  *	Return 0 if permission is granted.
366  * @inode_rmdir:
367  *	Check the permission to remove a directory.
368  *	@dir contains the inode structure of parent of the directory to be removed.
369  *	@dentry contains the dentry structure of directory to be removed.
370  *	Return 0 if permission is granted.
371  * @inode_mknod:
372  *	Check permissions when creating a special file (or a socket or a fifo
373  *	file created via the mknod system call).  Note that if mknod operation
374  *	is being done for a regular file, then the create hook will be called
375  *	and not this hook.
376  *	@dir contains the inode structure of parent of the new file.
377  *	@dentry contains the dentry structure of the new file.
378  *	@mode contains the mode of the new file.
379  *	@dev contains the device number.
380  *	Return 0 if permission is granted.
381  * @inode_rename:
382  *	Check for permission to rename a file or directory.
383  *	@old_dir contains the inode structure for parent of the old link.
384  *	@old_dentry contains the dentry structure of the old link.
385  *	@new_dir contains the inode structure for parent of the new link.
386  *	@new_dentry contains the dentry structure of the new link.
387  *	Return 0 if permission is granted.
388  * @inode_readlink:
389  *	Check the permission to read the symbolic link.
390  *	@dentry contains the dentry structure for the file link.
391  *	Return 0 if permission is granted.
392  * @inode_follow_link:
393  *	Check permission to follow a symbolic link when looking up a pathname.
394  *	@dentry contains the dentry structure for the link.
395  *	@nd contains the nameidata structure for the parent directory.
396  *	Return 0 if permission is granted.
397  * @inode_permission:
398  *	Check permission before accessing an inode.  This hook is called by the
399  *	existing Linux permission function, so a security module can use it to
400  *	provide additional checking for existing Linux permission checks.
401  *	Notice that this hook is called when a file is opened (as well as many
402  *	other operations), whereas the file_security_ops permission hook is
403  *	called when the actual read/write operations are performed.
404  *	@inode contains the inode structure to check.
405  *	@mask contains the permission mask.
406  *	@nd contains the nameidata (may be NULL).
407  *	Return 0 if permission is granted.
408  * @inode_setattr:
409  *	Check permission before setting file attributes.  Note that the kernel
410  *	call to notify_change is performed from several locations, whenever
411  *	file attributes change (such as when a file is truncated, chown/chmod
412  *	operations, transferring disk quotas, etc).
413  *	@dentry contains the dentry structure for the file.
414  *	@attr is the iattr structure containing the new file attributes.
415  *	Return 0 if permission is granted.
416  * @inode_getattr:
417  *	Check permission before obtaining file attributes.
418  *	@mnt is the vfsmount where the dentry was looked up
419  *	@dentry contains the dentry structure for the file.
420  *	Return 0 if permission is granted.
421  * @inode_delete:
422  *	@inode contains the inode structure for deleted inode.
423  *	This hook is called when a deleted inode is released (i.e. an inode
424  *	with no hard links has its use count drop to zero).  A security module
425  *	can use this hook to release any persistent label associated with the
426  *	inode.
427  * @inode_setxattr:
428  *	Check permission before setting the extended attributes
429  *	@value identified by @name for @dentry.
430  *	Return 0 if permission is granted.
431  * @inode_post_setxattr:
432  *	Update inode security field after successful setxattr operation.
433  *	@value identified by @name for @dentry.
434  * @inode_getxattr:
435  *	Check permission before obtaining the extended attributes
436  *	identified by @name for @dentry.
437  *	Return 0 if permission is granted.
438  * @inode_listxattr:
439  *	Check permission before obtaining the list of extended attribute
440  *	names for @dentry.
441  *	Return 0 if permission is granted.
442  * @inode_removexattr:
443  *	Check permission before removing the extended attribute
444  *	identified by @name for @dentry.
445  *	Return 0 if permission is granted.
446  * @inode_getsecurity:
447  *	Retrieve a copy of the extended attribute representation of the
448  *	security label associated with @name for @inode via @buffer.  Note that
449  *	@name is the remainder of the attribute name after the security prefix
450  *	has been removed. @alloc is used to specify of the call should return a
451  *	value via the buffer or just the value length Return size of buffer on
452  *	success.
453  * @inode_setsecurity:
454  *	Set the security label associated with @name for @inode from the
455  *	extended attribute value @value.  @size indicates the size of the
456  *	@value in bytes.  @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
457  *	Note that @name is the remainder of the attribute name after the
458  *	security. prefix has been removed.
459  *	Return 0 on success.
460  * @inode_listsecurity:
461  *	Copy the extended attribute names for the security labels
462  *	associated with @inode into @buffer.  The maximum size of @buffer
463  *	is specified by @buffer_size.  @buffer may be NULL to request
464  *	the size of the buffer required.
465  *	Returns number of bytes used/required on success.
466  * @inode_need_killpriv:
467  *	Called when an inode has been changed.
468  *	@dentry is the dentry being changed.
469  *	Return <0 on error to abort the inode change operation.
470  *	Return 0 if inode_killpriv does not need to be called.
471  *	Return >0 if inode_killpriv does need to be called.
472  * @inode_killpriv:
473  *	The setuid bit is being removed.  Remove similar security labels.
474  *	Called with the dentry->d_inode->i_mutex held.
475  *	@dentry is the dentry being changed.
476  *	Return 0 on success.  If error is returned, then the operation
477  *	causing setuid bit removal is failed.
478  * @inode_getsecid:
479  *	Get the secid associated with the node.
480  *	@inode contains a pointer to the inode.
481  *	@secid contains a pointer to the location where result will be saved.
482  *	In case of failure, @secid will be set to zero.
483  *
484  * Security hooks for file operations
485  *
486  * @file_permission:
487  *	Check file permissions before accessing an open file.  This hook is
488  *	called by various operations that read or write files.  A security
489  *	module can use this hook to perform additional checking on these
490  *	operations, e.g.  to revalidate permissions on use to support privilege
491  *	bracketing or policy changes.  Notice that this hook is used when the
492  *	actual read/write operations are performed, whereas the
493  *	inode_security_ops hook is called when a file is opened (as well as
494  *	many other operations).
495  *	Caveat:  Although this hook can be used to revalidate permissions for
496  *	various system call operations that read or write files, it does not
497  *	address the revalidation of permissions for memory-mapped files.
498  *	Security modules must handle this separately if they need such
499  *	revalidation.
500  *	@file contains the file structure being accessed.
501  *	@mask contains the requested permissions.
502  *	Return 0 if permission is granted.
503  * @file_alloc_security:
504  *	Allocate and attach a security structure to the file->f_security field.
505  *	The security field is initialized to NULL when the structure is first
506  *	created.
507  *	@file contains the file structure to secure.
508  *	Return 0 if the hook is successful and permission is granted.
509  * @file_free_security:
510  *	Deallocate and free any security structures stored in file->f_security.
511  *	@file contains the file structure being modified.
512  * @file_ioctl:
513  *	@file contains the file structure.
514  *	@cmd contains the operation to perform.
515  *	@arg contains the operational arguments.
516  *	Check permission for an ioctl operation on @file.  Note that @arg can
517  *	sometimes represents a user space pointer; in other cases, it may be a
518  *	simple integer value.  When @arg represents a user space pointer, it
519  *	should never be used by the security module.
520  *	Return 0 if permission is granted.
521  * @file_mmap :
522  *	Check permissions for a mmap operation.  The @file may be NULL, e.g.
523  *	if mapping anonymous memory.
524  *	@file contains the file structure for file to map (may be NULL).
525  *	@reqprot contains the protection requested by the application.
526  *	@prot contains the protection that will be applied by the kernel.
527  *	@flags contains the operational flags.
528  *	Return 0 if permission is granted.
529  * @file_mprotect:
530  *	Check permissions before changing memory access permissions.
531  *	@vma contains the memory region to modify.
532  *	@reqprot contains the protection requested by the application.
533  *	@prot contains the protection that will be applied by the kernel.
534  *	Return 0 if permission is granted.
535  * @file_lock:
536  *	Check permission before performing file locking operations.
537  *	Note: this hook mediates both flock and fcntl style locks.
538  *	@file contains the file structure.
539  *	@cmd contains the posix-translated lock operation to perform
540  *	(e.g. F_RDLCK, F_WRLCK).
541  *	Return 0 if permission is granted.
542  * @file_fcntl:
543  *	Check permission before allowing the file operation specified by @cmd
544  *	from being performed on the file @file.  Note that @arg can sometimes
545  *	represents a user space pointer; in other cases, it may be a simple
546  *	integer value.  When @arg represents a user space pointer, it should
547  *	never be used by the security module.
548  *	@file contains the file structure.
549  *	@cmd contains the operation to be performed.
550  *	@arg contains the operational arguments.
551  *	Return 0 if permission is granted.
552  * @file_set_fowner:
553  *	Save owner security information (typically from current->security) in
554  *	file->f_security for later use by the send_sigiotask hook.
555  *	@file contains the file structure to update.
556  *	Return 0 on success.
557  * @file_send_sigiotask:
558  *	Check permission for the file owner @fown to send SIGIO or SIGURG to the
559  *	process @tsk.  Note that this hook is sometimes called from interrupt.
560  *	Note that the fown_struct, @fown, is never outside the context of a
561  *	struct file, so the file structure (and associated security information)
562  *	can always be obtained:
563  *		container_of(fown, struct file, f_owner)
564  *	@tsk contains the structure of task receiving signal.
565  *	@fown contains the file owner information.
566  *	@sig is the signal that will be sent.  When 0, kernel sends SIGIO.
567  *	Return 0 if permission is granted.
568  * @file_receive:
569  *	This hook allows security modules to control the ability of a process
570  *	to receive an open file descriptor via socket IPC.
571  *	@file contains the file structure being received.
572  *	Return 0 if permission is granted.
573  *
574  * Security hook for dentry
575  *
576  * @dentry_open
577  *	Save open-time permission checking state for later use upon
578  *	file_permission, and recheck access if anything has changed
579  *	since inode_permission.
580  *
581  * Security hooks for task operations.
582  *
583  * @task_create:
584  *	Check permission before creating a child process.  See the clone(2)
585  *	manual page for definitions of the @clone_flags.
586  *	@clone_flags contains the flags indicating what should be shared.
587  *	Return 0 if permission is granted.
588  * @task_alloc_security:
589  *	@p contains the task_struct for child process.
590  *	Allocate and attach a security structure to the p->security field. The
591  *	security field is initialized to NULL when the task structure is
592  *	allocated.
593  *	Return 0 if operation was successful.
594  * @task_free_security:
595  *	@p contains the task_struct for process.
596  *	Deallocate and clear the p->security field.
597  * @task_setuid:
598  *	Check permission before setting one or more of the user identity
599  *	attributes of the current process.  The @flags parameter indicates
600  *	which of the set*uid system calls invoked this hook and how to
601  *	interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
602  *	definitions at the beginning of this file for the @flags values and
603  *	their meanings.
604  *	@id0 contains a uid.
605  *	@id1 contains a uid.
606  *	@id2 contains a uid.
607  *	@flags contains one of the LSM_SETID_* values.
608  *	Return 0 if permission is granted.
609  * @task_post_setuid:
610  *	Update the module's state after setting one or more of the user
611  *	identity attributes of the current process.  The @flags parameter
612  *	indicates which of the set*uid system calls invoked this hook.  If
613  *	@flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
614  *	parameters are not used.
615  *	@old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
616  *	@old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
617  *	@old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
618  *	@flags contains one of the LSM_SETID_* values.
619  *	Return 0 on success.
620  * @task_setgid:
621  *	Check permission before setting one or more of the group identity
622  *	attributes of the current process.  The @flags parameter indicates
623  *	which of the set*gid system calls invoked this hook and how to
624  *	interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
625  *	definitions at the beginning of this file for the @flags values and
626  *	their meanings.
627  *	@id0 contains a gid.
628  *	@id1 contains a gid.
629  *	@id2 contains a gid.
630  *	@flags contains one of the LSM_SETID_* values.
631  *	Return 0 if permission is granted.
632  * @task_setpgid:
633  *	Check permission before setting the process group identifier of the
634  *	process @p to @pgid.
635  *	@p contains the task_struct for process being modified.
636  *	@pgid contains the new pgid.
637  *	Return 0 if permission is granted.
638  * @task_getpgid:
639  *	Check permission before getting the process group identifier of the
640  *	process @p.
641  *	@p contains the task_struct for the process.
642  *	Return 0 if permission is granted.
643  * @task_getsid:
644  *	Check permission before getting the session identifier of the process
645  *	@p.
646  *	@p contains the task_struct for the process.
647  *	Return 0 if permission is granted.
648  * @task_getsecid:
649  *	Retrieve the security identifier of the process @p.
650  *	@p contains the task_struct for the process and place is into @secid.
651  *	In case of failure, @secid will be set to zero.
652  *
653  * @task_setgroups:
654  *	Check permission before setting the supplementary group set of the
655  *	current process.
656  *	@group_info contains the new group information.
657  *	Return 0 if permission is granted.
658  * @task_setnice:
659  *	Check permission before setting the nice value of @p to @nice.
660  *	@p contains the task_struct of process.
661  *	@nice contains the new nice value.
662  *	Return 0 if permission is granted.
663  * @task_setioprio
664  *	Check permission before setting the ioprio value of @p to @ioprio.
665  *	@p contains the task_struct of process.
666  *	@ioprio contains the new ioprio value
667  *	Return 0 if permission is granted.
668  * @task_getioprio
669  *	Check permission before getting the ioprio value of @p.
670  *	@p contains the task_struct of process.
671  *	Return 0 if permission is granted.
672  * @task_setrlimit:
673  *	Check permission before setting the resource limits of the current
674  *	process for @resource to @new_rlim.  The old resource limit values can
675  *	be examined by dereferencing (current->signal->rlim + resource).
676  *	@resource contains the resource whose limit is being set.
677  *	@new_rlim contains the new limits for @resource.
678  *	Return 0 if permission is granted.
679  * @task_setscheduler:
680  *	Check permission before setting scheduling policy and/or parameters of
681  *	process @p based on @policy and @lp.
682  *	@p contains the task_struct for process.
683  *	@policy contains the scheduling policy.
684  *	@lp contains the scheduling parameters.
685  *	Return 0 if permission is granted.
686  * @task_getscheduler:
687  *	Check permission before obtaining scheduling information for process
688  *	@p.
689  *	@p contains the task_struct for process.
690  *	Return 0 if permission is granted.
691  * @task_movememory
692  *	Check permission before moving memory owned by process @p.
693  *	@p contains the task_struct for process.
694  *	Return 0 if permission is granted.
695  * @task_kill:
696  *	Check permission before sending signal @sig to @p.  @info can be NULL,
697  *	the constant 1, or a pointer to a siginfo structure.  If @info is 1 or
698  *	SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
699  *	from the kernel and should typically be permitted.
700  *	SIGIO signals are handled separately by the send_sigiotask hook in
701  *	file_security_ops.
702  *	@p contains the task_struct for process.
703  *	@info contains the signal information.
704  *	@sig contains the signal value.
705  *	@secid contains the sid of the process where the signal originated
706  *	Return 0 if permission is granted.
707  * @task_wait:
708  *	Check permission before allowing a process to reap a child process @p
709  *	and collect its status information.
710  *	@p contains the task_struct for process.
711  *	Return 0 if permission is granted.
712  * @task_prctl:
713  *	Check permission before performing a process control operation on the
714  *	current process.
715  *	@option contains the operation.
716  *	@arg2 contains a argument.
717  *	@arg3 contains a argument.
718  *	@arg4 contains a argument.
719  *	@arg5 contains a argument.
720  *      @rc_p contains a pointer to communicate back the forced return code
721  *	Return 0 if permission is granted, and non-zero if the security module
722  *      has taken responsibility (setting *rc_p) for the prctl call.
723  * @task_reparent_to_init:
724  *	Set the security attributes in @p->security for a kernel thread that
725  *	is being reparented to the init task.
726  *	@p contains the task_struct for the kernel thread.
727  * @task_to_inode:
728  *	Set the security attributes for an inode based on an associated task's
729  *	security attributes, e.g. for /proc/pid inodes.
730  *	@p contains the task_struct for the task.
731  *	@inode contains the inode structure for the inode.
732  *
733  * Security hooks for Netlink messaging.
734  *
735  * @netlink_send:
736  *	Save security information for a netlink message so that permission
737  *	checking can be performed when the message is processed.  The security
738  *	information can be saved using the eff_cap field of the
739  *	netlink_skb_parms structure.  Also may be used to provide fine
740  *	grained control over message transmission.
741  *	@sk associated sock of task sending the message.,
742  *	@skb contains the sk_buff structure for the netlink message.
743  *	Return 0 if the information was successfully saved and message
744  *	is allowed to be transmitted.
745  * @netlink_recv:
746  *	Check permission before processing the received netlink message in
747  *	@skb.
748  *	@skb contains the sk_buff structure for the netlink message.
749  *	@cap indicates the capability required
750  *	Return 0 if permission is granted.
751  *
752  * Security hooks for Unix domain networking.
753  *
754  * @unix_stream_connect:
755  *	Check permissions before establishing a Unix domain stream connection
756  *	between @sock and @other.
757  *	@sock contains the socket structure.
758  *	@other contains the peer socket structure.
759  *	Return 0 if permission is granted.
760  * @unix_may_send:
761  *	Check permissions before connecting or sending datagrams from @sock to
762  *	@other.
763  *	@sock contains the socket structure.
764  *	@sock contains the peer socket structure.
765  *	Return 0 if permission is granted.
766  *
767  * The @unix_stream_connect and @unix_may_send hooks were necessary because
768  * Linux provides an alternative to the conventional file name space for Unix
769  * domain sockets.  Whereas binding and connecting to sockets in the file name
770  * space is mediated by the typical file permissions (and caught by the mknod
771  * and permission hooks in inode_security_ops), binding and connecting to
772  * sockets in the abstract name space is completely unmediated.  Sufficient
773  * control of Unix domain sockets in the abstract name space isn't possible
774  * using only the socket layer hooks, since we need to know the actual target
775  * socket, which is not looked up until we are inside the af_unix code.
776  *
777  * Security hooks for socket operations.
778  *
779  * @socket_create:
780  *	Check permissions prior to creating a new socket.
781  *	@family contains the requested protocol family.
782  *	@type contains the requested communications type.
783  *	@protocol contains the requested protocol.
784  *	@kern set to 1 if a kernel socket.
785  *	Return 0 if permission is granted.
786  * @socket_post_create:
787  *	This hook allows a module to update or allocate a per-socket security
788  *	structure. Note that the security field was not added directly to the
789  *	socket structure, but rather, the socket security information is stored
790  *	in the associated inode.  Typically, the inode alloc_security hook will
791  *	allocate and and attach security information to
792  *	sock->inode->i_security.  This hook may be used to update the
793  *	sock->inode->i_security field with additional information that wasn't
794  *	available when the inode was allocated.
795  *	@sock contains the newly created socket structure.
796  *	@family contains the requested protocol family.
797  *	@type contains the requested communications type.
798  *	@protocol contains the requested protocol.
799  *	@kern set to 1 if a kernel socket.
800  * @socket_bind:
801  *	Check permission before socket protocol layer bind operation is
802  *	performed and the socket @sock is bound to the address specified in the
803  *	@address parameter.
804  *	@sock contains the socket structure.
805  *	@address contains the address to bind to.
806  *	@addrlen contains the length of address.
807  *	Return 0 if permission is granted.
808  * @socket_connect:
809  *	Check permission before socket protocol layer connect operation
810  *	attempts to connect socket @sock to a remote address, @address.
811  *	@sock contains the socket structure.
812  *	@address contains the address of remote endpoint.
813  *	@addrlen contains the length of address.
814  *	Return 0 if permission is granted.
815  * @socket_listen:
816  *	Check permission before socket protocol layer listen operation.
817  *	@sock contains the socket structure.
818  *	@backlog contains the maximum length for the pending connection queue.
819  *	Return 0 if permission is granted.
820  * @socket_accept:
821  *	Check permission before accepting a new connection.  Note that the new
822  *	socket, @newsock, has been created and some information copied to it,
823  *	but the accept operation has not actually been performed.
824  *	@sock contains the listening socket structure.
825  *	@newsock contains the newly created server socket for connection.
826  *	Return 0 if permission is granted.
827  * @socket_post_accept:
828  *	This hook allows a security module to copy security
829  *	information into the newly created socket's inode.
830  *	@sock contains the listening socket structure.
831  *	@newsock contains the newly created server socket for connection.
832  * @socket_sendmsg:
833  *	Check permission before transmitting a message to another socket.
834  *	@sock contains the socket structure.
835  *	@msg contains the message to be transmitted.
836  *	@size contains the size of message.
837  *	Return 0 if permission is granted.
838  * @socket_recvmsg:
839  *	Check permission before receiving a message from a socket.
840  *	@sock contains the socket structure.
841  *	@msg contains the message structure.
842  *	@size contains the size of message structure.
843  *	@flags contains the operational flags.
844  *	Return 0 if permission is granted.
845  * @socket_getsockname:
846  *	Check permission before the local address (name) of the socket object
847  *	@sock is retrieved.
848  *	@sock contains the socket structure.
849  *	Return 0 if permission is granted.
850  * @socket_getpeername:
851  *	Check permission before the remote address (name) of a socket object
852  *	@sock is retrieved.
853  *	@sock contains the socket structure.
854  *	Return 0 if permission is granted.
855  * @socket_getsockopt:
856  *	Check permissions before retrieving the options associated with socket
857  *	@sock.
858  *	@sock contains the socket structure.
859  *	@level contains the protocol level to retrieve option from.
860  *	@optname contains the name of option to retrieve.
861  *	Return 0 if permission is granted.
862  * @socket_setsockopt:
863  *	Check permissions before setting the options associated with socket
864  *	@sock.
865  *	@sock contains the socket structure.
866  *	@level contains the protocol level to set options for.
867  *	@optname contains the name of the option to set.
868  *	Return 0 if permission is granted.
869  * @socket_shutdown:
870  *	Checks permission before all or part of a connection on the socket
871  *	@sock is shut down.
872  *	@sock contains the socket structure.
873  *	@how contains the flag indicating how future sends and receives are handled.
874  *	Return 0 if permission is granted.
875  * @socket_sock_rcv_skb:
876  *	Check permissions on incoming network packets.  This hook is distinct
877  *	from Netfilter's IP input hooks since it is the first time that the
878  *	incoming sk_buff @skb has been associated with a particular socket, @sk.
879  *	@sk contains the sock (not socket) associated with the incoming sk_buff.
880  *	@skb contains the incoming network data.
881  * @socket_getpeersec_stream:
882  *	This hook allows the security module to provide peer socket security
883  *	state for unix or connected tcp sockets to userspace via getsockopt
884  *	SO_GETPEERSEC.  For tcp sockets this can be meaningful if the
885  *	socket is associated with an ipsec SA.
886  *	@sock is the local socket.
887  *	@optval userspace memory where the security state is to be copied.
888  *	@optlen userspace int where the module should copy the actual length
889  *	of the security state.
890  *	@len as input is the maximum length to copy to userspace provided
891  *	by the caller.
892  *	Return 0 if all is well, otherwise, typical getsockopt return
893  *	values.
894  * @socket_getpeersec_dgram:
895  *	This hook allows the security module to provide peer socket security
896  *	state for udp sockets on a per-packet basis to userspace via
897  *	getsockopt SO_GETPEERSEC.  The application must first have indicated
898  *	the IP_PASSSEC option via getsockopt.  It can then retrieve the
899  *	security state returned by this hook for a packet via the SCM_SECURITY
900  *	ancillary message type.
901  *	@skb is the skbuff for the packet being queried
902  *	@secdata is a pointer to a buffer in which to copy the security data
903  *	@seclen is the maximum length for @secdata
904  *	Return 0 on success, error on failure.
905  * @sk_alloc_security:
906  *	Allocate and attach a security structure to the sk->sk_security field,
907  *	which is used to copy security attributes between local stream sockets.
908  * @sk_free_security:
909  *	Deallocate security structure.
910  * @sk_clone_security:
911  *	Clone/copy security structure.
912  * @sk_getsecid:
913  *	Retrieve the LSM-specific secid for the sock to enable caching of network
914  *	authorizations.
915  * @sock_graft:
916  *	Sets the socket's isec sid to the sock's sid.
917  * @inet_conn_request:
918  *	Sets the openreq's sid to socket's sid with MLS portion taken from peer sid.
919  * @inet_csk_clone:
920  *	Sets the new child socket's sid to the openreq sid.
921  * @inet_conn_established:
922  *	Sets the connection's peersid to the secmark on skb.
923  * @req_classify_flow:
924  *	Sets the flow's sid to the openreq sid.
925  *
926  * Security hooks for XFRM operations.
927  *
928  * @xfrm_policy_alloc_security:
929  *	@ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy
930  *	Database used by the XFRM system.
931  *	@sec_ctx contains the security context information being provided by
932  *	the user-level policy update program (e.g., setkey).
933  *	Allocate a security structure to the xp->security field; the security
934  *	field is initialized to NULL when the xfrm_policy is allocated.
935  *	Return 0 if operation was successful (memory to allocate, legal context)
936  * @xfrm_policy_clone_security:
937  *	@old_ctx contains an existing xfrm_sec_ctx.
938  *	@new_ctxp contains a new xfrm_sec_ctx being cloned from old.
939  *	Allocate a security structure in new_ctxp that contains the
940  *	information from the old_ctx structure.
941  *	Return 0 if operation was successful (memory to allocate).
942  * @xfrm_policy_free_security:
943  *	@ctx contains the xfrm_sec_ctx
944  *	Deallocate xp->security.
945  * @xfrm_policy_delete_security:
946  *	@ctx contains the xfrm_sec_ctx.
947  *	Authorize deletion of xp->security.
948  * @xfrm_state_alloc_security:
949  *	@x contains the xfrm_state being added to the Security Association
950  *	Database by the XFRM system.
951  *	@sec_ctx contains the security context information being provided by
952  *	the user-level SA generation program (e.g., setkey or racoon).
953  *	@secid contains the secid from which to take the mls portion of the context.
954  *	Allocate a security structure to the x->security field; the security
955  *	field is initialized to NULL when the xfrm_state is allocated. Set the
956  *	context to correspond to either sec_ctx or polsec, with the mls portion
957  *	taken from secid in the latter case.
958  *	Return 0 if operation was successful (memory to allocate, legal context).
959  * @xfrm_state_free_security:
960  *	@x contains the xfrm_state.
961  *	Deallocate x->security.
962  * @xfrm_state_delete_security:
963  *	@x contains the xfrm_state.
964  *	Authorize deletion of x->security.
965  * @xfrm_policy_lookup:
966  *	@ctx contains the xfrm_sec_ctx for which the access control is being
967  *	checked.
968  *	@fl_secid contains the flow security label that is used to authorize
969  *	access to the policy xp.
970  *	@dir contains the direction of the flow (input or output).
971  *	Check permission when a flow selects a xfrm_policy for processing
972  *	XFRMs on a packet.  The hook is called when selecting either a
973  *	per-socket policy or a generic xfrm policy.
974  *	Return 0 if permission is granted, -ESRCH otherwise, or -errno
975  *	on other errors.
976  * @xfrm_state_pol_flow_match:
977  *	@x contains the state to match.
978  *	@xp contains the policy to check for a match.
979  *	@fl contains the flow to check for a match.
980  *	Return 1 if there is a match.
981  * @xfrm_decode_session:
982  *	@skb points to skb to decode.
983  *	@secid points to the flow key secid to set.
984  *	@ckall says if all xfrms used should be checked for same secid.
985  *	Return 0 if ckall is zero or all xfrms used have the same secid.
986  *
987  * Security hooks affecting all Key Management operations
988  *
989  * @key_alloc:
990  *	Permit allocation of a key and assign security data. Note that key does
991  *	not have a serial number assigned at this point.
992  *	@key points to the key.
993  *	@flags is the allocation flags
994  *	Return 0 if permission is granted, -ve error otherwise.
995  * @key_free:
996  *	Notification of destruction; free security data.
997  *	@key points to the key.
998  *	No return value.
999  * @key_permission:
1000  *	See whether a specific operational right is granted to a process on a
1001  *	key.
1002  *	@key_ref refers to the key (key pointer + possession attribute bit).
1003  *	@context points to the process to provide the context against which to
1004  *	evaluate the security data on the key.
1005  *	@perm describes the combination of permissions required of this key.
1006  *	Return 1 if permission granted, 0 if permission denied and -ve it the
1007  *	normal permissions model should be effected.
1008  * @key_getsecurity:
1009  *	Get a textual representation of the security context attached to a key
1010  *	for the purposes of honouring KEYCTL_GETSECURITY.  This function
1011  *	allocates the storage for the NUL-terminated string and the caller
1012  *	should free it.
1013  *	@key points to the key to be queried.
1014  *	@_buffer points to a pointer that should be set to point to the
1015  *	 resulting string (if no label or an error occurs).
1016  *	Return the length of the string (including terminating NUL) or -ve if
1017  *      an error.
1018  *	May also return 0 (and a NULL buffer pointer) if there is no label.
1019  *
1020  * Security hooks affecting all System V IPC operations.
1021  *
1022  * @ipc_permission:
1023  *	Check permissions for access to IPC
1024  *	@ipcp contains the kernel IPC permission structure
1025  *	@flag contains the desired (requested) permission set
1026  *	Return 0 if permission is granted.
1027  * @ipc_getsecid:
1028  *	Get the secid associated with the ipc object.
1029  *	@ipcp contains the kernel IPC permission structure.
1030  *	@secid contains a pointer to the location where result will be saved.
1031  *	In case of failure, @secid will be set to zero.
1032  *
1033  * Security hooks for individual messages held in System V IPC message queues
1034  * @msg_msg_alloc_security:
1035  *	Allocate and attach a security structure to the msg->security field.
1036  *	The security field is initialized to NULL when the structure is first
1037  *	created.
1038  *	@msg contains the message structure to be modified.
1039  *	Return 0 if operation was successful and permission is granted.
1040  * @msg_msg_free_security:
1041  *	Deallocate the security structure for this message.
1042  *	@msg contains the message structure to be modified.
1043  *
1044  * Security hooks for System V IPC Message Queues
1045  *
1046  * @msg_queue_alloc_security:
1047  *	Allocate and attach a security structure to the
1048  *	msq->q_perm.security field. The security field is initialized to
1049  *	NULL when the structure is first created.
1050  *	@msq contains the message queue structure to be modified.
1051  *	Return 0 if operation was successful and permission is granted.
1052  * @msg_queue_free_security:
1053  *	Deallocate security structure for this message queue.
1054  *	@msq contains the message queue structure to be modified.
1055  * @msg_queue_associate:
1056  *	Check permission when a message queue is requested through the
1057  *	msgget system call.  This hook is only called when returning the
1058  *	message queue identifier for an existing message queue, not when a
1059  *	new message queue is created.
1060  *	@msq contains the message queue to act upon.
1061  *	@msqflg contains the operation control flags.
1062  *	Return 0 if permission is granted.
1063  * @msg_queue_msgctl:
1064  *	Check permission when a message control operation specified by @cmd
1065  *	is to be performed on the message queue @msq.
1066  *	The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
1067  *	@msq contains the message queue to act upon.  May be NULL.
1068  *	@cmd contains the operation to be performed.
1069  *	Return 0 if permission is granted.
1070  * @msg_queue_msgsnd:
1071  *	Check permission before a message, @msg, is enqueued on the message
1072  *	queue, @msq.
1073  *	@msq contains the message queue to send message to.
1074  *	@msg contains the message to be enqueued.
1075  *	@msqflg contains operational flags.
1076  *	Return 0 if permission is granted.
1077  * @msg_queue_msgrcv:
1078  *	Check permission before a message, @msg, is removed from the message
1079  *	queue, @msq.  The @target task structure contains a pointer to the
1080  *	process that will be receiving the message (not equal to the current
1081  *	process when inline receives are being performed).
1082  *	@msq contains the message queue to retrieve message from.
1083  *	@msg contains the message destination.
1084  *	@target contains the task structure for recipient process.
1085  *	@type contains the type of message requested.
1086  *	@mode contains the operational flags.
1087  *	Return 0 if permission is granted.
1088  *
1089  * Security hooks for System V Shared Memory Segments
1090  *
1091  * @shm_alloc_security:
1092  *	Allocate and attach a security structure to the shp->shm_perm.security
1093  *	field.  The security field is initialized to NULL when the structure is
1094  *	first created.
1095  *	@shp contains the shared memory structure to be modified.
1096  *	Return 0 if operation was successful and permission is granted.
1097  * @shm_free_security:
1098  *	Deallocate the security struct for this memory segment.
1099  *	@shp contains the shared memory structure to be modified.
1100  * @shm_associate:
1101  *	Check permission when a shared memory region is requested through the
1102  *	shmget system call.  This hook is only called when returning the shared
1103  *	memory region identifier for an existing region, not when a new shared
1104  *	memory region is created.
1105  *	@shp contains the shared memory structure to be modified.
1106  *	@shmflg contains the operation control flags.
1107  *	Return 0 if permission is granted.
1108  * @shm_shmctl:
1109  *	Check permission when a shared memory control operation specified by
1110  *	@cmd is to be performed on the shared memory region @shp.
1111  *	The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
1112  *	@shp contains shared memory structure to be modified.
1113  *	@cmd contains the operation to be performed.
1114  *	Return 0 if permission is granted.
1115  * @shm_shmat:
1116  *	Check permissions prior to allowing the shmat system call to attach the
1117  *	shared memory segment @shp to the data segment of the calling process.
1118  *	The attaching address is specified by @shmaddr.
1119  *	@shp contains the shared memory structure to be modified.
1120  *	@shmaddr contains the address to attach memory region to.
1121  *	@shmflg contains the operational flags.
1122  *	Return 0 if permission is granted.
1123  *
1124  * Security hooks for System V Semaphores
1125  *
1126  * @sem_alloc_security:
1127  *	Allocate and attach a security structure to the sma->sem_perm.security
1128  *	field.  The security field is initialized to NULL when the structure is
1129  *	first created.
1130  *	@sma contains the semaphore structure
1131  *	Return 0 if operation was successful and permission is granted.
1132  * @sem_free_security:
1133  *	deallocate security struct for this semaphore
1134  *	@sma contains the semaphore structure.
1135  * @sem_associate:
1136  *	Check permission when a semaphore is requested through the semget
1137  *	system call.  This hook is only called when returning the semaphore
1138  *	identifier for an existing semaphore, not when a new one must be
1139  *	created.
1140  *	@sma contains the semaphore structure.
1141  *	@semflg contains the operation control flags.
1142  *	Return 0 if permission is granted.
1143  * @sem_semctl:
1144  *	Check permission when a semaphore operation specified by @cmd is to be
1145  *	performed on the semaphore @sma.  The @sma may be NULL, e.g. for
1146  *	IPC_INFO or SEM_INFO.
1147  *	@sma contains the semaphore structure.  May be NULL.
1148  *	@cmd contains the operation to be performed.
1149  *	Return 0 if permission is granted.
1150  * @sem_semop
1151  *	Check permissions before performing operations on members of the
1152  *	semaphore set @sma.  If the @alter flag is nonzero, the semaphore set
1153  *	may be modified.
1154  *	@sma contains the semaphore structure.
1155  *	@sops contains the operations to perform.
1156  *	@nsops contains the number of operations to perform.
1157  *	@alter contains the flag indicating whether changes are to be made.
1158  *	Return 0 if permission is granted.
1159  *
1160  * @ptrace_may_access:
1161  *	Check permission before allowing the current process to trace the
1162  *	@child process.
1163  *	Security modules may also want to perform a process tracing check
1164  *	during an execve in the set_security or apply_creds hooks of
1165  *	binprm_security_ops if the process is being traced and its security
1166  *	attributes would be changed by the execve.
1167  *	@child contains the task_struct structure for the target process.
1168  *	@mode contains the PTRACE_MODE flags indicating the form of access.
1169  *	Return 0 if permission is granted.
1170  * @ptrace_traceme:
1171  *	Check that the @parent process has sufficient permission to trace the
1172  *	current process before allowing the current process to present itself
1173  *	to the @parent process for tracing.
1174  *	The parent process will still have to undergo the ptrace_may_access
1175  *	checks before it is allowed to trace this one.
1176  *	@parent contains the task_struct structure for debugger process.
1177  *	Return 0 if permission is granted.
1178  * @capget:
1179  *	Get the @effective, @inheritable, and @permitted capability sets for
1180  *	the @target process.  The hook may also perform permission checking to
1181  *	determine if the current process is allowed to see the capability sets
1182  *	of the @target process.
1183  *	@target contains the task_struct structure for target process.
1184  *	@effective contains the effective capability set.
1185  *	@inheritable contains the inheritable capability set.
1186  *	@permitted contains the permitted capability set.
1187  *	Return 0 if the capability sets were successfully obtained.
1188  * @capset_check:
1189  *	Check permission before setting the @effective, @inheritable, and
1190  *	@permitted capability sets for the @target process.
1191  *	Caveat:  @target is also set to current if a set of processes is
1192  *	specified (i.e. all processes other than current and init or a
1193  *	particular process group).  Hence, the capset_set hook may need to
1194  *	revalidate permission to the actual target process.
1195  *	@target contains the task_struct structure for target process.
1196  *	@effective contains the effective capability set.
1197  *	@inheritable contains the inheritable capability set.
1198  *	@permitted contains the permitted capability set.
1199  *	Return 0 if permission is granted.
1200  * @capset_set:
1201  *	Set the @effective, @inheritable, and @permitted capability sets for
1202  *	the @target process.  Since capset_check cannot always check permission
1203  *	to the real @target process, this hook may also perform permission
1204  *	checking to determine if the current process is allowed to set the
1205  *	capability sets of the @target process.  However, this hook has no way
1206  *	of returning an error due to the structure of the sys_capset code.
1207  *	@target contains the task_struct structure for target process.
1208  *	@effective contains the effective capability set.
1209  *	@inheritable contains the inheritable capability set.
1210  *	@permitted contains the permitted capability set.
1211  * @capable:
1212  *	Check whether the @tsk process has the @cap capability.
1213  *	@tsk contains the task_struct for the process.
1214  *	@cap contains the capability <include/linux/capability.h>.
1215  *	Return 0 if the capability is granted for @tsk.
1216  * @acct:
1217  *	Check permission before enabling or disabling process accounting.  If
1218  *	accounting is being enabled, then @file refers to the open file used to
1219  *	store accounting records.  If accounting is being disabled, then @file
1220  *	is NULL.
1221  *	@file contains the file structure for the accounting file (may be NULL).
1222  *	Return 0 if permission is granted.
1223  * @sysctl:
1224  *	Check permission before accessing the @table sysctl variable in the
1225  *	manner specified by @op.
1226  *	@table contains the ctl_table structure for the sysctl variable.
1227  *	@op contains the operation (001 = search, 002 = write, 004 = read).
1228  *	Return 0 if permission is granted.
1229  * @syslog:
1230  *	Check permission before accessing the kernel message ring or changing
1231  *	logging to the console.
1232  *	See the syslog(2) manual page for an explanation of the @type values.
1233  *	@type contains the type of action.
1234  *	Return 0 if permission is granted.
1235  * @settime:
1236  *	Check permission to change the system time.
1237  *	struct timespec and timezone are defined in include/linux/time.h
1238  *	@ts contains new time
1239  *	@tz contains new timezone
1240  *	Return 0 if permission is granted.
1241  * @vm_enough_memory:
1242  *	Check permissions for allocating a new virtual mapping.
1243  *	@mm contains the mm struct it is being added to.
1244  *	@pages contains the number of pages.
1245  *	Return 0 if permission is granted.
1246  *
1247  * @secid_to_secctx:
1248  *	Convert secid to security context.
1249  *	@secid contains the security ID.
1250  *	@secdata contains the pointer that stores the converted security context.
1251  * @secctx_to_secid:
1252  *	Convert security context to secid.
1253  *	@secid contains the pointer to the generated security ID.
1254  *	@secdata contains the security context.
1255  *
1256  * @release_secctx:
1257  *	Release the security context.
1258  *	@secdata contains the security context.
1259  *	@seclen contains the length of the security context.
1260  *
1261  * Security hooks for Audit
1262  *
1263  * @audit_rule_init:
1264  *	Allocate and initialize an LSM audit rule structure.
1265  *	@field contains the required Audit action. Fields flags are defined in include/linux/audit.h
1266  *	@op contains the operator the rule uses.
1267  *	@rulestr contains the context where the rule will be applied to.
1268  *	@lsmrule contains a pointer to receive the result.
1269  *	Return 0 if @lsmrule has been successfully set,
1270  *	-EINVAL in case of an invalid rule.
1271  *
1272  * @audit_rule_known:
1273  *	Specifies whether given @rule contains any fields related to current LSM.
1274  *	@rule contains the audit rule of interest.
1275  *	Return 1 in case of relation found, 0 otherwise.
1276  *
1277  * @audit_rule_match:
1278  *	Determine if given @secid matches a rule previously approved
1279  *	by @audit_rule_known.
1280  *	@secid contains the security id in question.
1281  *	@field contains the field which relates to current LSM.
1282  *	@op contains the operator that will be used for matching.
1283  *	@rule points to the audit rule that will be checked against.
1284  *	@actx points to the audit context associated with the check.
1285  *	Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure.
1286  *
1287  * @audit_rule_free:
1288  *	Deallocate the LSM audit rule structure previously allocated by
1289  *	audit_rule_init.
1290  *	@rule contains the allocated rule
1291  *
1292  * This is the main security structure.
1293  */
1294 struct security_operations {
1295 	char name[SECURITY_NAME_MAX + 1];
1296 
1297 	int (*ptrace_may_access) (struct task_struct *child, unsigned int mode);
1298 	int (*ptrace_traceme) (struct task_struct *parent);
1299 	int (*capget) (struct task_struct *target,
1300 		       kernel_cap_t *effective,
1301 		       kernel_cap_t *inheritable, kernel_cap_t *permitted);
1302 	int (*capset_check) (struct task_struct *target,
1303 			     kernel_cap_t *effective,
1304 			     kernel_cap_t *inheritable,
1305 			     kernel_cap_t *permitted);
1306 	void (*capset_set) (struct task_struct *target,
1307 			    kernel_cap_t *effective,
1308 			    kernel_cap_t *inheritable,
1309 			    kernel_cap_t *permitted);
1310 	int (*capable) (struct task_struct *tsk, int cap);
1311 	int (*acct) (struct file *file);
1312 	int (*sysctl) (struct ctl_table *table, int op);
1313 	int (*quotactl) (int cmds, int type, int id, struct super_block *sb);
1314 	int (*quota_on) (struct dentry *dentry);
1315 	int (*syslog) (int type);
1316 	int (*settime) (struct timespec *ts, struct timezone *tz);
1317 	int (*vm_enough_memory) (struct mm_struct *mm, long pages);
1318 
1319 	int (*bprm_alloc_security) (struct linux_binprm *bprm);
1320 	void (*bprm_free_security) (struct linux_binprm *bprm);
1321 	void (*bprm_apply_creds) (struct linux_binprm *bprm, int unsafe);
1322 	void (*bprm_post_apply_creds) (struct linux_binprm *bprm);
1323 	int (*bprm_set_security) (struct linux_binprm *bprm);
1324 	int (*bprm_check_security) (struct linux_binprm *bprm);
1325 	int (*bprm_secureexec) (struct linux_binprm *bprm);
1326 
1327 	int (*sb_alloc_security) (struct super_block *sb);
1328 	void (*sb_free_security) (struct super_block *sb);
1329 	int (*sb_copy_data) (char *orig, char *copy);
1330 	int (*sb_kern_mount) (struct super_block *sb, void *data);
1331 	int (*sb_show_options) (struct seq_file *m, struct super_block *sb);
1332 	int (*sb_statfs) (struct dentry *dentry);
1333 	int (*sb_mount) (char *dev_name, struct path *path,
1334 			 char *type, unsigned long flags, void *data);
1335 	int (*sb_check_sb) (struct vfsmount *mnt, struct path *path);
1336 	int (*sb_umount) (struct vfsmount *mnt, int flags);
1337 	void (*sb_umount_close) (struct vfsmount *mnt);
1338 	void (*sb_umount_busy) (struct vfsmount *mnt);
1339 	void (*sb_post_remount) (struct vfsmount *mnt,
1340 				 unsigned long flags, void *data);
1341 	void (*sb_post_addmount) (struct vfsmount *mnt,
1342 				  struct path *mountpoint);
1343 	int (*sb_pivotroot) (struct path *old_path,
1344 			     struct path *new_path);
1345 	void (*sb_post_pivotroot) (struct path *old_path,
1346 				   struct path *new_path);
1347 	int (*sb_set_mnt_opts) (struct super_block *sb,
1348 				struct security_mnt_opts *opts);
1349 	void (*sb_clone_mnt_opts) (const struct super_block *oldsb,
1350 				   struct super_block *newsb);
1351 	int (*sb_parse_opts_str) (char *options, struct security_mnt_opts *opts);
1352 
1353 	int (*inode_alloc_security) (struct inode *inode);
1354 	void (*inode_free_security) (struct inode *inode);
1355 	int (*inode_init_security) (struct inode *inode, struct inode *dir,
1356 				    char **name, void **value, size_t *len);
1357 	int (*inode_create) (struct inode *dir,
1358 			     struct dentry *dentry, int mode);
1359 	int (*inode_link) (struct dentry *old_dentry,
1360 			   struct inode *dir, struct dentry *new_dentry);
1361 	int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1362 	int (*inode_symlink) (struct inode *dir,
1363 			      struct dentry *dentry, const char *old_name);
1364 	int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
1365 	int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1366 	int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1367 			    int mode, dev_t dev);
1368 	int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1369 			     struct inode *new_dir, struct dentry *new_dentry);
1370 	int (*inode_readlink) (struct dentry *dentry);
1371 	int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1372 	int (*inode_permission) (struct inode *inode, int mask);
1373 	int (*inode_setattr)	(struct dentry *dentry, struct iattr *attr);
1374 	int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1375 	void (*inode_delete) (struct inode *inode);
1376 	int (*inode_setxattr) (struct dentry *dentry, const char *name,
1377 			       const void *value, size_t size, int flags);
1378 	void (*inode_post_setxattr) (struct dentry *dentry, const char *name,
1379 				     const void *value, size_t size, int flags);
1380 	int (*inode_getxattr) (struct dentry *dentry, const char *name);
1381 	int (*inode_listxattr) (struct dentry *dentry);
1382 	int (*inode_removexattr) (struct dentry *dentry, const char *name);
1383 	int (*inode_need_killpriv) (struct dentry *dentry);
1384 	int (*inode_killpriv) (struct dentry *dentry);
1385 	int (*inode_getsecurity) (const struct inode *inode, const char *name, void **buffer, bool alloc);
1386 	int (*inode_setsecurity) (struct inode *inode, const char *name, const void *value, size_t size, int flags);
1387 	int (*inode_listsecurity) (struct inode *inode, char *buffer, size_t buffer_size);
1388 	void (*inode_getsecid) (const struct inode *inode, u32 *secid);
1389 
1390 	int (*file_permission) (struct file *file, int mask);
1391 	int (*file_alloc_security) (struct file *file);
1392 	void (*file_free_security) (struct file *file);
1393 	int (*file_ioctl) (struct file *file, unsigned int cmd,
1394 			   unsigned long arg);
1395 	int (*file_mmap) (struct file *file,
1396 			  unsigned long reqprot, unsigned long prot,
1397 			  unsigned long flags, unsigned long addr,
1398 			  unsigned long addr_only);
1399 	int (*file_mprotect) (struct vm_area_struct *vma,
1400 			      unsigned long reqprot,
1401 			      unsigned long prot);
1402 	int (*file_lock) (struct file *file, unsigned int cmd);
1403 	int (*file_fcntl) (struct file *file, unsigned int cmd,
1404 			   unsigned long arg);
1405 	int (*file_set_fowner) (struct file *file);
1406 	int (*file_send_sigiotask) (struct task_struct *tsk,
1407 				    struct fown_struct *fown, int sig);
1408 	int (*file_receive) (struct file *file);
1409 	int (*dentry_open) (struct file *file);
1410 
1411 	int (*task_create) (unsigned long clone_flags);
1412 	int (*task_alloc_security) (struct task_struct *p);
1413 	void (*task_free_security) (struct task_struct *p);
1414 	int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
1415 	int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
1416 				 uid_t old_euid, uid_t old_suid, int flags);
1417 	int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
1418 	int (*task_setpgid) (struct task_struct *p, pid_t pgid);
1419 	int (*task_getpgid) (struct task_struct *p);
1420 	int (*task_getsid) (struct task_struct *p);
1421 	void (*task_getsecid) (struct task_struct *p, u32 *secid);
1422 	int (*task_setgroups) (struct group_info *group_info);
1423 	int (*task_setnice) (struct task_struct *p, int nice);
1424 	int (*task_setioprio) (struct task_struct *p, int ioprio);
1425 	int (*task_getioprio) (struct task_struct *p);
1426 	int (*task_setrlimit) (unsigned int resource, struct rlimit *new_rlim);
1427 	int (*task_setscheduler) (struct task_struct *p, int policy,
1428 				  struct sched_param *lp);
1429 	int (*task_getscheduler) (struct task_struct *p);
1430 	int (*task_movememory) (struct task_struct *p);
1431 	int (*task_kill) (struct task_struct *p,
1432 			  struct siginfo *info, int sig, u32 secid);
1433 	int (*task_wait) (struct task_struct *p);
1434 	int (*task_prctl) (int option, unsigned long arg2,
1435 			   unsigned long arg3, unsigned long arg4,
1436 			   unsigned long arg5, long *rc_p);
1437 	void (*task_reparent_to_init) (struct task_struct *p);
1438 	void (*task_to_inode) (struct task_struct *p, struct inode *inode);
1439 
1440 	int (*ipc_permission) (struct kern_ipc_perm *ipcp, short flag);
1441 	void (*ipc_getsecid) (struct kern_ipc_perm *ipcp, u32 *secid);
1442 
1443 	int (*msg_msg_alloc_security) (struct msg_msg *msg);
1444 	void (*msg_msg_free_security) (struct msg_msg *msg);
1445 
1446 	int (*msg_queue_alloc_security) (struct msg_queue *msq);
1447 	void (*msg_queue_free_security) (struct msg_queue *msq);
1448 	int (*msg_queue_associate) (struct msg_queue *msq, int msqflg);
1449 	int (*msg_queue_msgctl) (struct msg_queue *msq, int cmd);
1450 	int (*msg_queue_msgsnd) (struct msg_queue *msq,
1451 				 struct msg_msg *msg, int msqflg);
1452 	int (*msg_queue_msgrcv) (struct msg_queue *msq,
1453 				 struct msg_msg *msg,
1454 				 struct task_struct *target,
1455 				 long type, int mode);
1456 
1457 	int (*shm_alloc_security) (struct shmid_kernel *shp);
1458 	void (*shm_free_security) (struct shmid_kernel *shp);
1459 	int (*shm_associate) (struct shmid_kernel *shp, int shmflg);
1460 	int (*shm_shmctl) (struct shmid_kernel *shp, int cmd);
1461 	int (*shm_shmat) (struct shmid_kernel *shp,
1462 			  char __user *shmaddr, int shmflg);
1463 
1464 	int (*sem_alloc_security) (struct sem_array *sma);
1465 	void (*sem_free_security) (struct sem_array *sma);
1466 	int (*sem_associate) (struct sem_array *sma, int semflg);
1467 	int (*sem_semctl) (struct sem_array *sma, int cmd);
1468 	int (*sem_semop) (struct sem_array *sma,
1469 			  struct sembuf *sops, unsigned nsops, int alter);
1470 
1471 	int (*netlink_send) (struct sock *sk, struct sk_buff *skb);
1472 	int (*netlink_recv) (struct sk_buff *skb, int cap);
1473 
1474 	void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1475 
1476 	int (*getprocattr) (struct task_struct *p, char *name, char **value);
1477 	int (*setprocattr) (struct task_struct *p, char *name, void *value, size_t size);
1478 	int (*secid_to_secctx) (u32 secid, char **secdata, u32 *seclen);
1479 	int (*secctx_to_secid) (const char *secdata, u32 seclen, u32 *secid);
1480 	void (*release_secctx) (char *secdata, u32 seclen);
1481 
1482 #ifdef CONFIG_SECURITY_NETWORK
1483 	int (*unix_stream_connect) (struct socket *sock,
1484 				    struct socket *other, struct sock *newsk);
1485 	int (*unix_may_send) (struct socket *sock, struct socket *other);
1486 
1487 	int (*socket_create) (int family, int type, int protocol, int kern);
1488 	int (*socket_post_create) (struct socket *sock, int family,
1489 				   int type, int protocol, int kern);
1490 	int (*socket_bind) (struct socket *sock,
1491 			    struct sockaddr *address, int addrlen);
1492 	int (*socket_connect) (struct socket *sock,
1493 			       struct sockaddr *address, int addrlen);
1494 	int (*socket_listen) (struct socket *sock, int backlog);
1495 	int (*socket_accept) (struct socket *sock, struct socket *newsock);
1496 	void (*socket_post_accept) (struct socket *sock,
1497 				    struct socket *newsock);
1498 	int (*socket_sendmsg) (struct socket *sock,
1499 			       struct msghdr *msg, int size);
1500 	int (*socket_recvmsg) (struct socket *sock,
1501 			       struct msghdr *msg, int size, int flags);
1502 	int (*socket_getsockname) (struct socket *sock);
1503 	int (*socket_getpeername) (struct socket *sock);
1504 	int (*socket_getsockopt) (struct socket *sock, int level, int optname);
1505 	int (*socket_setsockopt) (struct socket *sock, int level, int optname);
1506 	int (*socket_shutdown) (struct socket *sock, int how);
1507 	int (*socket_sock_rcv_skb) (struct sock *sk, struct sk_buff *skb);
1508 	int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1509 	int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
1510 	int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1511 	void (*sk_free_security) (struct sock *sk);
1512 	void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
1513 	void (*sk_getsecid) (struct sock *sk, u32 *secid);
1514 	void (*sock_graft) (struct sock *sk, struct socket *parent);
1515 	int (*inet_conn_request) (struct sock *sk, struct sk_buff *skb,
1516 				  struct request_sock *req);
1517 	void (*inet_csk_clone) (struct sock *newsk, const struct request_sock *req);
1518 	void (*inet_conn_established) (struct sock *sk, struct sk_buff *skb);
1519 	void (*req_classify_flow) (const struct request_sock *req, struct flowi *fl);
1520 #endif	/* CONFIG_SECURITY_NETWORK */
1521 
1522 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1523 	int (*xfrm_policy_alloc_security) (struct xfrm_sec_ctx **ctxp,
1524 			struct xfrm_user_sec_ctx *sec_ctx);
1525 	int (*xfrm_policy_clone_security) (struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctx);
1526 	void (*xfrm_policy_free_security) (struct xfrm_sec_ctx *ctx);
1527 	int (*xfrm_policy_delete_security) (struct xfrm_sec_ctx *ctx);
1528 	int (*xfrm_state_alloc_security) (struct xfrm_state *x,
1529 		struct xfrm_user_sec_ctx *sec_ctx,
1530 		u32 secid);
1531 	void (*xfrm_state_free_security) (struct xfrm_state *x);
1532 	int (*xfrm_state_delete_security) (struct xfrm_state *x);
1533 	int (*xfrm_policy_lookup) (struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
1534 	int (*xfrm_state_pol_flow_match) (struct xfrm_state *x,
1535 					  struct xfrm_policy *xp,
1536 					  struct flowi *fl);
1537 	int (*xfrm_decode_session) (struct sk_buff *skb, u32 *secid, int ckall);
1538 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1539 
1540 	/* key management security hooks */
1541 #ifdef CONFIG_KEYS
1542 	int (*key_alloc) (struct key *key, struct task_struct *tsk, unsigned long flags);
1543 	void (*key_free) (struct key *key);
1544 	int (*key_permission) (key_ref_t key_ref,
1545 			       struct task_struct *context,
1546 			       key_perm_t perm);
1547 	int (*key_getsecurity)(struct key *key, char **_buffer);
1548 #endif	/* CONFIG_KEYS */
1549 
1550 #ifdef CONFIG_AUDIT
1551 	int (*audit_rule_init) (u32 field, u32 op, char *rulestr, void **lsmrule);
1552 	int (*audit_rule_known) (struct audit_krule *krule);
1553 	int (*audit_rule_match) (u32 secid, u32 field, u32 op, void *lsmrule,
1554 				 struct audit_context *actx);
1555 	void (*audit_rule_free) (void *lsmrule);
1556 #endif /* CONFIG_AUDIT */
1557 };
1558 
1559 /* prototypes */
1560 extern int security_init(void);
1561 extern int security_module_enable(struct security_operations *ops);
1562 extern int register_security(struct security_operations *ops);
1563 
1564 /* Security operations */
1565 int security_ptrace_may_access(struct task_struct *child, unsigned int mode);
1566 int security_ptrace_traceme(struct task_struct *parent);
1567 int security_capget(struct task_struct *target,
1568 		    kernel_cap_t *effective,
1569 		    kernel_cap_t *inheritable,
1570 		    kernel_cap_t *permitted);
1571 int security_capset_check(struct task_struct *target,
1572 			  kernel_cap_t *effective,
1573 			  kernel_cap_t *inheritable,
1574 			  kernel_cap_t *permitted);
1575 void security_capset_set(struct task_struct *target,
1576 			 kernel_cap_t *effective,
1577 			 kernel_cap_t *inheritable,
1578 			 kernel_cap_t *permitted);
1579 int security_capable(struct task_struct *tsk, int cap);
1580 int security_acct(struct file *file);
1581 int security_sysctl(struct ctl_table *table, int op);
1582 int security_quotactl(int cmds, int type, int id, struct super_block *sb);
1583 int security_quota_on(struct dentry *dentry);
1584 int security_syslog(int type);
1585 int security_settime(struct timespec *ts, struct timezone *tz);
1586 int security_vm_enough_memory(long pages);
1587 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages);
1588 int security_bprm_alloc(struct linux_binprm *bprm);
1589 void security_bprm_free(struct linux_binprm *bprm);
1590 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe);
1591 void security_bprm_post_apply_creds(struct linux_binprm *bprm);
1592 int security_bprm_set(struct linux_binprm *bprm);
1593 int security_bprm_check(struct linux_binprm *bprm);
1594 int security_bprm_secureexec(struct linux_binprm *bprm);
1595 int security_sb_alloc(struct super_block *sb);
1596 void security_sb_free(struct super_block *sb);
1597 int security_sb_copy_data(char *orig, char *copy);
1598 int security_sb_kern_mount(struct super_block *sb, void *data);
1599 int security_sb_show_options(struct seq_file *m, struct super_block *sb);
1600 int security_sb_statfs(struct dentry *dentry);
1601 int security_sb_mount(char *dev_name, struct path *path,
1602 		      char *type, unsigned long flags, void *data);
1603 int security_sb_check_sb(struct vfsmount *mnt, struct path *path);
1604 int security_sb_umount(struct vfsmount *mnt, int flags);
1605 void security_sb_umount_close(struct vfsmount *mnt);
1606 void security_sb_umount_busy(struct vfsmount *mnt);
1607 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data);
1608 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint);
1609 int security_sb_pivotroot(struct path *old_path, struct path *new_path);
1610 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path);
1611 int security_sb_set_mnt_opts(struct super_block *sb, struct security_mnt_opts *opts);
1612 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
1613 				struct super_block *newsb);
1614 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts);
1615 
1616 int security_inode_alloc(struct inode *inode);
1617 void security_inode_free(struct inode *inode);
1618 int security_inode_init_security(struct inode *inode, struct inode *dir,
1619 				  char **name, void **value, size_t *len);
1620 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode);
1621 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1622 			 struct dentry *new_dentry);
1623 int security_inode_unlink(struct inode *dir, struct dentry *dentry);
1624 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1625 			   const char *old_name);
1626 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode);
1627 int security_inode_rmdir(struct inode *dir, struct dentry *dentry);
1628 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev);
1629 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1630 			  struct inode *new_dir, struct dentry *new_dentry);
1631 int security_inode_readlink(struct dentry *dentry);
1632 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd);
1633 int security_inode_permission(struct inode *inode, int mask);
1634 int security_inode_setattr(struct dentry *dentry, struct iattr *attr);
1635 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry);
1636 void security_inode_delete(struct inode *inode);
1637 int security_inode_setxattr(struct dentry *dentry, const char *name,
1638 			    const void *value, size_t size, int flags);
1639 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1640 				  const void *value, size_t size, int flags);
1641 int security_inode_getxattr(struct dentry *dentry, const char *name);
1642 int security_inode_listxattr(struct dentry *dentry);
1643 int security_inode_removexattr(struct dentry *dentry, const char *name);
1644 int security_inode_need_killpriv(struct dentry *dentry);
1645 int security_inode_killpriv(struct dentry *dentry);
1646 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc);
1647 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1648 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size);
1649 void security_inode_getsecid(const struct inode *inode, u32 *secid);
1650 int security_file_permission(struct file *file, int mask);
1651 int security_file_alloc(struct file *file);
1652 void security_file_free(struct file *file);
1653 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
1654 int security_file_mmap(struct file *file, unsigned long reqprot,
1655 			unsigned long prot, unsigned long flags,
1656 			unsigned long addr, unsigned long addr_only);
1657 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1658 			   unsigned long prot);
1659 int security_file_lock(struct file *file, unsigned int cmd);
1660 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg);
1661 int security_file_set_fowner(struct file *file);
1662 int security_file_send_sigiotask(struct task_struct *tsk,
1663 				 struct fown_struct *fown, int sig);
1664 int security_file_receive(struct file *file);
1665 int security_dentry_open(struct file *file);
1666 int security_task_create(unsigned long clone_flags);
1667 int security_task_alloc(struct task_struct *p);
1668 void security_task_free(struct task_struct *p);
1669 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags);
1670 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
1671 			      uid_t old_suid, int flags);
1672 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags);
1673 int security_task_setpgid(struct task_struct *p, pid_t pgid);
1674 int security_task_getpgid(struct task_struct *p);
1675 int security_task_getsid(struct task_struct *p);
1676 void security_task_getsecid(struct task_struct *p, u32 *secid);
1677 int security_task_setgroups(struct group_info *group_info);
1678 int security_task_setnice(struct task_struct *p, int nice);
1679 int security_task_setioprio(struct task_struct *p, int ioprio);
1680 int security_task_getioprio(struct task_struct *p);
1681 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim);
1682 int security_task_setscheduler(struct task_struct *p,
1683 				int policy, struct sched_param *lp);
1684 int security_task_getscheduler(struct task_struct *p);
1685 int security_task_movememory(struct task_struct *p);
1686 int security_task_kill(struct task_struct *p, struct siginfo *info,
1687 			int sig, u32 secid);
1688 int security_task_wait(struct task_struct *p);
1689 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1690 			 unsigned long arg4, unsigned long arg5, long *rc_p);
1691 void security_task_reparent_to_init(struct task_struct *p);
1692 void security_task_to_inode(struct task_struct *p, struct inode *inode);
1693 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag);
1694 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid);
1695 int security_msg_msg_alloc(struct msg_msg *msg);
1696 void security_msg_msg_free(struct msg_msg *msg);
1697 int security_msg_queue_alloc(struct msg_queue *msq);
1698 void security_msg_queue_free(struct msg_queue *msq);
1699 int security_msg_queue_associate(struct msg_queue *msq, int msqflg);
1700 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd);
1701 int security_msg_queue_msgsnd(struct msg_queue *msq,
1702 			      struct msg_msg *msg, int msqflg);
1703 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1704 			      struct task_struct *target, long type, int mode);
1705 int security_shm_alloc(struct shmid_kernel *shp);
1706 void security_shm_free(struct shmid_kernel *shp);
1707 int security_shm_associate(struct shmid_kernel *shp, int shmflg);
1708 int security_shm_shmctl(struct shmid_kernel *shp, int cmd);
1709 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg);
1710 int security_sem_alloc(struct sem_array *sma);
1711 void security_sem_free(struct sem_array *sma);
1712 int security_sem_associate(struct sem_array *sma, int semflg);
1713 int security_sem_semctl(struct sem_array *sma, int cmd);
1714 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1715 			unsigned nsops, int alter);
1716 void security_d_instantiate(struct dentry *dentry, struct inode *inode);
1717 int security_getprocattr(struct task_struct *p, char *name, char **value);
1718 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size);
1719 int security_netlink_send(struct sock *sk, struct sk_buff *skb);
1720 int security_netlink_recv(struct sk_buff *skb, int cap);
1721 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen);
1722 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid);
1723 void security_release_secctx(char *secdata, u32 seclen);
1724 
1725 #else /* CONFIG_SECURITY */
1726 struct security_mnt_opts {
1727 };
1728 
1729 static inline void security_init_mnt_opts(struct security_mnt_opts *opts)
1730 {
1731 }
1732 
1733 static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
1734 {
1735 }
1736 
1737 /*
1738  * This is the default capabilities functionality.  Most of these functions
1739  * are just stubbed out, but a few must call the proper capable code.
1740  */
1741 
1742 static inline int security_init(void)
1743 {
1744 	return 0;
1745 }
1746 
1747 static inline int security_ptrace_may_access(struct task_struct *child,
1748 					     unsigned int mode)
1749 {
1750 	return cap_ptrace_may_access(child, mode);
1751 }
1752 
1753 static inline int security_ptrace_traceme(struct task_struct *parent)
1754 {
1755 	return cap_ptrace_traceme(parent);
1756 }
1757 
1758 static inline int security_capget(struct task_struct *target,
1759 				   kernel_cap_t *effective,
1760 				   kernel_cap_t *inheritable,
1761 				   kernel_cap_t *permitted)
1762 {
1763 	return cap_capget(target, effective, inheritable, permitted);
1764 }
1765 
1766 static inline int security_capset_check(struct task_struct *target,
1767 					 kernel_cap_t *effective,
1768 					 kernel_cap_t *inheritable,
1769 					 kernel_cap_t *permitted)
1770 {
1771 	return cap_capset_check(target, effective, inheritable, permitted);
1772 }
1773 
1774 static inline void security_capset_set(struct task_struct *target,
1775 					kernel_cap_t *effective,
1776 					kernel_cap_t *inheritable,
1777 					kernel_cap_t *permitted)
1778 {
1779 	cap_capset_set(target, effective, inheritable, permitted);
1780 }
1781 
1782 static inline int security_capable(struct task_struct *tsk, int cap)
1783 {
1784 	return cap_capable(tsk, cap);
1785 }
1786 
1787 static inline int security_acct(struct file *file)
1788 {
1789 	return 0;
1790 }
1791 
1792 static inline int security_sysctl(struct ctl_table *table, int op)
1793 {
1794 	return 0;
1795 }
1796 
1797 static inline int security_quotactl(int cmds, int type, int id,
1798 				     struct super_block *sb)
1799 {
1800 	return 0;
1801 }
1802 
1803 static inline int security_quota_on(struct dentry *dentry)
1804 {
1805 	return 0;
1806 }
1807 
1808 static inline int security_syslog(int type)
1809 {
1810 	return cap_syslog(type);
1811 }
1812 
1813 static inline int security_settime(struct timespec *ts, struct timezone *tz)
1814 {
1815 	return cap_settime(ts, tz);
1816 }
1817 
1818 static inline int security_vm_enough_memory(long pages)
1819 {
1820 	return cap_vm_enough_memory(current->mm, pages);
1821 }
1822 
1823 static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1824 {
1825 	return cap_vm_enough_memory(mm, pages);
1826 }
1827 
1828 static inline int security_bprm_alloc(struct linux_binprm *bprm)
1829 {
1830 	return 0;
1831 }
1832 
1833 static inline void security_bprm_free(struct linux_binprm *bprm)
1834 { }
1835 
1836 static inline void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1837 {
1838 	cap_bprm_apply_creds(bprm, unsafe);
1839 }
1840 
1841 static inline void security_bprm_post_apply_creds(struct linux_binprm *bprm)
1842 {
1843 	return;
1844 }
1845 
1846 static inline int security_bprm_set(struct linux_binprm *bprm)
1847 {
1848 	return cap_bprm_set_security(bprm);
1849 }
1850 
1851 static inline int security_bprm_check(struct linux_binprm *bprm)
1852 {
1853 	return 0;
1854 }
1855 
1856 static inline int security_bprm_secureexec(struct linux_binprm *bprm)
1857 {
1858 	return cap_bprm_secureexec(bprm);
1859 }
1860 
1861 static inline int security_sb_alloc(struct super_block *sb)
1862 {
1863 	return 0;
1864 }
1865 
1866 static inline void security_sb_free(struct super_block *sb)
1867 { }
1868 
1869 static inline int security_sb_copy_data(char *orig, char *copy)
1870 {
1871 	return 0;
1872 }
1873 
1874 static inline int security_sb_kern_mount(struct super_block *sb, void *data)
1875 {
1876 	return 0;
1877 }
1878 
1879 static inline int security_sb_show_options(struct seq_file *m,
1880 					   struct super_block *sb)
1881 {
1882 	return 0;
1883 }
1884 
1885 static inline int security_sb_statfs(struct dentry *dentry)
1886 {
1887 	return 0;
1888 }
1889 
1890 static inline int security_sb_mount(char *dev_name, struct path *path,
1891 				    char *type, unsigned long flags,
1892 				    void *data)
1893 {
1894 	return 0;
1895 }
1896 
1897 static inline int security_sb_check_sb(struct vfsmount *mnt,
1898 				       struct path *path)
1899 {
1900 	return 0;
1901 }
1902 
1903 static inline int security_sb_umount(struct vfsmount *mnt, int flags)
1904 {
1905 	return 0;
1906 }
1907 
1908 static inline void security_sb_umount_close(struct vfsmount *mnt)
1909 { }
1910 
1911 static inline void security_sb_umount_busy(struct vfsmount *mnt)
1912 { }
1913 
1914 static inline void security_sb_post_remount(struct vfsmount *mnt,
1915 					     unsigned long flags, void *data)
1916 { }
1917 
1918 static inline void security_sb_post_addmount(struct vfsmount *mnt,
1919 					     struct path *mountpoint)
1920 { }
1921 
1922 static inline int security_sb_pivotroot(struct path *old_path,
1923 					struct path *new_path)
1924 {
1925 	return 0;
1926 }
1927 
1928 static inline void security_sb_post_pivotroot(struct path *old_path,
1929 					      struct path *new_path)
1930 { }
1931 
1932 static inline int security_sb_set_mnt_opts(struct super_block *sb,
1933 					   struct security_mnt_opts *opts)
1934 {
1935 	return 0;
1936 }
1937 
1938 static inline void security_sb_clone_mnt_opts(const struct super_block *oldsb,
1939 					      struct super_block *newsb)
1940 { }
1941 
1942 static inline int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
1943 {
1944 	return 0;
1945 }
1946 
1947 static inline int security_inode_alloc(struct inode *inode)
1948 {
1949 	return 0;
1950 }
1951 
1952 static inline void security_inode_free(struct inode *inode)
1953 { }
1954 
1955 static inline int security_inode_init_security(struct inode *inode,
1956 						struct inode *dir,
1957 						char **name,
1958 						void **value,
1959 						size_t *len)
1960 {
1961 	return -EOPNOTSUPP;
1962 }
1963 
1964 static inline int security_inode_create(struct inode *dir,
1965 					 struct dentry *dentry,
1966 					 int mode)
1967 {
1968 	return 0;
1969 }
1970 
1971 static inline int security_inode_link(struct dentry *old_dentry,
1972 				       struct inode *dir,
1973 				       struct dentry *new_dentry)
1974 {
1975 	return 0;
1976 }
1977 
1978 static inline int security_inode_unlink(struct inode *dir,
1979 					 struct dentry *dentry)
1980 {
1981 	return 0;
1982 }
1983 
1984 static inline int security_inode_symlink(struct inode *dir,
1985 					  struct dentry *dentry,
1986 					  const char *old_name)
1987 {
1988 	return 0;
1989 }
1990 
1991 static inline int security_inode_mkdir(struct inode *dir,
1992 					struct dentry *dentry,
1993 					int mode)
1994 {
1995 	return 0;
1996 }
1997 
1998 static inline int security_inode_rmdir(struct inode *dir,
1999 					struct dentry *dentry)
2000 {
2001 	return 0;
2002 }
2003 
2004 static inline int security_inode_mknod(struct inode *dir,
2005 					struct dentry *dentry,
2006 					int mode, dev_t dev)
2007 {
2008 	return 0;
2009 }
2010 
2011 static inline int security_inode_rename(struct inode *old_dir,
2012 					 struct dentry *old_dentry,
2013 					 struct inode *new_dir,
2014 					 struct dentry *new_dentry)
2015 {
2016 	return 0;
2017 }
2018 
2019 static inline int security_inode_readlink(struct dentry *dentry)
2020 {
2021 	return 0;
2022 }
2023 
2024 static inline int security_inode_follow_link(struct dentry *dentry,
2025 					      struct nameidata *nd)
2026 {
2027 	return 0;
2028 }
2029 
2030 static inline int security_inode_permission(struct inode *inode, int mask)
2031 {
2032 	return 0;
2033 }
2034 
2035 static inline int security_inode_setattr(struct dentry *dentry,
2036 					  struct iattr *attr)
2037 {
2038 	return 0;
2039 }
2040 
2041 static inline int security_inode_getattr(struct vfsmount *mnt,
2042 					  struct dentry *dentry)
2043 {
2044 	return 0;
2045 }
2046 
2047 static inline void security_inode_delete(struct inode *inode)
2048 { }
2049 
2050 static inline int security_inode_setxattr(struct dentry *dentry,
2051 		const char *name, const void *value, size_t size, int flags)
2052 {
2053 	return cap_inode_setxattr(dentry, name, value, size, flags);
2054 }
2055 
2056 static inline void security_inode_post_setxattr(struct dentry *dentry,
2057 		const char *name, const void *value, size_t size, int flags)
2058 { }
2059 
2060 static inline int security_inode_getxattr(struct dentry *dentry,
2061 			const char *name)
2062 {
2063 	return 0;
2064 }
2065 
2066 static inline int security_inode_listxattr(struct dentry *dentry)
2067 {
2068 	return 0;
2069 }
2070 
2071 static inline int security_inode_removexattr(struct dentry *dentry,
2072 			const char *name)
2073 {
2074 	return cap_inode_removexattr(dentry, name);
2075 }
2076 
2077 static inline int security_inode_need_killpriv(struct dentry *dentry)
2078 {
2079 	return cap_inode_need_killpriv(dentry);
2080 }
2081 
2082 static inline int security_inode_killpriv(struct dentry *dentry)
2083 {
2084 	return cap_inode_killpriv(dentry);
2085 }
2086 
2087 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2088 {
2089 	return -EOPNOTSUPP;
2090 }
2091 
2092 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2093 {
2094 	return -EOPNOTSUPP;
2095 }
2096 
2097 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2098 {
2099 	return 0;
2100 }
2101 
2102 static inline void security_inode_getsecid(const struct inode *inode, u32 *secid)
2103 {
2104 	*secid = 0;
2105 }
2106 
2107 static inline int security_file_permission(struct file *file, int mask)
2108 {
2109 	return 0;
2110 }
2111 
2112 static inline int security_file_alloc(struct file *file)
2113 {
2114 	return 0;
2115 }
2116 
2117 static inline void security_file_free(struct file *file)
2118 { }
2119 
2120 static inline int security_file_ioctl(struct file *file, unsigned int cmd,
2121 				      unsigned long arg)
2122 {
2123 	return 0;
2124 }
2125 
2126 static inline int security_file_mmap(struct file *file, unsigned long reqprot,
2127 				     unsigned long prot,
2128 				     unsigned long flags,
2129 				     unsigned long addr,
2130 				     unsigned long addr_only)
2131 {
2132 	return 0;
2133 }
2134 
2135 static inline int security_file_mprotect(struct vm_area_struct *vma,
2136 					 unsigned long reqprot,
2137 					 unsigned long prot)
2138 {
2139 	return 0;
2140 }
2141 
2142 static inline int security_file_lock(struct file *file, unsigned int cmd)
2143 {
2144 	return 0;
2145 }
2146 
2147 static inline int security_file_fcntl(struct file *file, unsigned int cmd,
2148 				      unsigned long arg)
2149 {
2150 	return 0;
2151 }
2152 
2153 static inline int security_file_set_fowner(struct file *file)
2154 {
2155 	return 0;
2156 }
2157 
2158 static inline int security_file_send_sigiotask(struct task_struct *tsk,
2159 					       struct fown_struct *fown,
2160 					       int sig)
2161 {
2162 	return 0;
2163 }
2164 
2165 static inline int security_file_receive(struct file *file)
2166 {
2167 	return 0;
2168 }
2169 
2170 static inline int security_dentry_open(struct file *file)
2171 {
2172 	return 0;
2173 }
2174 
2175 static inline int security_task_create(unsigned long clone_flags)
2176 {
2177 	return 0;
2178 }
2179 
2180 static inline int security_task_alloc(struct task_struct *p)
2181 {
2182 	return 0;
2183 }
2184 
2185 static inline void security_task_free(struct task_struct *p)
2186 { }
2187 
2188 static inline int security_task_setuid(uid_t id0, uid_t id1, uid_t id2,
2189 				       int flags)
2190 {
2191 	return 0;
2192 }
2193 
2194 static inline int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
2195 					    uid_t old_suid, int flags)
2196 {
2197 	return cap_task_post_setuid(old_ruid, old_euid, old_suid, flags);
2198 }
2199 
2200 static inline int security_task_setgid(gid_t id0, gid_t id1, gid_t id2,
2201 				       int flags)
2202 {
2203 	return 0;
2204 }
2205 
2206 static inline int security_task_setpgid(struct task_struct *p, pid_t pgid)
2207 {
2208 	return 0;
2209 }
2210 
2211 static inline int security_task_getpgid(struct task_struct *p)
2212 {
2213 	return 0;
2214 }
2215 
2216 static inline int security_task_getsid(struct task_struct *p)
2217 {
2218 	return 0;
2219 }
2220 
2221 static inline void security_task_getsecid(struct task_struct *p, u32 *secid)
2222 {
2223 	*secid = 0;
2224 }
2225 
2226 static inline int security_task_setgroups(struct group_info *group_info)
2227 {
2228 	return 0;
2229 }
2230 
2231 static inline int security_task_setnice(struct task_struct *p, int nice)
2232 {
2233 	return cap_task_setnice(p, nice);
2234 }
2235 
2236 static inline int security_task_setioprio(struct task_struct *p, int ioprio)
2237 {
2238 	return cap_task_setioprio(p, ioprio);
2239 }
2240 
2241 static inline int security_task_getioprio(struct task_struct *p)
2242 {
2243 	return 0;
2244 }
2245 
2246 static inline int security_task_setrlimit(unsigned int resource,
2247 					  struct rlimit *new_rlim)
2248 {
2249 	return 0;
2250 }
2251 
2252 static inline int security_task_setscheduler(struct task_struct *p,
2253 					     int policy,
2254 					     struct sched_param *lp)
2255 {
2256 	return cap_task_setscheduler(p, policy, lp);
2257 }
2258 
2259 static inline int security_task_getscheduler(struct task_struct *p)
2260 {
2261 	return 0;
2262 }
2263 
2264 static inline int security_task_movememory(struct task_struct *p)
2265 {
2266 	return 0;
2267 }
2268 
2269 static inline int security_task_kill(struct task_struct *p,
2270 				     struct siginfo *info, int sig,
2271 				     u32 secid)
2272 {
2273 	return 0;
2274 }
2275 
2276 static inline int security_task_wait(struct task_struct *p)
2277 {
2278 	return 0;
2279 }
2280 
2281 static inline int security_task_prctl(int option, unsigned long arg2,
2282 				      unsigned long arg3,
2283 				      unsigned long arg4,
2284 				      unsigned long arg5, long *rc_p)
2285 {
2286 	return cap_task_prctl(option, arg2, arg3, arg3, arg5, rc_p);
2287 }
2288 
2289 static inline void security_task_reparent_to_init(struct task_struct *p)
2290 {
2291 	cap_task_reparent_to_init(p);
2292 }
2293 
2294 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2295 { }
2296 
2297 static inline int security_ipc_permission(struct kern_ipc_perm *ipcp,
2298 					  short flag)
2299 {
2300 	return 0;
2301 }
2302 
2303 static inline void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
2304 {
2305 	*secid = 0;
2306 }
2307 
2308 static inline int security_msg_msg_alloc(struct msg_msg *msg)
2309 {
2310 	return 0;
2311 }
2312 
2313 static inline void security_msg_msg_free(struct msg_msg *msg)
2314 { }
2315 
2316 static inline int security_msg_queue_alloc(struct msg_queue *msq)
2317 {
2318 	return 0;
2319 }
2320 
2321 static inline void security_msg_queue_free(struct msg_queue *msq)
2322 { }
2323 
2324 static inline int security_msg_queue_associate(struct msg_queue *msq,
2325 					       int msqflg)
2326 {
2327 	return 0;
2328 }
2329 
2330 static inline int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
2331 {
2332 	return 0;
2333 }
2334 
2335 static inline int security_msg_queue_msgsnd(struct msg_queue *msq,
2336 					    struct msg_msg *msg, int msqflg)
2337 {
2338 	return 0;
2339 }
2340 
2341 static inline int security_msg_queue_msgrcv(struct msg_queue *msq,
2342 					    struct msg_msg *msg,
2343 					    struct task_struct *target,
2344 					    long type, int mode)
2345 {
2346 	return 0;
2347 }
2348 
2349 static inline int security_shm_alloc(struct shmid_kernel *shp)
2350 {
2351 	return 0;
2352 }
2353 
2354 static inline void security_shm_free(struct shmid_kernel *shp)
2355 { }
2356 
2357 static inline int security_shm_associate(struct shmid_kernel *shp,
2358 					 int shmflg)
2359 {
2360 	return 0;
2361 }
2362 
2363 static inline int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
2364 {
2365 	return 0;
2366 }
2367 
2368 static inline int security_shm_shmat(struct shmid_kernel *shp,
2369 				     char __user *shmaddr, int shmflg)
2370 {
2371 	return 0;
2372 }
2373 
2374 static inline int security_sem_alloc(struct sem_array *sma)
2375 {
2376 	return 0;
2377 }
2378 
2379 static inline void security_sem_free(struct sem_array *sma)
2380 { }
2381 
2382 static inline int security_sem_associate(struct sem_array *sma, int semflg)
2383 {
2384 	return 0;
2385 }
2386 
2387 static inline int security_sem_semctl(struct sem_array *sma, int cmd)
2388 {
2389 	return 0;
2390 }
2391 
2392 static inline int security_sem_semop(struct sem_array *sma,
2393 				     struct sembuf *sops, unsigned nsops,
2394 				     int alter)
2395 {
2396 	return 0;
2397 }
2398 
2399 static inline void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2400 { }
2401 
2402 static inline int security_getprocattr(struct task_struct *p, char *name, char **value)
2403 {
2404 	return -EINVAL;
2405 }
2406 
2407 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2408 {
2409 	return -EINVAL;
2410 }
2411 
2412 static inline int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2413 {
2414 	return cap_netlink_send(sk, skb);
2415 }
2416 
2417 static inline int security_netlink_recv(struct sk_buff *skb, int cap)
2418 {
2419 	return cap_netlink_recv(skb, cap);
2420 }
2421 
2422 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2423 {
2424 	return -EOPNOTSUPP;
2425 }
2426 
2427 static inline int security_secctx_to_secid(const char *secdata,
2428 					   u32 seclen,
2429 					   u32 *secid)
2430 {
2431 	return -EOPNOTSUPP;
2432 }
2433 
2434 static inline void security_release_secctx(char *secdata, u32 seclen)
2435 {
2436 }
2437 #endif	/* CONFIG_SECURITY */
2438 
2439 #ifdef CONFIG_SECURITY_NETWORK
2440 
2441 int security_unix_stream_connect(struct socket *sock, struct socket *other,
2442 				 struct sock *newsk);
2443 int security_unix_may_send(struct socket *sock,  struct socket *other);
2444 int security_socket_create(int family, int type, int protocol, int kern);
2445 int security_socket_post_create(struct socket *sock, int family,
2446 				int type, int protocol, int kern);
2447 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen);
2448 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen);
2449 int security_socket_listen(struct socket *sock, int backlog);
2450 int security_socket_accept(struct socket *sock, struct socket *newsock);
2451 void security_socket_post_accept(struct socket *sock, struct socket *newsock);
2452 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size);
2453 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2454 			    int size, int flags);
2455 int security_socket_getsockname(struct socket *sock);
2456 int security_socket_getpeername(struct socket *sock);
2457 int security_socket_getsockopt(struct socket *sock, int level, int optname);
2458 int security_socket_setsockopt(struct socket *sock, int level, int optname);
2459 int security_socket_shutdown(struct socket *sock, int how);
2460 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb);
2461 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2462 				      int __user *optlen, unsigned len);
2463 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid);
2464 int security_sk_alloc(struct sock *sk, int family, gfp_t priority);
2465 void security_sk_free(struct sock *sk);
2466 void security_sk_clone(const struct sock *sk, struct sock *newsk);
2467 void security_sk_classify_flow(struct sock *sk, struct flowi *fl);
2468 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl);
2469 void security_sock_graft(struct sock*sk, struct socket *parent);
2470 int security_inet_conn_request(struct sock *sk,
2471 			struct sk_buff *skb, struct request_sock *req);
2472 void security_inet_csk_clone(struct sock *newsk,
2473 			const struct request_sock *req);
2474 void security_inet_conn_established(struct sock *sk,
2475 			struct sk_buff *skb);
2476 
2477 #else	/* CONFIG_SECURITY_NETWORK */
2478 static inline int security_unix_stream_connect(struct socket *sock,
2479 					       struct socket *other,
2480 					       struct sock *newsk)
2481 {
2482 	return 0;
2483 }
2484 
2485 static inline int security_unix_may_send(struct socket *sock,
2486 					 struct socket *other)
2487 {
2488 	return 0;
2489 }
2490 
2491 static inline int security_socket_create(int family, int type,
2492 					 int protocol, int kern)
2493 {
2494 	return 0;
2495 }
2496 
2497 static inline int security_socket_post_create(struct socket *sock,
2498 					      int family,
2499 					      int type,
2500 					      int protocol, int kern)
2501 {
2502 	return 0;
2503 }
2504 
2505 static inline int security_socket_bind(struct socket *sock,
2506 				       struct sockaddr *address,
2507 				       int addrlen)
2508 {
2509 	return 0;
2510 }
2511 
2512 static inline int security_socket_connect(struct socket *sock,
2513 					  struct sockaddr *address,
2514 					  int addrlen)
2515 {
2516 	return 0;
2517 }
2518 
2519 static inline int security_socket_listen(struct socket *sock, int backlog)
2520 {
2521 	return 0;
2522 }
2523 
2524 static inline int security_socket_accept(struct socket *sock,
2525 					 struct socket *newsock)
2526 {
2527 	return 0;
2528 }
2529 
2530 static inline void security_socket_post_accept(struct socket *sock,
2531 					       struct socket *newsock)
2532 {
2533 }
2534 
2535 static inline int security_socket_sendmsg(struct socket *sock,
2536 					  struct msghdr *msg, int size)
2537 {
2538 	return 0;
2539 }
2540 
2541 static inline int security_socket_recvmsg(struct socket *sock,
2542 					  struct msghdr *msg, int size,
2543 					  int flags)
2544 {
2545 	return 0;
2546 }
2547 
2548 static inline int security_socket_getsockname(struct socket *sock)
2549 {
2550 	return 0;
2551 }
2552 
2553 static inline int security_socket_getpeername(struct socket *sock)
2554 {
2555 	return 0;
2556 }
2557 
2558 static inline int security_socket_getsockopt(struct socket *sock,
2559 					     int level, int optname)
2560 {
2561 	return 0;
2562 }
2563 
2564 static inline int security_socket_setsockopt(struct socket *sock,
2565 					     int level, int optname)
2566 {
2567 	return 0;
2568 }
2569 
2570 static inline int security_socket_shutdown(struct socket *sock, int how)
2571 {
2572 	return 0;
2573 }
2574 static inline int security_sock_rcv_skb(struct sock *sk,
2575 					struct sk_buff *skb)
2576 {
2577 	return 0;
2578 }
2579 
2580 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2581 						    int __user *optlen, unsigned len)
2582 {
2583 	return -ENOPROTOOPT;
2584 }
2585 
2586 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2587 {
2588 	return -ENOPROTOOPT;
2589 }
2590 
2591 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2592 {
2593 	return 0;
2594 }
2595 
2596 static inline void security_sk_free(struct sock *sk)
2597 {
2598 }
2599 
2600 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
2601 {
2602 }
2603 
2604 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2605 {
2606 }
2607 
2608 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2609 {
2610 }
2611 
2612 static inline void security_sock_graft(struct sock *sk, struct socket *parent)
2613 {
2614 }
2615 
2616 static inline int security_inet_conn_request(struct sock *sk,
2617 			struct sk_buff *skb, struct request_sock *req)
2618 {
2619 	return 0;
2620 }
2621 
2622 static inline void security_inet_csk_clone(struct sock *newsk,
2623 			const struct request_sock *req)
2624 {
2625 }
2626 
2627 static inline void security_inet_conn_established(struct sock *sk,
2628 			struct sk_buff *skb)
2629 {
2630 }
2631 #endif	/* CONFIG_SECURITY_NETWORK */
2632 
2633 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2634 
2635 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx);
2636 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp);
2637 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx);
2638 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx);
2639 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx);
2640 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2641 				      struct xfrm_sec_ctx *polsec, u32 secid);
2642 int security_xfrm_state_delete(struct xfrm_state *x);
2643 void security_xfrm_state_free(struct xfrm_state *x);
2644 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
2645 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2646 				       struct xfrm_policy *xp, struct flowi *fl);
2647 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid);
2648 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl);
2649 
2650 #else	/* CONFIG_SECURITY_NETWORK_XFRM */
2651 
2652 static inline int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
2653 {
2654 	return 0;
2655 }
2656 
2657 static inline int security_xfrm_policy_clone(struct xfrm_sec_ctx *old, struct xfrm_sec_ctx **new_ctxp)
2658 {
2659 	return 0;
2660 }
2661 
2662 static inline void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2663 {
2664 }
2665 
2666 static inline int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2667 {
2668 	return 0;
2669 }
2670 
2671 static inline int security_xfrm_state_alloc(struct xfrm_state *x,
2672 					struct xfrm_user_sec_ctx *sec_ctx)
2673 {
2674 	return 0;
2675 }
2676 
2677 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2678 					struct xfrm_sec_ctx *polsec, u32 secid)
2679 {
2680 	return 0;
2681 }
2682 
2683 static inline void security_xfrm_state_free(struct xfrm_state *x)
2684 {
2685 }
2686 
2687 static inline int security_xfrm_state_delete(struct xfrm_state *x)
2688 {
2689 	return 0;
2690 }
2691 
2692 static inline int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2693 {
2694 	return 0;
2695 }
2696 
2697 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2698 			struct xfrm_policy *xp, struct flowi *fl)
2699 {
2700 	return 1;
2701 }
2702 
2703 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2704 {
2705 	return 0;
2706 }
2707 
2708 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2709 {
2710 }
2711 
2712 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2713 
2714 #ifdef CONFIG_KEYS
2715 #ifdef CONFIG_SECURITY
2716 
2717 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags);
2718 void security_key_free(struct key *key);
2719 int security_key_permission(key_ref_t key_ref,
2720 			    struct task_struct *context, key_perm_t perm);
2721 int security_key_getsecurity(struct key *key, char **_buffer);
2722 
2723 #else
2724 
2725 static inline int security_key_alloc(struct key *key,
2726 				     struct task_struct *tsk,
2727 				     unsigned long flags)
2728 {
2729 	return 0;
2730 }
2731 
2732 static inline void security_key_free(struct key *key)
2733 {
2734 }
2735 
2736 static inline int security_key_permission(key_ref_t key_ref,
2737 					  struct task_struct *context,
2738 					  key_perm_t perm)
2739 {
2740 	return 0;
2741 }
2742 
2743 static inline int security_key_getsecurity(struct key *key, char **_buffer)
2744 {
2745 	*_buffer = NULL;
2746 	return 0;
2747 }
2748 
2749 #endif
2750 #endif /* CONFIG_KEYS */
2751 
2752 #ifdef CONFIG_AUDIT
2753 #ifdef CONFIG_SECURITY
2754 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule);
2755 int security_audit_rule_known(struct audit_krule *krule);
2756 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
2757 			      struct audit_context *actx);
2758 void security_audit_rule_free(void *lsmrule);
2759 
2760 #else
2761 
2762 static inline int security_audit_rule_init(u32 field, u32 op, char *rulestr,
2763 					   void **lsmrule)
2764 {
2765 	return 0;
2766 }
2767 
2768 static inline int security_audit_rule_known(struct audit_krule *krule)
2769 {
2770 	return 0;
2771 }
2772 
2773 static inline int security_audit_rule_match(u32 secid, u32 field, u32 op,
2774 				   void *lsmrule, struct audit_context *actx)
2775 {
2776 	return 0;
2777 }
2778 
2779 static inline void security_audit_rule_free(void *lsmrule)
2780 { }
2781 
2782 #endif /* CONFIG_SECURITY */
2783 #endif /* CONFIG_AUDIT */
2784 
2785 #ifdef CONFIG_SECURITYFS
2786 
2787 extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
2788 					     struct dentry *parent, void *data,
2789 					     const struct file_operations *fops);
2790 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
2791 extern void securityfs_remove(struct dentry *dentry);
2792 
2793 #else /* CONFIG_SECURITYFS */
2794 
2795 static inline struct dentry *securityfs_create_dir(const char *name,
2796 						   struct dentry *parent)
2797 {
2798 	return ERR_PTR(-ENODEV);
2799 }
2800 
2801 static inline struct dentry *securityfs_create_file(const char *name,
2802 						    mode_t mode,
2803 						    struct dentry *parent,
2804 						    void *data,
2805 						    const struct file_operations *fops)
2806 {
2807 	return ERR_PTR(-ENODEV);
2808 }
2809 
2810 static inline void securityfs_remove(struct dentry *dentry)
2811 {}
2812 
2813 #endif
2814 
2815 #endif /* ! __LINUX_SECURITY_H */
2816 
2817