xref: /linux-6.15/include/linux/security.h (revision 2d6ffcca)
1 /*
2  * Linux Security plug
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <[email protected]>
5  * Copyright (C) 2001 Greg Kroah-Hartman <[email protected]>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
7  * Copyright (C) 2001 James Morris <[email protected]>
8  * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9  *
10  *	This program is free software; you can redistribute it and/or modify
11  *	it under the terms of the GNU General Public License as published by
12  *	the Free Software Foundation; either version 2 of the License, or
13  *	(at your option) any later version.
14  *
15  *	Due to this file being licensed under the GPL there is controversy over
16  *	whether this permits you to write a module that #includes this file
17  *	without placing your module under the GPL.  Please consult a lawyer for
18  *	advice before doing this.
19  *
20  */
21 
22 #ifndef __LINUX_SECURITY_H
23 #define __LINUX_SECURITY_H
24 
25 #include <linux/fs.h>
26 #include <linux/binfmts.h>
27 #include <linux/signal.h>
28 #include <linux/resource.h>
29 #include <linux/sem.h>
30 #include <linux/shm.h>
31 #include <linux/msg.h>
32 #include <linux/sched.h>
33 #include <linux/key.h>
34 #include <linux/xfrm.h>
35 #include <net/flow.h>
36 
37 /* Maximum number of letters for an LSM name string */
38 #define SECURITY_NAME_MAX	10
39 
40 struct ctl_table;
41 struct audit_krule;
42 
43 /*
44  * These functions are in security/capability.c and are used
45  * as the default capabilities functions
46  */
47 extern int cap_capable(struct task_struct *tsk, int cap);
48 extern int cap_settime(struct timespec *ts, struct timezone *tz);
49 extern int cap_ptrace(struct task_struct *parent, struct task_struct *child,
50 		      unsigned int mode);
51 extern int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
52 extern int cap_capset_check(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
53 extern void cap_capset_set(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
54 extern int cap_bprm_set_security(struct linux_binprm *bprm);
55 extern void cap_bprm_apply_creds(struct linux_binprm *bprm, int unsafe);
56 extern int cap_bprm_secureexec(struct linux_binprm *bprm);
57 extern int cap_inode_setxattr(struct dentry *dentry, const char *name,
58 			      const void *value, size_t size, int flags);
59 extern int cap_inode_removexattr(struct dentry *dentry, const char *name);
60 extern int cap_inode_need_killpriv(struct dentry *dentry);
61 extern int cap_inode_killpriv(struct dentry *dentry);
62 extern int cap_task_post_setuid(uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
63 extern void cap_task_reparent_to_init(struct task_struct *p);
64 extern int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
65 			  unsigned long arg4, unsigned long arg5, long *rc_p);
66 extern int cap_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp);
67 extern int cap_task_setioprio(struct task_struct *p, int ioprio);
68 extern int cap_task_setnice(struct task_struct *p, int nice);
69 extern int cap_syslog(int type);
70 extern int cap_vm_enough_memory(struct mm_struct *mm, long pages);
71 
72 struct msghdr;
73 struct sk_buff;
74 struct sock;
75 struct sockaddr;
76 struct socket;
77 struct flowi;
78 struct dst_entry;
79 struct xfrm_selector;
80 struct xfrm_policy;
81 struct xfrm_state;
82 struct xfrm_user_sec_ctx;
83 struct seq_file;
84 
85 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
86 extern int cap_netlink_recv(struct sk_buff *skb, int cap);
87 
88 extern unsigned long mmap_min_addr;
89 /*
90  * Values used in the task_security_ops calls
91  */
92 /* setuid or setgid, id0 == uid or gid */
93 #define LSM_SETID_ID	1
94 
95 /* setreuid or setregid, id0 == real, id1 == eff */
96 #define LSM_SETID_RE	2
97 
98 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
99 #define LSM_SETID_RES	4
100 
101 /* setfsuid or setfsgid, id0 == fsuid or fsgid */
102 #define LSM_SETID_FS	8
103 
104 /* forward declares to avoid warnings */
105 struct sched_param;
106 struct request_sock;
107 
108 /* bprm_apply_creds unsafe reasons */
109 #define LSM_UNSAFE_SHARE	1
110 #define LSM_UNSAFE_PTRACE	2
111 #define LSM_UNSAFE_PTRACE_CAP	4
112 
113 #ifdef CONFIG_SECURITY
114 
115 struct security_mnt_opts {
116 	char **mnt_opts;
117 	int *mnt_opts_flags;
118 	int num_mnt_opts;
119 };
120 
121 static inline void security_init_mnt_opts(struct security_mnt_opts *opts)
122 {
123 	opts->mnt_opts = NULL;
124 	opts->mnt_opts_flags = NULL;
125 	opts->num_mnt_opts = 0;
126 }
127 
128 static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
129 {
130 	int i;
131 	if (opts->mnt_opts)
132 		for (i = 0; i < opts->num_mnt_opts; i++)
133 			kfree(opts->mnt_opts[i]);
134 	kfree(opts->mnt_opts);
135 	opts->mnt_opts = NULL;
136 	kfree(opts->mnt_opts_flags);
137 	opts->mnt_opts_flags = NULL;
138 	opts->num_mnt_opts = 0;
139 }
140 
141 /**
142  * struct security_operations - main security structure
143  *
144  * Security module identifier.
145  *
146  * @name:
147  *	A string that acts as a unique identifeir for the LSM with max number
148  *	of characters = SECURITY_NAME_MAX.
149  *
150  * Security hooks for program execution operations.
151  *
152  * @bprm_alloc_security:
153  *	Allocate and attach a security structure to the @bprm->security field.
154  *	The security field is initialized to NULL when the bprm structure is
155  *	allocated.
156  *	@bprm contains the linux_binprm structure to be modified.
157  *	Return 0 if operation was successful.
158  * @bprm_free_security:
159  *	@bprm contains the linux_binprm structure to be modified.
160  *	Deallocate and clear the @bprm->security field.
161  * @bprm_apply_creds:
162  *	Compute and set the security attributes of a process being transformed
163  *	by an execve operation based on the old attributes (current->security)
164  *	and the information saved in @bprm->security by the set_security hook.
165  *	Since this hook function (and its caller) are void, this hook can not
166  *	return an error.  However, it can leave the security attributes of the
167  *	process unchanged if an access failure occurs at this point.
168  *	bprm_apply_creds is called under task_lock.  @unsafe indicates various
169  *	reasons why it may be unsafe to change security state.
170  *	@bprm contains the linux_binprm structure.
171  * @bprm_post_apply_creds:
172  *	Runs after bprm_apply_creds with the task_lock dropped, so that
173  *	functions which cannot be called safely under the task_lock can
174  *	be used.  This hook is a good place to perform state changes on
175  *	the process such as closing open file descriptors to which access
176  *	is no longer granted if the attributes were changed.
177  *	Note that a security module might need to save state between
178  *	bprm_apply_creds and bprm_post_apply_creds to store the decision
179  *	on whether the process may proceed.
180  *	@bprm contains the linux_binprm structure.
181  * @bprm_set_security:
182  *	Save security information in the bprm->security field, typically based
183  *	on information about the bprm->file, for later use by the apply_creds
184  *	hook.  This hook may also optionally check permissions (e.g. for
185  *	transitions between security domains).
186  *	This hook may be called multiple times during a single execve, e.g. for
187  *	interpreters.  The hook can tell whether it has already been called by
188  *	checking to see if @bprm->security is non-NULL.  If so, then the hook
189  *	may decide either to retain the security information saved earlier or
190  *	to replace it.
191  *	@bprm contains the linux_binprm structure.
192  *	Return 0 if the hook is successful and permission is granted.
193  * @bprm_check_security:
194  *	This hook mediates the point when a search for a binary handler	will
195  *	begin.  It allows a check the @bprm->security value which is set in
196  *	the preceding set_security call.  The primary difference from
197  *	set_security is that the argv list and envp list are reliably
198  *	available in @bprm.  This hook may be called multiple times
199  *	during a single execve; and in each pass set_security is called
200  *	first.
201  *	@bprm contains the linux_binprm structure.
202  *	Return 0 if the hook is successful and permission is granted.
203  * @bprm_secureexec:
204  *	Return a boolean value (0 or 1) indicating whether a "secure exec"
205  *	is required.  The flag is passed in the auxiliary table
206  *	on the initial stack to the ELF interpreter to indicate whether libc
207  *	should enable secure mode.
208  *	@bprm contains the linux_binprm structure.
209  *
210  * Security hooks for filesystem operations.
211  *
212  * @sb_alloc_security:
213  *	Allocate and attach a security structure to the sb->s_security field.
214  *	The s_security field is initialized to NULL when the structure is
215  *	allocated.
216  *	@sb contains the super_block structure to be modified.
217  *	Return 0 if operation was successful.
218  * @sb_free_security:
219  *	Deallocate and clear the sb->s_security field.
220  *	@sb contains the super_block structure to be modified.
221  * @sb_statfs:
222  *	Check permission before obtaining filesystem statistics for the @mnt
223  *	mountpoint.
224  *	@dentry is a handle on the superblock for the filesystem.
225  *	Return 0 if permission is granted.
226  * @sb_mount:
227  *	Check permission before an object specified by @dev_name is mounted on
228  *	the mount point named by @nd.  For an ordinary mount, @dev_name
229  *	identifies a device if the file system type requires a device.  For a
230  *	remount (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a
231  *	loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
232  *	pathname of the object being mounted.
233  *	@dev_name contains the name for object being mounted.
234  *	@path contains the path for mount point object.
235  *	@type contains the filesystem type.
236  *	@flags contains the mount flags.
237  *	@data contains the filesystem-specific data.
238  *	Return 0 if permission is granted.
239  * @sb_copy_data:
240  *	Allow mount option data to be copied prior to parsing by the filesystem,
241  *	so that the security module can extract security-specific mount
242  *	options cleanly (a filesystem may modify the data e.g. with strsep()).
243  *	This also allows the original mount data to be stripped of security-
244  *	specific options to avoid having to make filesystems aware of them.
245  *	@type the type of filesystem being mounted.
246  *	@orig the original mount data copied from userspace.
247  *	@copy copied data which will be passed to the security module.
248  *	Returns 0 if the copy was successful.
249  * @sb_check_sb:
250  *	Check permission before the device with superblock @mnt->sb is mounted
251  *	on the mount point named by @nd.
252  *	@mnt contains the vfsmount for device being mounted.
253  *	@path contains the path for the mount point.
254  *	Return 0 if permission is granted.
255  * @sb_umount:
256  *	Check permission before the @mnt file system is unmounted.
257  *	@mnt contains the mounted file system.
258  *	@flags contains the unmount flags, e.g. MNT_FORCE.
259  *	Return 0 if permission is granted.
260  * @sb_umount_close:
261  *	Close any files in the @mnt mounted filesystem that are held open by
262  *	the security module.  This hook is called during an umount operation
263  *	prior to checking whether the filesystem is still busy.
264  *	@mnt contains the mounted filesystem.
265  * @sb_umount_busy:
266  *	Handle a failed umount of the @mnt mounted filesystem, e.g.  re-opening
267  *	any files that were closed by umount_close.  This hook is called during
268  *	an umount operation if the umount fails after a call to the
269  *	umount_close hook.
270  *	@mnt contains the mounted filesystem.
271  * @sb_post_remount:
272  *	Update the security module's state when a filesystem is remounted.
273  *	This hook is only called if the remount was successful.
274  *	@mnt contains the mounted file system.
275  *	@flags contains the new filesystem flags.
276  *	@data contains the filesystem-specific data.
277  * @sb_post_addmount:
278  *	Update the security module's state when a filesystem is mounted.
279  *	This hook is called any time a mount is successfully grafetd to
280  *	the tree.
281  *	@mnt contains the mounted filesystem.
282  *	@mountpoint contains the path for the mount point.
283  * @sb_pivotroot:
284  *	Check permission before pivoting the root filesystem.
285  *	@old_path contains the path for the new location of the current root (put_old).
286  *	@new_path contains the path for the new root (new_root).
287  *	Return 0 if permission is granted.
288  * @sb_post_pivotroot:
289  *	Update module state after a successful pivot.
290  *	@old_path contains the path for the old root.
291  *	@new_path contains the path for the new root.
292  * @sb_set_mnt_opts:
293  *	Set the security relevant mount options used for a superblock
294  *	@sb the superblock to set security mount options for
295  *	@opts binary data structure containing all lsm mount data
296  * @sb_clone_mnt_opts:
297  *	Copy all security options from a given superblock to another
298  *	@oldsb old superblock which contain information to clone
299  *	@newsb new superblock which needs filled in
300  * @sb_parse_opts_str:
301  *	Parse a string of security data filling in the opts structure
302  *	@options string containing all mount options known by the LSM
303  *	@opts binary data structure usable by the LSM
304  *
305  * Security hooks for inode operations.
306  *
307  * @inode_alloc_security:
308  *	Allocate and attach a security structure to @inode->i_security.  The
309  *	i_security field is initialized to NULL when the inode structure is
310  *	allocated.
311  *	@inode contains the inode structure.
312  *	Return 0 if operation was successful.
313  * @inode_free_security:
314  *	@inode contains the inode structure.
315  *	Deallocate the inode security structure and set @inode->i_security to
316  *	NULL.
317  * @inode_init_security:
318  *	Obtain the security attribute name suffix and value to set on a newly
319  *	created inode and set up the incore security field for the new inode.
320  *	This hook is called by the fs code as part of the inode creation
321  *	transaction and provides for atomic labeling of the inode, unlike
322  *	the post_create/mkdir/... hooks called by the VFS.  The hook function
323  *	is expected to allocate the name and value via kmalloc, with the caller
324  *	being responsible for calling kfree after using them.
325  *	If the security module does not use security attributes or does
326  *	not wish to put a security attribute on this particular inode,
327  *	then it should return -EOPNOTSUPP to skip this processing.
328  *	@inode contains the inode structure of the newly created inode.
329  *	@dir contains the inode structure of the parent directory.
330  *	@name will be set to the allocated name suffix (e.g. selinux).
331  *	@value will be set to the allocated attribute value.
332  *	@len will be set to the length of the value.
333  *	Returns 0 if @name and @value have been successfully set,
334  *		-EOPNOTSUPP if no security attribute is needed, or
335  *		-ENOMEM on memory allocation failure.
336  * @inode_create:
337  *	Check permission to create a regular file.
338  *	@dir contains inode structure of the parent of the new file.
339  *	@dentry contains the dentry structure for the file to be created.
340  *	@mode contains the file mode of the file to be created.
341  *	Return 0 if permission is granted.
342  * @inode_link:
343  *	Check permission before creating a new hard link to a file.
344  *	@old_dentry contains the dentry structure for an existing link to the file.
345  *	@dir contains the inode structure of the parent directory of the new link.
346  *	@new_dentry contains the dentry structure for the new link.
347  *	Return 0 if permission is granted.
348  * @inode_unlink:
349  *	Check the permission to remove a hard link to a file.
350  *	@dir contains the inode structure of parent directory of the file.
351  *	@dentry contains the dentry structure for file to be unlinked.
352  *	Return 0 if permission is granted.
353  * @inode_symlink:
354  *	Check the permission to create a symbolic link to a file.
355  *	@dir contains the inode structure of parent directory of the symbolic link.
356  *	@dentry contains the dentry structure of the symbolic link.
357  *	@old_name contains the pathname of file.
358  *	Return 0 if permission is granted.
359  * @inode_mkdir:
360  *	Check permissions to create a new directory in the existing directory
361  *	associated with inode strcture @dir.
362  *	@dir containst the inode structure of parent of the directory to be created.
363  *	@dentry contains the dentry structure of new directory.
364  *	@mode contains the mode of new directory.
365  *	Return 0 if permission is granted.
366  * @inode_rmdir:
367  *	Check the permission to remove a directory.
368  *	@dir contains the inode structure of parent of the directory to be removed.
369  *	@dentry contains the dentry structure of directory to be removed.
370  *	Return 0 if permission is granted.
371  * @inode_mknod:
372  *	Check permissions when creating a special file (or a socket or a fifo
373  *	file created via the mknod system call).  Note that if mknod operation
374  *	is being done for a regular file, then the create hook will be called
375  *	and not this hook.
376  *	@dir contains the inode structure of parent of the new file.
377  *	@dentry contains the dentry structure of the new file.
378  *	@mode contains the mode of the new file.
379  *	@dev contains the device number.
380  *	Return 0 if permission is granted.
381  * @inode_rename:
382  *	Check for permission to rename a file or directory.
383  *	@old_dir contains the inode structure for parent of the old link.
384  *	@old_dentry contains the dentry structure of the old link.
385  *	@new_dir contains the inode structure for parent of the new link.
386  *	@new_dentry contains the dentry structure of the new link.
387  *	Return 0 if permission is granted.
388  * @inode_readlink:
389  *	Check the permission to read the symbolic link.
390  *	@dentry contains the dentry structure for the file link.
391  *	Return 0 if permission is granted.
392  * @inode_follow_link:
393  *	Check permission to follow a symbolic link when looking up a pathname.
394  *	@dentry contains the dentry structure for the link.
395  *	@nd contains the nameidata structure for the parent directory.
396  *	Return 0 if permission is granted.
397  * @inode_permission:
398  *	Check permission before accessing an inode.  This hook is called by the
399  *	existing Linux permission function, so a security module can use it to
400  *	provide additional checking for existing Linux permission checks.
401  *	Notice that this hook is called when a file is opened (as well as many
402  *	other operations), whereas the file_security_ops permission hook is
403  *	called when the actual read/write operations are performed.
404  *	@inode contains the inode structure to check.
405  *	@mask contains the permission mask.
406  *	@nd contains the nameidata (may be NULL).
407  *	Return 0 if permission is granted.
408  * @inode_setattr:
409  *	Check permission before setting file attributes.  Note that the kernel
410  *	call to notify_change is performed from several locations, whenever
411  *	file attributes change (such as when a file is truncated, chown/chmod
412  *	operations, transferring disk quotas, etc).
413  *	@dentry contains the dentry structure for the file.
414  *	@attr is the iattr structure containing the new file attributes.
415  *	Return 0 if permission is granted.
416  * @inode_getattr:
417  *	Check permission before obtaining file attributes.
418  *	@mnt is the vfsmount where the dentry was looked up
419  *	@dentry contains the dentry structure for the file.
420  *	Return 0 if permission is granted.
421  * @inode_delete:
422  *	@inode contains the inode structure for deleted inode.
423  *	This hook is called when a deleted inode is released (i.e. an inode
424  *	with no hard links has its use count drop to zero).  A security module
425  *	can use this hook to release any persistent label associated with the
426  *	inode.
427  * @inode_setxattr:
428  *	Check permission before setting the extended attributes
429  *	@value identified by @name for @dentry.
430  *	Return 0 if permission is granted.
431  * @inode_post_setxattr:
432  *	Update inode security field after successful setxattr operation.
433  *	@value identified by @name for @dentry.
434  * @inode_getxattr:
435  *	Check permission before obtaining the extended attributes
436  *	identified by @name for @dentry.
437  *	Return 0 if permission is granted.
438  * @inode_listxattr:
439  *	Check permission before obtaining the list of extended attribute
440  *	names for @dentry.
441  *	Return 0 if permission is granted.
442  * @inode_removexattr:
443  *	Check permission before removing the extended attribute
444  *	identified by @name for @dentry.
445  *	Return 0 if permission is granted.
446  * @inode_getsecurity:
447  *	Retrieve a copy of the extended attribute representation of the
448  *	security label associated with @name for @inode via @buffer.  Note that
449  *	@name is the remainder of the attribute name after the security prefix
450  *	has been removed. @alloc is used to specify of the call should return a
451  *	value via the buffer or just the value length Return size of buffer on
452  *	success.
453  * @inode_setsecurity:
454  *	Set the security label associated with @name for @inode from the
455  *	extended attribute value @value.  @size indicates the size of the
456  *	@value in bytes.  @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
457  *	Note that @name is the remainder of the attribute name after the
458  *	security. prefix has been removed.
459  *	Return 0 on success.
460  * @inode_listsecurity:
461  *	Copy the extended attribute names for the security labels
462  *	associated with @inode into @buffer.  The maximum size of @buffer
463  *	is specified by @buffer_size.  @buffer may be NULL to request
464  *	the size of the buffer required.
465  *	Returns number of bytes used/required on success.
466  * @inode_need_killpriv:
467  *	Called when an inode has been changed.
468  *	@dentry is the dentry being changed.
469  *	Return <0 on error to abort the inode change operation.
470  *	Return 0 if inode_killpriv does not need to be called.
471  *	Return >0 if inode_killpriv does need to be called.
472  * @inode_killpriv:
473  *	The setuid bit is being removed.  Remove similar security labels.
474  *	Called with the dentry->d_inode->i_mutex held.
475  *	@dentry is the dentry being changed.
476  *	Return 0 on success.  If error is returned, then the operation
477  *	causing setuid bit removal is failed.
478  * @inode_getsecid:
479  *	Get the secid associated with the node.
480  *	@inode contains a pointer to the inode.
481  *	@secid contains a pointer to the location where result will be saved.
482  *	In case of failure, @secid will be set to zero.
483  *
484  * Security hooks for file operations
485  *
486  * @file_permission:
487  *	Check file permissions before accessing an open file.  This hook is
488  *	called by various operations that read or write files.  A security
489  *	module can use this hook to perform additional checking on these
490  *	operations, e.g.  to revalidate permissions on use to support privilege
491  *	bracketing or policy changes.  Notice that this hook is used when the
492  *	actual read/write operations are performed, whereas the
493  *	inode_security_ops hook is called when a file is opened (as well as
494  *	many other operations).
495  *	Caveat:  Although this hook can be used to revalidate permissions for
496  *	various system call operations that read or write files, it does not
497  *	address the revalidation of permissions for memory-mapped files.
498  *	Security modules must handle this separately if they need such
499  *	revalidation.
500  *	@file contains the file structure being accessed.
501  *	@mask contains the requested permissions.
502  *	Return 0 if permission is granted.
503  * @file_alloc_security:
504  *	Allocate and attach a security structure to the file->f_security field.
505  *	The security field is initialized to NULL when the structure is first
506  *	created.
507  *	@file contains the file structure to secure.
508  *	Return 0 if the hook is successful and permission is granted.
509  * @file_free_security:
510  *	Deallocate and free any security structures stored in file->f_security.
511  *	@file contains the file structure being modified.
512  * @file_ioctl:
513  *	@file contains the file structure.
514  *	@cmd contains the operation to perform.
515  *	@arg contains the operational arguments.
516  *	Check permission for an ioctl operation on @file.  Note that @arg can
517  *	sometimes represents a user space pointer; in other cases, it may be a
518  *	simple integer value.  When @arg represents a user space pointer, it
519  *	should never be used by the security module.
520  *	Return 0 if permission is granted.
521  * @file_mmap :
522  *	Check permissions for a mmap operation.  The @file may be NULL, e.g.
523  *	if mapping anonymous memory.
524  *	@file contains the file structure for file to map (may be NULL).
525  *	@reqprot contains the protection requested by the application.
526  *	@prot contains the protection that will be applied by the kernel.
527  *	@flags contains the operational flags.
528  *	Return 0 if permission is granted.
529  * @file_mprotect:
530  *	Check permissions before changing memory access permissions.
531  *	@vma contains the memory region to modify.
532  *	@reqprot contains the protection requested by the application.
533  *	@prot contains the protection that will be applied by the kernel.
534  *	Return 0 if permission is granted.
535  * @file_lock:
536  *	Check permission before performing file locking operations.
537  *	Note: this hook mediates both flock and fcntl style locks.
538  *	@file contains the file structure.
539  *	@cmd contains the posix-translated lock operation to perform
540  *	(e.g. F_RDLCK, F_WRLCK).
541  *	Return 0 if permission is granted.
542  * @file_fcntl:
543  *	Check permission before allowing the file operation specified by @cmd
544  *	from being performed on the file @file.  Note that @arg can sometimes
545  *	represents a user space pointer; in other cases, it may be a simple
546  *	integer value.  When @arg represents a user space pointer, it should
547  *	never be used by the security module.
548  *	@file contains the file structure.
549  *	@cmd contains the operation to be performed.
550  *	@arg contains the operational arguments.
551  *	Return 0 if permission is granted.
552  * @file_set_fowner:
553  *	Save owner security information (typically from current->security) in
554  *	file->f_security for later use by the send_sigiotask hook.
555  *	@file contains the file structure to update.
556  *	Return 0 on success.
557  * @file_send_sigiotask:
558  *	Check permission for the file owner @fown to send SIGIO or SIGURG to the
559  *	process @tsk.  Note that this hook is sometimes called from interrupt.
560  *	Note that the fown_struct, @fown, is never outside the context of a
561  *	struct file, so the file structure (and associated security information)
562  *	can always be obtained:
563  *		container_of(fown, struct file, f_owner)
564  *	@tsk contains the structure of task receiving signal.
565  *	@fown contains the file owner information.
566  *	@sig is the signal that will be sent.  When 0, kernel sends SIGIO.
567  *	Return 0 if permission is granted.
568  * @file_receive:
569  *	This hook allows security modules to control the ability of a process
570  *	to receive an open file descriptor via socket IPC.
571  *	@file contains the file structure being received.
572  *	Return 0 if permission is granted.
573  *
574  * Security hook for dentry
575  *
576  * @dentry_open
577  *	Save open-time permission checking state for later use upon
578  *	file_permission, and recheck access if anything has changed
579  *	since inode_permission.
580  *
581  * Security hooks for task operations.
582  *
583  * @task_create:
584  *	Check permission before creating a child process.  See the clone(2)
585  *	manual page for definitions of the @clone_flags.
586  *	@clone_flags contains the flags indicating what should be shared.
587  *	Return 0 if permission is granted.
588  * @task_alloc_security:
589  *	@p contains the task_struct for child process.
590  *	Allocate and attach a security structure to the p->security field. The
591  *	security field is initialized to NULL when the task structure is
592  *	allocated.
593  *	Return 0 if operation was successful.
594  * @task_free_security:
595  *	@p contains the task_struct for process.
596  *	Deallocate and clear the p->security field.
597  * @task_setuid:
598  *	Check permission before setting one or more of the user identity
599  *	attributes of the current process.  The @flags parameter indicates
600  *	which of the set*uid system calls invoked this hook and how to
601  *	interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
602  *	definitions at the beginning of this file for the @flags values and
603  *	their meanings.
604  *	@id0 contains a uid.
605  *	@id1 contains a uid.
606  *	@id2 contains a uid.
607  *	@flags contains one of the LSM_SETID_* values.
608  *	Return 0 if permission is granted.
609  * @task_post_setuid:
610  *	Update the module's state after setting one or more of the user
611  *	identity attributes of the current process.  The @flags parameter
612  *	indicates which of the set*uid system calls invoked this hook.  If
613  *	@flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
614  *	parameters are not used.
615  *	@old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
616  *	@old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
617  *	@old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
618  *	@flags contains one of the LSM_SETID_* values.
619  *	Return 0 on success.
620  * @task_setgid:
621  *	Check permission before setting one or more of the group identity
622  *	attributes of the current process.  The @flags parameter indicates
623  *	which of the set*gid system calls invoked this hook and how to
624  *	interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
625  *	definitions at the beginning of this file for the @flags values and
626  *	their meanings.
627  *	@id0 contains a gid.
628  *	@id1 contains a gid.
629  *	@id2 contains a gid.
630  *	@flags contains one of the LSM_SETID_* values.
631  *	Return 0 if permission is granted.
632  * @task_setpgid:
633  *	Check permission before setting the process group identifier of the
634  *	process @p to @pgid.
635  *	@p contains the task_struct for process being modified.
636  *	@pgid contains the new pgid.
637  *	Return 0 if permission is granted.
638  * @task_getpgid:
639  *	Check permission before getting the process group identifier of the
640  *	process @p.
641  *	@p contains the task_struct for the process.
642  *	Return 0 if permission is granted.
643  * @task_getsid:
644  *	Check permission before getting the session identifier of the process
645  *	@p.
646  *	@p contains the task_struct for the process.
647  *	Return 0 if permission is granted.
648  * @task_getsecid:
649  *	Retrieve the security identifier of the process @p.
650  *	@p contains the task_struct for the process and place is into @secid.
651  *	In case of failure, @secid will be set to zero.
652  *
653  * @task_setgroups:
654  *	Check permission before setting the supplementary group set of the
655  *	current process.
656  *	@group_info contains the new group information.
657  *	Return 0 if permission is granted.
658  * @task_setnice:
659  *	Check permission before setting the nice value of @p to @nice.
660  *	@p contains the task_struct of process.
661  *	@nice contains the new nice value.
662  *	Return 0 if permission is granted.
663  * @task_setioprio
664  *	Check permission before setting the ioprio value of @p to @ioprio.
665  *	@p contains the task_struct of process.
666  *	@ioprio contains the new ioprio value
667  *	Return 0 if permission is granted.
668  * @task_getioprio
669  *	Check permission before getting the ioprio value of @p.
670  *	@p contains the task_struct of process.
671  *	Return 0 if permission is granted.
672  * @task_setrlimit:
673  *	Check permission before setting the resource limits of the current
674  *	process for @resource to @new_rlim.  The old resource limit values can
675  *	be examined by dereferencing (current->signal->rlim + resource).
676  *	@resource contains the resource whose limit is being set.
677  *	@new_rlim contains the new limits for @resource.
678  *	Return 0 if permission is granted.
679  * @task_setscheduler:
680  *	Check permission before setting scheduling policy and/or parameters of
681  *	process @p based on @policy and @lp.
682  *	@p contains the task_struct for process.
683  *	@policy contains the scheduling policy.
684  *	@lp contains the scheduling parameters.
685  *	Return 0 if permission is granted.
686  * @task_getscheduler:
687  *	Check permission before obtaining scheduling information for process
688  *	@p.
689  *	@p contains the task_struct for process.
690  *	Return 0 if permission is granted.
691  * @task_movememory
692  *	Check permission before moving memory owned by process @p.
693  *	@p contains the task_struct for process.
694  *	Return 0 if permission is granted.
695  * @task_kill:
696  *	Check permission before sending signal @sig to @p.  @info can be NULL,
697  *	the constant 1, or a pointer to a siginfo structure.  If @info is 1 or
698  *	SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
699  *	from the kernel and should typically be permitted.
700  *	SIGIO signals are handled separately by the send_sigiotask hook in
701  *	file_security_ops.
702  *	@p contains the task_struct for process.
703  *	@info contains the signal information.
704  *	@sig contains the signal value.
705  *	@secid contains the sid of the process where the signal originated
706  *	Return 0 if permission is granted.
707  * @task_wait:
708  *	Check permission before allowing a process to reap a child process @p
709  *	and collect its status information.
710  *	@p contains the task_struct for process.
711  *	Return 0 if permission is granted.
712  * @task_prctl:
713  *	Check permission before performing a process control operation on the
714  *	current process.
715  *	@option contains the operation.
716  *	@arg2 contains a argument.
717  *	@arg3 contains a argument.
718  *	@arg4 contains a argument.
719  *	@arg5 contains a argument.
720  *      @rc_p contains a pointer to communicate back the forced return code
721  *	Return 0 if permission is granted, and non-zero if the security module
722  *      has taken responsibility (setting *rc_p) for the prctl call.
723  * @task_reparent_to_init:
724  *	Set the security attributes in @p->security for a kernel thread that
725  *	is being reparented to the init task.
726  *	@p contains the task_struct for the kernel thread.
727  * @task_to_inode:
728  *	Set the security attributes for an inode based on an associated task's
729  *	security attributes, e.g. for /proc/pid inodes.
730  *	@p contains the task_struct for the task.
731  *	@inode contains the inode structure for the inode.
732  *
733  * Security hooks for Netlink messaging.
734  *
735  * @netlink_send:
736  *	Save security information for a netlink message so that permission
737  *	checking can be performed when the message is processed.  The security
738  *	information can be saved using the eff_cap field of the
739  *	netlink_skb_parms structure.  Also may be used to provide fine
740  *	grained control over message transmission.
741  *	@sk associated sock of task sending the message.,
742  *	@skb contains the sk_buff structure for the netlink message.
743  *	Return 0 if the information was successfully saved and message
744  *	is allowed to be transmitted.
745  * @netlink_recv:
746  *	Check permission before processing the received netlink message in
747  *	@skb.
748  *	@skb contains the sk_buff structure for the netlink message.
749  *	@cap indicates the capability required
750  *	Return 0 if permission is granted.
751  *
752  * Security hooks for Unix domain networking.
753  *
754  * @unix_stream_connect:
755  *	Check permissions before establishing a Unix domain stream connection
756  *	between @sock and @other.
757  *	@sock contains the socket structure.
758  *	@other contains the peer socket structure.
759  *	Return 0 if permission is granted.
760  * @unix_may_send:
761  *	Check permissions before connecting or sending datagrams from @sock to
762  *	@other.
763  *	@sock contains the socket structure.
764  *	@sock contains the peer socket structure.
765  *	Return 0 if permission is granted.
766  *
767  * The @unix_stream_connect and @unix_may_send hooks were necessary because
768  * Linux provides an alternative to the conventional file name space for Unix
769  * domain sockets.  Whereas binding and connecting to sockets in the file name
770  * space is mediated by the typical file permissions (and caught by the mknod
771  * and permission hooks in inode_security_ops), binding and connecting to
772  * sockets in the abstract name space is completely unmediated.  Sufficient
773  * control of Unix domain sockets in the abstract name space isn't possible
774  * using only the socket layer hooks, since we need to know the actual target
775  * socket, which is not looked up until we are inside the af_unix code.
776  *
777  * Security hooks for socket operations.
778  *
779  * @socket_create:
780  *	Check permissions prior to creating a new socket.
781  *	@family contains the requested protocol family.
782  *	@type contains the requested communications type.
783  *	@protocol contains the requested protocol.
784  *	@kern set to 1 if a kernel socket.
785  *	Return 0 if permission is granted.
786  * @socket_post_create:
787  *	This hook allows a module to update or allocate a per-socket security
788  *	structure. Note that the security field was not added directly to the
789  *	socket structure, but rather, the socket security information is stored
790  *	in the associated inode.  Typically, the inode alloc_security hook will
791  *	allocate and and attach security information to
792  *	sock->inode->i_security.  This hook may be used to update the
793  *	sock->inode->i_security field with additional information that wasn't
794  *	available when the inode was allocated.
795  *	@sock contains the newly created socket structure.
796  *	@family contains the requested protocol family.
797  *	@type contains the requested communications type.
798  *	@protocol contains the requested protocol.
799  *	@kern set to 1 if a kernel socket.
800  * @socket_bind:
801  *	Check permission before socket protocol layer bind operation is
802  *	performed and the socket @sock is bound to the address specified in the
803  *	@address parameter.
804  *	@sock contains the socket structure.
805  *	@address contains the address to bind to.
806  *	@addrlen contains the length of address.
807  *	Return 0 if permission is granted.
808  * @socket_connect:
809  *	Check permission before socket protocol layer connect operation
810  *	attempts to connect socket @sock to a remote address, @address.
811  *	@sock contains the socket structure.
812  *	@address contains the address of remote endpoint.
813  *	@addrlen contains the length of address.
814  *	Return 0 if permission is granted.
815  * @socket_listen:
816  *	Check permission before socket protocol layer listen operation.
817  *	@sock contains the socket structure.
818  *	@backlog contains the maximum length for the pending connection queue.
819  *	Return 0 if permission is granted.
820  * @socket_accept:
821  *	Check permission before accepting a new connection.  Note that the new
822  *	socket, @newsock, has been created and some information copied to it,
823  *	but the accept operation has not actually been performed.
824  *	@sock contains the listening socket structure.
825  *	@newsock contains the newly created server socket for connection.
826  *	Return 0 if permission is granted.
827  * @socket_post_accept:
828  *	This hook allows a security module to copy security
829  *	information into the newly created socket's inode.
830  *	@sock contains the listening socket structure.
831  *	@newsock contains the newly created server socket for connection.
832  * @socket_sendmsg:
833  *	Check permission before transmitting a message to another socket.
834  *	@sock contains the socket structure.
835  *	@msg contains the message to be transmitted.
836  *	@size contains the size of message.
837  *	Return 0 if permission is granted.
838  * @socket_recvmsg:
839  *	Check permission before receiving a message from a socket.
840  *	@sock contains the socket structure.
841  *	@msg contains the message structure.
842  *	@size contains the size of message structure.
843  *	@flags contains the operational flags.
844  *	Return 0 if permission is granted.
845  * @socket_getsockname:
846  *	Check permission before the local address (name) of the socket object
847  *	@sock is retrieved.
848  *	@sock contains the socket structure.
849  *	Return 0 if permission is granted.
850  * @socket_getpeername:
851  *	Check permission before the remote address (name) of a socket object
852  *	@sock is retrieved.
853  *	@sock contains the socket structure.
854  *	Return 0 if permission is granted.
855  * @socket_getsockopt:
856  *	Check permissions before retrieving the options associated with socket
857  *	@sock.
858  *	@sock contains the socket structure.
859  *	@level contains the protocol level to retrieve option from.
860  *	@optname contains the name of option to retrieve.
861  *	Return 0 if permission is granted.
862  * @socket_setsockopt:
863  *	Check permissions before setting the options associated with socket
864  *	@sock.
865  *	@sock contains the socket structure.
866  *	@level contains the protocol level to set options for.
867  *	@optname contains the name of the option to set.
868  *	Return 0 if permission is granted.
869  * @socket_shutdown:
870  *	Checks permission before all or part of a connection on the socket
871  *	@sock is shut down.
872  *	@sock contains the socket structure.
873  *	@how contains the flag indicating how future sends and receives are handled.
874  *	Return 0 if permission is granted.
875  * @socket_sock_rcv_skb:
876  *	Check permissions on incoming network packets.  This hook is distinct
877  *	from Netfilter's IP input hooks since it is the first time that the
878  *	incoming sk_buff @skb has been associated with a particular socket, @sk.
879  *	@sk contains the sock (not socket) associated with the incoming sk_buff.
880  *	@skb contains the incoming network data.
881  * @socket_getpeersec_stream:
882  *	This hook allows the security module to provide peer socket security
883  *	state for unix or connected tcp sockets to userspace via getsockopt
884  *	SO_GETPEERSEC.  For tcp sockets this can be meaningful if the
885  *	socket is associated with an ipsec SA.
886  *	@sock is the local socket.
887  *	@optval userspace memory where the security state is to be copied.
888  *	@optlen userspace int where the module should copy the actual length
889  *	of the security state.
890  *	@len as input is the maximum length to copy to userspace provided
891  *	by the caller.
892  *	Return 0 if all is well, otherwise, typical getsockopt return
893  *	values.
894  * @socket_getpeersec_dgram:
895  *	This hook allows the security module to provide peer socket security
896  *	state for udp sockets on a per-packet basis to userspace via
897  *	getsockopt SO_GETPEERSEC.  The application must first have indicated
898  *	the IP_PASSSEC option via getsockopt.  It can then retrieve the
899  *	security state returned by this hook for a packet via the SCM_SECURITY
900  *	ancillary message type.
901  *	@skb is the skbuff for the packet being queried
902  *	@secdata is a pointer to a buffer in which to copy the security data
903  *	@seclen is the maximum length for @secdata
904  *	Return 0 on success, error on failure.
905  * @sk_alloc_security:
906  *	Allocate and attach a security structure to the sk->sk_security field,
907  *	which is used to copy security attributes between local stream sockets.
908  * @sk_free_security:
909  *	Deallocate security structure.
910  * @sk_clone_security:
911  *	Clone/copy security structure.
912  * @sk_getsecid:
913  *	Retrieve the LSM-specific secid for the sock to enable caching of network
914  *	authorizations.
915  * @sock_graft:
916  *	Sets the socket's isec sid to the sock's sid.
917  * @inet_conn_request:
918  *	Sets the openreq's sid to socket's sid with MLS portion taken from peer sid.
919  * @inet_csk_clone:
920  *	Sets the new child socket's sid to the openreq sid.
921  * @inet_conn_established:
922  *	Sets the connection's peersid to the secmark on skb.
923  * @req_classify_flow:
924  *	Sets the flow's sid to the openreq sid.
925  *
926  * Security hooks for XFRM operations.
927  *
928  * @xfrm_policy_alloc_security:
929  *	@ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy
930  *	Database used by the XFRM system.
931  *	@sec_ctx contains the security context information being provided by
932  *	the user-level policy update program (e.g., setkey).
933  *	Allocate a security structure to the xp->security field; the security
934  *	field is initialized to NULL when the xfrm_policy is allocated.
935  *	Return 0 if operation was successful (memory to allocate, legal context)
936  * @xfrm_policy_clone_security:
937  *	@old_ctx contains an existing xfrm_sec_ctx.
938  *	@new_ctxp contains a new xfrm_sec_ctx being cloned from old.
939  *	Allocate a security structure in new_ctxp that contains the
940  *	information from the old_ctx structure.
941  *	Return 0 if operation was successful (memory to allocate).
942  * @xfrm_policy_free_security:
943  *	@ctx contains the xfrm_sec_ctx
944  *	Deallocate xp->security.
945  * @xfrm_policy_delete_security:
946  *	@ctx contains the xfrm_sec_ctx.
947  *	Authorize deletion of xp->security.
948  * @xfrm_state_alloc_security:
949  *	@x contains the xfrm_state being added to the Security Association
950  *	Database by the XFRM system.
951  *	@sec_ctx contains the security context information being provided by
952  *	the user-level SA generation program (e.g., setkey or racoon).
953  *	@secid contains the secid from which to take the mls portion of the context.
954  *	Allocate a security structure to the x->security field; the security
955  *	field is initialized to NULL when the xfrm_state is allocated. Set the
956  *	context to correspond to either sec_ctx or polsec, with the mls portion
957  *	taken from secid in the latter case.
958  *	Return 0 if operation was successful (memory to allocate, legal context).
959  * @xfrm_state_free_security:
960  *	@x contains the xfrm_state.
961  *	Deallocate x->security.
962  * @xfrm_state_delete_security:
963  *	@x contains the xfrm_state.
964  *	Authorize deletion of x->security.
965  * @xfrm_policy_lookup:
966  *	@ctx contains the xfrm_sec_ctx for which the access control is being
967  *	checked.
968  *	@fl_secid contains the flow security label that is used to authorize
969  *	access to the policy xp.
970  *	@dir contains the direction of the flow (input or output).
971  *	Check permission when a flow selects a xfrm_policy for processing
972  *	XFRMs on a packet.  The hook is called when selecting either a
973  *	per-socket policy or a generic xfrm policy.
974  *	Return 0 if permission is granted, -ESRCH otherwise, or -errno
975  *	on other errors.
976  * @xfrm_state_pol_flow_match:
977  *	@x contains the state to match.
978  *	@xp contains the policy to check for a match.
979  *	@fl contains the flow to check for a match.
980  *	Return 1 if there is a match.
981  * @xfrm_decode_session:
982  *	@skb points to skb to decode.
983  *	@secid points to the flow key secid to set.
984  *	@ckall says if all xfrms used should be checked for same secid.
985  *	Return 0 if ckall is zero or all xfrms used have the same secid.
986  *
987  * Security hooks affecting all Key Management operations
988  *
989  * @key_alloc:
990  *	Permit allocation of a key and assign security data. Note that key does
991  *	not have a serial number assigned at this point.
992  *	@key points to the key.
993  *	@flags is the allocation flags
994  *	Return 0 if permission is granted, -ve error otherwise.
995  * @key_free:
996  *	Notification of destruction; free security data.
997  *	@key points to the key.
998  *	No return value.
999  * @key_permission:
1000  *	See whether a specific operational right is granted to a process on a
1001  *	key.
1002  *	@key_ref refers to the key (key pointer + possession attribute bit).
1003  *	@context points to the process to provide the context against which to
1004  *	evaluate the security data on the key.
1005  *	@perm describes the combination of permissions required of this key.
1006  *	Return 1 if permission granted, 0 if permission denied and -ve it the
1007  *	normal permissions model should be effected.
1008  * @key_getsecurity:
1009  *	Get a textual representation of the security context attached to a key
1010  *	for the purposes of honouring KEYCTL_GETSECURITY.  This function
1011  *	allocates the storage for the NUL-terminated string and the caller
1012  *	should free it.
1013  *	@key points to the key to be queried.
1014  *	@_buffer points to a pointer that should be set to point to the
1015  *	 resulting string (if no label or an error occurs).
1016  *	Return the length of the string (including terminating NUL) or -ve if
1017  *      an error.
1018  *	May also return 0 (and a NULL buffer pointer) if there is no label.
1019  *
1020  * Security hooks affecting all System V IPC operations.
1021  *
1022  * @ipc_permission:
1023  *	Check permissions for access to IPC
1024  *	@ipcp contains the kernel IPC permission structure
1025  *	@flag contains the desired (requested) permission set
1026  *	Return 0 if permission is granted.
1027  * @ipc_getsecid:
1028  *	Get the secid associated with the ipc object.
1029  *	@ipcp contains the kernel IPC permission structure.
1030  *	@secid contains a pointer to the location where result will be saved.
1031  *	In case of failure, @secid will be set to zero.
1032  *
1033  * Security hooks for individual messages held in System V IPC message queues
1034  * @msg_msg_alloc_security:
1035  *	Allocate and attach a security structure to the msg->security field.
1036  *	The security field is initialized to NULL when the structure is first
1037  *	created.
1038  *	@msg contains the message structure to be modified.
1039  *	Return 0 if operation was successful and permission is granted.
1040  * @msg_msg_free_security:
1041  *	Deallocate the security structure for this message.
1042  *	@msg contains the message structure to be modified.
1043  *
1044  * Security hooks for System V IPC Message Queues
1045  *
1046  * @msg_queue_alloc_security:
1047  *	Allocate and attach a security structure to the
1048  *	msq->q_perm.security field. The security field is initialized to
1049  *	NULL when the structure is first created.
1050  *	@msq contains the message queue structure to be modified.
1051  *	Return 0 if operation was successful and permission is granted.
1052  * @msg_queue_free_security:
1053  *	Deallocate security structure for this message queue.
1054  *	@msq contains the message queue structure to be modified.
1055  * @msg_queue_associate:
1056  *	Check permission when a message queue is requested through the
1057  *	msgget system call.  This hook is only called when returning the
1058  *	message queue identifier for an existing message queue, not when a
1059  *	new message queue is created.
1060  *	@msq contains the message queue to act upon.
1061  *	@msqflg contains the operation control flags.
1062  *	Return 0 if permission is granted.
1063  * @msg_queue_msgctl:
1064  *	Check permission when a message control operation specified by @cmd
1065  *	is to be performed on the message queue @msq.
1066  *	The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
1067  *	@msq contains the message queue to act upon.  May be NULL.
1068  *	@cmd contains the operation to be performed.
1069  *	Return 0 if permission is granted.
1070  * @msg_queue_msgsnd:
1071  *	Check permission before a message, @msg, is enqueued on the message
1072  *	queue, @msq.
1073  *	@msq contains the message queue to send message to.
1074  *	@msg contains the message to be enqueued.
1075  *	@msqflg contains operational flags.
1076  *	Return 0 if permission is granted.
1077  * @msg_queue_msgrcv:
1078  *	Check permission before a message, @msg, is removed from the message
1079  *	queue, @msq.  The @target task structure contains a pointer to the
1080  *	process that will be receiving the message (not equal to the current
1081  *	process when inline receives are being performed).
1082  *	@msq contains the message queue to retrieve message from.
1083  *	@msg contains the message destination.
1084  *	@target contains the task structure for recipient process.
1085  *	@type contains the type of message requested.
1086  *	@mode contains the operational flags.
1087  *	Return 0 if permission is granted.
1088  *
1089  * Security hooks for System V Shared Memory Segments
1090  *
1091  * @shm_alloc_security:
1092  *	Allocate and attach a security structure to the shp->shm_perm.security
1093  *	field.  The security field is initialized to NULL when the structure is
1094  *	first created.
1095  *	@shp contains the shared memory structure to be modified.
1096  *	Return 0 if operation was successful and permission is granted.
1097  * @shm_free_security:
1098  *	Deallocate the security struct for this memory segment.
1099  *	@shp contains the shared memory structure to be modified.
1100  * @shm_associate:
1101  *	Check permission when a shared memory region is requested through the
1102  *	shmget system call.  This hook is only called when returning the shared
1103  *	memory region identifier for an existing region, not when a new shared
1104  *	memory region is created.
1105  *	@shp contains the shared memory structure to be modified.
1106  *	@shmflg contains the operation control flags.
1107  *	Return 0 if permission is granted.
1108  * @shm_shmctl:
1109  *	Check permission when a shared memory control operation specified by
1110  *	@cmd is to be performed on the shared memory region @shp.
1111  *	The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
1112  *	@shp contains shared memory structure to be modified.
1113  *	@cmd contains the operation to be performed.
1114  *	Return 0 if permission is granted.
1115  * @shm_shmat:
1116  *	Check permissions prior to allowing the shmat system call to attach the
1117  *	shared memory segment @shp to the data segment of the calling process.
1118  *	The attaching address is specified by @shmaddr.
1119  *	@shp contains the shared memory structure to be modified.
1120  *	@shmaddr contains the address to attach memory region to.
1121  *	@shmflg contains the operational flags.
1122  *	Return 0 if permission is granted.
1123  *
1124  * Security hooks for System V Semaphores
1125  *
1126  * @sem_alloc_security:
1127  *	Allocate and attach a security structure to the sma->sem_perm.security
1128  *	field.  The security field is initialized to NULL when the structure is
1129  *	first created.
1130  *	@sma contains the semaphore structure
1131  *	Return 0 if operation was successful and permission is granted.
1132  * @sem_free_security:
1133  *	deallocate security struct for this semaphore
1134  *	@sma contains the semaphore structure.
1135  * @sem_associate:
1136  *	Check permission when a semaphore is requested through the semget
1137  *	system call.  This hook is only called when returning the semaphore
1138  *	identifier for an existing semaphore, not when a new one must be
1139  *	created.
1140  *	@sma contains the semaphore structure.
1141  *	@semflg contains the operation control flags.
1142  *	Return 0 if permission is granted.
1143  * @sem_semctl:
1144  *	Check permission when a semaphore operation specified by @cmd is to be
1145  *	performed on the semaphore @sma.  The @sma may be NULL, e.g. for
1146  *	IPC_INFO or SEM_INFO.
1147  *	@sma contains the semaphore structure.  May be NULL.
1148  *	@cmd contains the operation to be performed.
1149  *	Return 0 if permission is granted.
1150  * @sem_semop
1151  *	Check permissions before performing operations on members of the
1152  *	semaphore set @sma.  If the @alter flag is nonzero, the semaphore set
1153  *	may be modified.
1154  *	@sma contains the semaphore structure.
1155  *	@sops contains the operations to perform.
1156  *	@nsops contains the number of operations to perform.
1157  *	@alter contains the flag indicating whether changes are to be made.
1158  *	Return 0 if permission is granted.
1159  *
1160  * @ptrace:
1161  *	Check permission before allowing the @parent process to trace the
1162  *	@child process.
1163  *	Security modules may also want to perform a process tracing check
1164  *	during an execve in the set_security or apply_creds hooks of
1165  *	binprm_security_ops if the process is being traced and its security
1166  *	attributes would be changed by the execve.
1167  *	@parent contains the task_struct structure for parent process.
1168  *	@child contains the task_struct structure for child process.
1169  *	@mode contains the PTRACE_MODE flags indicating the form of access.
1170  *	Return 0 if permission is granted.
1171  * @capget:
1172  *	Get the @effective, @inheritable, and @permitted capability sets for
1173  *	the @target process.  The hook may also perform permission checking to
1174  *	determine if the current process is allowed to see the capability sets
1175  *	of the @target process.
1176  *	@target contains the task_struct structure for target process.
1177  *	@effective contains the effective capability set.
1178  *	@inheritable contains the inheritable capability set.
1179  *	@permitted contains the permitted capability set.
1180  *	Return 0 if the capability sets were successfully obtained.
1181  * @capset_check:
1182  *	Check permission before setting the @effective, @inheritable, and
1183  *	@permitted capability sets for the @target process.
1184  *	Caveat:  @target is also set to current if a set of processes is
1185  *	specified (i.e. all processes other than current and init or a
1186  *	particular process group).  Hence, the capset_set hook may need to
1187  *	revalidate permission to the actual target process.
1188  *	@target contains the task_struct structure for target process.
1189  *	@effective contains the effective capability set.
1190  *	@inheritable contains the inheritable capability set.
1191  *	@permitted contains the permitted capability set.
1192  *	Return 0 if permission is granted.
1193  * @capset_set:
1194  *	Set the @effective, @inheritable, and @permitted capability sets for
1195  *	the @target process.  Since capset_check cannot always check permission
1196  *	to the real @target process, this hook may also perform permission
1197  *	checking to determine if the current process is allowed to set the
1198  *	capability sets of the @target process.  However, this hook has no way
1199  *	of returning an error due to the structure of the sys_capset code.
1200  *	@target contains the task_struct structure for target process.
1201  *	@effective contains the effective capability set.
1202  *	@inheritable contains the inheritable capability set.
1203  *	@permitted contains the permitted capability set.
1204  * @capable:
1205  *	Check whether the @tsk process has the @cap capability.
1206  *	@tsk contains the task_struct for the process.
1207  *	@cap contains the capability <include/linux/capability.h>.
1208  *	Return 0 if the capability is granted for @tsk.
1209  * @acct:
1210  *	Check permission before enabling or disabling process accounting.  If
1211  *	accounting is being enabled, then @file refers to the open file used to
1212  *	store accounting records.  If accounting is being disabled, then @file
1213  *	is NULL.
1214  *	@file contains the file structure for the accounting file (may be NULL).
1215  *	Return 0 if permission is granted.
1216  * @sysctl:
1217  *	Check permission before accessing the @table sysctl variable in the
1218  *	manner specified by @op.
1219  *	@table contains the ctl_table structure for the sysctl variable.
1220  *	@op contains the operation (001 = search, 002 = write, 004 = read).
1221  *	Return 0 if permission is granted.
1222  * @syslog:
1223  *	Check permission before accessing the kernel message ring or changing
1224  *	logging to the console.
1225  *	See the syslog(2) manual page for an explanation of the @type values.
1226  *	@type contains the type of action.
1227  *	Return 0 if permission is granted.
1228  * @settime:
1229  *	Check permission to change the system time.
1230  *	struct timespec and timezone are defined in include/linux/time.h
1231  *	@ts contains new time
1232  *	@tz contains new timezone
1233  *	Return 0 if permission is granted.
1234  * @vm_enough_memory:
1235  *	Check permissions for allocating a new virtual mapping.
1236  *	@mm contains the mm struct it is being added to.
1237  *	@pages contains the number of pages.
1238  *	Return 0 if permission is granted.
1239  *
1240  * @secid_to_secctx:
1241  *	Convert secid to security context.
1242  *	@secid contains the security ID.
1243  *	@secdata contains the pointer that stores the converted security context.
1244  * @secctx_to_secid:
1245  *	Convert security context to secid.
1246  *	@secid contains the pointer to the generated security ID.
1247  *	@secdata contains the security context.
1248  *
1249  * @release_secctx:
1250  *	Release the security context.
1251  *	@secdata contains the security context.
1252  *	@seclen contains the length of the security context.
1253  *
1254  * Security hooks for Audit
1255  *
1256  * @audit_rule_init:
1257  *	Allocate and initialize an LSM audit rule structure.
1258  *	@field contains the required Audit action. Fields flags are defined in include/linux/audit.h
1259  *	@op contains the operator the rule uses.
1260  *	@rulestr contains the context where the rule will be applied to.
1261  *	@lsmrule contains a pointer to receive the result.
1262  *	Return 0 if @lsmrule has been successfully set,
1263  *	-EINVAL in case of an invalid rule.
1264  *
1265  * @audit_rule_known:
1266  *	Specifies whether given @rule contains any fields related to current LSM.
1267  *	@rule contains the audit rule of interest.
1268  *	Return 1 in case of relation found, 0 otherwise.
1269  *
1270  * @audit_rule_match:
1271  *	Determine if given @secid matches a rule previously approved
1272  *	by @audit_rule_known.
1273  *	@secid contains the security id in question.
1274  *	@field contains the field which relates to current LSM.
1275  *	@op contains the operator that will be used for matching.
1276  *	@rule points to the audit rule that will be checked against.
1277  *	@actx points to the audit context associated with the check.
1278  *	Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure.
1279  *
1280  * @audit_rule_free:
1281  *	Deallocate the LSM audit rule structure previously allocated by
1282  *	audit_rule_init.
1283  *	@rule contains the allocated rule
1284  *
1285  * This is the main security structure.
1286  */
1287 struct security_operations {
1288 	char name[SECURITY_NAME_MAX + 1];
1289 
1290 	int (*ptrace) (struct task_struct *parent, struct task_struct *child,
1291 		       unsigned int mode);
1292 	int (*capget) (struct task_struct *target,
1293 		       kernel_cap_t *effective,
1294 		       kernel_cap_t *inheritable, kernel_cap_t *permitted);
1295 	int (*capset_check) (struct task_struct *target,
1296 			     kernel_cap_t *effective,
1297 			     kernel_cap_t *inheritable,
1298 			     kernel_cap_t *permitted);
1299 	void (*capset_set) (struct task_struct *target,
1300 			    kernel_cap_t *effective,
1301 			    kernel_cap_t *inheritable,
1302 			    kernel_cap_t *permitted);
1303 	int (*capable) (struct task_struct *tsk, int cap);
1304 	int (*acct) (struct file *file);
1305 	int (*sysctl) (struct ctl_table *table, int op);
1306 	int (*quotactl) (int cmds, int type, int id, struct super_block *sb);
1307 	int (*quota_on) (struct dentry *dentry);
1308 	int (*syslog) (int type);
1309 	int (*settime) (struct timespec *ts, struct timezone *tz);
1310 	int (*vm_enough_memory) (struct mm_struct *mm, long pages);
1311 
1312 	int (*bprm_alloc_security) (struct linux_binprm *bprm);
1313 	void (*bprm_free_security) (struct linux_binprm *bprm);
1314 	void (*bprm_apply_creds) (struct linux_binprm *bprm, int unsafe);
1315 	void (*bprm_post_apply_creds) (struct linux_binprm *bprm);
1316 	int (*bprm_set_security) (struct linux_binprm *bprm);
1317 	int (*bprm_check_security) (struct linux_binprm *bprm);
1318 	int (*bprm_secureexec) (struct linux_binprm *bprm);
1319 
1320 	int (*sb_alloc_security) (struct super_block *sb);
1321 	void (*sb_free_security) (struct super_block *sb);
1322 	int (*sb_copy_data) (char *orig, char *copy);
1323 	int (*sb_kern_mount) (struct super_block *sb, void *data);
1324 	int (*sb_show_options) (struct seq_file *m, struct super_block *sb);
1325 	int (*sb_statfs) (struct dentry *dentry);
1326 	int (*sb_mount) (char *dev_name, struct path *path,
1327 			 char *type, unsigned long flags, void *data);
1328 	int (*sb_check_sb) (struct vfsmount *mnt, struct path *path);
1329 	int (*sb_umount) (struct vfsmount *mnt, int flags);
1330 	void (*sb_umount_close) (struct vfsmount *mnt);
1331 	void (*sb_umount_busy) (struct vfsmount *mnt);
1332 	void (*sb_post_remount) (struct vfsmount *mnt,
1333 				 unsigned long flags, void *data);
1334 	void (*sb_post_addmount) (struct vfsmount *mnt,
1335 				  struct path *mountpoint);
1336 	int (*sb_pivotroot) (struct path *old_path,
1337 			     struct path *new_path);
1338 	void (*sb_post_pivotroot) (struct path *old_path,
1339 				   struct path *new_path);
1340 	int (*sb_set_mnt_opts) (struct super_block *sb,
1341 				struct security_mnt_opts *opts);
1342 	void (*sb_clone_mnt_opts) (const struct super_block *oldsb,
1343 				   struct super_block *newsb);
1344 	int (*sb_parse_opts_str) (char *options, struct security_mnt_opts *opts);
1345 
1346 	int (*inode_alloc_security) (struct inode *inode);
1347 	void (*inode_free_security) (struct inode *inode);
1348 	int (*inode_init_security) (struct inode *inode, struct inode *dir,
1349 				    char **name, void **value, size_t *len);
1350 	int (*inode_create) (struct inode *dir,
1351 			     struct dentry *dentry, int mode);
1352 	int (*inode_link) (struct dentry *old_dentry,
1353 			   struct inode *dir, struct dentry *new_dentry);
1354 	int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1355 	int (*inode_symlink) (struct inode *dir,
1356 			      struct dentry *dentry, const char *old_name);
1357 	int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
1358 	int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1359 	int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1360 			    int mode, dev_t dev);
1361 	int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1362 			     struct inode *new_dir, struct dentry *new_dentry);
1363 	int (*inode_readlink) (struct dentry *dentry);
1364 	int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1365 	int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
1366 	int (*inode_setattr)	(struct dentry *dentry, struct iattr *attr);
1367 	int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1368 	void (*inode_delete) (struct inode *inode);
1369 	int (*inode_setxattr) (struct dentry *dentry, const char *name,
1370 			       const void *value, size_t size, int flags);
1371 	void (*inode_post_setxattr) (struct dentry *dentry, const char *name,
1372 				     const void *value, size_t size, int flags);
1373 	int (*inode_getxattr) (struct dentry *dentry, const char *name);
1374 	int (*inode_listxattr) (struct dentry *dentry);
1375 	int (*inode_removexattr) (struct dentry *dentry, const char *name);
1376 	int (*inode_need_killpriv) (struct dentry *dentry);
1377 	int (*inode_killpriv) (struct dentry *dentry);
1378 	int (*inode_getsecurity) (const struct inode *inode, const char *name, void **buffer, bool alloc);
1379 	int (*inode_setsecurity) (struct inode *inode, const char *name, const void *value, size_t size, int flags);
1380 	int (*inode_listsecurity) (struct inode *inode, char *buffer, size_t buffer_size);
1381 	void (*inode_getsecid) (const struct inode *inode, u32 *secid);
1382 
1383 	int (*file_permission) (struct file *file, int mask);
1384 	int (*file_alloc_security) (struct file *file);
1385 	void (*file_free_security) (struct file *file);
1386 	int (*file_ioctl) (struct file *file, unsigned int cmd,
1387 			   unsigned long arg);
1388 	int (*file_mmap) (struct file *file,
1389 			  unsigned long reqprot, unsigned long prot,
1390 			  unsigned long flags, unsigned long addr,
1391 			  unsigned long addr_only);
1392 	int (*file_mprotect) (struct vm_area_struct *vma,
1393 			      unsigned long reqprot,
1394 			      unsigned long prot);
1395 	int (*file_lock) (struct file *file, unsigned int cmd);
1396 	int (*file_fcntl) (struct file *file, unsigned int cmd,
1397 			   unsigned long arg);
1398 	int (*file_set_fowner) (struct file *file);
1399 	int (*file_send_sigiotask) (struct task_struct *tsk,
1400 				    struct fown_struct *fown, int sig);
1401 	int (*file_receive) (struct file *file);
1402 	int (*dentry_open) (struct file *file);
1403 
1404 	int (*task_create) (unsigned long clone_flags);
1405 	int (*task_alloc_security) (struct task_struct *p);
1406 	void (*task_free_security) (struct task_struct *p);
1407 	int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
1408 	int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
1409 				 uid_t old_euid, uid_t old_suid, int flags);
1410 	int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
1411 	int (*task_setpgid) (struct task_struct *p, pid_t pgid);
1412 	int (*task_getpgid) (struct task_struct *p);
1413 	int (*task_getsid) (struct task_struct *p);
1414 	void (*task_getsecid) (struct task_struct *p, u32 *secid);
1415 	int (*task_setgroups) (struct group_info *group_info);
1416 	int (*task_setnice) (struct task_struct *p, int nice);
1417 	int (*task_setioprio) (struct task_struct *p, int ioprio);
1418 	int (*task_getioprio) (struct task_struct *p);
1419 	int (*task_setrlimit) (unsigned int resource, struct rlimit *new_rlim);
1420 	int (*task_setscheduler) (struct task_struct *p, int policy,
1421 				  struct sched_param *lp);
1422 	int (*task_getscheduler) (struct task_struct *p);
1423 	int (*task_movememory) (struct task_struct *p);
1424 	int (*task_kill) (struct task_struct *p,
1425 			  struct siginfo *info, int sig, u32 secid);
1426 	int (*task_wait) (struct task_struct *p);
1427 	int (*task_prctl) (int option, unsigned long arg2,
1428 			   unsigned long arg3, unsigned long arg4,
1429 			   unsigned long arg5, long *rc_p);
1430 	void (*task_reparent_to_init) (struct task_struct *p);
1431 	void (*task_to_inode) (struct task_struct *p, struct inode *inode);
1432 
1433 	int (*ipc_permission) (struct kern_ipc_perm *ipcp, short flag);
1434 	void (*ipc_getsecid) (struct kern_ipc_perm *ipcp, u32 *secid);
1435 
1436 	int (*msg_msg_alloc_security) (struct msg_msg *msg);
1437 	void (*msg_msg_free_security) (struct msg_msg *msg);
1438 
1439 	int (*msg_queue_alloc_security) (struct msg_queue *msq);
1440 	void (*msg_queue_free_security) (struct msg_queue *msq);
1441 	int (*msg_queue_associate) (struct msg_queue *msq, int msqflg);
1442 	int (*msg_queue_msgctl) (struct msg_queue *msq, int cmd);
1443 	int (*msg_queue_msgsnd) (struct msg_queue *msq,
1444 				 struct msg_msg *msg, int msqflg);
1445 	int (*msg_queue_msgrcv) (struct msg_queue *msq,
1446 				 struct msg_msg *msg,
1447 				 struct task_struct *target,
1448 				 long type, int mode);
1449 
1450 	int (*shm_alloc_security) (struct shmid_kernel *shp);
1451 	void (*shm_free_security) (struct shmid_kernel *shp);
1452 	int (*shm_associate) (struct shmid_kernel *shp, int shmflg);
1453 	int (*shm_shmctl) (struct shmid_kernel *shp, int cmd);
1454 	int (*shm_shmat) (struct shmid_kernel *shp,
1455 			  char __user *shmaddr, int shmflg);
1456 
1457 	int (*sem_alloc_security) (struct sem_array *sma);
1458 	void (*sem_free_security) (struct sem_array *sma);
1459 	int (*sem_associate) (struct sem_array *sma, int semflg);
1460 	int (*sem_semctl) (struct sem_array *sma, int cmd);
1461 	int (*sem_semop) (struct sem_array *sma,
1462 			  struct sembuf *sops, unsigned nsops, int alter);
1463 
1464 	int (*netlink_send) (struct sock *sk, struct sk_buff *skb);
1465 	int (*netlink_recv) (struct sk_buff *skb, int cap);
1466 
1467 	void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1468 
1469 	int (*getprocattr) (struct task_struct *p, char *name, char **value);
1470 	int (*setprocattr) (struct task_struct *p, char *name, void *value, size_t size);
1471 	int (*secid_to_secctx) (u32 secid, char **secdata, u32 *seclen);
1472 	int (*secctx_to_secid) (const char *secdata, u32 seclen, u32 *secid);
1473 	void (*release_secctx) (char *secdata, u32 seclen);
1474 
1475 #ifdef CONFIG_SECURITY_NETWORK
1476 	int (*unix_stream_connect) (struct socket *sock,
1477 				    struct socket *other, struct sock *newsk);
1478 	int (*unix_may_send) (struct socket *sock, struct socket *other);
1479 
1480 	int (*socket_create) (int family, int type, int protocol, int kern);
1481 	int (*socket_post_create) (struct socket *sock, int family,
1482 				   int type, int protocol, int kern);
1483 	int (*socket_bind) (struct socket *sock,
1484 			    struct sockaddr *address, int addrlen);
1485 	int (*socket_connect) (struct socket *sock,
1486 			       struct sockaddr *address, int addrlen);
1487 	int (*socket_listen) (struct socket *sock, int backlog);
1488 	int (*socket_accept) (struct socket *sock, struct socket *newsock);
1489 	void (*socket_post_accept) (struct socket *sock,
1490 				    struct socket *newsock);
1491 	int (*socket_sendmsg) (struct socket *sock,
1492 			       struct msghdr *msg, int size);
1493 	int (*socket_recvmsg) (struct socket *sock,
1494 			       struct msghdr *msg, int size, int flags);
1495 	int (*socket_getsockname) (struct socket *sock);
1496 	int (*socket_getpeername) (struct socket *sock);
1497 	int (*socket_getsockopt) (struct socket *sock, int level, int optname);
1498 	int (*socket_setsockopt) (struct socket *sock, int level, int optname);
1499 	int (*socket_shutdown) (struct socket *sock, int how);
1500 	int (*socket_sock_rcv_skb) (struct sock *sk, struct sk_buff *skb);
1501 	int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1502 	int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
1503 	int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1504 	void (*sk_free_security) (struct sock *sk);
1505 	void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
1506 	void (*sk_getsecid) (struct sock *sk, u32 *secid);
1507 	void (*sock_graft) (struct sock *sk, struct socket *parent);
1508 	int (*inet_conn_request) (struct sock *sk, struct sk_buff *skb,
1509 				  struct request_sock *req);
1510 	void (*inet_csk_clone) (struct sock *newsk, const struct request_sock *req);
1511 	void (*inet_conn_established) (struct sock *sk, struct sk_buff *skb);
1512 	void (*req_classify_flow) (const struct request_sock *req, struct flowi *fl);
1513 #endif	/* CONFIG_SECURITY_NETWORK */
1514 
1515 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1516 	int (*xfrm_policy_alloc_security) (struct xfrm_sec_ctx **ctxp,
1517 			struct xfrm_user_sec_ctx *sec_ctx);
1518 	int (*xfrm_policy_clone_security) (struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctx);
1519 	void (*xfrm_policy_free_security) (struct xfrm_sec_ctx *ctx);
1520 	int (*xfrm_policy_delete_security) (struct xfrm_sec_ctx *ctx);
1521 	int (*xfrm_state_alloc_security) (struct xfrm_state *x,
1522 		struct xfrm_user_sec_ctx *sec_ctx,
1523 		u32 secid);
1524 	void (*xfrm_state_free_security) (struct xfrm_state *x);
1525 	int (*xfrm_state_delete_security) (struct xfrm_state *x);
1526 	int (*xfrm_policy_lookup) (struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
1527 	int (*xfrm_state_pol_flow_match) (struct xfrm_state *x,
1528 					  struct xfrm_policy *xp,
1529 					  struct flowi *fl);
1530 	int (*xfrm_decode_session) (struct sk_buff *skb, u32 *secid, int ckall);
1531 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1532 
1533 	/* key management security hooks */
1534 #ifdef CONFIG_KEYS
1535 	int (*key_alloc) (struct key *key, struct task_struct *tsk, unsigned long flags);
1536 	void (*key_free) (struct key *key);
1537 	int (*key_permission) (key_ref_t key_ref,
1538 			       struct task_struct *context,
1539 			       key_perm_t perm);
1540 	int (*key_getsecurity)(struct key *key, char **_buffer);
1541 #endif	/* CONFIG_KEYS */
1542 
1543 #ifdef CONFIG_AUDIT
1544 	int (*audit_rule_init) (u32 field, u32 op, char *rulestr, void **lsmrule);
1545 	int (*audit_rule_known) (struct audit_krule *krule);
1546 	int (*audit_rule_match) (u32 secid, u32 field, u32 op, void *lsmrule,
1547 				 struct audit_context *actx);
1548 	void (*audit_rule_free) (void *lsmrule);
1549 #endif /* CONFIG_AUDIT */
1550 };
1551 
1552 /* prototypes */
1553 extern int security_init(void);
1554 extern int security_module_enable(struct security_operations *ops);
1555 extern int register_security(struct security_operations *ops);
1556 extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
1557 					     struct dentry *parent, void *data,
1558 					     const struct file_operations *fops);
1559 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
1560 extern void securityfs_remove(struct dentry *dentry);
1561 
1562 /* Security operations */
1563 int security_ptrace(struct task_struct *parent, struct task_struct *child,
1564 		    unsigned int mode);
1565 int security_capget(struct task_struct *target,
1566 		    kernel_cap_t *effective,
1567 		    kernel_cap_t *inheritable,
1568 		    kernel_cap_t *permitted);
1569 int security_capset_check(struct task_struct *target,
1570 			  kernel_cap_t *effective,
1571 			  kernel_cap_t *inheritable,
1572 			  kernel_cap_t *permitted);
1573 void security_capset_set(struct task_struct *target,
1574 			 kernel_cap_t *effective,
1575 			 kernel_cap_t *inheritable,
1576 			 kernel_cap_t *permitted);
1577 int security_capable(struct task_struct *tsk, int cap);
1578 int security_acct(struct file *file);
1579 int security_sysctl(struct ctl_table *table, int op);
1580 int security_quotactl(int cmds, int type, int id, struct super_block *sb);
1581 int security_quota_on(struct dentry *dentry);
1582 int security_syslog(int type);
1583 int security_settime(struct timespec *ts, struct timezone *tz);
1584 int security_vm_enough_memory(long pages);
1585 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages);
1586 int security_bprm_alloc(struct linux_binprm *bprm);
1587 void security_bprm_free(struct linux_binprm *bprm);
1588 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe);
1589 void security_bprm_post_apply_creds(struct linux_binprm *bprm);
1590 int security_bprm_set(struct linux_binprm *bprm);
1591 int security_bprm_check(struct linux_binprm *bprm);
1592 int security_bprm_secureexec(struct linux_binprm *bprm);
1593 int security_sb_alloc(struct super_block *sb);
1594 void security_sb_free(struct super_block *sb);
1595 int security_sb_copy_data(char *orig, char *copy);
1596 int security_sb_kern_mount(struct super_block *sb, void *data);
1597 int security_sb_show_options(struct seq_file *m, struct super_block *sb);
1598 int security_sb_statfs(struct dentry *dentry);
1599 int security_sb_mount(char *dev_name, struct path *path,
1600 		      char *type, unsigned long flags, void *data);
1601 int security_sb_check_sb(struct vfsmount *mnt, struct path *path);
1602 int security_sb_umount(struct vfsmount *mnt, int flags);
1603 void security_sb_umount_close(struct vfsmount *mnt);
1604 void security_sb_umount_busy(struct vfsmount *mnt);
1605 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data);
1606 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint);
1607 int security_sb_pivotroot(struct path *old_path, struct path *new_path);
1608 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path);
1609 int security_sb_set_mnt_opts(struct super_block *sb, struct security_mnt_opts *opts);
1610 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
1611 				struct super_block *newsb);
1612 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts);
1613 
1614 int security_inode_alloc(struct inode *inode);
1615 void security_inode_free(struct inode *inode);
1616 int security_inode_init_security(struct inode *inode, struct inode *dir,
1617 				  char **name, void **value, size_t *len);
1618 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode);
1619 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1620 			 struct dentry *new_dentry);
1621 int security_inode_unlink(struct inode *dir, struct dentry *dentry);
1622 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1623 			   const char *old_name);
1624 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode);
1625 int security_inode_rmdir(struct inode *dir, struct dentry *dentry);
1626 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev);
1627 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1628 			  struct inode *new_dir, struct dentry *new_dentry);
1629 int security_inode_readlink(struct dentry *dentry);
1630 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd);
1631 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd);
1632 int security_inode_setattr(struct dentry *dentry, struct iattr *attr);
1633 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry);
1634 void security_inode_delete(struct inode *inode);
1635 int security_inode_setxattr(struct dentry *dentry, const char *name,
1636 			    const void *value, size_t size, int flags);
1637 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1638 				  const void *value, size_t size, int flags);
1639 int security_inode_getxattr(struct dentry *dentry, const char *name);
1640 int security_inode_listxattr(struct dentry *dentry);
1641 int security_inode_removexattr(struct dentry *dentry, const char *name);
1642 int security_inode_need_killpriv(struct dentry *dentry);
1643 int security_inode_killpriv(struct dentry *dentry);
1644 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc);
1645 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1646 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size);
1647 void security_inode_getsecid(const struct inode *inode, u32 *secid);
1648 int security_file_permission(struct file *file, int mask);
1649 int security_file_alloc(struct file *file);
1650 void security_file_free(struct file *file);
1651 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
1652 int security_file_mmap(struct file *file, unsigned long reqprot,
1653 			unsigned long prot, unsigned long flags,
1654 			unsigned long addr, unsigned long addr_only);
1655 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1656 			   unsigned long prot);
1657 int security_file_lock(struct file *file, unsigned int cmd);
1658 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg);
1659 int security_file_set_fowner(struct file *file);
1660 int security_file_send_sigiotask(struct task_struct *tsk,
1661 				 struct fown_struct *fown, int sig);
1662 int security_file_receive(struct file *file);
1663 int security_dentry_open(struct file *file);
1664 int security_task_create(unsigned long clone_flags);
1665 int security_task_alloc(struct task_struct *p);
1666 void security_task_free(struct task_struct *p);
1667 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags);
1668 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
1669 			      uid_t old_suid, int flags);
1670 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags);
1671 int security_task_setpgid(struct task_struct *p, pid_t pgid);
1672 int security_task_getpgid(struct task_struct *p);
1673 int security_task_getsid(struct task_struct *p);
1674 void security_task_getsecid(struct task_struct *p, u32 *secid);
1675 int security_task_setgroups(struct group_info *group_info);
1676 int security_task_setnice(struct task_struct *p, int nice);
1677 int security_task_setioprio(struct task_struct *p, int ioprio);
1678 int security_task_getioprio(struct task_struct *p);
1679 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim);
1680 int security_task_setscheduler(struct task_struct *p,
1681 				int policy, struct sched_param *lp);
1682 int security_task_getscheduler(struct task_struct *p);
1683 int security_task_movememory(struct task_struct *p);
1684 int security_task_kill(struct task_struct *p, struct siginfo *info,
1685 			int sig, u32 secid);
1686 int security_task_wait(struct task_struct *p);
1687 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1688 			 unsigned long arg4, unsigned long arg5, long *rc_p);
1689 void security_task_reparent_to_init(struct task_struct *p);
1690 void security_task_to_inode(struct task_struct *p, struct inode *inode);
1691 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag);
1692 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid);
1693 int security_msg_msg_alloc(struct msg_msg *msg);
1694 void security_msg_msg_free(struct msg_msg *msg);
1695 int security_msg_queue_alloc(struct msg_queue *msq);
1696 void security_msg_queue_free(struct msg_queue *msq);
1697 int security_msg_queue_associate(struct msg_queue *msq, int msqflg);
1698 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd);
1699 int security_msg_queue_msgsnd(struct msg_queue *msq,
1700 			      struct msg_msg *msg, int msqflg);
1701 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1702 			      struct task_struct *target, long type, int mode);
1703 int security_shm_alloc(struct shmid_kernel *shp);
1704 void security_shm_free(struct shmid_kernel *shp);
1705 int security_shm_associate(struct shmid_kernel *shp, int shmflg);
1706 int security_shm_shmctl(struct shmid_kernel *shp, int cmd);
1707 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg);
1708 int security_sem_alloc(struct sem_array *sma);
1709 void security_sem_free(struct sem_array *sma);
1710 int security_sem_associate(struct sem_array *sma, int semflg);
1711 int security_sem_semctl(struct sem_array *sma, int cmd);
1712 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1713 			unsigned nsops, int alter);
1714 void security_d_instantiate(struct dentry *dentry, struct inode *inode);
1715 int security_getprocattr(struct task_struct *p, char *name, char **value);
1716 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size);
1717 int security_netlink_send(struct sock *sk, struct sk_buff *skb);
1718 int security_netlink_recv(struct sk_buff *skb, int cap);
1719 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen);
1720 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid);
1721 void security_release_secctx(char *secdata, u32 seclen);
1722 
1723 #else /* CONFIG_SECURITY */
1724 struct security_mnt_opts {
1725 };
1726 
1727 static inline void security_init_mnt_opts(struct security_mnt_opts *opts)
1728 {
1729 }
1730 
1731 static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
1732 {
1733 }
1734 
1735 /*
1736  * This is the default capabilities functionality.  Most of these functions
1737  * are just stubbed out, but a few must call the proper capable code.
1738  */
1739 
1740 static inline int security_init(void)
1741 {
1742 	return 0;
1743 }
1744 
1745 static inline int security_ptrace(struct task_struct *parent,
1746 				  struct task_struct *child,
1747 				  unsigned int mode)
1748 {
1749 	return cap_ptrace(parent, child, mode);
1750 }
1751 
1752 static inline int security_capget(struct task_struct *target,
1753 				   kernel_cap_t *effective,
1754 				   kernel_cap_t *inheritable,
1755 				   kernel_cap_t *permitted)
1756 {
1757 	return cap_capget(target, effective, inheritable, permitted);
1758 }
1759 
1760 static inline int security_capset_check(struct task_struct *target,
1761 					 kernel_cap_t *effective,
1762 					 kernel_cap_t *inheritable,
1763 					 kernel_cap_t *permitted)
1764 {
1765 	return cap_capset_check(target, effective, inheritable, permitted);
1766 }
1767 
1768 static inline void security_capset_set(struct task_struct *target,
1769 					kernel_cap_t *effective,
1770 					kernel_cap_t *inheritable,
1771 					kernel_cap_t *permitted)
1772 {
1773 	cap_capset_set(target, effective, inheritable, permitted);
1774 }
1775 
1776 static inline int security_capable(struct task_struct *tsk, int cap)
1777 {
1778 	return cap_capable(tsk, cap);
1779 }
1780 
1781 static inline int security_acct(struct file *file)
1782 {
1783 	return 0;
1784 }
1785 
1786 static inline int security_sysctl(struct ctl_table *table, int op)
1787 {
1788 	return 0;
1789 }
1790 
1791 static inline int security_quotactl(int cmds, int type, int id,
1792 				     struct super_block *sb)
1793 {
1794 	return 0;
1795 }
1796 
1797 static inline int security_quota_on(struct dentry *dentry)
1798 {
1799 	return 0;
1800 }
1801 
1802 static inline int security_syslog(int type)
1803 {
1804 	return cap_syslog(type);
1805 }
1806 
1807 static inline int security_settime(struct timespec *ts, struct timezone *tz)
1808 {
1809 	return cap_settime(ts, tz);
1810 }
1811 
1812 static inline int security_vm_enough_memory(long pages)
1813 {
1814 	return cap_vm_enough_memory(current->mm, pages);
1815 }
1816 
1817 static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1818 {
1819 	return cap_vm_enough_memory(mm, pages);
1820 }
1821 
1822 static inline int security_bprm_alloc(struct linux_binprm *bprm)
1823 {
1824 	return 0;
1825 }
1826 
1827 static inline void security_bprm_free(struct linux_binprm *bprm)
1828 { }
1829 
1830 static inline void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1831 {
1832 	cap_bprm_apply_creds(bprm, unsafe);
1833 }
1834 
1835 static inline void security_bprm_post_apply_creds(struct linux_binprm *bprm)
1836 {
1837 	return;
1838 }
1839 
1840 static inline int security_bprm_set(struct linux_binprm *bprm)
1841 {
1842 	return cap_bprm_set_security(bprm);
1843 }
1844 
1845 static inline int security_bprm_check(struct linux_binprm *bprm)
1846 {
1847 	return 0;
1848 }
1849 
1850 static inline int security_bprm_secureexec(struct linux_binprm *bprm)
1851 {
1852 	return cap_bprm_secureexec(bprm);
1853 }
1854 
1855 static inline int security_sb_alloc(struct super_block *sb)
1856 {
1857 	return 0;
1858 }
1859 
1860 static inline void security_sb_free(struct super_block *sb)
1861 { }
1862 
1863 static inline int security_sb_copy_data(char *orig, char *copy)
1864 {
1865 	return 0;
1866 }
1867 
1868 static inline int security_sb_kern_mount(struct super_block *sb, void *data)
1869 {
1870 	return 0;
1871 }
1872 
1873 static inline int security_sb_show_options(struct seq_file *m,
1874 					   struct super_block *sb)
1875 {
1876 	return 0;
1877 }
1878 
1879 static inline int security_sb_statfs(struct dentry *dentry)
1880 {
1881 	return 0;
1882 }
1883 
1884 static inline int security_sb_mount(char *dev_name, struct path *path,
1885 				    char *type, unsigned long flags,
1886 				    void *data)
1887 {
1888 	return 0;
1889 }
1890 
1891 static inline int security_sb_check_sb(struct vfsmount *mnt,
1892 				       struct path *path)
1893 {
1894 	return 0;
1895 }
1896 
1897 static inline int security_sb_umount(struct vfsmount *mnt, int flags)
1898 {
1899 	return 0;
1900 }
1901 
1902 static inline void security_sb_umount_close(struct vfsmount *mnt)
1903 { }
1904 
1905 static inline void security_sb_umount_busy(struct vfsmount *mnt)
1906 { }
1907 
1908 static inline void security_sb_post_remount(struct vfsmount *mnt,
1909 					     unsigned long flags, void *data)
1910 { }
1911 
1912 static inline void security_sb_post_addmount(struct vfsmount *mnt,
1913 					     struct path *mountpoint)
1914 { }
1915 
1916 static inline int security_sb_pivotroot(struct path *old_path,
1917 					struct path *new_path)
1918 {
1919 	return 0;
1920 }
1921 
1922 static inline void security_sb_post_pivotroot(struct path *old_path,
1923 					      struct path *new_path)
1924 { }
1925 
1926 static inline int security_sb_set_mnt_opts(struct super_block *sb,
1927 					   struct security_mnt_opts *opts)
1928 {
1929 	return 0;
1930 }
1931 
1932 static inline void security_sb_clone_mnt_opts(const struct super_block *oldsb,
1933 					      struct super_block *newsb)
1934 { }
1935 
1936 static inline int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
1937 {
1938 	return 0;
1939 }
1940 
1941 static inline int security_inode_alloc(struct inode *inode)
1942 {
1943 	return 0;
1944 }
1945 
1946 static inline void security_inode_free(struct inode *inode)
1947 { }
1948 
1949 static inline int security_inode_init_security(struct inode *inode,
1950 						struct inode *dir,
1951 						char **name,
1952 						void **value,
1953 						size_t *len)
1954 {
1955 	return -EOPNOTSUPP;
1956 }
1957 
1958 static inline int security_inode_create(struct inode *dir,
1959 					 struct dentry *dentry,
1960 					 int mode)
1961 {
1962 	return 0;
1963 }
1964 
1965 static inline int security_inode_link(struct dentry *old_dentry,
1966 				       struct inode *dir,
1967 				       struct dentry *new_dentry)
1968 {
1969 	return 0;
1970 }
1971 
1972 static inline int security_inode_unlink(struct inode *dir,
1973 					 struct dentry *dentry)
1974 {
1975 	return 0;
1976 }
1977 
1978 static inline int security_inode_symlink(struct inode *dir,
1979 					  struct dentry *dentry,
1980 					  const char *old_name)
1981 {
1982 	return 0;
1983 }
1984 
1985 static inline int security_inode_mkdir(struct inode *dir,
1986 					struct dentry *dentry,
1987 					int mode)
1988 {
1989 	return 0;
1990 }
1991 
1992 static inline int security_inode_rmdir(struct inode *dir,
1993 					struct dentry *dentry)
1994 {
1995 	return 0;
1996 }
1997 
1998 static inline int security_inode_mknod(struct inode *dir,
1999 					struct dentry *dentry,
2000 					int mode, dev_t dev)
2001 {
2002 	return 0;
2003 }
2004 
2005 static inline int security_inode_rename(struct inode *old_dir,
2006 					 struct dentry *old_dentry,
2007 					 struct inode *new_dir,
2008 					 struct dentry *new_dentry)
2009 {
2010 	return 0;
2011 }
2012 
2013 static inline int security_inode_readlink(struct dentry *dentry)
2014 {
2015 	return 0;
2016 }
2017 
2018 static inline int security_inode_follow_link(struct dentry *dentry,
2019 					      struct nameidata *nd)
2020 {
2021 	return 0;
2022 }
2023 
2024 static inline int security_inode_permission(struct inode *inode, int mask,
2025 					     struct nameidata *nd)
2026 {
2027 	return 0;
2028 }
2029 
2030 static inline int security_inode_setattr(struct dentry *dentry,
2031 					  struct iattr *attr)
2032 {
2033 	return 0;
2034 }
2035 
2036 static inline int security_inode_getattr(struct vfsmount *mnt,
2037 					  struct dentry *dentry)
2038 {
2039 	return 0;
2040 }
2041 
2042 static inline void security_inode_delete(struct inode *inode)
2043 { }
2044 
2045 static inline int security_inode_setxattr(struct dentry *dentry,
2046 		const char *name, const void *value, size_t size, int flags)
2047 {
2048 	return cap_inode_setxattr(dentry, name, value, size, flags);
2049 }
2050 
2051 static inline void security_inode_post_setxattr(struct dentry *dentry,
2052 		const char *name, const void *value, size_t size, int flags)
2053 { }
2054 
2055 static inline int security_inode_getxattr(struct dentry *dentry,
2056 			const char *name)
2057 {
2058 	return 0;
2059 }
2060 
2061 static inline int security_inode_listxattr(struct dentry *dentry)
2062 {
2063 	return 0;
2064 }
2065 
2066 static inline int security_inode_removexattr(struct dentry *dentry,
2067 			const char *name)
2068 {
2069 	return cap_inode_removexattr(dentry, name);
2070 }
2071 
2072 static inline int security_inode_need_killpriv(struct dentry *dentry)
2073 {
2074 	return cap_inode_need_killpriv(dentry);
2075 }
2076 
2077 static inline int security_inode_killpriv(struct dentry *dentry)
2078 {
2079 	return cap_inode_killpriv(dentry);
2080 }
2081 
2082 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2083 {
2084 	return -EOPNOTSUPP;
2085 }
2086 
2087 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2088 {
2089 	return -EOPNOTSUPP;
2090 }
2091 
2092 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2093 {
2094 	return 0;
2095 }
2096 
2097 static inline void security_inode_getsecid(const struct inode *inode, u32 *secid)
2098 {
2099 	*secid = 0;
2100 }
2101 
2102 static inline int security_file_permission(struct file *file, int mask)
2103 {
2104 	return 0;
2105 }
2106 
2107 static inline int security_file_alloc(struct file *file)
2108 {
2109 	return 0;
2110 }
2111 
2112 static inline void security_file_free(struct file *file)
2113 { }
2114 
2115 static inline int security_file_ioctl(struct file *file, unsigned int cmd,
2116 				      unsigned long arg)
2117 {
2118 	return 0;
2119 }
2120 
2121 static inline int security_file_mmap(struct file *file, unsigned long reqprot,
2122 				     unsigned long prot,
2123 				     unsigned long flags,
2124 				     unsigned long addr,
2125 				     unsigned long addr_only)
2126 {
2127 	return 0;
2128 }
2129 
2130 static inline int security_file_mprotect(struct vm_area_struct *vma,
2131 					 unsigned long reqprot,
2132 					 unsigned long prot)
2133 {
2134 	return 0;
2135 }
2136 
2137 static inline int security_file_lock(struct file *file, unsigned int cmd)
2138 {
2139 	return 0;
2140 }
2141 
2142 static inline int security_file_fcntl(struct file *file, unsigned int cmd,
2143 				      unsigned long arg)
2144 {
2145 	return 0;
2146 }
2147 
2148 static inline int security_file_set_fowner(struct file *file)
2149 {
2150 	return 0;
2151 }
2152 
2153 static inline int security_file_send_sigiotask(struct task_struct *tsk,
2154 					       struct fown_struct *fown,
2155 					       int sig)
2156 {
2157 	return 0;
2158 }
2159 
2160 static inline int security_file_receive(struct file *file)
2161 {
2162 	return 0;
2163 }
2164 
2165 static inline int security_dentry_open(struct file *file)
2166 {
2167 	return 0;
2168 }
2169 
2170 static inline int security_task_create(unsigned long clone_flags)
2171 {
2172 	return 0;
2173 }
2174 
2175 static inline int security_task_alloc(struct task_struct *p)
2176 {
2177 	return 0;
2178 }
2179 
2180 static inline void security_task_free(struct task_struct *p)
2181 { }
2182 
2183 static inline int security_task_setuid(uid_t id0, uid_t id1, uid_t id2,
2184 				       int flags)
2185 {
2186 	return 0;
2187 }
2188 
2189 static inline int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
2190 					    uid_t old_suid, int flags)
2191 {
2192 	return cap_task_post_setuid(old_ruid, old_euid, old_suid, flags);
2193 }
2194 
2195 static inline int security_task_setgid(gid_t id0, gid_t id1, gid_t id2,
2196 				       int flags)
2197 {
2198 	return 0;
2199 }
2200 
2201 static inline int security_task_setpgid(struct task_struct *p, pid_t pgid)
2202 {
2203 	return 0;
2204 }
2205 
2206 static inline int security_task_getpgid(struct task_struct *p)
2207 {
2208 	return 0;
2209 }
2210 
2211 static inline int security_task_getsid(struct task_struct *p)
2212 {
2213 	return 0;
2214 }
2215 
2216 static inline void security_task_getsecid(struct task_struct *p, u32 *secid)
2217 {
2218 	*secid = 0;
2219 }
2220 
2221 static inline int security_task_setgroups(struct group_info *group_info)
2222 {
2223 	return 0;
2224 }
2225 
2226 static inline int security_task_setnice(struct task_struct *p, int nice)
2227 {
2228 	return cap_task_setnice(p, nice);
2229 }
2230 
2231 static inline int security_task_setioprio(struct task_struct *p, int ioprio)
2232 {
2233 	return cap_task_setioprio(p, ioprio);
2234 }
2235 
2236 static inline int security_task_getioprio(struct task_struct *p)
2237 {
2238 	return 0;
2239 }
2240 
2241 static inline int security_task_setrlimit(unsigned int resource,
2242 					  struct rlimit *new_rlim)
2243 {
2244 	return 0;
2245 }
2246 
2247 static inline int security_task_setscheduler(struct task_struct *p,
2248 					     int policy,
2249 					     struct sched_param *lp)
2250 {
2251 	return cap_task_setscheduler(p, policy, lp);
2252 }
2253 
2254 static inline int security_task_getscheduler(struct task_struct *p)
2255 {
2256 	return 0;
2257 }
2258 
2259 static inline int security_task_movememory(struct task_struct *p)
2260 {
2261 	return 0;
2262 }
2263 
2264 static inline int security_task_kill(struct task_struct *p,
2265 				     struct siginfo *info, int sig,
2266 				     u32 secid)
2267 {
2268 	return 0;
2269 }
2270 
2271 static inline int security_task_wait(struct task_struct *p)
2272 {
2273 	return 0;
2274 }
2275 
2276 static inline int security_task_prctl(int option, unsigned long arg2,
2277 				      unsigned long arg3,
2278 				      unsigned long arg4,
2279 				      unsigned long arg5, long *rc_p)
2280 {
2281 	return cap_task_prctl(option, arg2, arg3, arg3, arg5, rc_p);
2282 }
2283 
2284 static inline void security_task_reparent_to_init(struct task_struct *p)
2285 {
2286 	cap_task_reparent_to_init(p);
2287 }
2288 
2289 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2290 { }
2291 
2292 static inline int security_ipc_permission(struct kern_ipc_perm *ipcp,
2293 					  short flag)
2294 {
2295 	return 0;
2296 }
2297 
2298 static inline void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
2299 {
2300 	*secid = 0;
2301 }
2302 
2303 static inline int security_msg_msg_alloc(struct msg_msg *msg)
2304 {
2305 	return 0;
2306 }
2307 
2308 static inline void security_msg_msg_free(struct msg_msg *msg)
2309 { }
2310 
2311 static inline int security_msg_queue_alloc(struct msg_queue *msq)
2312 {
2313 	return 0;
2314 }
2315 
2316 static inline void security_msg_queue_free(struct msg_queue *msq)
2317 { }
2318 
2319 static inline int security_msg_queue_associate(struct msg_queue *msq,
2320 					       int msqflg)
2321 {
2322 	return 0;
2323 }
2324 
2325 static inline int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
2326 {
2327 	return 0;
2328 }
2329 
2330 static inline int security_msg_queue_msgsnd(struct msg_queue *msq,
2331 					    struct msg_msg *msg, int msqflg)
2332 {
2333 	return 0;
2334 }
2335 
2336 static inline int security_msg_queue_msgrcv(struct msg_queue *msq,
2337 					    struct msg_msg *msg,
2338 					    struct task_struct *target,
2339 					    long type, int mode)
2340 {
2341 	return 0;
2342 }
2343 
2344 static inline int security_shm_alloc(struct shmid_kernel *shp)
2345 {
2346 	return 0;
2347 }
2348 
2349 static inline void security_shm_free(struct shmid_kernel *shp)
2350 { }
2351 
2352 static inline int security_shm_associate(struct shmid_kernel *shp,
2353 					 int shmflg)
2354 {
2355 	return 0;
2356 }
2357 
2358 static inline int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
2359 {
2360 	return 0;
2361 }
2362 
2363 static inline int security_shm_shmat(struct shmid_kernel *shp,
2364 				     char __user *shmaddr, int shmflg)
2365 {
2366 	return 0;
2367 }
2368 
2369 static inline int security_sem_alloc(struct sem_array *sma)
2370 {
2371 	return 0;
2372 }
2373 
2374 static inline void security_sem_free(struct sem_array *sma)
2375 { }
2376 
2377 static inline int security_sem_associate(struct sem_array *sma, int semflg)
2378 {
2379 	return 0;
2380 }
2381 
2382 static inline int security_sem_semctl(struct sem_array *sma, int cmd)
2383 {
2384 	return 0;
2385 }
2386 
2387 static inline int security_sem_semop(struct sem_array *sma,
2388 				     struct sembuf *sops, unsigned nsops,
2389 				     int alter)
2390 {
2391 	return 0;
2392 }
2393 
2394 static inline void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2395 { }
2396 
2397 static inline int security_getprocattr(struct task_struct *p, char *name, char **value)
2398 {
2399 	return -EINVAL;
2400 }
2401 
2402 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2403 {
2404 	return -EINVAL;
2405 }
2406 
2407 static inline int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2408 {
2409 	return cap_netlink_send(sk, skb);
2410 }
2411 
2412 static inline int security_netlink_recv(struct sk_buff *skb, int cap)
2413 {
2414 	return cap_netlink_recv(skb, cap);
2415 }
2416 
2417 static inline struct dentry *securityfs_create_dir(const char *name,
2418 					struct dentry *parent)
2419 {
2420 	return ERR_PTR(-ENODEV);
2421 }
2422 
2423 static inline struct dentry *securityfs_create_file(const char *name,
2424 						mode_t mode,
2425 						struct dentry *parent,
2426 						void *data,
2427 						const struct file_operations *fops)
2428 {
2429 	return ERR_PTR(-ENODEV);
2430 }
2431 
2432 static inline void securityfs_remove(struct dentry *dentry)
2433 {
2434 }
2435 
2436 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2437 {
2438 	return -EOPNOTSUPP;
2439 }
2440 
2441 static inline int security_secctx_to_secid(const char *secdata,
2442 					   u32 seclen,
2443 					   u32 *secid)
2444 {
2445 	return -EOPNOTSUPP;
2446 }
2447 
2448 static inline void security_release_secctx(char *secdata, u32 seclen)
2449 {
2450 }
2451 #endif	/* CONFIG_SECURITY */
2452 
2453 #ifdef CONFIG_SECURITY_NETWORK
2454 
2455 int security_unix_stream_connect(struct socket *sock, struct socket *other,
2456 				 struct sock *newsk);
2457 int security_unix_may_send(struct socket *sock,  struct socket *other);
2458 int security_socket_create(int family, int type, int protocol, int kern);
2459 int security_socket_post_create(struct socket *sock, int family,
2460 				int type, int protocol, int kern);
2461 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen);
2462 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen);
2463 int security_socket_listen(struct socket *sock, int backlog);
2464 int security_socket_accept(struct socket *sock, struct socket *newsock);
2465 void security_socket_post_accept(struct socket *sock, struct socket *newsock);
2466 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size);
2467 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2468 			    int size, int flags);
2469 int security_socket_getsockname(struct socket *sock);
2470 int security_socket_getpeername(struct socket *sock);
2471 int security_socket_getsockopt(struct socket *sock, int level, int optname);
2472 int security_socket_setsockopt(struct socket *sock, int level, int optname);
2473 int security_socket_shutdown(struct socket *sock, int how);
2474 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb);
2475 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2476 				      int __user *optlen, unsigned len);
2477 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid);
2478 int security_sk_alloc(struct sock *sk, int family, gfp_t priority);
2479 void security_sk_free(struct sock *sk);
2480 void security_sk_clone(const struct sock *sk, struct sock *newsk);
2481 void security_sk_classify_flow(struct sock *sk, struct flowi *fl);
2482 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl);
2483 void security_sock_graft(struct sock*sk, struct socket *parent);
2484 int security_inet_conn_request(struct sock *sk,
2485 			struct sk_buff *skb, struct request_sock *req);
2486 void security_inet_csk_clone(struct sock *newsk,
2487 			const struct request_sock *req);
2488 void security_inet_conn_established(struct sock *sk,
2489 			struct sk_buff *skb);
2490 
2491 #else	/* CONFIG_SECURITY_NETWORK */
2492 static inline int security_unix_stream_connect(struct socket *sock,
2493 					       struct socket *other,
2494 					       struct sock *newsk)
2495 {
2496 	return 0;
2497 }
2498 
2499 static inline int security_unix_may_send(struct socket *sock,
2500 					 struct socket *other)
2501 {
2502 	return 0;
2503 }
2504 
2505 static inline int security_socket_create(int family, int type,
2506 					 int protocol, int kern)
2507 {
2508 	return 0;
2509 }
2510 
2511 static inline int security_socket_post_create(struct socket *sock,
2512 					      int family,
2513 					      int type,
2514 					      int protocol, int kern)
2515 {
2516 	return 0;
2517 }
2518 
2519 static inline int security_socket_bind(struct socket *sock,
2520 				       struct sockaddr *address,
2521 				       int addrlen)
2522 {
2523 	return 0;
2524 }
2525 
2526 static inline int security_socket_connect(struct socket *sock,
2527 					  struct sockaddr *address,
2528 					  int addrlen)
2529 {
2530 	return 0;
2531 }
2532 
2533 static inline int security_socket_listen(struct socket *sock, int backlog)
2534 {
2535 	return 0;
2536 }
2537 
2538 static inline int security_socket_accept(struct socket *sock,
2539 					 struct socket *newsock)
2540 {
2541 	return 0;
2542 }
2543 
2544 static inline void security_socket_post_accept(struct socket *sock,
2545 					       struct socket *newsock)
2546 {
2547 }
2548 
2549 static inline int security_socket_sendmsg(struct socket *sock,
2550 					  struct msghdr *msg, int size)
2551 {
2552 	return 0;
2553 }
2554 
2555 static inline int security_socket_recvmsg(struct socket *sock,
2556 					  struct msghdr *msg, int size,
2557 					  int flags)
2558 {
2559 	return 0;
2560 }
2561 
2562 static inline int security_socket_getsockname(struct socket *sock)
2563 {
2564 	return 0;
2565 }
2566 
2567 static inline int security_socket_getpeername(struct socket *sock)
2568 {
2569 	return 0;
2570 }
2571 
2572 static inline int security_socket_getsockopt(struct socket *sock,
2573 					     int level, int optname)
2574 {
2575 	return 0;
2576 }
2577 
2578 static inline int security_socket_setsockopt(struct socket *sock,
2579 					     int level, int optname)
2580 {
2581 	return 0;
2582 }
2583 
2584 static inline int security_socket_shutdown(struct socket *sock, int how)
2585 {
2586 	return 0;
2587 }
2588 static inline int security_sock_rcv_skb(struct sock *sk,
2589 					struct sk_buff *skb)
2590 {
2591 	return 0;
2592 }
2593 
2594 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2595 						    int __user *optlen, unsigned len)
2596 {
2597 	return -ENOPROTOOPT;
2598 }
2599 
2600 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2601 {
2602 	return -ENOPROTOOPT;
2603 }
2604 
2605 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2606 {
2607 	return 0;
2608 }
2609 
2610 static inline void security_sk_free(struct sock *sk)
2611 {
2612 }
2613 
2614 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
2615 {
2616 }
2617 
2618 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2619 {
2620 }
2621 
2622 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2623 {
2624 }
2625 
2626 static inline void security_sock_graft(struct sock *sk, struct socket *parent)
2627 {
2628 }
2629 
2630 static inline int security_inet_conn_request(struct sock *sk,
2631 			struct sk_buff *skb, struct request_sock *req)
2632 {
2633 	return 0;
2634 }
2635 
2636 static inline void security_inet_csk_clone(struct sock *newsk,
2637 			const struct request_sock *req)
2638 {
2639 }
2640 
2641 static inline void security_inet_conn_established(struct sock *sk,
2642 			struct sk_buff *skb)
2643 {
2644 }
2645 #endif	/* CONFIG_SECURITY_NETWORK */
2646 
2647 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2648 
2649 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx);
2650 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp);
2651 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx);
2652 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx);
2653 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx);
2654 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2655 				      struct xfrm_sec_ctx *polsec, u32 secid);
2656 int security_xfrm_state_delete(struct xfrm_state *x);
2657 void security_xfrm_state_free(struct xfrm_state *x);
2658 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
2659 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2660 				       struct xfrm_policy *xp, struct flowi *fl);
2661 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid);
2662 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl);
2663 
2664 #else	/* CONFIG_SECURITY_NETWORK_XFRM */
2665 
2666 static inline int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
2667 {
2668 	return 0;
2669 }
2670 
2671 static inline int security_xfrm_policy_clone(struct xfrm_sec_ctx *old, struct xfrm_sec_ctx **new_ctxp)
2672 {
2673 	return 0;
2674 }
2675 
2676 static inline void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2677 {
2678 }
2679 
2680 static inline int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2681 {
2682 	return 0;
2683 }
2684 
2685 static inline int security_xfrm_state_alloc(struct xfrm_state *x,
2686 					struct xfrm_user_sec_ctx *sec_ctx)
2687 {
2688 	return 0;
2689 }
2690 
2691 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2692 					struct xfrm_sec_ctx *polsec, u32 secid)
2693 {
2694 	return 0;
2695 }
2696 
2697 static inline void security_xfrm_state_free(struct xfrm_state *x)
2698 {
2699 }
2700 
2701 static inline int security_xfrm_state_delete(struct xfrm_state *x)
2702 {
2703 	return 0;
2704 }
2705 
2706 static inline int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2707 {
2708 	return 0;
2709 }
2710 
2711 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2712 			struct xfrm_policy *xp, struct flowi *fl)
2713 {
2714 	return 1;
2715 }
2716 
2717 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2718 {
2719 	return 0;
2720 }
2721 
2722 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2723 {
2724 }
2725 
2726 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2727 
2728 #ifdef CONFIG_KEYS
2729 #ifdef CONFIG_SECURITY
2730 
2731 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags);
2732 void security_key_free(struct key *key);
2733 int security_key_permission(key_ref_t key_ref,
2734 			    struct task_struct *context, key_perm_t perm);
2735 int security_key_getsecurity(struct key *key, char **_buffer);
2736 
2737 #else
2738 
2739 static inline int security_key_alloc(struct key *key,
2740 				     struct task_struct *tsk,
2741 				     unsigned long flags)
2742 {
2743 	return 0;
2744 }
2745 
2746 static inline void security_key_free(struct key *key)
2747 {
2748 }
2749 
2750 static inline int security_key_permission(key_ref_t key_ref,
2751 					  struct task_struct *context,
2752 					  key_perm_t perm)
2753 {
2754 	return 0;
2755 }
2756 
2757 static inline int security_key_getsecurity(struct key *key, char **_buffer)
2758 {
2759 	*_buffer = NULL;
2760 	return 0;
2761 }
2762 
2763 #endif
2764 #endif /* CONFIG_KEYS */
2765 
2766 #ifdef CONFIG_AUDIT
2767 #ifdef CONFIG_SECURITY
2768 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule);
2769 int security_audit_rule_known(struct audit_krule *krule);
2770 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
2771 			      struct audit_context *actx);
2772 void security_audit_rule_free(void *lsmrule);
2773 
2774 #else
2775 
2776 static inline int security_audit_rule_init(u32 field, u32 op, char *rulestr,
2777 					   void **lsmrule)
2778 {
2779 	return 0;
2780 }
2781 
2782 static inline int security_audit_rule_known(struct audit_krule *krule)
2783 {
2784 	return 0;
2785 }
2786 
2787 static inline int security_audit_rule_match(u32 secid, u32 field, u32 op,
2788 				   void *lsmrule, struct audit_context *actx)
2789 {
2790 	return 0;
2791 }
2792 
2793 static inline void security_audit_rule_free(void *lsmrule)
2794 { }
2795 
2796 #endif /* CONFIG_SECURITY */
2797 #endif /* CONFIG_AUDIT */
2798 
2799 #endif /* ! __LINUX_SECURITY_H */
2800 
2801