1 /* 2 * Linux Security plug 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <[email protected]> 5 * Copyright (C) 2001 Greg Kroah-Hartman <[email protected]> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]> 7 * Copyright (C) 2001 James Morris <[email protected]> 8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * Due to this file being licensed under the GPL there is controversy over 16 * whether this permits you to write a module that #includes this file 17 * without placing your module under the GPL. Please consult a lawyer for 18 * advice before doing this. 19 * 20 */ 21 22 #ifndef __LINUX_SECURITY_H 23 #define __LINUX_SECURITY_H 24 25 #include <linux/fs.h> 26 #include <linux/binfmts.h> 27 #include <linux/signal.h> 28 #include <linux/resource.h> 29 #include <linux/sem.h> 30 #include <linux/shm.h> 31 #include <linux/msg.h> 32 #include <linux/sched.h> 33 #include <linux/key.h> 34 35 struct ctl_table; 36 37 /* 38 * These functions are in security/capability.c and are used 39 * as the default capabilities functions 40 */ 41 extern int cap_capable (struct task_struct *tsk, int cap); 42 extern int cap_settime (struct timespec *ts, struct timezone *tz); 43 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child); 44 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 45 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 46 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 47 extern int cap_bprm_set_security (struct linux_binprm *bprm); 48 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe); 49 extern int cap_bprm_secureexec(struct linux_binprm *bprm); 50 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags); 51 extern int cap_inode_removexattr(struct dentry *dentry, char *name); 52 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags); 53 extern void cap_task_reparent_to_init (struct task_struct *p); 54 extern int cap_syslog (int type); 55 extern int cap_vm_enough_memory (long pages); 56 57 struct msghdr; 58 struct sk_buff; 59 struct sock; 60 struct sockaddr; 61 struct socket; 62 struct flowi; 63 struct dst_entry; 64 struct xfrm_selector; 65 struct xfrm_policy; 66 struct xfrm_state; 67 struct xfrm_user_sec_ctx; 68 69 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); 70 extern int cap_netlink_recv(struct sk_buff *skb); 71 72 /* 73 * Values used in the task_security_ops calls 74 */ 75 /* setuid or setgid, id0 == uid or gid */ 76 #define LSM_SETID_ID 1 77 78 /* setreuid or setregid, id0 == real, id1 == eff */ 79 #define LSM_SETID_RE 2 80 81 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ 82 #define LSM_SETID_RES 4 83 84 /* setfsuid or setfsgid, id0 == fsuid or fsgid */ 85 #define LSM_SETID_FS 8 86 87 /* forward declares to avoid warnings */ 88 struct nfsctl_arg; 89 struct sched_param; 90 struct swap_info_struct; 91 92 /* bprm_apply_creds unsafe reasons */ 93 #define LSM_UNSAFE_SHARE 1 94 #define LSM_UNSAFE_PTRACE 2 95 #define LSM_UNSAFE_PTRACE_CAP 4 96 97 #ifdef CONFIG_SECURITY 98 99 /** 100 * struct security_operations - main security structure 101 * 102 * Security hooks for program execution operations. 103 * 104 * @bprm_alloc_security: 105 * Allocate and attach a security structure to the @bprm->security field. 106 * The security field is initialized to NULL when the bprm structure is 107 * allocated. 108 * @bprm contains the linux_binprm structure to be modified. 109 * Return 0 if operation was successful. 110 * @bprm_free_security: 111 * @bprm contains the linux_binprm structure to be modified. 112 * Deallocate and clear the @bprm->security field. 113 * @bprm_apply_creds: 114 * Compute and set the security attributes of a process being transformed 115 * by an execve operation based on the old attributes (current->security) 116 * and the information saved in @bprm->security by the set_security hook. 117 * Since this hook function (and its caller) are void, this hook can not 118 * return an error. However, it can leave the security attributes of the 119 * process unchanged if an access failure occurs at this point. 120 * bprm_apply_creds is called under task_lock. @unsafe indicates various 121 * reasons why it may be unsafe to change security state. 122 * @bprm contains the linux_binprm structure. 123 * @bprm_post_apply_creds: 124 * Runs after bprm_apply_creds with the task_lock dropped, so that 125 * functions which cannot be called safely under the task_lock can 126 * be used. This hook is a good place to perform state changes on 127 * the process such as closing open file descriptors to which access 128 * is no longer granted if the attributes were changed. 129 * Note that a security module might need to save state between 130 * bprm_apply_creds and bprm_post_apply_creds to store the decision 131 * on whether the process may proceed. 132 * @bprm contains the linux_binprm structure. 133 * @bprm_set_security: 134 * Save security information in the bprm->security field, typically based 135 * on information about the bprm->file, for later use by the apply_creds 136 * hook. This hook may also optionally check permissions (e.g. for 137 * transitions between security domains). 138 * This hook may be called multiple times during a single execve, e.g. for 139 * interpreters. The hook can tell whether it has already been called by 140 * checking to see if @bprm->security is non-NULL. If so, then the hook 141 * may decide either to retain the security information saved earlier or 142 * to replace it. 143 * @bprm contains the linux_binprm structure. 144 * Return 0 if the hook is successful and permission is granted. 145 * @bprm_check_security: 146 * This hook mediates the point when a search for a binary handler will 147 * begin. It allows a check the @bprm->security value which is set in 148 * the preceding set_security call. The primary difference from 149 * set_security is that the argv list and envp list are reliably 150 * available in @bprm. This hook may be called multiple times 151 * during a single execve; and in each pass set_security is called 152 * first. 153 * @bprm contains the linux_binprm structure. 154 * Return 0 if the hook is successful and permission is granted. 155 * @bprm_secureexec: 156 * Return a boolean value (0 or 1) indicating whether a "secure exec" 157 * is required. The flag is passed in the auxiliary table 158 * on the initial stack to the ELF interpreter to indicate whether libc 159 * should enable secure mode. 160 * @bprm contains the linux_binprm structure. 161 * 162 * Security hooks for filesystem operations. 163 * 164 * @sb_alloc_security: 165 * Allocate and attach a security structure to the sb->s_security field. 166 * The s_security field is initialized to NULL when the structure is 167 * allocated. 168 * @sb contains the super_block structure to be modified. 169 * Return 0 if operation was successful. 170 * @sb_free_security: 171 * Deallocate and clear the sb->s_security field. 172 * @sb contains the super_block structure to be modified. 173 * @sb_statfs: 174 * Check permission before obtaining filesystem statistics for the @sb 175 * filesystem. 176 * @sb contains the super_block structure for the filesystem. 177 * Return 0 if permission is granted. 178 * @sb_mount: 179 * Check permission before an object specified by @dev_name is mounted on 180 * the mount point named by @nd. For an ordinary mount, @dev_name 181 * identifies a device if the file system type requires a device. For a 182 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a 183 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the 184 * pathname of the object being mounted. 185 * @dev_name contains the name for object being mounted. 186 * @nd contains the nameidata structure for mount point object. 187 * @type contains the filesystem type. 188 * @flags contains the mount flags. 189 * @data contains the filesystem-specific data. 190 * Return 0 if permission is granted. 191 * @sb_copy_data: 192 * Allow mount option data to be copied prior to parsing by the filesystem, 193 * so that the security module can extract security-specific mount 194 * options cleanly (a filesystem may modify the data e.g. with strsep()). 195 * This also allows the original mount data to be stripped of security- 196 * specific options to avoid having to make filesystems aware of them. 197 * @type the type of filesystem being mounted. 198 * @orig the original mount data copied from userspace. 199 * @copy copied data which will be passed to the security module. 200 * Returns 0 if the copy was successful. 201 * @sb_check_sb: 202 * Check permission before the device with superblock @mnt->sb is mounted 203 * on the mount point named by @nd. 204 * @mnt contains the vfsmount for device being mounted. 205 * @nd contains the nameidata object for the mount point. 206 * Return 0 if permission is granted. 207 * @sb_umount: 208 * Check permission before the @mnt file system is unmounted. 209 * @mnt contains the mounted file system. 210 * @flags contains the unmount flags, e.g. MNT_FORCE. 211 * Return 0 if permission is granted. 212 * @sb_umount_close: 213 * Close any files in the @mnt mounted filesystem that are held open by 214 * the security module. This hook is called during an umount operation 215 * prior to checking whether the filesystem is still busy. 216 * @mnt contains the mounted filesystem. 217 * @sb_umount_busy: 218 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening 219 * any files that were closed by umount_close. This hook is called during 220 * an umount operation if the umount fails after a call to the 221 * umount_close hook. 222 * @mnt contains the mounted filesystem. 223 * @sb_post_remount: 224 * Update the security module's state when a filesystem is remounted. 225 * This hook is only called if the remount was successful. 226 * @mnt contains the mounted file system. 227 * @flags contains the new filesystem flags. 228 * @data contains the filesystem-specific data. 229 * @sb_post_mountroot: 230 * Update the security module's state when the root filesystem is mounted. 231 * This hook is only called if the mount was successful. 232 * @sb_post_addmount: 233 * Update the security module's state when a filesystem is mounted. 234 * This hook is called any time a mount is successfully grafetd to 235 * the tree. 236 * @mnt contains the mounted filesystem. 237 * @mountpoint_nd contains the nameidata structure for the mount point. 238 * @sb_pivotroot: 239 * Check permission before pivoting the root filesystem. 240 * @old_nd contains the nameidata structure for the new location of the current root (put_old). 241 * @new_nd contains the nameidata structure for the new root (new_root). 242 * Return 0 if permission is granted. 243 * @sb_post_pivotroot: 244 * Update module state after a successful pivot. 245 * @old_nd contains the nameidata structure for the old root. 246 * @new_nd contains the nameidata structure for the new root. 247 * 248 * Security hooks for inode operations. 249 * 250 * @inode_alloc_security: 251 * Allocate and attach a security structure to @inode->i_security. The 252 * i_security field is initialized to NULL when the inode structure is 253 * allocated. 254 * @inode contains the inode structure. 255 * Return 0 if operation was successful. 256 * @inode_free_security: 257 * @inode contains the inode structure. 258 * Deallocate the inode security structure and set @inode->i_security to 259 * NULL. 260 * @inode_init_security: 261 * Obtain the security attribute name suffix and value to set on a newly 262 * created inode and set up the incore security field for the new inode. 263 * This hook is called by the fs code as part of the inode creation 264 * transaction and provides for atomic labeling of the inode, unlike 265 * the post_create/mkdir/... hooks called by the VFS. The hook function 266 * is expected to allocate the name and value via kmalloc, with the caller 267 * being responsible for calling kfree after using them. 268 * If the security module does not use security attributes or does 269 * not wish to put a security attribute on this particular inode, 270 * then it should return -EOPNOTSUPP to skip this processing. 271 * @inode contains the inode structure of the newly created inode. 272 * @dir contains the inode structure of the parent directory. 273 * @name will be set to the allocated name suffix (e.g. selinux). 274 * @value will be set to the allocated attribute value. 275 * @len will be set to the length of the value. 276 * Returns 0 if @name and @value have been successfully set, 277 * -EOPNOTSUPP if no security attribute is needed, or 278 * -ENOMEM on memory allocation failure. 279 * @inode_create: 280 * Check permission to create a regular file. 281 * @dir contains inode structure of the parent of the new file. 282 * @dentry contains the dentry structure for the file to be created. 283 * @mode contains the file mode of the file to be created. 284 * Return 0 if permission is granted. 285 * @inode_link: 286 * Check permission before creating a new hard link to a file. 287 * @old_dentry contains the dentry structure for an existing link to the file. 288 * @dir contains the inode structure of the parent directory of the new link. 289 * @new_dentry contains the dentry structure for the new link. 290 * Return 0 if permission is granted. 291 * @inode_unlink: 292 * Check the permission to remove a hard link to a file. 293 * @dir contains the inode structure of parent directory of the file. 294 * @dentry contains the dentry structure for file to be unlinked. 295 * Return 0 if permission is granted. 296 * @inode_symlink: 297 * Check the permission to create a symbolic link to a file. 298 * @dir contains the inode structure of parent directory of the symbolic link. 299 * @dentry contains the dentry structure of the symbolic link. 300 * @old_name contains the pathname of file. 301 * Return 0 if permission is granted. 302 * @inode_mkdir: 303 * Check permissions to create a new directory in the existing directory 304 * associated with inode strcture @dir. 305 * @dir containst the inode structure of parent of the directory to be created. 306 * @dentry contains the dentry structure of new directory. 307 * @mode contains the mode of new directory. 308 * Return 0 if permission is granted. 309 * @inode_rmdir: 310 * Check the permission to remove a directory. 311 * @dir contains the inode structure of parent of the directory to be removed. 312 * @dentry contains the dentry structure of directory to be removed. 313 * Return 0 if permission is granted. 314 * @inode_mknod: 315 * Check permissions when creating a special file (or a socket or a fifo 316 * file created via the mknod system call). Note that if mknod operation 317 * is being done for a regular file, then the create hook will be called 318 * and not this hook. 319 * @dir contains the inode structure of parent of the new file. 320 * @dentry contains the dentry structure of the new file. 321 * @mode contains the mode of the new file. 322 * @dev contains the the device number. 323 * Return 0 if permission is granted. 324 * @inode_rename: 325 * Check for permission to rename a file or directory. 326 * @old_dir contains the inode structure for parent of the old link. 327 * @old_dentry contains the dentry structure of the old link. 328 * @new_dir contains the inode structure for parent of the new link. 329 * @new_dentry contains the dentry structure of the new link. 330 * Return 0 if permission is granted. 331 * @inode_readlink: 332 * Check the permission to read the symbolic link. 333 * @dentry contains the dentry structure for the file link. 334 * Return 0 if permission is granted. 335 * @inode_follow_link: 336 * Check permission to follow a symbolic link when looking up a pathname. 337 * @dentry contains the dentry structure for the link. 338 * @nd contains the nameidata structure for the parent directory. 339 * Return 0 if permission is granted. 340 * @inode_permission: 341 * Check permission before accessing an inode. This hook is called by the 342 * existing Linux permission function, so a security module can use it to 343 * provide additional checking for existing Linux permission checks. 344 * Notice that this hook is called when a file is opened (as well as many 345 * other operations), whereas the file_security_ops permission hook is 346 * called when the actual read/write operations are performed. 347 * @inode contains the inode structure to check. 348 * @mask contains the permission mask. 349 * @nd contains the nameidata (may be NULL). 350 * Return 0 if permission is granted. 351 * @inode_setattr: 352 * Check permission before setting file attributes. Note that the kernel 353 * call to notify_change is performed from several locations, whenever 354 * file attributes change (such as when a file is truncated, chown/chmod 355 * operations, transferring disk quotas, etc). 356 * @dentry contains the dentry structure for the file. 357 * @attr is the iattr structure containing the new file attributes. 358 * Return 0 if permission is granted. 359 * @inode_getattr: 360 * Check permission before obtaining file attributes. 361 * @mnt is the vfsmount where the dentry was looked up 362 * @dentry contains the dentry structure for the file. 363 * Return 0 if permission is granted. 364 * @inode_delete: 365 * @inode contains the inode structure for deleted inode. 366 * This hook is called when a deleted inode is released (i.e. an inode 367 * with no hard links has its use count drop to zero). A security module 368 * can use this hook to release any persistent label associated with the 369 * inode. 370 * @inode_setxattr: 371 * Check permission before setting the extended attributes 372 * @value identified by @name for @dentry. 373 * Return 0 if permission is granted. 374 * @inode_post_setxattr: 375 * Update inode security field after successful setxattr operation. 376 * @value identified by @name for @dentry. 377 * @inode_getxattr: 378 * Check permission before obtaining the extended attributes 379 * identified by @name for @dentry. 380 * Return 0 if permission is granted. 381 * @inode_listxattr: 382 * Check permission before obtaining the list of extended attribute 383 * names for @dentry. 384 * Return 0 if permission is granted. 385 * @inode_removexattr: 386 * Check permission before removing the extended attribute 387 * identified by @name for @dentry. 388 * Return 0 if permission is granted. 389 * @inode_getsecurity: 390 * Copy the extended attribute representation of the security label 391 * associated with @name for @inode into @buffer. @buffer may be 392 * NULL to request the size of the buffer required. @size indicates 393 * the size of @buffer in bytes. Note that @name is the remainder 394 * of the attribute name after the security. prefix has been removed. 395 * @err is the return value from the preceding fs getxattr call, 396 * and can be used by the security module to determine whether it 397 * should try and canonicalize the attribute value. 398 * Return number of bytes used/required on success. 399 * @inode_setsecurity: 400 * Set the security label associated with @name for @inode from the 401 * extended attribute value @value. @size indicates the size of the 402 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. 403 * Note that @name is the remainder of the attribute name after the 404 * security. prefix has been removed. 405 * Return 0 on success. 406 * @inode_listsecurity: 407 * Copy the extended attribute names for the security labels 408 * associated with @inode into @buffer. The maximum size of @buffer 409 * is specified by @buffer_size. @buffer may be NULL to request 410 * the size of the buffer required. 411 * Returns number of bytes used/required on success. 412 * 413 * Security hooks for file operations 414 * 415 * @file_permission: 416 * Check file permissions before accessing an open file. This hook is 417 * called by various operations that read or write files. A security 418 * module can use this hook to perform additional checking on these 419 * operations, e.g. to revalidate permissions on use to support privilege 420 * bracketing or policy changes. Notice that this hook is used when the 421 * actual read/write operations are performed, whereas the 422 * inode_security_ops hook is called when a file is opened (as well as 423 * many other operations). 424 * Caveat: Although this hook can be used to revalidate permissions for 425 * various system call operations that read or write files, it does not 426 * address the revalidation of permissions for memory-mapped files. 427 * Security modules must handle this separately if they need such 428 * revalidation. 429 * @file contains the file structure being accessed. 430 * @mask contains the requested permissions. 431 * Return 0 if permission is granted. 432 * @file_alloc_security: 433 * Allocate and attach a security structure to the file->f_security field. 434 * The security field is initialized to NULL when the structure is first 435 * created. 436 * @file contains the file structure to secure. 437 * Return 0 if the hook is successful and permission is granted. 438 * @file_free_security: 439 * Deallocate and free any security structures stored in file->f_security. 440 * @file contains the file structure being modified. 441 * @file_ioctl: 442 * @file contains the file structure. 443 * @cmd contains the operation to perform. 444 * @arg contains the operational arguments. 445 * Check permission for an ioctl operation on @file. Note that @arg can 446 * sometimes represents a user space pointer; in other cases, it may be a 447 * simple integer value. When @arg represents a user space pointer, it 448 * should never be used by the security module. 449 * Return 0 if permission is granted. 450 * @file_mmap : 451 * Check permissions for a mmap operation. The @file may be NULL, e.g. 452 * if mapping anonymous memory. 453 * @file contains the file structure for file to map (may be NULL). 454 * @reqprot contains the protection requested by the application. 455 * @prot contains the protection that will be applied by the kernel. 456 * @flags contains the operational flags. 457 * Return 0 if permission is granted. 458 * @file_mprotect: 459 * Check permissions before changing memory access permissions. 460 * @vma contains the memory region to modify. 461 * @reqprot contains the protection requested by the application. 462 * @prot contains the protection that will be applied by the kernel. 463 * Return 0 if permission is granted. 464 * @file_lock: 465 * Check permission before performing file locking operations. 466 * Note: this hook mediates both flock and fcntl style locks. 467 * @file contains the file structure. 468 * @cmd contains the posix-translated lock operation to perform 469 * (e.g. F_RDLCK, F_WRLCK). 470 * Return 0 if permission is granted. 471 * @file_fcntl: 472 * Check permission before allowing the file operation specified by @cmd 473 * from being performed on the file @file. Note that @arg can sometimes 474 * represents a user space pointer; in other cases, it may be a simple 475 * integer value. When @arg represents a user space pointer, it should 476 * never be used by the security module. 477 * @file contains the file structure. 478 * @cmd contains the operation to be performed. 479 * @arg contains the operational arguments. 480 * Return 0 if permission is granted. 481 * @file_set_fowner: 482 * Save owner security information (typically from current->security) in 483 * file->f_security for later use by the send_sigiotask hook. 484 * @file contains the file structure to update. 485 * Return 0 on success. 486 * @file_send_sigiotask: 487 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 488 * process @tsk. Note that this hook is sometimes called from interrupt. 489 * Note that the fown_struct, @fown, is never outside the context of a 490 * struct file, so the file structure (and associated security information) 491 * can always be obtained: 492 * (struct file *)((long)fown - offsetof(struct file,f_owner)); 493 * @tsk contains the structure of task receiving signal. 494 * @fown contains the file owner information. 495 * @sig is the signal that will be sent. When 0, kernel sends SIGIO. 496 * Return 0 if permission is granted. 497 * @file_receive: 498 * This hook allows security modules to control the ability of a process 499 * to receive an open file descriptor via socket IPC. 500 * @file contains the file structure being received. 501 * Return 0 if permission is granted. 502 * 503 * Security hooks for task operations. 504 * 505 * @task_create: 506 * Check permission before creating a child process. See the clone(2) 507 * manual page for definitions of the @clone_flags. 508 * @clone_flags contains the flags indicating what should be shared. 509 * Return 0 if permission is granted. 510 * @task_alloc_security: 511 * @p contains the task_struct for child process. 512 * Allocate and attach a security structure to the p->security field. The 513 * security field is initialized to NULL when the task structure is 514 * allocated. 515 * Return 0 if operation was successful. 516 * @task_free_security: 517 * @p contains the task_struct for process. 518 * Deallocate and clear the p->security field. 519 * @task_setuid: 520 * Check permission before setting one or more of the user identity 521 * attributes of the current process. The @flags parameter indicates 522 * which of the set*uid system calls invoked this hook and how to 523 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 524 * definitions at the beginning of this file for the @flags values and 525 * their meanings. 526 * @id0 contains a uid. 527 * @id1 contains a uid. 528 * @id2 contains a uid. 529 * @flags contains one of the LSM_SETID_* values. 530 * Return 0 if permission is granted. 531 * @task_post_setuid: 532 * Update the module's state after setting one or more of the user 533 * identity attributes of the current process. The @flags parameter 534 * indicates which of the set*uid system calls invoked this hook. If 535 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other 536 * parameters are not used. 537 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS). 538 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS). 539 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS). 540 * @flags contains one of the LSM_SETID_* values. 541 * Return 0 on success. 542 * @task_setgid: 543 * Check permission before setting one or more of the group identity 544 * attributes of the current process. The @flags parameter indicates 545 * which of the set*gid system calls invoked this hook and how to 546 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 547 * definitions at the beginning of this file for the @flags values and 548 * their meanings. 549 * @id0 contains a gid. 550 * @id1 contains a gid. 551 * @id2 contains a gid. 552 * @flags contains one of the LSM_SETID_* values. 553 * Return 0 if permission is granted. 554 * @task_setpgid: 555 * Check permission before setting the process group identifier of the 556 * process @p to @pgid. 557 * @p contains the task_struct for process being modified. 558 * @pgid contains the new pgid. 559 * Return 0 if permission is granted. 560 * @task_getpgid: 561 * Check permission before getting the process group identifier of the 562 * process @p. 563 * @p contains the task_struct for the process. 564 * Return 0 if permission is granted. 565 * @task_getsid: 566 * Check permission before getting the session identifier of the process 567 * @p. 568 * @p contains the task_struct for the process. 569 * Return 0 if permission is granted. 570 * @task_setgroups: 571 * Check permission before setting the supplementary group set of the 572 * current process. 573 * @group_info contains the new group information. 574 * Return 0 if permission is granted. 575 * @task_setnice: 576 * Check permission before setting the nice value of @p to @nice. 577 * @p contains the task_struct of process. 578 * @nice contains the new nice value. 579 * Return 0 if permission is granted. 580 * @task_setrlimit: 581 * Check permission before setting the resource limits of the current 582 * process for @resource to @new_rlim. The old resource limit values can 583 * be examined by dereferencing (current->signal->rlim + resource). 584 * @resource contains the resource whose limit is being set. 585 * @new_rlim contains the new limits for @resource. 586 * Return 0 if permission is granted. 587 * @task_setscheduler: 588 * Check permission before setting scheduling policy and/or parameters of 589 * process @p based on @policy and @lp. 590 * @p contains the task_struct for process. 591 * @policy contains the scheduling policy. 592 * @lp contains the scheduling parameters. 593 * Return 0 if permission is granted. 594 * @task_getscheduler: 595 * Check permission before obtaining scheduling information for process 596 * @p. 597 * @p contains the task_struct for process. 598 * Return 0 if permission is granted. 599 * @task_kill: 600 * Check permission before sending signal @sig to @p. @info can be NULL, 601 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or 602 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming 603 * from the kernel and should typically be permitted. 604 * SIGIO signals are handled separately by the send_sigiotask hook in 605 * file_security_ops. 606 * @p contains the task_struct for process. 607 * @info contains the signal information. 608 * @sig contains the signal value. 609 * Return 0 if permission is granted. 610 * @task_wait: 611 * Check permission before allowing a process to reap a child process @p 612 * and collect its status information. 613 * @p contains the task_struct for process. 614 * Return 0 if permission is granted. 615 * @task_prctl: 616 * Check permission before performing a process control operation on the 617 * current process. 618 * @option contains the operation. 619 * @arg2 contains a argument. 620 * @arg3 contains a argument. 621 * @arg4 contains a argument. 622 * @arg5 contains a argument. 623 * Return 0 if permission is granted. 624 * @task_reparent_to_init: 625 * Set the security attributes in @p->security for a kernel thread that 626 * is being reparented to the init task. 627 * @p contains the task_struct for the kernel thread. 628 * @task_to_inode: 629 * Set the security attributes for an inode based on an associated task's 630 * security attributes, e.g. for /proc/pid inodes. 631 * @p contains the task_struct for the task. 632 * @inode contains the inode structure for the inode. 633 * 634 * Security hooks for Netlink messaging. 635 * 636 * @netlink_send: 637 * Save security information for a netlink message so that permission 638 * checking can be performed when the message is processed. The security 639 * information can be saved using the eff_cap field of the 640 * netlink_skb_parms structure. Also may be used to provide fine 641 * grained control over message transmission. 642 * @sk associated sock of task sending the message., 643 * @skb contains the sk_buff structure for the netlink message. 644 * Return 0 if the information was successfully saved and message 645 * is allowed to be transmitted. 646 * @netlink_recv: 647 * Check permission before processing the received netlink message in 648 * @skb. 649 * @skb contains the sk_buff structure for the netlink message. 650 * Return 0 if permission is granted. 651 * 652 * Security hooks for Unix domain networking. 653 * 654 * @unix_stream_connect: 655 * Check permissions before establishing a Unix domain stream connection 656 * between @sock and @other. 657 * @sock contains the socket structure. 658 * @other contains the peer socket structure. 659 * Return 0 if permission is granted. 660 * @unix_may_send: 661 * Check permissions before connecting or sending datagrams from @sock to 662 * @other. 663 * @sock contains the socket structure. 664 * @sock contains the peer socket structure. 665 * Return 0 if permission is granted. 666 * 667 * The @unix_stream_connect and @unix_may_send hooks were necessary because 668 * Linux provides an alternative to the conventional file name space for Unix 669 * domain sockets. Whereas binding and connecting to sockets in the file name 670 * space is mediated by the typical file permissions (and caught by the mknod 671 * and permission hooks in inode_security_ops), binding and connecting to 672 * sockets in the abstract name space is completely unmediated. Sufficient 673 * control of Unix domain sockets in the abstract name space isn't possible 674 * using only the socket layer hooks, since we need to know the actual target 675 * socket, which is not looked up until we are inside the af_unix code. 676 * 677 * Security hooks for socket operations. 678 * 679 * @socket_create: 680 * Check permissions prior to creating a new socket. 681 * @family contains the requested protocol family. 682 * @type contains the requested communications type. 683 * @protocol contains the requested protocol. 684 * @kern set to 1 if a kernel socket. 685 * Return 0 if permission is granted. 686 * @socket_post_create: 687 * This hook allows a module to update or allocate a per-socket security 688 * structure. Note that the security field was not added directly to the 689 * socket structure, but rather, the socket security information is stored 690 * in the associated inode. Typically, the inode alloc_security hook will 691 * allocate and and attach security information to 692 * sock->inode->i_security. This hook may be used to update the 693 * sock->inode->i_security field with additional information that wasn't 694 * available when the inode was allocated. 695 * @sock contains the newly created socket structure. 696 * @family contains the requested protocol family. 697 * @type contains the requested communications type. 698 * @protocol contains the requested protocol. 699 * @kern set to 1 if a kernel socket. 700 * @socket_bind: 701 * Check permission before socket protocol layer bind operation is 702 * performed and the socket @sock is bound to the address specified in the 703 * @address parameter. 704 * @sock contains the socket structure. 705 * @address contains the address to bind to. 706 * @addrlen contains the length of address. 707 * Return 0 if permission is granted. 708 * @socket_connect: 709 * Check permission before socket protocol layer connect operation 710 * attempts to connect socket @sock to a remote address, @address. 711 * @sock contains the socket structure. 712 * @address contains the address of remote endpoint. 713 * @addrlen contains the length of address. 714 * Return 0 if permission is granted. 715 * @socket_listen: 716 * Check permission before socket protocol layer listen operation. 717 * @sock contains the socket structure. 718 * @backlog contains the maximum length for the pending connection queue. 719 * Return 0 if permission is granted. 720 * @socket_accept: 721 * Check permission before accepting a new connection. Note that the new 722 * socket, @newsock, has been created and some information copied to it, 723 * but the accept operation has not actually been performed. 724 * @sock contains the listening socket structure. 725 * @newsock contains the newly created server socket for connection. 726 * Return 0 if permission is granted. 727 * @socket_post_accept: 728 * This hook allows a security module to copy security 729 * information into the newly created socket's inode. 730 * @sock contains the listening socket structure. 731 * @newsock contains the newly created server socket for connection. 732 * @socket_sendmsg: 733 * Check permission before transmitting a message to another socket. 734 * @sock contains the socket structure. 735 * @msg contains the message to be transmitted. 736 * @size contains the size of message. 737 * Return 0 if permission is granted. 738 * @socket_recvmsg: 739 * Check permission before receiving a message from a socket. 740 * @sock contains the socket structure. 741 * @msg contains the message structure. 742 * @size contains the size of message structure. 743 * @flags contains the operational flags. 744 * Return 0 if permission is granted. 745 * @socket_getsockname: 746 * Check permission before the local address (name) of the socket object 747 * @sock is retrieved. 748 * @sock contains the socket structure. 749 * Return 0 if permission is granted. 750 * @socket_getpeername: 751 * Check permission before the remote address (name) of a socket object 752 * @sock is retrieved. 753 * @sock contains the socket structure. 754 * Return 0 if permission is granted. 755 * @socket_getsockopt: 756 * Check permissions before retrieving the options associated with socket 757 * @sock. 758 * @sock contains the socket structure. 759 * @level contains the protocol level to retrieve option from. 760 * @optname contains the name of option to retrieve. 761 * Return 0 if permission is granted. 762 * @socket_setsockopt: 763 * Check permissions before setting the options associated with socket 764 * @sock. 765 * @sock contains the socket structure. 766 * @level contains the protocol level to set options for. 767 * @optname contains the name of the option to set. 768 * Return 0 if permission is granted. 769 * @socket_shutdown: 770 * Checks permission before all or part of a connection on the socket 771 * @sock is shut down. 772 * @sock contains the socket structure. 773 * @how contains the flag indicating how future sends and receives are handled. 774 * Return 0 if permission is granted. 775 * @socket_sock_rcv_skb: 776 * Check permissions on incoming network packets. This hook is distinct 777 * from Netfilter's IP input hooks since it is the first time that the 778 * incoming sk_buff @skb has been associated with a particular socket, @sk. 779 * @sk contains the sock (not socket) associated with the incoming sk_buff. 780 * @skb contains the incoming network data. 781 * @socket_getpeersec: 782 * This hook allows the security module to provide peer socket security 783 * state to userspace via getsockopt SO_GETPEERSEC. 784 * @sock is the local socket. 785 * @optval userspace memory where the security state is to be copied. 786 * @optlen userspace int where the module should copy the actual length 787 * of the security state. 788 * @len as input is the maximum length to copy to userspace provided 789 * by the caller. 790 * Return 0 if all is well, otherwise, typical getsockopt return 791 * values. 792 * @sk_alloc_security: 793 * Allocate and attach a security structure to the sk->sk_security field, 794 * which is used to copy security attributes between local stream sockets. 795 * @sk_free_security: 796 * Deallocate security structure. 797 * @sk_getsid: 798 * Retrieve the LSM-specific sid for the sock to enable caching of network 799 * authorizations. 800 * 801 * Security hooks for XFRM operations. 802 * 803 * @xfrm_policy_alloc_security: 804 * @xp contains the xfrm_policy being added to Security Policy Database 805 * used by the XFRM system. 806 * @sec_ctx contains the security context information being provided by 807 * the user-level policy update program (e.g., setkey). 808 * Allocate a security structure to the xp->selector.security field. 809 * The security field is initialized to NULL when the xfrm_policy is 810 * allocated. 811 * Return 0 if operation was successful (memory to allocate, legal context) 812 * @xfrm_policy_clone_security: 813 * @old contains an existing xfrm_policy in the SPD. 814 * @new contains a new xfrm_policy being cloned from old. 815 * Allocate a security structure to the new->selector.security field 816 * that contains the information from the old->selector.security field. 817 * Return 0 if operation was successful (memory to allocate). 818 * @xfrm_policy_free_security: 819 * @xp contains the xfrm_policy 820 * Deallocate xp->selector.security. 821 * @xfrm_state_alloc_security: 822 * @x contains the xfrm_state being added to the Security Association 823 * Database by the XFRM system. 824 * @sec_ctx contains the security context information being provided by 825 * the user-level SA generation program (e.g., setkey or racoon). 826 * Allocate a security structure to the x->sel.security field. The 827 * security field is initialized to NULL when the xfrm_state is 828 * allocated. 829 * Return 0 if operation was successful (memory to allocate, legal context). 830 * @xfrm_state_free_security: 831 * @x contains the xfrm_state. 832 * Deallocate x>sel.security. 833 * @xfrm_policy_lookup: 834 * @xp contains the xfrm_policy for which the access control is being 835 * checked. 836 * @sk_sid contains the sock security label that is used to authorize 837 * access to the policy xp. 838 * @dir contains the direction of the flow (input or output). 839 * Check permission when a sock selects a xfrm_policy for processing 840 * XFRMs on a packet. The hook is called when selecting either a 841 * per-socket policy or a generic xfrm policy. 842 * Return 0 if permission is granted. 843 * 844 * Security hooks affecting all Key Management operations 845 * 846 * @key_alloc: 847 * Permit allocation of a key and assign security data. Note that key does 848 * not have a serial number assigned at this point. 849 * @key points to the key. 850 * Return 0 if permission is granted, -ve error otherwise. 851 * @key_free: 852 * Notification of destruction; free security data. 853 * @key points to the key. 854 * No return value. 855 * @key_permission: 856 * See whether a specific operational right is granted to a process on a 857 * key. 858 * @key_ref refers to the key (key pointer + possession attribute bit). 859 * @context points to the process to provide the context against which to 860 * evaluate the security data on the key. 861 * @perm describes the combination of permissions required of this key. 862 * Return 1 if permission granted, 0 if permission denied and -ve it the 863 * normal permissions model should be effected. 864 * 865 * Security hooks affecting all System V IPC operations. 866 * 867 * @ipc_permission: 868 * Check permissions for access to IPC 869 * @ipcp contains the kernel IPC permission structure 870 * @flag contains the desired (requested) permission set 871 * Return 0 if permission is granted. 872 * 873 * Security hooks for individual messages held in System V IPC message queues 874 * @msg_msg_alloc_security: 875 * Allocate and attach a security structure to the msg->security field. 876 * The security field is initialized to NULL when the structure is first 877 * created. 878 * @msg contains the message structure to be modified. 879 * Return 0 if operation was successful and permission is granted. 880 * @msg_msg_free_security: 881 * Deallocate the security structure for this message. 882 * @msg contains the message structure to be modified. 883 * 884 * Security hooks for System V IPC Message Queues 885 * 886 * @msg_queue_alloc_security: 887 * Allocate and attach a security structure to the 888 * msq->q_perm.security field. The security field is initialized to 889 * NULL when the structure is first created. 890 * @msq contains the message queue structure to be modified. 891 * Return 0 if operation was successful and permission is granted. 892 * @msg_queue_free_security: 893 * Deallocate security structure for this message queue. 894 * @msq contains the message queue structure to be modified. 895 * @msg_queue_associate: 896 * Check permission when a message queue is requested through the 897 * msgget system call. This hook is only called when returning the 898 * message queue identifier for an existing message queue, not when a 899 * new message queue is created. 900 * @msq contains the message queue to act upon. 901 * @msqflg contains the operation control flags. 902 * Return 0 if permission is granted. 903 * @msg_queue_msgctl: 904 * Check permission when a message control operation specified by @cmd 905 * is to be performed on the message queue @msq. 906 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. 907 * @msq contains the message queue to act upon. May be NULL. 908 * @cmd contains the operation to be performed. 909 * Return 0 if permission is granted. 910 * @msg_queue_msgsnd: 911 * Check permission before a message, @msg, is enqueued on the message 912 * queue, @msq. 913 * @msq contains the message queue to send message to. 914 * @msg contains the message to be enqueued. 915 * @msqflg contains operational flags. 916 * Return 0 if permission is granted. 917 * @msg_queue_msgrcv: 918 * Check permission before a message, @msg, is removed from the message 919 * queue, @msq. The @target task structure contains a pointer to the 920 * process that will be receiving the message (not equal to the current 921 * process when inline receives are being performed). 922 * @msq contains the message queue to retrieve message from. 923 * @msg contains the message destination. 924 * @target contains the task structure for recipient process. 925 * @type contains the type of message requested. 926 * @mode contains the operational flags. 927 * Return 0 if permission is granted. 928 * 929 * Security hooks for System V Shared Memory Segments 930 * 931 * @shm_alloc_security: 932 * Allocate and attach a security structure to the shp->shm_perm.security 933 * field. The security field is initialized to NULL when the structure is 934 * first created. 935 * @shp contains the shared memory structure to be modified. 936 * Return 0 if operation was successful and permission is granted. 937 * @shm_free_security: 938 * Deallocate the security struct for this memory segment. 939 * @shp contains the shared memory structure to be modified. 940 * @shm_associate: 941 * Check permission when a shared memory region is requested through the 942 * shmget system call. This hook is only called when returning the shared 943 * memory region identifier for an existing region, not when a new shared 944 * memory region is created. 945 * @shp contains the shared memory structure to be modified. 946 * @shmflg contains the operation control flags. 947 * Return 0 if permission is granted. 948 * @shm_shmctl: 949 * Check permission when a shared memory control operation specified by 950 * @cmd is to be performed on the shared memory region @shp. 951 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. 952 * @shp contains shared memory structure to be modified. 953 * @cmd contains the operation to be performed. 954 * Return 0 if permission is granted. 955 * @shm_shmat: 956 * Check permissions prior to allowing the shmat system call to attach the 957 * shared memory segment @shp to the data segment of the calling process. 958 * The attaching address is specified by @shmaddr. 959 * @shp contains the shared memory structure to be modified. 960 * @shmaddr contains the address to attach memory region to. 961 * @shmflg contains the operational flags. 962 * Return 0 if permission is granted. 963 * 964 * Security hooks for System V Semaphores 965 * 966 * @sem_alloc_security: 967 * Allocate and attach a security structure to the sma->sem_perm.security 968 * field. The security field is initialized to NULL when the structure is 969 * first created. 970 * @sma contains the semaphore structure 971 * Return 0 if operation was successful and permission is granted. 972 * @sem_free_security: 973 * deallocate security struct for this semaphore 974 * @sma contains the semaphore structure. 975 * @sem_associate: 976 * Check permission when a semaphore is requested through the semget 977 * system call. This hook is only called when returning the semaphore 978 * identifier for an existing semaphore, not when a new one must be 979 * created. 980 * @sma contains the semaphore structure. 981 * @semflg contains the operation control flags. 982 * Return 0 if permission is granted. 983 * @sem_semctl: 984 * Check permission when a semaphore operation specified by @cmd is to be 985 * performed on the semaphore @sma. The @sma may be NULL, e.g. for 986 * IPC_INFO or SEM_INFO. 987 * @sma contains the semaphore structure. May be NULL. 988 * @cmd contains the operation to be performed. 989 * Return 0 if permission is granted. 990 * @sem_semop 991 * Check permissions before performing operations on members of the 992 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set 993 * may be modified. 994 * @sma contains the semaphore structure. 995 * @sops contains the operations to perform. 996 * @nsops contains the number of operations to perform. 997 * @alter contains the flag indicating whether changes are to be made. 998 * Return 0 if permission is granted. 999 * 1000 * @ptrace: 1001 * Check permission before allowing the @parent process to trace the 1002 * @child process. 1003 * Security modules may also want to perform a process tracing check 1004 * during an execve in the set_security or apply_creds hooks of 1005 * binprm_security_ops if the process is being traced and its security 1006 * attributes would be changed by the execve. 1007 * @parent contains the task_struct structure for parent process. 1008 * @child contains the task_struct structure for child process. 1009 * Return 0 if permission is granted. 1010 * @capget: 1011 * Get the @effective, @inheritable, and @permitted capability sets for 1012 * the @target process. The hook may also perform permission checking to 1013 * determine if the current process is allowed to see the capability sets 1014 * of the @target process. 1015 * @target contains the task_struct structure for target process. 1016 * @effective contains the effective capability set. 1017 * @inheritable contains the inheritable capability set. 1018 * @permitted contains the permitted capability set. 1019 * Return 0 if the capability sets were successfully obtained. 1020 * @capset_check: 1021 * Check permission before setting the @effective, @inheritable, and 1022 * @permitted capability sets for the @target process. 1023 * Caveat: @target is also set to current if a set of processes is 1024 * specified (i.e. all processes other than current and init or a 1025 * particular process group). Hence, the capset_set hook may need to 1026 * revalidate permission to the actual target process. 1027 * @target contains the task_struct structure for target process. 1028 * @effective contains the effective capability set. 1029 * @inheritable contains the inheritable capability set. 1030 * @permitted contains the permitted capability set. 1031 * Return 0 if permission is granted. 1032 * @capset_set: 1033 * Set the @effective, @inheritable, and @permitted capability sets for 1034 * the @target process. Since capset_check cannot always check permission 1035 * to the real @target process, this hook may also perform permission 1036 * checking to determine if the current process is allowed to set the 1037 * capability sets of the @target process. However, this hook has no way 1038 * of returning an error due to the structure of the sys_capset code. 1039 * @target contains the task_struct structure for target process. 1040 * @effective contains the effective capability set. 1041 * @inheritable contains the inheritable capability set. 1042 * @permitted contains the permitted capability set. 1043 * @capable: 1044 * Check whether the @tsk process has the @cap capability. 1045 * @tsk contains the task_struct for the process. 1046 * @cap contains the capability <include/linux/capability.h>. 1047 * Return 0 if the capability is granted for @tsk. 1048 * @acct: 1049 * Check permission before enabling or disabling process accounting. If 1050 * accounting is being enabled, then @file refers to the open file used to 1051 * store accounting records. If accounting is being disabled, then @file 1052 * is NULL. 1053 * @file contains the file structure for the accounting file (may be NULL). 1054 * Return 0 if permission is granted. 1055 * @sysctl: 1056 * Check permission before accessing the @table sysctl variable in the 1057 * manner specified by @op. 1058 * @table contains the ctl_table structure for the sysctl variable. 1059 * @op contains the operation (001 = search, 002 = write, 004 = read). 1060 * Return 0 if permission is granted. 1061 * @syslog: 1062 * Check permission before accessing the kernel message ring or changing 1063 * logging to the console. 1064 * See the syslog(2) manual page for an explanation of the @type values. 1065 * @type contains the type of action. 1066 * Return 0 if permission is granted. 1067 * @settime: 1068 * Check permission to change the system time. 1069 * struct timespec and timezone are defined in include/linux/time.h 1070 * @ts contains new time 1071 * @tz contains new timezone 1072 * Return 0 if permission is granted. 1073 * @vm_enough_memory: 1074 * Check permissions for allocating a new virtual mapping. 1075 * @pages contains the number of pages. 1076 * Return 0 if permission is granted. 1077 * 1078 * @register_security: 1079 * allow module stacking. 1080 * @name contains the name of the security module being stacked. 1081 * @ops contains a pointer to the struct security_operations of the module to stack. 1082 * @unregister_security: 1083 * remove a stacked module. 1084 * @name contains the name of the security module being unstacked. 1085 * @ops contains a pointer to the struct security_operations of the module to unstack. 1086 * 1087 * This is the main security structure. 1088 */ 1089 struct security_operations { 1090 int (*ptrace) (struct task_struct * parent, struct task_struct * child); 1091 int (*capget) (struct task_struct * target, 1092 kernel_cap_t * effective, 1093 kernel_cap_t * inheritable, kernel_cap_t * permitted); 1094 int (*capset_check) (struct task_struct * target, 1095 kernel_cap_t * effective, 1096 kernel_cap_t * inheritable, 1097 kernel_cap_t * permitted); 1098 void (*capset_set) (struct task_struct * target, 1099 kernel_cap_t * effective, 1100 kernel_cap_t * inheritable, 1101 kernel_cap_t * permitted); 1102 int (*capable) (struct task_struct * tsk, int cap); 1103 int (*acct) (struct file * file); 1104 int (*sysctl) (struct ctl_table * table, int op); 1105 int (*quotactl) (int cmds, int type, int id, struct super_block * sb); 1106 int (*quota_on) (struct dentry * dentry); 1107 int (*syslog) (int type); 1108 int (*settime) (struct timespec *ts, struct timezone *tz); 1109 int (*vm_enough_memory) (long pages); 1110 1111 int (*bprm_alloc_security) (struct linux_binprm * bprm); 1112 void (*bprm_free_security) (struct linux_binprm * bprm); 1113 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe); 1114 void (*bprm_post_apply_creds) (struct linux_binprm * bprm); 1115 int (*bprm_set_security) (struct linux_binprm * bprm); 1116 int (*bprm_check_security) (struct linux_binprm * bprm); 1117 int (*bprm_secureexec) (struct linux_binprm * bprm); 1118 1119 int (*sb_alloc_security) (struct super_block * sb); 1120 void (*sb_free_security) (struct super_block * sb); 1121 int (*sb_copy_data)(struct file_system_type *type, 1122 void *orig, void *copy); 1123 int (*sb_kern_mount) (struct super_block *sb, void *data); 1124 int (*sb_statfs) (struct super_block * sb); 1125 int (*sb_mount) (char *dev_name, struct nameidata * nd, 1126 char *type, unsigned long flags, void *data); 1127 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd); 1128 int (*sb_umount) (struct vfsmount * mnt, int flags); 1129 void (*sb_umount_close) (struct vfsmount * mnt); 1130 void (*sb_umount_busy) (struct vfsmount * mnt); 1131 void (*sb_post_remount) (struct vfsmount * mnt, 1132 unsigned long flags, void *data); 1133 void (*sb_post_mountroot) (void); 1134 void (*sb_post_addmount) (struct vfsmount * mnt, 1135 struct nameidata * mountpoint_nd); 1136 int (*sb_pivotroot) (struct nameidata * old_nd, 1137 struct nameidata * new_nd); 1138 void (*sb_post_pivotroot) (struct nameidata * old_nd, 1139 struct nameidata * new_nd); 1140 1141 int (*inode_alloc_security) (struct inode *inode); 1142 void (*inode_free_security) (struct inode *inode); 1143 int (*inode_init_security) (struct inode *inode, struct inode *dir, 1144 char **name, void **value, size_t *len); 1145 int (*inode_create) (struct inode *dir, 1146 struct dentry *dentry, int mode); 1147 int (*inode_link) (struct dentry *old_dentry, 1148 struct inode *dir, struct dentry *new_dentry); 1149 int (*inode_unlink) (struct inode *dir, struct dentry *dentry); 1150 int (*inode_symlink) (struct inode *dir, 1151 struct dentry *dentry, const char *old_name); 1152 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); 1153 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); 1154 int (*inode_mknod) (struct inode *dir, struct dentry *dentry, 1155 int mode, dev_t dev); 1156 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, 1157 struct inode *new_dir, struct dentry *new_dentry); 1158 int (*inode_readlink) (struct dentry *dentry); 1159 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); 1160 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd); 1161 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); 1162 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); 1163 void (*inode_delete) (struct inode *inode); 1164 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value, 1165 size_t size, int flags); 1166 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value, 1167 size_t size, int flags); 1168 int (*inode_getxattr) (struct dentry *dentry, char *name); 1169 int (*inode_listxattr) (struct dentry *dentry); 1170 int (*inode_removexattr) (struct dentry *dentry, char *name); 1171 const char *(*inode_xattr_getsuffix) (void); 1172 int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err); 1173 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags); 1174 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size); 1175 1176 int (*file_permission) (struct file * file, int mask); 1177 int (*file_alloc_security) (struct file * file); 1178 void (*file_free_security) (struct file * file); 1179 int (*file_ioctl) (struct file * file, unsigned int cmd, 1180 unsigned long arg); 1181 int (*file_mmap) (struct file * file, 1182 unsigned long reqprot, 1183 unsigned long prot, unsigned long flags); 1184 int (*file_mprotect) (struct vm_area_struct * vma, 1185 unsigned long reqprot, 1186 unsigned long prot); 1187 int (*file_lock) (struct file * file, unsigned int cmd); 1188 int (*file_fcntl) (struct file * file, unsigned int cmd, 1189 unsigned long arg); 1190 int (*file_set_fowner) (struct file * file); 1191 int (*file_send_sigiotask) (struct task_struct * tsk, 1192 struct fown_struct * fown, int sig); 1193 int (*file_receive) (struct file * file); 1194 1195 int (*task_create) (unsigned long clone_flags); 1196 int (*task_alloc_security) (struct task_struct * p); 1197 void (*task_free_security) (struct task_struct * p); 1198 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags); 1199 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ , 1200 uid_t old_euid, uid_t old_suid, int flags); 1201 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags); 1202 int (*task_setpgid) (struct task_struct * p, pid_t pgid); 1203 int (*task_getpgid) (struct task_struct * p); 1204 int (*task_getsid) (struct task_struct * p); 1205 int (*task_setgroups) (struct group_info *group_info); 1206 int (*task_setnice) (struct task_struct * p, int nice); 1207 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim); 1208 int (*task_setscheduler) (struct task_struct * p, int policy, 1209 struct sched_param * lp); 1210 int (*task_getscheduler) (struct task_struct * p); 1211 int (*task_kill) (struct task_struct * p, 1212 struct siginfo * info, int sig); 1213 int (*task_wait) (struct task_struct * p); 1214 int (*task_prctl) (int option, unsigned long arg2, 1215 unsigned long arg3, unsigned long arg4, 1216 unsigned long arg5); 1217 void (*task_reparent_to_init) (struct task_struct * p); 1218 void (*task_to_inode)(struct task_struct *p, struct inode *inode); 1219 1220 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag); 1221 1222 int (*msg_msg_alloc_security) (struct msg_msg * msg); 1223 void (*msg_msg_free_security) (struct msg_msg * msg); 1224 1225 int (*msg_queue_alloc_security) (struct msg_queue * msq); 1226 void (*msg_queue_free_security) (struct msg_queue * msq); 1227 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg); 1228 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd); 1229 int (*msg_queue_msgsnd) (struct msg_queue * msq, 1230 struct msg_msg * msg, int msqflg); 1231 int (*msg_queue_msgrcv) (struct msg_queue * msq, 1232 struct msg_msg * msg, 1233 struct task_struct * target, 1234 long type, int mode); 1235 1236 int (*shm_alloc_security) (struct shmid_kernel * shp); 1237 void (*shm_free_security) (struct shmid_kernel * shp); 1238 int (*shm_associate) (struct shmid_kernel * shp, int shmflg); 1239 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd); 1240 int (*shm_shmat) (struct shmid_kernel * shp, 1241 char __user *shmaddr, int shmflg); 1242 1243 int (*sem_alloc_security) (struct sem_array * sma); 1244 void (*sem_free_security) (struct sem_array * sma); 1245 int (*sem_associate) (struct sem_array * sma, int semflg); 1246 int (*sem_semctl) (struct sem_array * sma, int cmd); 1247 int (*sem_semop) (struct sem_array * sma, 1248 struct sembuf * sops, unsigned nsops, int alter); 1249 1250 int (*netlink_send) (struct sock * sk, struct sk_buff * skb); 1251 int (*netlink_recv) (struct sk_buff * skb); 1252 1253 /* allow module stacking */ 1254 int (*register_security) (const char *name, 1255 struct security_operations *ops); 1256 int (*unregister_security) (const char *name, 1257 struct security_operations *ops); 1258 1259 void (*d_instantiate) (struct dentry *dentry, struct inode *inode); 1260 1261 int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1262 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1263 1264 #ifdef CONFIG_SECURITY_NETWORK 1265 int (*unix_stream_connect) (struct socket * sock, 1266 struct socket * other, struct sock * newsk); 1267 int (*unix_may_send) (struct socket * sock, struct socket * other); 1268 1269 int (*socket_create) (int family, int type, int protocol, int kern); 1270 void (*socket_post_create) (struct socket * sock, int family, 1271 int type, int protocol, int kern); 1272 int (*socket_bind) (struct socket * sock, 1273 struct sockaddr * address, int addrlen); 1274 int (*socket_connect) (struct socket * sock, 1275 struct sockaddr * address, int addrlen); 1276 int (*socket_listen) (struct socket * sock, int backlog); 1277 int (*socket_accept) (struct socket * sock, struct socket * newsock); 1278 void (*socket_post_accept) (struct socket * sock, 1279 struct socket * newsock); 1280 int (*socket_sendmsg) (struct socket * sock, 1281 struct msghdr * msg, int size); 1282 int (*socket_recvmsg) (struct socket * sock, 1283 struct msghdr * msg, int size, int flags); 1284 int (*socket_getsockname) (struct socket * sock); 1285 int (*socket_getpeername) (struct socket * sock); 1286 int (*socket_getsockopt) (struct socket * sock, int level, int optname); 1287 int (*socket_setsockopt) (struct socket * sock, int level, int optname); 1288 int (*socket_shutdown) (struct socket * sock, int how); 1289 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb); 1290 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); 1291 int (*socket_getpeersec_dgram) (struct sk_buff *skb, char **secdata, u32 *seclen); 1292 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); 1293 void (*sk_free_security) (struct sock *sk); 1294 unsigned int (*sk_getsid) (struct sock *sk, struct flowi *fl, u8 dir); 1295 #endif /* CONFIG_SECURITY_NETWORK */ 1296 1297 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1298 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx); 1299 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new); 1300 void (*xfrm_policy_free_security) (struct xfrm_policy *xp); 1301 int (*xfrm_state_alloc_security) (struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx); 1302 void (*xfrm_state_free_security) (struct xfrm_state *x); 1303 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 sk_sid, u8 dir); 1304 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1305 1306 /* key management security hooks */ 1307 #ifdef CONFIG_KEYS 1308 int (*key_alloc)(struct key *key); 1309 void (*key_free)(struct key *key); 1310 int (*key_permission)(key_ref_t key_ref, 1311 struct task_struct *context, 1312 key_perm_t perm); 1313 1314 #endif /* CONFIG_KEYS */ 1315 1316 }; 1317 1318 /* global variables */ 1319 extern struct security_operations *security_ops; 1320 1321 /* inline stuff */ 1322 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child) 1323 { 1324 return security_ops->ptrace (parent, child); 1325 } 1326 1327 static inline int security_capget (struct task_struct *target, 1328 kernel_cap_t *effective, 1329 kernel_cap_t *inheritable, 1330 kernel_cap_t *permitted) 1331 { 1332 return security_ops->capget (target, effective, inheritable, permitted); 1333 } 1334 1335 static inline int security_capset_check (struct task_struct *target, 1336 kernel_cap_t *effective, 1337 kernel_cap_t *inheritable, 1338 kernel_cap_t *permitted) 1339 { 1340 return security_ops->capset_check (target, effective, inheritable, permitted); 1341 } 1342 1343 static inline void security_capset_set (struct task_struct *target, 1344 kernel_cap_t *effective, 1345 kernel_cap_t *inheritable, 1346 kernel_cap_t *permitted) 1347 { 1348 security_ops->capset_set (target, effective, inheritable, permitted); 1349 } 1350 1351 static inline int security_capable(struct task_struct *tsk, int cap) 1352 { 1353 return security_ops->capable(tsk, cap); 1354 } 1355 1356 static inline int security_acct (struct file *file) 1357 { 1358 return security_ops->acct (file); 1359 } 1360 1361 static inline int security_sysctl(struct ctl_table *table, int op) 1362 { 1363 return security_ops->sysctl(table, op); 1364 } 1365 1366 static inline int security_quotactl (int cmds, int type, int id, 1367 struct super_block *sb) 1368 { 1369 return security_ops->quotactl (cmds, type, id, sb); 1370 } 1371 1372 static inline int security_quota_on (struct dentry * dentry) 1373 { 1374 return security_ops->quota_on (dentry); 1375 } 1376 1377 static inline int security_syslog(int type) 1378 { 1379 return security_ops->syslog(type); 1380 } 1381 1382 static inline int security_settime(struct timespec *ts, struct timezone *tz) 1383 { 1384 return security_ops->settime(ts, tz); 1385 } 1386 1387 1388 static inline int security_vm_enough_memory(long pages) 1389 { 1390 return security_ops->vm_enough_memory(pages); 1391 } 1392 1393 static inline int security_bprm_alloc (struct linux_binprm *bprm) 1394 { 1395 return security_ops->bprm_alloc_security (bprm); 1396 } 1397 static inline void security_bprm_free (struct linux_binprm *bprm) 1398 { 1399 security_ops->bprm_free_security (bprm); 1400 } 1401 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 1402 { 1403 security_ops->bprm_apply_creds (bprm, unsafe); 1404 } 1405 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 1406 { 1407 security_ops->bprm_post_apply_creds (bprm); 1408 } 1409 static inline int security_bprm_set (struct linux_binprm *bprm) 1410 { 1411 return security_ops->bprm_set_security (bprm); 1412 } 1413 1414 static inline int security_bprm_check (struct linux_binprm *bprm) 1415 { 1416 return security_ops->bprm_check_security (bprm); 1417 } 1418 1419 static inline int security_bprm_secureexec (struct linux_binprm *bprm) 1420 { 1421 return security_ops->bprm_secureexec (bprm); 1422 } 1423 1424 static inline int security_sb_alloc (struct super_block *sb) 1425 { 1426 return security_ops->sb_alloc_security (sb); 1427 } 1428 1429 static inline void security_sb_free (struct super_block *sb) 1430 { 1431 security_ops->sb_free_security (sb); 1432 } 1433 1434 static inline int security_sb_copy_data (struct file_system_type *type, 1435 void *orig, void *copy) 1436 { 1437 return security_ops->sb_copy_data (type, orig, copy); 1438 } 1439 1440 static inline int security_sb_kern_mount (struct super_block *sb, void *data) 1441 { 1442 return security_ops->sb_kern_mount (sb, data); 1443 } 1444 1445 static inline int security_sb_statfs (struct super_block *sb) 1446 { 1447 return security_ops->sb_statfs (sb); 1448 } 1449 1450 static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 1451 char *type, unsigned long flags, 1452 void *data) 1453 { 1454 return security_ops->sb_mount (dev_name, nd, type, flags, data); 1455 } 1456 1457 static inline int security_sb_check_sb (struct vfsmount *mnt, 1458 struct nameidata *nd) 1459 { 1460 return security_ops->sb_check_sb (mnt, nd); 1461 } 1462 1463 static inline int security_sb_umount (struct vfsmount *mnt, int flags) 1464 { 1465 return security_ops->sb_umount (mnt, flags); 1466 } 1467 1468 static inline void security_sb_umount_close (struct vfsmount *mnt) 1469 { 1470 security_ops->sb_umount_close (mnt); 1471 } 1472 1473 static inline void security_sb_umount_busy (struct vfsmount *mnt) 1474 { 1475 security_ops->sb_umount_busy (mnt); 1476 } 1477 1478 static inline void security_sb_post_remount (struct vfsmount *mnt, 1479 unsigned long flags, void *data) 1480 { 1481 security_ops->sb_post_remount (mnt, flags, data); 1482 } 1483 1484 static inline void security_sb_post_mountroot (void) 1485 { 1486 security_ops->sb_post_mountroot (); 1487 } 1488 1489 static inline void security_sb_post_addmount (struct vfsmount *mnt, 1490 struct nameidata *mountpoint_nd) 1491 { 1492 security_ops->sb_post_addmount (mnt, mountpoint_nd); 1493 } 1494 1495 static inline int security_sb_pivotroot (struct nameidata *old_nd, 1496 struct nameidata *new_nd) 1497 { 1498 return security_ops->sb_pivotroot (old_nd, new_nd); 1499 } 1500 1501 static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 1502 struct nameidata *new_nd) 1503 { 1504 security_ops->sb_post_pivotroot (old_nd, new_nd); 1505 } 1506 1507 static inline int security_inode_alloc (struct inode *inode) 1508 { 1509 return security_ops->inode_alloc_security (inode); 1510 } 1511 1512 static inline void security_inode_free (struct inode *inode) 1513 { 1514 security_ops->inode_free_security (inode); 1515 } 1516 1517 static inline int security_inode_init_security (struct inode *inode, 1518 struct inode *dir, 1519 char **name, 1520 void **value, 1521 size_t *len) 1522 { 1523 if (unlikely (IS_PRIVATE (inode))) 1524 return -EOPNOTSUPP; 1525 return security_ops->inode_init_security (inode, dir, name, value, len); 1526 } 1527 1528 static inline int security_inode_create (struct inode *dir, 1529 struct dentry *dentry, 1530 int mode) 1531 { 1532 if (unlikely (IS_PRIVATE (dir))) 1533 return 0; 1534 return security_ops->inode_create (dir, dentry, mode); 1535 } 1536 1537 static inline int security_inode_link (struct dentry *old_dentry, 1538 struct inode *dir, 1539 struct dentry *new_dentry) 1540 { 1541 if (unlikely (IS_PRIVATE (old_dentry->d_inode))) 1542 return 0; 1543 return security_ops->inode_link (old_dentry, dir, new_dentry); 1544 } 1545 1546 static inline int security_inode_unlink (struct inode *dir, 1547 struct dentry *dentry) 1548 { 1549 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1550 return 0; 1551 return security_ops->inode_unlink (dir, dentry); 1552 } 1553 1554 static inline int security_inode_symlink (struct inode *dir, 1555 struct dentry *dentry, 1556 const char *old_name) 1557 { 1558 if (unlikely (IS_PRIVATE (dir))) 1559 return 0; 1560 return security_ops->inode_symlink (dir, dentry, old_name); 1561 } 1562 1563 static inline int security_inode_mkdir (struct inode *dir, 1564 struct dentry *dentry, 1565 int mode) 1566 { 1567 if (unlikely (IS_PRIVATE (dir))) 1568 return 0; 1569 return security_ops->inode_mkdir (dir, dentry, mode); 1570 } 1571 1572 static inline int security_inode_rmdir (struct inode *dir, 1573 struct dentry *dentry) 1574 { 1575 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1576 return 0; 1577 return security_ops->inode_rmdir (dir, dentry); 1578 } 1579 1580 static inline int security_inode_mknod (struct inode *dir, 1581 struct dentry *dentry, 1582 int mode, dev_t dev) 1583 { 1584 if (unlikely (IS_PRIVATE (dir))) 1585 return 0; 1586 return security_ops->inode_mknod (dir, dentry, mode, dev); 1587 } 1588 1589 static inline int security_inode_rename (struct inode *old_dir, 1590 struct dentry *old_dentry, 1591 struct inode *new_dir, 1592 struct dentry *new_dentry) 1593 { 1594 if (unlikely (IS_PRIVATE (old_dentry->d_inode) || 1595 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode)))) 1596 return 0; 1597 return security_ops->inode_rename (old_dir, old_dentry, 1598 new_dir, new_dentry); 1599 } 1600 1601 static inline int security_inode_readlink (struct dentry *dentry) 1602 { 1603 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1604 return 0; 1605 return security_ops->inode_readlink (dentry); 1606 } 1607 1608 static inline int security_inode_follow_link (struct dentry *dentry, 1609 struct nameidata *nd) 1610 { 1611 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1612 return 0; 1613 return security_ops->inode_follow_link (dentry, nd); 1614 } 1615 1616 static inline int security_inode_permission (struct inode *inode, int mask, 1617 struct nameidata *nd) 1618 { 1619 if (unlikely (IS_PRIVATE (inode))) 1620 return 0; 1621 return security_ops->inode_permission (inode, mask, nd); 1622 } 1623 1624 static inline int security_inode_setattr (struct dentry *dentry, 1625 struct iattr *attr) 1626 { 1627 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1628 return 0; 1629 return security_ops->inode_setattr (dentry, attr); 1630 } 1631 1632 static inline int security_inode_getattr (struct vfsmount *mnt, 1633 struct dentry *dentry) 1634 { 1635 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1636 return 0; 1637 return security_ops->inode_getattr (mnt, dentry); 1638 } 1639 1640 static inline void security_inode_delete (struct inode *inode) 1641 { 1642 if (unlikely (IS_PRIVATE (inode))) 1643 return; 1644 security_ops->inode_delete (inode); 1645 } 1646 1647 static inline int security_inode_setxattr (struct dentry *dentry, char *name, 1648 void *value, size_t size, int flags) 1649 { 1650 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1651 return 0; 1652 return security_ops->inode_setxattr (dentry, name, value, size, flags); 1653 } 1654 1655 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 1656 void *value, size_t size, int flags) 1657 { 1658 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1659 return; 1660 security_ops->inode_post_setxattr (dentry, name, value, size, flags); 1661 } 1662 1663 static inline int security_inode_getxattr (struct dentry *dentry, char *name) 1664 { 1665 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1666 return 0; 1667 return security_ops->inode_getxattr (dentry, name); 1668 } 1669 1670 static inline int security_inode_listxattr (struct dentry *dentry) 1671 { 1672 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1673 return 0; 1674 return security_ops->inode_listxattr (dentry); 1675 } 1676 1677 static inline int security_inode_removexattr (struct dentry *dentry, char *name) 1678 { 1679 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1680 return 0; 1681 return security_ops->inode_removexattr (dentry, name); 1682 } 1683 1684 static inline const char *security_inode_xattr_getsuffix(void) 1685 { 1686 return security_ops->inode_xattr_getsuffix(); 1687 } 1688 1689 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 1690 { 1691 if (unlikely (IS_PRIVATE (inode))) 1692 return 0; 1693 return security_ops->inode_getsecurity(inode, name, buffer, size, err); 1694 } 1695 1696 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1697 { 1698 if (unlikely (IS_PRIVATE (inode))) 1699 return 0; 1700 return security_ops->inode_setsecurity(inode, name, value, size, flags); 1701 } 1702 1703 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1704 { 1705 if (unlikely (IS_PRIVATE (inode))) 1706 return 0; 1707 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 1708 } 1709 1710 static inline int security_file_permission (struct file *file, int mask) 1711 { 1712 return security_ops->file_permission (file, mask); 1713 } 1714 1715 static inline int security_file_alloc (struct file *file) 1716 { 1717 return security_ops->file_alloc_security (file); 1718 } 1719 1720 static inline void security_file_free (struct file *file) 1721 { 1722 security_ops->file_free_security (file); 1723 } 1724 1725 static inline int security_file_ioctl (struct file *file, unsigned int cmd, 1726 unsigned long arg) 1727 { 1728 return security_ops->file_ioctl (file, cmd, arg); 1729 } 1730 1731 static inline int security_file_mmap (struct file *file, unsigned long reqprot, 1732 unsigned long prot, 1733 unsigned long flags) 1734 { 1735 return security_ops->file_mmap (file, reqprot, prot, flags); 1736 } 1737 1738 static inline int security_file_mprotect (struct vm_area_struct *vma, 1739 unsigned long reqprot, 1740 unsigned long prot) 1741 { 1742 return security_ops->file_mprotect (vma, reqprot, prot); 1743 } 1744 1745 static inline int security_file_lock (struct file *file, unsigned int cmd) 1746 { 1747 return security_ops->file_lock (file, cmd); 1748 } 1749 1750 static inline int security_file_fcntl (struct file *file, unsigned int cmd, 1751 unsigned long arg) 1752 { 1753 return security_ops->file_fcntl (file, cmd, arg); 1754 } 1755 1756 static inline int security_file_set_fowner (struct file *file) 1757 { 1758 return security_ops->file_set_fowner (file); 1759 } 1760 1761 static inline int security_file_send_sigiotask (struct task_struct *tsk, 1762 struct fown_struct *fown, 1763 int sig) 1764 { 1765 return security_ops->file_send_sigiotask (tsk, fown, sig); 1766 } 1767 1768 static inline int security_file_receive (struct file *file) 1769 { 1770 return security_ops->file_receive (file); 1771 } 1772 1773 static inline int security_task_create (unsigned long clone_flags) 1774 { 1775 return security_ops->task_create (clone_flags); 1776 } 1777 1778 static inline int security_task_alloc (struct task_struct *p) 1779 { 1780 return security_ops->task_alloc_security (p); 1781 } 1782 1783 static inline void security_task_free (struct task_struct *p) 1784 { 1785 security_ops->task_free_security (p); 1786 } 1787 1788 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 1789 int flags) 1790 { 1791 return security_ops->task_setuid (id0, id1, id2, flags); 1792 } 1793 1794 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 1795 uid_t old_suid, int flags) 1796 { 1797 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags); 1798 } 1799 1800 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 1801 int flags) 1802 { 1803 return security_ops->task_setgid (id0, id1, id2, flags); 1804 } 1805 1806 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 1807 { 1808 return security_ops->task_setpgid (p, pgid); 1809 } 1810 1811 static inline int security_task_getpgid (struct task_struct *p) 1812 { 1813 return security_ops->task_getpgid (p); 1814 } 1815 1816 static inline int security_task_getsid (struct task_struct *p) 1817 { 1818 return security_ops->task_getsid (p); 1819 } 1820 1821 static inline int security_task_setgroups (struct group_info *group_info) 1822 { 1823 return security_ops->task_setgroups (group_info); 1824 } 1825 1826 static inline int security_task_setnice (struct task_struct *p, int nice) 1827 { 1828 return security_ops->task_setnice (p, nice); 1829 } 1830 1831 static inline int security_task_setrlimit (unsigned int resource, 1832 struct rlimit *new_rlim) 1833 { 1834 return security_ops->task_setrlimit (resource, new_rlim); 1835 } 1836 1837 static inline int security_task_setscheduler (struct task_struct *p, 1838 int policy, 1839 struct sched_param *lp) 1840 { 1841 return security_ops->task_setscheduler (p, policy, lp); 1842 } 1843 1844 static inline int security_task_getscheduler (struct task_struct *p) 1845 { 1846 return security_ops->task_getscheduler (p); 1847 } 1848 1849 static inline int security_task_kill (struct task_struct *p, 1850 struct siginfo *info, int sig) 1851 { 1852 return security_ops->task_kill (p, info, sig); 1853 } 1854 1855 static inline int security_task_wait (struct task_struct *p) 1856 { 1857 return security_ops->task_wait (p); 1858 } 1859 1860 static inline int security_task_prctl (int option, unsigned long arg2, 1861 unsigned long arg3, 1862 unsigned long arg4, 1863 unsigned long arg5) 1864 { 1865 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5); 1866 } 1867 1868 static inline void security_task_reparent_to_init (struct task_struct *p) 1869 { 1870 security_ops->task_reparent_to_init (p); 1871 } 1872 1873 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 1874 { 1875 security_ops->task_to_inode(p, inode); 1876 } 1877 1878 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 1879 short flag) 1880 { 1881 return security_ops->ipc_permission (ipcp, flag); 1882 } 1883 1884 static inline int security_msg_msg_alloc (struct msg_msg * msg) 1885 { 1886 return security_ops->msg_msg_alloc_security (msg); 1887 } 1888 1889 static inline void security_msg_msg_free (struct msg_msg * msg) 1890 { 1891 security_ops->msg_msg_free_security(msg); 1892 } 1893 1894 static inline int security_msg_queue_alloc (struct msg_queue *msq) 1895 { 1896 return security_ops->msg_queue_alloc_security (msq); 1897 } 1898 1899 static inline void security_msg_queue_free (struct msg_queue *msq) 1900 { 1901 security_ops->msg_queue_free_security (msq); 1902 } 1903 1904 static inline int security_msg_queue_associate (struct msg_queue * msq, 1905 int msqflg) 1906 { 1907 return security_ops->msg_queue_associate (msq, msqflg); 1908 } 1909 1910 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 1911 { 1912 return security_ops->msg_queue_msgctl (msq, cmd); 1913 } 1914 1915 static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 1916 struct msg_msg * msg, int msqflg) 1917 { 1918 return security_ops->msg_queue_msgsnd (msq, msg, msqflg); 1919 } 1920 1921 static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 1922 struct msg_msg * msg, 1923 struct task_struct * target, 1924 long type, int mode) 1925 { 1926 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode); 1927 } 1928 1929 static inline int security_shm_alloc (struct shmid_kernel *shp) 1930 { 1931 return security_ops->shm_alloc_security (shp); 1932 } 1933 1934 static inline void security_shm_free (struct shmid_kernel *shp) 1935 { 1936 security_ops->shm_free_security (shp); 1937 } 1938 1939 static inline int security_shm_associate (struct shmid_kernel * shp, 1940 int shmflg) 1941 { 1942 return security_ops->shm_associate(shp, shmflg); 1943 } 1944 1945 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 1946 { 1947 return security_ops->shm_shmctl (shp, cmd); 1948 } 1949 1950 static inline int security_shm_shmat (struct shmid_kernel * shp, 1951 char __user *shmaddr, int shmflg) 1952 { 1953 return security_ops->shm_shmat(shp, shmaddr, shmflg); 1954 } 1955 1956 static inline int security_sem_alloc (struct sem_array *sma) 1957 { 1958 return security_ops->sem_alloc_security (sma); 1959 } 1960 1961 static inline void security_sem_free (struct sem_array *sma) 1962 { 1963 security_ops->sem_free_security (sma); 1964 } 1965 1966 static inline int security_sem_associate (struct sem_array * sma, int semflg) 1967 { 1968 return security_ops->sem_associate (sma, semflg); 1969 } 1970 1971 static inline int security_sem_semctl (struct sem_array * sma, int cmd) 1972 { 1973 return security_ops->sem_semctl(sma, cmd); 1974 } 1975 1976 static inline int security_sem_semop (struct sem_array * sma, 1977 struct sembuf * sops, unsigned nsops, 1978 int alter) 1979 { 1980 return security_ops->sem_semop(sma, sops, nsops, alter); 1981 } 1982 1983 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 1984 { 1985 if (unlikely (inode && IS_PRIVATE (inode))) 1986 return; 1987 security_ops->d_instantiate (dentry, inode); 1988 } 1989 1990 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) 1991 { 1992 return security_ops->getprocattr(p, name, value, size); 1993 } 1994 1995 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 1996 { 1997 return security_ops->setprocattr(p, name, value, size); 1998 } 1999 2000 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb) 2001 { 2002 return security_ops->netlink_send(sk, skb); 2003 } 2004 2005 static inline int security_netlink_recv(struct sk_buff * skb) 2006 { 2007 return security_ops->netlink_recv(skb); 2008 } 2009 2010 /* prototypes */ 2011 extern int security_init (void); 2012 extern int register_security (struct security_operations *ops); 2013 extern int unregister_security (struct security_operations *ops); 2014 extern int mod_reg_security (const char *name, struct security_operations *ops); 2015 extern int mod_unreg_security (const char *name, struct security_operations *ops); 2016 extern struct dentry *securityfs_create_file(const char *name, mode_t mode, 2017 struct dentry *parent, void *data, 2018 struct file_operations *fops); 2019 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); 2020 extern void securityfs_remove(struct dentry *dentry); 2021 2022 2023 #else /* CONFIG_SECURITY */ 2024 2025 /* 2026 * This is the default capabilities functionality. Most of these functions 2027 * are just stubbed out, but a few must call the proper capable code. 2028 */ 2029 2030 static inline int security_init(void) 2031 { 2032 return 0; 2033 } 2034 2035 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child) 2036 { 2037 return cap_ptrace (parent, child); 2038 } 2039 2040 static inline int security_capget (struct task_struct *target, 2041 kernel_cap_t *effective, 2042 kernel_cap_t *inheritable, 2043 kernel_cap_t *permitted) 2044 { 2045 return cap_capget (target, effective, inheritable, permitted); 2046 } 2047 2048 static inline int security_capset_check (struct task_struct *target, 2049 kernel_cap_t *effective, 2050 kernel_cap_t *inheritable, 2051 kernel_cap_t *permitted) 2052 { 2053 return cap_capset_check (target, effective, inheritable, permitted); 2054 } 2055 2056 static inline void security_capset_set (struct task_struct *target, 2057 kernel_cap_t *effective, 2058 kernel_cap_t *inheritable, 2059 kernel_cap_t *permitted) 2060 { 2061 cap_capset_set (target, effective, inheritable, permitted); 2062 } 2063 2064 static inline int security_capable(struct task_struct *tsk, int cap) 2065 { 2066 return cap_capable(tsk, cap); 2067 } 2068 2069 static inline int security_acct (struct file *file) 2070 { 2071 return 0; 2072 } 2073 2074 static inline int security_sysctl(struct ctl_table *table, int op) 2075 { 2076 return 0; 2077 } 2078 2079 static inline int security_quotactl (int cmds, int type, int id, 2080 struct super_block * sb) 2081 { 2082 return 0; 2083 } 2084 2085 static inline int security_quota_on (struct dentry * dentry) 2086 { 2087 return 0; 2088 } 2089 2090 static inline int security_syslog(int type) 2091 { 2092 return cap_syslog(type); 2093 } 2094 2095 static inline int security_settime(struct timespec *ts, struct timezone *tz) 2096 { 2097 return cap_settime(ts, tz); 2098 } 2099 2100 static inline int security_vm_enough_memory(long pages) 2101 { 2102 return cap_vm_enough_memory(pages); 2103 } 2104 2105 static inline int security_bprm_alloc (struct linux_binprm *bprm) 2106 { 2107 return 0; 2108 } 2109 2110 static inline void security_bprm_free (struct linux_binprm *bprm) 2111 { } 2112 2113 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 2114 { 2115 cap_bprm_apply_creds (bprm, unsafe); 2116 } 2117 2118 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 2119 { 2120 return; 2121 } 2122 2123 static inline int security_bprm_set (struct linux_binprm *bprm) 2124 { 2125 return cap_bprm_set_security (bprm); 2126 } 2127 2128 static inline int security_bprm_check (struct linux_binprm *bprm) 2129 { 2130 return 0; 2131 } 2132 2133 static inline int security_bprm_secureexec (struct linux_binprm *bprm) 2134 { 2135 return cap_bprm_secureexec(bprm); 2136 } 2137 2138 static inline int security_sb_alloc (struct super_block *sb) 2139 { 2140 return 0; 2141 } 2142 2143 static inline void security_sb_free (struct super_block *sb) 2144 { } 2145 2146 static inline int security_sb_copy_data (struct file_system_type *type, 2147 void *orig, void *copy) 2148 { 2149 return 0; 2150 } 2151 2152 static inline int security_sb_kern_mount (struct super_block *sb, void *data) 2153 { 2154 return 0; 2155 } 2156 2157 static inline int security_sb_statfs (struct super_block *sb) 2158 { 2159 return 0; 2160 } 2161 2162 static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 2163 char *type, unsigned long flags, 2164 void *data) 2165 { 2166 return 0; 2167 } 2168 2169 static inline int security_sb_check_sb (struct vfsmount *mnt, 2170 struct nameidata *nd) 2171 { 2172 return 0; 2173 } 2174 2175 static inline int security_sb_umount (struct vfsmount *mnt, int flags) 2176 { 2177 return 0; 2178 } 2179 2180 static inline void security_sb_umount_close (struct vfsmount *mnt) 2181 { } 2182 2183 static inline void security_sb_umount_busy (struct vfsmount *mnt) 2184 { } 2185 2186 static inline void security_sb_post_remount (struct vfsmount *mnt, 2187 unsigned long flags, void *data) 2188 { } 2189 2190 static inline void security_sb_post_mountroot (void) 2191 { } 2192 2193 static inline void security_sb_post_addmount (struct vfsmount *mnt, 2194 struct nameidata *mountpoint_nd) 2195 { } 2196 2197 static inline int security_sb_pivotroot (struct nameidata *old_nd, 2198 struct nameidata *new_nd) 2199 { 2200 return 0; 2201 } 2202 2203 static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 2204 struct nameidata *new_nd) 2205 { } 2206 2207 static inline int security_inode_alloc (struct inode *inode) 2208 { 2209 return 0; 2210 } 2211 2212 static inline void security_inode_free (struct inode *inode) 2213 { } 2214 2215 static inline int security_inode_init_security (struct inode *inode, 2216 struct inode *dir, 2217 char **name, 2218 void **value, 2219 size_t *len) 2220 { 2221 return -EOPNOTSUPP; 2222 } 2223 2224 static inline int security_inode_create (struct inode *dir, 2225 struct dentry *dentry, 2226 int mode) 2227 { 2228 return 0; 2229 } 2230 2231 static inline int security_inode_link (struct dentry *old_dentry, 2232 struct inode *dir, 2233 struct dentry *new_dentry) 2234 { 2235 return 0; 2236 } 2237 2238 static inline int security_inode_unlink (struct inode *dir, 2239 struct dentry *dentry) 2240 { 2241 return 0; 2242 } 2243 2244 static inline int security_inode_symlink (struct inode *dir, 2245 struct dentry *dentry, 2246 const char *old_name) 2247 { 2248 return 0; 2249 } 2250 2251 static inline int security_inode_mkdir (struct inode *dir, 2252 struct dentry *dentry, 2253 int mode) 2254 { 2255 return 0; 2256 } 2257 2258 static inline int security_inode_rmdir (struct inode *dir, 2259 struct dentry *dentry) 2260 { 2261 return 0; 2262 } 2263 2264 static inline int security_inode_mknod (struct inode *dir, 2265 struct dentry *dentry, 2266 int mode, dev_t dev) 2267 { 2268 return 0; 2269 } 2270 2271 static inline int security_inode_rename (struct inode *old_dir, 2272 struct dentry *old_dentry, 2273 struct inode *new_dir, 2274 struct dentry *new_dentry) 2275 { 2276 return 0; 2277 } 2278 2279 static inline int security_inode_readlink (struct dentry *dentry) 2280 { 2281 return 0; 2282 } 2283 2284 static inline int security_inode_follow_link (struct dentry *dentry, 2285 struct nameidata *nd) 2286 { 2287 return 0; 2288 } 2289 2290 static inline int security_inode_permission (struct inode *inode, int mask, 2291 struct nameidata *nd) 2292 { 2293 return 0; 2294 } 2295 2296 static inline int security_inode_setattr (struct dentry *dentry, 2297 struct iattr *attr) 2298 { 2299 return 0; 2300 } 2301 2302 static inline int security_inode_getattr (struct vfsmount *mnt, 2303 struct dentry *dentry) 2304 { 2305 return 0; 2306 } 2307 2308 static inline void security_inode_delete (struct inode *inode) 2309 { } 2310 2311 static inline int security_inode_setxattr (struct dentry *dentry, char *name, 2312 void *value, size_t size, int flags) 2313 { 2314 return cap_inode_setxattr(dentry, name, value, size, flags); 2315 } 2316 2317 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 2318 void *value, size_t size, int flags) 2319 { } 2320 2321 static inline int security_inode_getxattr (struct dentry *dentry, char *name) 2322 { 2323 return 0; 2324 } 2325 2326 static inline int security_inode_listxattr (struct dentry *dentry) 2327 { 2328 return 0; 2329 } 2330 2331 static inline int security_inode_removexattr (struct dentry *dentry, char *name) 2332 { 2333 return cap_inode_removexattr(dentry, name); 2334 } 2335 2336 static inline const char *security_inode_xattr_getsuffix (void) 2337 { 2338 return NULL ; 2339 } 2340 2341 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 2342 { 2343 return -EOPNOTSUPP; 2344 } 2345 2346 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 2347 { 2348 return -EOPNOTSUPP; 2349 } 2350 2351 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2352 { 2353 return 0; 2354 } 2355 2356 static inline int security_file_permission (struct file *file, int mask) 2357 { 2358 return 0; 2359 } 2360 2361 static inline int security_file_alloc (struct file *file) 2362 { 2363 return 0; 2364 } 2365 2366 static inline void security_file_free (struct file *file) 2367 { } 2368 2369 static inline int security_file_ioctl (struct file *file, unsigned int cmd, 2370 unsigned long arg) 2371 { 2372 return 0; 2373 } 2374 2375 static inline int security_file_mmap (struct file *file, unsigned long reqprot, 2376 unsigned long prot, 2377 unsigned long flags) 2378 { 2379 return 0; 2380 } 2381 2382 static inline int security_file_mprotect (struct vm_area_struct *vma, 2383 unsigned long reqprot, 2384 unsigned long prot) 2385 { 2386 return 0; 2387 } 2388 2389 static inline int security_file_lock (struct file *file, unsigned int cmd) 2390 { 2391 return 0; 2392 } 2393 2394 static inline int security_file_fcntl (struct file *file, unsigned int cmd, 2395 unsigned long arg) 2396 { 2397 return 0; 2398 } 2399 2400 static inline int security_file_set_fowner (struct file *file) 2401 { 2402 return 0; 2403 } 2404 2405 static inline int security_file_send_sigiotask (struct task_struct *tsk, 2406 struct fown_struct *fown, 2407 int sig) 2408 { 2409 return 0; 2410 } 2411 2412 static inline int security_file_receive (struct file *file) 2413 { 2414 return 0; 2415 } 2416 2417 static inline int security_task_create (unsigned long clone_flags) 2418 { 2419 return 0; 2420 } 2421 2422 static inline int security_task_alloc (struct task_struct *p) 2423 { 2424 return 0; 2425 } 2426 2427 static inline void security_task_free (struct task_struct *p) 2428 { } 2429 2430 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 2431 int flags) 2432 { 2433 return 0; 2434 } 2435 2436 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 2437 uid_t old_suid, int flags) 2438 { 2439 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags); 2440 } 2441 2442 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 2443 int flags) 2444 { 2445 return 0; 2446 } 2447 2448 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 2449 { 2450 return 0; 2451 } 2452 2453 static inline int security_task_getpgid (struct task_struct *p) 2454 { 2455 return 0; 2456 } 2457 2458 static inline int security_task_getsid (struct task_struct *p) 2459 { 2460 return 0; 2461 } 2462 2463 static inline int security_task_setgroups (struct group_info *group_info) 2464 { 2465 return 0; 2466 } 2467 2468 static inline int security_task_setnice (struct task_struct *p, int nice) 2469 { 2470 return 0; 2471 } 2472 2473 static inline int security_task_setrlimit (unsigned int resource, 2474 struct rlimit *new_rlim) 2475 { 2476 return 0; 2477 } 2478 2479 static inline int security_task_setscheduler (struct task_struct *p, 2480 int policy, 2481 struct sched_param *lp) 2482 { 2483 return 0; 2484 } 2485 2486 static inline int security_task_getscheduler (struct task_struct *p) 2487 { 2488 return 0; 2489 } 2490 2491 static inline int security_task_kill (struct task_struct *p, 2492 struct siginfo *info, int sig) 2493 { 2494 return 0; 2495 } 2496 2497 static inline int security_task_wait (struct task_struct *p) 2498 { 2499 return 0; 2500 } 2501 2502 static inline int security_task_prctl (int option, unsigned long arg2, 2503 unsigned long arg3, 2504 unsigned long arg4, 2505 unsigned long arg5) 2506 { 2507 return 0; 2508 } 2509 2510 static inline void security_task_reparent_to_init (struct task_struct *p) 2511 { 2512 cap_task_reparent_to_init (p); 2513 } 2514 2515 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 2516 { } 2517 2518 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 2519 short flag) 2520 { 2521 return 0; 2522 } 2523 2524 static inline int security_msg_msg_alloc (struct msg_msg * msg) 2525 { 2526 return 0; 2527 } 2528 2529 static inline void security_msg_msg_free (struct msg_msg * msg) 2530 { } 2531 2532 static inline int security_msg_queue_alloc (struct msg_queue *msq) 2533 { 2534 return 0; 2535 } 2536 2537 static inline void security_msg_queue_free (struct msg_queue *msq) 2538 { } 2539 2540 static inline int security_msg_queue_associate (struct msg_queue * msq, 2541 int msqflg) 2542 { 2543 return 0; 2544 } 2545 2546 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 2547 { 2548 return 0; 2549 } 2550 2551 static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 2552 struct msg_msg * msg, int msqflg) 2553 { 2554 return 0; 2555 } 2556 2557 static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 2558 struct msg_msg * msg, 2559 struct task_struct * target, 2560 long type, int mode) 2561 { 2562 return 0; 2563 } 2564 2565 static inline int security_shm_alloc (struct shmid_kernel *shp) 2566 { 2567 return 0; 2568 } 2569 2570 static inline void security_shm_free (struct shmid_kernel *shp) 2571 { } 2572 2573 static inline int security_shm_associate (struct shmid_kernel * shp, 2574 int shmflg) 2575 { 2576 return 0; 2577 } 2578 2579 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 2580 { 2581 return 0; 2582 } 2583 2584 static inline int security_shm_shmat (struct shmid_kernel * shp, 2585 char __user *shmaddr, int shmflg) 2586 { 2587 return 0; 2588 } 2589 2590 static inline int security_sem_alloc (struct sem_array *sma) 2591 { 2592 return 0; 2593 } 2594 2595 static inline void security_sem_free (struct sem_array *sma) 2596 { } 2597 2598 static inline int security_sem_associate (struct sem_array * sma, int semflg) 2599 { 2600 return 0; 2601 } 2602 2603 static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2604 { 2605 return 0; 2606 } 2607 2608 static inline int security_sem_semop (struct sem_array * sma, 2609 struct sembuf * sops, unsigned nsops, 2610 int alter) 2611 { 2612 return 0; 2613 } 2614 2615 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2616 { } 2617 2618 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) 2619 { 2620 return -EINVAL; 2621 } 2622 2623 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2624 { 2625 return -EINVAL; 2626 } 2627 2628 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb) 2629 { 2630 return cap_netlink_send (sk, skb); 2631 } 2632 2633 static inline int security_netlink_recv (struct sk_buff *skb) 2634 { 2635 return cap_netlink_recv (skb); 2636 } 2637 2638 static inline struct dentry *securityfs_create_dir(const char *name, 2639 struct dentry *parent) 2640 { 2641 return ERR_PTR(-ENODEV); 2642 } 2643 2644 static inline struct dentry *securityfs_create_file(const char *name, 2645 mode_t mode, 2646 struct dentry *parent, 2647 void *data, 2648 struct file_operations *fops) 2649 { 2650 return ERR_PTR(-ENODEV); 2651 } 2652 2653 static inline void securityfs_remove(struct dentry *dentry) 2654 { 2655 } 2656 2657 #endif /* CONFIG_SECURITY */ 2658 2659 #ifdef CONFIG_SECURITY_NETWORK 2660 static inline int security_unix_stream_connect(struct socket * sock, 2661 struct socket * other, 2662 struct sock * newsk) 2663 { 2664 return security_ops->unix_stream_connect(sock, other, newsk); 2665 } 2666 2667 2668 static inline int security_unix_may_send(struct socket * sock, 2669 struct socket * other) 2670 { 2671 return security_ops->unix_may_send(sock, other); 2672 } 2673 2674 static inline int security_socket_create (int family, int type, 2675 int protocol, int kern) 2676 { 2677 return security_ops->socket_create(family, type, protocol, kern); 2678 } 2679 2680 static inline void security_socket_post_create(struct socket * sock, 2681 int family, 2682 int type, 2683 int protocol, int kern) 2684 { 2685 security_ops->socket_post_create(sock, family, type, 2686 protocol, kern); 2687 } 2688 2689 static inline int security_socket_bind(struct socket * sock, 2690 struct sockaddr * address, 2691 int addrlen) 2692 { 2693 return security_ops->socket_bind(sock, address, addrlen); 2694 } 2695 2696 static inline int security_socket_connect(struct socket * sock, 2697 struct sockaddr * address, 2698 int addrlen) 2699 { 2700 return security_ops->socket_connect(sock, address, addrlen); 2701 } 2702 2703 static inline int security_socket_listen(struct socket * sock, int backlog) 2704 { 2705 return security_ops->socket_listen(sock, backlog); 2706 } 2707 2708 static inline int security_socket_accept(struct socket * sock, 2709 struct socket * newsock) 2710 { 2711 return security_ops->socket_accept(sock, newsock); 2712 } 2713 2714 static inline void security_socket_post_accept(struct socket * sock, 2715 struct socket * newsock) 2716 { 2717 security_ops->socket_post_accept(sock, newsock); 2718 } 2719 2720 static inline int security_socket_sendmsg(struct socket * sock, 2721 struct msghdr * msg, int size) 2722 { 2723 return security_ops->socket_sendmsg(sock, msg, size); 2724 } 2725 2726 static inline int security_socket_recvmsg(struct socket * sock, 2727 struct msghdr * msg, int size, 2728 int flags) 2729 { 2730 return security_ops->socket_recvmsg(sock, msg, size, flags); 2731 } 2732 2733 static inline int security_socket_getsockname(struct socket * sock) 2734 { 2735 return security_ops->socket_getsockname(sock); 2736 } 2737 2738 static inline int security_socket_getpeername(struct socket * sock) 2739 { 2740 return security_ops->socket_getpeername(sock); 2741 } 2742 2743 static inline int security_socket_getsockopt(struct socket * sock, 2744 int level, int optname) 2745 { 2746 return security_ops->socket_getsockopt(sock, level, optname); 2747 } 2748 2749 static inline int security_socket_setsockopt(struct socket * sock, 2750 int level, int optname) 2751 { 2752 return security_ops->socket_setsockopt(sock, level, optname); 2753 } 2754 2755 static inline int security_socket_shutdown(struct socket * sock, int how) 2756 { 2757 return security_ops->socket_shutdown(sock, how); 2758 } 2759 2760 static inline int security_sock_rcv_skb (struct sock * sk, 2761 struct sk_buff * skb) 2762 { 2763 return security_ops->socket_sock_rcv_skb (sk, skb); 2764 } 2765 2766 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2767 int __user *optlen, unsigned len) 2768 { 2769 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 2770 } 2771 2772 static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata, 2773 u32 *seclen) 2774 { 2775 return security_ops->socket_getpeersec_dgram(skb, secdata, seclen); 2776 } 2777 2778 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2779 { 2780 return security_ops->sk_alloc_security(sk, family, priority); 2781 } 2782 2783 static inline void security_sk_free(struct sock *sk) 2784 { 2785 return security_ops->sk_free_security(sk); 2786 } 2787 2788 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir) 2789 { 2790 return security_ops->sk_getsid(sk, fl, dir); 2791 } 2792 #else /* CONFIG_SECURITY_NETWORK */ 2793 static inline int security_unix_stream_connect(struct socket * sock, 2794 struct socket * other, 2795 struct sock * newsk) 2796 { 2797 return 0; 2798 } 2799 2800 static inline int security_unix_may_send(struct socket * sock, 2801 struct socket * other) 2802 { 2803 return 0; 2804 } 2805 2806 static inline int security_socket_create (int family, int type, 2807 int protocol, int kern) 2808 { 2809 return 0; 2810 } 2811 2812 static inline void security_socket_post_create(struct socket * sock, 2813 int family, 2814 int type, 2815 int protocol, int kern) 2816 { 2817 } 2818 2819 static inline int security_socket_bind(struct socket * sock, 2820 struct sockaddr * address, 2821 int addrlen) 2822 { 2823 return 0; 2824 } 2825 2826 static inline int security_socket_connect(struct socket * sock, 2827 struct sockaddr * address, 2828 int addrlen) 2829 { 2830 return 0; 2831 } 2832 2833 static inline int security_socket_listen(struct socket * sock, int backlog) 2834 { 2835 return 0; 2836 } 2837 2838 static inline int security_socket_accept(struct socket * sock, 2839 struct socket * newsock) 2840 { 2841 return 0; 2842 } 2843 2844 static inline void security_socket_post_accept(struct socket * sock, 2845 struct socket * newsock) 2846 { 2847 } 2848 2849 static inline int security_socket_sendmsg(struct socket * sock, 2850 struct msghdr * msg, int size) 2851 { 2852 return 0; 2853 } 2854 2855 static inline int security_socket_recvmsg(struct socket * sock, 2856 struct msghdr * msg, int size, 2857 int flags) 2858 { 2859 return 0; 2860 } 2861 2862 static inline int security_socket_getsockname(struct socket * sock) 2863 { 2864 return 0; 2865 } 2866 2867 static inline int security_socket_getpeername(struct socket * sock) 2868 { 2869 return 0; 2870 } 2871 2872 static inline int security_socket_getsockopt(struct socket * sock, 2873 int level, int optname) 2874 { 2875 return 0; 2876 } 2877 2878 static inline int security_socket_setsockopt(struct socket * sock, 2879 int level, int optname) 2880 { 2881 return 0; 2882 } 2883 2884 static inline int security_socket_shutdown(struct socket * sock, int how) 2885 { 2886 return 0; 2887 } 2888 static inline int security_sock_rcv_skb (struct sock * sk, 2889 struct sk_buff * skb) 2890 { 2891 return 0; 2892 } 2893 2894 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2895 int __user *optlen, unsigned len) 2896 { 2897 return -ENOPROTOOPT; 2898 } 2899 2900 static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata, 2901 u32 *seclen) 2902 { 2903 return -ENOPROTOOPT; 2904 } 2905 2906 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2907 { 2908 return 0; 2909 } 2910 2911 static inline void security_sk_free(struct sock *sk) 2912 { 2913 } 2914 2915 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir) 2916 { 2917 return 0; 2918 } 2919 #endif /* CONFIG_SECURITY_NETWORK */ 2920 2921 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2922 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 2923 { 2924 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx); 2925 } 2926 2927 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 2928 { 2929 return security_ops->xfrm_policy_clone_security(old, new); 2930 } 2931 2932 static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 2933 { 2934 security_ops->xfrm_policy_free_security(xp); 2935 } 2936 2937 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 2938 { 2939 return security_ops->xfrm_state_alloc_security(x, sec_ctx); 2940 } 2941 2942 static inline void security_xfrm_state_free(struct xfrm_state *x) 2943 { 2944 security_ops->xfrm_state_free_security(x); 2945 } 2946 2947 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir) 2948 { 2949 return security_ops->xfrm_policy_lookup(xp, sk_sid, dir); 2950 } 2951 #else /* CONFIG_SECURITY_NETWORK_XFRM */ 2952 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 2953 { 2954 return 0; 2955 } 2956 2957 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 2958 { 2959 return 0; 2960 } 2961 2962 static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 2963 { 2964 } 2965 2966 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 2967 { 2968 return 0; 2969 } 2970 2971 static inline void security_xfrm_state_free(struct xfrm_state *x) 2972 { 2973 } 2974 2975 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir) 2976 { 2977 return 0; 2978 } 2979 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2980 2981 #ifdef CONFIG_KEYS 2982 #ifdef CONFIG_SECURITY 2983 static inline int security_key_alloc(struct key *key) 2984 { 2985 return security_ops->key_alloc(key); 2986 } 2987 2988 static inline void security_key_free(struct key *key) 2989 { 2990 security_ops->key_free(key); 2991 } 2992 2993 static inline int security_key_permission(key_ref_t key_ref, 2994 struct task_struct *context, 2995 key_perm_t perm) 2996 { 2997 return security_ops->key_permission(key_ref, context, perm); 2998 } 2999 3000 #else 3001 3002 static inline int security_key_alloc(struct key *key) 3003 { 3004 return 0; 3005 } 3006 3007 static inline void security_key_free(struct key *key) 3008 { 3009 } 3010 3011 static inline int security_key_permission(key_ref_t key_ref, 3012 struct task_struct *context, 3013 key_perm_t perm) 3014 { 3015 return 0; 3016 } 3017 3018 #endif 3019 #endif /* CONFIG_KEYS */ 3020 3021 #endif /* ! __LINUX_SECURITY_H */ 3022 3023