xref: /linux-6.15/include/linux/security.h (revision 2b8232ce)
1 /*
2  * Linux Security plug
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <[email protected]>
5  * Copyright (C) 2001 Greg Kroah-Hartman <[email protected]>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
7  * Copyright (C) 2001 James Morris <[email protected]>
8  * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9  *
10  *	This program is free software; you can redistribute it and/or modify
11  *	it under the terms of the GNU General Public License as published by
12  *	the Free Software Foundation; either version 2 of the License, or
13  *	(at your option) any later version.
14  *
15  *	Due to this file being licensed under the GPL there is controversy over
16  *	whether this permits you to write a module that #includes this file
17  *	without placing your module under the GPL.  Please consult a lawyer for
18  *	advice before doing this.
19  *
20  */
21 
22 #ifndef __LINUX_SECURITY_H
23 #define __LINUX_SECURITY_H
24 
25 #include <linux/fs.h>
26 #include <linux/binfmts.h>
27 #include <linux/signal.h>
28 #include <linux/resource.h>
29 #include <linux/sem.h>
30 #include <linux/shm.h>
31 #include <linux/msg.h>
32 #include <linux/sched.h>
33 #include <linux/key.h>
34 #include <linux/xfrm.h>
35 #include <net/flow.h>
36 
37 struct ctl_table;
38 
39 /*
40  * These functions are in security/capability.c and are used
41  * as the default capabilities functions
42  */
43 extern int cap_capable (struct task_struct *tsk, int cap);
44 extern int cap_settime (struct timespec *ts, struct timezone *tz);
45 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child);
46 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
47 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
48 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
49 extern int cap_bprm_set_security (struct linux_binprm *bprm);
50 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe);
51 extern int cap_bprm_secureexec(struct linux_binprm *bprm);
52 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags);
53 extern int cap_inode_removexattr(struct dentry *dentry, char *name);
54 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
55 extern void cap_task_reparent_to_init (struct task_struct *p);
56 extern int cap_syslog (int type);
57 extern int cap_vm_enough_memory (struct mm_struct *mm, long pages);
58 
59 struct msghdr;
60 struct sk_buff;
61 struct sock;
62 struct sockaddr;
63 struct socket;
64 struct flowi;
65 struct dst_entry;
66 struct xfrm_selector;
67 struct xfrm_policy;
68 struct xfrm_state;
69 struct xfrm_user_sec_ctx;
70 
71 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
72 extern int cap_netlink_recv(struct sk_buff *skb, int cap);
73 
74 extern unsigned long mmap_min_addr;
75 /*
76  * Values used in the task_security_ops calls
77  */
78 /* setuid or setgid, id0 == uid or gid */
79 #define LSM_SETID_ID	1
80 
81 /* setreuid or setregid, id0 == real, id1 == eff */
82 #define LSM_SETID_RE	2
83 
84 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
85 #define LSM_SETID_RES	4
86 
87 /* setfsuid or setfsgid, id0 == fsuid or fsgid */
88 #define LSM_SETID_FS	8
89 
90 /* forward declares to avoid warnings */
91 struct nfsctl_arg;
92 struct sched_param;
93 struct swap_info_struct;
94 struct request_sock;
95 
96 /* bprm_apply_creds unsafe reasons */
97 #define LSM_UNSAFE_SHARE	1
98 #define LSM_UNSAFE_PTRACE	2
99 #define LSM_UNSAFE_PTRACE_CAP	4
100 
101 #ifdef CONFIG_SECURITY
102 
103 /**
104  * struct security_operations - main security structure
105  *
106  * Security hooks for program execution operations.
107  *
108  * @bprm_alloc_security:
109  *	Allocate and attach a security structure to the @bprm->security field.
110  *	The security field is initialized to NULL when the bprm structure is
111  *	allocated.
112  *	@bprm contains the linux_binprm structure to be modified.
113  *	Return 0 if operation was successful.
114  * @bprm_free_security:
115  *	@bprm contains the linux_binprm structure to be modified.
116  *	Deallocate and clear the @bprm->security field.
117  * @bprm_apply_creds:
118  *	Compute and set the security attributes of a process being transformed
119  *	by an execve operation based on the old attributes (current->security)
120  *	and the information saved in @bprm->security by the set_security hook.
121  *	Since this hook function (and its caller) are void, this hook can not
122  *	return an error.  However, it can leave the security attributes of the
123  *	process unchanged if an access failure occurs at this point.
124  *	bprm_apply_creds is called under task_lock.  @unsafe indicates various
125  *	reasons why it may be unsafe to change security state.
126  *	@bprm contains the linux_binprm structure.
127  * @bprm_post_apply_creds:
128  *	Runs after bprm_apply_creds with the task_lock dropped, so that
129  *	functions which cannot be called safely under the task_lock can
130  *	be used.  This hook is a good place to perform state changes on
131  *	the process such as closing open file descriptors to which access
132  *	is no longer granted if the attributes were changed.
133  *	Note that a security module might need to save state between
134  *	bprm_apply_creds and bprm_post_apply_creds to store the decision
135  *	on whether the process may proceed.
136  *	@bprm contains the linux_binprm structure.
137  * @bprm_set_security:
138  *	Save security information in the bprm->security field, typically based
139  *	on information about the bprm->file, for later use by the apply_creds
140  *	hook.  This hook may also optionally check permissions (e.g. for
141  *	transitions between security domains).
142  *	This hook may be called multiple times during a single execve, e.g. for
143  *	interpreters.  The hook can tell whether it has already been called by
144  *	checking to see if @bprm->security is non-NULL.  If so, then the hook
145  *	may decide either to retain the security information saved earlier or
146  *	to replace it.
147  *	@bprm contains the linux_binprm structure.
148  *	Return 0 if the hook is successful and permission is granted.
149  * @bprm_check_security:
150  * 	This hook mediates the point when a search for a binary handler	will
151  * 	begin.  It allows a check the @bprm->security value which is set in
152  * 	the preceding set_security call.  The primary difference from
153  * 	set_security is that the argv list and envp list are reliably
154  * 	available in @bprm.  This hook may be called multiple times
155  * 	during a single execve; and in each pass set_security is called
156  * 	first.
157  * 	@bprm contains the linux_binprm structure.
158  *	Return 0 if the hook is successful and permission is granted.
159  * @bprm_secureexec:
160  *      Return a boolean value (0 or 1) indicating whether a "secure exec"
161  *      is required.  The flag is passed in the auxiliary table
162  *      on the initial stack to the ELF interpreter to indicate whether libc
163  *      should enable secure mode.
164  *      @bprm contains the linux_binprm structure.
165  *
166  * Security hooks for filesystem operations.
167  *
168  * @sb_alloc_security:
169  *	Allocate and attach a security structure to the sb->s_security field.
170  *	The s_security field is initialized to NULL when the structure is
171  *	allocated.
172  *	@sb contains the super_block structure to be modified.
173  *	Return 0 if operation was successful.
174  * @sb_free_security:
175  *	Deallocate and clear the sb->s_security field.
176  *	@sb contains the super_block structure to be modified.
177  * @sb_statfs:
178  *	Check permission before obtaining filesystem statistics for the @mnt
179  *	mountpoint.
180  *	@dentry is a handle on the superblock for the filesystem.
181  *	Return 0 if permission is granted.
182  * @sb_mount:
183  *	Check permission before an object specified by @dev_name is mounted on
184  *	the mount point named by @nd.  For an ordinary mount, @dev_name
185  *	identifies a device if the file system type requires a device.  For a
186  *	remount (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a
187  *	loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
188  *	pathname of the object being mounted.
189  *	@dev_name contains the name for object being mounted.
190  *	@nd contains the nameidata structure for mount point object.
191  *	@type contains the filesystem type.
192  *	@flags contains the mount flags.
193  *	@data contains the filesystem-specific data.
194  *	Return 0 if permission is granted.
195  * @sb_copy_data:
196  *	Allow mount option data to be copied prior to parsing by the filesystem,
197  *	so that the security module can extract security-specific mount
198  *	options cleanly (a filesystem may modify the data e.g. with strsep()).
199  *	This also allows the original mount data to be stripped of security-
200  *	specific options to avoid having to make filesystems aware of them.
201  *	@type the type of filesystem being mounted.
202  *	@orig the original mount data copied from userspace.
203  *	@copy copied data which will be passed to the security module.
204  *	Returns 0 if the copy was successful.
205  * @sb_check_sb:
206  *	Check permission before the device with superblock @mnt->sb is mounted
207  *	on the mount point named by @nd.
208  *	@mnt contains the vfsmount for device being mounted.
209  *	@nd contains the nameidata object for the mount point.
210  *	Return 0 if permission is granted.
211  * @sb_umount:
212  *	Check permission before the @mnt file system is unmounted.
213  *	@mnt contains the mounted file system.
214  *	@flags contains the unmount flags, e.g. MNT_FORCE.
215  *	Return 0 if permission is granted.
216  * @sb_umount_close:
217  *	Close any files in the @mnt mounted filesystem that are held open by
218  *	the security module.  This hook is called during an umount operation
219  *	prior to checking whether the filesystem is still busy.
220  *	@mnt contains the mounted filesystem.
221  * @sb_umount_busy:
222  *	Handle a failed umount of the @mnt mounted filesystem, e.g.  re-opening
223  *	any files that were closed by umount_close.  This hook is called during
224  *	an umount operation if the umount fails after a call to the
225  *	umount_close hook.
226  *	@mnt contains the mounted filesystem.
227  * @sb_post_remount:
228  *	Update the security module's state when a filesystem is remounted.
229  *	This hook is only called if the remount was successful.
230  *	@mnt contains the mounted file system.
231  *	@flags contains the new filesystem flags.
232  *	@data contains the filesystem-specific data.
233  * @sb_post_mountroot:
234  *	Update the security module's state when the root filesystem is mounted.
235  *	This hook is only called if the mount was successful.
236  * @sb_post_addmount:
237  *	Update the security module's state when a filesystem is mounted.
238  *	This hook is called any time a mount is successfully grafetd to
239  *	the tree.
240  *	@mnt contains the mounted filesystem.
241  *	@mountpoint_nd contains the nameidata structure for the mount point.
242  * @sb_pivotroot:
243  *	Check permission before pivoting the root filesystem.
244  *	@old_nd contains the nameidata structure for the new location of the current root (put_old).
245  *      @new_nd contains the nameidata structure for the new root (new_root).
246  *	Return 0 if permission is granted.
247  * @sb_post_pivotroot:
248  *	Update module state after a successful pivot.
249  *	@old_nd contains the nameidata structure for the old root.
250  *      @new_nd contains the nameidata structure for the new root.
251  *
252  * Security hooks for inode operations.
253  *
254  * @inode_alloc_security:
255  *	Allocate and attach a security structure to @inode->i_security.  The
256  *	i_security field is initialized to NULL when the inode structure is
257  *	allocated.
258  *	@inode contains the inode structure.
259  *	Return 0 if operation was successful.
260  * @inode_free_security:
261  *	@inode contains the inode structure.
262  *	Deallocate the inode security structure and set @inode->i_security to
263  *	NULL.
264  * @inode_init_security:
265  * 	Obtain the security attribute name suffix and value to set on a newly
266  *	created inode and set up the incore security field for the new inode.
267  *	This hook is called by the fs code as part of the inode creation
268  *	transaction and provides for atomic labeling of the inode, unlike
269  *	the post_create/mkdir/... hooks called by the VFS.  The hook function
270  *	is expected to allocate the name and value via kmalloc, with the caller
271  *	being responsible for calling kfree after using them.
272  *	If the security module does not use security attributes or does
273  *	not wish to put a security attribute on this particular inode,
274  *	then it should return -EOPNOTSUPP to skip this processing.
275  *	@inode contains the inode structure of the newly created inode.
276  *	@dir contains the inode structure of the parent directory.
277  *	@name will be set to the allocated name suffix (e.g. selinux).
278  *	@value will be set to the allocated attribute value.
279  *	@len will be set to the length of the value.
280  *	Returns 0 if @name and @value have been successfully set,
281  *		-EOPNOTSUPP if no security attribute is needed, or
282  *		-ENOMEM on memory allocation failure.
283  * @inode_create:
284  *	Check permission to create a regular file.
285  *	@dir contains inode structure of the parent of the new file.
286  *	@dentry contains the dentry structure for the file to be created.
287  *	@mode contains the file mode of the file to be created.
288  *	Return 0 if permission is granted.
289  * @inode_link:
290  *	Check permission before creating a new hard link to a file.
291  *	@old_dentry contains the dentry structure for an existing link to the file.
292  *	@dir contains the inode structure of the parent directory of the new link.
293  *	@new_dentry contains the dentry structure for the new link.
294  *	Return 0 if permission is granted.
295  * @inode_unlink:
296  *	Check the permission to remove a hard link to a file.
297  *	@dir contains the inode structure of parent directory of the file.
298  *	@dentry contains the dentry structure for file to be unlinked.
299  *	Return 0 if permission is granted.
300  * @inode_symlink:
301  *	Check the permission to create a symbolic link to a file.
302  *	@dir contains the inode structure of parent directory of the symbolic link.
303  *	@dentry contains the dentry structure of the symbolic link.
304  *	@old_name contains the pathname of file.
305  *	Return 0 if permission is granted.
306  * @inode_mkdir:
307  *	Check permissions to create a new directory in the existing directory
308  *	associated with inode strcture @dir.
309  *	@dir containst the inode structure of parent of the directory to be created.
310  *	@dentry contains the dentry structure of new directory.
311  *	@mode contains the mode of new directory.
312  *	Return 0 if permission is granted.
313  * @inode_rmdir:
314  *	Check the permission to remove a directory.
315  *	@dir contains the inode structure of parent of the directory to be removed.
316  *	@dentry contains the dentry structure of directory to be removed.
317  *	Return 0 if permission is granted.
318  * @inode_mknod:
319  *	Check permissions when creating a special file (or a socket or a fifo
320  *	file created via the mknod system call).  Note that if mknod operation
321  *	is being done for a regular file, then the create hook will be called
322  *	and not this hook.
323  *	@dir contains the inode structure of parent of the new file.
324  *	@dentry contains the dentry structure of the new file.
325  *	@mode contains the mode of the new file.
326  *	@dev contains the device number.
327  *	Return 0 if permission is granted.
328  * @inode_rename:
329  *	Check for permission to rename a file or directory.
330  *	@old_dir contains the inode structure for parent of the old link.
331  *	@old_dentry contains the dentry structure of the old link.
332  *	@new_dir contains the inode structure for parent of the new link.
333  *	@new_dentry contains the dentry structure of the new link.
334  *	Return 0 if permission is granted.
335  * @inode_readlink:
336  *	Check the permission to read the symbolic link.
337  *	@dentry contains the dentry structure for the file link.
338  *	Return 0 if permission is granted.
339  * @inode_follow_link:
340  *	Check permission to follow a symbolic link when looking up a pathname.
341  *	@dentry contains the dentry structure for the link.
342  *	@nd contains the nameidata structure for the parent directory.
343  *	Return 0 if permission is granted.
344  * @inode_permission:
345  *	Check permission before accessing an inode.  This hook is called by the
346  *	existing Linux permission function, so a security module can use it to
347  *	provide additional checking for existing Linux permission checks.
348  *	Notice that this hook is called when a file is opened (as well as many
349  *	other operations), whereas the file_security_ops permission hook is
350  *	called when the actual read/write operations are performed.
351  *	@inode contains the inode structure to check.
352  *	@mask contains the permission mask.
353  *     @nd contains the nameidata (may be NULL).
354  *	Return 0 if permission is granted.
355  * @inode_setattr:
356  *	Check permission before setting file attributes.  Note that the kernel
357  *	call to notify_change is performed from several locations, whenever
358  *	file attributes change (such as when a file is truncated, chown/chmod
359  *	operations, transferring disk quotas, etc).
360  *	@dentry contains the dentry structure for the file.
361  *	@attr is the iattr structure containing the new file attributes.
362  *	Return 0 if permission is granted.
363  * @inode_getattr:
364  *	Check permission before obtaining file attributes.
365  *	@mnt is the vfsmount where the dentry was looked up
366  *	@dentry contains the dentry structure for the file.
367  *	Return 0 if permission is granted.
368  * @inode_delete:
369  *	@inode contains the inode structure for deleted inode.
370  *	This hook is called when a deleted inode is released (i.e. an inode
371  *	with no hard links has its use count drop to zero).  A security module
372  *	can use this hook to release any persistent label associated with the
373  *	inode.
374  * @inode_setxattr:
375  * 	Check permission before setting the extended attributes
376  * 	@value identified by @name for @dentry.
377  * 	Return 0 if permission is granted.
378  * @inode_post_setxattr:
379  * 	Update inode security field after successful setxattr operation.
380  * 	@value identified by @name for @dentry.
381  * @inode_getxattr:
382  * 	Check permission before obtaining the extended attributes
383  * 	identified by @name for @dentry.
384  * 	Return 0 if permission is granted.
385  * @inode_listxattr:
386  * 	Check permission before obtaining the list of extended attribute
387  * 	names for @dentry.
388  * 	Return 0 if permission is granted.
389  * @inode_removexattr:
390  * 	Check permission before removing the extended attribute
391  * 	identified by @name for @dentry.
392  * 	Return 0 if permission is granted.
393  * @inode_getsecurity:
394  *	Copy the extended attribute representation of the security label
395  *	associated with @name for @inode into @buffer.  @buffer may be
396  *	NULL to request the size of the buffer required.  @size indicates
397  *	the size of @buffer in bytes.  Note that @name is the remainder
398  *	of the attribute name after the security. prefix has been removed.
399  *	@err is the return value from the preceding fs getxattr call,
400  *	and can be used by the security module to determine whether it
401  *	should try and canonicalize the attribute value.
402  *	Return number of bytes used/required on success.
403  * @inode_setsecurity:
404  *	Set the security label associated with @name for @inode from the
405  *	extended attribute value @value.  @size indicates the size of the
406  *	@value in bytes.  @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
407  *	Note that @name is the remainder of the attribute name after the
408  *	security. prefix has been removed.
409  *	Return 0 on success.
410  * @inode_listsecurity:
411  *	Copy the extended attribute names for the security labels
412  *	associated with @inode into @buffer.  The maximum size of @buffer
413  *	is specified by @buffer_size.  @buffer may be NULL to request
414  *	the size of the buffer required.
415  *	Returns number of bytes used/required on success.
416  *
417  * Security hooks for file operations
418  *
419  * @file_permission:
420  *	Check file permissions before accessing an open file.  This hook is
421  *	called by various operations that read or write files.  A security
422  *	module can use this hook to perform additional checking on these
423  *	operations, e.g.  to revalidate permissions on use to support privilege
424  *	bracketing or policy changes.  Notice that this hook is used when the
425  *	actual read/write operations are performed, whereas the
426  *	inode_security_ops hook is called when a file is opened (as well as
427  *	many other operations).
428  *	Caveat:  Although this hook can be used to revalidate permissions for
429  *	various system call operations that read or write files, it does not
430  *	address the revalidation of permissions for memory-mapped files.
431  *	Security modules must handle this separately if they need such
432  *	revalidation.
433  *	@file contains the file structure being accessed.
434  *	@mask contains the requested permissions.
435  *	Return 0 if permission is granted.
436  * @file_alloc_security:
437  *	Allocate and attach a security structure to the file->f_security field.
438  *	The security field is initialized to NULL when the structure is first
439  *	created.
440  *	@file contains the file structure to secure.
441  *	Return 0 if the hook is successful and permission is granted.
442  * @file_free_security:
443  *	Deallocate and free any security structures stored in file->f_security.
444  *	@file contains the file structure being modified.
445  * @file_ioctl:
446  *	@file contains the file structure.
447  *	@cmd contains the operation to perform.
448  *	@arg contains the operational arguments.
449  *	Check permission for an ioctl operation on @file.  Note that @arg can
450  *	sometimes represents a user space pointer; in other cases, it may be a
451  *	simple integer value.  When @arg represents a user space pointer, it
452  *	should never be used by the security module.
453  *	Return 0 if permission is granted.
454  * @file_mmap :
455  *	Check permissions for a mmap operation.  The @file may be NULL, e.g.
456  *	if mapping anonymous memory.
457  *	@file contains the file structure for file to map (may be NULL).
458  *	@reqprot contains the protection requested by the application.
459  *	@prot contains the protection that will be applied by the kernel.
460  *	@flags contains the operational flags.
461  *	Return 0 if permission is granted.
462  * @file_mprotect:
463  *	Check permissions before changing memory access permissions.
464  *	@vma contains the memory region to modify.
465  *	@reqprot contains the protection requested by the application.
466  *	@prot contains the protection that will be applied by the kernel.
467  *	Return 0 if permission is granted.
468  * @file_lock:
469  *	Check permission before performing file locking operations.
470  *	Note: this hook mediates both flock and fcntl style locks.
471  *	@file contains the file structure.
472  *	@cmd contains the posix-translated lock operation to perform
473  *	(e.g. F_RDLCK, F_WRLCK).
474  *	Return 0 if permission is granted.
475  * @file_fcntl:
476  *	Check permission before allowing the file operation specified by @cmd
477  *	from being performed on the file @file.  Note that @arg can sometimes
478  *	represents a user space pointer; in other cases, it may be a simple
479  *	integer value.  When @arg represents a user space pointer, it should
480  *	never be used by the security module.
481  *	@file contains the file structure.
482  *	@cmd contains the operation to be performed.
483  *	@arg contains the operational arguments.
484  *	Return 0 if permission is granted.
485  * @file_set_fowner:
486  *	Save owner security information (typically from current->security) in
487  *	file->f_security for later use by the send_sigiotask hook.
488  *	@file contains the file structure to update.
489  *	Return 0 on success.
490  * @file_send_sigiotask:
491  *	Check permission for the file owner @fown to send SIGIO or SIGURG to the
492  *	process @tsk.  Note that this hook is sometimes called from interrupt.
493  *	Note that the fown_struct, @fown, is never outside the context of a
494  *	struct file, so the file structure (and associated security information)
495  *	can always be obtained:
496  *		container_of(fown, struct file, f_owner)
497  * 	@tsk contains the structure of task receiving signal.
498  *	@fown contains the file owner information.
499  *	@sig is the signal that will be sent.  When 0, kernel sends SIGIO.
500  *	Return 0 if permission is granted.
501  * @file_receive:
502  *	This hook allows security modules to control the ability of a process
503  *	to receive an open file descriptor via socket IPC.
504  *	@file contains the file structure being received.
505  *	Return 0 if permission is granted.
506  *
507  * Security hooks for task operations.
508  *
509  * @task_create:
510  *	Check permission before creating a child process.  See the clone(2)
511  *	manual page for definitions of the @clone_flags.
512  *	@clone_flags contains the flags indicating what should be shared.
513  *	Return 0 if permission is granted.
514  * @task_alloc_security:
515  *	@p contains the task_struct for child process.
516  *	Allocate and attach a security structure to the p->security field. The
517  *	security field is initialized to NULL when the task structure is
518  *	allocated.
519  *	Return 0 if operation was successful.
520  * @task_free_security:
521  *	@p contains the task_struct for process.
522  *	Deallocate and clear the p->security field.
523  * @task_setuid:
524  *	Check permission before setting one or more of the user identity
525  *	attributes of the current process.  The @flags parameter indicates
526  *	which of the set*uid system calls invoked this hook and how to
527  *	interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
528  *	definitions at the beginning of this file for the @flags values and
529  *	their meanings.
530  *	@id0 contains a uid.
531  *	@id1 contains a uid.
532  *	@id2 contains a uid.
533  *	@flags contains one of the LSM_SETID_* values.
534  *	Return 0 if permission is granted.
535  * @task_post_setuid:
536  *	Update the module's state after setting one or more of the user
537  *	identity attributes of the current process.  The @flags parameter
538  *	indicates which of the set*uid system calls invoked this hook.  If
539  *	@flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
540  *	parameters are not used.
541  *	@old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
542  *	@old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
543  *	@old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
544  *	@flags contains one of the LSM_SETID_* values.
545  *	Return 0 on success.
546  * @task_setgid:
547  *	Check permission before setting one or more of the group identity
548  *	attributes of the current process.  The @flags parameter indicates
549  *	which of the set*gid system calls invoked this hook and how to
550  *	interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
551  *	definitions at the beginning of this file for the @flags values and
552  *	their meanings.
553  *	@id0 contains a gid.
554  *	@id1 contains a gid.
555  *	@id2 contains a gid.
556  *	@flags contains one of the LSM_SETID_* values.
557  *	Return 0 if permission is granted.
558  * @task_setpgid:
559  *	Check permission before setting the process group identifier of the
560  *	process @p to @pgid.
561  *	@p contains the task_struct for process being modified.
562  *	@pgid contains the new pgid.
563  *	Return 0 if permission is granted.
564  * @task_getpgid:
565  *	Check permission before getting the process group identifier of the
566  *	process @p.
567  *	@p contains the task_struct for the process.
568  *	Return 0 if permission is granted.
569  * @task_getsid:
570  *	Check permission before getting the session identifier of the process
571  *	@p.
572  *	@p contains the task_struct for the process.
573  *	Return 0 if permission is granted.
574  * @task_getsecid:
575  *	Retrieve the security identifier of the process @p.
576  *	@p contains the task_struct for the process and place is into @secid.
577  * @task_setgroups:
578  *	Check permission before setting the supplementary group set of the
579  *	current process.
580  *	@group_info contains the new group information.
581  *	Return 0 if permission is granted.
582  * @task_setnice:
583  *	Check permission before setting the nice value of @p to @nice.
584  *	@p contains the task_struct of process.
585  *	@nice contains the new nice value.
586  *	Return 0 if permission is granted.
587  * @task_setioprio
588  *	Check permission before setting the ioprio value of @p to @ioprio.
589  *	@p contains the task_struct of process.
590  *	@ioprio contains the new ioprio value
591  *	Return 0 if permission is granted.
592  * @task_getioprio
593  *	Check permission before getting the ioprio value of @p.
594  *	@p contains the task_struct of process.
595  *	Return 0 if permission is granted.
596  * @task_setrlimit:
597  *	Check permission before setting the resource limits of the current
598  *	process for @resource to @new_rlim.  The old resource limit values can
599  *	be examined by dereferencing (current->signal->rlim + resource).
600  *	@resource contains the resource whose limit is being set.
601  *	@new_rlim contains the new limits for @resource.
602  *	Return 0 if permission is granted.
603  * @task_setscheduler:
604  *	Check permission before setting scheduling policy and/or parameters of
605  *	process @p based on @policy and @lp.
606  *	@p contains the task_struct for process.
607  *	@policy contains the scheduling policy.
608  *	@lp contains the scheduling parameters.
609  *	Return 0 if permission is granted.
610  * @task_getscheduler:
611  *	Check permission before obtaining scheduling information for process
612  *	@p.
613  *	@p contains the task_struct for process.
614  *	Return 0 if permission is granted.
615  * @task_movememory
616  *	Check permission before moving memory owned by process @p.
617  *	@p contains the task_struct for process.
618  *	Return 0 if permission is granted.
619  * @task_kill:
620  *	Check permission before sending signal @sig to @p.  @info can be NULL,
621  *	the constant 1, or a pointer to a siginfo structure.  If @info is 1 or
622  *	SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
623  *	from the kernel and should typically be permitted.
624  *	SIGIO signals are handled separately by the send_sigiotask hook in
625  *	file_security_ops.
626  *	@p contains the task_struct for process.
627  *	@info contains the signal information.
628  *	@sig contains the signal value.
629  *	@secid contains the sid of the process where the signal originated
630  *	Return 0 if permission is granted.
631  * @task_wait:
632  *	Check permission before allowing a process to reap a child process @p
633  *	and collect its status information.
634  *	@p contains the task_struct for process.
635  *	Return 0 if permission is granted.
636  * @task_prctl:
637  *	Check permission before performing a process control operation on the
638  *	current process.
639  *	@option contains the operation.
640  *	@arg2 contains a argument.
641  *	@arg3 contains a argument.
642  *	@arg4 contains a argument.
643  *	@arg5 contains a argument.
644  *	Return 0 if permission is granted.
645  * @task_reparent_to_init:
646  * 	Set the security attributes in @p->security for a kernel thread that
647  * 	is being reparented to the init task.
648  *	@p contains the task_struct for the kernel thread.
649  * @task_to_inode:
650  * 	Set the security attributes for an inode based on an associated task's
651  * 	security attributes, e.g. for /proc/pid inodes.
652  *	@p contains the task_struct for the task.
653  *	@inode contains the inode structure for the inode.
654  *
655  * Security hooks for Netlink messaging.
656  *
657  * @netlink_send:
658  *	Save security information for a netlink message so that permission
659  *	checking can be performed when the message is processed.  The security
660  *	information can be saved using the eff_cap field of the
661  *      netlink_skb_parms structure.  Also may be used to provide fine
662  *	grained control over message transmission.
663  *	@sk associated sock of task sending the message.,
664  *	@skb contains the sk_buff structure for the netlink message.
665  *	Return 0 if the information was successfully saved and message
666  *	is allowed to be transmitted.
667  * @netlink_recv:
668  *	Check permission before processing the received netlink message in
669  *	@skb.
670  *	@skb contains the sk_buff structure for the netlink message.
671  *	@cap indicates the capability required
672  *	Return 0 if permission is granted.
673  *
674  * Security hooks for Unix domain networking.
675  *
676  * @unix_stream_connect:
677  *	Check permissions before establishing a Unix domain stream connection
678  *	between @sock and @other.
679  *	@sock contains the socket structure.
680  *	@other contains the peer socket structure.
681  *	Return 0 if permission is granted.
682  * @unix_may_send:
683  *	Check permissions before connecting or sending datagrams from @sock to
684  *	@other.
685  *	@sock contains the socket structure.
686  *	@sock contains the peer socket structure.
687  *	Return 0 if permission is granted.
688  *
689  * The @unix_stream_connect and @unix_may_send hooks were necessary because
690  * Linux provides an alternative to the conventional file name space for Unix
691  * domain sockets.  Whereas binding and connecting to sockets in the file name
692  * space is mediated by the typical file permissions (and caught by the mknod
693  * and permission hooks in inode_security_ops), binding and connecting to
694  * sockets in the abstract name space is completely unmediated.  Sufficient
695  * control of Unix domain sockets in the abstract name space isn't possible
696  * using only the socket layer hooks, since we need to know the actual target
697  * socket, which is not looked up until we are inside the af_unix code.
698  *
699  * Security hooks for socket operations.
700  *
701  * @socket_create:
702  *	Check permissions prior to creating a new socket.
703  *	@family contains the requested protocol family.
704  *	@type contains the requested communications type.
705  *	@protocol contains the requested protocol.
706  *	@kern set to 1 if a kernel socket.
707  *	Return 0 if permission is granted.
708  * @socket_post_create:
709  *	This hook allows a module to update or allocate a per-socket security
710  *	structure. Note that the security field was not added directly to the
711  *	socket structure, but rather, the socket security information is stored
712  *	in the associated inode.  Typically, the inode alloc_security hook will
713  *	allocate and and attach security information to
714  *	sock->inode->i_security.  This hook may be used to update the
715  *	sock->inode->i_security field with additional information that wasn't
716  *	available when the inode was allocated.
717  *	@sock contains the newly created socket structure.
718  *	@family contains the requested protocol family.
719  *	@type contains the requested communications type.
720  *	@protocol contains the requested protocol.
721  *	@kern set to 1 if a kernel socket.
722  * @socket_bind:
723  *	Check permission before socket protocol layer bind operation is
724  *	performed and the socket @sock is bound to the address specified in the
725  *	@address parameter.
726  *	@sock contains the socket structure.
727  *	@address contains the address to bind to.
728  *	@addrlen contains the length of address.
729  *	Return 0 if permission is granted.
730  * @socket_connect:
731  *	Check permission before socket protocol layer connect operation
732  *	attempts to connect socket @sock to a remote address, @address.
733  *	@sock contains the socket structure.
734  *	@address contains the address of remote endpoint.
735  *	@addrlen contains the length of address.
736  *	Return 0 if permission is granted.
737  * @socket_listen:
738  *	Check permission before socket protocol layer listen operation.
739  *	@sock contains the socket structure.
740  *	@backlog contains the maximum length for the pending connection queue.
741  *	Return 0 if permission is granted.
742  * @socket_accept:
743  *	Check permission before accepting a new connection.  Note that the new
744  *	socket, @newsock, has been created and some information copied to it,
745  *	but the accept operation has not actually been performed.
746  *	@sock contains the listening socket structure.
747  *	@newsock contains the newly created server socket for connection.
748  *	Return 0 if permission is granted.
749  * @socket_post_accept:
750  *	This hook allows a security module to copy security
751  *	information into the newly created socket's inode.
752  *	@sock contains the listening socket structure.
753  *	@newsock contains the newly created server socket for connection.
754  * @socket_sendmsg:
755  *	Check permission before transmitting a message to another socket.
756  *	@sock contains the socket structure.
757  *	@msg contains the message to be transmitted.
758  *	@size contains the size of message.
759  *	Return 0 if permission is granted.
760  * @socket_recvmsg:
761  *	Check permission before receiving a message from a socket.
762  *	@sock contains the socket structure.
763  *	@msg contains the message structure.
764  *	@size contains the size of message structure.
765  *	@flags contains the operational flags.
766  *	Return 0 if permission is granted.
767  * @socket_getsockname:
768  *	Check permission before the local address (name) of the socket object
769  *	@sock is retrieved.
770  *	@sock contains the socket structure.
771  *	Return 0 if permission is granted.
772  * @socket_getpeername:
773  *	Check permission before the remote address (name) of a socket object
774  *	@sock is retrieved.
775  *	@sock contains the socket structure.
776  *	Return 0 if permission is granted.
777  * @socket_getsockopt:
778  *	Check permissions before retrieving the options associated with socket
779  *	@sock.
780  *	@sock contains the socket structure.
781  *	@level contains the protocol level to retrieve option from.
782  *	@optname contains the name of option to retrieve.
783  *	Return 0 if permission is granted.
784  * @socket_setsockopt:
785  *	Check permissions before setting the options associated with socket
786  *	@sock.
787  *	@sock contains the socket structure.
788  *	@level contains the protocol level to set options for.
789  *	@optname contains the name of the option to set.
790  *	Return 0 if permission is granted.
791  * @socket_shutdown:
792  *	Checks permission before all or part of a connection on the socket
793  *	@sock is shut down.
794  *	@sock contains the socket structure.
795  *	@how contains the flag indicating how future sends and receives are handled.
796  *	Return 0 if permission is granted.
797  * @socket_sock_rcv_skb:
798  *	Check permissions on incoming network packets.  This hook is distinct
799  *	from Netfilter's IP input hooks since it is the first time that the
800  *	incoming sk_buff @skb has been associated with a particular socket, @sk.
801  *	@sk contains the sock (not socket) associated with the incoming sk_buff.
802  *	@skb contains the incoming network data.
803  * @socket_getpeersec:
804  *	This hook allows the security module to provide peer socket security
805  *	state to userspace via getsockopt SO_GETPEERSEC.
806  *	@sock is the local socket.
807  *	@optval userspace memory where the security state is to be copied.
808  *	@optlen userspace int where the module should copy the actual length
809  *	of the security state.
810  *	@len as input is the maximum length to copy to userspace provided
811  *	by the caller.
812  *	Return 0 if all is well, otherwise, typical getsockopt return
813  *	values.
814  * @sk_alloc_security:
815  *      Allocate and attach a security structure to the sk->sk_security field,
816  *      which is used to copy security attributes between local stream sockets.
817  * @sk_free_security:
818  *	Deallocate security structure.
819  * @sk_clone_security:
820  *	Clone/copy security structure.
821  * @sk_getsecid:
822  *	Retrieve the LSM-specific secid for the sock to enable caching of network
823  *	authorizations.
824  * @sock_graft:
825  *	Sets the socket's isec sid to the sock's sid.
826  * @inet_conn_request:
827  *	Sets the openreq's sid to socket's sid with MLS portion taken from peer sid.
828  * @inet_csk_clone:
829  *	Sets the new child socket's sid to the openreq sid.
830  * @inet_conn_established:
831  *     Sets the connection's peersid to the secmark on skb.
832  * @req_classify_flow:
833  *	Sets the flow's sid to the openreq sid.
834  *
835  * Security hooks for XFRM operations.
836  *
837  * @xfrm_policy_alloc_security:
838  *	@xp contains the xfrm_policy being added to Security Policy Database
839  *	used by the XFRM system.
840  *	@sec_ctx contains the security context information being provided by
841  *	the user-level policy update program (e.g., setkey).
842  *	Allocate a security structure to the xp->security field; the security
843  *	field is initialized to NULL when the xfrm_policy is allocated.
844  *	Return 0 if operation was successful (memory to allocate, legal context)
845  * @xfrm_policy_clone_security:
846  *	@old contains an existing xfrm_policy in the SPD.
847  *	@new contains a new xfrm_policy being cloned from old.
848  *	Allocate a security structure to the new->security field
849  *	that contains the information from the old->security field.
850  *	Return 0 if operation was successful (memory to allocate).
851  * @xfrm_policy_free_security:
852  *	@xp contains the xfrm_policy
853  *	Deallocate xp->security.
854  * @xfrm_policy_delete_security:
855  *	@xp contains the xfrm_policy.
856  *	Authorize deletion of xp->security.
857  * @xfrm_state_alloc_security:
858  *	@x contains the xfrm_state being added to the Security Association
859  *	Database by the XFRM system.
860  *	@sec_ctx contains the security context information being provided by
861  *	the user-level SA generation program (e.g., setkey or racoon).
862  *	@secid contains the secid from which to take the mls portion of the context.
863  *	Allocate a security structure to the x->security field; the security
864  *	field is initialized to NULL when the xfrm_state is allocated. Set the
865  *	context to correspond to either sec_ctx or polsec, with the mls portion
866  *	taken from secid in the latter case.
867  *	Return 0 if operation was successful (memory to allocate, legal context).
868  * @xfrm_state_free_security:
869  *	@x contains the xfrm_state.
870  *	Deallocate x->security.
871  * @xfrm_state_delete_security:
872  *	@x contains the xfrm_state.
873  *	Authorize deletion of x->security.
874  * @xfrm_policy_lookup:
875  *	@xp contains the xfrm_policy for which the access control is being
876  *	checked.
877  *	@fl_secid contains the flow security label that is used to authorize
878  *	access to the policy xp.
879  *	@dir contains the direction of the flow (input or output).
880  *	Check permission when a flow selects a xfrm_policy for processing
881  *	XFRMs on a packet.  The hook is called when selecting either a
882  *	per-socket policy or a generic xfrm policy.
883  *	Return 0 if permission is granted, -ESRCH otherwise, or -errno
884  *	on other errors.
885  * @xfrm_state_pol_flow_match:
886  *	@x contains the state to match.
887  *	@xp contains the policy to check for a match.
888  *	@fl contains the flow to check for a match.
889  *	Return 1 if there is a match.
890  * @xfrm_decode_session:
891  *	@skb points to skb to decode.
892  *	@secid points to the flow key secid to set.
893  *	@ckall says if all xfrms used should be checked for same secid.
894  *	Return 0 if ckall is zero or all xfrms used have the same secid.
895  *
896  * Security hooks affecting all Key Management operations
897  *
898  * @key_alloc:
899  *	Permit allocation of a key and assign security data. Note that key does
900  *	not have a serial number assigned at this point.
901  *	@key points to the key.
902  *	@flags is the allocation flags
903  *	Return 0 if permission is granted, -ve error otherwise.
904  * @key_free:
905  *	Notification of destruction; free security data.
906  *	@key points to the key.
907  *	No return value.
908  * @key_permission:
909  *	See whether a specific operational right is granted to a process on a
910  *      key.
911  *	@key_ref refers to the key (key pointer + possession attribute bit).
912  *	@context points to the process to provide the context against which to
913  *       evaluate the security data on the key.
914  *	@perm describes the combination of permissions required of this key.
915  *	Return 1 if permission granted, 0 if permission denied and -ve it the
916  *      normal permissions model should be effected.
917  *
918  * Security hooks affecting all System V IPC operations.
919  *
920  * @ipc_permission:
921  *	Check permissions for access to IPC
922  *	@ipcp contains the kernel IPC permission structure
923  *	@flag contains the desired (requested) permission set
924  *	Return 0 if permission is granted.
925  *
926  * Security hooks for individual messages held in System V IPC message queues
927  * @msg_msg_alloc_security:
928  *	Allocate and attach a security structure to the msg->security field.
929  *	The security field is initialized to NULL when the structure is first
930  *	created.
931  *	@msg contains the message structure to be modified.
932  *	Return 0 if operation was successful and permission is granted.
933  * @msg_msg_free_security:
934  *	Deallocate the security structure for this message.
935  *	@msg contains the message structure to be modified.
936  *
937  * Security hooks for System V IPC Message Queues
938  *
939  * @msg_queue_alloc_security:
940  *	Allocate and attach a security structure to the
941  *	msq->q_perm.security field. The security field is initialized to
942  *	NULL when the structure is first created.
943  *	@msq contains the message queue structure to be modified.
944  *	Return 0 if operation was successful and permission is granted.
945  * @msg_queue_free_security:
946  *	Deallocate security structure for this message queue.
947  *	@msq contains the message queue structure to be modified.
948  * @msg_queue_associate:
949  *	Check permission when a message queue is requested through the
950  *	msgget system call.  This hook is only called when returning the
951  *	message queue identifier for an existing message queue, not when a
952  *	new message queue is created.
953  *	@msq contains the message queue to act upon.
954  *	@msqflg contains the operation control flags.
955  *	Return 0 if permission is granted.
956  * @msg_queue_msgctl:
957  *	Check permission when a message control operation specified by @cmd
958  *	is to be performed on the message queue @msq.
959  *	The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
960  *	@msq contains the message queue to act upon.  May be NULL.
961  *	@cmd contains the operation to be performed.
962  *	Return 0 if permission is granted.
963  * @msg_queue_msgsnd:
964  *	Check permission before a message, @msg, is enqueued on the message
965  *	queue, @msq.
966  *	@msq contains the message queue to send message to.
967  *	@msg contains the message to be enqueued.
968  *	@msqflg contains operational flags.
969  *	Return 0 if permission is granted.
970  * @msg_queue_msgrcv:
971  *	Check permission before a message, @msg, is removed from the message
972  *	queue, @msq.  The @target task structure contains a pointer to the
973  *	process that will be receiving the message (not equal to the current
974  *	process when inline receives are being performed).
975  *	@msq contains the message queue to retrieve message from.
976  *	@msg contains the message destination.
977  *	@target contains the task structure for recipient process.
978  *	@type contains the type of message requested.
979  *	@mode contains the operational flags.
980  *	Return 0 if permission is granted.
981  *
982  * Security hooks for System V Shared Memory Segments
983  *
984  * @shm_alloc_security:
985  *	Allocate and attach a security structure to the shp->shm_perm.security
986  *	field.  The security field is initialized to NULL when the structure is
987  *	first created.
988  *	@shp contains the shared memory structure to be modified.
989  *	Return 0 if operation was successful and permission is granted.
990  * @shm_free_security:
991  *	Deallocate the security struct for this memory segment.
992  *	@shp contains the shared memory structure to be modified.
993  * @shm_associate:
994  *	Check permission when a shared memory region is requested through the
995  *	shmget system call.  This hook is only called when returning the shared
996  *	memory region identifier for an existing region, not when a new shared
997  *	memory region is created.
998  *	@shp contains the shared memory structure to be modified.
999  *	@shmflg contains the operation control flags.
1000  *	Return 0 if permission is granted.
1001  * @shm_shmctl:
1002  *	Check permission when a shared memory control operation specified by
1003  *	@cmd is to be performed on the shared memory region @shp.
1004  *	The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
1005  *	@shp contains shared memory structure to be modified.
1006  *	@cmd contains the operation to be performed.
1007  *	Return 0 if permission is granted.
1008  * @shm_shmat:
1009  *	Check permissions prior to allowing the shmat system call to attach the
1010  *	shared memory segment @shp to the data segment of the calling process.
1011  *	The attaching address is specified by @shmaddr.
1012  *	@shp contains the shared memory structure to be modified.
1013  *	@shmaddr contains the address to attach memory region to.
1014  *	@shmflg contains the operational flags.
1015  *	Return 0 if permission is granted.
1016  *
1017  * Security hooks for System V Semaphores
1018  *
1019  * @sem_alloc_security:
1020  *	Allocate and attach a security structure to the sma->sem_perm.security
1021  *	field.  The security field is initialized to NULL when the structure is
1022  *	first created.
1023  *	@sma contains the semaphore structure
1024  *	Return 0 if operation was successful and permission is granted.
1025  * @sem_free_security:
1026  *	deallocate security struct for this semaphore
1027  *	@sma contains the semaphore structure.
1028  * @sem_associate:
1029  *	Check permission when a semaphore is requested through the semget
1030  *	system call.  This hook is only called when returning the semaphore
1031  *	identifier for an existing semaphore, not when a new one must be
1032  *	created.
1033  *	@sma contains the semaphore structure.
1034  *	@semflg contains the operation control flags.
1035  *	Return 0 if permission is granted.
1036  * @sem_semctl:
1037  *	Check permission when a semaphore operation specified by @cmd is to be
1038  *	performed on the semaphore @sma.  The @sma may be NULL, e.g. for
1039  *	IPC_INFO or SEM_INFO.
1040  *	@sma contains the semaphore structure.  May be NULL.
1041  *	@cmd contains the operation to be performed.
1042  *	Return 0 if permission is granted.
1043  * @sem_semop
1044  *	Check permissions before performing operations on members of the
1045  *	semaphore set @sma.  If the @alter flag is nonzero, the semaphore set
1046  *      may be modified.
1047  *	@sma contains the semaphore structure.
1048  *	@sops contains the operations to perform.
1049  *	@nsops contains the number of operations to perform.
1050  *	@alter contains the flag indicating whether changes are to be made.
1051  *	Return 0 if permission is granted.
1052  *
1053  * @ptrace:
1054  *	Check permission before allowing the @parent process to trace the
1055  *	@child process.
1056  *	Security modules may also want to perform a process tracing check
1057  *	during an execve in the set_security or apply_creds hooks of
1058  *	binprm_security_ops if the process is being traced and its security
1059  *	attributes would be changed by the execve.
1060  *	@parent contains the task_struct structure for parent process.
1061  *	@child contains the task_struct structure for child process.
1062  *	Return 0 if permission is granted.
1063  * @capget:
1064  *	Get the @effective, @inheritable, and @permitted capability sets for
1065  *	the @target process.  The hook may also perform permission checking to
1066  *	determine if the current process is allowed to see the capability sets
1067  *	of the @target process.
1068  *	@target contains the task_struct structure for target process.
1069  *	@effective contains the effective capability set.
1070  *	@inheritable contains the inheritable capability set.
1071  *	@permitted contains the permitted capability set.
1072  *	Return 0 if the capability sets were successfully obtained.
1073  * @capset_check:
1074  *	Check permission before setting the @effective, @inheritable, and
1075  *	@permitted capability sets for the @target process.
1076  *	Caveat:  @target is also set to current if a set of processes is
1077  *	specified (i.e. all processes other than current and init or a
1078  *	particular process group).  Hence, the capset_set hook may need to
1079  *	revalidate permission to the actual target process.
1080  *	@target contains the task_struct structure for target process.
1081  *	@effective contains the effective capability set.
1082  *	@inheritable contains the inheritable capability set.
1083  *	@permitted contains the permitted capability set.
1084  *	Return 0 if permission is granted.
1085  * @capset_set:
1086  *	Set the @effective, @inheritable, and @permitted capability sets for
1087  *	the @target process.  Since capset_check cannot always check permission
1088  *	to the real @target process, this hook may also perform permission
1089  *	checking to determine if the current process is allowed to set the
1090  *	capability sets of the @target process.  However, this hook has no way
1091  *	of returning an error due to the structure of the sys_capset code.
1092  *	@target contains the task_struct structure for target process.
1093  *	@effective contains the effective capability set.
1094  *	@inheritable contains the inheritable capability set.
1095  *	@permitted contains the permitted capability set.
1096  * @capable:
1097  *	Check whether the @tsk process has the @cap capability.
1098  *	@tsk contains the task_struct for the process.
1099  *	@cap contains the capability <include/linux/capability.h>.
1100  *	Return 0 if the capability is granted for @tsk.
1101  * @acct:
1102  *	Check permission before enabling or disabling process accounting.  If
1103  *	accounting is being enabled, then @file refers to the open file used to
1104  *	store accounting records.  If accounting is being disabled, then @file
1105  *	is NULL.
1106  *	@file contains the file structure for the accounting file (may be NULL).
1107  *	Return 0 if permission is granted.
1108  * @sysctl:
1109  *	Check permission before accessing the @table sysctl variable in the
1110  *	manner specified by @op.
1111  *	@table contains the ctl_table structure for the sysctl variable.
1112  *	@op contains the operation (001 = search, 002 = write, 004 = read).
1113  *	Return 0 if permission is granted.
1114  * @syslog:
1115  *	Check permission before accessing the kernel message ring or changing
1116  *	logging to the console.
1117  *	See the syslog(2) manual page for an explanation of the @type values.
1118  *	@type contains the type of action.
1119  *	Return 0 if permission is granted.
1120  * @settime:
1121  *	Check permission to change the system time.
1122  *	struct timespec and timezone are defined in include/linux/time.h
1123  *	@ts contains new time
1124  *	@tz contains new timezone
1125  *	Return 0 if permission is granted.
1126  * @vm_enough_memory:
1127  *	Check permissions for allocating a new virtual mapping.
1128  *	@mm contains the mm struct it is being added to.
1129  *      @pages contains the number of pages.
1130  *	Return 0 if permission is granted.
1131  *
1132  * @register_security:
1133  * 	allow module stacking.
1134  * 	@name contains the name of the security module being stacked.
1135  * 	@ops contains a pointer to the struct security_operations of the module to stack.
1136  * @unregister_security:
1137  *	remove a stacked module.
1138  *	@name contains the name of the security module being unstacked.
1139  *	@ops contains a pointer to the struct security_operations of the module to unstack.
1140  *
1141  * @secid_to_secctx:
1142  *	Convert secid to security context.
1143  *	@secid contains the security ID.
1144  *	@secdata contains the pointer that stores the converted security context.
1145  *
1146  * @release_secctx:
1147  *	Release the security context.
1148  *	@secdata contains the security context.
1149  *	@seclen contains the length of the security context.
1150  *
1151  * This is the main security structure.
1152  */
1153 struct security_operations {
1154 	int (*ptrace) (struct task_struct * parent, struct task_struct * child);
1155 	int (*capget) (struct task_struct * target,
1156 		       kernel_cap_t * effective,
1157 		       kernel_cap_t * inheritable, kernel_cap_t * permitted);
1158 	int (*capset_check) (struct task_struct * target,
1159 			     kernel_cap_t * effective,
1160 			     kernel_cap_t * inheritable,
1161 			     kernel_cap_t * permitted);
1162 	void (*capset_set) (struct task_struct * target,
1163 			    kernel_cap_t * effective,
1164 			    kernel_cap_t * inheritable,
1165 			    kernel_cap_t * permitted);
1166 	int (*capable) (struct task_struct * tsk, int cap);
1167 	int (*acct) (struct file * file);
1168 	int (*sysctl) (struct ctl_table * table, int op);
1169 	int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
1170 	int (*quota_on) (struct dentry * dentry);
1171 	int (*syslog) (int type);
1172 	int (*settime) (struct timespec *ts, struct timezone *tz);
1173 	int (*vm_enough_memory) (struct mm_struct *mm, long pages);
1174 
1175 	int (*bprm_alloc_security) (struct linux_binprm * bprm);
1176 	void (*bprm_free_security) (struct linux_binprm * bprm);
1177 	void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
1178 	void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
1179 	int (*bprm_set_security) (struct linux_binprm * bprm);
1180 	int (*bprm_check_security) (struct linux_binprm * bprm);
1181 	int (*bprm_secureexec) (struct linux_binprm * bprm);
1182 
1183 	int (*sb_alloc_security) (struct super_block * sb);
1184 	void (*sb_free_security) (struct super_block * sb);
1185 	int (*sb_copy_data)(struct file_system_type *type,
1186 			    void *orig, void *copy);
1187 	int (*sb_kern_mount) (struct super_block *sb, void *data);
1188 	int (*sb_statfs) (struct dentry *dentry);
1189 	int (*sb_mount) (char *dev_name, struct nameidata * nd,
1190 			 char *type, unsigned long flags, void *data);
1191 	int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
1192 	int (*sb_umount) (struct vfsmount * mnt, int flags);
1193 	void (*sb_umount_close) (struct vfsmount * mnt);
1194 	void (*sb_umount_busy) (struct vfsmount * mnt);
1195 	void (*sb_post_remount) (struct vfsmount * mnt,
1196 				 unsigned long flags, void *data);
1197 	void (*sb_post_mountroot) (void);
1198 	void (*sb_post_addmount) (struct vfsmount * mnt,
1199 				  struct nameidata * mountpoint_nd);
1200 	int (*sb_pivotroot) (struct nameidata * old_nd,
1201 			     struct nameidata * new_nd);
1202 	void (*sb_post_pivotroot) (struct nameidata * old_nd,
1203 				   struct nameidata * new_nd);
1204 
1205 	int (*inode_alloc_security) (struct inode *inode);
1206 	void (*inode_free_security) (struct inode *inode);
1207 	int (*inode_init_security) (struct inode *inode, struct inode *dir,
1208 				    char **name, void **value, size_t *len);
1209 	int (*inode_create) (struct inode *dir,
1210 	                     struct dentry *dentry, int mode);
1211 	int (*inode_link) (struct dentry *old_dentry,
1212 	                   struct inode *dir, struct dentry *new_dentry);
1213 	int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1214 	int (*inode_symlink) (struct inode *dir,
1215 	                      struct dentry *dentry, const char *old_name);
1216 	int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
1217 	int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1218 	int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1219 	                    int mode, dev_t dev);
1220 	int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1221 	                     struct inode *new_dir, struct dentry *new_dentry);
1222 	int (*inode_readlink) (struct dentry *dentry);
1223 	int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1224 	int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
1225 	int (*inode_setattr)	(struct dentry *dentry, struct iattr *attr);
1226 	int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1227         void (*inode_delete) (struct inode *inode);
1228 	int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
1229 			       size_t size, int flags);
1230 	void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
1231 				     size_t size, int flags);
1232 	int (*inode_getxattr) (struct dentry *dentry, char *name);
1233 	int (*inode_listxattr) (struct dentry *dentry);
1234 	int (*inode_removexattr) (struct dentry *dentry, char *name);
1235 	const char *(*inode_xattr_getsuffix) (void);
1236   	int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err);
1237   	int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1238   	int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
1239 
1240 	int (*file_permission) (struct file * file, int mask);
1241 	int (*file_alloc_security) (struct file * file);
1242 	void (*file_free_security) (struct file * file);
1243 	int (*file_ioctl) (struct file * file, unsigned int cmd,
1244 			   unsigned long arg);
1245 	int (*file_mmap) (struct file * file,
1246 			  unsigned long reqprot, unsigned long prot,
1247 			  unsigned long flags, unsigned long addr,
1248 			  unsigned long addr_only);
1249 	int (*file_mprotect) (struct vm_area_struct * vma,
1250 			      unsigned long reqprot,
1251 			      unsigned long prot);
1252 	int (*file_lock) (struct file * file, unsigned int cmd);
1253 	int (*file_fcntl) (struct file * file, unsigned int cmd,
1254 			   unsigned long arg);
1255 	int (*file_set_fowner) (struct file * file);
1256 	int (*file_send_sigiotask) (struct task_struct * tsk,
1257 				    struct fown_struct * fown, int sig);
1258 	int (*file_receive) (struct file * file);
1259 
1260 	int (*task_create) (unsigned long clone_flags);
1261 	int (*task_alloc_security) (struct task_struct * p);
1262 	void (*task_free_security) (struct task_struct * p);
1263 	int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
1264 	int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
1265 				 uid_t old_euid, uid_t old_suid, int flags);
1266 	int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
1267 	int (*task_setpgid) (struct task_struct * p, pid_t pgid);
1268 	int (*task_getpgid) (struct task_struct * p);
1269 	int (*task_getsid) (struct task_struct * p);
1270 	void (*task_getsecid) (struct task_struct * p, u32 * secid);
1271 	int (*task_setgroups) (struct group_info *group_info);
1272 	int (*task_setnice) (struct task_struct * p, int nice);
1273 	int (*task_setioprio) (struct task_struct * p, int ioprio);
1274 	int (*task_getioprio) (struct task_struct * p);
1275 	int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
1276 	int (*task_setscheduler) (struct task_struct * p, int policy,
1277 				  struct sched_param * lp);
1278 	int (*task_getscheduler) (struct task_struct * p);
1279 	int (*task_movememory) (struct task_struct * p);
1280 	int (*task_kill) (struct task_struct * p,
1281 			  struct siginfo * info, int sig, u32 secid);
1282 	int (*task_wait) (struct task_struct * p);
1283 	int (*task_prctl) (int option, unsigned long arg2,
1284 			   unsigned long arg3, unsigned long arg4,
1285 			   unsigned long arg5);
1286 	void (*task_reparent_to_init) (struct task_struct * p);
1287 	void (*task_to_inode)(struct task_struct *p, struct inode *inode);
1288 
1289 	int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
1290 
1291 	int (*msg_msg_alloc_security) (struct msg_msg * msg);
1292 	void (*msg_msg_free_security) (struct msg_msg * msg);
1293 
1294 	int (*msg_queue_alloc_security) (struct msg_queue * msq);
1295 	void (*msg_queue_free_security) (struct msg_queue * msq);
1296 	int (*msg_queue_associate) (struct msg_queue * msq, int msqflg);
1297 	int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd);
1298 	int (*msg_queue_msgsnd) (struct msg_queue * msq,
1299 				 struct msg_msg * msg, int msqflg);
1300 	int (*msg_queue_msgrcv) (struct msg_queue * msq,
1301 				 struct msg_msg * msg,
1302 				 struct task_struct * target,
1303 				 long type, int mode);
1304 
1305 	int (*shm_alloc_security) (struct shmid_kernel * shp);
1306 	void (*shm_free_security) (struct shmid_kernel * shp);
1307 	int (*shm_associate) (struct shmid_kernel * shp, int shmflg);
1308 	int (*shm_shmctl) (struct shmid_kernel * shp, int cmd);
1309 	int (*shm_shmat) (struct shmid_kernel * shp,
1310 			  char __user *shmaddr, int shmflg);
1311 
1312 	int (*sem_alloc_security) (struct sem_array * sma);
1313 	void (*sem_free_security) (struct sem_array * sma);
1314 	int (*sem_associate) (struct sem_array * sma, int semflg);
1315 	int (*sem_semctl) (struct sem_array * sma, int cmd);
1316 	int (*sem_semop) (struct sem_array * sma,
1317 			  struct sembuf * sops, unsigned nsops, int alter);
1318 
1319 	int (*netlink_send) (struct sock * sk, struct sk_buff * skb);
1320 	int (*netlink_recv) (struct sk_buff * skb, int cap);
1321 
1322 	/* allow module stacking */
1323 	int (*register_security) (const char *name,
1324 	                          struct security_operations *ops);
1325 	int (*unregister_security) (const char *name,
1326 	                            struct security_operations *ops);
1327 
1328 	void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1329 
1330  	int (*getprocattr)(struct task_struct *p, char *name, char **value);
1331  	int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1332 	int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen);
1333 	void (*release_secctx)(char *secdata, u32 seclen);
1334 
1335 #ifdef CONFIG_SECURITY_NETWORK
1336 	int (*unix_stream_connect) (struct socket * sock,
1337 				    struct socket * other, struct sock * newsk);
1338 	int (*unix_may_send) (struct socket * sock, struct socket * other);
1339 
1340 	int (*socket_create) (int family, int type, int protocol, int kern);
1341 	int (*socket_post_create) (struct socket * sock, int family,
1342 				   int type, int protocol, int kern);
1343 	int (*socket_bind) (struct socket * sock,
1344 			    struct sockaddr * address, int addrlen);
1345 	int (*socket_connect) (struct socket * sock,
1346 			       struct sockaddr * address, int addrlen);
1347 	int (*socket_listen) (struct socket * sock, int backlog);
1348 	int (*socket_accept) (struct socket * sock, struct socket * newsock);
1349 	void (*socket_post_accept) (struct socket * sock,
1350 				    struct socket * newsock);
1351 	int (*socket_sendmsg) (struct socket * sock,
1352 			       struct msghdr * msg, int size);
1353 	int (*socket_recvmsg) (struct socket * sock,
1354 			       struct msghdr * msg, int size, int flags);
1355 	int (*socket_getsockname) (struct socket * sock);
1356 	int (*socket_getpeername) (struct socket * sock);
1357 	int (*socket_getsockopt) (struct socket * sock, int level, int optname);
1358 	int (*socket_setsockopt) (struct socket * sock, int level, int optname);
1359 	int (*socket_shutdown) (struct socket * sock, int how);
1360 	int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb);
1361 	int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1362 	int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
1363 	int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1364 	void (*sk_free_security) (struct sock *sk);
1365 	void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
1366 	void (*sk_getsecid) (struct sock *sk, u32 *secid);
1367 	void (*sock_graft)(struct sock* sk, struct socket *parent);
1368 	int (*inet_conn_request)(struct sock *sk, struct sk_buff *skb,
1369 					struct request_sock *req);
1370 	void (*inet_csk_clone)(struct sock *newsk, const struct request_sock *req);
1371 	void (*inet_conn_established)(struct sock *sk, struct sk_buff *skb);
1372 	void (*req_classify_flow)(const struct request_sock *req, struct flowi *fl);
1373 #endif	/* CONFIG_SECURITY_NETWORK */
1374 
1375 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1376 	int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp,
1377 			struct xfrm_user_sec_ctx *sec_ctx);
1378 	int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new);
1379 	void (*xfrm_policy_free_security) (struct xfrm_policy *xp);
1380 	int (*xfrm_policy_delete_security) (struct xfrm_policy *xp);
1381 	int (*xfrm_state_alloc_security) (struct xfrm_state *x,
1382 		struct xfrm_user_sec_ctx *sec_ctx,
1383 		u32 secid);
1384 	void (*xfrm_state_free_security) (struct xfrm_state *x);
1385 	int (*xfrm_state_delete_security) (struct xfrm_state *x);
1386 	int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 fl_secid, u8 dir);
1387 	int (*xfrm_state_pol_flow_match)(struct xfrm_state *x,
1388 			struct xfrm_policy *xp, struct flowi *fl);
1389 	int (*xfrm_decode_session)(struct sk_buff *skb, u32 *secid, int ckall);
1390 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1391 
1392 	/* key management security hooks */
1393 #ifdef CONFIG_KEYS
1394 	int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags);
1395 	void (*key_free)(struct key *key);
1396 	int (*key_permission)(key_ref_t key_ref,
1397 			      struct task_struct *context,
1398 			      key_perm_t perm);
1399 
1400 #endif	/* CONFIG_KEYS */
1401 
1402 };
1403 
1404 /* global variables */
1405 extern struct security_operations *security_ops;
1406 
1407 /* inline stuff */
1408 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child)
1409 {
1410 	return security_ops->ptrace (parent, child);
1411 }
1412 
1413 static inline int security_capget (struct task_struct *target,
1414 				   kernel_cap_t *effective,
1415 				   kernel_cap_t *inheritable,
1416 				   kernel_cap_t *permitted)
1417 {
1418 	return security_ops->capget (target, effective, inheritable, permitted);
1419 }
1420 
1421 static inline int security_capset_check (struct task_struct *target,
1422 					 kernel_cap_t *effective,
1423 					 kernel_cap_t *inheritable,
1424 					 kernel_cap_t *permitted)
1425 {
1426 	return security_ops->capset_check (target, effective, inheritable, permitted);
1427 }
1428 
1429 static inline void security_capset_set (struct task_struct *target,
1430 					kernel_cap_t *effective,
1431 					kernel_cap_t *inheritable,
1432 					kernel_cap_t *permitted)
1433 {
1434 	security_ops->capset_set (target, effective, inheritable, permitted);
1435 }
1436 
1437 static inline int security_capable(struct task_struct *tsk, int cap)
1438 {
1439 	return security_ops->capable(tsk, cap);
1440 }
1441 
1442 static inline int security_acct (struct file *file)
1443 {
1444 	return security_ops->acct (file);
1445 }
1446 
1447 static inline int security_sysctl(struct ctl_table *table, int op)
1448 {
1449 	return security_ops->sysctl(table, op);
1450 }
1451 
1452 static inline int security_quotactl (int cmds, int type, int id,
1453 				     struct super_block *sb)
1454 {
1455 	return security_ops->quotactl (cmds, type, id, sb);
1456 }
1457 
1458 static inline int security_quota_on (struct dentry * dentry)
1459 {
1460 	return security_ops->quota_on (dentry);
1461 }
1462 
1463 static inline int security_syslog(int type)
1464 {
1465 	return security_ops->syslog(type);
1466 }
1467 
1468 static inline int security_settime(struct timespec *ts, struct timezone *tz)
1469 {
1470 	return security_ops->settime(ts, tz);
1471 }
1472 
1473 static inline int security_vm_enough_memory(long pages)
1474 {
1475 	return security_ops->vm_enough_memory(current->mm, pages);
1476 }
1477 
1478 static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1479 {
1480 	return security_ops->vm_enough_memory(mm, pages);
1481 }
1482 
1483 static inline int security_bprm_alloc (struct linux_binprm *bprm)
1484 {
1485 	return security_ops->bprm_alloc_security (bprm);
1486 }
1487 static inline void security_bprm_free (struct linux_binprm *bprm)
1488 {
1489 	security_ops->bprm_free_security (bprm);
1490 }
1491 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
1492 {
1493 	security_ops->bprm_apply_creds (bprm, unsafe);
1494 }
1495 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
1496 {
1497 	security_ops->bprm_post_apply_creds (bprm);
1498 }
1499 static inline int security_bprm_set (struct linux_binprm *bprm)
1500 {
1501 	return security_ops->bprm_set_security (bprm);
1502 }
1503 
1504 static inline int security_bprm_check (struct linux_binprm *bprm)
1505 {
1506 	return security_ops->bprm_check_security (bprm);
1507 }
1508 
1509 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
1510 {
1511 	return security_ops->bprm_secureexec (bprm);
1512 }
1513 
1514 static inline int security_sb_alloc (struct super_block *sb)
1515 {
1516 	return security_ops->sb_alloc_security (sb);
1517 }
1518 
1519 static inline void security_sb_free (struct super_block *sb)
1520 {
1521 	security_ops->sb_free_security (sb);
1522 }
1523 
1524 static inline int security_sb_copy_data (struct file_system_type *type,
1525 					 void *orig, void *copy)
1526 {
1527 	return security_ops->sb_copy_data (type, orig, copy);
1528 }
1529 
1530 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
1531 {
1532 	return security_ops->sb_kern_mount (sb, data);
1533 }
1534 
1535 static inline int security_sb_statfs (struct dentry *dentry)
1536 {
1537 	return security_ops->sb_statfs (dentry);
1538 }
1539 
1540 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
1541 				    char *type, unsigned long flags,
1542 				    void *data)
1543 {
1544 	return security_ops->sb_mount (dev_name, nd, type, flags, data);
1545 }
1546 
1547 static inline int security_sb_check_sb (struct vfsmount *mnt,
1548 					struct nameidata *nd)
1549 {
1550 	return security_ops->sb_check_sb (mnt, nd);
1551 }
1552 
1553 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
1554 {
1555 	return security_ops->sb_umount (mnt, flags);
1556 }
1557 
1558 static inline void security_sb_umount_close (struct vfsmount *mnt)
1559 {
1560 	security_ops->sb_umount_close (mnt);
1561 }
1562 
1563 static inline void security_sb_umount_busy (struct vfsmount *mnt)
1564 {
1565 	security_ops->sb_umount_busy (mnt);
1566 }
1567 
1568 static inline void security_sb_post_remount (struct vfsmount *mnt,
1569 					     unsigned long flags, void *data)
1570 {
1571 	security_ops->sb_post_remount (mnt, flags, data);
1572 }
1573 
1574 static inline void security_sb_post_mountroot (void)
1575 {
1576 	security_ops->sb_post_mountroot ();
1577 }
1578 
1579 static inline void security_sb_post_addmount (struct vfsmount *mnt,
1580 					      struct nameidata *mountpoint_nd)
1581 {
1582 	security_ops->sb_post_addmount (mnt, mountpoint_nd);
1583 }
1584 
1585 static inline int security_sb_pivotroot (struct nameidata *old_nd,
1586 					 struct nameidata *new_nd)
1587 {
1588 	return security_ops->sb_pivotroot (old_nd, new_nd);
1589 }
1590 
1591 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
1592 					       struct nameidata *new_nd)
1593 {
1594 	security_ops->sb_post_pivotroot (old_nd, new_nd);
1595 }
1596 
1597 static inline int security_inode_alloc (struct inode *inode)
1598 {
1599 	inode->i_security = NULL;
1600 	return security_ops->inode_alloc_security (inode);
1601 }
1602 
1603 static inline void security_inode_free (struct inode *inode)
1604 {
1605 	security_ops->inode_free_security (inode);
1606 }
1607 
1608 static inline int security_inode_init_security (struct inode *inode,
1609 						struct inode *dir,
1610 						char **name,
1611 						void **value,
1612 						size_t *len)
1613 {
1614 	if (unlikely (IS_PRIVATE (inode)))
1615 		return -EOPNOTSUPP;
1616 	return security_ops->inode_init_security (inode, dir, name, value, len);
1617 }
1618 
1619 static inline int security_inode_create (struct inode *dir,
1620 					 struct dentry *dentry,
1621 					 int mode)
1622 {
1623 	if (unlikely (IS_PRIVATE (dir)))
1624 		return 0;
1625 	return security_ops->inode_create (dir, dentry, mode);
1626 }
1627 
1628 static inline int security_inode_link (struct dentry *old_dentry,
1629 				       struct inode *dir,
1630 				       struct dentry *new_dentry)
1631 {
1632 	if (unlikely (IS_PRIVATE (old_dentry->d_inode)))
1633 		return 0;
1634 	return security_ops->inode_link (old_dentry, dir, new_dentry);
1635 }
1636 
1637 static inline int security_inode_unlink (struct inode *dir,
1638 					 struct dentry *dentry)
1639 {
1640 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1641 		return 0;
1642 	return security_ops->inode_unlink (dir, dentry);
1643 }
1644 
1645 static inline int security_inode_symlink (struct inode *dir,
1646 					  struct dentry *dentry,
1647 					  const char *old_name)
1648 {
1649 	if (unlikely (IS_PRIVATE (dir)))
1650 		return 0;
1651 	return security_ops->inode_symlink (dir, dentry, old_name);
1652 }
1653 
1654 static inline int security_inode_mkdir (struct inode *dir,
1655 					struct dentry *dentry,
1656 					int mode)
1657 {
1658 	if (unlikely (IS_PRIVATE (dir)))
1659 		return 0;
1660 	return security_ops->inode_mkdir (dir, dentry, mode);
1661 }
1662 
1663 static inline int security_inode_rmdir (struct inode *dir,
1664 					struct dentry *dentry)
1665 {
1666 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1667 		return 0;
1668 	return security_ops->inode_rmdir (dir, dentry);
1669 }
1670 
1671 static inline int security_inode_mknod (struct inode *dir,
1672 					struct dentry *dentry,
1673 					int mode, dev_t dev)
1674 {
1675 	if (unlikely (IS_PRIVATE (dir)))
1676 		return 0;
1677 	return security_ops->inode_mknod (dir, dentry, mode, dev);
1678 }
1679 
1680 static inline int security_inode_rename (struct inode *old_dir,
1681 					 struct dentry *old_dentry,
1682 					 struct inode *new_dir,
1683 					 struct dentry *new_dentry)
1684 {
1685         if (unlikely (IS_PRIVATE (old_dentry->d_inode) ||
1686             (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode))))
1687 		return 0;
1688 	return security_ops->inode_rename (old_dir, old_dentry,
1689 					   new_dir, new_dentry);
1690 }
1691 
1692 static inline int security_inode_readlink (struct dentry *dentry)
1693 {
1694 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1695 		return 0;
1696 	return security_ops->inode_readlink (dentry);
1697 }
1698 
1699 static inline int security_inode_follow_link (struct dentry *dentry,
1700 					      struct nameidata *nd)
1701 {
1702 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1703 		return 0;
1704 	return security_ops->inode_follow_link (dentry, nd);
1705 }
1706 
1707 static inline int security_inode_permission (struct inode *inode, int mask,
1708 					     struct nameidata *nd)
1709 {
1710 	if (unlikely (IS_PRIVATE (inode)))
1711 		return 0;
1712 	return security_ops->inode_permission (inode, mask, nd);
1713 }
1714 
1715 static inline int security_inode_setattr (struct dentry *dentry,
1716 					  struct iattr *attr)
1717 {
1718 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1719 		return 0;
1720 	return security_ops->inode_setattr (dentry, attr);
1721 }
1722 
1723 static inline int security_inode_getattr (struct vfsmount *mnt,
1724 					  struct dentry *dentry)
1725 {
1726 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1727 		return 0;
1728 	return security_ops->inode_getattr (mnt, dentry);
1729 }
1730 
1731 static inline void security_inode_delete (struct inode *inode)
1732 {
1733 	if (unlikely (IS_PRIVATE (inode)))
1734 		return;
1735 	security_ops->inode_delete (inode);
1736 }
1737 
1738 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
1739 					   void *value, size_t size, int flags)
1740 {
1741 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1742 		return 0;
1743 	return security_ops->inode_setxattr (dentry, name, value, size, flags);
1744 }
1745 
1746 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
1747 						void *value, size_t size, int flags)
1748 {
1749 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1750 		return;
1751 	security_ops->inode_post_setxattr (dentry, name, value, size, flags);
1752 }
1753 
1754 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
1755 {
1756 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1757 		return 0;
1758 	return security_ops->inode_getxattr (dentry, name);
1759 }
1760 
1761 static inline int security_inode_listxattr (struct dentry *dentry)
1762 {
1763 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1764 		return 0;
1765 	return security_ops->inode_listxattr (dentry);
1766 }
1767 
1768 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
1769 {
1770 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1771 		return 0;
1772 	return security_ops->inode_removexattr (dentry, name);
1773 }
1774 
1775 static inline const char *security_inode_xattr_getsuffix(void)
1776 {
1777 	return security_ops->inode_xattr_getsuffix();
1778 }
1779 
1780 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
1781 {
1782 	if (unlikely (IS_PRIVATE (inode)))
1783 		return 0;
1784 	return security_ops->inode_getsecurity(inode, name, buffer, size, err);
1785 }
1786 
1787 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1788 {
1789 	if (unlikely (IS_PRIVATE (inode)))
1790 		return 0;
1791 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
1792 }
1793 
1794 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1795 {
1796 	if (unlikely (IS_PRIVATE (inode)))
1797 		return 0;
1798 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
1799 }
1800 
1801 static inline int security_file_permission (struct file *file, int mask)
1802 {
1803 	return security_ops->file_permission (file, mask);
1804 }
1805 
1806 static inline int security_file_alloc (struct file *file)
1807 {
1808 	return security_ops->file_alloc_security (file);
1809 }
1810 
1811 static inline void security_file_free (struct file *file)
1812 {
1813 	security_ops->file_free_security (file);
1814 }
1815 
1816 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
1817 				       unsigned long arg)
1818 {
1819 	return security_ops->file_ioctl (file, cmd, arg);
1820 }
1821 
1822 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
1823 				      unsigned long prot,
1824 				      unsigned long flags,
1825 				      unsigned long addr,
1826 				      unsigned long addr_only)
1827 {
1828 	return security_ops->file_mmap (file, reqprot, prot, flags, addr,
1829 					addr_only);
1830 }
1831 
1832 static inline int security_file_mprotect (struct vm_area_struct *vma,
1833 					  unsigned long reqprot,
1834 					  unsigned long prot)
1835 {
1836 	return security_ops->file_mprotect (vma, reqprot, prot);
1837 }
1838 
1839 static inline int security_file_lock (struct file *file, unsigned int cmd)
1840 {
1841 	return security_ops->file_lock (file, cmd);
1842 }
1843 
1844 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
1845 				       unsigned long arg)
1846 {
1847 	return security_ops->file_fcntl (file, cmd, arg);
1848 }
1849 
1850 static inline int security_file_set_fowner (struct file *file)
1851 {
1852 	return security_ops->file_set_fowner (file);
1853 }
1854 
1855 static inline int security_file_send_sigiotask (struct task_struct *tsk,
1856 						struct fown_struct *fown,
1857 						int sig)
1858 {
1859 	return security_ops->file_send_sigiotask (tsk, fown, sig);
1860 }
1861 
1862 static inline int security_file_receive (struct file *file)
1863 {
1864 	return security_ops->file_receive (file);
1865 }
1866 
1867 static inline int security_task_create (unsigned long clone_flags)
1868 {
1869 	return security_ops->task_create (clone_flags);
1870 }
1871 
1872 static inline int security_task_alloc (struct task_struct *p)
1873 {
1874 	return security_ops->task_alloc_security (p);
1875 }
1876 
1877 static inline void security_task_free (struct task_struct *p)
1878 {
1879 	security_ops->task_free_security (p);
1880 }
1881 
1882 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
1883 					int flags)
1884 {
1885 	return security_ops->task_setuid (id0, id1, id2, flags);
1886 }
1887 
1888 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
1889 					     uid_t old_suid, int flags)
1890 {
1891 	return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags);
1892 }
1893 
1894 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
1895 					int flags)
1896 {
1897 	return security_ops->task_setgid (id0, id1, id2, flags);
1898 }
1899 
1900 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
1901 {
1902 	return security_ops->task_setpgid (p, pgid);
1903 }
1904 
1905 static inline int security_task_getpgid (struct task_struct *p)
1906 {
1907 	return security_ops->task_getpgid (p);
1908 }
1909 
1910 static inline int security_task_getsid (struct task_struct *p)
1911 {
1912 	return security_ops->task_getsid (p);
1913 }
1914 
1915 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
1916 {
1917 	security_ops->task_getsecid (p, secid);
1918 }
1919 
1920 static inline int security_task_setgroups (struct group_info *group_info)
1921 {
1922 	return security_ops->task_setgroups (group_info);
1923 }
1924 
1925 static inline int security_task_setnice (struct task_struct *p, int nice)
1926 {
1927 	return security_ops->task_setnice (p, nice);
1928 }
1929 
1930 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
1931 {
1932 	return security_ops->task_setioprio (p, ioprio);
1933 }
1934 
1935 static inline int security_task_getioprio (struct task_struct *p)
1936 {
1937 	return security_ops->task_getioprio (p);
1938 }
1939 
1940 static inline int security_task_setrlimit (unsigned int resource,
1941 					   struct rlimit *new_rlim)
1942 {
1943 	return security_ops->task_setrlimit (resource, new_rlim);
1944 }
1945 
1946 static inline int security_task_setscheduler (struct task_struct *p,
1947 					      int policy,
1948 					      struct sched_param *lp)
1949 {
1950 	return security_ops->task_setscheduler (p, policy, lp);
1951 }
1952 
1953 static inline int security_task_getscheduler (struct task_struct *p)
1954 {
1955 	return security_ops->task_getscheduler (p);
1956 }
1957 
1958 static inline int security_task_movememory (struct task_struct *p)
1959 {
1960 	return security_ops->task_movememory (p);
1961 }
1962 
1963 static inline int security_task_kill (struct task_struct *p,
1964 				      struct siginfo *info, int sig,
1965 				      u32 secid)
1966 {
1967 	return security_ops->task_kill (p, info, sig, secid);
1968 }
1969 
1970 static inline int security_task_wait (struct task_struct *p)
1971 {
1972 	return security_ops->task_wait (p);
1973 }
1974 
1975 static inline int security_task_prctl (int option, unsigned long arg2,
1976 				       unsigned long arg3,
1977 				       unsigned long arg4,
1978 				       unsigned long arg5)
1979 {
1980 	return security_ops->task_prctl (option, arg2, arg3, arg4, arg5);
1981 }
1982 
1983 static inline void security_task_reparent_to_init (struct task_struct *p)
1984 {
1985 	security_ops->task_reparent_to_init (p);
1986 }
1987 
1988 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
1989 {
1990 	security_ops->task_to_inode(p, inode);
1991 }
1992 
1993 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
1994 					   short flag)
1995 {
1996 	return security_ops->ipc_permission (ipcp, flag);
1997 }
1998 
1999 static inline int security_msg_msg_alloc (struct msg_msg * msg)
2000 {
2001 	return security_ops->msg_msg_alloc_security (msg);
2002 }
2003 
2004 static inline void security_msg_msg_free (struct msg_msg * msg)
2005 {
2006 	security_ops->msg_msg_free_security(msg);
2007 }
2008 
2009 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2010 {
2011 	return security_ops->msg_queue_alloc_security (msq);
2012 }
2013 
2014 static inline void security_msg_queue_free (struct msg_queue *msq)
2015 {
2016 	security_ops->msg_queue_free_security (msq);
2017 }
2018 
2019 static inline int security_msg_queue_associate (struct msg_queue * msq,
2020 						int msqflg)
2021 {
2022 	return security_ops->msg_queue_associate (msq, msqflg);
2023 }
2024 
2025 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2026 {
2027 	return security_ops->msg_queue_msgctl (msq, cmd);
2028 }
2029 
2030 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2031 					     struct msg_msg * msg, int msqflg)
2032 {
2033 	return security_ops->msg_queue_msgsnd (msq, msg, msqflg);
2034 }
2035 
2036 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2037 					     struct msg_msg * msg,
2038 					     struct task_struct * target,
2039 					     long type, int mode)
2040 {
2041 	return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode);
2042 }
2043 
2044 static inline int security_shm_alloc (struct shmid_kernel *shp)
2045 {
2046 	return security_ops->shm_alloc_security (shp);
2047 }
2048 
2049 static inline void security_shm_free (struct shmid_kernel *shp)
2050 {
2051 	security_ops->shm_free_security (shp);
2052 }
2053 
2054 static inline int security_shm_associate (struct shmid_kernel * shp,
2055 					  int shmflg)
2056 {
2057 	return security_ops->shm_associate(shp, shmflg);
2058 }
2059 
2060 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2061 {
2062 	return security_ops->shm_shmctl (shp, cmd);
2063 }
2064 
2065 static inline int security_shm_shmat (struct shmid_kernel * shp,
2066 				      char __user *shmaddr, int shmflg)
2067 {
2068 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
2069 }
2070 
2071 static inline int security_sem_alloc (struct sem_array *sma)
2072 {
2073 	return security_ops->sem_alloc_security (sma);
2074 }
2075 
2076 static inline void security_sem_free (struct sem_array *sma)
2077 {
2078 	security_ops->sem_free_security (sma);
2079 }
2080 
2081 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2082 {
2083 	return security_ops->sem_associate (sma, semflg);
2084 }
2085 
2086 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2087 {
2088 	return security_ops->sem_semctl(sma, cmd);
2089 }
2090 
2091 static inline int security_sem_semop (struct sem_array * sma,
2092 				      struct sembuf * sops, unsigned nsops,
2093 				      int alter)
2094 {
2095 	return security_ops->sem_semop(sma, sops, nsops, alter);
2096 }
2097 
2098 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2099 {
2100 	if (unlikely (inode && IS_PRIVATE (inode)))
2101 		return;
2102 	security_ops->d_instantiate (dentry, inode);
2103 }
2104 
2105 static inline int security_getprocattr(struct task_struct *p, char *name, char **value)
2106 {
2107 	return security_ops->getprocattr(p, name, value);
2108 }
2109 
2110 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2111 {
2112 	return security_ops->setprocattr(p, name, value, size);
2113 }
2114 
2115 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb)
2116 {
2117 	return security_ops->netlink_send(sk, skb);
2118 }
2119 
2120 static inline int security_netlink_recv(struct sk_buff * skb, int cap)
2121 {
2122 	return security_ops->netlink_recv(skb, cap);
2123 }
2124 
2125 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2126 {
2127 	return security_ops->secid_to_secctx(secid, secdata, seclen);
2128 }
2129 
2130 static inline void security_release_secctx(char *secdata, u32 seclen)
2131 {
2132 	return security_ops->release_secctx(secdata, seclen);
2133 }
2134 
2135 /* prototypes */
2136 extern int security_init	(void);
2137 extern int register_security	(struct security_operations *ops);
2138 extern int unregister_security	(struct security_operations *ops);
2139 extern int mod_reg_security	(const char *name, struct security_operations *ops);
2140 extern int mod_unreg_security	(const char *name, struct security_operations *ops);
2141 extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
2142 					     struct dentry *parent, void *data,
2143 					     const struct file_operations *fops);
2144 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
2145 extern void securityfs_remove(struct dentry *dentry);
2146 
2147 
2148 #else /* CONFIG_SECURITY */
2149 
2150 /*
2151  * This is the default capabilities functionality.  Most of these functions
2152  * are just stubbed out, but a few must call the proper capable code.
2153  */
2154 
2155 static inline int security_init(void)
2156 {
2157 	return 0;
2158 }
2159 
2160 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child)
2161 {
2162 	return cap_ptrace (parent, child);
2163 }
2164 
2165 static inline int security_capget (struct task_struct *target,
2166 				   kernel_cap_t *effective,
2167 				   kernel_cap_t *inheritable,
2168 				   kernel_cap_t *permitted)
2169 {
2170 	return cap_capget (target, effective, inheritable, permitted);
2171 }
2172 
2173 static inline int security_capset_check (struct task_struct *target,
2174 					 kernel_cap_t *effective,
2175 					 kernel_cap_t *inheritable,
2176 					 kernel_cap_t *permitted)
2177 {
2178 	return cap_capset_check (target, effective, inheritable, permitted);
2179 }
2180 
2181 static inline void security_capset_set (struct task_struct *target,
2182 					kernel_cap_t *effective,
2183 					kernel_cap_t *inheritable,
2184 					kernel_cap_t *permitted)
2185 {
2186 	cap_capset_set (target, effective, inheritable, permitted);
2187 }
2188 
2189 static inline int security_capable(struct task_struct *tsk, int cap)
2190 {
2191 	return cap_capable(tsk, cap);
2192 }
2193 
2194 static inline int security_acct (struct file *file)
2195 {
2196 	return 0;
2197 }
2198 
2199 static inline int security_sysctl(struct ctl_table *table, int op)
2200 {
2201 	return 0;
2202 }
2203 
2204 static inline int security_quotactl (int cmds, int type, int id,
2205 				     struct super_block * sb)
2206 {
2207 	return 0;
2208 }
2209 
2210 static inline int security_quota_on (struct dentry * dentry)
2211 {
2212 	return 0;
2213 }
2214 
2215 static inline int security_syslog(int type)
2216 {
2217 	return cap_syslog(type);
2218 }
2219 
2220 static inline int security_settime(struct timespec *ts, struct timezone *tz)
2221 {
2222 	return cap_settime(ts, tz);
2223 }
2224 
2225 static inline int security_vm_enough_memory(long pages)
2226 {
2227 	return cap_vm_enough_memory(current->mm, pages);
2228 }
2229 
2230 static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
2231 {
2232 	return cap_vm_enough_memory(mm, pages);
2233 }
2234 
2235 static inline int security_bprm_alloc (struct linux_binprm *bprm)
2236 {
2237 	return 0;
2238 }
2239 
2240 static inline void security_bprm_free (struct linux_binprm *bprm)
2241 { }
2242 
2243 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
2244 {
2245 	cap_bprm_apply_creds (bprm, unsafe);
2246 }
2247 
2248 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
2249 {
2250 	return;
2251 }
2252 
2253 static inline int security_bprm_set (struct linux_binprm *bprm)
2254 {
2255 	return cap_bprm_set_security (bprm);
2256 }
2257 
2258 static inline int security_bprm_check (struct linux_binprm *bprm)
2259 {
2260 	return 0;
2261 }
2262 
2263 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
2264 {
2265 	return cap_bprm_secureexec(bprm);
2266 }
2267 
2268 static inline int security_sb_alloc (struct super_block *sb)
2269 {
2270 	return 0;
2271 }
2272 
2273 static inline void security_sb_free (struct super_block *sb)
2274 { }
2275 
2276 static inline int security_sb_copy_data (struct file_system_type *type,
2277 					 void *orig, void *copy)
2278 {
2279 	return 0;
2280 }
2281 
2282 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
2283 {
2284 	return 0;
2285 }
2286 
2287 static inline int security_sb_statfs (struct dentry *dentry)
2288 {
2289 	return 0;
2290 }
2291 
2292 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
2293 				    char *type, unsigned long flags,
2294 				    void *data)
2295 {
2296 	return 0;
2297 }
2298 
2299 static inline int security_sb_check_sb (struct vfsmount *mnt,
2300 					struct nameidata *nd)
2301 {
2302 	return 0;
2303 }
2304 
2305 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
2306 {
2307 	return 0;
2308 }
2309 
2310 static inline void security_sb_umount_close (struct vfsmount *mnt)
2311 { }
2312 
2313 static inline void security_sb_umount_busy (struct vfsmount *mnt)
2314 { }
2315 
2316 static inline void security_sb_post_remount (struct vfsmount *mnt,
2317 					     unsigned long flags, void *data)
2318 { }
2319 
2320 static inline void security_sb_post_mountroot (void)
2321 { }
2322 
2323 static inline void security_sb_post_addmount (struct vfsmount *mnt,
2324 					      struct nameidata *mountpoint_nd)
2325 { }
2326 
2327 static inline int security_sb_pivotroot (struct nameidata *old_nd,
2328 					 struct nameidata *new_nd)
2329 {
2330 	return 0;
2331 }
2332 
2333 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
2334 					       struct nameidata *new_nd)
2335 { }
2336 
2337 static inline int security_inode_alloc (struct inode *inode)
2338 {
2339 	return 0;
2340 }
2341 
2342 static inline void security_inode_free (struct inode *inode)
2343 { }
2344 
2345 static inline int security_inode_init_security (struct inode *inode,
2346 						struct inode *dir,
2347 						char **name,
2348 						void **value,
2349 						size_t *len)
2350 {
2351 	return -EOPNOTSUPP;
2352 }
2353 
2354 static inline int security_inode_create (struct inode *dir,
2355 					 struct dentry *dentry,
2356 					 int mode)
2357 {
2358 	return 0;
2359 }
2360 
2361 static inline int security_inode_link (struct dentry *old_dentry,
2362 				       struct inode *dir,
2363 				       struct dentry *new_dentry)
2364 {
2365 	return 0;
2366 }
2367 
2368 static inline int security_inode_unlink (struct inode *dir,
2369 					 struct dentry *dentry)
2370 {
2371 	return 0;
2372 }
2373 
2374 static inline int security_inode_symlink (struct inode *dir,
2375 					  struct dentry *dentry,
2376 					  const char *old_name)
2377 {
2378 	return 0;
2379 }
2380 
2381 static inline int security_inode_mkdir (struct inode *dir,
2382 					struct dentry *dentry,
2383 					int mode)
2384 {
2385 	return 0;
2386 }
2387 
2388 static inline int security_inode_rmdir (struct inode *dir,
2389 					struct dentry *dentry)
2390 {
2391 	return 0;
2392 }
2393 
2394 static inline int security_inode_mknod (struct inode *dir,
2395 					struct dentry *dentry,
2396 					int mode, dev_t dev)
2397 {
2398 	return 0;
2399 }
2400 
2401 static inline int security_inode_rename (struct inode *old_dir,
2402 					 struct dentry *old_dentry,
2403 					 struct inode *new_dir,
2404 					 struct dentry *new_dentry)
2405 {
2406 	return 0;
2407 }
2408 
2409 static inline int security_inode_readlink (struct dentry *dentry)
2410 {
2411 	return 0;
2412 }
2413 
2414 static inline int security_inode_follow_link (struct dentry *dentry,
2415 					      struct nameidata *nd)
2416 {
2417 	return 0;
2418 }
2419 
2420 static inline int security_inode_permission (struct inode *inode, int mask,
2421 					     struct nameidata *nd)
2422 {
2423 	return 0;
2424 }
2425 
2426 static inline int security_inode_setattr (struct dentry *dentry,
2427 					  struct iattr *attr)
2428 {
2429 	return 0;
2430 }
2431 
2432 static inline int security_inode_getattr (struct vfsmount *mnt,
2433 					  struct dentry *dentry)
2434 {
2435 	return 0;
2436 }
2437 
2438 static inline void security_inode_delete (struct inode *inode)
2439 { }
2440 
2441 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
2442 					   void *value, size_t size, int flags)
2443 {
2444 	return cap_inode_setxattr(dentry, name, value, size, flags);
2445 }
2446 
2447 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
2448 						 void *value, size_t size, int flags)
2449 { }
2450 
2451 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
2452 {
2453 	return 0;
2454 }
2455 
2456 static inline int security_inode_listxattr (struct dentry *dentry)
2457 {
2458 	return 0;
2459 }
2460 
2461 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
2462 {
2463 	return cap_inode_removexattr(dentry, name);
2464 }
2465 
2466 static inline const char *security_inode_xattr_getsuffix (void)
2467 {
2468 	return NULL ;
2469 }
2470 
2471 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2472 {
2473 	return -EOPNOTSUPP;
2474 }
2475 
2476 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2477 {
2478 	return -EOPNOTSUPP;
2479 }
2480 
2481 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2482 {
2483 	return 0;
2484 }
2485 
2486 static inline int security_file_permission (struct file *file, int mask)
2487 {
2488 	return 0;
2489 }
2490 
2491 static inline int security_file_alloc (struct file *file)
2492 {
2493 	return 0;
2494 }
2495 
2496 static inline void security_file_free (struct file *file)
2497 { }
2498 
2499 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
2500 				       unsigned long arg)
2501 {
2502 	return 0;
2503 }
2504 
2505 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
2506 				      unsigned long prot,
2507 				      unsigned long flags,
2508 				      unsigned long addr,
2509 				      unsigned long addr_only)
2510 {
2511 	return 0;
2512 }
2513 
2514 static inline int security_file_mprotect (struct vm_area_struct *vma,
2515 					  unsigned long reqprot,
2516 					  unsigned long prot)
2517 {
2518 	return 0;
2519 }
2520 
2521 static inline int security_file_lock (struct file *file, unsigned int cmd)
2522 {
2523 	return 0;
2524 }
2525 
2526 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
2527 				       unsigned long arg)
2528 {
2529 	return 0;
2530 }
2531 
2532 static inline int security_file_set_fowner (struct file *file)
2533 {
2534 	return 0;
2535 }
2536 
2537 static inline int security_file_send_sigiotask (struct task_struct *tsk,
2538 						struct fown_struct *fown,
2539 						int sig)
2540 {
2541 	return 0;
2542 }
2543 
2544 static inline int security_file_receive (struct file *file)
2545 {
2546 	return 0;
2547 }
2548 
2549 static inline int security_task_create (unsigned long clone_flags)
2550 {
2551 	return 0;
2552 }
2553 
2554 static inline int security_task_alloc (struct task_struct *p)
2555 {
2556 	return 0;
2557 }
2558 
2559 static inline void security_task_free (struct task_struct *p)
2560 { }
2561 
2562 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
2563 					int flags)
2564 {
2565 	return 0;
2566 }
2567 
2568 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
2569 					     uid_t old_suid, int flags)
2570 {
2571 	return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags);
2572 }
2573 
2574 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
2575 					int flags)
2576 {
2577 	return 0;
2578 }
2579 
2580 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
2581 {
2582 	return 0;
2583 }
2584 
2585 static inline int security_task_getpgid (struct task_struct *p)
2586 {
2587 	return 0;
2588 }
2589 
2590 static inline int security_task_getsid (struct task_struct *p)
2591 {
2592 	return 0;
2593 }
2594 
2595 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
2596 { }
2597 
2598 static inline int security_task_setgroups (struct group_info *group_info)
2599 {
2600 	return 0;
2601 }
2602 
2603 static inline int security_task_setnice (struct task_struct *p, int nice)
2604 {
2605 	return 0;
2606 }
2607 
2608 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
2609 {
2610 	return 0;
2611 }
2612 
2613 static inline int security_task_getioprio (struct task_struct *p)
2614 {
2615 	return 0;
2616 }
2617 
2618 static inline int security_task_setrlimit (unsigned int resource,
2619 					   struct rlimit *new_rlim)
2620 {
2621 	return 0;
2622 }
2623 
2624 static inline int security_task_setscheduler (struct task_struct *p,
2625 					      int policy,
2626 					      struct sched_param *lp)
2627 {
2628 	return 0;
2629 }
2630 
2631 static inline int security_task_getscheduler (struct task_struct *p)
2632 {
2633 	return 0;
2634 }
2635 
2636 static inline int security_task_movememory (struct task_struct *p)
2637 {
2638 	return 0;
2639 }
2640 
2641 static inline int security_task_kill (struct task_struct *p,
2642 				      struct siginfo *info, int sig,
2643 				      u32 secid)
2644 {
2645 	return 0;
2646 }
2647 
2648 static inline int security_task_wait (struct task_struct *p)
2649 {
2650 	return 0;
2651 }
2652 
2653 static inline int security_task_prctl (int option, unsigned long arg2,
2654 				       unsigned long arg3,
2655 				       unsigned long arg4,
2656 				       unsigned long arg5)
2657 {
2658 	return 0;
2659 }
2660 
2661 static inline void security_task_reparent_to_init (struct task_struct *p)
2662 {
2663 	cap_task_reparent_to_init (p);
2664 }
2665 
2666 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2667 { }
2668 
2669 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
2670 					   short flag)
2671 {
2672 	return 0;
2673 }
2674 
2675 static inline int security_msg_msg_alloc (struct msg_msg * msg)
2676 {
2677 	return 0;
2678 }
2679 
2680 static inline void security_msg_msg_free (struct msg_msg * msg)
2681 { }
2682 
2683 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2684 {
2685 	return 0;
2686 }
2687 
2688 static inline void security_msg_queue_free (struct msg_queue *msq)
2689 { }
2690 
2691 static inline int security_msg_queue_associate (struct msg_queue * msq,
2692 						int msqflg)
2693 {
2694 	return 0;
2695 }
2696 
2697 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2698 {
2699 	return 0;
2700 }
2701 
2702 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2703 					     struct msg_msg * msg, int msqflg)
2704 {
2705 	return 0;
2706 }
2707 
2708 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2709 					     struct msg_msg * msg,
2710 					     struct task_struct * target,
2711 					     long type, int mode)
2712 {
2713 	return 0;
2714 }
2715 
2716 static inline int security_shm_alloc (struct shmid_kernel *shp)
2717 {
2718 	return 0;
2719 }
2720 
2721 static inline void security_shm_free (struct shmid_kernel *shp)
2722 { }
2723 
2724 static inline int security_shm_associate (struct shmid_kernel * shp,
2725 					  int shmflg)
2726 {
2727 	return 0;
2728 }
2729 
2730 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2731 {
2732 	return 0;
2733 }
2734 
2735 static inline int security_shm_shmat (struct shmid_kernel * shp,
2736 				      char __user *shmaddr, int shmflg)
2737 {
2738 	return 0;
2739 }
2740 
2741 static inline int security_sem_alloc (struct sem_array *sma)
2742 {
2743 	return 0;
2744 }
2745 
2746 static inline void security_sem_free (struct sem_array *sma)
2747 { }
2748 
2749 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2750 {
2751 	return 0;
2752 }
2753 
2754 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2755 {
2756 	return 0;
2757 }
2758 
2759 static inline int security_sem_semop (struct sem_array * sma,
2760 				      struct sembuf * sops, unsigned nsops,
2761 				      int alter)
2762 {
2763 	return 0;
2764 }
2765 
2766 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2767 { }
2768 
2769 static inline int security_getprocattr(struct task_struct *p, char *name, char **value)
2770 {
2771 	return -EINVAL;
2772 }
2773 
2774 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2775 {
2776 	return -EINVAL;
2777 }
2778 
2779 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb)
2780 {
2781 	return cap_netlink_send (sk, skb);
2782 }
2783 
2784 static inline int security_netlink_recv (struct sk_buff *skb, int cap)
2785 {
2786 	return cap_netlink_recv (skb, cap);
2787 }
2788 
2789 static inline struct dentry *securityfs_create_dir(const char *name,
2790 					struct dentry *parent)
2791 {
2792 	return ERR_PTR(-ENODEV);
2793 }
2794 
2795 static inline struct dentry *securityfs_create_file(const char *name,
2796 						mode_t mode,
2797 						struct dentry *parent,
2798 						void *data,
2799 						struct file_operations *fops)
2800 {
2801 	return ERR_PTR(-ENODEV);
2802 }
2803 
2804 static inline void securityfs_remove(struct dentry *dentry)
2805 {
2806 }
2807 
2808 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2809 {
2810 	return -EOPNOTSUPP;
2811 }
2812 
2813 static inline void security_release_secctx(char *secdata, u32 seclen)
2814 {
2815 }
2816 #endif	/* CONFIG_SECURITY */
2817 
2818 #ifdef CONFIG_SECURITY_NETWORK
2819 static inline int security_unix_stream_connect(struct socket * sock,
2820 					       struct socket * other,
2821 					       struct sock * newsk)
2822 {
2823 	return security_ops->unix_stream_connect(sock, other, newsk);
2824 }
2825 
2826 
2827 static inline int security_unix_may_send(struct socket * sock,
2828 					 struct socket * other)
2829 {
2830 	return security_ops->unix_may_send(sock, other);
2831 }
2832 
2833 static inline int security_socket_create (int family, int type,
2834 					  int protocol, int kern)
2835 {
2836 	return security_ops->socket_create(family, type, protocol, kern);
2837 }
2838 
2839 static inline int security_socket_post_create(struct socket * sock,
2840 					      int family,
2841 					      int type,
2842 					      int protocol, int kern)
2843 {
2844 	return security_ops->socket_post_create(sock, family, type,
2845 						protocol, kern);
2846 }
2847 
2848 static inline int security_socket_bind(struct socket * sock,
2849 				       struct sockaddr * address,
2850 				       int addrlen)
2851 {
2852 	return security_ops->socket_bind(sock, address, addrlen);
2853 }
2854 
2855 static inline int security_socket_connect(struct socket * sock,
2856 					  struct sockaddr * address,
2857 					  int addrlen)
2858 {
2859 	return security_ops->socket_connect(sock, address, addrlen);
2860 }
2861 
2862 static inline int security_socket_listen(struct socket * sock, int backlog)
2863 {
2864 	return security_ops->socket_listen(sock, backlog);
2865 }
2866 
2867 static inline int security_socket_accept(struct socket * sock,
2868 					 struct socket * newsock)
2869 {
2870 	return security_ops->socket_accept(sock, newsock);
2871 }
2872 
2873 static inline void security_socket_post_accept(struct socket * sock,
2874 					       struct socket * newsock)
2875 {
2876 	security_ops->socket_post_accept(sock, newsock);
2877 }
2878 
2879 static inline int security_socket_sendmsg(struct socket * sock,
2880 					  struct msghdr * msg, int size)
2881 {
2882 	return security_ops->socket_sendmsg(sock, msg, size);
2883 }
2884 
2885 static inline int security_socket_recvmsg(struct socket * sock,
2886 					  struct msghdr * msg, int size,
2887 					  int flags)
2888 {
2889 	return security_ops->socket_recvmsg(sock, msg, size, flags);
2890 }
2891 
2892 static inline int security_socket_getsockname(struct socket * sock)
2893 {
2894 	return security_ops->socket_getsockname(sock);
2895 }
2896 
2897 static inline int security_socket_getpeername(struct socket * sock)
2898 {
2899 	return security_ops->socket_getpeername(sock);
2900 }
2901 
2902 static inline int security_socket_getsockopt(struct socket * sock,
2903 					     int level, int optname)
2904 {
2905 	return security_ops->socket_getsockopt(sock, level, optname);
2906 }
2907 
2908 static inline int security_socket_setsockopt(struct socket * sock,
2909 					     int level, int optname)
2910 {
2911 	return security_ops->socket_setsockopt(sock, level, optname);
2912 }
2913 
2914 static inline int security_socket_shutdown(struct socket * sock, int how)
2915 {
2916 	return security_ops->socket_shutdown(sock, how);
2917 }
2918 
2919 static inline int security_sock_rcv_skb (struct sock * sk,
2920 					 struct sk_buff * skb)
2921 {
2922 	return security_ops->socket_sock_rcv_skb (sk, skb);
2923 }
2924 
2925 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2926 						    int __user *optlen, unsigned len)
2927 {
2928 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
2929 }
2930 
2931 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2932 {
2933 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
2934 }
2935 
2936 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2937 {
2938 	return security_ops->sk_alloc_security(sk, family, priority);
2939 }
2940 
2941 static inline void security_sk_free(struct sock *sk)
2942 {
2943 	return security_ops->sk_free_security(sk);
2944 }
2945 
2946 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
2947 {
2948 	return security_ops->sk_clone_security(sk, newsk);
2949 }
2950 
2951 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2952 {
2953 	security_ops->sk_getsecid(sk, &fl->secid);
2954 }
2955 
2956 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2957 {
2958 	security_ops->req_classify_flow(req, fl);
2959 }
2960 
2961 static inline void security_sock_graft(struct sock* sk, struct socket *parent)
2962 {
2963 	security_ops->sock_graft(sk, parent);
2964 }
2965 
2966 static inline int security_inet_conn_request(struct sock *sk,
2967 			struct sk_buff *skb, struct request_sock *req)
2968 {
2969 	return security_ops->inet_conn_request(sk, skb, req);
2970 }
2971 
2972 static inline void security_inet_csk_clone(struct sock *newsk,
2973 			const struct request_sock *req)
2974 {
2975 	security_ops->inet_csk_clone(newsk, req);
2976 }
2977 
2978 static inline void security_inet_conn_established(struct sock *sk,
2979 			struct sk_buff *skb)
2980 {
2981 	security_ops->inet_conn_established(sk, skb);
2982 }
2983 #else	/* CONFIG_SECURITY_NETWORK */
2984 static inline int security_unix_stream_connect(struct socket * sock,
2985 					       struct socket * other,
2986 					       struct sock * newsk)
2987 {
2988 	return 0;
2989 }
2990 
2991 static inline int security_unix_may_send(struct socket * sock,
2992 					 struct socket * other)
2993 {
2994 	return 0;
2995 }
2996 
2997 static inline int security_socket_create (int family, int type,
2998 					  int protocol, int kern)
2999 {
3000 	return 0;
3001 }
3002 
3003 static inline int security_socket_post_create(struct socket * sock,
3004 					      int family,
3005 					      int type,
3006 					      int protocol, int kern)
3007 {
3008 	return 0;
3009 }
3010 
3011 static inline int security_socket_bind(struct socket * sock,
3012 				       struct sockaddr * address,
3013 				       int addrlen)
3014 {
3015 	return 0;
3016 }
3017 
3018 static inline int security_socket_connect(struct socket * sock,
3019 					  struct sockaddr * address,
3020 					  int addrlen)
3021 {
3022 	return 0;
3023 }
3024 
3025 static inline int security_socket_listen(struct socket * sock, int backlog)
3026 {
3027 	return 0;
3028 }
3029 
3030 static inline int security_socket_accept(struct socket * sock,
3031 					 struct socket * newsock)
3032 {
3033 	return 0;
3034 }
3035 
3036 static inline void security_socket_post_accept(struct socket * sock,
3037 					       struct socket * newsock)
3038 {
3039 }
3040 
3041 static inline int security_socket_sendmsg(struct socket * sock,
3042 					  struct msghdr * msg, int size)
3043 {
3044 	return 0;
3045 }
3046 
3047 static inline int security_socket_recvmsg(struct socket * sock,
3048 					  struct msghdr * msg, int size,
3049 					  int flags)
3050 {
3051 	return 0;
3052 }
3053 
3054 static inline int security_socket_getsockname(struct socket * sock)
3055 {
3056 	return 0;
3057 }
3058 
3059 static inline int security_socket_getpeername(struct socket * sock)
3060 {
3061 	return 0;
3062 }
3063 
3064 static inline int security_socket_getsockopt(struct socket * sock,
3065 					     int level, int optname)
3066 {
3067 	return 0;
3068 }
3069 
3070 static inline int security_socket_setsockopt(struct socket * sock,
3071 					     int level, int optname)
3072 {
3073 	return 0;
3074 }
3075 
3076 static inline int security_socket_shutdown(struct socket * sock, int how)
3077 {
3078 	return 0;
3079 }
3080 static inline int security_sock_rcv_skb (struct sock * sk,
3081 					 struct sk_buff * skb)
3082 {
3083 	return 0;
3084 }
3085 
3086 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3087 						    int __user *optlen, unsigned len)
3088 {
3089 	return -ENOPROTOOPT;
3090 }
3091 
3092 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3093 {
3094 	return -ENOPROTOOPT;
3095 }
3096 
3097 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
3098 {
3099 	return 0;
3100 }
3101 
3102 static inline void security_sk_free(struct sock *sk)
3103 {
3104 }
3105 
3106 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
3107 {
3108 }
3109 
3110 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
3111 {
3112 }
3113 
3114 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
3115 {
3116 }
3117 
3118 static inline void security_sock_graft(struct sock* sk, struct socket *parent)
3119 {
3120 }
3121 
3122 static inline int security_inet_conn_request(struct sock *sk,
3123 			struct sk_buff *skb, struct request_sock *req)
3124 {
3125 	return 0;
3126 }
3127 
3128 static inline void security_inet_csk_clone(struct sock *newsk,
3129 			const struct request_sock *req)
3130 {
3131 }
3132 
3133 static inline void security_inet_conn_established(struct sock *sk,
3134 			struct sk_buff *skb)
3135 {
3136 }
3137 #endif	/* CONFIG_SECURITY_NETWORK */
3138 
3139 #ifdef CONFIG_SECURITY_NETWORK_XFRM
3140 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3141 {
3142 	return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
3143 }
3144 
3145 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3146 {
3147 	return security_ops->xfrm_policy_clone_security(old, new);
3148 }
3149 
3150 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3151 {
3152 	security_ops->xfrm_policy_free_security(xp);
3153 }
3154 
3155 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3156 {
3157 	return security_ops->xfrm_policy_delete_security(xp);
3158 }
3159 
3160 static inline int security_xfrm_state_alloc(struct xfrm_state *x,
3161 			struct xfrm_user_sec_ctx *sec_ctx)
3162 {
3163 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
3164 }
3165 
3166 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
3167 				struct xfrm_sec_ctx *polsec, u32 secid)
3168 {
3169 	if (!polsec)
3170 		return 0;
3171 	/*
3172 	 * We want the context to be taken from secid which is usually
3173 	 * from the sock.
3174 	 */
3175 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
3176 }
3177 
3178 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3179 {
3180 	return security_ops->xfrm_state_delete_security(x);
3181 }
3182 
3183 static inline void security_xfrm_state_free(struct xfrm_state *x)
3184 {
3185 	security_ops->xfrm_state_free_security(x);
3186 }
3187 
3188 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
3189 {
3190 	return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
3191 }
3192 
3193 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
3194 			struct xfrm_policy *xp, struct flowi *fl)
3195 {
3196 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
3197 }
3198 
3199 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
3200 {
3201 	return security_ops->xfrm_decode_session(skb, secid, 1);
3202 }
3203 
3204 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
3205 {
3206 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
3207 
3208 	BUG_ON(rc);
3209 }
3210 #else	/* CONFIG_SECURITY_NETWORK_XFRM */
3211 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3212 {
3213 	return 0;
3214 }
3215 
3216 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3217 {
3218 	return 0;
3219 }
3220 
3221 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3222 {
3223 }
3224 
3225 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3226 {
3227 	return 0;
3228 }
3229 
3230 static inline int security_xfrm_state_alloc(struct xfrm_state *x,
3231 					struct xfrm_user_sec_ctx *sec_ctx)
3232 {
3233 	return 0;
3234 }
3235 
3236 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
3237 					struct xfrm_sec_ctx *polsec, u32 secid)
3238 {
3239 	return 0;
3240 }
3241 
3242 static inline void security_xfrm_state_free(struct xfrm_state *x)
3243 {
3244 }
3245 
3246 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3247 {
3248 	return 0;
3249 }
3250 
3251 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
3252 {
3253 	return 0;
3254 }
3255 
3256 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
3257 			struct xfrm_policy *xp, struct flowi *fl)
3258 {
3259 	return 1;
3260 }
3261 
3262 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
3263 {
3264 	return 0;
3265 }
3266 
3267 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
3268 {
3269 }
3270 
3271 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
3272 
3273 #ifdef CONFIG_KEYS
3274 #ifdef CONFIG_SECURITY
3275 static inline int security_key_alloc(struct key *key,
3276 				     struct task_struct *tsk,
3277 				     unsigned long flags)
3278 {
3279 	return security_ops->key_alloc(key, tsk, flags);
3280 }
3281 
3282 static inline void security_key_free(struct key *key)
3283 {
3284 	security_ops->key_free(key);
3285 }
3286 
3287 static inline int security_key_permission(key_ref_t key_ref,
3288 					  struct task_struct *context,
3289 					  key_perm_t perm)
3290 {
3291 	return security_ops->key_permission(key_ref, context, perm);
3292 }
3293 
3294 #else
3295 
3296 static inline int security_key_alloc(struct key *key,
3297 				     struct task_struct *tsk,
3298 				     unsigned long flags)
3299 {
3300 	return 0;
3301 }
3302 
3303 static inline void security_key_free(struct key *key)
3304 {
3305 }
3306 
3307 static inline int security_key_permission(key_ref_t key_ref,
3308 					  struct task_struct *context,
3309 					  key_perm_t perm)
3310 {
3311 	return 0;
3312 }
3313 
3314 #endif
3315 #endif /* CONFIG_KEYS */
3316 
3317 #endif /* ! __LINUX_SECURITY_H */
3318 
3319