1 /* 2 * Linux Security plug 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <[email protected]> 5 * Copyright (C) 2001 Greg Kroah-Hartman <[email protected]> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]> 7 * Copyright (C) 2001 James Morris <[email protected]> 8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * Due to this file being licensed under the GPL there is controversy over 16 * whether this permits you to write a module that #includes this file 17 * without placing your module under the GPL. Please consult a lawyer for 18 * advice before doing this. 19 * 20 */ 21 22 #ifndef __LINUX_SECURITY_H 23 #define __LINUX_SECURITY_H 24 25 #include <linux/fs.h> 26 #include <linux/binfmts.h> 27 #include <linux/signal.h> 28 #include <linux/resource.h> 29 #include <linux/sem.h> 30 #include <linux/shm.h> 31 #include <linux/msg.h> 32 #include <linux/sched.h> 33 #include <linux/key.h> 34 #include <linux/xfrm.h> 35 #include <net/flow.h> 36 37 struct ctl_table; 38 39 /* 40 * These functions are in security/capability.c and are used 41 * as the default capabilities functions 42 */ 43 extern int cap_capable (struct task_struct *tsk, int cap); 44 extern int cap_settime (struct timespec *ts, struct timezone *tz); 45 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child); 46 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 47 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 48 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 49 extern int cap_bprm_set_security (struct linux_binprm *bprm); 50 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe); 51 extern int cap_bprm_secureexec(struct linux_binprm *bprm); 52 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags); 53 extern int cap_inode_removexattr(struct dentry *dentry, char *name); 54 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags); 55 extern void cap_task_reparent_to_init (struct task_struct *p); 56 extern int cap_syslog (int type); 57 extern int cap_vm_enough_memory (long pages); 58 59 struct msghdr; 60 struct sk_buff; 61 struct sock; 62 struct sockaddr; 63 struct socket; 64 struct flowi; 65 struct dst_entry; 66 struct xfrm_selector; 67 struct xfrm_policy; 68 struct xfrm_state; 69 struct xfrm_user_sec_ctx; 70 71 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); 72 extern int cap_netlink_recv(struct sk_buff *skb, int cap); 73 74 /* 75 * Values used in the task_security_ops calls 76 */ 77 /* setuid or setgid, id0 == uid or gid */ 78 #define LSM_SETID_ID 1 79 80 /* setreuid or setregid, id0 == real, id1 == eff */ 81 #define LSM_SETID_RE 2 82 83 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ 84 #define LSM_SETID_RES 4 85 86 /* setfsuid or setfsgid, id0 == fsuid or fsgid */ 87 #define LSM_SETID_FS 8 88 89 /* forward declares to avoid warnings */ 90 struct nfsctl_arg; 91 struct sched_param; 92 struct swap_info_struct; 93 struct request_sock; 94 95 /* bprm_apply_creds unsafe reasons */ 96 #define LSM_UNSAFE_SHARE 1 97 #define LSM_UNSAFE_PTRACE 2 98 #define LSM_UNSAFE_PTRACE_CAP 4 99 100 #ifdef CONFIG_SECURITY 101 102 /** 103 * struct security_operations - main security structure 104 * 105 * Security hooks for program execution operations. 106 * 107 * @bprm_alloc_security: 108 * Allocate and attach a security structure to the @bprm->security field. 109 * The security field is initialized to NULL when the bprm structure is 110 * allocated. 111 * @bprm contains the linux_binprm structure to be modified. 112 * Return 0 if operation was successful. 113 * @bprm_free_security: 114 * @bprm contains the linux_binprm structure to be modified. 115 * Deallocate and clear the @bprm->security field. 116 * @bprm_apply_creds: 117 * Compute and set the security attributes of a process being transformed 118 * by an execve operation based on the old attributes (current->security) 119 * and the information saved in @bprm->security by the set_security hook. 120 * Since this hook function (and its caller) are void, this hook can not 121 * return an error. However, it can leave the security attributes of the 122 * process unchanged if an access failure occurs at this point. 123 * bprm_apply_creds is called under task_lock. @unsafe indicates various 124 * reasons why it may be unsafe to change security state. 125 * @bprm contains the linux_binprm structure. 126 * @bprm_post_apply_creds: 127 * Runs after bprm_apply_creds with the task_lock dropped, so that 128 * functions which cannot be called safely under the task_lock can 129 * be used. This hook is a good place to perform state changes on 130 * the process such as closing open file descriptors to which access 131 * is no longer granted if the attributes were changed. 132 * Note that a security module might need to save state between 133 * bprm_apply_creds and bprm_post_apply_creds to store the decision 134 * on whether the process may proceed. 135 * @bprm contains the linux_binprm structure. 136 * @bprm_set_security: 137 * Save security information in the bprm->security field, typically based 138 * on information about the bprm->file, for later use by the apply_creds 139 * hook. This hook may also optionally check permissions (e.g. for 140 * transitions between security domains). 141 * This hook may be called multiple times during a single execve, e.g. for 142 * interpreters. The hook can tell whether it has already been called by 143 * checking to see if @bprm->security is non-NULL. If so, then the hook 144 * may decide either to retain the security information saved earlier or 145 * to replace it. 146 * @bprm contains the linux_binprm structure. 147 * Return 0 if the hook is successful and permission is granted. 148 * @bprm_check_security: 149 * This hook mediates the point when a search for a binary handler will 150 * begin. It allows a check the @bprm->security value which is set in 151 * the preceding set_security call. The primary difference from 152 * set_security is that the argv list and envp list are reliably 153 * available in @bprm. This hook may be called multiple times 154 * during a single execve; and in each pass set_security is called 155 * first. 156 * @bprm contains the linux_binprm structure. 157 * Return 0 if the hook is successful and permission is granted. 158 * @bprm_secureexec: 159 * Return a boolean value (0 or 1) indicating whether a "secure exec" 160 * is required. The flag is passed in the auxiliary table 161 * on the initial stack to the ELF interpreter to indicate whether libc 162 * should enable secure mode. 163 * @bprm contains the linux_binprm structure. 164 * 165 * Security hooks for filesystem operations. 166 * 167 * @sb_alloc_security: 168 * Allocate and attach a security structure to the sb->s_security field. 169 * The s_security field is initialized to NULL when the structure is 170 * allocated. 171 * @sb contains the super_block structure to be modified. 172 * Return 0 if operation was successful. 173 * @sb_free_security: 174 * Deallocate and clear the sb->s_security field. 175 * @sb contains the super_block structure to be modified. 176 * @sb_statfs: 177 * Check permission before obtaining filesystem statistics for the @mnt 178 * mountpoint. 179 * @dentry is a handle on the superblock for the filesystem. 180 * Return 0 if permission is granted. 181 * @sb_mount: 182 * Check permission before an object specified by @dev_name is mounted on 183 * the mount point named by @nd. For an ordinary mount, @dev_name 184 * identifies a device if the file system type requires a device. For a 185 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a 186 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the 187 * pathname of the object being mounted. 188 * @dev_name contains the name for object being mounted. 189 * @nd contains the nameidata structure for mount point object. 190 * @type contains the filesystem type. 191 * @flags contains the mount flags. 192 * @data contains the filesystem-specific data. 193 * Return 0 if permission is granted. 194 * @sb_copy_data: 195 * Allow mount option data to be copied prior to parsing by the filesystem, 196 * so that the security module can extract security-specific mount 197 * options cleanly (a filesystem may modify the data e.g. with strsep()). 198 * This also allows the original mount data to be stripped of security- 199 * specific options to avoid having to make filesystems aware of them. 200 * @type the type of filesystem being mounted. 201 * @orig the original mount data copied from userspace. 202 * @copy copied data which will be passed to the security module. 203 * Returns 0 if the copy was successful. 204 * @sb_check_sb: 205 * Check permission before the device with superblock @mnt->sb is mounted 206 * on the mount point named by @nd. 207 * @mnt contains the vfsmount for device being mounted. 208 * @nd contains the nameidata object for the mount point. 209 * Return 0 if permission is granted. 210 * @sb_umount: 211 * Check permission before the @mnt file system is unmounted. 212 * @mnt contains the mounted file system. 213 * @flags contains the unmount flags, e.g. MNT_FORCE. 214 * Return 0 if permission is granted. 215 * @sb_umount_close: 216 * Close any files in the @mnt mounted filesystem that are held open by 217 * the security module. This hook is called during an umount operation 218 * prior to checking whether the filesystem is still busy. 219 * @mnt contains the mounted filesystem. 220 * @sb_umount_busy: 221 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening 222 * any files that were closed by umount_close. This hook is called during 223 * an umount operation if the umount fails after a call to the 224 * umount_close hook. 225 * @mnt contains the mounted filesystem. 226 * @sb_post_remount: 227 * Update the security module's state when a filesystem is remounted. 228 * This hook is only called if the remount was successful. 229 * @mnt contains the mounted file system. 230 * @flags contains the new filesystem flags. 231 * @data contains the filesystem-specific data. 232 * @sb_post_mountroot: 233 * Update the security module's state when the root filesystem is mounted. 234 * This hook is only called if the mount was successful. 235 * @sb_post_addmount: 236 * Update the security module's state when a filesystem is mounted. 237 * This hook is called any time a mount is successfully grafetd to 238 * the tree. 239 * @mnt contains the mounted filesystem. 240 * @mountpoint_nd contains the nameidata structure for the mount point. 241 * @sb_pivotroot: 242 * Check permission before pivoting the root filesystem. 243 * @old_nd contains the nameidata structure for the new location of the current root (put_old). 244 * @new_nd contains the nameidata structure for the new root (new_root). 245 * Return 0 if permission is granted. 246 * @sb_post_pivotroot: 247 * Update module state after a successful pivot. 248 * @old_nd contains the nameidata structure for the old root. 249 * @new_nd contains the nameidata structure for the new root. 250 * 251 * Security hooks for inode operations. 252 * 253 * @inode_alloc_security: 254 * Allocate and attach a security structure to @inode->i_security. The 255 * i_security field is initialized to NULL when the inode structure is 256 * allocated. 257 * @inode contains the inode structure. 258 * Return 0 if operation was successful. 259 * @inode_free_security: 260 * @inode contains the inode structure. 261 * Deallocate the inode security structure and set @inode->i_security to 262 * NULL. 263 * @inode_init_security: 264 * Obtain the security attribute name suffix and value to set on a newly 265 * created inode and set up the incore security field for the new inode. 266 * This hook is called by the fs code as part of the inode creation 267 * transaction and provides for atomic labeling of the inode, unlike 268 * the post_create/mkdir/... hooks called by the VFS. The hook function 269 * is expected to allocate the name and value via kmalloc, with the caller 270 * being responsible for calling kfree after using them. 271 * If the security module does not use security attributes or does 272 * not wish to put a security attribute on this particular inode, 273 * then it should return -EOPNOTSUPP to skip this processing. 274 * @inode contains the inode structure of the newly created inode. 275 * @dir contains the inode structure of the parent directory. 276 * @name will be set to the allocated name suffix (e.g. selinux). 277 * @value will be set to the allocated attribute value. 278 * @len will be set to the length of the value. 279 * Returns 0 if @name and @value have been successfully set, 280 * -EOPNOTSUPP if no security attribute is needed, or 281 * -ENOMEM on memory allocation failure. 282 * @inode_create: 283 * Check permission to create a regular file. 284 * @dir contains inode structure of the parent of the new file. 285 * @dentry contains the dentry structure for the file to be created. 286 * @mode contains the file mode of the file to be created. 287 * Return 0 if permission is granted. 288 * @inode_link: 289 * Check permission before creating a new hard link to a file. 290 * @old_dentry contains the dentry structure for an existing link to the file. 291 * @dir contains the inode structure of the parent directory of the new link. 292 * @new_dentry contains the dentry structure for the new link. 293 * Return 0 if permission is granted. 294 * @inode_unlink: 295 * Check the permission to remove a hard link to a file. 296 * @dir contains the inode structure of parent directory of the file. 297 * @dentry contains the dentry structure for file to be unlinked. 298 * Return 0 if permission is granted. 299 * @inode_symlink: 300 * Check the permission to create a symbolic link to a file. 301 * @dir contains the inode structure of parent directory of the symbolic link. 302 * @dentry contains the dentry structure of the symbolic link. 303 * @old_name contains the pathname of file. 304 * Return 0 if permission is granted. 305 * @inode_mkdir: 306 * Check permissions to create a new directory in the existing directory 307 * associated with inode strcture @dir. 308 * @dir containst the inode structure of parent of the directory to be created. 309 * @dentry contains the dentry structure of new directory. 310 * @mode contains the mode of new directory. 311 * Return 0 if permission is granted. 312 * @inode_rmdir: 313 * Check the permission to remove a directory. 314 * @dir contains the inode structure of parent of the directory to be removed. 315 * @dentry contains the dentry structure of directory to be removed. 316 * Return 0 if permission is granted. 317 * @inode_mknod: 318 * Check permissions when creating a special file (or a socket or a fifo 319 * file created via the mknod system call). Note that if mknod operation 320 * is being done for a regular file, then the create hook will be called 321 * and not this hook. 322 * @dir contains the inode structure of parent of the new file. 323 * @dentry contains the dentry structure of the new file. 324 * @mode contains the mode of the new file. 325 * @dev contains the the device number. 326 * Return 0 if permission is granted. 327 * @inode_rename: 328 * Check for permission to rename a file or directory. 329 * @old_dir contains the inode structure for parent of the old link. 330 * @old_dentry contains the dentry structure of the old link. 331 * @new_dir contains the inode structure for parent of the new link. 332 * @new_dentry contains the dentry structure of the new link. 333 * Return 0 if permission is granted. 334 * @inode_readlink: 335 * Check the permission to read the symbolic link. 336 * @dentry contains the dentry structure for the file link. 337 * Return 0 if permission is granted. 338 * @inode_follow_link: 339 * Check permission to follow a symbolic link when looking up a pathname. 340 * @dentry contains the dentry structure for the link. 341 * @nd contains the nameidata structure for the parent directory. 342 * Return 0 if permission is granted. 343 * @inode_permission: 344 * Check permission before accessing an inode. This hook is called by the 345 * existing Linux permission function, so a security module can use it to 346 * provide additional checking for existing Linux permission checks. 347 * Notice that this hook is called when a file is opened (as well as many 348 * other operations), whereas the file_security_ops permission hook is 349 * called when the actual read/write operations are performed. 350 * @inode contains the inode structure to check. 351 * @mask contains the permission mask. 352 * @nd contains the nameidata (may be NULL). 353 * Return 0 if permission is granted. 354 * @inode_setattr: 355 * Check permission before setting file attributes. Note that the kernel 356 * call to notify_change is performed from several locations, whenever 357 * file attributes change (such as when a file is truncated, chown/chmod 358 * operations, transferring disk quotas, etc). 359 * @dentry contains the dentry structure for the file. 360 * @attr is the iattr structure containing the new file attributes. 361 * Return 0 if permission is granted. 362 * @inode_getattr: 363 * Check permission before obtaining file attributes. 364 * @mnt is the vfsmount where the dentry was looked up 365 * @dentry contains the dentry structure for the file. 366 * Return 0 if permission is granted. 367 * @inode_delete: 368 * @inode contains the inode structure for deleted inode. 369 * This hook is called when a deleted inode is released (i.e. an inode 370 * with no hard links has its use count drop to zero). A security module 371 * can use this hook to release any persistent label associated with the 372 * inode. 373 * @inode_setxattr: 374 * Check permission before setting the extended attributes 375 * @value identified by @name for @dentry. 376 * Return 0 if permission is granted. 377 * @inode_post_setxattr: 378 * Update inode security field after successful setxattr operation. 379 * @value identified by @name for @dentry. 380 * @inode_getxattr: 381 * Check permission before obtaining the extended attributes 382 * identified by @name for @dentry. 383 * Return 0 if permission is granted. 384 * @inode_listxattr: 385 * Check permission before obtaining the list of extended attribute 386 * names for @dentry. 387 * Return 0 if permission is granted. 388 * @inode_removexattr: 389 * Check permission before removing the extended attribute 390 * identified by @name for @dentry. 391 * Return 0 if permission is granted. 392 * @inode_getsecurity: 393 * Copy the extended attribute representation of the security label 394 * associated with @name for @inode into @buffer. @buffer may be 395 * NULL to request the size of the buffer required. @size indicates 396 * the size of @buffer in bytes. Note that @name is the remainder 397 * of the attribute name after the security. prefix has been removed. 398 * @err is the return value from the preceding fs getxattr call, 399 * and can be used by the security module to determine whether it 400 * should try and canonicalize the attribute value. 401 * Return number of bytes used/required on success. 402 * @inode_setsecurity: 403 * Set the security label associated with @name for @inode from the 404 * extended attribute value @value. @size indicates the size of the 405 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. 406 * Note that @name is the remainder of the attribute name after the 407 * security. prefix has been removed. 408 * Return 0 on success. 409 * @inode_listsecurity: 410 * Copy the extended attribute names for the security labels 411 * associated with @inode into @buffer. The maximum size of @buffer 412 * is specified by @buffer_size. @buffer may be NULL to request 413 * the size of the buffer required. 414 * Returns number of bytes used/required on success. 415 * 416 * Security hooks for file operations 417 * 418 * @file_permission: 419 * Check file permissions before accessing an open file. This hook is 420 * called by various operations that read or write files. A security 421 * module can use this hook to perform additional checking on these 422 * operations, e.g. to revalidate permissions on use to support privilege 423 * bracketing or policy changes. Notice that this hook is used when the 424 * actual read/write operations are performed, whereas the 425 * inode_security_ops hook is called when a file is opened (as well as 426 * many other operations). 427 * Caveat: Although this hook can be used to revalidate permissions for 428 * various system call operations that read or write files, it does not 429 * address the revalidation of permissions for memory-mapped files. 430 * Security modules must handle this separately if they need such 431 * revalidation. 432 * @file contains the file structure being accessed. 433 * @mask contains the requested permissions. 434 * Return 0 if permission is granted. 435 * @file_alloc_security: 436 * Allocate and attach a security structure to the file->f_security field. 437 * The security field is initialized to NULL when the structure is first 438 * created. 439 * @file contains the file structure to secure. 440 * Return 0 if the hook is successful and permission is granted. 441 * @file_free_security: 442 * Deallocate and free any security structures stored in file->f_security. 443 * @file contains the file structure being modified. 444 * @file_ioctl: 445 * @file contains the file structure. 446 * @cmd contains the operation to perform. 447 * @arg contains the operational arguments. 448 * Check permission for an ioctl operation on @file. Note that @arg can 449 * sometimes represents a user space pointer; in other cases, it may be a 450 * simple integer value. When @arg represents a user space pointer, it 451 * should never be used by the security module. 452 * Return 0 if permission is granted. 453 * @file_mmap : 454 * Check permissions for a mmap operation. The @file may be NULL, e.g. 455 * if mapping anonymous memory. 456 * @file contains the file structure for file to map (may be NULL). 457 * @reqprot contains the protection requested by the application. 458 * @prot contains the protection that will be applied by the kernel. 459 * @flags contains the operational flags. 460 * Return 0 if permission is granted. 461 * @file_mprotect: 462 * Check permissions before changing memory access permissions. 463 * @vma contains the memory region to modify. 464 * @reqprot contains the protection requested by the application. 465 * @prot contains the protection that will be applied by the kernel. 466 * Return 0 if permission is granted. 467 * @file_lock: 468 * Check permission before performing file locking operations. 469 * Note: this hook mediates both flock and fcntl style locks. 470 * @file contains the file structure. 471 * @cmd contains the posix-translated lock operation to perform 472 * (e.g. F_RDLCK, F_WRLCK). 473 * Return 0 if permission is granted. 474 * @file_fcntl: 475 * Check permission before allowing the file operation specified by @cmd 476 * from being performed on the file @file. Note that @arg can sometimes 477 * represents a user space pointer; in other cases, it may be a simple 478 * integer value. When @arg represents a user space pointer, it should 479 * never be used by the security module. 480 * @file contains the file structure. 481 * @cmd contains the operation to be performed. 482 * @arg contains the operational arguments. 483 * Return 0 if permission is granted. 484 * @file_set_fowner: 485 * Save owner security information (typically from current->security) in 486 * file->f_security for later use by the send_sigiotask hook. 487 * @file contains the file structure to update. 488 * Return 0 on success. 489 * @file_send_sigiotask: 490 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 491 * process @tsk. Note that this hook is sometimes called from interrupt. 492 * Note that the fown_struct, @fown, is never outside the context of a 493 * struct file, so the file structure (and associated security information) 494 * can always be obtained: 495 * (struct file *)((long)fown - offsetof(struct file,f_owner)); 496 * @tsk contains the structure of task receiving signal. 497 * @fown contains the file owner information. 498 * @sig is the signal that will be sent. When 0, kernel sends SIGIO. 499 * Return 0 if permission is granted. 500 * @file_receive: 501 * This hook allows security modules to control the ability of a process 502 * to receive an open file descriptor via socket IPC. 503 * @file contains the file structure being received. 504 * Return 0 if permission is granted. 505 * 506 * Security hooks for task operations. 507 * 508 * @task_create: 509 * Check permission before creating a child process. See the clone(2) 510 * manual page for definitions of the @clone_flags. 511 * @clone_flags contains the flags indicating what should be shared. 512 * Return 0 if permission is granted. 513 * @task_alloc_security: 514 * @p contains the task_struct for child process. 515 * Allocate and attach a security structure to the p->security field. The 516 * security field is initialized to NULL when the task structure is 517 * allocated. 518 * Return 0 if operation was successful. 519 * @task_free_security: 520 * @p contains the task_struct for process. 521 * Deallocate and clear the p->security field. 522 * @task_setuid: 523 * Check permission before setting one or more of the user identity 524 * attributes of the current process. The @flags parameter indicates 525 * which of the set*uid system calls invoked this hook and how to 526 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 527 * definitions at the beginning of this file for the @flags values and 528 * their meanings. 529 * @id0 contains a uid. 530 * @id1 contains a uid. 531 * @id2 contains a uid. 532 * @flags contains one of the LSM_SETID_* values. 533 * Return 0 if permission is granted. 534 * @task_post_setuid: 535 * Update the module's state after setting one or more of the user 536 * identity attributes of the current process. The @flags parameter 537 * indicates which of the set*uid system calls invoked this hook. If 538 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other 539 * parameters are not used. 540 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS). 541 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS). 542 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS). 543 * @flags contains one of the LSM_SETID_* values. 544 * Return 0 on success. 545 * @task_setgid: 546 * Check permission before setting one or more of the group identity 547 * attributes of the current process. The @flags parameter indicates 548 * which of the set*gid system calls invoked this hook and how to 549 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 550 * definitions at the beginning of this file for the @flags values and 551 * their meanings. 552 * @id0 contains a gid. 553 * @id1 contains a gid. 554 * @id2 contains a gid. 555 * @flags contains one of the LSM_SETID_* values. 556 * Return 0 if permission is granted. 557 * @task_setpgid: 558 * Check permission before setting the process group identifier of the 559 * process @p to @pgid. 560 * @p contains the task_struct for process being modified. 561 * @pgid contains the new pgid. 562 * Return 0 if permission is granted. 563 * @task_getpgid: 564 * Check permission before getting the process group identifier of the 565 * process @p. 566 * @p contains the task_struct for the process. 567 * Return 0 if permission is granted. 568 * @task_getsid: 569 * Check permission before getting the session identifier of the process 570 * @p. 571 * @p contains the task_struct for the process. 572 * Return 0 if permission is granted. 573 * @task_getsecid: 574 * Retrieve the security identifier of the process @p. 575 * @p contains the task_struct for the process and place is into @secid. 576 * @task_setgroups: 577 * Check permission before setting the supplementary group set of the 578 * current process. 579 * @group_info contains the new group information. 580 * Return 0 if permission is granted. 581 * @task_setnice: 582 * Check permission before setting the nice value of @p to @nice. 583 * @p contains the task_struct of process. 584 * @nice contains the new nice value. 585 * Return 0 if permission is granted. 586 * @task_setioprio 587 * Check permission before setting the ioprio value of @p to @ioprio. 588 * @p contains the task_struct of process. 589 * @ioprio contains the new ioprio value 590 * Return 0 if permission is granted. 591 * @task_getioprio 592 * Check permission before getting the ioprio value of @p. 593 * @p contains the task_struct of process. 594 * Return 0 if permission is granted. 595 * @task_setrlimit: 596 * Check permission before setting the resource limits of the current 597 * process for @resource to @new_rlim. The old resource limit values can 598 * be examined by dereferencing (current->signal->rlim + resource). 599 * @resource contains the resource whose limit is being set. 600 * @new_rlim contains the new limits for @resource. 601 * Return 0 if permission is granted. 602 * @task_setscheduler: 603 * Check permission before setting scheduling policy and/or parameters of 604 * process @p based on @policy and @lp. 605 * @p contains the task_struct for process. 606 * @policy contains the scheduling policy. 607 * @lp contains the scheduling parameters. 608 * Return 0 if permission is granted. 609 * @task_getscheduler: 610 * Check permission before obtaining scheduling information for process 611 * @p. 612 * @p contains the task_struct for process. 613 * Return 0 if permission is granted. 614 * @task_movememory 615 * Check permission before moving memory owned by process @p. 616 * @p contains the task_struct for process. 617 * Return 0 if permission is granted. 618 * @task_kill: 619 * Check permission before sending signal @sig to @p. @info can be NULL, 620 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or 621 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming 622 * from the kernel and should typically be permitted. 623 * SIGIO signals are handled separately by the send_sigiotask hook in 624 * file_security_ops. 625 * @p contains the task_struct for process. 626 * @info contains the signal information. 627 * @sig contains the signal value. 628 * @secid contains the sid of the process where the signal originated 629 * Return 0 if permission is granted. 630 * @task_wait: 631 * Check permission before allowing a process to reap a child process @p 632 * and collect its status information. 633 * @p contains the task_struct for process. 634 * Return 0 if permission is granted. 635 * @task_prctl: 636 * Check permission before performing a process control operation on the 637 * current process. 638 * @option contains the operation. 639 * @arg2 contains a argument. 640 * @arg3 contains a argument. 641 * @arg4 contains a argument. 642 * @arg5 contains a argument. 643 * Return 0 if permission is granted. 644 * @task_reparent_to_init: 645 * Set the security attributes in @p->security for a kernel thread that 646 * is being reparented to the init task. 647 * @p contains the task_struct for the kernel thread. 648 * @task_to_inode: 649 * Set the security attributes for an inode based on an associated task's 650 * security attributes, e.g. for /proc/pid inodes. 651 * @p contains the task_struct for the task. 652 * @inode contains the inode structure for the inode. 653 * 654 * Security hooks for Netlink messaging. 655 * 656 * @netlink_send: 657 * Save security information for a netlink message so that permission 658 * checking can be performed when the message is processed. The security 659 * information can be saved using the eff_cap field of the 660 * netlink_skb_parms structure. Also may be used to provide fine 661 * grained control over message transmission. 662 * @sk associated sock of task sending the message., 663 * @skb contains the sk_buff structure for the netlink message. 664 * Return 0 if the information was successfully saved and message 665 * is allowed to be transmitted. 666 * @netlink_recv: 667 * Check permission before processing the received netlink message in 668 * @skb. 669 * @skb contains the sk_buff structure for the netlink message. 670 * @cap indicates the capability required 671 * Return 0 if permission is granted. 672 * 673 * Security hooks for Unix domain networking. 674 * 675 * @unix_stream_connect: 676 * Check permissions before establishing a Unix domain stream connection 677 * between @sock and @other. 678 * @sock contains the socket structure. 679 * @other contains the peer socket structure. 680 * Return 0 if permission is granted. 681 * @unix_may_send: 682 * Check permissions before connecting or sending datagrams from @sock to 683 * @other. 684 * @sock contains the socket structure. 685 * @sock contains the peer socket structure. 686 * Return 0 if permission is granted. 687 * 688 * The @unix_stream_connect and @unix_may_send hooks were necessary because 689 * Linux provides an alternative to the conventional file name space for Unix 690 * domain sockets. Whereas binding and connecting to sockets in the file name 691 * space is mediated by the typical file permissions (and caught by the mknod 692 * and permission hooks in inode_security_ops), binding and connecting to 693 * sockets in the abstract name space is completely unmediated. Sufficient 694 * control of Unix domain sockets in the abstract name space isn't possible 695 * using only the socket layer hooks, since we need to know the actual target 696 * socket, which is not looked up until we are inside the af_unix code. 697 * 698 * Security hooks for socket operations. 699 * 700 * @socket_create: 701 * Check permissions prior to creating a new socket. 702 * @family contains the requested protocol family. 703 * @type contains the requested communications type. 704 * @protocol contains the requested protocol. 705 * @kern set to 1 if a kernel socket. 706 * Return 0 if permission is granted. 707 * @socket_post_create: 708 * This hook allows a module to update or allocate a per-socket security 709 * structure. Note that the security field was not added directly to the 710 * socket structure, but rather, the socket security information is stored 711 * in the associated inode. Typically, the inode alloc_security hook will 712 * allocate and and attach security information to 713 * sock->inode->i_security. This hook may be used to update the 714 * sock->inode->i_security field with additional information that wasn't 715 * available when the inode was allocated. 716 * @sock contains the newly created socket structure. 717 * @family contains the requested protocol family. 718 * @type contains the requested communications type. 719 * @protocol contains the requested protocol. 720 * @kern set to 1 if a kernel socket. 721 * @socket_bind: 722 * Check permission before socket protocol layer bind operation is 723 * performed and the socket @sock is bound to the address specified in the 724 * @address parameter. 725 * @sock contains the socket structure. 726 * @address contains the address to bind to. 727 * @addrlen contains the length of address. 728 * Return 0 if permission is granted. 729 * @socket_connect: 730 * Check permission before socket protocol layer connect operation 731 * attempts to connect socket @sock to a remote address, @address. 732 * @sock contains the socket structure. 733 * @address contains the address of remote endpoint. 734 * @addrlen contains the length of address. 735 * Return 0 if permission is granted. 736 * @socket_listen: 737 * Check permission before socket protocol layer listen operation. 738 * @sock contains the socket structure. 739 * @backlog contains the maximum length for the pending connection queue. 740 * Return 0 if permission is granted. 741 * @socket_accept: 742 * Check permission before accepting a new connection. Note that the new 743 * socket, @newsock, has been created and some information copied to it, 744 * but the accept operation has not actually been performed. 745 * @sock contains the listening socket structure. 746 * @newsock contains the newly created server socket for connection. 747 * Return 0 if permission is granted. 748 * @socket_post_accept: 749 * This hook allows a security module to copy security 750 * information into the newly created socket's inode. 751 * @sock contains the listening socket structure. 752 * @newsock contains the newly created server socket for connection. 753 * @socket_sendmsg: 754 * Check permission before transmitting a message to another socket. 755 * @sock contains the socket structure. 756 * @msg contains the message to be transmitted. 757 * @size contains the size of message. 758 * Return 0 if permission is granted. 759 * @socket_recvmsg: 760 * Check permission before receiving a message from a socket. 761 * @sock contains the socket structure. 762 * @msg contains the message structure. 763 * @size contains the size of message structure. 764 * @flags contains the operational flags. 765 * Return 0 if permission is granted. 766 * @socket_getsockname: 767 * Check permission before the local address (name) of the socket object 768 * @sock is retrieved. 769 * @sock contains the socket structure. 770 * Return 0 if permission is granted. 771 * @socket_getpeername: 772 * Check permission before the remote address (name) of a socket object 773 * @sock is retrieved. 774 * @sock contains the socket structure. 775 * Return 0 if permission is granted. 776 * @socket_getsockopt: 777 * Check permissions before retrieving the options associated with socket 778 * @sock. 779 * @sock contains the socket structure. 780 * @level contains the protocol level to retrieve option from. 781 * @optname contains the name of option to retrieve. 782 * Return 0 if permission is granted. 783 * @socket_setsockopt: 784 * Check permissions before setting the options associated with socket 785 * @sock. 786 * @sock contains the socket structure. 787 * @level contains the protocol level to set options for. 788 * @optname contains the name of the option to set. 789 * Return 0 if permission is granted. 790 * @socket_shutdown: 791 * Checks permission before all or part of a connection on the socket 792 * @sock is shut down. 793 * @sock contains the socket structure. 794 * @how contains the flag indicating how future sends and receives are handled. 795 * Return 0 if permission is granted. 796 * @socket_sock_rcv_skb: 797 * Check permissions on incoming network packets. This hook is distinct 798 * from Netfilter's IP input hooks since it is the first time that the 799 * incoming sk_buff @skb has been associated with a particular socket, @sk. 800 * @sk contains the sock (not socket) associated with the incoming sk_buff. 801 * @skb contains the incoming network data. 802 * @socket_getpeersec: 803 * This hook allows the security module to provide peer socket security 804 * state to userspace via getsockopt SO_GETPEERSEC. 805 * @sock is the local socket. 806 * @optval userspace memory where the security state is to be copied. 807 * @optlen userspace int where the module should copy the actual length 808 * of the security state. 809 * @len as input is the maximum length to copy to userspace provided 810 * by the caller. 811 * Return 0 if all is well, otherwise, typical getsockopt return 812 * values. 813 * @sk_alloc_security: 814 * Allocate and attach a security structure to the sk->sk_security field, 815 * which is used to copy security attributes between local stream sockets. 816 * @sk_free_security: 817 * Deallocate security structure. 818 * @sk_clone_security: 819 * Clone/copy security structure. 820 * @sk_getsecid: 821 * Retrieve the LSM-specific secid for the sock to enable caching of network 822 * authorizations. 823 * @sock_graft: 824 * Sets the socket's isec sid to the sock's sid. 825 * @inet_conn_request: 826 * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid. 827 * @inet_csk_clone: 828 * Sets the new child socket's sid to the openreq sid. 829 * @req_classify_flow: 830 * Sets the flow's sid to the openreq sid. 831 * 832 * Security hooks for XFRM operations. 833 * 834 * @xfrm_policy_alloc_security: 835 * @xp contains the xfrm_policy being added to Security Policy Database 836 * used by the XFRM system. 837 * @sec_ctx contains the security context information being provided by 838 * the user-level policy update program (e.g., setkey). 839 * @sk refers to the sock from which to derive the security context. 840 * Allocate a security structure to the xp->security field; the security 841 * field is initialized to NULL when the xfrm_policy is allocated. Only 842 * one of sec_ctx or sock can be specified. 843 * Return 0 if operation was successful (memory to allocate, legal context) 844 * @xfrm_policy_clone_security: 845 * @old contains an existing xfrm_policy in the SPD. 846 * @new contains a new xfrm_policy being cloned from old. 847 * Allocate a security structure to the new->security field 848 * that contains the information from the old->security field. 849 * Return 0 if operation was successful (memory to allocate). 850 * @xfrm_policy_free_security: 851 * @xp contains the xfrm_policy 852 * Deallocate xp->security. 853 * @xfrm_policy_delete_security: 854 * @xp contains the xfrm_policy. 855 * Authorize deletion of xp->security. 856 * @xfrm_state_alloc_security: 857 * @x contains the xfrm_state being added to the Security Association 858 * Database by the XFRM system. 859 * @sec_ctx contains the security context information being provided by 860 * the user-level SA generation program (e.g., setkey or racoon). 861 * @polsec contains the security context information associated with a xfrm 862 * policy rule from which to take the base context. polsec must be NULL 863 * when sec_ctx is specified. 864 * @secid contains the secid from which to take the mls portion of the context. 865 * Allocate a security structure to the x->security field; the security 866 * field is initialized to NULL when the xfrm_state is allocated. Set the 867 * context to correspond to either sec_ctx or polsec, with the mls portion 868 * taken from secid in the latter case. 869 * Return 0 if operation was successful (memory to allocate, legal context). 870 * @xfrm_state_free_security: 871 * @x contains the xfrm_state. 872 * Deallocate x->security. 873 * @xfrm_state_delete_security: 874 * @x contains the xfrm_state. 875 * Authorize deletion of x->security. 876 * @xfrm_policy_lookup: 877 * @xp contains the xfrm_policy for which the access control is being 878 * checked. 879 * @fl_secid contains the flow security label that is used to authorize 880 * access to the policy xp. 881 * @dir contains the direction of the flow (input or output). 882 * Check permission when a flow selects a xfrm_policy for processing 883 * XFRMs on a packet. The hook is called when selecting either a 884 * per-socket policy or a generic xfrm policy. 885 * Return 0 if permission is granted. 886 * @xfrm_state_pol_flow_match: 887 * @x contains the state to match. 888 * @xp contains the policy to check for a match. 889 * @fl contains the flow to check for a match. 890 * Return 1 if there is a match. 891 * @xfrm_flow_state_match: 892 * @fl contains the flow key to match. 893 * @xfrm points to the xfrm_state to match. 894 * Return 1 if there is a match. 895 * @xfrm_decode_session: 896 * @skb points to skb to decode. 897 * @secid points to the flow key secid to set. 898 * @ckall says if all xfrms used should be checked for same secid. 899 * Return 0 if ckall is zero or all xfrms used have the same secid. 900 * 901 * Security hooks affecting all Key Management operations 902 * 903 * @key_alloc: 904 * Permit allocation of a key and assign security data. Note that key does 905 * not have a serial number assigned at this point. 906 * @key points to the key. 907 * @flags is the allocation flags 908 * Return 0 if permission is granted, -ve error otherwise. 909 * @key_free: 910 * Notification of destruction; free security data. 911 * @key points to the key. 912 * No return value. 913 * @key_permission: 914 * See whether a specific operational right is granted to a process on a 915 * key. 916 * @key_ref refers to the key (key pointer + possession attribute bit). 917 * @context points to the process to provide the context against which to 918 * evaluate the security data on the key. 919 * @perm describes the combination of permissions required of this key. 920 * Return 1 if permission granted, 0 if permission denied and -ve it the 921 * normal permissions model should be effected. 922 * 923 * Security hooks affecting all System V IPC operations. 924 * 925 * @ipc_permission: 926 * Check permissions for access to IPC 927 * @ipcp contains the kernel IPC permission structure 928 * @flag contains the desired (requested) permission set 929 * Return 0 if permission is granted. 930 * 931 * Security hooks for individual messages held in System V IPC message queues 932 * @msg_msg_alloc_security: 933 * Allocate and attach a security structure to the msg->security field. 934 * The security field is initialized to NULL when the structure is first 935 * created. 936 * @msg contains the message structure to be modified. 937 * Return 0 if operation was successful and permission is granted. 938 * @msg_msg_free_security: 939 * Deallocate the security structure for this message. 940 * @msg contains the message structure to be modified. 941 * 942 * Security hooks for System V IPC Message Queues 943 * 944 * @msg_queue_alloc_security: 945 * Allocate and attach a security structure to the 946 * msq->q_perm.security field. The security field is initialized to 947 * NULL when the structure is first created. 948 * @msq contains the message queue structure to be modified. 949 * Return 0 if operation was successful and permission is granted. 950 * @msg_queue_free_security: 951 * Deallocate security structure for this message queue. 952 * @msq contains the message queue structure to be modified. 953 * @msg_queue_associate: 954 * Check permission when a message queue is requested through the 955 * msgget system call. This hook is only called when returning the 956 * message queue identifier for an existing message queue, not when a 957 * new message queue is created. 958 * @msq contains the message queue to act upon. 959 * @msqflg contains the operation control flags. 960 * Return 0 if permission is granted. 961 * @msg_queue_msgctl: 962 * Check permission when a message control operation specified by @cmd 963 * is to be performed on the message queue @msq. 964 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. 965 * @msq contains the message queue to act upon. May be NULL. 966 * @cmd contains the operation to be performed. 967 * Return 0 if permission is granted. 968 * @msg_queue_msgsnd: 969 * Check permission before a message, @msg, is enqueued on the message 970 * queue, @msq. 971 * @msq contains the message queue to send message to. 972 * @msg contains the message to be enqueued. 973 * @msqflg contains operational flags. 974 * Return 0 if permission is granted. 975 * @msg_queue_msgrcv: 976 * Check permission before a message, @msg, is removed from the message 977 * queue, @msq. The @target task structure contains a pointer to the 978 * process that will be receiving the message (not equal to the current 979 * process when inline receives are being performed). 980 * @msq contains the message queue to retrieve message from. 981 * @msg contains the message destination. 982 * @target contains the task structure for recipient process. 983 * @type contains the type of message requested. 984 * @mode contains the operational flags. 985 * Return 0 if permission is granted. 986 * 987 * Security hooks for System V Shared Memory Segments 988 * 989 * @shm_alloc_security: 990 * Allocate and attach a security structure to the shp->shm_perm.security 991 * field. The security field is initialized to NULL when the structure is 992 * first created. 993 * @shp contains the shared memory structure to be modified. 994 * Return 0 if operation was successful and permission is granted. 995 * @shm_free_security: 996 * Deallocate the security struct for this memory segment. 997 * @shp contains the shared memory structure to be modified. 998 * @shm_associate: 999 * Check permission when a shared memory region is requested through the 1000 * shmget system call. This hook is only called when returning the shared 1001 * memory region identifier for an existing region, not when a new shared 1002 * memory region is created. 1003 * @shp contains the shared memory structure to be modified. 1004 * @shmflg contains the operation control flags. 1005 * Return 0 if permission is granted. 1006 * @shm_shmctl: 1007 * Check permission when a shared memory control operation specified by 1008 * @cmd is to be performed on the shared memory region @shp. 1009 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. 1010 * @shp contains shared memory structure to be modified. 1011 * @cmd contains the operation to be performed. 1012 * Return 0 if permission is granted. 1013 * @shm_shmat: 1014 * Check permissions prior to allowing the shmat system call to attach the 1015 * shared memory segment @shp to the data segment of the calling process. 1016 * The attaching address is specified by @shmaddr. 1017 * @shp contains the shared memory structure to be modified. 1018 * @shmaddr contains the address to attach memory region to. 1019 * @shmflg contains the operational flags. 1020 * Return 0 if permission is granted. 1021 * 1022 * Security hooks for System V Semaphores 1023 * 1024 * @sem_alloc_security: 1025 * Allocate and attach a security structure to the sma->sem_perm.security 1026 * field. The security field is initialized to NULL when the structure is 1027 * first created. 1028 * @sma contains the semaphore structure 1029 * Return 0 if operation was successful and permission is granted. 1030 * @sem_free_security: 1031 * deallocate security struct for this semaphore 1032 * @sma contains the semaphore structure. 1033 * @sem_associate: 1034 * Check permission when a semaphore is requested through the semget 1035 * system call. This hook is only called when returning the semaphore 1036 * identifier for an existing semaphore, not when a new one must be 1037 * created. 1038 * @sma contains the semaphore structure. 1039 * @semflg contains the operation control flags. 1040 * Return 0 if permission is granted. 1041 * @sem_semctl: 1042 * Check permission when a semaphore operation specified by @cmd is to be 1043 * performed on the semaphore @sma. The @sma may be NULL, e.g. for 1044 * IPC_INFO or SEM_INFO. 1045 * @sma contains the semaphore structure. May be NULL. 1046 * @cmd contains the operation to be performed. 1047 * Return 0 if permission is granted. 1048 * @sem_semop 1049 * Check permissions before performing operations on members of the 1050 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set 1051 * may be modified. 1052 * @sma contains the semaphore structure. 1053 * @sops contains the operations to perform. 1054 * @nsops contains the number of operations to perform. 1055 * @alter contains the flag indicating whether changes are to be made. 1056 * Return 0 if permission is granted. 1057 * 1058 * @ptrace: 1059 * Check permission before allowing the @parent process to trace the 1060 * @child process. 1061 * Security modules may also want to perform a process tracing check 1062 * during an execve in the set_security or apply_creds hooks of 1063 * binprm_security_ops if the process is being traced and its security 1064 * attributes would be changed by the execve. 1065 * @parent contains the task_struct structure for parent process. 1066 * @child contains the task_struct structure for child process. 1067 * Return 0 if permission is granted. 1068 * @capget: 1069 * Get the @effective, @inheritable, and @permitted capability sets for 1070 * the @target process. The hook may also perform permission checking to 1071 * determine if the current process is allowed to see the capability sets 1072 * of the @target process. 1073 * @target contains the task_struct structure for target process. 1074 * @effective contains the effective capability set. 1075 * @inheritable contains the inheritable capability set. 1076 * @permitted contains the permitted capability set. 1077 * Return 0 if the capability sets were successfully obtained. 1078 * @capset_check: 1079 * Check permission before setting the @effective, @inheritable, and 1080 * @permitted capability sets for the @target process. 1081 * Caveat: @target is also set to current if a set of processes is 1082 * specified (i.e. all processes other than current and init or a 1083 * particular process group). Hence, the capset_set hook may need to 1084 * revalidate permission to the actual target process. 1085 * @target contains the task_struct structure for target process. 1086 * @effective contains the effective capability set. 1087 * @inheritable contains the inheritable capability set. 1088 * @permitted contains the permitted capability set. 1089 * Return 0 if permission is granted. 1090 * @capset_set: 1091 * Set the @effective, @inheritable, and @permitted capability sets for 1092 * the @target process. Since capset_check cannot always check permission 1093 * to the real @target process, this hook may also perform permission 1094 * checking to determine if the current process is allowed to set the 1095 * capability sets of the @target process. However, this hook has no way 1096 * of returning an error due to the structure of the sys_capset code. 1097 * @target contains the task_struct structure for target process. 1098 * @effective contains the effective capability set. 1099 * @inheritable contains the inheritable capability set. 1100 * @permitted contains the permitted capability set. 1101 * @capable: 1102 * Check whether the @tsk process has the @cap capability. 1103 * @tsk contains the task_struct for the process. 1104 * @cap contains the capability <include/linux/capability.h>. 1105 * Return 0 if the capability is granted for @tsk. 1106 * @acct: 1107 * Check permission before enabling or disabling process accounting. If 1108 * accounting is being enabled, then @file refers to the open file used to 1109 * store accounting records. If accounting is being disabled, then @file 1110 * is NULL. 1111 * @file contains the file structure for the accounting file (may be NULL). 1112 * Return 0 if permission is granted. 1113 * @sysctl: 1114 * Check permission before accessing the @table sysctl variable in the 1115 * manner specified by @op. 1116 * @table contains the ctl_table structure for the sysctl variable. 1117 * @op contains the operation (001 = search, 002 = write, 004 = read). 1118 * Return 0 if permission is granted. 1119 * @syslog: 1120 * Check permission before accessing the kernel message ring or changing 1121 * logging to the console. 1122 * See the syslog(2) manual page for an explanation of the @type values. 1123 * @type contains the type of action. 1124 * Return 0 if permission is granted. 1125 * @settime: 1126 * Check permission to change the system time. 1127 * struct timespec and timezone are defined in include/linux/time.h 1128 * @ts contains new time 1129 * @tz contains new timezone 1130 * Return 0 if permission is granted. 1131 * @vm_enough_memory: 1132 * Check permissions for allocating a new virtual mapping. 1133 * @pages contains the number of pages. 1134 * Return 0 if permission is granted. 1135 * 1136 * @register_security: 1137 * allow module stacking. 1138 * @name contains the name of the security module being stacked. 1139 * @ops contains a pointer to the struct security_operations of the module to stack. 1140 * @unregister_security: 1141 * remove a stacked module. 1142 * @name contains the name of the security module being unstacked. 1143 * @ops contains a pointer to the struct security_operations of the module to unstack. 1144 * 1145 * @secid_to_secctx: 1146 * Convert secid to security context. 1147 * @secid contains the security ID. 1148 * @secdata contains the pointer that stores the converted security context. 1149 * 1150 * @release_secctx: 1151 * Release the security context. 1152 * @secdata contains the security context. 1153 * @seclen contains the length of the security context. 1154 * 1155 * This is the main security structure. 1156 */ 1157 struct security_operations { 1158 int (*ptrace) (struct task_struct * parent, struct task_struct * child); 1159 int (*capget) (struct task_struct * target, 1160 kernel_cap_t * effective, 1161 kernel_cap_t * inheritable, kernel_cap_t * permitted); 1162 int (*capset_check) (struct task_struct * target, 1163 kernel_cap_t * effective, 1164 kernel_cap_t * inheritable, 1165 kernel_cap_t * permitted); 1166 void (*capset_set) (struct task_struct * target, 1167 kernel_cap_t * effective, 1168 kernel_cap_t * inheritable, 1169 kernel_cap_t * permitted); 1170 int (*capable) (struct task_struct * tsk, int cap); 1171 int (*acct) (struct file * file); 1172 int (*sysctl) (struct ctl_table * table, int op); 1173 int (*quotactl) (int cmds, int type, int id, struct super_block * sb); 1174 int (*quota_on) (struct dentry * dentry); 1175 int (*syslog) (int type); 1176 int (*settime) (struct timespec *ts, struct timezone *tz); 1177 int (*vm_enough_memory) (long pages); 1178 1179 int (*bprm_alloc_security) (struct linux_binprm * bprm); 1180 void (*bprm_free_security) (struct linux_binprm * bprm); 1181 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe); 1182 void (*bprm_post_apply_creds) (struct linux_binprm * bprm); 1183 int (*bprm_set_security) (struct linux_binprm * bprm); 1184 int (*bprm_check_security) (struct linux_binprm * bprm); 1185 int (*bprm_secureexec) (struct linux_binprm * bprm); 1186 1187 int (*sb_alloc_security) (struct super_block * sb); 1188 void (*sb_free_security) (struct super_block * sb); 1189 int (*sb_copy_data)(struct file_system_type *type, 1190 void *orig, void *copy); 1191 int (*sb_kern_mount) (struct super_block *sb, void *data); 1192 int (*sb_statfs) (struct dentry *dentry); 1193 int (*sb_mount) (char *dev_name, struct nameidata * nd, 1194 char *type, unsigned long flags, void *data); 1195 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd); 1196 int (*sb_umount) (struct vfsmount * mnt, int flags); 1197 void (*sb_umount_close) (struct vfsmount * mnt); 1198 void (*sb_umount_busy) (struct vfsmount * mnt); 1199 void (*sb_post_remount) (struct vfsmount * mnt, 1200 unsigned long flags, void *data); 1201 void (*sb_post_mountroot) (void); 1202 void (*sb_post_addmount) (struct vfsmount * mnt, 1203 struct nameidata * mountpoint_nd); 1204 int (*sb_pivotroot) (struct nameidata * old_nd, 1205 struct nameidata * new_nd); 1206 void (*sb_post_pivotroot) (struct nameidata * old_nd, 1207 struct nameidata * new_nd); 1208 1209 int (*inode_alloc_security) (struct inode *inode); 1210 void (*inode_free_security) (struct inode *inode); 1211 int (*inode_init_security) (struct inode *inode, struct inode *dir, 1212 char **name, void **value, size_t *len); 1213 int (*inode_create) (struct inode *dir, 1214 struct dentry *dentry, int mode); 1215 int (*inode_link) (struct dentry *old_dentry, 1216 struct inode *dir, struct dentry *new_dentry); 1217 int (*inode_unlink) (struct inode *dir, struct dentry *dentry); 1218 int (*inode_symlink) (struct inode *dir, 1219 struct dentry *dentry, const char *old_name); 1220 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); 1221 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); 1222 int (*inode_mknod) (struct inode *dir, struct dentry *dentry, 1223 int mode, dev_t dev); 1224 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, 1225 struct inode *new_dir, struct dentry *new_dentry); 1226 int (*inode_readlink) (struct dentry *dentry); 1227 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); 1228 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd); 1229 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); 1230 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); 1231 void (*inode_delete) (struct inode *inode); 1232 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value, 1233 size_t size, int flags); 1234 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value, 1235 size_t size, int flags); 1236 int (*inode_getxattr) (struct dentry *dentry, char *name); 1237 int (*inode_listxattr) (struct dentry *dentry); 1238 int (*inode_removexattr) (struct dentry *dentry, char *name); 1239 const char *(*inode_xattr_getsuffix) (void); 1240 int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err); 1241 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags); 1242 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size); 1243 1244 int (*file_permission) (struct file * file, int mask); 1245 int (*file_alloc_security) (struct file * file); 1246 void (*file_free_security) (struct file * file); 1247 int (*file_ioctl) (struct file * file, unsigned int cmd, 1248 unsigned long arg); 1249 int (*file_mmap) (struct file * file, 1250 unsigned long reqprot, 1251 unsigned long prot, unsigned long flags); 1252 int (*file_mprotect) (struct vm_area_struct * vma, 1253 unsigned long reqprot, 1254 unsigned long prot); 1255 int (*file_lock) (struct file * file, unsigned int cmd); 1256 int (*file_fcntl) (struct file * file, unsigned int cmd, 1257 unsigned long arg); 1258 int (*file_set_fowner) (struct file * file); 1259 int (*file_send_sigiotask) (struct task_struct * tsk, 1260 struct fown_struct * fown, int sig); 1261 int (*file_receive) (struct file * file); 1262 1263 int (*task_create) (unsigned long clone_flags); 1264 int (*task_alloc_security) (struct task_struct * p); 1265 void (*task_free_security) (struct task_struct * p); 1266 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags); 1267 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ , 1268 uid_t old_euid, uid_t old_suid, int flags); 1269 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags); 1270 int (*task_setpgid) (struct task_struct * p, pid_t pgid); 1271 int (*task_getpgid) (struct task_struct * p); 1272 int (*task_getsid) (struct task_struct * p); 1273 void (*task_getsecid) (struct task_struct * p, u32 * secid); 1274 int (*task_setgroups) (struct group_info *group_info); 1275 int (*task_setnice) (struct task_struct * p, int nice); 1276 int (*task_setioprio) (struct task_struct * p, int ioprio); 1277 int (*task_getioprio) (struct task_struct * p); 1278 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim); 1279 int (*task_setscheduler) (struct task_struct * p, int policy, 1280 struct sched_param * lp); 1281 int (*task_getscheduler) (struct task_struct * p); 1282 int (*task_movememory) (struct task_struct * p); 1283 int (*task_kill) (struct task_struct * p, 1284 struct siginfo * info, int sig, u32 secid); 1285 int (*task_wait) (struct task_struct * p); 1286 int (*task_prctl) (int option, unsigned long arg2, 1287 unsigned long arg3, unsigned long arg4, 1288 unsigned long arg5); 1289 void (*task_reparent_to_init) (struct task_struct * p); 1290 void (*task_to_inode)(struct task_struct *p, struct inode *inode); 1291 1292 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag); 1293 1294 int (*msg_msg_alloc_security) (struct msg_msg * msg); 1295 void (*msg_msg_free_security) (struct msg_msg * msg); 1296 1297 int (*msg_queue_alloc_security) (struct msg_queue * msq); 1298 void (*msg_queue_free_security) (struct msg_queue * msq); 1299 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg); 1300 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd); 1301 int (*msg_queue_msgsnd) (struct msg_queue * msq, 1302 struct msg_msg * msg, int msqflg); 1303 int (*msg_queue_msgrcv) (struct msg_queue * msq, 1304 struct msg_msg * msg, 1305 struct task_struct * target, 1306 long type, int mode); 1307 1308 int (*shm_alloc_security) (struct shmid_kernel * shp); 1309 void (*shm_free_security) (struct shmid_kernel * shp); 1310 int (*shm_associate) (struct shmid_kernel * shp, int shmflg); 1311 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd); 1312 int (*shm_shmat) (struct shmid_kernel * shp, 1313 char __user *shmaddr, int shmflg); 1314 1315 int (*sem_alloc_security) (struct sem_array * sma); 1316 void (*sem_free_security) (struct sem_array * sma); 1317 int (*sem_associate) (struct sem_array * sma, int semflg); 1318 int (*sem_semctl) (struct sem_array * sma, int cmd); 1319 int (*sem_semop) (struct sem_array * sma, 1320 struct sembuf * sops, unsigned nsops, int alter); 1321 1322 int (*netlink_send) (struct sock * sk, struct sk_buff * skb); 1323 int (*netlink_recv) (struct sk_buff * skb, int cap); 1324 1325 /* allow module stacking */ 1326 int (*register_security) (const char *name, 1327 struct security_operations *ops); 1328 int (*unregister_security) (const char *name, 1329 struct security_operations *ops); 1330 1331 void (*d_instantiate) (struct dentry *dentry, struct inode *inode); 1332 1333 int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1334 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1335 int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen); 1336 void (*release_secctx)(char *secdata, u32 seclen); 1337 1338 #ifdef CONFIG_SECURITY_NETWORK 1339 int (*unix_stream_connect) (struct socket * sock, 1340 struct socket * other, struct sock * newsk); 1341 int (*unix_may_send) (struct socket * sock, struct socket * other); 1342 1343 int (*socket_create) (int family, int type, int protocol, int kern); 1344 void (*socket_post_create) (struct socket * sock, int family, 1345 int type, int protocol, int kern); 1346 int (*socket_bind) (struct socket * sock, 1347 struct sockaddr * address, int addrlen); 1348 int (*socket_connect) (struct socket * sock, 1349 struct sockaddr * address, int addrlen); 1350 int (*socket_listen) (struct socket * sock, int backlog); 1351 int (*socket_accept) (struct socket * sock, struct socket * newsock); 1352 void (*socket_post_accept) (struct socket * sock, 1353 struct socket * newsock); 1354 int (*socket_sendmsg) (struct socket * sock, 1355 struct msghdr * msg, int size); 1356 int (*socket_recvmsg) (struct socket * sock, 1357 struct msghdr * msg, int size, int flags); 1358 int (*socket_getsockname) (struct socket * sock); 1359 int (*socket_getpeername) (struct socket * sock); 1360 int (*socket_getsockopt) (struct socket * sock, int level, int optname); 1361 int (*socket_setsockopt) (struct socket * sock, int level, int optname); 1362 int (*socket_shutdown) (struct socket * sock, int how); 1363 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb); 1364 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); 1365 int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid); 1366 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); 1367 void (*sk_free_security) (struct sock *sk); 1368 void (*sk_clone_security) (const struct sock *sk, struct sock *newsk); 1369 void (*sk_getsecid) (struct sock *sk, u32 *secid); 1370 void (*sock_graft)(struct sock* sk, struct socket *parent); 1371 int (*inet_conn_request)(struct sock *sk, struct sk_buff *skb, 1372 struct request_sock *req); 1373 void (*inet_csk_clone)(struct sock *newsk, const struct request_sock *req); 1374 void (*req_classify_flow)(const struct request_sock *req, struct flowi *fl); 1375 #endif /* CONFIG_SECURITY_NETWORK */ 1376 1377 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1378 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, 1379 struct xfrm_user_sec_ctx *sec_ctx, struct sock *sk); 1380 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new); 1381 void (*xfrm_policy_free_security) (struct xfrm_policy *xp); 1382 int (*xfrm_policy_delete_security) (struct xfrm_policy *xp); 1383 int (*xfrm_state_alloc_security) (struct xfrm_state *x, 1384 struct xfrm_user_sec_ctx *sec_ctx, struct xfrm_sec_ctx *polsec, 1385 u32 secid); 1386 void (*xfrm_state_free_security) (struct xfrm_state *x); 1387 int (*xfrm_state_delete_security) (struct xfrm_state *x); 1388 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 fl_secid, u8 dir); 1389 int (*xfrm_state_pol_flow_match)(struct xfrm_state *x, 1390 struct xfrm_policy *xp, struct flowi *fl); 1391 int (*xfrm_flow_state_match)(struct flowi *fl, struct xfrm_state *xfrm); 1392 int (*xfrm_decode_session)(struct sk_buff *skb, u32 *secid, int ckall); 1393 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1394 1395 /* key management security hooks */ 1396 #ifdef CONFIG_KEYS 1397 int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags); 1398 void (*key_free)(struct key *key); 1399 int (*key_permission)(key_ref_t key_ref, 1400 struct task_struct *context, 1401 key_perm_t perm); 1402 1403 #endif /* CONFIG_KEYS */ 1404 1405 }; 1406 1407 /* global variables */ 1408 extern struct security_operations *security_ops; 1409 1410 /* inline stuff */ 1411 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child) 1412 { 1413 return security_ops->ptrace (parent, child); 1414 } 1415 1416 static inline int security_capget (struct task_struct *target, 1417 kernel_cap_t *effective, 1418 kernel_cap_t *inheritable, 1419 kernel_cap_t *permitted) 1420 { 1421 return security_ops->capget (target, effective, inheritable, permitted); 1422 } 1423 1424 static inline int security_capset_check (struct task_struct *target, 1425 kernel_cap_t *effective, 1426 kernel_cap_t *inheritable, 1427 kernel_cap_t *permitted) 1428 { 1429 return security_ops->capset_check (target, effective, inheritable, permitted); 1430 } 1431 1432 static inline void security_capset_set (struct task_struct *target, 1433 kernel_cap_t *effective, 1434 kernel_cap_t *inheritable, 1435 kernel_cap_t *permitted) 1436 { 1437 security_ops->capset_set (target, effective, inheritable, permitted); 1438 } 1439 1440 static inline int security_capable(struct task_struct *tsk, int cap) 1441 { 1442 return security_ops->capable(tsk, cap); 1443 } 1444 1445 static inline int security_acct (struct file *file) 1446 { 1447 return security_ops->acct (file); 1448 } 1449 1450 static inline int security_sysctl(struct ctl_table *table, int op) 1451 { 1452 return security_ops->sysctl(table, op); 1453 } 1454 1455 static inline int security_quotactl (int cmds, int type, int id, 1456 struct super_block *sb) 1457 { 1458 return security_ops->quotactl (cmds, type, id, sb); 1459 } 1460 1461 static inline int security_quota_on (struct dentry * dentry) 1462 { 1463 return security_ops->quota_on (dentry); 1464 } 1465 1466 static inline int security_syslog(int type) 1467 { 1468 return security_ops->syslog(type); 1469 } 1470 1471 static inline int security_settime(struct timespec *ts, struct timezone *tz) 1472 { 1473 return security_ops->settime(ts, tz); 1474 } 1475 1476 1477 static inline int security_vm_enough_memory(long pages) 1478 { 1479 return security_ops->vm_enough_memory(pages); 1480 } 1481 1482 static inline int security_bprm_alloc (struct linux_binprm *bprm) 1483 { 1484 return security_ops->bprm_alloc_security (bprm); 1485 } 1486 static inline void security_bprm_free (struct linux_binprm *bprm) 1487 { 1488 security_ops->bprm_free_security (bprm); 1489 } 1490 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 1491 { 1492 security_ops->bprm_apply_creds (bprm, unsafe); 1493 } 1494 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 1495 { 1496 security_ops->bprm_post_apply_creds (bprm); 1497 } 1498 static inline int security_bprm_set (struct linux_binprm *bprm) 1499 { 1500 return security_ops->bprm_set_security (bprm); 1501 } 1502 1503 static inline int security_bprm_check (struct linux_binprm *bprm) 1504 { 1505 return security_ops->bprm_check_security (bprm); 1506 } 1507 1508 static inline int security_bprm_secureexec (struct linux_binprm *bprm) 1509 { 1510 return security_ops->bprm_secureexec (bprm); 1511 } 1512 1513 static inline int security_sb_alloc (struct super_block *sb) 1514 { 1515 return security_ops->sb_alloc_security (sb); 1516 } 1517 1518 static inline void security_sb_free (struct super_block *sb) 1519 { 1520 security_ops->sb_free_security (sb); 1521 } 1522 1523 static inline int security_sb_copy_data (struct file_system_type *type, 1524 void *orig, void *copy) 1525 { 1526 return security_ops->sb_copy_data (type, orig, copy); 1527 } 1528 1529 static inline int security_sb_kern_mount (struct super_block *sb, void *data) 1530 { 1531 return security_ops->sb_kern_mount (sb, data); 1532 } 1533 1534 static inline int security_sb_statfs (struct dentry *dentry) 1535 { 1536 return security_ops->sb_statfs (dentry); 1537 } 1538 1539 static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 1540 char *type, unsigned long flags, 1541 void *data) 1542 { 1543 return security_ops->sb_mount (dev_name, nd, type, flags, data); 1544 } 1545 1546 static inline int security_sb_check_sb (struct vfsmount *mnt, 1547 struct nameidata *nd) 1548 { 1549 return security_ops->sb_check_sb (mnt, nd); 1550 } 1551 1552 static inline int security_sb_umount (struct vfsmount *mnt, int flags) 1553 { 1554 return security_ops->sb_umount (mnt, flags); 1555 } 1556 1557 static inline void security_sb_umount_close (struct vfsmount *mnt) 1558 { 1559 security_ops->sb_umount_close (mnt); 1560 } 1561 1562 static inline void security_sb_umount_busy (struct vfsmount *mnt) 1563 { 1564 security_ops->sb_umount_busy (mnt); 1565 } 1566 1567 static inline void security_sb_post_remount (struct vfsmount *mnt, 1568 unsigned long flags, void *data) 1569 { 1570 security_ops->sb_post_remount (mnt, flags, data); 1571 } 1572 1573 static inline void security_sb_post_mountroot (void) 1574 { 1575 security_ops->sb_post_mountroot (); 1576 } 1577 1578 static inline void security_sb_post_addmount (struct vfsmount *mnt, 1579 struct nameidata *mountpoint_nd) 1580 { 1581 security_ops->sb_post_addmount (mnt, mountpoint_nd); 1582 } 1583 1584 static inline int security_sb_pivotroot (struct nameidata *old_nd, 1585 struct nameidata *new_nd) 1586 { 1587 return security_ops->sb_pivotroot (old_nd, new_nd); 1588 } 1589 1590 static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 1591 struct nameidata *new_nd) 1592 { 1593 security_ops->sb_post_pivotroot (old_nd, new_nd); 1594 } 1595 1596 static inline int security_inode_alloc (struct inode *inode) 1597 { 1598 return security_ops->inode_alloc_security (inode); 1599 } 1600 1601 static inline void security_inode_free (struct inode *inode) 1602 { 1603 security_ops->inode_free_security (inode); 1604 } 1605 1606 static inline int security_inode_init_security (struct inode *inode, 1607 struct inode *dir, 1608 char **name, 1609 void **value, 1610 size_t *len) 1611 { 1612 if (unlikely (IS_PRIVATE (inode))) 1613 return -EOPNOTSUPP; 1614 return security_ops->inode_init_security (inode, dir, name, value, len); 1615 } 1616 1617 static inline int security_inode_create (struct inode *dir, 1618 struct dentry *dentry, 1619 int mode) 1620 { 1621 if (unlikely (IS_PRIVATE (dir))) 1622 return 0; 1623 return security_ops->inode_create (dir, dentry, mode); 1624 } 1625 1626 static inline int security_inode_link (struct dentry *old_dentry, 1627 struct inode *dir, 1628 struct dentry *new_dentry) 1629 { 1630 if (unlikely (IS_PRIVATE (old_dentry->d_inode))) 1631 return 0; 1632 return security_ops->inode_link (old_dentry, dir, new_dentry); 1633 } 1634 1635 static inline int security_inode_unlink (struct inode *dir, 1636 struct dentry *dentry) 1637 { 1638 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1639 return 0; 1640 return security_ops->inode_unlink (dir, dentry); 1641 } 1642 1643 static inline int security_inode_symlink (struct inode *dir, 1644 struct dentry *dentry, 1645 const char *old_name) 1646 { 1647 if (unlikely (IS_PRIVATE (dir))) 1648 return 0; 1649 return security_ops->inode_symlink (dir, dentry, old_name); 1650 } 1651 1652 static inline int security_inode_mkdir (struct inode *dir, 1653 struct dentry *dentry, 1654 int mode) 1655 { 1656 if (unlikely (IS_PRIVATE (dir))) 1657 return 0; 1658 return security_ops->inode_mkdir (dir, dentry, mode); 1659 } 1660 1661 static inline int security_inode_rmdir (struct inode *dir, 1662 struct dentry *dentry) 1663 { 1664 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1665 return 0; 1666 return security_ops->inode_rmdir (dir, dentry); 1667 } 1668 1669 static inline int security_inode_mknod (struct inode *dir, 1670 struct dentry *dentry, 1671 int mode, dev_t dev) 1672 { 1673 if (unlikely (IS_PRIVATE (dir))) 1674 return 0; 1675 return security_ops->inode_mknod (dir, dentry, mode, dev); 1676 } 1677 1678 static inline int security_inode_rename (struct inode *old_dir, 1679 struct dentry *old_dentry, 1680 struct inode *new_dir, 1681 struct dentry *new_dentry) 1682 { 1683 if (unlikely (IS_PRIVATE (old_dentry->d_inode) || 1684 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode)))) 1685 return 0; 1686 return security_ops->inode_rename (old_dir, old_dentry, 1687 new_dir, new_dentry); 1688 } 1689 1690 static inline int security_inode_readlink (struct dentry *dentry) 1691 { 1692 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1693 return 0; 1694 return security_ops->inode_readlink (dentry); 1695 } 1696 1697 static inline int security_inode_follow_link (struct dentry *dentry, 1698 struct nameidata *nd) 1699 { 1700 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1701 return 0; 1702 return security_ops->inode_follow_link (dentry, nd); 1703 } 1704 1705 static inline int security_inode_permission (struct inode *inode, int mask, 1706 struct nameidata *nd) 1707 { 1708 if (unlikely (IS_PRIVATE (inode))) 1709 return 0; 1710 return security_ops->inode_permission (inode, mask, nd); 1711 } 1712 1713 static inline int security_inode_setattr (struct dentry *dentry, 1714 struct iattr *attr) 1715 { 1716 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1717 return 0; 1718 return security_ops->inode_setattr (dentry, attr); 1719 } 1720 1721 static inline int security_inode_getattr (struct vfsmount *mnt, 1722 struct dentry *dentry) 1723 { 1724 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1725 return 0; 1726 return security_ops->inode_getattr (mnt, dentry); 1727 } 1728 1729 static inline void security_inode_delete (struct inode *inode) 1730 { 1731 if (unlikely (IS_PRIVATE (inode))) 1732 return; 1733 security_ops->inode_delete (inode); 1734 } 1735 1736 static inline int security_inode_setxattr (struct dentry *dentry, char *name, 1737 void *value, size_t size, int flags) 1738 { 1739 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1740 return 0; 1741 return security_ops->inode_setxattr (dentry, name, value, size, flags); 1742 } 1743 1744 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 1745 void *value, size_t size, int flags) 1746 { 1747 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1748 return; 1749 security_ops->inode_post_setxattr (dentry, name, value, size, flags); 1750 } 1751 1752 static inline int security_inode_getxattr (struct dentry *dentry, char *name) 1753 { 1754 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1755 return 0; 1756 return security_ops->inode_getxattr (dentry, name); 1757 } 1758 1759 static inline int security_inode_listxattr (struct dentry *dentry) 1760 { 1761 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1762 return 0; 1763 return security_ops->inode_listxattr (dentry); 1764 } 1765 1766 static inline int security_inode_removexattr (struct dentry *dentry, char *name) 1767 { 1768 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1769 return 0; 1770 return security_ops->inode_removexattr (dentry, name); 1771 } 1772 1773 static inline const char *security_inode_xattr_getsuffix(void) 1774 { 1775 return security_ops->inode_xattr_getsuffix(); 1776 } 1777 1778 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 1779 { 1780 if (unlikely (IS_PRIVATE (inode))) 1781 return 0; 1782 return security_ops->inode_getsecurity(inode, name, buffer, size, err); 1783 } 1784 1785 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1786 { 1787 if (unlikely (IS_PRIVATE (inode))) 1788 return 0; 1789 return security_ops->inode_setsecurity(inode, name, value, size, flags); 1790 } 1791 1792 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1793 { 1794 if (unlikely (IS_PRIVATE (inode))) 1795 return 0; 1796 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 1797 } 1798 1799 static inline int security_file_permission (struct file *file, int mask) 1800 { 1801 return security_ops->file_permission (file, mask); 1802 } 1803 1804 static inline int security_file_alloc (struct file *file) 1805 { 1806 return security_ops->file_alloc_security (file); 1807 } 1808 1809 static inline void security_file_free (struct file *file) 1810 { 1811 security_ops->file_free_security (file); 1812 } 1813 1814 static inline int security_file_ioctl (struct file *file, unsigned int cmd, 1815 unsigned long arg) 1816 { 1817 return security_ops->file_ioctl (file, cmd, arg); 1818 } 1819 1820 static inline int security_file_mmap (struct file *file, unsigned long reqprot, 1821 unsigned long prot, 1822 unsigned long flags) 1823 { 1824 return security_ops->file_mmap (file, reqprot, prot, flags); 1825 } 1826 1827 static inline int security_file_mprotect (struct vm_area_struct *vma, 1828 unsigned long reqprot, 1829 unsigned long prot) 1830 { 1831 return security_ops->file_mprotect (vma, reqprot, prot); 1832 } 1833 1834 static inline int security_file_lock (struct file *file, unsigned int cmd) 1835 { 1836 return security_ops->file_lock (file, cmd); 1837 } 1838 1839 static inline int security_file_fcntl (struct file *file, unsigned int cmd, 1840 unsigned long arg) 1841 { 1842 return security_ops->file_fcntl (file, cmd, arg); 1843 } 1844 1845 static inline int security_file_set_fowner (struct file *file) 1846 { 1847 return security_ops->file_set_fowner (file); 1848 } 1849 1850 static inline int security_file_send_sigiotask (struct task_struct *tsk, 1851 struct fown_struct *fown, 1852 int sig) 1853 { 1854 return security_ops->file_send_sigiotask (tsk, fown, sig); 1855 } 1856 1857 static inline int security_file_receive (struct file *file) 1858 { 1859 return security_ops->file_receive (file); 1860 } 1861 1862 static inline int security_task_create (unsigned long clone_flags) 1863 { 1864 return security_ops->task_create (clone_flags); 1865 } 1866 1867 static inline int security_task_alloc (struct task_struct *p) 1868 { 1869 return security_ops->task_alloc_security (p); 1870 } 1871 1872 static inline void security_task_free (struct task_struct *p) 1873 { 1874 security_ops->task_free_security (p); 1875 } 1876 1877 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 1878 int flags) 1879 { 1880 return security_ops->task_setuid (id0, id1, id2, flags); 1881 } 1882 1883 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 1884 uid_t old_suid, int flags) 1885 { 1886 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags); 1887 } 1888 1889 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 1890 int flags) 1891 { 1892 return security_ops->task_setgid (id0, id1, id2, flags); 1893 } 1894 1895 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 1896 { 1897 return security_ops->task_setpgid (p, pgid); 1898 } 1899 1900 static inline int security_task_getpgid (struct task_struct *p) 1901 { 1902 return security_ops->task_getpgid (p); 1903 } 1904 1905 static inline int security_task_getsid (struct task_struct *p) 1906 { 1907 return security_ops->task_getsid (p); 1908 } 1909 1910 static inline void security_task_getsecid (struct task_struct *p, u32 *secid) 1911 { 1912 security_ops->task_getsecid (p, secid); 1913 } 1914 1915 static inline int security_task_setgroups (struct group_info *group_info) 1916 { 1917 return security_ops->task_setgroups (group_info); 1918 } 1919 1920 static inline int security_task_setnice (struct task_struct *p, int nice) 1921 { 1922 return security_ops->task_setnice (p, nice); 1923 } 1924 1925 static inline int security_task_setioprio (struct task_struct *p, int ioprio) 1926 { 1927 return security_ops->task_setioprio (p, ioprio); 1928 } 1929 1930 static inline int security_task_getioprio (struct task_struct *p) 1931 { 1932 return security_ops->task_getioprio (p); 1933 } 1934 1935 static inline int security_task_setrlimit (unsigned int resource, 1936 struct rlimit *new_rlim) 1937 { 1938 return security_ops->task_setrlimit (resource, new_rlim); 1939 } 1940 1941 static inline int security_task_setscheduler (struct task_struct *p, 1942 int policy, 1943 struct sched_param *lp) 1944 { 1945 return security_ops->task_setscheduler (p, policy, lp); 1946 } 1947 1948 static inline int security_task_getscheduler (struct task_struct *p) 1949 { 1950 return security_ops->task_getscheduler (p); 1951 } 1952 1953 static inline int security_task_movememory (struct task_struct *p) 1954 { 1955 return security_ops->task_movememory (p); 1956 } 1957 1958 static inline int security_task_kill (struct task_struct *p, 1959 struct siginfo *info, int sig, 1960 u32 secid) 1961 { 1962 return security_ops->task_kill (p, info, sig, secid); 1963 } 1964 1965 static inline int security_task_wait (struct task_struct *p) 1966 { 1967 return security_ops->task_wait (p); 1968 } 1969 1970 static inline int security_task_prctl (int option, unsigned long arg2, 1971 unsigned long arg3, 1972 unsigned long arg4, 1973 unsigned long arg5) 1974 { 1975 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5); 1976 } 1977 1978 static inline void security_task_reparent_to_init (struct task_struct *p) 1979 { 1980 security_ops->task_reparent_to_init (p); 1981 } 1982 1983 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 1984 { 1985 security_ops->task_to_inode(p, inode); 1986 } 1987 1988 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 1989 short flag) 1990 { 1991 return security_ops->ipc_permission (ipcp, flag); 1992 } 1993 1994 static inline int security_msg_msg_alloc (struct msg_msg * msg) 1995 { 1996 return security_ops->msg_msg_alloc_security (msg); 1997 } 1998 1999 static inline void security_msg_msg_free (struct msg_msg * msg) 2000 { 2001 security_ops->msg_msg_free_security(msg); 2002 } 2003 2004 static inline int security_msg_queue_alloc (struct msg_queue *msq) 2005 { 2006 return security_ops->msg_queue_alloc_security (msq); 2007 } 2008 2009 static inline void security_msg_queue_free (struct msg_queue *msq) 2010 { 2011 security_ops->msg_queue_free_security (msq); 2012 } 2013 2014 static inline int security_msg_queue_associate (struct msg_queue * msq, 2015 int msqflg) 2016 { 2017 return security_ops->msg_queue_associate (msq, msqflg); 2018 } 2019 2020 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 2021 { 2022 return security_ops->msg_queue_msgctl (msq, cmd); 2023 } 2024 2025 static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 2026 struct msg_msg * msg, int msqflg) 2027 { 2028 return security_ops->msg_queue_msgsnd (msq, msg, msqflg); 2029 } 2030 2031 static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 2032 struct msg_msg * msg, 2033 struct task_struct * target, 2034 long type, int mode) 2035 { 2036 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode); 2037 } 2038 2039 static inline int security_shm_alloc (struct shmid_kernel *shp) 2040 { 2041 return security_ops->shm_alloc_security (shp); 2042 } 2043 2044 static inline void security_shm_free (struct shmid_kernel *shp) 2045 { 2046 security_ops->shm_free_security (shp); 2047 } 2048 2049 static inline int security_shm_associate (struct shmid_kernel * shp, 2050 int shmflg) 2051 { 2052 return security_ops->shm_associate(shp, shmflg); 2053 } 2054 2055 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 2056 { 2057 return security_ops->shm_shmctl (shp, cmd); 2058 } 2059 2060 static inline int security_shm_shmat (struct shmid_kernel * shp, 2061 char __user *shmaddr, int shmflg) 2062 { 2063 return security_ops->shm_shmat(shp, shmaddr, shmflg); 2064 } 2065 2066 static inline int security_sem_alloc (struct sem_array *sma) 2067 { 2068 return security_ops->sem_alloc_security (sma); 2069 } 2070 2071 static inline void security_sem_free (struct sem_array *sma) 2072 { 2073 security_ops->sem_free_security (sma); 2074 } 2075 2076 static inline int security_sem_associate (struct sem_array * sma, int semflg) 2077 { 2078 return security_ops->sem_associate (sma, semflg); 2079 } 2080 2081 static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2082 { 2083 return security_ops->sem_semctl(sma, cmd); 2084 } 2085 2086 static inline int security_sem_semop (struct sem_array * sma, 2087 struct sembuf * sops, unsigned nsops, 2088 int alter) 2089 { 2090 return security_ops->sem_semop(sma, sops, nsops, alter); 2091 } 2092 2093 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2094 { 2095 if (unlikely (inode && IS_PRIVATE (inode))) 2096 return; 2097 security_ops->d_instantiate (dentry, inode); 2098 } 2099 2100 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) 2101 { 2102 return security_ops->getprocattr(p, name, value, size); 2103 } 2104 2105 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2106 { 2107 return security_ops->setprocattr(p, name, value, size); 2108 } 2109 2110 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb) 2111 { 2112 return security_ops->netlink_send(sk, skb); 2113 } 2114 2115 static inline int security_netlink_recv(struct sk_buff * skb, int cap) 2116 { 2117 return security_ops->netlink_recv(skb, cap); 2118 } 2119 2120 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2121 { 2122 return security_ops->secid_to_secctx(secid, secdata, seclen); 2123 } 2124 2125 static inline void security_release_secctx(char *secdata, u32 seclen) 2126 { 2127 return security_ops->release_secctx(secdata, seclen); 2128 } 2129 2130 /* prototypes */ 2131 extern int security_init (void); 2132 extern int register_security (struct security_operations *ops); 2133 extern int unregister_security (struct security_operations *ops); 2134 extern int mod_reg_security (const char *name, struct security_operations *ops); 2135 extern int mod_unreg_security (const char *name, struct security_operations *ops); 2136 extern struct dentry *securityfs_create_file(const char *name, mode_t mode, 2137 struct dentry *parent, void *data, 2138 struct file_operations *fops); 2139 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); 2140 extern void securityfs_remove(struct dentry *dentry); 2141 2142 2143 #else /* CONFIG_SECURITY */ 2144 2145 /* 2146 * This is the default capabilities functionality. Most of these functions 2147 * are just stubbed out, but a few must call the proper capable code. 2148 */ 2149 2150 static inline int security_init(void) 2151 { 2152 return 0; 2153 } 2154 2155 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child) 2156 { 2157 return cap_ptrace (parent, child); 2158 } 2159 2160 static inline int security_capget (struct task_struct *target, 2161 kernel_cap_t *effective, 2162 kernel_cap_t *inheritable, 2163 kernel_cap_t *permitted) 2164 { 2165 return cap_capget (target, effective, inheritable, permitted); 2166 } 2167 2168 static inline int security_capset_check (struct task_struct *target, 2169 kernel_cap_t *effective, 2170 kernel_cap_t *inheritable, 2171 kernel_cap_t *permitted) 2172 { 2173 return cap_capset_check (target, effective, inheritable, permitted); 2174 } 2175 2176 static inline void security_capset_set (struct task_struct *target, 2177 kernel_cap_t *effective, 2178 kernel_cap_t *inheritable, 2179 kernel_cap_t *permitted) 2180 { 2181 cap_capset_set (target, effective, inheritable, permitted); 2182 } 2183 2184 static inline int security_capable(struct task_struct *tsk, int cap) 2185 { 2186 return cap_capable(tsk, cap); 2187 } 2188 2189 static inline int security_acct (struct file *file) 2190 { 2191 return 0; 2192 } 2193 2194 static inline int security_sysctl(struct ctl_table *table, int op) 2195 { 2196 return 0; 2197 } 2198 2199 static inline int security_quotactl (int cmds, int type, int id, 2200 struct super_block * sb) 2201 { 2202 return 0; 2203 } 2204 2205 static inline int security_quota_on (struct dentry * dentry) 2206 { 2207 return 0; 2208 } 2209 2210 static inline int security_syslog(int type) 2211 { 2212 return cap_syslog(type); 2213 } 2214 2215 static inline int security_settime(struct timespec *ts, struct timezone *tz) 2216 { 2217 return cap_settime(ts, tz); 2218 } 2219 2220 static inline int security_vm_enough_memory(long pages) 2221 { 2222 return cap_vm_enough_memory(pages); 2223 } 2224 2225 static inline int security_bprm_alloc (struct linux_binprm *bprm) 2226 { 2227 return 0; 2228 } 2229 2230 static inline void security_bprm_free (struct linux_binprm *bprm) 2231 { } 2232 2233 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 2234 { 2235 cap_bprm_apply_creds (bprm, unsafe); 2236 } 2237 2238 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 2239 { 2240 return; 2241 } 2242 2243 static inline int security_bprm_set (struct linux_binprm *bprm) 2244 { 2245 return cap_bprm_set_security (bprm); 2246 } 2247 2248 static inline int security_bprm_check (struct linux_binprm *bprm) 2249 { 2250 return 0; 2251 } 2252 2253 static inline int security_bprm_secureexec (struct linux_binprm *bprm) 2254 { 2255 return cap_bprm_secureexec(bprm); 2256 } 2257 2258 static inline int security_sb_alloc (struct super_block *sb) 2259 { 2260 return 0; 2261 } 2262 2263 static inline void security_sb_free (struct super_block *sb) 2264 { } 2265 2266 static inline int security_sb_copy_data (struct file_system_type *type, 2267 void *orig, void *copy) 2268 { 2269 return 0; 2270 } 2271 2272 static inline int security_sb_kern_mount (struct super_block *sb, void *data) 2273 { 2274 return 0; 2275 } 2276 2277 static inline int security_sb_statfs (struct dentry *dentry) 2278 { 2279 return 0; 2280 } 2281 2282 static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 2283 char *type, unsigned long flags, 2284 void *data) 2285 { 2286 return 0; 2287 } 2288 2289 static inline int security_sb_check_sb (struct vfsmount *mnt, 2290 struct nameidata *nd) 2291 { 2292 return 0; 2293 } 2294 2295 static inline int security_sb_umount (struct vfsmount *mnt, int flags) 2296 { 2297 return 0; 2298 } 2299 2300 static inline void security_sb_umount_close (struct vfsmount *mnt) 2301 { } 2302 2303 static inline void security_sb_umount_busy (struct vfsmount *mnt) 2304 { } 2305 2306 static inline void security_sb_post_remount (struct vfsmount *mnt, 2307 unsigned long flags, void *data) 2308 { } 2309 2310 static inline void security_sb_post_mountroot (void) 2311 { } 2312 2313 static inline void security_sb_post_addmount (struct vfsmount *mnt, 2314 struct nameidata *mountpoint_nd) 2315 { } 2316 2317 static inline int security_sb_pivotroot (struct nameidata *old_nd, 2318 struct nameidata *new_nd) 2319 { 2320 return 0; 2321 } 2322 2323 static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 2324 struct nameidata *new_nd) 2325 { } 2326 2327 static inline int security_inode_alloc (struct inode *inode) 2328 { 2329 return 0; 2330 } 2331 2332 static inline void security_inode_free (struct inode *inode) 2333 { } 2334 2335 static inline int security_inode_init_security (struct inode *inode, 2336 struct inode *dir, 2337 char **name, 2338 void **value, 2339 size_t *len) 2340 { 2341 return -EOPNOTSUPP; 2342 } 2343 2344 static inline int security_inode_create (struct inode *dir, 2345 struct dentry *dentry, 2346 int mode) 2347 { 2348 return 0; 2349 } 2350 2351 static inline int security_inode_link (struct dentry *old_dentry, 2352 struct inode *dir, 2353 struct dentry *new_dentry) 2354 { 2355 return 0; 2356 } 2357 2358 static inline int security_inode_unlink (struct inode *dir, 2359 struct dentry *dentry) 2360 { 2361 return 0; 2362 } 2363 2364 static inline int security_inode_symlink (struct inode *dir, 2365 struct dentry *dentry, 2366 const char *old_name) 2367 { 2368 return 0; 2369 } 2370 2371 static inline int security_inode_mkdir (struct inode *dir, 2372 struct dentry *dentry, 2373 int mode) 2374 { 2375 return 0; 2376 } 2377 2378 static inline int security_inode_rmdir (struct inode *dir, 2379 struct dentry *dentry) 2380 { 2381 return 0; 2382 } 2383 2384 static inline int security_inode_mknod (struct inode *dir, 2385 struct dentry *dentry, 2386 int mode, dev_t dev) 2387 { 2388 return 0; 2389 } 2390 2391 static inline int security_inode_rename (struct inode *old_dir, 2392 struct dentry *old_dentry, 2393 struct inode *new_dir, 2394 struct dentry *new_dentry) 2395 { 2396 return 0; 2397 } 2398 2399 static inline int security_inode_readlink (struct dentry *dentry) 2400 { 2401 return 0; 2402 } 2403 2404 static inline int security_inode_follow_link (struct dentry *dentry, 2405 struct nameidata *nd) 2406 { 2407 return 0; 2408 } 2409 2410 static inline int security_inode_permission (struct inode *inode, int mask, 2411 struct nameidata *nd) 2412 { 2413 return 0; 2414 } 2415 2416 static inline int security_inode_setattr (struct dentry *dentry, 2417 struct iattr *attr) 2418 { 2419 return 0; 2420 } 2421 2422 static inline int security_inode_getattr (struct vfsmount *mnt, 2423 struct dentry *dentry) 2424 { 2425 return 0; 2426 } 2427 2428 static inline void security_inode_delete (struct inode *inode) 2429 { } 2430 2431 static inline int security_inode_setxattr (struct dentry *dentry, char *name, 2432 void *value, size_t size, int flags) 2433 { 2434 return cap_inode_setxattr(dentry, name, value, size, flags); 2435 } 2436 2437 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 2438 void *value, size_t size, int flags) 2439 { } 2440 2441 static inline int security_inode_getxattr (struct dentry *dentry, char *name) 2442 { 2443 return 0; 2444 } 2445 2446 static inline int security_inode_listxattr (struct dentry *dentry) 2447 { 2448 return 0; 2449 } 2450 2451 static inline int security_inode_removexattr (struct dentry *dentry, char *name) 2452 { 2453 return cap_inode_removexattr(dentry, name); 2454 } 2455 2456 static inline const char *security_inode_xattr_getsuffix (void) 2457 { 2458 return NULL ; 2459 } 2460 2461 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 2462 { 2463 return -EOPNOTSUPP; 2464 } 2465 2466 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 2467 { 2468 return -EOPNOTSUPP; 2469 } 2470 2471 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2472 { 2473 return 0; 2474 } 2475 2476 static inline int security_file_permission (struct file *file, int mask) 2477 { 2478 return 0; 2479 } 2480 2481 static inline int security_file_alloc (struct file *file) 2482 { 2483 return 0; 2484 } 2485 2486 static inline void security_file_free (struct file *file) 2487 { } 2488 2489 static inline int security_file_ioctl (struct file *file, unsigned int cmd, 2490 unsigned long arg) 2491 { 2492 return 0; 2493 } 2494 2495 static inline int security_file_mmap (struct file *file, unsigned long reqprot, 2496 unsigned long prot, 2497 unsigned long flags) 2498 { 2499 return 0; 2500 } 2501 2502 static inline int security_file_mprotect (struct vm_area_struct *vma, 2503 unsigned long reqprot, 2504 unsigned long prot) 2505 { 2506 return 0; 2507 } 2508 2509 static inline int security_file_lock (struct file *file, unsigned int cmd) 2510 { 2511 return 0; 2512 } 2513 2514 static inline int security_file_fcntl (struct file *file, unsigned int cmd, 2515 unsigned long arg) 2516 { 2517 return 0; 2518 } 2519 2520 static inline int security_file_set_fowner (struct file *file) 2521 { 2522 return 0; 2523 } 2524 2525 static inline int security_file_send_sigiotask (struct task_struct *tsk, 2526 struct fown_struct *fown, 2527 int sig) 2528 { 2529 return 0; 2530 } 2531 2532 static inline int security_file_receive (struct file *file) 2533 { 2534 return 0; 2535 } 2536 2537 static inline int security_task_create (unsigned long clone_flags) 2538 { 2539 return 0; 2540 } 2541 2542 static inline int security_task_alloc (struct task_struct *p) 2543 { 2544 return 0; 2545 } 2546 2547 static inline void security_task_free (struct task_struct *p) 2548 { } 2549 2550 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 2551 int flags) 2552 { 2553 return 0; 2554 } 2555 2556 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 2557 uid_t old_suid, int flags) 2558 { 2559 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags); 2560 } 2561 2562 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 2563 int flags) 2564 { 2565 return 0; 2566 } 2567 2568 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 2569 { 2570 return 0; 2571 } 2572 2573 static inline int security_task_getpgid (struct task_struct *p) 2574 { 2575 return 0; 2576 } 2577 2578 static inline int security_task_getsid (struct task_struct *p) 2579 { 2580 return 0; 2581 } 2582 2583 static inline void security_task_getsecid (struct task_struct *p, u32 *secid) 2584 { } 2585 2586 static inline int security_task_setgroups (struct group_info *group_info) 2587 { 2588 return 0; 2589 } 2590 2591 static inline int security_task_setnice (struct task_struct *p, int nice) 2592 { 2593 return 0; 2594 } 2595 2596 static inline int security_task_setioprio (struct task_struct *p, int ioprio) 2597 { 2598 return 0; 2599 } 2600 2601 static inline int security_task_getioprio (struct task_struct *p) 2602 { 2603 return 0; 2604 } 2605 2606 static inline int security_task_setrlimit (unsigned int resource, 2607 struct rlimit *new_rlim) 2608 { 2609 return 0; 2610 } 2611 2612 static inline int security_task_setscheduler (struct task_struct *p, 2613 int policy, 2614 struct sched_param *lp) 2615 { 2616 return 0; 2617 } 2618 2619 static inline int security_task_getscheduler (struct task_struct *p) 2620 { 2621 return 0; 2622 } 2623 2624 static inline int security_task_movememory (struct task_struct *p) 2625 { 2626 return 0; 2627 } 2628 2629 static inline int security_task_kill (struct task_struct *p, 2630 struct siginfo *info, int sig, 2631 u32 secid) 2632 { 2633 return 0; 2634 } 2635 2636 static inline int security_task_wait (struct task_struct *p) 2637 { 2638 return 0; 2639 } 2640 2641 static inline int security_task_prctl (int option, unsigned long arg2, 2642 unsigned long arg3, 2643 unsigned long arg4, 2644 unsigned long arg5) 2645 { 2646 return 0; 2647 } 2648 2649 static inline void security_task_reparent_to_init (struct task_struct *p) 2650 { 2651 cap_task_reparent_to_init (p); 2652 } 2653 2654 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 2655 { } 2656 2657 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 2658 short flag) 2659 { 2660 return 0; 2661 } 2662 2663 static inline int security_msg_msg_alloc (struct msg_msg * msg) 2664 { 2665 return 0; 2666 } 2667 2668 static inline void security_msg_msg_free (struct msg_msg * msg) 2669 { } 2670 2671 static inline int security_msg_queue_alloc (struct msg_queue *msq) 2672 { 2673 return 0; 2674 } 2675 2676 static inline void security_msg_queue_free (struct msg_queue *msq) 2677 { } 2678 2679 static inline int security_msg_queue_associate (struct msg_queue * msq, 2680 int msqflg) 2681 { 2682 return 0; 2683 } 2684 2685 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 2686 { 2687 return 0; 2688 } 2689 2690 static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 2691 struct msg_msg * msg, int msqflg) 2692 { 2693 return 0; 2694 } 2695 2696 static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 2697 struct msg_msg * msg, 2698 struct task_struct * target, 2699 long type, int mode) 2700 { 2701 return 0; 2702 } 2703 2704 static inline int security_shm_alloc (struct shmid_kernel *shp) 2705 { 2706 return 0; 2707 } 2708 2709 static inline void security_shm_free (struct shmid_kernel *shp) 2710 { } 2711 2712 static inline int security_shm_associate (struct shmid_kernel * shp, 2713 int shmflg) 2714 { 2715 return 0; 2716 } 2717 2718 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 2719 { 2720 return 0; 2721 } 2722 2723 static inline int security_shm_shmat (struct shmid_kernel * shp, 2724 char __user *shmaddr, int shmflg) 2725 { 2726 return 0; 2727 } 2728 2729 static inline int security_sem_alloc (struct sem_array *sma) 2730 { 2731 return 0; 2732 } 2733 2734 static inline void security_sem_free (struct sem_array *sma) 2735 { } 2736 2737 static inline int security_sem_associate (struct sem_array * sma, int semflg) 2738 { 2739 return 0; 2740 } 2741 2742 static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2743 { 2744 return 0; 2745 } 2746 2747 static inline int security_sem_semop (struct sem_array * sma, 2748 struct sembuf * sops, unsigned nsops, 2749 int alter) 2750 { 2751 return 0; 2752 } 2753 2754 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2755 { } 2756 2757 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) 2758 { 2759 return -EINVAL; 2760 } 2761 2762 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2763 { 2764 return -EINVAL; 2765 } 2766 2767 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb) 2768 { 2769 return cap_netlink_send (sk, skb); 2770 } 2771 2772 static inline int security_netlink_recv (struct sk_buff *skb, int cap) 2773 { 2774 return cap_netlink_recv (skb, cap); 2775 } 2776 2777 static inline struct dentry *securityfs_create_dir(const char *name, 2778 struct dentry *parent) 2779 { 2780 return ERR_PTR(-ENODEV); 2781 } 2782 2783 static inline struct dentry *securityfs_create_file(const char *name, 2784 mode_t mode, 2785 struct dentry *parent, 2786 void *data, 2787 struct file_operations *fops) 2788 { 2789 return ERR_PTR(-ENODEV); 2790 } 2791 2792 static inline void securityfs_remove(struct dentry *dentry) 2793 { 2794 } 2795 2796 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2797 { 2798 return -EOPNOTSUPP; 2799 } 2800 2801 static inline void security_release_secctx(char *secdata, u32 seclen) 2802 { 2803 } 2804 #endif /* CONFIG_SECURITY */ 2805 2806 #ifdef CONFIG_SECURITY_NETWORK 2807 static inline int security_unix_stream_connect(struct socket * sock, 2808 struct socket * other, 2809 struct sock * newsk) 2810 { 2811 return security_ops->unix_stream_connect(sock, other, newsk); 2812 } 2813 2814 2815 static inline int security_unix_may_send(struct socket * sock, 2816 struct socket * other) 2817 { 2818 return security_ops->unix_may_send(sock, other); 2819 } 2820 2821 static inline int security_socket_create (int family, int type, 2822 int protocol, int kern) 2823 { 2824 return security_ops->socket_create(family, type, protocol, kern); 2825 } 2826 2827 static inline void security_socket_post_create(struct socket * sock, 2828 int family, 2829 int type, 2830 int protocol, int kern) 2831 { 2832 security_ops->socket_post_create(sock, family, type, 2833 protocol, kern); 2834 } 2835 2836 static inline int security_socket_bind(struct socket * sock, 2837 struct sockaddr * address, 2838 int addrlen) 2839 { 2840 return security_ops->socket_bind(sock, address, addrlen); 2841 } 2842 2843 static inline int security_socket_connect(struct socket * sock, 2844 struct sockaddr * address, 2845 int addrlen) 2846 { 2847 return security_ops->socket_connect(sock, address, addrlen); 2848 } 2849 2850 static inline int security_socket_listen(struct socket * sock, int backlog) 2851 { 2852 return security_ops->socket_listen(sock, backlog); 2853 } 2854 2855 static inline int security_socket_accept(struct socket * sock, 2856 struct socket * newsock) 2857 { 2858 return security_ops->socket_accept(sock, newsock); 2859 } 2860 2861 static inline void security_socket_post_accept(struct socket * sock, 2862 struct socket * newsock) 2863 { 2864 security_ops->socket_post_accept(sock, newsock); 2865 } 2866 2867 static inline int security_socket_sendmsg(struct socket * sock, 2868 struct msghdr * msg, int size) 2869 { 2870 return security_ops->socket_sendmsg(sock, msg, size); 2871 } 2872 2873 static inline int security_socket_recvmsg(struct socket * sock, 2874 struct msghdr * msg, int size, 2875 int flags) 2876 { 2877 return security_ops->socket_recvmsg(sock, msg, size, flags); 2878 } 2879 2880 static inline int security_socket_getsockname(struct socket * sock) 2881 { 2882 return security_ops->socket_getsockname(sock); 2883 } 2884 2885 static inline int security_socket_getpeername(struct socket * sock) 2886 { 2887 return security_ops->socket_getpeername(sock); 2888 } 2889 2890 static inline int security_socket_getsockopt(struct socket * sock, 2891 int level, int optname) 2892 { 2893 return security_ops->socket_getsockopt(sock, level, optname); 2894 } 2895 2896 static inline int security_socket_setsockopt(struct socket * sock, 2897 int level, int optname) 2898 { 2899 return security_ops->socket_setsockopt(sock, level, optname); 2900 } 2901 2902 static inline int security_socket_shutdown(struct socket * sock, int how) 2903 { 2904 return security_ops->socket_shutdown(sock, how); 2905 } 2906 2907 static inline int security_sock_rcv_skb (struct sock * sk, 2908 struct sk_buff * skb) 2909 { 2910 return security_ops->socket_sock_rcv_skb (sk, skb); 2911 } 2912 2913 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2914 int __user *optlen, unsigned len) 2915 { 2916 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 2917 } 2918 2919 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2920 { 2921 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 2922 } 2923 2924 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2925 { 2926 return security_ops->sk_alloc_security(sk, family, priority); 2927 } 2928 2929 static inline void security_sk_free(struct sock *sk) 2930 { 2931 return security_ops->sk_free_security(sk); 2932 } 2933 2934 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) 2935 { 2936 return security_ops->sk_clone_security(sk, newsk); 2937 } 2938 2939 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2940 { 2941 security_ops->sk_getsecid(sk, &fl->secid); 2942 } 2943 2944 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2945 { 2946 security_ops->req_classify_flow(req, fl); 2947 } 2948 2949 static inline void security_sock_graft(struct sock* sk, struct socket *parent) 2950 { 2951 security_ops->sock_graft(sk, parent); 2952 } 2953 2954 static inline int security_inet_conn_request(struct sock *sk, 2955 struct sk_buff *skb, struct request_sock *req) 2956 { 2957 return security_ops->inet_conn_request(sk, skb, req); 2958 } 2959 2960 static inline void security_inet_csk_clone(struct sock *newsk, 2961 const struct request_sock *req) 2962 { 2963 security_ops->inet_csk_clone(newsk, req); 2964 } 2965 #else /* CONFIG_SECURITY_NETWORK */ 2966 static inline int security_unix_stream_connect(struct socket * sock, 2967 struct socket * other, 2968 struct sock * newsk) 2969 { 2970 return 0; 2971 } 2972 2973 static inline int security_unix_may_send(struct socket * sock, 2974 struct socket * other) 2975 { 2976 return 0; 2977 } 2978 2979 static inline int security_socket_create (int family, int type, 2980 int protocol, int kern) 2981 { 2982 return 0; 2983 } 2984 2985 static inline void security_socket_post_create(struct socket * sock, 2986 int family, 2987 int type, 2988 int protocol, int kern) 2989 { 2990 } 2991 2992 static inline int security_socket_bind(struct socket * sock, 2993 struct sockaddr * address, 2994 int addrlen) 2995 { 2996 return 0; 2997 } 2998 2999 static inline int security_socket_connect(struct socket * sock, 3000 struct sockaddr * address, 3001 int addrlen) 3002 { 3003 return 0; 3004 } 3005 3006 static inline int security_socket_listen(struct socket * sock, int backlog) 3007 { 3008 return 0; 3009 } 3010 3011 static inline int security_socket_accept(struct socket * sock, 3012 struct socket * newsock) 3013 { 3014 return 0; 3015 } 3016 3017 static inline void security_socket_post_accept(struct socket * sock, 3018 struct socket * newsock) 3019 { 3020 } 3021 3022 static inline int security_socket_sendmsg(struct socket * sock, 3023 struct msghdr * msg, int size) 3024 { 3025 return 0; 3026 } 3027 3028 static inline int security_socket_recvmsg(struct socket * sock, 3029 struct msghdr * msg, int size, 3030 int flags) 3031 { 3032 return 0; 3033 } 3034 3035 static inline int security_socket_getsockname(struct socket * sock) 3036 { 3037 return 0; 3038 } 3039 3040 static inline int security_socket_getpeername(struct socket * sock) 3041 { 3042 return 0; 3043 } 3044 3045 static inline int security_socket_getsockopt(struct socket * sock, 3046 int level, int optname) 3047 { 3048 return 0; 3049 } 3050 3051 static inline int security_socket_setsockopt(struct socket * sock, 3052 int level, int optname) 3053 { 3054 return 0; 3055 } 3056 3057 static inline int security_socket_shutdown(struct socket * sock, int how) 3058 { 3059 return 0; 3060 } 3061 static inline int security_sock_rcv_skb (struct sock * sk, 3062 struct sk_buff * skb) 3063 { 3064 return 0; 3065 } 3066 3067 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 3068 int __user *optlen, unsigned len) 3069 { 3070 return -ENOPROTOOPT; 3071 } 3072 3073 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 3074 { 3075 return -ENOPROTOOPT; 3076 } 3077 3078 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 3079 { 3080 return 0; 3081 } 3082 3083 static inline void security_sk_free(struct sock *sk) 3084 { 3085 } 3086 3087 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) 3088 { 3089 } 3090 3091 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 3092 { 3093 } 3094 3095 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 3096 { 3097 } 3098 3099 static inline void security_sock_graft(struct sock* sk, struct socket *parent) 3100 { 3101 } 3102 3103 static inline int security_inet_conn_request(struct sock *sk, 3104 struct sk_buff *skb, struct request_sock *req) 3105 { 3106 return 0; 3107 } 3108 3109 static inline void security_inet_csk_clone(struct sock *newsk, 3110 const struct request_sock *req) 3111 { 3112 } 3113 #endif /* CONFIG_SECURITY_NETWORK */ 3114 3115 #ifdef CONFIG_SECURITY_NETWORK_XFRM 3116 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 3117 { 3118 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx, NULL); 3119 } 3120 3121 static inline int security_xfrm_sock_policy_alloc(struct xfrm_policy *xp, struct sock *sk) 3122 { 3123 return security_ops->xfrm_policy_alloc_security(xp, NULL, sk); 3124 } 3125 3126 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 3127 { 3128 return security_ops->xfrm_policy_clone_security(old, new); 3129 } 3130 3131 static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 3132 { 3133 security_ops->xfrm_policy_free_security(xp); 3134 } 3135 3136 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) 3137 { 3138 return security_ops->xfrm_policy_delete_security(xp); 3139 } 3140 3141 static inline int security_xfrm_state_alloc(struct xfrm_state *x, 3142 struct xfrm_user_sec_ctx *sec_ctx) 3143 { 3144 return security_ops->xfrm_state_alloc_security(x, sec_ctx, NULL, 0); 3145 } 3146 3147 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 3148 struct xfrm_sec_ctx *polsec, u32 secid) 3149 { 3150 if (!polsec) 3151 return 0; 3152 return security_ops->xfrm_state_alloc_security(x, NULL, polsec, secid); 3153 } 3154 3155 static inline int security_xfrm_state_delete(struct xfrm_state *x) 3156 { 3157 return security_ops->xfrm_state_delete_security(x); 3158 } 3159 3160 static inline void security_xfrm_state_free(struct xfrm_state *x) 3161 { 3162 security_ops->xfrm_state_free_security(x); 3163 } 3164 3165 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) 3166 { 3167 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir); 3168 } 3169 3170 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 3171 struct xfrm_policy *xp, struct flowi *fl) 3172 { 3173 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 3174 } 3175 3176 static inline int security_xfrm_flow_state_match(struct flowi *fl, struct xfrm_state *xfrm) 3177 { 3178 return security_ops->xfrm_flow_state_match(fl, xfrm); 3179 } 3180 3181 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 3182 { 3183 return security_ops->xfrm_decode_session(skb, secid, 1); 3184 } 3185 3186 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 3187 { 3188 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 3189 3190 BUG_ON(rc); 3191 } 3192 #else /* CONFIG_SECURITY_NETWORK_XFRM */ 3193 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 3194 { 3195 return 0; 3196 } 3197 3198 static inline int security_xfrm_sock_policy_alloc(struct xfrm_policy *xp, struct sock *sk) 3199 { 3200 return 0; 3201 } 3202 3203 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 3204 { 3205 return 0; 3206 } 3207 3208 static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 3209 { 3210 } 3211 3212 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) 3213 { 3214 return 0; 3215 } 3216 3217 static inline int security_xfrm_state_alloc(struct xfrm_state *x, 3218 struct xfrm_user_sec_ctx *sec_ctx) 3219 { 3220 return 0; 3221 } 3222 3223 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 3224 struct xfrm_sec_ctx *polsec, u32 secid) 3225 { 3226 return 0; 3227 } 3228 3229 static inline void security_xfrm_state_free(struct xfrm_state *x) 3230 { 3231 } 3232 3233 static inline int security_xfrm_state_delete(struct xfrm_state *x) 3234 { 3235 return 0; 3236 } 3237 3238 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) 3239 { 3240 return 0; 3241 } 3242 3243 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 3244 struct xfrm_policy *xp, struct flowi *fl) 3245 { 3246 return 1; 3247 } 3248 3249 static inline int security_xfrm_flow_state_match(struct flowi *fl, 3250 struct xfrm_state *xfrm) 3251 { 3252 return 1; 3253 } 3254 3255 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 3256 { 3257 return 0; 3258 } 3259 3260 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 3261 { 3262 } 3263 3264 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 3265 3266 #ifdef CONFIG_KEYS 3267 #ifdef CONFIG_SECURITY 3268 static inline int security_key_alloc(struct key *key, 3269 struct task_struct *tsk, 3270 unsigned long flags) 3271 { 3272 return security_ops->key_alloc(key, tsk, flags); 3273 } 3274 3275 static inline void security_key_free(struct key *key) 3276 { 3277 security_ops->key_free(key); 3278 } 3279 3280 static inline int security_key_permission(key_ref_t key_ref, 3281 struct task_struct *context, 3282 key_perm_t perm) 3283 { 3284 return security_ops->key_permission(key_ref, context, perm); 3285 } 3286 3287 #else 3288 3289 static inline int security_key_alloc(struct key *key, 3290 struct task_struct *tsk, 3291 unsigned long flags) 3292 { 3293 return 0; 3294 } 3295 3296 static inline void security_key_free(struct key *key) 3297 { 3298 } 3299 3300 static inline int security_key_permission(key_ref_t key_ref, 3301 struct task_struct *context, 3302 key_perm_t perm) 3303 { 3304 return 0; 3305 } 3306 3307 #endif 3308 #endif /* CONFIG_KEYS */ 3309 3310 #endif /* ! __LINUX_SECURITY_H */ 3311 3312