1 /* 2 * Linux Security plug 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <[email protected]> 5 * Copyright (C) 2001 Greg Kroah-Hartman <[email protected]> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]> 7 * Copyright (C) 2001 James Morris <[email protected]> 8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * Due to this file being licensed under the GPL there is controversy over 16 * whether this permits you to write a module that #includes this file 17 * without placing your module under the GPL. Please consult a lawyer for 18 * advice before doing this. 19 * 20 */ 21 22 #ifndef __LINUX_SECURITY_H 23 #define __LINUX_SECURITY_H 24 25 #include <linux/fs.h> 26 #include <linux/binfmts.h> 27 #include <linux/signal.h> 28 #include <linux/resource.h> 29 #include <linux/sem.h> 30 #include <linux/shm.h> 31 #include <linux/msg.h> 32 #include <linux/sched.h> 33 #include <linux/key.h> 34 #include <linux/xfrm.h> 35 #include <net/flow.h> 36 37 /* Maximum number of letters for an LSM name string */ 38 #define SECURITY_NAME_MAX 10 39 40 struct ctl_table; 41 struct audit_krule; 42 43 /* 44 * These functions are in security/capability.c and are used 45 * as the default capabilities functions 46 */ 47 extern int cap_capable(struct task_struct *tsk, int cap); 48 extern int cap_settime(struct timespec *ts, struct timezone *tz); 49 extern int cap_ptrace(struct task_struct *parent, struct task_struct *child); 50 extern int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 51 extern int cap_capset_check(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 52 extern void cap_capset_set(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 53 extern int cap_bprm_set_security(struct linux_binprm *bprm); 54 extern void cap_bprm_apply_creds(struct linux_binprm *bprm, int unsafe); 55 extern int cap_bprm_secureexec(struct linux_binprm *bprm); 56 extern int cap_inode_setxattr(struct dentry *dentry, const char *name, 57 const void *value, size_t size, int flags); 58 extern int cap_inode_removexattr(struct dentry *dentry, const char *name); 59 extern int cap_inode_need_killpriv(struct dentry *dentry); 60 extern int cap_inode_killpriv(struct dentry *dentry); 61 extern int cap_task_post_setuid(uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags); 62 extern void cap_task_reparent_to_init(struct task_struct *p); 63 extern int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, 64 unsigned long arg4, unsigned long arg5, long *rc_p); 65 extern int cap_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp); 66 extern int cap_task_setioprio(struct task_struct *p, int ioprio); 67 extern int cap_task_setnice(struct task_struct *p, int nice); 68 extern int cap_syslog(int type); 69 extern int cap_vm_enough_memory(struct mm_struct *mm, long pages); 70 71 struct msghdr; 72 struct sk_buff; 73 struct sock; 74 struct sockaddr; 75 struct socket; 76 struct flowi; 77 struct dst_entry; 78 struct xfrm_selector; 79 struct xfrm_policy; 80 struct xfrm_state; 81 struct xfrm_user_sec_ctx; 82 83 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); 84 extern int cap_netlink_recv(struct sk_buff *skb, int cap); 85 86 extern unsigned long mmap_min_addr; 87 /* 88 * Values used in the task_security_ops calls 89 */ 90 /* setuid or setgid, id0 == uid or gid */ 91 #define LSM_SETID_ID 1 92 93 /* setreuid or setregid, id0 == real, id1 == eff */ 94 #define LSM_SETID_RE 2 95 96 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ 97 #define LSM_SETID_RES 4 98 99 /* setfsuid or setfsgid, id0 == fsuid or fsgid */ 100 #define LSM_SETID_FS 8 101 102 /* forward declares to avoid warnings */ 103 struct nfsctl_arg; 104 struct sched_param; 105 struct swap_info_struct; 106 struct request_sock; 107 108 /* bprm_apply_creds unsafe reasons */ 109 #define LSM_UNSAFE_SHARE 1 110 #define LSM_UNSAFE_PTRACE 2 111 #define LSM_UNSAFE_PTRACE_CAP 4 112 113 #ifdef CONFIG_SECURITY 114 115 struct security_mnt_opts { 116 char **mnt_opts; 117 int *mnt_opts_flags; 118 int num_mnt_opts; 119 }; 120 121 static inline void security_init_mnt_opts(struct security_mnt_opts *opts) 122 { 123 opts->mnt_opts = NULL; 124 opts->mnt_opts_flags = NULL; 125 opts->num_mnt_opts = 0; 126 } 127 128 static inline void security_free_mnt_opts(struct security_mnt_opts *opts) 129 { 130 int i; 131 if (opts->mnt_opts) 132 for (i = 0; i < opts->num_mnt_opts; i++) 133 kfree(opts->mnt_opts[i]); 134 kfree(opts->mnt_opts); 135 opts->mnt_opts = NULL; 136 kfree(opts->mnt_opts_flags); 137 opts->mnt_opts_flags = NULL; 138 opts->num_mnt_opts = 0; 139 } 140 141 /** 142 * struct security_operations - main security structure 143 * 144 * Security module identifier. 145 * 146 * @name: 147 * A string that acts as a unique identifeir for the LSM with max number 148 * of characters = SECURITY_NAME_MAX. 149 * 150 * Security hooks for program execution operations. 151 * 152 * @bprm_alloc_security: 153 * Allocate and attach a security structure to the @bprm->security field. 154 * The security field is initialized to NULL when the bprm structure is 155 * allocated. 156 * @bprm contains the linux_binprm structure to be modified. 157 * Return 0 if operation was successful. 158 * @bprm_free_security: 159 * @bprm contains the linux_binprm structure to be modified. 160 * Deallocate and clear the @bprm->security field. 161 * @bprm_apply_creds: 162 * Compute and set the security attributes of a process being transformed 163 * by an execve operation based on the old attributes (current->security) 164 * and the information saved in @bprm->security by the set_security hook. 165 * Since this hook function (and its caller) are void, this hook can not 166 * return an error. However, it can leave the security attributes of the 167 * process unchanged if an access failure occurs at this point. 168 * bprm_apply_creds is called under task_lock. @unsafe indicates various 169 * reasons why it may be unsafe to change security state. 170 * @bprm contains the linux_binprm structure. 171 * @bprm_post_apply_creds: 172 * Runs after bprm_apply_creds with the task_lock dropped, so that 173 * functions which cannot be called safely under the task_lock can 174 * be used. This hook is a good place to perform state changes on 175 * the process such as closing open file descriptors to which access 176 * is no longer granted if the attributes were changed. 177 * Note that a security module might need to save state between 178 * bprm_apply_creds and bprm_post_apply_creds to store the decision 179 * on whether the process may proceed. 180 * @bprm contains the linux_binprm structure. 181 * @bprm_set_security: 182 * Save security information in the bprm->security field, typically based 183 * on information about the bprm->file, for later use by the apply_creds 184 * hook. This hook may also optionally check permissions (e.g. for 185 * transitions between security domains). 186 * This hook may be called multiple times during a single execve, e.g. for 187 * interpreters. The hook can tell whether it has already been called by 188 * checking to see if @bprm->security is non-NULL. If so, then the hook 189 * may decide either to retain the security information saved earlier or 190 * to replace it. 191 * @bprm contains the linux_binprm structure. 192 * Return 0 if the hook is successful and permission is granted. 193 * @bprm_check_security: 194 * This hook mediates the point when a search for a binary handler will 195 * begin. It allows a check the @bprm->security value which is set in 196 * the preceding set_security call. The primary difference from 197 * set_security is that the argv list and envp list are reliably 198 * available in @bprm. This hook may be called multiple times 199 * during a single execve; and in each pass set_security is called 200 * first. 201 * @bprm contains the linux_binprm structure. 202 * Return 0 if the hook is successful and permission is granted. 203 * @bprm_secureexec: 204 * Return a boolean value (0 or 1) indicating whether a "secure exec" 205 * is required. The flag is passed in the auxiliary table 206 * on the initial stack to the ELF interpreter to indicate whether libc 207 * should enable secure mode. 208 * @bprm contains the linux_binprm structure. 209 * 210 * Security hooks for filesystem operations. 211 * 212 * @sb_alloc_security: 213 * Allocate and attach a security structure to the sb->s_security field. 214 * The s_security field is initialized to NULL when the structure is 215 * allocated. 216 * @sb contains the super_block structure to be modified. 217 * Return 0 if operation was successful. 218 * @sb_free_security: 219 * Deallocate and clear the sb->s_security field. 220 * @sb contains the super_block structure to be modified. 221 * @sb_statfs: 222 * Check permission before obtaining filesystem statistics for the @mnt 223 * mountpoint. 224 * @dentry is a handle on the superblock for the filesystem. 225 * Return 0 if permission is granted. 226 * @sb_mount: 227 * Check permission before an object specified by @dev_name is mounted on 228 * the mount point named by @nd. For an ordinary mount, @dev_name 229 * identifies a device if the file system type requires a device. For a 230 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a 231 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the 232 * pathname of the object being mounted. 233 * @dev_name contains the name for object being mounted. 234 * @path contains the path for mount point object. 235 * @type contains the filesystem type. 236 * @flags contains the mount flags. 237 * @data contains the filesystem-specific data. 238 * Return 0 if permission is granted. 239 * @sb_copy_data: 240 * Allow mount option data to be copied prior to parsing by the filesystem, 241 * so that the security module can extract security-specific mount 242 * options cleanly (a filesystem may modify the data e.g. with strsep()). 243 * This also allows the original mount data to be stripped of security- 244 * specific options to avoid having to make filesystems aware of them. 245 * @type the type of filesystem being mounted. 246 * @orig the original mount data copied from userspace. 247 * @copy copied data which will be passed to the security module. 248 * Returns 0 if the copy was successful. 249 * @sb_check_sb: 250 * Check permission before the device with superblock @mnt->sb is mounted 251 * on the mount point named by @nd. 252 * @mnt contains the vfsmount for device being mounted. 253 * @path contains the path for the mount point. 254 * Return 0 if permission is granted. 255 * @sb_umount: 256 * Check permission before the @mnt file system is unmounted. 257 * @mnt contains the mounted file system. 258 * @flags contains the unmount flags, e.g. MNT_FORCE. 259 * Return 0 if permission is granted. 260 * @sb_umount_close: 261 * Close any files in the @mnt mounted filesystem that are held open by 262 * the security module. This hook is called during an umount operation 263 * prior to checking whether the filesystem is still busy. 264 * @mnt contains the mounted filesystem. 265 * @sb_umount_busy: 266 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening 267 * any files that were closed by umount_close. This hook is called during 268 * an umount operation if the umount fails after a call to the 269 * umount_close hook. 270 * @mnt contains the mounted filesystem. 271 * @sb_post_remount: 272 * Update the security module's state when a filesystem is remounted. 273 * This hook is only called if the remount was successful. 274 * @mnt contains the mounted file system. 275 * @flags contains the new filesystem flags. 276 * @data contains the filesystem-specific data. 277 * @sb_post_addmount: 278 * Update the security module's state when a filesystem is mounted. 279 * This hook is called any time a mount is successfully grafetd to 280 * the tree. 281 * @mnt contains the mounted filesystem. 282 * @mountpoint contains the path for the mount point. 283 * @sb_pivotroot: 284 * Check permission before pivoting the root filesystem. 285 * @old_path contains the path for the new location of the current root (put_old). 286 * @new_path contains the path for the new root (new_root). 287 * Return 0 if permission is granted. 288 * @sb_post_pivotroot: 289 * Update module state after a successful pivot. 290 * @old_path contains the path for the old root. 291 * @new_path contains the path for the new root. 292 * @sb_get_mnt_opts: 293 * Get the security relevant mount options used for a superblock 294 * @sb the superblock to get security mount options from 295 * @opts binary data structure containing all lsm mount data 296 * @sb_set_mnt_opts: 297 * Set the security relevant mount options used for a superblock 298 * @sb the superblock to set security mount options for 299 * @opts binary data structure containing all lsm mount data 300 * @sb_clone_mnt_opts: 301 * Copy all security options from a given superblock to another 302 * @oldsb old superblock which contain information to clone 303 * @newsb new superblock which needs filled in 304 * @sb_parse_opts_str: 305 * Parse a string of security data filling in the opts structure 306 * @options string containing all mount options known by the LSM 307 * @opts binary data structure usable by the LSM 308 * 309 * Security hooks for inode operations. 310 * 311 * @inode_alloc_security: 312 * Allocate and attach a security structure to @inode->i_security. The 313 * i_security field is initialized to NULL when the inode structure is 314 * allocated. 315 * @inode contains the inode structure. 316 * Return 0 if operation was successful. 317 * @inode_free_security: 318 * @inode contains the inode structure. 319 * Deallocate the inode security structure and set @inode->i_security to 320 * NULL. 321 * @inode_init_security: 322 * Obtain the security attribute name suffix and value to set on a newly 323 * created inode and set up the incore security field for the new inode. 324 * This hook is called by the fs code as part of the inode creation 325 * transaction and provides for atomic labeling of the inode, unlike 326 * the post_create/mkdir/... hooks called by the VFS. The hook function 327 * is expected to allocate the name and value via kmalloc, with the caller 328 * being responsible for calling kfree after using them. 329 * If the security module does not use security attributes or does 330 * not wish to put a security attribute on this particular inode, 331 * then it should return -EOPNOTSUPP to skip this processing. 332 * @inode contains the inode structure of the newly created inode. 333 * @dir contains the inode structure of the parent directory. 334 * @name will be set to the allocated name suffix (e.g. selinux). 335 * @value will be set to the allocated attribute value. 336 * @len will be set to the length of the value. 337 * Returns 0 if @name and @value have been successfully set, 338 * -EOPNOTSUPP if no security attribute is needed, or 339 * -ENOMEM on memory allocation failure. 340 * @inode_create: 341 * Check permission to create a regular file. 342 * @dir contains inode structure of the parent of the new file. 343 * @dentry contains the dentry structure for the file to be created. 344 * @mode contains the file mode of the file to be created. 345 * Return 0 if permission is granted. 346 * @inode_link: 347 * Check permission before creating a new hard link to a file. 348 * @old_dentry contains the dentry structure for an existing link to the file. 349 * @dir contains the inode structure of the parent directory of the new link. 350 * @new_dentry contains the dentry structure for the new link. 351 * Return 0 if permission is granted. 352 * @inode_unlink: 353 * Check the permission to remove a hard link to a file. 354 * @dir contains the inode structure of parent directory of the file. 355 * @dentry contains the dentry structure for file to be unlinked. 356 * Return 0 if permission is granted. 357 * @inode_symlink: 358 * Check the permission to create a symbolic link to a file. 359 * @dir contains the inode structure of parent directory of the symbolic link. 360 * @dentry contains the dentry structure of the symbolic link. 361 * @old_name contains the pathname of file. 362 * Return 0 if permission is granted. 363 * @inode_mkdir: 364 * Check permissions to create a new directory in the existing directory 365 * associated with inode strcture @dir. 366 * @dir containst the inode structure of parent of the directory to be created. 367 * @dentry contains the dentry structure of new directory. 368 * @mode contains the mode of new directory. 369 * Return 0 if permission is granted. 370 * @inode_rmdir: 371 * Check the permission to remove a directory. 372 * @dir contains the inode structure of parent of the directory to be removed. 373 * @dentry contains the dentry structure of directory to be removed. 374 * Return 0 if permission is granted. 375 * @inode_mknod: 376 * Check permissions when creating a special file (or a socket or a fifo 377 * file created via the mknod system call). Note that if mknod operation 378 * is being done for a regular file, then the create hook will be called 379 * and not this hook. 380 * @dir contains the inode structure of parent of the new file. 381 * @dentry contains the dentry structure of the new file. 382 * @mode contains the mode of the new file. 383 * @dev contains the device number. 384 * Return 0 if permission is granted. 385 * @inode_rename: 386 * Check for permission to rename a file or directory. 387 * @old_dir contains the inode structure for parent of the old link. 388 * @old_dentry contains the dentry structure of the old link. 389 * @new_dir contains the inode structure for parent of the new link. 390 * @new_dentry contains the dentry structure of the new link. 391 * Return 0 if permission is granted. 392 * @inode_readlink: 393 * Check the permission to read the symbolic link. 394 * @dentry contains the dentry structure for the file link. 395 * Return 0 if permission is granted. 396 * @inode_follow_link: 397 * Check permission to follow a symbolic link when looking up a pathname. 398 * @dentry contains the dentry structure for the link. 399 * @nd contains the nameidata structure for the parent directory. 400 * Return 0 if permission is granted. 401 * @inode_permission: 402 * Check permission before accessing an inode. This hook is called by the 403 * existing Linux permission function, so a security module can use it to 404 * provide additional checking for existing Linux permission checks. 405 * Notice that this hook is called when a file is opened (as well as many 406 * other operations), whereas the file_security_ops permission hook is 407 * called when the actual read/write operations are performed. 408 * @inode contains the inode structure to check. 409 * @mask contains the permission mask. 410 * @nd contains the nameidata (may be NULL). 411 * Return 0 if permission is granted. 412 * @inode_setattr: 413 * Check permission before setting file attributes. Note that the kernel 414 * call to notify_change is performed from several locations, whenever 415 * file attributes change (such as when a file is truncated, chown/chmod 416 * operations, transferring disk quotas, etc). 417 * @dentry contains the dentry structure for the file. 418 * @attr is the iattr structure containing the new file attributes. 419 * Return 0 if permission is granted. 420 * @inode_getattr: 421 * Check permission before obtaining file attributes. 422 * @mnt is the vfsmount where the dentry was looked up 423 * @dentry contains the dentry structure for the file. 424 * Return 0 if permission is granted. 425 * @inode_delete: 426 * @inode contains the inode structure for deleted inode. 427 * This hook is called when a deleted inode is released (i.e. an inode 428 * with no hard links has its use count drop to zero). A security module 429 * can use this hook to release any persistent label associated with the 430 * inode. 431 * @inode_setxattr: 432 * Check permission before setting the extended attributes 433 * @value identified by @name for @dentry. 434 * Return 0 if permission is granted. 435 * @inode_post_setxattr: 436 * Update inode security field after successful setxattr operation. 437 * @value identified by @name for @dentry. 438 * @inode_getxattr: 439 * Check permission before obtaining the extended attributes 440 * identified by @name for @dentry. 441 * Return 0 if permission is granted. 442 * @inode_listxattr: 443 * Check permission before obtaining the list of extended attribute 444 * names for @dentry. 445 * Return 0 if permission is granted. 446 * @inode_removexattr: 447 * Check permission before removing the extended attribute 448 * identified by @name for @dentry. 449 * Return 0 if permission is granted. 450 * @inode_getsecurity: 451 * Retrieve a copy of the extended attribute representation of the 452 * security label associated with @name for @inode via @buffer. Note that 453 * @name is the remainder of the attribute name after the security prefix 454 * has been removed. @alloc is used to specify of the call should return a 455 * value via the buffer or just the value length Return size of buffer on 456 * success. 457 * @inode_setsecurity: 458 * Set the security label associated with @name for @inode from the 459 * extended attribute value @value. @size indicates the size of the 460 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. 461 * Note that @name is the remainder of the attribute name after the 462 * security. prefix has been removed. 463 * Return 0 on success. 464 * @inode_listsecurity: 465 * Copy the extended attribute names for the security labels 466 * associated with @inode into @buffer. The maximum size of @buffer 467 * is specified by @buffer_size. @buffer may be NULL to request 468 * the size of the buffer required. 469 * Returns number of bytes used/required on success. 470 * @inode_need_killpriv: 471 * Called when an inode has been changed. 472 * @dentry is the dentry being changed. 473 * Return <0 on error to abort the inode change operation. 474 * Return 0 if inode_killpriv does not need to be called. 475 * Return >0 if inode_killpriv does need to be called. 476 * @inode_killpriv: 477 * The setuid bit is being removed. Remove similar security labels. 478 * Called with the dentry->d_inode->i_mutex held. 479 * @dentry is the dentry being changed. 480 * Return 0 on success. If error is returned, then the operation 481 * causing setuid bit removal is failed. 482 * @inode_getsecid: 483 * Get the secid associated with the node. 484 * @inode contains a pointer to the inode. 485 * @secid contains a pointer to the location where result will be saved. 486 * In case of failure, @secid will be set to zero. 487 * 488 * Security hooks for file operations 489 * 490 * @file_permission: 491 * Check file permissions before accessing an open file. This hook is 492 * called by various operations that read or write files. A security 493 * module can use this hook to perform additional checking on these 494 * operations, e.g. to revalidate permissions on use to support privilege 495 * bracketing or policy changes. Notice that this hook is used when the 496 * actual read/write operations are performed, whereas the 497 * inode_security_ops hook is called when a file is opened (as well as 498 * many other operations). 499 * Caveat: Although this hook can be used to revalidate permissions for 500 * various system call operations that read or write files, it does not 501 * address the revalidation of permissions for memory-mapped files. 502 * Security modules must handle this separately if they need such 503 * revalidation. 504 * @file contains the file structure being accessed. 505 * @mask contains the requested permissions. 506 * Return 0 if permission is granted. 507 * @file_alloc_security: 508 * Allocate and attach a security structure to the file->f_security field. 509 * The security field is initialized to NULL when the structure is first 510 * created. 511 * @file contains the file structure to secure. 512 * Return 0 if the hook is successful and permission is granted. 513 * @file_free_security: 514 * Deallocate and free any security structures stored in file->f_security. 515 * @file contains the file structure being modified. 516 * @file_ioctl: 517 * @file contains the file structure. 518 * @cmd contains the operation to perform. 519 * @arg contains the operational arguments. 520 * Check permission for an ioctl operation on @file. Note that @arg can 521 * sometimes represents a user space pointer; in other cases, it may be a 522 * simple integer value. When @arg represents a user space pointer, it 523 * should never be used by the security module. 524 * Return 0 if permission is granted. 525 * @file_mmap : 526 * Check permissions for a mmap operation. The @file may be NULL, e.g. 527 * if mapping anonymous memory. 528 * @file contains the file structure for file to map (may be NULL). 529 * @reqprot contains the protection requested by the application. 530 * @prot contains the protection that will be applied by the kernel. 531 * @flags contains the operational flags. 532 * Return 0 if permission is granted. 533 * @file_mprotect: 534 * Check permissions before changing memory access permissions. 535 * @vma contains the memory region to modify. 536 * @reqprot contains the protection requested by the application. 537 * @prot contains the protection that will be applied by the kernel. 538 * Return 0 if permission is granted. 539 * @file_lock: 540 * Check permission before performing file locking operations. 541 * Note: this hook mediates both flock and fcntl style locks. 542 * @file contains the file structure. 543 * @cmd contains the posix-translated lock operation to perform 544 * (e.g. F_RDLCK, F_WRLCK). 545 * Return 0 if permission is granted. 546 * @file_fcntl: 547 * Check permission before allowing the file operation specified by @cmd 548 * from being performed on the file @file. Note that @arg can sometimes 549 * represents a user space pointer; in other cases, it may be a simple 550 * integer value. When @arg represents a user space pointer, it should 551 * never be used by the security module. 552 * @file contains the file structure. 553 * @cmd contains the operation to be performed. 554 * @arg contains the operational arguments. 555 * Return 0 if permission is granted. 556 * @file_set_fowner: 557 * Save owner security information (typically from current->security) in 558 * file->f_security for later use by the send_sigiotask hook. 559 * @file contains the file structure to update. 560 * Return 0 on success. 561 * @file_send_sigiotask: 562 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 563 * process @tsk. Note that this hook is sometimes called from interrupt. 564 * Note that the fown_struct, @fown, is never outside the context of a 565 * struct file, so the file structure (and associated security information) 566 * can always be obtained: 567 * container_of(fown, struct file, f_owner) 568 * @tsk contains the structure of task receiving signal. 569 * @fown contains the file owner information. 570 * @sig is the signal that will be sent. When 0, kernel sends SIGIO. 571 * Return 0 if permission is granted. 572 * @file_receive: 573 * This hook allows security modules to control the ability of a process 574 * to receive an open file descriptor via socket IPC. 575 * @file contains the file structure being received. 576 * Return 0 if permission is granted. 577 * 578 * Security hook for dentry 579 * 580 * @dentry_open 581 * Save open-time permission checking state for later use upon 582 * file_permission, and recheck access if anything has changed 583 * since inode_permission. 584 * 585 * Security hooks for task operations. 586 * 587 * @task_create: 588 * Check permission before creating a child process. See the clone(2) 589 * manual page for definitions of the @clone_flags. 590 * @clone_flags contains the flags indicating what should be shared. 591 * Return 0 if permission is granted. 592 * @task_alloc_security: 593 * @p contains the task_struct for child process. 594 * Allocate and attach a security structure to the p->security field. The 595 * security field is initialized to NULL when the task structure is 596 * allocated. 597 * Return 0 if operation was successful. 598 * @task_free_security: 599 * @p contains the task_struct for process. 600 * Deallocate and clear the p->security field. 601 * @task_setuid: 602 * Check permission before setting one or more of the user identity 603 * attributes of the current process. The @flags parameter indicates 604 * which of the set*uid system calls invoked this hook and how to 605 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 606 * definitions at the beginning of this file for the @flags values and 607 * their meanings. 608 * @id0 contains a uid. 609 * @id1 contains a uid. 610 * @id2 contains a uid. 611 * @flags contains one of the LSM_SETID_* values. 612 * Return 0 if permission is granted. 613 * @task_post_setuid: 614 * Update the module's state after setting one or more of the user 615 * identity attributes of the current process. The @flags parameter 616 * indicates which of the set*uid system calls invoked this hook. If 617 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other 618 * parameters are not used. 619 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS). 620 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS). 621 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS). 622 * @flags contains one of the LSM_SETID_* values. 623 * Return 0 on success. 624 * @task_setgid: 625 * Check permission before setting one or more of the group identity 626 * attributes of the current process. The @flags parameter indicates 627 * which of the set*gid system calls invoked this hook and how to 628 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 629 * definitions at the beginning of this file for the @flags values and 630 * their meanings. 631 * @id0 contains a gid. 632 * @id1 contains a gid. 633 * @id2 contains a gid. 634 * @flags contains one of the LSM_SETID_* values. 635 * Return 0 if permission is granted. 636 * @task_setpgid: 637 * Check permission before setting the process group identifier of the 638 * process @p to @pgid. 639 * @p contains the task_struct for process being modified. 640 * @pgid contains the new pgid. 641 * Return 0 if permission is granted. 642 * @task_getpgid: 643 * Check permission before getting the process group identifier of the 644 * process @p. 645 * @p contains the task_struct for the process. 646 * Return 0 if permission is granted. 647 * @task_getsid: 648 * Check permission before getting the session identifier of the process 649 * @p. 650 * @p contains the task_struct for the process. 651 * Return 0 if permission is granted. 652 * @task_getsecid: 653 * Retrieve the security identifier of the process @p. 654 * @p contains the task_struct for the process and place is into @secid. 655 * In case of failure, @secid will be set to zero. 656 * 657 * @task_setgroups: 658 * Check permission before setting the supplementary group set of the 659 * current process. 660 * @group_info contains the new group information. 661 * Return 0 if permission is granted. 662 * @task_setnice: 663 * Check permission before setting the nice value of @p to @nice. 664 * @p contains the task_struct of process. 665 * @nice contains the new nice value. 666 * Return 0 if permission is granted. 667 * @task_setioprio 668 * Check permission before setting the ioprio value of @p to @ioprio. 669 * @p contains the task_struct of process. 670 * @ioprio contains the new ioprio value 671 * Return 0 if permission is granted. 672 * @task_getioprio 673 * Check permission before getting the ioprio value of @p. 674 * @p contains the task_struct of process. 675 * Return 0 if permission is granted. 676 * @task_setrlimit: 677 * Check permission before setting the resource limits of the current 678 * process for @resource to @new_rlim. The old resource limit values can 679 * be examined by dereferencing (current->signal->rlim + resource). 680 * @resource contains the resource whose limit is being set. 681 * @new_rlim contains the new limits for @resource. 682 * Return 0 if permission is granted. 683 * @task_setscheduler: 684 * Check permission before setting scheduling policy and/or parameters of 685 * process @p based on @policy and @lp. 686 * @p contains the task_struct for process. 687 * @policy contains the scheduling policy. 688 * @lp contains the scheduling parameters. 689 * Return 0 if permission is granted. 690 * @task_getscheduler: 691 * Check permission before obtaining scheduling information for process 692 * @p. 693 * @p contains the task_struct for process. 694 * Return 0 if permission is granted. 695 * @task_movememory 696 * Check permission before moving memory owned by process @p. 697 * @p contains the task_struct for process. 698 * Return 0 if permission is granted. 699 * @task_kill: 700 * Check permission before sending signal @sig to @p. @info can be NULL, 701 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or 702 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming 703 * from the kernel and should typically be permitted. 704 * SIGIO signals are handled separately by the send_sigiotask hook in 705 * file_security_ops. 706 * @p contains the task_struct for process. 707 * @info contains the signal information. 708 * @sig contains the signal value. 709 * @secid contains the sid of the process where the signal originated 710 * Return 0 if permission is granted. 711 * @task_wait: 712 * Check permission before allowing a process to reap a child process @p 713 * and collect its status information. 714 * @p contains the task_struct for process. 715 * Return 0 if permission is granted. 716 * @task_prctl: 717 * Check permission before performing a process control operation on the 718 * current process. 719 * @option contains the operation. 720 * @arg2 contains a argument. 721 * @arg3 contains a argument. 722 * @arg4 contains a argument. 723 * @arg5 contains a argument. 724 * @rc_p contains a pointer to communicate back the forced return code 725 * Return 0 if permission is granted, and non-zero if the security module 726 * has taken responsibility (setting *rc_p) for the prctl call. 727 * @task_reparent_to_init: 728 * Set the security attributes in @p->security for a kernel thread that 729 * is being reparented to the init task. 730 * @p contains the task_struct for the kernel thread. 731 * @task_to_inode: 732 * Set the security attributes for an inode based on an associated task's 733 * security attributes, e.g. for /proc/pid inodes. 734 * @p contains the task_struct for the task. 735 * @inode contains the inode structure for the inode. 736 * 737 * Security hooks for Netlink messaging. 738 * 739 * @netlink_send: 740 * Save security information for a netlink message so that permission 741 * checking can be performed when the message is processed. The security 742 * information can be saved using the eff_cap field of the 743 * netlink_skb_parms structure. Also may be used to provide fine 744 * grained control over message transmission. 745 * @sk associated sock of task sending the message., 746 * @skb contains the sk_buff structure for the netlink message. 747 * Return 0 if the information was successfully saved and message 748 * is allowed to be transmitted. 749 * @netlink_recv: 750 * Check permission before processing the received netlink message in 751 * @skb. 752 * @skb contains the sk_buff structure for the netlink message. 753 * @cap indicates the capability required 754 * Return 0 if permission is granted. 755 * 756 * Security hooks for Unix domain networking. 757 * 758 * @unix_stream_connect: 759 * Check permissions before establishing a Unix domain stream connection 760 * between @sock and @other. 761 * @sock contains the socket structure. 762 * @other contains the peer socket structure. 763 * Return 0 if permission is granted. 764 * @unix_may_send: 765 * Check permissions before connecting or sending datagrams from @sock to 766 * @other. 767 * @sock contains the socket structure. 768 * @sock contains the peer socket structure. 769 * Return 0 if permission is granted. 770 * 771 * The @unix_stream_connect and @unix_may_send hooks were necessary because 772 * Linux provides an alternative to the conventional file name space for Unix 773 * domain sockets. Whereas binding and connecting to sockets in the file name 774 * space is mediated by the typical file permissions (and caught by the mknod 775 * and permission hooks in inode_security_ops), binding and connecting to 776 * sockets in the abstract name space is completely unmediated. Sufficient 777 * control of Unix domain sockets in the abstract name space isn't possible 778 * using only the socket layer hooks, since we need to know the actual target 779 * socket, which is not looked up until we are inside the af_unix code. 780 * 781 * Security hooks for socket operations. 782 * 783 * @socket_create: 784 * Check permissions prior to creating a new socket. 785 * @family contains the requested protocol family. 786 * @type contains the requested communications type. 787 * @protocol contains the requested protocol. 788 * @kern set to 1 if a kernel socket. 789 * Return 0 if permission is granted. 790 * @socket_post_create: 791 * This hook allows a module to update or allocate a per-socket security 792 * structure. Note that the security field was not added directly to the 793 * socket structure, but rather, the socket security information is stored 794 * in the associated inode. Typically, the inode alloc_security hook will 795 * allocate and and attach security information to 796 * sock->inode->i_security. This hook may be used to update the 797 * sock->inode->i_security field with additional information that wasn't 798 * available when the inode was allocated. 799 * @sock contains the newly created socket structure. 800 * @family contains the requested protocol family. 801 * @type contains the requested communications type. 802 * @protocol contains the requested protocol. 803 * @kern set to 1 if a kernel socket. 804 * @socket_bind: 805 * Check permission before socket protocol layer bind operation is 806 * performed and the socket @sock is bound to the address specified in the 807 * @address parameter. 808 * @sock contains the socket structure. 809 * @address contains the address to bind to. 810 * @addrlen contains the length of address. 811 * Return 0 if permission is granted. 812 * @socket_connect: 813 * Check permission before socket protocol layer connect operation 814 * attempts to connect socket @sock to a remote address, @address. 815 * @sock contains the socket structure. 816 * @address contains the address of remote endpoint. 817 * @addrlen contains the length of address. 818 * Return 0 if permission is granted. 819 * @socket_listen: 820 * Check permission before socket protocol layer listen operation. 821 * @sock contains the socket structure. 822 * @backlog contains the maximum length for the pending connection queue. 823 * Return 0 if permission is granted. 824 * @socket_accept: 825 * Check permission before accepting a new connection. Note that the new 826 * socket, @newsock, has been created and some information copied to it, 827 * but the accept operation has not actually been performed. 828 * @sock contains the listening socket structure. 829 * @newsock contains the newly created server socket for connection. 830 * Return 0 if permission is granted. 831 * @socket_post_accept: 832 * This hook allows a security module to copy security 833 * information into the newly created socket's inode. 834 * @sock contains the listening socket structure. 835 * @newsock contains the newly created server socket for connection. 836 * @socket_sendmsg: 837 * Check permission before transmitting a message to another socket. 838 * @sock contains the socket structure. 839 * @msg contains the message to be transmitted. 840 * @size contains the size of message. 841 * Return 0 if permission is granted. 842 * @socket_recvmsg: 843 * Check permission before receiving a message from a socket. 844 * @sock contains the socket structure. 845 * @msg contains the message structure. 846 * @size contains the size of message structure. 847 * @flags contains the operational flags. 848 * Return 0 if permission is granted. 849 * @socket_getsockname: 850 * Check permission before the local address (name) of the socket object 851 * @sock is retrieved. 852 * @sock contains the socket structure. 853 * Return 0 if permission is granted. 854 * @socket_getpeername: 855 * Check permission before the remote address (name) of a socket object 856 * @sock is retrieved. 857 * @sock contains the socket structure. 858 * Return 0 if permission is granted. 859 * @socket_getsockopt: 860 * Check permissions before retrieving the options associated with socket 861 * @sock. 862 * @sock contains the socket structure. 863 * @level contains the protocol level to retrieve option from. 864 * @optname contains the name of option to retrieve. 865 * Return 0 if permission is granted. 866 * @socket_setsockopt: 867 * Check permissions before setting the options associated with socket 868 * @sock. 869 * @sock contains the socket structure. 870 * @level contains the protocol level to set options for. 871 * @optname contains the name of the option to set. 872 * Return 0 if permission is granted. 873 * @socket_shutdown: 874 * Checks permission before all or part of a connection on the socket 875 * @sock is shut down. 876 * @sock contains the socket structure. 877 * @how contains the flag indicating how future sends and receives are handled. 878 * Return 0 if permission is granted. 879 * @socket_sock_rcv_skb: 880 * Check permissions on incoming network packets. This hook is distinct 881 * from Netfilter's IP input hooks since it is the first time that the 882 * incoming sk_buff @skb has been associated with a particular socket, @sk. 883 * @sk contains the sock (not socket) associated with the incoming sk_buff. 884 * @skb contains the incoming network data. 885 * @socket_getpeersec_stream: 886 * This hook allows the security module to provide peer socket security 887 * state for unix or connected tcp sockets to userspace via getsockopt 888 * SO_GETPEERSEC. For tcp sockets this can be meaningful if the 889 * socket is associated with an ipsec SA. 890 * @sock is the local socket. 891 * @optval userspace memory where the security state is to be copied. 892 * @optlen userspace int where the module should copy the actual length 893 * of the security state. 894 * @len as input is the maximum length to copy to userspace provided 895 * by the caller. 896 * Return 0 if all is well, otherwise, typical getsockopt return 897 * values. 898 * @socket_getpeersec_dgram: 899 * This hook allows the security module to provide peer socket security 900 * state for udp sockets on a per-packet basis to userspace via 901 * getsockopt SO_GETPEERSEC. The application must first have indicated 902 * the IP_PASSSEC option via getsockopt. It can then retrieve the 903 * security state returned by this hook for a packet via the SCM_SECURITY 904 * ancillary message type. 905 * @skb is the skbuff for the packet being queried 906 * @secdata is a pointer to a buffer in which to copy the security data 907 * @seclen is the maximum length for @secdata 908 * Return 0 on success, error on failure. 909 * @sk_alloc_security: 910 * Allocate and attach a security structure to the sk->sk_security field, 911 * which is used to copy security attributes between local stream sockets. 912 * @sk_free_security: 913 * Deallocate security structure. 914 * @sk_clone_security: 915 * Clone/copy security structure. 916 * @sk_getsecid: 917 * Retrieve the LSM-specific secid for the sock to enable caching of network 918 * authorizations. 919 * @sock_graft: 920 * Sets the socket's isec sid to the sock's sid. 921 * @inet_conn_request: 922 * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid. 923 * @inet_csk_clone: 924 * Sets the new child socket's sid to the openreq sid. 925 * @inet_conn_established: 926 * Sets the connection's peersid to the secmark on skb. 927 * @req_classify_flow: 928 * Sets the flow's sid to the openreq sid. 929 * 930 * Security hooks for XFRM operations. 931 * 932 * @xfrm_policy_alloc_security: 933 * @ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy 934 * Database used by the XFRM system. 935 * @sec_ctx contains the security context information being provided by 936 * the user-level policy update program (e.g., setkey). 937 * Allocate a security structure to the xp->security field; the security 938 * field is initialized to NULL when the xfrm_policy is allocated. 939 * Return 0 if operation was successful (memory to allocate, legal context) 940 * @xfrm_policy_clone_security: 941 * @old_ctx contains an existing xfrm_sec_ctx. 942 * @new_ctxp contains a new xfrm_sec_ctx being cloned from old. 943 * Allocate a security structure in new_ctxp that contains the 944 * information from the old_ctx structure. 945 * Return 0 if operation was successful (memory to allocate). 946 * @xfrm_policy_free_security: 947 * @ctx contains the xfrm_sec_ctx 948 * Deallocate xp->security. 949 * @xfrm_policy_delete_security: 950 * @ctx contains the xfrm_sec_ctx. 951 * Authorize deletion of xp->security. 952 * @xfrm_state_alloc_security: 953 * @x contains the xfrm_state being added to the Security Association 954 * Database by the XFRM system. 955 * @sec_ctx contains the security context information being provided by 956 * the user-level SA generation program (e.g., setkey or racoon). 957 * @secid contains the secid from which to take the mls portion of the context. 958 * Allocate a security structure to the x->security field; the security 959 * field is initialized to NULL when the xfrm_state is allocated. Set the 960 * context to correspond to either sec_ctx or polsec, with the mls portion 961 * taken from secid in the latter case. 962 * Return 0 if operation was successful (memory to allocate, legal context). 963 * @xfrm_state_free_security: 964 * @x contains the xfrm_state. 965 * Deallocate x->security. 966 * @xfrm_state_delete_security: 967 * @x contains the xfrm_state. 968 * Authorize deletion of x->security. 969 * @xfrm_policy_lookup: 970 * @ctx contains the xfrm_sec_ctx for which the access control is being 971 * checked. 972 * @fl_secid contains the flow security label that is used to authorize 973 * access to the policy xp. 974 * @dir contains the direction of the flow (input or output). 975 * Check permission when a flow selects a xfrm_policy for processing 976 * XFRMs on a packet. The hook is called when selecting either a 977 * per-socket policy or a generic xfrm policy. 978 * Return 0 if permission is granted, -ESRCH otherwise, or -errno 979 * on other errors. 980 * @xfrm_state_pol_flow_match: 981 * @x contains the state to match. 982 * @xp contains the policy to check for a match. 983 * @fl contains the flow to check for a match. 984 * Return 1 if there is a match. 985 * @xfrm_decode_session: 986 * @skb points to skb to decode. 987 * @secid points to the flow key secid to set. 988 * @ckall says if all xfrms used should be checked for same secid. 989 * Return 0 if ckall is zero or all xfrms used have the same secid. 990 * 991 * Security hooks affecting all Key Management operations 992 * 993 * @key_alloc: 994 * Permit allocation of a key and assign security data. Note that key does 995 * not have a serial number assigned at this point. 996 * @key points to the key. 997 * @flags is the allocation flags 998 * Return 0 if permission is granted, -ve error otherwise. 999 * @key_free: 1000 * Notification of destruction; free security data. 1001 * @key points to the key. 1002 * No return value. 1003 * @key_permission: 1004 * See whether a specific operational right is granted to a process on a 1005 * key. 1006 * @key_ref refers to the key (key pointer + possession attribute bit). 1007 * @context points to the process to provide the context against which to 1008 * evaluate the security data on the key. 1009 * @perm describes the combination of permissions required of this key. 1010 * Return 1 if permission granted, 0 if permission denied and -ve it the 1011 * normal permissions model should be effected. 1012 * @key_getsecurity: 1013 * Get a textual representation of the security context attached to a key 1014 * for the purposes of honouring KEYCTL_GETSECURITY. This function 1015 * allocates the storage for the NUL-terminated string and the caller 1016 * should free it. 1017 * @key points to the key to be queried. 1018 * @_buffer points to a pointer that should be set to point to the 1019 * resulting string (if no label or an error occurs). 1020 * Return the length of the string (including terminating NUL) or -ve if 1021 * an error. 1022 * May also return 0 (and a NULL buffer pointer) if there is no label. 1023 * 1024 * Security hooks affecting all System V IPC operations. 1025 * 1026 * @ipc_permission: 1027 * Check permissions for access to IPC 1028 * @ipcp contains the kernel IPC permission structure 1029 * @flag contains the desired (requested) permission set 1030 * Return 0 if permission is granted. 1031 * @ipc_getsecid: 1032 * Get the secid associated with the ipc object. 1033 * @ipcp contains the kernel IPC permission structure. 1034 * @secid contains a pointer to the location where result will be saved. 1035 * In case of failure, @secid will be set to zero. 1036 * 1037 * Security hooks for individual messages held in System V IPC message queues 1038 * @msg_msg_alloc_security: 1039 * Allocate and attach a security structure to the msg->security field. 1040 * The security field is initialized to NULL when the structure is first 1041 * created. 1042 * @msg contains the message structure to be modified. 1043 * Return 0 if operation was successful and permission is granted. 1044 * @msg_msg_free_security: 1045 * Deallocate the security structure for this message. 1046 * @msg contains the message structure to be modified. 1047 * 1048 * Security hooks for System V IPC Message Queues 1049 * 1050 * @msg_queue_alloc_security: 1051 * Allocate and attach a security structure to the 1052 * msq->q_perm.security field. The security field is initialized to 1053 * NULL when the structure is first created. 1054 * @msq contains the message queue structure to be modified. 1055 * Return 0 if operation was successful and permission is granted. 1056 * @msg_queue_free_security: 1057 * Deallocate security structure for this message queue. 1058 * @msq contains the message queue structure to be modified. 1059 * @msg_queue_associate: 1060 * Check permission when a message queue is requested through the 1061 * msgget system call. This hook is only called when returning the 1062 * message queue identifier for an existing message queue, not when a 1063 * new message queue is created. 1064 * @msq contains the message queue to act upon. 1065 * @msqflg contains the operation control flags. 1066 * Return 0 if permission is granted. 1067 * @msg_queue_msgctl: 1068 * Check permission when a message control operation specified by @cmd 1069 * is to be performed on the message queue @msq. 1070 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. 1071 * @msq contains the message queue to act upon. May be NULL. 1072 * @cmd contains the operation to be performed. 1073 * Return 0 if permission is granted. 1074 * @msg_queue_msgsnd: 1075 * Check permission before a message, @msg, is enqueued on the message 1076 * queue, @msq. 1077 * @msq contains the message queue to send message to. 1078 * @msg contains the message to be enqueued. 1079 * @msqflg contains operational flags. 1080 * Return 0 if permission is granted. 1081 * @msg_queue_msgrcv: 1082 * Check permission before a message, @msg, is removed from the message 1083 * queue, @msq. The @target task structure contains a pointer to the 1084 * process that will be receiving the message (not equal to the current 1085 * process when inline receives are being performed). 1086 * @msq contains the message queue to retrieve message from. 1087 * @msg contains the message destination. 1088 * @target contains the task structure for recipient process. 1089 * @type contains the type of message requested. 1090 * @mode contains the operational flags. 1091 * Return 0 if permission is granted. 1092 * 1093 * Security hooks for System V Shared Memory Segments 1094 * 1095 * @shm_alloc_security: 1096 * Allocate and attach a security structure to the shp->shm_perm.security 1097 * field. The security field is initialized to NULL when the structure is 1098 * first created. 1099 * @shp contains the shared memory structure to be modified. 1100 * Return 0 if operation was successful and permission is granted. 1101 * @shm_free_security: 1102 * Deallocate the security struct for this memory segment. 1103 * @shp contains the shared memory structure to be modified. 1104 * @shm_associate: 1105 * Check permission when a shared memory region is requested through the 1106 * shmget system call. This hook is only called when returning the shared 1107 * memory region identifier for an existing region, not when a new shared 1108 * memory region is created. 1109 * @shp contains the shared memory structure to be modified. 1110 * @shmflg contains the operation control flags. 1111 * Return 0 if permission is granted. 1112 * @shm_shmctl: 1113 * Check permission when a shared memory control operation specified by 1114 * @cmd is to be performed on the shared memory region @shp. 1115 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. 1116 * @shp contains shared memory structure to be modified. 1117 * @cmd contains the operation to be performed. 1118 * Return 0 if permission is granted. 1119 * @shm_shmat: 1120 * Check permissions prior to allowing the shmat system call to attach the 1121 * shared memory segment @shp to the data segment of the calling process. 1122 * The attaching address is specified by @shmaddr. 1123 * @shp contains the shared memory structure to be modified. 1124 * @shmaddr contains the address to attach memory region to. 1125 * @shmflg contains the operational flags. 1126 * Return 0 if permission is granted. 1127 * 1128 * Security hooks for System V Semaphores 1129 * 1130 * @sem_alloc_security: 1131 * Allocate and attach a security structure to the sma->sem_perm.security 1132 * field. The security field is initialized to NULL when the structure is 1133 * first created. 1134 * @sma contains the semaphore structure 1135 * Return 0 if operation was successful and permission is granted. 1136 * @sem_free_security: 1137 * deallocate security struct for this semaphore 1138 * @sma contains the semaphore structure. 1139 * @sem_associate: 1140 * Check permission when a semaphore is requested through the semget 1141 * system call. This hook is only called when returning the semaphore 1142 * identifier for an existing semaphore, not when a new one must be 1143 * created. 1144 * @sma contains the semaphore structure. 1145 * @semflg contains the operation control flags. 1146 * Return 0 if permission is granted. 1147 * @sem_semctl: 1148 * Check permission when a semaphore operation specified by @cmd is to be 1149 * performed on the semaphore @sma. The @sma may be NULL, e.g. for 1150 * IPC_INFO or SEM_INFO. 1151 * @sma contains the semaphore structure. May be NULL. 1152 * @cmd contains the operation to be performed. 1153 * Return 0 if permission is granted. 1154 * @sem_semop 1155 * Check permissions before performing operations on members of the 1156 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set 1157 * may be modified. 1158 * @sma contains the semaphore structure. 1159 * @sops contains the operations to perform. 1160 * @nsops contains the number of operations to perform. 1161 * @alter contains the flag indicating whether changes are to be made. 1162 * Return 0 if permission is granted. 1163 * 1164 * @ptrace: 1165 * Check permission before allowing the @parent process to trace the 1166 * @child process. 1167 * Security modules may also want to perform a process tracing check 1168 * during an execve in the set_security or apply_creds hooks of 1169 * binprm_security_ops if the process is being traced and its security 1170 * attributes would be changed by the execve. 1171 * @parent contains the task_struct structure for parent process. 1172 * @child contains the task_struct structure for child process. 1173 * Return 0 if permission is granted. 1174 * @capget: 1175 * Get the @effective, @inheritable, and @permitted capability sets for 1176 * the @target process. The hook may also perform permission checking to 1177 * determine if the current process is allowed to see the capability sets 1178 * of the @target process. 1179 * @target contains the task_struct structure for target process. 1180 * @effective contains the effective capability set. 1181 * @inheritable contains the inheritable capability set. 1182 * @permitted contains the permitted capability set. 1183 * Return 0 if the capability sets were successfully obtained. 1184 * @capset_check: 1185 * Check permission before setting the @effective, @inheritable, and 1186 * @permitted capability sets for the @target process. 1187 * Caveat: @target is also set to current if a set of processes is 1188 * specified (i.e. all processes other than current and init or a 1189 * particular process group). Hence, the capset_set hook may need to 1190 * revalidate permission to the actual target process. 1191 * @target contains the task_struct structure for target process. 1192 * @effective contains the effective capability set. 1193 * @inheritable contains the inheritable capability set. 1194 * @permitted contains the permitted capability set. 1195 * Return 0 if permission is granted. 1196 * @capset_set: 1197 * Set the @effective, @inheritable, and @permitted capability sets for 1198 * the @target process. Since capset_check cannot always check permission 1199 * to the real @target process, this hook may also perform permission 1200 * checking to determine if the current process is allowed to set the 1201 * capability sets of the @target process. However, this hook has no way 1202 * of returning an error due to the structure of the sys_capset code. 1203 * @target contains the task_struct structure for target process. 1204 * @effective contains the effective capability set. 1205 * @inheritable contains the inheritable capability set. 1206 * @permitted contains the permitted capability set. 1207 * @capable: 1208 * Check whether the @tsk process has the @cap capability. 1209 * @tsk contains the task_struct for the process. 1210 * @cap contains the capability <include/linux/capability.h>. 1211 * Return 0 if the capability is granted for @tsk. 1212 * @acct: 1213 * Check permission before enabling or disabling process accounting. If 1214 * accounting is being enabled, then @file refers to the open file used to 1215 * store accounting records. If accounting is being disabled, then @file 1216 * is NULL. 1217 * @file contains the file structure for the accounting file (may be NULL). 1218 * Return 0 if permission is granted. 1219 * @sysctl: 1220 * Check permission before accessing the @table sysctl variable in the 1221 * manner specified by @op. 1222 * @table contains the ctl_table structure for the sysctl variable. 1223 * @op contains the operation (001 = search, 002 = write, 004 = read). 1224 * Return 0 if permission is granted. 1225 * @syslog: 1226 * Check permission before accessing the kernel message ring or changing 1227 * logging to the console. 1228 * See the syslog(2) manual page for an explanation of the @type values. 1229 * @type contains the type of action. 1230 * Return 0 if permission is granted. 1231 * @settime: 1232 * Check permission to change the system time. 1233 * struct timespec and timezone are defined in include/linux/time.h 1234 * @ts contains new time 1235 * @tz contains new timezone 1236 * Return 0 if permission is granted. 1237 * @vm_enough_memory: 1238 * Check permissions for allocating a new virtual mapping. 1239 * @mm contains the mm struct it is being added to. 1240 * @pages contains the number of pages. 1241 * Return 0 if permission is granted. 1242 * 1243 * @register_security: 1244 * allow module stacking. 1245 * @name contains the name of the security module being stacked. 1246 * @ops contains a pointer to the struct security_operations of the module to stack. 1247 * 1248 * @secid_to_secctx: 1249 * Convert secid to security context. 1250 * @secid contains the security ID. 1251 * @secdata contains the pointer that stores the converted security context. 1252 * @secctx_to_secid: 1253 * Convert security context to secid. 1254 * @secid contains the pointer to the generated security ID. 1255 * @secdata contains the security context. 1256 * 1257 * @release_secctx: 1258 * Release the security context. 1259 * @secdata contains the security context. 1260 * @seclen contains the length of the security context. 1261 * 1262 * Security hooks for Audit 1263 * 1264 * @audit_rule_init: 1265 * Allocate and initialize an LSM audit rule structure. 1266 * @field contains the required Audit action. Fields flags are defined in include/linux/audit.h 1267 * @op contains the operator the rule uses. 1268 * @rulestr contains the context where the rule will be applied to. 1269 * @lsmrule contains a pointer to receive the result. 1270 * Return 0 if @lsmrule has been successfully set, 1271 * -EINVAL in case of an invalid rule. 1272 * 1273 * @audit_rule_known: 1274 * Specifies whether given @rule contains any fields related to current LSM. 1275 * @rule contains the audit rule of interest. 1276 * Return 1 in case of relation found, 0 otherwise. 1277 * 1278 * @audit_rule_match: 1279 * Determine if given @secid matches a rule previously approved 1280 * by @audit_rule_known. 1281 * @secid contains the security id in question. 1282 * @field contains the field which relates to current LSM. 1283 * @op contains the operator that will be used for matching. 1284 * @rule points to the audit rule that will be checked against. 1285 * @actx points to the audit context associated with the check. 1286 * Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure. 1287 * 1288 * @audit_rule_free: 1289 * Deallocate the LSM audit rule structure previously allocated by 1290 * audit_rule_init. 1291 * @rule contains the allocated rule 1292 * 1293 * This is the main security structure. 1294 */ 1295 struct security_operations { 1296 char name[SECURITY_NAME_MAX + 1]; 1297 1298 int (*ptrace) (struct task_struct *parent, struct task_struct *child); 1299 int (*capget) (struct task_struct *target, 1300 kernel_cap_t *effective, 1301 kernel_cap_t *inheritable, kernel_cap_t *permitted); 1302 int (*capset_check) (struct task_struct *target, 1303 kernel_cap_t *effective, 1304 kernel_cap_t *inheritable, 1305 kernel_cap_t *permitted); 1306 void (*capset_set) (struct task_struct *target, 1307 kernel_cap_t *effective, 1308 kernel_cap_t *inheritable, 1309 kernel_cap_t *permitted); 1310 int (*capable) (struct task_struct *tsk, int cap); 1311 int (*acct) (struct file *file); 1312 int (*sysctl) (struct ctl_table *table, int op); 1313 int (*quotactl) (int cmds, int type, int id, struct super_block *sb); 1314 int (*quota_on) (struct dentry *dentry); 1315 int (*syslog) (int type); 1316 int (*settime) (struct timespec *ts, struct timezone *tz); 1317 int (*vm_enough_memory) (struct mm_struct *mm, long pages); 1318 1319 int (*bprm_alloc_security) (struct linux_binprm *bprm); 1320 void (*bprm_free_security) (struct linux_binprm *bprm); 1321 void (*bprm_apply_creds) (struct linux_binprm *bprm, int unsafe); 1322 void (*bprm_post_apply_creds) (struct linux_binprm *bprm); 1323 int (*bprm_set_security) (struct linux_binprm *bprm); 1324 int (*bprm_check_security) (struct linux_binprm *bprm); 1325 int (*bprm_secureexec) (struct linux_binprm *bprm); 1326 1327 int (*sb_alloc_security) (struct super_block *sb); 1328 void (*sb_free_security) (struct super_block *sb); 1329 int (*sb_copy_data) (char *orig, char *copy); 1330 int (*sb_kern_mount) (struct super_block *sb, void *data); 1331 int (*sb_statfs) (struct dentry *dentry); 1332 int (*sb_mount) (char *dev_name, struct path *path, 1333 char *type, unsigned long flags, void *data); 1334 int (*sb_check_sb) (struct vfsmount *mnt, struct path *path); 1335 int (*sb_umount) (struct vfsmount *mnt, int flags); 1336 void (*sb_umount_close) (struct vfsmount *mnt); 1337 void (*sb_umount_busy) (struct vfsmount *mnt); 1338 void (*sb_post_remount) (struct vfsmount *mnt, 1339 unsigned long flags, void *data); 1340 void (*sb_post_addmount) (struct vfsmount *mnt, 1341 struct path *mountpoint); 1342 int (*sb_pivotroot) (struct path *old_path, 1343 struct path *new_path); 1344 void (*sb_post_pivotroot) (struct path *old_path, 1345 struct path *new_path); 1346 int (*sb_get_mnt_opts) (const struct super_block *sb, 1347 struct security_mnt_opts *opts); 1348 int (*sb_set_mnt_opts) (struct super_block *sb, 1349 struct security_mnt_opts *opts); 1350 void (*sb_clone_mnt_opts) (const struct super_block *oldsb, 1351 struct super_block *newsb); 1352 int (*sb_parse_opts_str) (char *options, struct security_mnt_opts *opts); 1353 1354 int (*inode_alloc_security) (struct inode *inode); 1355 void (*inode_free_security) (struct inode *inode); 1356 int (*inode_init_security) (struct inode *inode, struct inode *dir, 1357 char **name, void **value, size_t *len); 1358 int (*inode_create) (struct inode *dir, 1359 struct dentry *dentry, int mode); 1360 int (*inode_link) (struct dentry *old_dentry, 1361 struct inode *dir, struct dentry *new_dentry); 1362 int (*inode_unlink) (struct inode *dir, struct dentry *dentry); 1363 int (*inode_symlink) (struct inode *dir, 1364 struct dentry *dentry, const char *old_name); 1365 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); 1366 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); 1367 int (*inode_mknod) (struct inode *dir, struct dentry *dentry, 1368 int mode, dev_t dev); 1369 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, 1370 struct inode *new_dir, struct dentry *new_dentry); 1371 int (*inode_readlink) (struct dentry *dentry); 1372 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); 1373 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd); 1374 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); 1375 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); 1376 void (*inode_delete) (struct inode *inode); 1377 int (*inode_setxattr) (struct dentry *dentry, const char *name, 1378 const void *value, size_t size, int flags); 1379 void (*inode_post_setxattr) (struct dentry *dentry, const char *name, 1380 const void *value, size_t size, int flags); 1381 int (*inode_getxattr) (struct dentry *dentry, const char *name); 1382 int (*inode_listxattr) (struct dentry *dentry); 1383 int (*inode_removexattr) (struct dentry *dentry, const char *name); 1384 int (*inode_need_killpriv) (struct dentry *dentry); 1385 int (*inode_killpriv) (struct dentry *dentry); 1386 int (*inode_getsecurity) (const struct inode *inode, const char *name, void **buffer, bool alloc); 1387 int (*inode_setsecurity) (struct inode *inode, const char *name, const void *value, size_t size, int flags); 1388 int (*inode_listsecurity) (struct inode *inode, char *buffer, size_t buffer_size); 1389 void (*inode_getsecid) (const struct inode *inode, u32 *secid); 1390 1391 int (*file_permission) (struct file *file, int mask); 1392 int (*file_alloc_security) (struct file *file); 1393 void (*file_free_security) (struct file *file); 1394 int (*file_ioctl) (struct file *file, unsigned int cmd, 1395 unsigned long arg); 1396 int (*file_mmap) (struct file *file, 1397 unsigned long reqprot, unsigned long prot, 1398 unsigned long flags, unsigned long addr, 1399 unsigned long addr_only); 1400 int (*file_mprotect) (struct vm_area_struct *vma, 1401 unsigned long reqprot, 1402 unsigned long prot); 1403 int (*file_lock) (struct file *file, unsigned int cmd); 1404 int (*file_fcntl) (struct file *file, unsigned int cmd, 1405 unsigned long arg); 1406 int (*file_set_fowner) (struct file *file); 1407 int (*file_send_sigiotask) (struct task_struct *tsk, 1408 struct fown_struct *fown, int sig); 1409 int (*file_receive) (struct file *file); 1410 int (*dentry_open) (struct file *file); 1411 1412 int (*task_create) (unsigned long clone_flags); 1413 int (*task_alloc_security) (struct task_struct *p); 1414 void (*task_free_security) (struct task_struct *p); 1415 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags); 1416 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ , 1417 uid_t old_euid, uid_t old_suid, int flags); 1418 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags); 1419 int (*task_setpgid) (struct task_struct *p, pid_t pgid); 1420 int (*task_getpgid) (struct task_struct *p); 1421 int (*task_getsid) (struct task_struct *p); 1422 void (*task_getsecid) (struct task_struct *p, u32 *secid); 1423 int (*task_setgroups) (struct group_info *group_info); 1424 int (*task_setnice) (struct task_struct *p, int nice); 1425 int (*task_setioprio) (struct task_struct *p, int ioprio); 1426 int (*task_getioprio) (struct task_struct *p); 1427 int (*task_setrlimit) (unsigned int resource, struct rlimit *new_rlim); 1428 int (*task_setscheduler) (struct task_struct *p, int policy, 1429 struct sched_param *lp); 1430 int (*task_getscheduler) (struct task_struct *p); 1431 int (*task_movememory) (struct task_struct *p); 1432 int (*task_kill) (struct task_struct *p, 1433 struct siginfo *info, int sig, u32 secid); 1434 int (*task_wait) (struct task_struct *p); 1435 int (*task_prctl) (int option, unsigned long arg2, 1436 unsigned long arg3, unsigned long arg4, 1437 unsigned long arg5, long *rc_p); 1438 void (*task_reparent_to_init) (struct task_struct *p); 1439 void (*task_to_inode) (struct task_struct *p, struct inode *inode); 1440 1441 int (*ipc_permission) (struct kern_ipc_perm *ipcp, short flag); 1442 void (*ipc_getsecid) (struct kern_ipc_perm *ipcp, u32 *secid); 1443 1444 int (*msg_msg_alloc_security) (struct msg_msg *msg); 1445 void (*msg_msg_free_security) (struct msg_msg *msg); 1446 1447 int (*msg_queue_alloc_security) (struct msg_queue *msq); 1448 void (*msg_queue_free_security) (struct msg_queue *msq); 1449 int (*msg_queue_associate) (struct msg_queue *msq, int msqflg); 1450 int (*msg_queue_msgctl) (struct msg_queue *msq, int cmd); 1451 int (*msg_queue_msgsnd) (struct msg_queue *msq, 1452 struct msg_msg *msg, int msqflg); 1453 int (*msg_queue_msgrcv) (struct msg_queue *msq, 1454 struct msg_msg *msg, 1455 struct task_struct *target, 1456 long type, int mode); 1457 1458 int (*shm_alloc_security) (struct shmid_kernel *shp); 1459 void (*shm_free_security) (struct shmid_kernel *shp); 1460 int (*shm_associate) (struct shmid_kernel *shp, int shmflg); 1461 int (*shm_shmctl) (struct shmid_kernel *shp, int cmd); 1462 int (*shm_shmat) (struct shmid_kernel *shp, 1463 char __user *shmaddr, int shmflg); 1464 1465 int (*sem_alloc_security) (struct sem_array *sma); 1466 void (*sem_free_security) (struct sem_array *sma); 1467 int (*sem_associate) (struct sem_array *sma, int semflg); 1468 int (*sem_semctl) (struct sem_array *sma, int cmd); 1469 int (*sem_semop) (struct sem_array *sma, 1470 struct sembuf *sops, unsigned nsops, int alter); 1471 1472 int (*netlink_send) (struct sock *sk, struct sk_buff *skb); 1473 int (*netlink_recv) (struct sk_buff *skb, int cap); 1474 1475 /* allow module stacking */ 1476 int (*register_security) (const char *name, 1477 struct security_operations *ops); 1478 1479 void (*d_instantiate) (struct dentry *dentry, struct inode *inode); 1480 1481 int (*getprocattr) (struct task_struct *p, char *name, char **value); 1482 int (*setprocattr) (struct task_struct *p, char *name, void *value, size_t size); 1483 int (*secid_to_secctx) (u32 secid, char **secdata, u32 *seclen); 1484 int (*secctx_to_secid) (const char *secdata, u32 seclen, u32 *secid); 1485 void (*release_secctx) (char *secdata, u32 seclen); 1486 1487 #ifdef CONFIG_SECURITY_NETWORK 1488 int (*unix_stream_connect) (struct socket *sock, 1489 struct socket *other, struct sock *newsk); 1490 int (*unix_may_send) (struct socket *sock, struct socket *other); 1491 1492 int (*socket_create) (int family, int type, int protocol, int kern); 1493 int (*socket_post_create) (struct socket *sock, int family, 1494 int type, int protocol, int kern); 1495 int (*socket_bind) (struct socket *sock, 1496 struct sockaddr *address, int addrlen); 1497 int (*socket_connect) (struct socket *sock, 1498 struct sockaddr *address, int addrlen); 1499 int (*socket_listen) (struct socket *sock, int backlog); 1500 int (*socket_accept) (struct socket *sock, struct socket *newsock); 1501 void (*socket_post_accept) (struct socket *sock, 1502 struct socket *newsock); 1503 int (*socket_sendmsg) (struct socket *sock, 1504 struct msghdr *msg, int size); 1505 int (*socket_recvmsg) (struct socket *sock, 1506 struct msghdr *msg, int size, int flags); 1507 int (*socket_getsockname) (struct socket *sock); 1508 int (*socket_getpeername) (struct socket *sock); 1509 int (*socket_getsockopt) (struct socket *sock, int level, int optname); 1510 int (*socket_setsockopt) (struct socket *sock, int level, int optname); 1511 int (*socket_shutdown) (struct socket *sock, int how); 1512 int (*socket_sock_rcv_skb) (struct sock *sk, struct sk_buff *skb); 1513 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); 1514 int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid); 1515 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); 1516 void (*sk_free_security) (struct sock *sk); 1517 void (*sk_clone_security) (const struct sock *sk, struct sock *newsk); 1518 void (*sk_getsecid) (struct sock *sk, u32 *secid); 1519 void (*sock_graft) (struct sock *sk, struct socket *parent); 1520 int (*inet_conn_request) (struct sock *sk, struct sk_buff *skb, 1521 struct request_sock *req); 1522 void (*inet_csk_clone) (struct sock *newsk, const struct request_sock *req); 1523 void (*inet_conn_established) (struct sock *sk, struct sk_buff *skb); 1524 void (*req_classify_flow) (const struct request_sock *req, struct flowi *fl); 1525 #endif /* CONFIG_SECURITY_NETWORK */ 1526 1527 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1528 int (*xfrm_policy_alloc_security) (struct xfrm_sec_ctx **ctxp, 1529 struct xfrm_user_sec_ctx *sec_ctx); 1530 int (*xfrm_policy_clone_security) (struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctx); 1531 void (*xfrm_policy_free_security) (struct xfrm_sec_ctx *ctx); 1532 int (*xfrm_policy_delete_security) (struct xfrm_sec_ctx *ctx); 1533 int (*xfrm_state_alloc_security) (struct xfrm_state *x, 1534 struct xfrm_user_sec_ctx *sec_ctx, 1535 u32 secid); 1536 void (*xfrm_state_free_security) (struct xfrm_state *x); 1537 int (*xfrm_state_delete_security) (struct xfrm_state *x); 1538 int (*xfrm_policy_lookup) (struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir); 1539 int (*xfrm_state_pol_flow_match) (struct xfrm_state *x, 1540 struct xfrm_policy *xp, 1541 struct flowi *fl); 1542 int (*xfrm_decode_session) (struct sk_buff *skb, u32 *secid, int ckall); 1543 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1544 1545 /* key management security hooks */ 1546 #ifdef CONFIG_KEYS 1547 int (*key_alloc) (struct key *key, struct task_struct *tsk, unsigned long flags); 1548 void (*key_free) (struct key *key); 1549 int (*key_permission) (key_ref_t key_ref, 1550 struct task_struct *context, 1551 key_perm_t perm); 1552 int (*key_getsecurity)(struct key *key, char **_buffer); 1553 #endif /* CONFIG_KEYS */ 1554 1555 #ifdef CONFIG_AUDIT 1556 int (*audit_rule_init) (u32 field, u32 op, char *rulestr, void **lsmrule); 1557 int (*audit_rule_known) (struct audit_krule *krule); 1558 int (*audit_rule_match) (u32 secid, u32 field, u32 op, void *lsmrule, 1559 struct audit_context *actx); 1560 void (*audit_rule_free) (void *lsmrule); 1561 #endif /* CONFIG_AUDIT */ 1562 }; 1563 1564 /* prototypes */ 1565 extern int security_init(void); 1566 extern int security_module_enable(struct security_operations *ops); 1567 extern int register_security(struct security_operations *ops); 1568 extern int mod_reg_security(const char *name, struct security_operations *ops); 1569 extern struct dentry *securityfs_create_file(const char *name, mode_t mode, 1570 struct dentry *parent, void *data, 1571 const struct file_operations *fops); 1572 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); 1573 extern void securityfs_remove(struct dentry *dentry); 1574 1575 /* Security operations */ 1576 int security_ptrace(struct task_struct *parent, struct task_struct *child); 1577 int security_capget(struct task_struct *target, 1578 kernel_cap_t *effective, 1579 kernel_cap_t *inheritable, 1580 kernel_cap_t *permitted); 1581 int security_capset_check(struct task_struct *target, 1582 kernel_cap_t *effective, 1583 kernel_cap_t *inheritable, 1584 kernel_cap_t *permitted); 1585 void security_capset_set(struct task_struct *target, 1586 kernel_cap_t *effective, 1587 kernel_cap_t *inheritable, 1588 kernel_cap_t *permitted); 1589 int security_capable(struct task_struct *tsk, int cap); 1590 int security_acct(struct file *file); 1591 int security_sysctl(struct ctl_table *table, int op); 1592 int security_quotactl(int cmds, int type, int id, struct super_block *sb); 1593 int security_quota_on(struct dentry *dentry); 1594 int security_syslog(int type); 1595 int security_settime(struct timespec *ts, struct timezone *tz); 1596 int security_vm_enough_memory(long pages); 1597 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages); 1598 int security_bprm_alloc(struct linux_binprm *bprm); 1599 void security_bprm_free(struct linux_binprm *bprm); 1600 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe); 1601 void security_bprm_post_apply_creds(struct linux_binprm *bprm); 1602 int security_bprm_set(struct linux_binprm *bprm); 1603 int security_bprm_check(struct linux_binprm *bprm); 1604 int security_bprm_secureexec(struct linux_binprm *bprm); 1605 int security_sb_alloc(struct super_block *sb); 1606 void security_sb_free(struct super_block *sb); 1607 int security_sb_copy_data(char *orig, char *copy); 1608 int security_sb_kern_mount(struct super_block *sb, void *data); 1609 int security_sb_statfs(struct dentry *dentry); 1610 int security_sb_mount(char *dev_name, struct path *path, 1611 char *type, unsigned long flags, void *data); 1612 int security_sb_check_sb(struct vfsmount *mnt, struct path *path); 1613 int security_sb_umount(struct vfsmount *mnt, int flags); 1614 void security_sb_umount_close(struct vfsmount *mnt); 1615 void security_sb_umount_busy(struct vfsmount *mnt); 1616 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data); 1617 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint); 1618 int security_sb_pivotroot(struct path *old_path, struct path *new_path); 1619 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path); 1620 int security_sb_get_mnt_opts(const struct super_block *sb, 1621 struct security_mnt_opts *opts); 1622 int security_sb_set_mnt_opts(struct super_block *sb, struct security_mnt_opts *opts); 1623 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 1624 struct super_block *newsb); 1625 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts); 1626 1627 int security_inode_alloc(struct inode *inode); 1628 void security_inode_free(struct inode *inode); 1629 int security_inode_init_security(struct inode *inode, struct inode *dir, 1630 char **name, void **value, size_t *len); 1631 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode); 1632 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1633 struct dentry *new_dentry); 1634 int security_inode_unlink(struct inode *dir, struct dentry *dentry); 1635 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1636 const char *old_name); 1637 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode); 1638 int security_inode_rmdir(struct inode *dir, struct dentry *dentry); 1639 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev); 1640 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1641 struct inode *new_dir, struct dentry *new_dentry); 1642 int security_inode_readlink(struct dentry *dentry); 1643 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd); 1644 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd); 1645 int security_inode_setattr(struct dentry *dentry, struct iattr *attr); 1646 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry); 1647 void security_inode_delete(struct inode *inode); 1648 int security_inode_setxattr(struct dentry *dentry, const char *name, 1649 const void *value, size_t size, int flags); 1650 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1651 const void *value, size_t size, int flags); 1652 int security_inode_getxattr(struct dentry *dentry, const char *name); 1653 int security_inode_listxattr(struct dentry *dentry); 1654 int security_inode_removexattr(struct dentry *dentry, const char *name); 1655 int security_inode_need_killpriv(struct dentry *dentry); 1656 int security_inode_killpriv(struct dentry *dentry); 1657 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc); 1658 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags); 1659 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size); 1660 void security_inode_getsecid(const struct inode *inode, u32 *secid); 1661 int security_file_permission(struct file *file, int mask); 1662 int security_file_alloc(struct file *file); 1663 void security_file_free(struct file *file); 1664 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1665 int security_file_mmap(struct file *file, unsigned long reqprot, 1666 unsigned long prot, unsigned long flags, 1667 unsigned long addr, unsigned long addr_only); 1668 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1669 unsigned long prot); 1670 int security_file_lock(struct file *file, unsigned int cmd); 1671 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg); 1672 int security_file_set_fowner(struct file *file); 1673 int security_file_send_sigiotask(struct task_struct *tsk, 1674 struct fown_struct *fown, int sig); 1675 int security_file_receive(struct file *file); 1676 int security_dentry_open(struct file *file); 1677 int security_task_create(unsigned long clone_flags); 1678 int security_task_alloc(struct task_struct *p); 1679 void security_task_free(struct task_struct *p); 1680 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags); 1681 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 1682 uid_t old_suid, int flags); 1683 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags); 1684 int security_task_setpgid(struct task_struct *p, pid_t pgid); 1685 int security_task_getpgid(struct task_struct *p); 1686 int security_task_getsid(struct task_struct *p); 1687 void security_task_getsecid(struct task_struct *p, u32 *secid); 1688 int security_task_setgroups(struct group_info *group_info); 1689 int security_task_setnice(struct task_struct *p, int nice); 1690 int security_task_setioprio(struct task_struct *p, int ioprio); 1691 int security_task_getioprio(struct task_struct *p); 1692 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim); 1693 int security_task_setscheduler(struct task_struct *p, 1694 int policy, struct sched_param *lp); 1695 int security_task_getscheduler(struct task_struct *p); 1696 int security_task_movememory(struct task_struct *p); 1697 int security_task_kill(struct task_struct *p, struct siginfo *info, 1698 int sig, u32 secid); 1699 int security_task_wait(struct task_struct *p); 1700 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1701 unsigned long arg4, unsigned long arg5, long *rc_p); 1702 void security_task_reparent_to_init(struct task_struct *p); 1703 void security_task_to_inode(struct task_struct *p, struct inode *inode); 1704 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag); 1705 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid); 1706 int security_msg_msg_alloc(struct msg_msg *msg); 1707 void security_msg_msg_free(struct msg_msg *msg); 1708 int security_msg_queue_alloc(struct msg_queue *msq); 1709 void security_msg_queue_free(struct msg_queue *msq); 1710 int security_msg_queue_associate(struct msg_queue *msq, int msqflg); 1711 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd); 1712 int security_msg_queue_msgsnd(struct msg_queue *msq, 1713 struct msg_msg *msg, int msqflg); 1714 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 1715 struct task_struct *target, long type, int mode); 1716 int security_shm_alloc(struct shmid_kernel *shp); 1717 void security_shm_free(struct shmid_kernel *shp); 1718 int security_shm_associate(struct shmid_kernel *shp, int shmflg); 1719 int security_shm_shmctl(struct shmid_kernel *shp, int cmd); 1720 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg); 1721 int security_sem_alloc(struct sem_array *sma); 1722 void security_sem_free(struct sem_array *sma); 1723 int security_sem_associate(struct sem_array *sma, int semflg); 1724 int security_sem_semctl(struct sem_array *sma, int cmd); 1725 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 1726 unsigned nsops, int alter); 1727 void security_d_instantiate(struct dentry *dentry, struct inode *inode); 1728 int security_getprocattr(struct task_struct *p, char *name, char **value); 1729 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size); 1730 int security_netlink_send(struct sock *sk, struct sk_buff *skb); 1731 int security_netlink_recv(struct sk_buff *skb, int cap); 1732 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen); 1733 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid); 1734 void security_release_secctx(char *secdata, u32 seclen); 1735 1736 #else /* CONFIG_SECURITY */ 1737 struct security_mnt_opts { 1738 }; 1739 1740 static inline void security_init_mnt_opts(struct security_mnt_opts *opts) 1741 { 1742 } 1743 1744 static inline void security_free_mnt_opts(struct security_mnt_opts *opts) 1745 { 1746 } 1747 1748 /* 1749 * This is the default capabilities functionality. Most of these functions 1750 * are just stubbed out, but a few must call the proper capable code. 1751 */ 1752 1753 static inline int security_init(void) 1754 { 1755 return 0; 1756 } 1757 1758 static inline int security_ptrace(struct task_struct *parent, struct task_struct *child) 1759 { 1760 return cap_ptrace(parent, child); 1761 } 1762 1763 static inline int security_capget(struct task_struct *target, 1764 kernel_cap_t *effective, 1765 kernel_cap_t *inheritable, 1766 kernel_cap_t *permitted) 1767 { 1768 return cap_capget(target, effective, inheritable, permitted); 1769 } 1770 1771 static inline int security_capset_check(struct task_struct *target, 1772 kernel_cap_t *effective, 1773 kernel_cap_t *inheritable, 1774 kernel_cap_t *permitted) 1775 { 1776 return cap_capset_check(target, effective, inheritable, permitted); 1777 } 1778 1779 static inline void security_capset_set(struct task_struct *target, 1780 kernel_cap_t *effective, 1781 kernel_cap_t *inheritable, 1782 kernel_cap_t *permitted) 1783 { 1784 cap_capset_set(target, effective, inheritable, permitted); 1785 } 1786 1787 static inline int security_capable(struct task_struct *tsk, int cap) 1788 { 1789 return cap_capable(tsk, cap); 1790 } 1791 1792 static inline int security_acct(struct file *file) 1793 { 1794 return 0; 1795 } 1796 1797 static inline int security_sysctl(struct ctl_table *table, int op) 1798 { 1799 return 0; 1800 } 1801 1802 static inline int security_quotactl(int cmds, int type, int id, 1803 struct super_block *sb) 1804 { 1805 return 0; 1806 } 1807 1808 static inline int security_quota_on(struct dentry *dentry) 1809 { 1810 return 0; 1811 } 1812 1813 static inline int security_syslog(int type) 1814 { 1815 return cap_syslog(type); 1816 } 1817 1818 static inline int security_settime(struct timespec *ts, struct timezone *tz) 1819 { 1820 return cap_settime(ts, tz); 1821 } 1822 1823 static inline int security_vm_enough_memory(long pages) 1824 { 1825 return cap_vm_enough_memory(current->mm, pages); 1826 } 1827 1828 static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1829 { 1830 return cap_vm_enough_memory(mm, pages); 1831 } 1832 1833 static inline int security_bprm_alloc(struct linux_binprm *bprm) 1834 { 1835 return 0; 1836 } 1837 1838 static inline void security_bprm_free(struct linux_binprm *bprm) 1839 { } 1840 1841 static inline void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 1842 { 1843 cap_bprm_apply_creds(bprm, unsafe); 1844 } 1845 1846 static inline void security_bprm_post_apply_creds(struct linux_binprm *bprm) 1847 { 1848 return; 1849 } 1850 1851 static inline int security_bprm_set(struct linux_binprm *bprm) 1852 { 1853 return cap_bprm_set_security(bprm); 1854 } 1855 1856 static inline int security_bprm_check(struct linux_binprm *bprm) 1857 { 1858 return 0; 1859 } 1860 1861 static inline int security_bprm_secureexec(struct linux_binprm *bprm) 1862 { 1863 return cap_bprm_secureexec(bprm); 1864 } 1865 1866 static inline int security_sb_alloc(struct super_block *sb) 1867 { 1868 return 0; 1869 } 1870 1871 static inline void security_sb_free(struct super_block *sb) 1872 { } 1873 1874 static inline int security_sb_copy_data(char *orig, char *copy) 1875 { 1876 return 0; 1877 } 1878 1879 static inline int security_sb_kern_mount(struct super_block *sb, void *data) 1880 { 1881 return 0; 1882 } 1883 1884 static inline int security_sb_statfs(struct dentry *dentry) 1885 { 1886 return 0; 1887 } 1888 1889 static inline int security_sb_mount(char *dev_name, struct path *path, 1890 char *type, unsigned long flags, 1891 void *data) 1892 { 1893 return 0; 1894 } 1895 1896 static inline int security_sb_check_sb(struct vfsmount *mnt, 1897 struct path *path) 1898 { 1899 return 0; 1900 } 1901 1902 static inline int security_sb_umount(struct vfsmount *mnt, int flags) 1903 { 1904 return 0; 1905 } 1906 1907 static inline void security_sb_umount_close(struct vfsmount *mnt) 1908 { } 1909 1910 static inline void security_sb_umount_busy(struct vfsmount *mnt) 1911 { } 1912 1913 static inline void security_sb_post_remount(struct vfsmount *mnt, 1914 unsigned long flags, void *data) 1915 { } 1916 1917 static inline void security_sb_post_addmount(struct vfsmount *mnt, 1918 struct path *mountpoint) 1919 { } 1920 1921 static inline int security_sb_pivotroot(struct path *old_path, 1922 struct path *new_path) 1923 { 1924 return 0; 1925 } 1926 1927 static inline void security_sb_post_pivotroot(struct path *old_path, 1928 struct path *new_path) 1929 { } 1930 static inline int security_sb_get_mnt_opts(const struct super_block *sb, 1931 struct security_mnt_opts *opts) 1932 { 1933 security_init_mnt_opts(opts); 1934 return 0; 1935 } 1936 1937 static inline int security_sb_set_mnt_opts(struct super_block *sb, 1938 struct security_mnt_opts *opts) 1939 { 1940 return 0; 1941 } 1942 1943 static inline void security_sb_clone_mnt_opts(const struct super_block *oldsb, 1944 struct super_block *newsb) 1945 { } 1946 1947 static inline int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 1948 { 1949 return 0; 1950 } 1951 1952 static inline int security_inode_alloc(struct inode *inode) 1953 { 1954 return 0; 1955 } 1956 1957 static inline void security_inode_free(struct inode *inode) 1958 { } 1959 1960 static inline int security_inode_init_security(struct inode *inode, 1961 struct inode *dir, 1962 char **name, 1963 void **value, 1964 size_t *len) 1965 { 1966 return -EOPNOTSUPP; 1967 } 1968 1969 static inline int security_inode_create(struct inode *dir, 1970 struct dentry *dentry, 1971 int mode) 1972 { 1973 return 0; 1974 } 1975 1976 static inline int security_inode_link(struct dentry *old_dentry, 1977 struct inode *dir, 1978 struct dentry *new_dentry) 1979 { 1980 return 0; 1981 } 1982 1983 static inline int security_inode_unlink(struct inode *dir, 1984 struct dentry *dentry) 1985 { 1986 return 0; 1987 } 1988 1989 static inline int security_inode_symlink(struct inode *dir, 1990 struct dentry *dentry, 1991 const char *old_name) 1992 { 1993 return 0; 1994 } 1995 1996 static inline int security_inode_mkdir(struct inode *dir, 1997 struct dentry *dentry, 1998 int mode) 1999 { 2000 return 0; 2001 } 2002 2003 static inline int security_inode_rmdir(struct inode *dir, 2004 struct dentry *dentry) 2005 { 2006 return 0; 2007 } 2008 2009 static inline int security_inode_mknod(struct inode *dir, 2010 struct dentry *dentry, 2011 int mode, dev_t dev) 2012 { 2013 return 0; 2014 } 2015 2016 static inline int security_inode_rename(struct inode *old_dir, 2017 struct dentry *old_dentry, 2018 struct inode *new_dir, 2019 struct dentry *new_dentry) 2020 { 2021 return 0; 2022 } 2023 2024 static inline int security_inode_readlink(struct dentry *dentry) 2025 { 2026 return 0; 2027 } 2028 2029 static inline int security_inode_follow_link(struct dentry *dentry, 2030 struct nameidata *nd) 2031 { 2032 return 0; 2033 } 2034 2035 static inline int security_inode_permission(struct inode *inode, int mask, 2036 struct nameidata *nd) 2037 { 2038 return 0; 2039 } 2040 2041 static inline int security_inode_setattr(struct dentry *dentry, 2042 struct iattr *attr) 2043 { 2044 return 0; 2045 } 2046 2047 static inline int security_inode_getattr(struct vfsmount *mnt, 2048 struct dentry *dentry) 2049 { 2050 return 0; 2051 } 2052 2053 static inline void security_inode_delete(struct inode *inode) 2054 { } 2055 2056 static inline int security_inode_setxattr(struct dentry *dentry, 2057 const char *name, const void *value, size_t size, int flags) 2058 { 2059 return cap_inode_setxattr(dentry, name, value, size, flags); 2060 } 2061 2062 static inline void security_inode_post_setxattr(struct dentry *dentry, 2063 const char *name, const void *value, size_t size, int flags) 2064 { } 2065 2066 static inline int security_inode_getxattr(struct dentry *dentry, 2067 const char *name) 2068 { 2069 return 0; 2070 } 2071 2072 static inline int security_inode_listxattr(struct dentry *dentry) 2073 { 2074 return 0; 2075 } 2076 2077 static inline int security_inode_removexattr(struct dentry *dentry, 2078 const char *name) 2079 { 2080 return cap_inode_removexattr(dentry, name); 2081 } 2082 2083 static inline int security_inode_need_killpriv(struct dentry *dentry) 2084 { 2085 return cap_inode_need_killpriv(dentry); 2086 } 2087 2088 static inline int security_inode_killpriv(struct dentry *dentry) 2089 { 2090 return cap_inode_killpriv(dentry); 2091 } 2092 2093 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2094 { 2095 return -EOPNOTSUPP; 2096 } 2097 2098 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 2099 { 2100 return -EOPNOTSUPP; 2101 } 2102 2103 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2104 { 2105 return 0; 2106 } 2107 2108 static inline void security_inode_getsecid(const struct inode *inode, u32 *secid) 2109 { 2110 *secid = 0; 2111 } 2112 2113 static inline int security_file_permission(struct file *file, int mask) 2114 { 2115 return 0; 2116 } 2117 2118 static inline int security_file_alloc(struct file *file) 2119 { 2120 return 0; 2121 } 2122 2123 static inline void security_file_free(struct file *file) 2124 { } 2125 2126 static inline int security_file_ioctl(struct file *file, unsigned int cmd, 2127 unsigned long arg) 2128 { 2129 return 0; 2130 } 2131 2132 static inline int security_file_mmap(struct file *file, unsigned long reqprot, 2133 unsigned long prot, 2134 unsigned long flags, 2135 unsigned long addr, 2136 unsigned long addr_only) 2137 { 2138 return 0; 2139 } 2140 2141 static inline int security_file_mprotect(struct vm_area_struct *vma, 2142 unsigned long reqprot, 2143 unsigned long prot) 2144 { 2145 return 0; 2146 } 2147 2148 static inline int security_file_lock(struct file *file, unsigned int cmd) 2149 { 2150 return 0; 2151 } 2152 2153 static inline int security_file_fcntl(struct file *file, unsigned int cmd, 2154 unsigned long arg) 2155 { 2156 return 0; 2157 } 2158 2159 static inline int security_file_set_fowner(struct file *file) 2160 { 2161 return 0; 2162 } 2163 2164 static inline int security_file_send_sigiotask(struct task_struct *tsk, 2165 struct fown_struct *fown, 2166 int sig) 2167 { 2168 return 0; 2169 } 2170 2171 static inline int security_file_receive(struct file *file) 2172 { 2173 return 0; 2174 } 2175 2176 static inline int security_dentry_open(struct file *file) 2177 { 2178 return 0; 2179 } 2180 2181 static inline int security_task_create(unsigned long clone_flags) 2182 { 2183 return 0; 2184 } 2185 2186 static inline int security_task_alloc(struct task_struct *p) 2187 { 2188 return 0; 2189 } 2190 2191 static inline void security_task_free(struct task_struct *p) 2192 { } 2193 2194 static inline int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, 2195 int flags) 2196 { 2197 return 0; 2198 } 2199 2200 static inline int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 2201 uid_t old_suid, int flags) 2202 { 2203 return cap_task_post_setuid(old_ruid, old_euid, old_suid, flags); 2204 } 2205 2206 static inline int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, 2207 int flags) 2208 { 2209 return 0; 2210 } 2211 2212 static inline int security_task_setpgid(struct task_struct *p, pid_t pgid) 2213 { 2214 return 0; 2215 } 2216 2217 static inline int security_task_getpgid(struct task_struct *p) 2218 { 2219 return 0; 2220 } 2221 2222 static inline int security_task_getsid(struct task_struct *p) 2223 { 2224 return 0; 2225 } 2226 2227 static inline void security_task_getsecid(struct task_struct *p, u32 *secid) 2228 { 2229 *secid = 0; 2230 } 2231 2232 static inline int security_task_setgroups(struct group_info *group_info) 2233 { 2234 return 0; 2235 } 2236 2237 static inline int security_task_setnice(struct task_struct *p, int nice) 2238 { 2239 return cap_task_setnice(p, nice); 2240 } 2241 2242 static inline int security_task_setioprio(struct task_struct *p, int ioprio) 2243 { 2244 return cap_task_setioprio(p, ioprio); 2245 } 2246 2247 static inline int security_task_getioprio(struct task_struct *p) 2248 { 2249 return 0; 2250 } 2251 2252 static inline int security_task_setrlimit(unsigned int resource, 2253 struct rlimit *new_rlim) 2254 { 2255 return 0; 2256 } 2257 2258 static inline int security_task_setscheduler(struct task_struct *p, 2259 int policy, 2260 struct sched_param *lp) 2261 { 2262 return cap_task_setscheduler(p, policy, lp); 2263 } 2264 2265 static inline int security_task_getscheduler(struct task_struct *p) 2266 { 2267 return 0; 2268 } 2269 2270 static inline int security_task_movememory(struct task_struct *p) 2271 { 2272 return 0; 2273 } 2274 2275 static inline int security_task_kill(struct task_struct *p, 2276 struct siginfo *info, int sig, 2277 u32 secid) 2278 { 2279 return 0; 2280 } 2281 2282 static inline int security_task_wait(struct task_struct *p) 2283 { 2284 return 0; 2285 } 2286 2287 static inline int security_task_prctl(int option, unsigned long arg2, 2288 unsigned long arg3, 2289 unsigned long arg4, 2290 unsigned long arg5, long *rc_p) 2291 { 2292 return cap_task_prctl(option, arg2, arg3, arg3, arg5, rc_p); 2293 } 2294 2295 static inline void security_task_reparent_to_init(struct task_struct *p) 2296 { 2297 cap_task_reparent_to_init(p); 2298 } 2299 2300 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 2301 { } 2302 2303 static inline int security_ipc_permission(struct kern_ipc_perm *ipcp, 2304 short flag) 2305 { 2306 return 0; 2307 } 2308 2309 static inline void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 2310 { 2311 *secid = 0; 2312 } 2313 2314 static inline int security_msg_msg_alloc(struct msg_msg *msg) 2315 { 2316 return 0; 2317 } 2318 2319 static inline void security_msg_msg_free(struct msg_msg *msg) 2320 { } 2321 2322 static inline int security_msg_queue_alloc(struct msg_queue *msq) 2323 { 2324 return 0; 2325 } 2326 2327 static inline void security_msg_queue_free(struct msg_queue *msq) 2328 { } 2329 2330 static inline int security_msg_queue_associate(struct msg_queue *msq, 2331 int msqflg) 2332 { 2333 return 0; 2334 } 2335 2336 static inline int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 2337 { 2338 return 0; 2339 } 2340 2341 static inline int security_msg_queue_msgsnd(struct msg_queue *msq, 2342 struct msg_msg *msg, int msqflg) 2343 { 2344 return 0; 2345 } 2346 2347 static inline int security_msg_queue_msgrcv(struct msg_queue *msq, 2348 struct msg_msg *msg, 2349 struct task_struct *target, 2350 long type, int mode) 2351 { 2352 return 0; 2353 } 2354 2355 static inline int security_shm_alloc(struct shmid_kernel *shp) 2356 { 2357 return 0; 2358 } 2359 2360 static inline void security_shm_free(struct shmid_kernel *shp) 2361 { } 2362 2363 static inline int security_shm_associate(struct shmid_kernel *shp, 2364 int shmflg) 2365 { 2366 return 0; 2367 } 2368 2369 static inline int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 2370 { 2371 return 0; 2372 } 2373 2374 static inline int security_shm_shmat(struct shmid_kernel *shp, 2375 char __user *shmaddr, int shmflg) 2376 { 2377 return 0; 2378 } 2379 2380 static inline int security_sem_alloc(struct sem_array *sma) 2381 { 2382 return 0; 2383 } 2384 2385 static inline void security_sem_free(struct sem_array *sma) 2386 { } 2387 2388 static inline int security_sem_associate(struct sem_array *sma, int semflg) 2389 { 2390 return 0; 2391 } 2392 2393 static inline int security_sem_semctl(struct sem_array *sma, int cmd) 2394 { 2395 return 0; 2396 } 2397 2398 static inline int security_sem_semop(struct sem_array *sma, 2399 struct sembuf *sops, unsigned nsops, 2400 int alter) 2401 { 2402 return 0; 2403 } 2404 2405 static inline void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2406 { } 2407 2408 static inline int security_getprocattr(struct task_struct *p, char *name, char **value) 2409 { 2410 return -EINVAL; 2411 } 2412 2413 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2414 { 2415 return -EINVAL; 2416 } 2417 2418 static inline int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2419 { 2420 return cap_netlink_send(sk, skb); 2421 } 2422 2423 static inline int security_netlink_recv(struct sk_buff *skb, int cap) 2424 { 2425 return cap_netlink_recv(skb, cap); 2426 } 2427 2428 static inline struct dentry *securityfs_create_dir(const char *name, 2429 struct dentry *parent) 2430 { 2431 return ERR_PTR(-ENODEV); 2432 } 2433 2434 static inline struct dentry *securityfs_create_file(const char *name, 2435 mode_t mode, 2436 struct dentry *parent, 2437 void *data, 2438 const struct file_operations *fops) 2439 { 2440 return ERR_PTR(-ENODEV); 2441 } 2442 2443 static inline void securityfs_remove(struct dentry *dentry) 2444 { 2445 } 2446 2447 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2448 { 2449 return -EOPNOTSUPP; 2450 } 2451 2452 static inline int security_secctx_to_secid(const char *secdata, 2453 u32 seclen, 2454 u32 *secid) 2455 { 2456 return -EOPNOTSUPP; 2457 } 2458 2459 static inline void security_release_secctx(char *secdata, u32 seclen) 2460 { 2461 } 2462 #endif /* CONFIG_SECURITY */ 2463 2464 #ifdef CONFIG_SECURITY_NETWORK 2465 2466 int security_unix_stream_connect(struct socket *sock, struct socket *other, 2467 struct sock *newsk); 2468 int security_unix_may_send(struct socket *sock, struct socket *other); 2469 int security_socket_create(int family, int type, int protocol, int kern); 2470 int security_socket_post_create(struct socket *sock, int family, 2471 int type, int protocol, int kern); 2472 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen); 2473 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen); 2474 int security_socket_listen(struct socket *sock, int backlog); 2475 int security_socket_accept(struct socket *sock, struct socket *newsock); 2476 void security_socket_post_accept(struct socket *sock, struct socket *newsock); 2477 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size); 2478 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2479 int size, int flags); 2480 int security_socket_getsockname(struct socket *sock); 2481 int security_socket_getpeername(struct socket *sock); 2482 int security_socket_getsockopt(struct socket *sock, int level, int optname); 2483 int security_socket_setsockopt(struct socket *sock, int level, int optname); 2484 int security_socket_shutdown(struct socket *sock, int how); 2485 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb); 2486 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2487 int __user *optlen, unsigned len); 2488 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid); 2489 int security_sk_alloc(struct sock *sk, int family, gfp_t priority); 2490 void security_sk_free(struct sock *sk); 2491 void security_sk_clone(const struct sock *sk, struct sock *newsk); 2492 void security_sk_classify_flow(struct sock *sk, struct flowi *fl); 2493 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl); 2494 void security_sock_graft(struct sock*sk, struct socket *parent); 2495 int security_inet_conn_request(struct sock *sk, 2496 struct sk_buff *skb, struct request_sock *req); 2497 void security_inet_csk_clone(struct sock *newsk, 2498 const struct request_sock *req); 2499 void security_inet_conn_established(struct sock *sk, 2500 struct sk_buff *skb); 2501 2502 #else /* CONFIG_SECURITY_NETWORK */ 2503 static inline int security_unix_stream_connect(struct socket *sock, 2504 struct socket *other, 2505 struct sock *newsk) 2506 { 2507 return 0; 2508 } 2509 2510 static inline int security_unix_may_send(struct socket *sock, 2511 struct socket *other) 2512 { 2513 return 0; 2514 } 2515 2516 static inline int security_socket_create(int family, int type, 2517 int protocol, int kern) 2518 { 2519 return 0; 2520 } 2521 2522 static inline int security_socket_post_create(struct socket *sock, 2523 int family, 2524 int type, 2525 int protocol, int kern) 2526 { 2527 return 0; 2528 } 2529 2530 static inline int security_socket_bind(struct socket *sock, 2531 struct sockaddr *address, 2532 int addrlen) 2533 { 2534 return 0; 2535 } 2536 2537 static inline int security_socket_connect(struct socket *sock, 2538 struct sockaddr *address, 2539 int addrlen) 2540 { 2541 return 0; 2542 } 2543 2544 static inline int security_socket_listen(struct socket *sock, int backlog) 2545 { 2546 return 0; 2547 } 2548 2549 static inline int security_socket_accept(struct socket *sock, 2550 struct socket *newsock) 2551 { 2552 return 0; 2553 } 2554 2555 static inline void security_socket_post_accept(struct socket *sock, 2556 struct socket *newsock) 2557 { 2558 } 2559 2560 static inline int security_socket_sendmsg(struct socket *sock, 2561 struct msghdr *msg, int size) 2562 { 2563 return 0; 2564 } 2565 2566 static inline int security_socket_recvmsg(struct socket *sock, 2567 struct msghdr *msg, int size, 2568 int flags) 2569 { 2570 return 0; 2571 } 2572 2573 static inline int security_socket_getsockname(struct socket *sock) 2574 { 2575 return 0; 2576 } 2577 2578 static inline int security_socket_getpeername(struct socket *sock) 2579 { 2580 return 0; 2581 } 2582 2583 static inline int security_socket_getsockopt(struct socket *sock, 2584 int level, int optname) 2585 { 2586 return 0; 2587 } 2588 2589 static inline int security_socket_setsockopt(struct socket *sock, 2590 int level, int optname) 2591 { 2592 return 0; 2593 } 2594 2595 static inline int security_socket_shutdown(struct socket *sock, int how) 2596 { 2597 return 0; 2598 } 2599 static inline int security_sock_rcv_skb(struct sock *sk, 2600 struct sk_buff *skb) 2601 { 2602 return 0; 2603 } 2604 2605 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2606 int __user *optlen, unsigned len) 2607 { 2608 return -ENOPROTOOPT; 2609 } 2610 2611 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2612 { 2613 return -ENOPROTOOPT; 2614 } 2615 2616 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2617 { 2618 return 0; 2619 } 2620 2621 static inline void security_sk_free(struct sock *sk) 2622 { 2623 } 2624 2625 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) 2626 { 2627 } 2628 2629 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2630 { 2631 } 2632 2633 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2634 { 2635 } 2636 2637 static inline void security_sock_graft(struct sock *sk, struct socket *parent) 2638 { 2639 } 2640 2641 static inline int security_inet_conn_request(struct sock *sk, 2642 struct sk_buff *skb, struct request_sock *req) 2643 { 2644 return 0; 2645 } 2646 2647 static inline void security_inet_csk_clone(struct sock *newsk, 2648 const struct request_sock *req) 2649 { 2650 } 2651 2652 static inline void security_inet_conn_established(struct sock *sk, 2653 struct sk_buff *skb) 2654 { 2655 } 2656 #endif /* CONFIG_SECURITY_NETWORK */ 2657 2658 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2659 2660 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx); 2661 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp); 2662 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx); 2663 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx); 2664 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx); 2665 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2666 struct xfrm_sec_ctx *polsec, u32 secid); 2667 int security_xfrm_state_delete(struct xfrm_state *x); 2668 void security_xfrm_state_free(struct xfrm_state *x); 2669 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir); 2670 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2671 struct xfrm_policy *xp, struct flowi *fl); 2672 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid); 2673 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl); 2674 2675 #else /* CONFIG_SECURITY_NETWORK_XFRM */ 2676 2677 static inline int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 2678 { 2679 return 0; 2680 } 2681 2682 static inline int security_xfrm_policy_clone(struct xfrm_sec_ctx *old, struct xfrm_sec_ctx **new_ctxp) 2683 { 2684 return 0; 2685 } 2686 2687 static inline void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2688 { 2689 } 2690 2691 static inline int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2692 { 2693 return 0; 2694 } 2695 2696 static inline int security_xfrm_state_alloc(struct xfrm_state *x, 2697 struct xfrm_user_sec_ctx *sec_ctx) 2698 { 2699 return 0; 2700 } 2701 2702 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2703 struct xfrm_sec_ctx *polsec, u32 secid) 2704 { 2705 return 0; 2706 } 2707 2708 static inline void security_xfrm_state_free(struct xfrm_state *x) 2709 { 2710 } 2711 2712 static inline int security_xfrm_state_delete(struct xfrm_state *x) 2713 { 2714 return 0; 2715 } 2716 2717 static inline int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2718 { 2719 return 0; 2720 } 2721 2722 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2723 struct xfrm_policy *xp, struct flowi *fl) 2724 { 2725 return 1; 2726 } 2727 2728 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2729 { 2730 return 0; 2731 } 2732 2733 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2734 { 2735 } 2736 2737 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2738 2739 #ifdef CONFIG_KEYS 2740 #ifdef CONFIG_SECURITY 2741 2742 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags); 2743 void security_key_free(struct key *key); 2744 int security_key_permission(key_ref_t key_ref, 2745 struct task_struct *context, key_perm_t perm); 2746 int security_key_getsecurity(struct key *key, char **_buffer); 2747 2748 #else 2749 2750 static inline int security_key_alloc(struct key *key, 2751 struct task_struct *tsk, 2752 unsigned long flags) 2753 { 2754 return 0; 2755 } 2756 2757 static inline void security_key_free(struct key *key) 2758 { 2759 } 2760 2761 static inline int security_key_permission(key_ref_t key_ref, 2762 struct task_struct *context, 2763 key_perm_t perm) 2764 { 2765 return 0; 2766 } 2767 2768 static inline int security_key_getsecurity(struct key *key, char **_buffer) 2769 { 2770 *_buffer = NULL; 2771 return 0; 2772 } 2773 2774 #endif 2775 #endif /* CONFIG_KEYS */ 2776 2777 #ifdef CONFIG_AUDIT 2778 #ifdef CONFIG_SECURITY 2779 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule); 2780 int security_audit_rule_known(struct audit_krule *krule); 2781 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 2782 struct audit_context *actx); 2783 void security_audit_rule_free(void *lsmrule); 2784 2785 #else 2786 2787 static inline int security_audit_rule_init(u32 field, u32 op, char *rulestr, 2788 void **lsmrule) 2789 { 2790 return 0; 2791 } 2792 2793 static inline int security_audit_rule_known(struct audit_krule *krule) 2794 { 2795 return 0; 2796 } 2797 2798 static inline int security_audit_rule_match(u32 secid, u32 field, u32 op, 2799 void *lsmrule, struct audit_context *actx) 2800 { 2801 return 0; 2802 } 2803 2804 static inline void security_audit_rule_free(void *lsmrule) 2805 { } 2806 2807 #endif /* CONFIG_SECURITY */ 2808 #endif /* CONFIG_AUDIT */ 2809 2810 #endif /* ! __LINUX_SECURITY_H */ 2811 2812