1 /* 2 * Linux Security plug 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <[email protected]> 5 * Copyright (C) 2001 Greg Kroah-Hartman <[email protected]> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]> 7 * Copyright (C) 2001 James Morris <[email protected]> 8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * Due to this file being licensed under the GPL there is controversy over 16 * whether this permits you to write a module that #includes this file 17 * without placing your module under the GPL. Please consult a lawyer for 18 * advice before doing this. 19 * 20 */ 21 22 #ifndef __LINUX_SECURITY_H 23 #define __LINUX_SECURITY_H 24 25 #include <linux/fs.h> 26 #include <linux/binfmts.h> 27 #include <linux/signal.h> 28 #include <linux/resource.h> 29 #include <linux/sem.h> 30 #include <linux/shm.h> 31 #include <linux/msg.h> 32 #include <linux/sched.h> 33 #include <linux/key.h> 34 35 struct ctl_table; 36 37 /* 38 * These functions are in security/capability.c and are used 39 * as the default capabilities functions 40 */ 41 extern int cap_capable (struct task_struct *tsk, int cap); 42 extern int cap_settime (struct timespec *ts, struct timezone *tz); 43 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child); 44 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 45 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 46 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 47 extern int cap_bprm_set_security (struct linux_binprm *bprm); 48 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe); 49 extern int cap_bprm_secureexec(struct linux_binprm *bprm); 50 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags); 51 extern int cap_inode_removexattr(struct dentry *dentry, char *name); 52 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags); 53 extern void cap_task_reparent_to_init (struct task_struct *p); 54 extern int cap_syslog (int type); 55 extern int cap_vm_enough_memory (long pages); 56 57 struct msghdr; 58 struct sk_buff; 59 struct sock; 60 struct sockaddr; 61 struct socket; 62 struct flowi; 63 struct dst_entry; 64 struct xfrm_selector; 65 struct xfrm_policy; 66 struct xfrm_state; 67 struct xfrm_user_sec_ctx; 68 69 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); 70 extern int cap_netlink_recv(struct sk_buff *skb); 71 72 /* 73 * Values used in the task_security_ops calls 74 */ 75 /* setuid or setgid, id0 == uid or gid */ 76 #define LSM_SETID_ID 1 77 78 /* setreuid or setregid, id0 == real, id1 == eff */ 79 #define LSM_SETID_RE 2 80 81 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ 82 #define LSM_SETID_RES 4 83 84 /* setfsuid or setfsgid, id0 == fsuid or fsgid */ 85 #define LSM_SETID_FS 8 86 87 /* forward declares to avoid warnings */ 88 struct nfsctl_arg; 89 struct sched_param; 90 struct swap_info_struct; 91 92 /* bprm_apply_creds unsafe reasons */ 93 #define LSM_UNSAFE_SHARE 1 94 #define LSM_UNSAFE_PTRACE 2 95 #define LSM_UNSAFE_PTRACE_CAP 4 96 97 #ifdef CONFIG_SECURITY 98 99 /** 100 * struct security_operations - main security structure 101 * 102 * Security hooks for program execution operations. 103 * 104 * @bprm_alloc_security: 105 * Allocate and attach a security structure to the @bprm->security field. 106 * The security field is initialized to NULL when the bprm structure is 107 * allocated. 108 * @bprm contains the linux_binprm structure to be modified. 109 * Return 0 if operation was successful. 110 * @bprm_free_security: 111 * @bprm contains the linux_binprm structure to be modified. 112 * Deallocate and clear the @bprm->security field. 113 * @bprm_apply_creds: 114 * Compute and set the security attributes of a process being transformed 115 * by an execve operation based on the old attributes (current->security) 116 * and the information saved in @bprm->security by the set_security hook. 117 * Since this hook function (and its caller) are void, this hook can not 118 * return an error. However, it can leave the security attributes of the 119 * process unchanged if an access failure occurs at this point. 120 * bprm_apply_creds is called under task_lock. @unsafe indicates various 121 * reasons why it may be unsafe to change security state. 122 * @bprm contains the linux_binprm structure. 123 * @bprm_post_apply_creds: 124 * Runs after bprm_apply_creds with the task_lock dropped, so that 125 * functions which cannot be called safely under the task_lock can 126 * be used. This hook is a good place to perform state changes on 127 * the process such as closing open file descriptors to which access 128 * is no longer granted if the attributes were changed. 129 * Note that a security module might need to save state between 130 * bprm_apply_creds and bprm_post_apply_creds to store the decision 131 * on whether the process may proceed. 132 * @bprm contains the linux_binprm structure. 133 * @bprm_set_security: 134 * Save security information in the bprm->security field, typically based 135 * on information about the bprm->file, for later use by the apply_creds 136 * hook. This hook may also optionally check permissions (e.g. for 137 * transitions between security domains). 138 * This hook may be called multiple times during a single execve, e.g. for 139 * interpreters. The hook can tell whether it has already been called by 140 * checking to see if @bprm->security is non-NULL. If so, then the hook 141 * may decide either to retain the security information saved earlier or 142 * to replace it. 143 * @bprm contains the linux_binprm structure. 144 * Return 0 if the hook is successful and permission is granted. 145 * @bprm_check_security: 146 * This hook mediates the point when a search for a binary handler will 147 * begin. It allows a check the @bprm->security value which is set in 148 * the preceding set_security call. The primary difference from 149 * set_security is that the argv list and envp list are reliably 150 * available in @bprm. This hook may be called multiple times 151 * during a single execve; and in each pass set_security is called 152 * first. 153 * @bprm contains the linux_binprm structure. 154 * Return 0 if the hook is successful and permission is granted. 155 * @bprm_secureexec: 156 * Return a boolean value (0 or 1) indicating whether a "secure exec" 157 * is required. The flag is passed in the auxiliary table 158 * on the initial stack to the ELF interpreter to indicate whether libc 159 * should enable secure mode. 160 * @bprm contains the linux_binprm structure. 161 * 162 * Security hooks for filesystem operations. 163 * 164 * @sb_alloc_security: 165 * Allocate and attach a security structure to the sb->s_security field. 166 * The s_security field is initialized to NULL when the structure is 167 * allocated. 168 * @sb contains the super_block structure to be modified. 169 * Return 0 if operation was successful. 170 * @sb_free_security: 171 * Deallocate and clear the sb->s_security field. 172 * @sb contains the super_block structure to be modified. 173 * @sb_statfs: 174 * Check permission before obtaining filesystem statistics for the @sb 175 * filesystem. 176 * @sb contains the super_block structure for the filesystem. 177 * Return 0 if permission is granted. 178 * @sb_mount: 179 * Check permission before an object specified by @dev_name is mounted on 180 * the mount point named by @nd. For an ordinary mount, @dev_name 181 * identifies a device if the file system type requires a device. For a 182 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a 183 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the 184 * pathname of the object being mounted. 185 * @dev_name contains the name for object being mounted. 186 * @nd contains the nameidata structure for mount point object. 187 * @type contains the filesystem type. 188 * @flags contains the mount flags. 189 * @data contains the filesystem-specific data. 190 * Return 0 if permission is granted. 191 * @sb_copy_data: 192 * Allow mount option data to be copied prior to parsing by the filesystem, 193 * so that the security module can extract security-specific mount 194 * options cleanly (a filesystem may modify the data e.g. with strsep()). 195 * This also allows the original mount data to be stripped of security- 196 * specific options to avoid having to make filesystems aware of them. 197 * @type the type of filesystem being mounted. 198 * @orig the original mount data copied from userspace. 199 * @copy copied data which will be passed to the security module. 200 * Returns 0 if the copy was successful. 201 * @sb_check_sb: 202 * Check permission before the device with superblock @mnt->sb is mounted 203 * on the mount point named by @nd. 204 * @mnt contains the vfsmount for device being mounted. 205 * @nd contains the nameidata object for the mount point. 206 * Return 0 if permission is granted. 207 * @sb_umount: 208 * Check permission before the @mnt file system is unmounted. 209 * @mnt contains the mounted file system. 210 * @flags contains the unmount flags, e.g. MNT_FORCE. 211 * Return 0 if permission is granted. 212 * @sb_umount_close: 213 * Close any files in the @mnt mounted filesystem that are held open by 214 * the security module. This hook is called during an umount operation 215 * prior to checking whether the filesystem is still busy. 216 * @mnt contains the mounted filesystem. 217 * @sb_umount_busy: 218 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening 219 * any files that were closed by umount_close. This hook is called during 220 * an umount operation if the umount fails after a call to the 221 * umount_close hook. 222 * @mnt contains the mounted filesystem. 223 * @sb_post_remount: 224 * Update the security module's state when a filesystem is remounted. 225 * This hook is only called if the remount was successful. 226 * @mnt contains the mounted file system. 227 * @flags contains the new filesystem flags. 228 * @data contains the filesystem-specific data. 229 * @sb_post_mountroot: 230 * Update the security module's state when the root filesystem is mounted. 231 * This hook is only called if the mount was successful. 232 * @sb_post_addmount: 233 * Update the security module's state when a filesystem is mounted. 234 * This hook is called any time a mount is successfully grafetd to 235 * the tree. 236 * @mnt contains the mounted filesystem. 237 * @mountpoint_nd contains the nameidata structure for the mount point. 238 * @sb_pivotroot: 239 * Check permission before pivoting the root filesystem. 240 * @old_nd contains the nameidata structure for the new location of the current root (put_old). 241 * @new_nd contains the nameidata structure for the new root (new_root). 242 * Return 0 if permission is granted. 243 * @sb_post_pivotroot: 244 * Update module state after a successful pivot. 245 * @old_nd contains the nameidata structure for the old root. 246 * @new_nd contains the nameidata structure for the new root. 247 * 248 * Security hooks for inode operations. 249 * 250 * @inode_alloc_security: 251 * Allocate and attach a security structure to @inode->i_security. The 252 * i_security field is initialized to NULL when the inode structure is 253 * allocated. 254 * @inode contains the inode structure. 255 * Return 0 if operation was successful. 256 * @inode_free_security: 257 * @inode contains the inode structure. 258 * Deallocate the inode security structure and set @inode->i_security to 259 * NULL. 260 * @inode_init_security: 261 * Obtain the security attribute name suffix and value to set on a newly 262 * created inode and set up the incore security field for the new inode. 263 * This hook is called by the fs code as part of the inode creation 264 * transaction and provides for atomic labeling of the inode, unlike 265 * the post_create/mkdir/... hooks called by the VFS. The hook function 266 * is expected to allocate the name and value via kmalloc, with the caller 267 * being responsible for calling kfree after using them. 268 * If the security module does not use security attributes or does 269 * not wish to put a security attribute on this particular inode, 270 * then it should return -EOPNOTSUPP to skip this processing. 271 * @inode contains the inode structure of the newly created inode. 272 * @dir contains the inode structure of the parent directory. 273 * @name will be set to the allocated name suffix (e.g. selinux). 274 * @value will be set to the allocated attribute value. 275 * @len will be set to the length of the value. 276 * Returns 0 if @name and @value have been successfully set, 277 * -EOPNOTSUPP if no security attribute is needed, or 278 * -ENOMEM on memory allocation failure. 279 * @inode_create: 280 * Check permission to create a regular file. 281 * @dir contains inode structure of the parent of the new file. 282 * @dentry contains the dentry structure for the file to be created. 283 * @mode contains the file mode of the file to be created. 284 * Return 0 if permission is granted. 285 * @inode_link: 286 * Check permission before creating a new hard link to a file. 287 * @old_dentry contains the dentry structure for an existing link to the file. 288 * @dir contains the inode structure of the parent directory of the new link. 289 * @new_dentry contains the dentry structure for the new link. 290 * Return 0 if permission is granted. 291 * @inode_unlink: 292 * Check the permission to remove a hard link to a file. 293 * @dir contains the inode structure of parent directory of the file. 294 * @dentry contains the dentry structure for file to be unlinked. 295 * Return 0 if permission is granted. 296 * @inode_symlink: 297 * Check the permission to create a symbolic link to a file. 298 * @dir contains the inode structure of parent directory of the symbolic link. 299 * @dentry contains the dentry structure of the symbolic link. 300 * @old_name contains the pathname of file. 301 * Return 0 if permission is granted. 302 * @inode_mkdir: 303 * Check permissions to create a new directory in the existing directory 304 * associated with inode strcture @dir. 305 * @dir containst the inode structure of parent of the directory to be created. 306 * @dentry contains the dentry structure of new directory. 307 * @mode contains the mode of new directory. 308 * Return 0 if permission is granted. 309 * @inode_rmdir: 310 * Check the permission to remove a directory. 311 * @dir contains the inode structure of parent of the directory to be removed. 312 * @dentry contains the dentry structure of directory to be removed. 313 * Return 0 if permission is granted. 314 * @inode_mknod: 315 * Check permissions when creating a special file (or a socket or a fifo 316 * file created via the mknod system call). Note that if mknod operation 317 * is being done for a regular file, then the create hook will be called 318 * and not this hook. 319 * @dir contains the inode structure of parent of the new file. 320 * @dentry contains the dentry structure of the new file. 321 * @mode contains the mode of the new file. 322 * @dev contains the the device number. 323 * Return 0 if permission is granted. 324 * @inode_rename: 325 * Check for permission to rename a file or directory. 326 * @old_dir contains the inode structure for parent of the old link. 327 * @old_dentry contains the dentry structure of the old link. 328 * @new_dir contains the inode structure for parent of the new link. 329 * @new_dentry contains the dentry structure of the new link. 330 * Return 0 if permission is granted. 331 * @inode_readlink: 332 * Check the permission to read the symbolic link. 333 * @dentry contains the dentry structure for the file link. 334 * Return 0 if permission is granted. 335 * @inode_follow_link: 336 * Check permission to follow a symbolic link when looking up a pathname. 337 * @dentry contains the dentry structure for the link. 338 * @nd contains the nameidata structure for the parent directory. 339 * Return 0 if permission is granted. 340 * @inode_permission: 341 * Check permission before accessing an inode. This hook is called by the 342 * existing Linux permission function, so a security module can use it to 343 * provide additional checking for existing Linux permission checks. 344 * Notice that this hook is called when a file is opened (as well as many 345 * other operations), whereas the file_security_ops permission hook is 346 * called when the actual read/write operations are performed. 347 * @inode contains the inode structure to check. 348 * @mask contains the permission mask. 349 * @nd contains the nameidata (may be NULL). 350 * Return 0 if permission is granted. 351 * @inode_setattr: 352 * Check permission before setting file attributes. Note that the kernel 353 * call to notify_change is performed from several locations, whenever 354 * file attributes change (such as when a file is truncated, chown/chmod 355 * operations, transferring disk quotas, etc). 356 * @dentry contains the dentry structure for the file. 357 * @attr is the iattr structure containing the new file attributes. 358 * Return 0 if permission is granted. 359 * @inode_getattr: 360 * Check permission before obtaining file attributes. 361 * @mnt is the vfsmount where the dentry was looked up 362 * @dentry contains the dentry structure for the file. 363 * Return 0 if permission is granted. 364 * @inode_delete: 365 * @inode contains the inode structure for deleted inode. 366 * This hook is called when a deleted inode is released (i.e. an inode 367 * with no hard links has its use count drop to zero). A security module 368 * can use this hook to release any persistent label associated with the 369 * inode. 370 * @inode_setxattr: 371 * Check permission before setting the extended attributes 372 * @value identified by @name for @dentry. 373 * Return 0 if permission is granted. 374 * @inode_post_setxattr: 375 * Update inode security field after successful setxattr operation. 376 * @value identified by @name for @dentry. 377 * @inode_getxattr: 378 * Check permission before obtaining the extended attributes 379 * identified by @name for @dentry. 380 * Return 0 if permission is granted. 381 * @inode_listxattr: 382 * Check permission before obtaining the list of extended attribute 383 * names for @dentry. 384 * Return 0 if permission is granted. 385 * @inode_removexattr: 386 * Check permission before removing the extended attribute 387 * identified by @name for @dentry. 388 * Return 0 if permission is granted. 389 * @inode_getsecurity: 390 * Copy the extended attribute representation of the security label 391 * associated with @name for @inode into @buffer. @buffer may be 392 * NULL to request the size of the buffer required. @size indicates 393 * the size of @buffer in bytes. Note that @name is the remainder 394 * of the attribute name after the security. prefix has been removed. 395 * @err is the return value from the preceding fs getxattr call, 396 * and can be used by the security module to determine whether it 397 * should try and canonicalize the attribute value. 398 * Return number of bytes used/required on success. 399 * @inode_setsecurity: 400 * Set the security label associated with @name for @inode from the 401 * extended attribute value @value. @size indicates the size of the 402 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. 403 * Note that @name is the remainder of the attribute name after the 404 * security. prefix has been removed. 405 * Return 0 on success. 406 * @inode_listsecurity: 407 * Copy the extended attribute names for the security labels 408 * associated with @inode into @buffer. The maximum size of @buffer 409 * is specified by @buffer_size. @buffer may be NULL to request 410 * the size of the buffer required. 411 * Returns number of bytes used/required on success. 412 * 413 * Security hooks for file operations 414 * 415 * @file_permission: 416 * Check file permissions before accessing an open file. This hook is 417 * called by various operations that read or write files. A security 418 * module can use this hook to perform additional checking on these 419 * operations, e.g. to revalidate permissions on use to support privilege 420 * bracketing or policy changes. Notice that this hook is used when the 421 * actual read/write operations are performed, whereas the 422 * inode_security_ops hook is called when a file is opened (as well as 423 * many other operations). 424 * Caveat: Although this hook can be used to revalidate permissions for 425 * various system call operations that read or write files, it does not 426 * address the revalidation of permissions for memory-mapped files. 427 * Security modules must handle this separately if they need such 428 * revalidation. 429 * @file contains the file structure being accessed. 430 * @mask contains the requested permissions. 431 * Return 0 if permission is granted. 432 * @file_alloc_security: 433 * Allocate and attach a security structure to the file->f_security field. 434 * The security field is initialized to NULL when the structure is first 435 * created. 436 * @file contains the file structure to secure. 437 * Return 0 if the hook is successful and permission is granted. 438 * @file_free_security: 439 * Deallocate and free any security structures stored in file->f_security. 440 * @file contains the file structure being modified. 441 * @file_ioctl: 442 * @file contains the file structure. 443 * @cmd contains the operation to perform. 444 * @arg contains the operational arguments. 445 * Check permission for an ioctl operation on @file. Note that @arg can 446 * sometimes represents a user space pointer; in other cases, it may be a 447 * simple integer value. When @arg represents a user space pointer, it 448 * should never be used by the security module. 449 * Return 0 if permission is granted. 450 * @file_mmap : 451 * Check permissions for a mmap operation. The @file may be NULL, e.g. 452 * if mapping anonymous memory. 453 * @file contains the file structure for file to map (may be NULL). 454 * @reqprot contains the protection requested by the application. 455 * @prot contains the protection that will be applied by the kernel. 456 * @flags contains the operational flags. 457 * Return 0 if permission is granted. 458 * @file_mprotect: 459 * Check permissions before changing memory access permissions. 460 * @vma contains the memory region to modify. 461 * @reqprot contains the protection requested by the application. 462 * @prot contains the protection that will be applied by the kernel. 463 * Return 0 if permission is granted. 464 * @file_lock: 465 * Check permission before performing file locking operations. 466 * Note: this hook mediates both flock and fcntl style locks. 467 * @file contains the file structure. 468 * @cmd contains the posix-translated lock operation to perform 469 * (e.g. F_RDLCK, F_WRLCK). 470 * Return 0 if permission is granted. 471 * @file_fcntl: 472 * Check permission before allowing the file operation specified by @cmd 473 * from being performed on the file @file. Note that @arg can sometimes 474 * represents a user space pointer; in other cases, it may be a simple 475 * integer value. When @arg represents a user space pointer, it should 476 * never be used by the security module. 477 * @file contains the file structure. 478 * @cmd contains the operation to be performed. 479 * @arg contains the operational arguments. 480 * Return 0 if permission is granted. 481 * @file_set_fowner: 482 * Save owner security information (typically from current->security) in 483 * file->f_security for later use by the send_sigiotask hook. 484 * @file contains the file structure to update. 485 * Return 0 on success. 486 * @file_send_sigiotask: 487 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 488 * process @tsk. Note that this hook is sometimes called from interrupt. 489 * Note that the fown_struct, @fown, is never outside the context of a 490 * struct file, so the file structure (and associated security information) 491 * can always be obtained: 492 * (struct file *)((long)fown - offsetof(struct file,f_owner)); 493 * @tsk contains the structure of task receiving signal. 494 * @fown contains the file owner information. 495 * @sig is the signal that will be sent. When 0, kernel sends SIGIO. 496 * Return 0 if permission is granted. 497 * @file_receive: 498 * This hook allows security modules to control the ability of a process 499 * to receive an open file descriptor via socket IPC. 500 * @file contains the file structure being received. 501 * Return 0 if permission is granted. 502 * 503 * Security hooks for task operations. 504 * 505 * @task_create: 506 * Check permission before creating a child process. See the clone(2) 507 * manual page for definitions of the @clone_flags. 508 * @clone_flags contains the flags indicating what should be shared. 509 * Return 0 if permission is granted. 510 * @task_alloc_security: 511 * @p contains the task_struct for child process. 512 * Allocate and attach a security structure to the p->security field. The 513 * security field is initialized to NULL when the task structure is 514 * allocated. 515 * Return 0 if operation was successful. 516 * @task_free_security: 517 * @p contains the task_struct for process. 518 * Deallocate and clear the p->security field. 519 * @task_setuid: 520 * Check permission before setting one or more of the user identity 521 * attributes of the current process. The @flags parameter indicates 522 * which of the set*uid system calls invoked this hook and how to 523 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 524 * definitions at the beginning of this file for the @flags values and 525 * their meanings. 526 * @id0 contains a uid. 527 * @id1 contains a uid. 528 * @id2 contains a uid. 529 * @flags contains one of the LSM_SETID_* values. 530 * Return 0 if permission is granted. 531 * @task_post_setuid: 532 * Update the module's state after setting one or more of the user 533 * identity attributes of the current process. The @flags parameter 534 * indicates which of the set*uid system calls invoked this hook. If 535 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other 536 * parameters are not used. 537 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS). 538 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS). 539 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS). 540 * @flags contains one of the LSM_SETID_* values. 541 * Return 0 on success. 542 * @task_setgid: 543 * Check permission before setting one or more of the group identity 544 * attributes of the current process. The @flags parameter indicates 545 * which of the set*gid system calls invoked this hook and how to 546 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 547 * definitions at the beginning of this file for the @flags values and 548 * their meanings. 549 * @id0 contains a gid. 550 * @id1 contains a gid. 551 * @id2 contains a gid. 552 * @flags contains one of the LSM_SETID_* values. 553 * Return 0 if permission is granted. 554 * @task_setpgid: 555 * Check permission before setting the process group identifier of the 556 * process @p to @pgid. 557 * @p contains the task_struct for process being modified. 558 * @pgid contains the new pgid. 559 * Return 0 if permission is granted. 560 * @task_getpgid: 561 * Check permission before getting the process group identifier of the 562 * process @p. 563 * @p contains the task_struct for the process. 564 * Return 0 if permission is granted. 565 * @task_getsid: 566 * Check permission before getting the session identifier of the process 567 * @p. 568 * @p contains the task_struct for the process. 569 * Return 0 if permission is granted. 570 * @task_setgroups: 571 * Check permission before setting the supplementary group set of the 572 * current process. 573 * @group_info contains the new group information. 574 * Return 0 if permission is granted. 575 * @task_setnice: 576 * Check permission before setting the nice value of @p to @nice. 577 * @p contains the task_struct of process. 578 * @nice contains the new nice value. 579 * Return 0 if permission is granted. 580 * @task_setrlimit: 581 * Check permission before setting the resource limits of the current 582 * process for @resource to @new_rlim. The old resource limit values can 583 * be examined by dereferencing (current->signal->rlim + resource). 584 * @resource contains the resource whose limit is being set. 585 * @new_rlim contains the new limits for @resource. 586 * Return 0 if permission is granted. 587 * @task_setscheduler: 588 * Check permission before setting scheduling policy and/or parameters of 589 * process @p based on @policy and @lp. 590 * @p contains the task_struct for process. 591 * @policy contains the scheduling policy. 592 * @lp contains the scheduling parameters. 593 * Return 0 if permission is granted. 594 * @task_getscheduler: 595 * Check permission before obtaining scheduling information for process 596 * @p. 597 * @p contains the task_struct for process. 598 * Return 0 if permission is granted. 599 * @task_kill: 600 * Check permission before sending signal @sig to @p. @info can be NULL, 601 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or 602 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming 603 * from the kernel and should typically be permitted. 604 * SIGIO signals are handled separately by the send_sigiotask hook in 605 * file_security_ops. 606 * @p contains the task_struct for process. 607 * @info contains the signal information. 608 * @sig contains the signal value. 609 * Return 0 if permission is granted. 610 * @task_wait: 611 * Check permission before allowing a process to reap a child process @p 612 * and collect its status information. 613 * @p contains the task_struct for process. 614 * Return 0 if permission is granted. 615 * @task_prctl: 616 * Check permission before performing a process control operation on the 617 * current process. 618 * @option contains the operation. 619 * @arg2 contains a argument. 620 * @arg3 contains a argument. 621 * @arg4 contains a argument. 622 * @arg5 contains a argument. 623 * Return 0 if permission is granted. 624 * @task_reparent_to_init: 625 * Set the security attributes in @p->security for a kernel thread that 626 * is being reparented to the init task. 627 * @p contains the task_struct for the kernel thread. 628 * @task_to_inode: 629 * Set the security attributes for an inode based on an associated task's 630 * security attributes, e.g. for /proc/pid inodes. 631 * @p contains the task_struct for the task. 632 * @inode contains the inode structure for the inode. 633 * 634 * Security hooks for Netlink messaging. 635 * 636 * @netlink_send: 637 * Save security information for a netlink message so that permission 638 * checking can be performed when the message is processed. The security 639 * information can be saved using the eff_cap field of the 640 * netlink_skb_parms structure. Also may be used to provide fine 641 * grained control over message transmission. 642 * @sk associated sock of task sending the message., 643 * @skb contains the sk_buff structure for the netlink message. 644 * Return 0 if the information was successfully saved and message 645 * is allowed to be transmitted. 646 * @netlink_recv: 647 * Check permission before processing the received netlink message in 648 * @skb. 649 * @skb contains the sk_buff structure for the netlink message. 650 * Return 0 if permission is granted. 651 * 652 * Security hooks for Unix domain networking. 653 * 654 * @unix_stream_connect: 655 * Check permissions before establishing a Unix domain stream connection 656 * between @sock and @other. 657 * @sock contains the socket structure. 658 * @other contains the peer socket structure. 659 * Return 0 if permission is granted. 660 * @unix_may_send: 661 * Check permissions before connecting or sending datagrams from @sock to 662 * @other. 663 * @sock contains the socket structure. 664 * @sock contains the peer socket structure. 665 * Return 0 if permission is granted. 666 * 667 * The @unix_stream_connect and @unix_may_send hooks were necessary because 668 * Linux provides an alternative to the conventional file name space for Unix 669 * domain sockets. Whereas binding and connecting to sockets in the file name 670 * space is mediated by the typical file permissions (and caught by the mknod 671 * and permission hooks in inode_security_ops), binding and connecting to 672 * sockets in the abstract name space is completely unmediated. Sufficient 673 * control of Unix domain sockets in the abstract name space isn't possible 674 * using only the socket layer hooks, since we need to know the actual target 675 * socket, which is not looked up until we are inside the af_unix code. 676 * 677 * Security hooks for socket operations. 678 * 679 * @socket_create: 680 * Check permissions prior to creating a new socket. 681 * @family contains the requested protocol family. 682 * @type contains the requested communications type. 683 * @protocol contains the requested protocol. 684 * @kern set to 1 if a kernel socket. 685 * Return 0 if permission is granted. 686 * @socket_post_create: 687 * This hook allows a module to update or allocate a per-socket security 688 * structure. Note that the security field was not added directly to the 689 * socket structure, but rather, the socket security information is stored 690 * in the associated inode. Typically, the inode alloc_security hook will 691 * allocate and and attach security information to 692 * sock->inode->i_security. This hook may be used to update the 693 * sock->inode->i_security field with additional information that wasn't 694 * available when the inode was allocated. 695 * @sock contains the newly created socket structure. 696 * @family contains the requested protocol family. 697 * @type contains the requested communications type. 698 * @protocol contains the requested protocol. 699 * @kern set to 1 if a kernel socket. 700 * @socket_bind: 701 * Check permission before socket protocol layer bind operation is 702 * performed and the socket @sock is bound to the address specified in the 703 * @address parameter. 704 * @sock contains the socket structure. 705 * @address contains the address to bind to. 706 * @addrlen contains the length of address. 707 * Return 0 if permission is granted. 708 * @socket_connect: 709 * Check permission before socket protocol layer connect operation 710 * attempts to connect socket @sock to a remote address, @address. 711 * @sock contains the socket structure. 712 * @address contains the address of remote endpoint. 713 * @addrlen contains the length of address. 714 * Return 0 if permission is granted. 715 * @socket_listen: 716 * Check permission before socket protocol layer listen operation. 717 * @sock contains the socket structure. 718 * @backlog contains the maximum length for the pending connection queue. 719 * Return 0 if permission is granted. 720 * @socket_accept: 721 * Check permission before accepting a new connection. Note that the new 722 * socket, @newsock, has been created and some information copied to it, 723 * but the accept operation has not actually been performed. 724 * @sock contains the listening socket structure. 725 * @newsock contains the newly created server socket for connection. 726 * Return 0 if permission is granted. 727 * @socket_post_accept: 728 * This hook allows a security module to copy security 729 * information into the newly created socket's inode. 730 * @sock contains the listening socket structure. 731 * @newsock contains the newly created server socket for connection. 732 * @socket_sendmsg: 733 * Check permission before transmitting a message to another socket. 734 * @sock contains the socket structure. 735 * @msg contains the message to be transmitted. 736 * @size contains the size of message. 737 * Return 0 if permission is granted. 738 * @socket_recvmsg: 739 * Check permission before receiving a message from a socket. 740 * @sock contains the socket structure. 741 * @msg contains the message structure. 742 * @size contains the size of message structure. 743 * @flags contains the operational flags. 744 * Return 0 if permission is granted. 745 * @socket_getsockname: 746 * Check permission before the local address (name) of the socket object 747 * @sock is retrieved. 748 * @sock contains the socket structure. 749 * Return 0 if permission is granted. 750 * @socket_getpeername: 751 * Check permission before the remote address (name) of a socket object 752 * @sock is retrieved. 753 * @sock contains the socket structure. 754 * Return 0 if permission is granted. 755 * @socket_getsockopt: 756 * Check permissions before retrieving the options associated with socket 757 * @sock. 758 * @sock contains the socket structure. 759 * @level contains the protocol level to retrieve option from. 760 * @optname contains the name of option to retrieve. 761 * Return 0 if permission is granted. 762 * @socket_setsockopt: 763 * Check permissions before setting the options associated with socket 764 * @sock. 765 * @sock contains the socket structure. 766 * @level contains the protocol level to set options for. 767 * @optname contains the name of the option to set. 768 * Return 0 if permission is granted. 769 * @socket_shutdown: 770 * Checks permission before all or part of a connection on the socket 771 * @sock is shut down. 772 * @sock contains the socket structure. 773 * @how contains the flag indicating how future sends and receives are handled. 774 * Return 0 if permission is granted. 775 * @socket_sock_rcv_skb: 776 * Check permissions on incoming network packets. This hook is distinct 777 * from Netfilter's IP input hooks since it is the first time that the 778 * incoming sk_buff @skb has been associated with a particular socket, @sk. 779 * @sk contains the sock (not socket) associated with the incoming sk_buff. 780 * @skb contains the incoming network data. 781 * @socket_getpeersec: 782 * This hook allows the security module to provide peer socket security 783 * state to userspace via getsockopt SO_GETPEERSEC. 784 * @sock is the local socket. 785 * @optval userspace memory where the security state is to be copied. 786 * @optlen userspace int where the module should copy the actual length 787 * of the security state. 788 * @len as input is the maximum length to copy to userspace provided 789 * by the caller. 790 * Return 0 if all is well, otherwise, typical getsockopt return 791 * values. 792 * @sk_alloc_security: 793 * Allocate and attach a security structure to the sk->sk_security field, 794 * which is used to copy security attributes between local stream sockets. 795 * @sk_free_security: 796 * Deallocate security structure. 797 * @sk_getsid: 798 * Retrieve the LSM-specific sid for the sock to enable caching of network 799 * authorizations. 800 * 801 * Security hooks for XFRM operations. 802 * 803 * @xfrm_policy_alloc_security: 804 * @xp contains the xfrm_policy being added to Security Policy Database 805 * used by the XFRM system. 806 * @sec_ctx contains the security context information being provided by 807 * the user-level policy update program (e.g., setkey). 808 * Allocate a security structure to the xp->selector.security field. 809 * The security field is initialized to NULL when the xfrm_policy is 810 * allocated. 811 * Return 0 if operation was successful (memory to allocate, legal context) 812 * @xfrm_policy_clone_security: 813 * @old contains an existing xfrm_policy in the SPD. 814 * @new contains a new xfrm_policy being cloned from old. 815 * Allocate a security structure to the new->selector.security field 816 * that contains the information from the old->selector.security field. 817 * Return 0 if operation was successful (memory to allocate). 818 * @xfrm_policy_free_security: 819 * @xp contains the xfrm_policy 820 * Deallocate xp->selector.security. 821 * @xfrm_state_alloc_security: 822 * @x contains the xfrm_state being added to the Security Association 823 * Database by the XFRM system. 824 * @sec_ctx contains the security context information being provided by 825 * the user-level SA generation program (e.g., setkey or racoon). 826 * Allocate a security structure to the x->sel.security field. The 827 * security field is initialized to NULL when the xfrm_state is 828 * allocated. 829 * Return 0 if operation was successful (memory to allocate, legal context). 830 * @xfrm_state_free_security: 831 * @x contains the xfrm_state. 832 * Deallocate x>sel.security. 833 * @xfrm_policy_lookup: 834 * @xp contains the xfrm_policy for which the access control is being 835 * checked. 836 * @sk_sid contains the sock security label that is used to authorize 837 * access to the policy xp. 838 * @dir contains the direction of the flow (input or output). 839 * Check permission when a sock selects a xfrm_policy for processing 840 * XFRMs on a packet. The hook is called when selecting either a 841 * per-socket policy or a generic xfrm policy. 842 * Return 0 if permission is granted. 843 * 844 * Security hooks affecting all Key Management operations 845 * 846 * @key_alloc: 847 * Permit allocation of a key and assign security data. Note that key does 848 * not have a serial number assigned at this point. 849 * @key points to the key. 850 * Return 0 if permission is granted, -ve error otherwise. 851 * @key_free: 852 * Notification of destruction; free security data. 853 * @key points to the key. 854 * No return value. 855 * @key_permission: 856 * See whether a specific operational right is granted to a process on a 857 * key. 858 * @key_ref refers to the key (key pointer + possession attribute bit). 859 * @context points to the process to provide the context against which to 860 * evaluate the security data on the key. 861 * @perm describes the combination of permissions required of this key. 862 * Return 1 if permission granted, 0 if permission denied and -ve it the 863 * normal permissions model should be effected. 864 * 865 * Security hooks affecting all System V IPC operations. 866 * 867 * @ipc_permission: 868 * Check permissions for access to IPC 869 * @ipcp contains the kernel IPC permission structure 870 * @flag contains the desired (requested) permission set 871 * Return 0 if permission is granted. 872 * 873 * Security hooks for individual messages held in System V IPC message queues 874 * @msg_msg_alloc_security: 875 * Allocate and attach a security structure to the msg->security field. 876 * The security field is initialized to NULL when the structure is first 877 * created. 878 * @msg contains the message structure to be modified. 879 * Return 0 if operation was successful and permission is granted. 880 * @msg_msg_free_security: 881 * Deallocate the security structure for this message. 882 * @msg contains the message structure to be modified. 883 * 884 * Security hooks for System V IPC Message Queues 885 * 886 * @msg_queue_alloc_security: 887 * Allocate and attach a security structure to the 888 * msq->q_perm.security field. The security field is initialized to 889 * NULL when the structure is first created. 890 * @msq contains the message queue structure to be modified. 891 * Return 0 if operation was successful and permission is granted. 892 * @msg_queue_free_security: 893 * Deallocate security structure for this message queue. 894 * @msq contains the message queue structure to be modified. 895 * @msg_queue_associate: 896 * Check permission when a message queue is requested through the 897 * msgget system call. This hook is only called when returning the 898 * message queue identifier for an existing message queue, not when a 899 * new message queue is created. 900 * @msq contains the message queue to act upon. 901 * @msqflg contains the operation control flags. 902 * Return 0 if permission is granted. 903 * @msg_queue_msgctl: 904 * Check permission when a message control operation specified by @cmd 905 * is to be performed on the message queue @msq. 906 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. 907 * @msq contains the message queue to act upon. May be NULL. 908 * @cmd contains the operation to be performed. 909 * Return 0 if permission is granted. 910 * @msg_queue_msgsnd: 911 * Check permission before a message, @msg, is enqueued on the message 912 * queue, @msq. 913 * @msq contains the message queue to send message to. 914 * @msg contains the message to be enqueued. 915 * @msqflg contains operational flags. 916 * Return 0 if permission is granted. 917 * @msg_queue_msgrcv: 918 * Check permission before a message, @msg, is removed from the message 919 * queue, @msq. The @target task structure contains a pointer to the 920 * process that will be receiving the message (not equal to the current 921 * process when inline receives are being performed). 922 * @msq contains the message queue to retrieve message from. 923 * @msg contains the message destination. 924 * @target contains the task structure for recipient process. 925 * @type contains the type of message requested. 926 * @mode contains the operational flags. 927 * Return 0 if permission is granted. 928 * 929 * Security hooks for System V Shared Memory Segments 930 * 931 * @shm_alloc_security: 932 * Allocate and attach a security structure to the shp->shm_perm.security 933 * field. The security field is initialized to NULL when the structure is 934 * first created. 935 * @shp contains the shared memory structure to be modified. 936 * Return 0 if operation was successful and permission is granted. 937 * @shm_free_security: 938 * Deallocate the security struct for this memory segment. 939 * @shp contains the shared memory structure to be modified. 940 * @shm_associate: 941 * Check permission when a shared memory region is requested through the 942 * shmget system call. This hook is only called when returning the shared 943 * memory region identifier for an existing region, not when a new shared 944 * memory region is created. 945 * @shp contains the shared memory structure to be modified. 946 * @shmflg contains the operation control flags. 947 * Return 0 if permission is granted. 948 * @shm_shmctl: 949 * Check permission when a shared memory control operation specified by 950 * @cmd is to be performed on the shared memory region @shp. 951 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. 952 * @shp contains shared memory structure to be modified. 953 * @cmd contains the operation to be performed. 954 * Return 0 if permission is granted. 955 * @shm_shmat: 956 * Check permissions prior to allowing the shmat system call to attach the 957 * shared memory segment @shp to the data segment of the calling process. 958 * The attaching address is specified by @shmaddr. 959 * @shp contains the shared memory structure to be modified. 960 * @shmaddr contains the address to attach memory region to. 961 * @shmflg contains the operational flags. 962 * Return 0 if permission is granted. 963 * 964 * Security hooks for System V Semaphores 965 * 966 * @sem_alloc_security: 967 * Allocate and attach a security structure to the sma->sem_perm.security 968 * field. The security field is initialized to NULL when the structure is 969 * first created. 970 * @sma contains the semaphore structure 971 * Return 0 if operation was successful and permission is granted. 972 * @sem_free_security: 973 * deallocate security struct for this semaphore 974 * @sma contains the semaphore structure. 975 * @sem_associate: 976 * Check permission when a semaphore is requested through the semget 977 * system call. This hook is only called when returning the semaphore 978 * identifier for an existing semaphore, not when a new one must be 979 * created. 980 * @sma contains the semaphore structure. 981 * @semflg contains the operation control flags. 982 * Return 0 if permission is granted. 983 * @sem_semctl: 984 * Check permission when a semaphore operation specified by @cmd is to be 985 * performed on the semaphore @sma. The @sma may be NULL, e.g. for 986 * IPC_INFO or SEM_INFO. 987 * @sma contains the semaphore structure. May be NULL. 988 * @cmd contains the operation to be performed. 989 * Return 0 if permission is granted. 990 * @sem_semop 991 * Check permissions before performing operations on members of the 992 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set 993 * may be modified. 994 * @sma contains the semaphore structure. 995 * @sops contains the operations to perform. 996 * @nsops contains the number of operations to perform. 997 * @alter contains the flag indicating whether changes are to be made. 998 * Return 0 if permission is granted. 999 * 1000 * @ptrace: 1001 * Check permission before allowing the @parent process to trace the 1002 * @child process. 1003 * Security modules may also want to perform a process tracing check 1004 * during an execve in the set_security or apply_creds hooks of 1005 * binprm_security_ops if the process is being traced and its security 1006 * attributes would be changed by the execve. 1007 * @parent contains the task_struct structure for parent process. 1008 * @child contains the task_struct structure for child process. 1009 * Return 0 if permission is granted. 1010 * @capget: 1011 * Get the @effective, @inheritable, and @permitted capability sets for 1012 * the @target process. The hook may also perform permission checking to 1013 * determine if the current process is allowed to see the capability sets 1014 * of the @target process. 1015 * @target contains the task_struct structure for target process. 1016 * @effective contains the effective capability set. 1017 * @inheritable contains the inheritable capability set. 1018 * @permitted contains the permitted capability set. 1019 * Return 0 if the capability sets were successfully obtained. 1020 * @capset_check: 1021 * Check permission before setting the @effective, @inheritable, and 1022 * @permitted capability sets for the @target process. 1023 * Caveat: @target is also set to current if a set of processes is 1024 * specified (i.e. all processes other than current and init or a 1025 * particular process group). Hence, the capset_set hook may need to 1026 * revalidate permission to the actual target process. 1027 * @target contains the task_struct structure for target process. 1028 * @effective contains the effective capability set. 1029 * @inheritable contains the inheritable capability set. 1030 * @permitted contains the permitted capability set. 1031 * Return 0 if permission is granted. 1032 * @capset_set: 1033 * Set the @effective, @inheritable, and @permitted capability sets for 1034 * the @target process. Since capset_check cannot always check permission 1035 * to the real @target process, this hook may also perform permission 1036 * checking to determine if the current process is allowed to set the 1037 * capability sets of the @target process. However, this hook has no way 1038 * of returning an error due to the structure of the sys_capset code. 1039 * @target contains the task_struct structure for target process. 1040 * @effective contains the effective capability set. 1041 * @inheritable contains the inheritable capability set. 1042 * @permitted contains the permitted capability set. 1043 * @capable: 1044 * Check whether the @tsk process has the @cap capability. 1045 * @tsk contains the task_struct for the process. 1046 * @cap contains the capability <include/linux/capability.h>. 1047 * Return 0 if the capability is granted for @tsk. 1048 * @acct: 1049 * Check permission before enabling or disabling process accounting. If 1050 * accounting is being enabled, then @file refers to the open file used to 1051 * store accounting records. If accounting is being disabled, then @file 1052 * is NULL. 1053 * @file contains the file structure for the accounting file (may be NULL). 1054 * Return 0 if permission is granted. 1055 * @sysctl: 1056 * Check permission before accessing the @table sysctl variable in the 1057 * manner specified by @op. 1058 * @table contains the ctl_table structure for the sysctl variable. 1059 * @op contains the operation (001 = search, 002 = write, 004 = read). 1060 * Return 0 if permission is granted. 1061 * @syslog: 1062 * Check permission before accessing the kernel message ring or changing 1063 * logging to the console. 1064 * See the syslog(2) manual page for an explanation of the @type values. 1065 * @type contains the type of action. 1066 * Return 0 if permission is granted. 1067 * @settime: 1068 * Check permission to change the system time. 1069 * struct timespec and timezone are defined in include/linux/time.h 1070 * @ts contains new time 1071 * @tz contains new timezone 1072 * Return 0 if permission is granted. 1073 * @vm_enough_memory: 1074 * Check permissions for allocating a new virtual mapping. 1075 * @pages contains the number of pages. 1076 * Return 0 if permission is granted. 1077 * 1078 * @register_security: 1079 * allow module stacking. 1080 * @name contains the name of the security module being stacked. 1081 * @ops contains a pointer to the struct security_operations of the module to stack. 1082 * @unregister_security: 1083 * remove a stacked module. 1084 * @name contains the name of the security module being unstacked. 1085 * @ops contains a pointer to the struct security_operations of the module to unstack. 1086 * 1087 * This is the main security structure. 1088 */ 1089 struct security_operations { 1090 int (*ptrace) (struct task_struct * parent, struct task_struct * child); 1091 int (*capget) (struct task_struct * target, 1092 kernel_cap_t * effective, 1093 kernel_cap_t * inheritable, kernel_cap_t * permitted); 1094 int (*capset_check) (struct task_struct * target, 1095 kernel_cap_t * effective, 1096 kernel_cap_t * inheritable, 1097 kernel_cap_t * permitted); 1098 void (*capset_set) (struct task_struct * target, 1099 kernel_cap_t * effective, 1100 kernel_cap_t * inheritable, 1101 kernel_cap_t * permitted); 1102 int (*capable) (struct task_struct * tsk, int cap); 1103 int (*acct) (struct file * file); 1104 int (*sysctl) (struct ctl_table * table, int op); 1105 int (*quotactl) (int cmds, int type, int id, struct super_block * sb); 1106 int (*quota_on) (struct dentry * dentry); 1107 int (*syslog) (int type); 1108 int (*settime) (struct timespec *ts, struct timezone *tz); 1109 int (*vm_enough_memory) (long pages); 1110 1111 int (*bprm_alloc_security) (struct linux_binprm * bprm); 1112 void (*bprm_free_security) (struct linux_binprm * bprm); 1113 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe); 1114 void (*bprm_post_apply_creds) (struct linux_binprm * bprm); 1115 int (*bprm_set_security) (struct linux_binprm * bprm); 1116 int (*bprm_check_security) (struct linux_binprm * bprm); 1117 int (*bprm_secureexec) (struct linux_binprm * bprm); 1118 1119 int (*sb_alloc_security) (struct super_block * sb); 1120 void (*sb_free_security) (struct super_block * sb); 1121 int (*sb_copy_data)(struct file_system_type *type, 1122 void *orig, void *copy); 1123 int (*sb_kern_mount) (struct super_block *sb, void *data); 1124 int (*sb_statfs) (struct super_block * sb); 1125 int (*sb_mount) (char *dev_name, struct nameidata * nd, 1126 char *type, unsigned long flags, void *data); 1127 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd); 1128 int (*sb_umount) (struct vfsmount * mnt, int flags); 1129 void (*sb_umount_close) (struct vfsmount * mnt); 1130 void (*sb_umount_busy) (struct vfsmount * mnt); 1131 void (*sb_post_remount) (struct vfsmount * mnt, 1132 unsigned long flags, void *data); 1133 void (*sb_post_mountroot) (void); 1134 void (*sb_post_addmount) (struct vfsmount * mnt, 1135 struct nameidata * mountpoint_nd); 1136 int (*sb_pivotroot) (struct nameidata * old_nd, 1137 struct nameidata * new_nd); 1138 void (*sb_post_pivotroot) (struct nameidata * old_nd, 1139 struct nameidata * new_nd); 1140 1141 int (*inode_alloc_security) (struct inode *inode); 1142 void (*inode_free_security) (struct inode *inode); 1143 int (*inode_init_security) (struct inode *inode, struct inode *dir, 1144 char **name, void **value, size_t *len); 1145 int (*inode_create) (struct inode *dir, 1146 struct dentry *dentry, int mode); 1147 int (*inode_link) (struct dentry *old_dentry, 1148 struct inode *dir, struct dentry *new_dentry); 1149 int (*inode_unlink) (struct inode *dir, struct dentry *dentry); 1150 int (*inode_symlink) (struct inode *dir, 1151 struct dentry *dentry, const char *old_name); 1152 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); 1153 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); 1154 int (*inode_mknod) (struct inode *dir, struct dentry *dentry, 1155 int mode, dev_t dev); 1156 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, 1157 struct inode *new_dir, struct dentry *new_dentry); 1158 int (*inode_readlink) (struct dentry *dentry); 1159 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); 1160 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd); 1161 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); 1162 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); 1163 void (*inode_delete) (struct inode *inode); 1164 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value, 1165 size_t size, int flags); 1166 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value, 1167 size_t size, int flags); 1168 int (*inode_getxattr) (struct dentry *dentry, char *name); 1169 int (*inode_listxattr) (struct dentry *dentry); 1170 int (*inode_removexattr) (struct dentry *dentry, char *name); 1171 int (*inode_getsecurity)(struct inode *inode, const char *name, void *buffer, size_t size, int err); 1172 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags); 1173 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size); 1174 1175 int (*file_permission) (struct file * file, int mask); 1176 int (*file_alloc_security) (struct file * file); 1177 void (*file_free_security) (struct file * file); 1178 int (*file_ioctl) (struct file * file, unsigned int cmd, 1179 unsigned long arg); 1180 int (*file_mmap) (struct file * file, 1181 unsigned long reqprot, 1182 unsigned long prot, unsigned long flags); 1183 int (*file_mprotect) (struct vm_area_struct * vma, 1184 unsigned long reqprot, 1185 unsigned long prot); 1186 int (*file_lock) (struct file * file, unsigned int cmd); 1187 int (*file_fcntl) (struct file * file, unsigned int cmd, 1188 unsigned long arg); 1189 int (*file_set_fowner) (struct file * file); 1190 int (*file_send_sigiotask) (struct task_struct * tsk, 1191 struct fown_struct * fown, int sig); 1192 int (*file_receive) (struct file * file); 1193 1194 int (*task_create) (unsigned long clone_flags); 1195 int (*task_alloc_security) (struct task_struct * p); 1196 void (*task_free_security) (struct task_struct * p); 1197 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags); 1198 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ , 1199 uid_t old_euid, uid_t old_suid, int flags); 1200 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags); 1201 int (*task_setpgid) (struct task_struct * p, pid_t pgid); 1202 int (*task_getpgid) (struct task_struct * p); 1203 int (*task_getsid) (struct task_struct * p); 1204 int (*task_setgroups) (struct group_info *group_info); 1205 int (*task_setnice) (struct task_struct * p, int nice); 1206 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim); 1207 int (*task_setscheduler) (struct task_struct * p, int policy, 1208 struct sched_param * lp); 1209 int (*task_getscheduler) (struct task_struct * p); 1210 int (*task_kill) (struct task_struct * p, 1211 struct siginfo * info, int sig); 1212 int (*task_wait) (struct task_struct * p); 1213 int (*task_prctl) (int option, unsigned long arg2, 1214 unsigned long arg3, unsigned long arg4, 1215 unsigned long arg5); 1216 void (*task_reparent_to_init) (struct task_struct * p); 1217 void (*task_to_inode)(struct task_struct *p, struct inode *inode); 1218 1219 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag); 1220 1221 int (*msg_msg_alloc_security) (struct msg_msg * msg); 1222 void (*msg_msg_free_security) (struct msg_msg * msg); 1223 1224 int (*msg_queue_alloc_security) (struct msg_queue * msq); 1225 void (*msg_queue_free_security) (struct msg_queue * msq); 1226 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg); 1227 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd); 1228 int (*msg_queue_msgsnd) (struct msg_queue * msq, 1229 struct msg_msg * msg, int msqflg); 1230 int (*msg_queue_msgrcv) (struct msg_queue * msq, 1231 struct msg_msg * msg, 1232 struct task_struct * target, 1233 long type, int mode); 1234 1235 int (*shm_alloc_security) (struct shmid_kernel * shp); 1236 void (*shm_free_security) (struct shmid_kernel * shp); 1237 int (*shm_associate) (struct shmid_kernel * shp, int shmflg); 1238 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd); 1239 int (*shm_shmat) (struct shmid_kernel * shp, 1240 char __user *shmaddr, int shmflg); 1241 1242 int (*sem_alloc_security) (struct sem_array * sma); 1243 void (*sem_free_security) (struct sem_array * sma); 1244 int (*sem_associate) (struct sem_array * sma, int semflg); 1245 int (*sem_semctl) (struct sem_array * sma, int cmd); 1246 int (*sem_semop) (struct sem_array * sma, 1247 struct sembuf * sops, unsigned nsops, int alter); 1248 1249 int (*netlink_send) (struct sock * sk, struct sk_buff * skb); 1250 int (*netlink_recv) (struct sk_buff * skb); 1251 1252 /* allow module stacking */ 1253 int (*register_security) (const char *name, 1254 struct security_operations *ops); 1255 int (*unregister_security) (const char *name, 1256 struct security_operations *ops); 1257 1258 void (*d_instantiate) (struct dentry *dentry, struct inode *inode); 1259 1260 int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1261 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1262 1263 #ifdef CONFIG_SECURITY_NETWORK 1264 int (*unix_stream_connect) (struct socket * sock, 1265 struct socket * other, struct sock * newsk); 1266 int (*unix_may_send) (struct socket * sock, struct socket * other); 1267 1268 int (*socket_create) (int family, int type, int protocol, int kern); 1269 void (*socket_post_create) (struct socket * sock, int family, 1270 int type, int protocol, int kern); 1271 int (*socket_bind) (struct socket * sock, 1272 struct sockaddr * address, int addrlen); 1273 int (*socket_connect) (struct socket * sock, 1274 struct sockaddr * address, int addrlen); 1275 int (*socket_listen) (struct socket * sock, int backlog); 1276 int (*socket_accept) (struct socket * sock, struct socket * newsock); 1277 void (*socket_post_accept) (struct socket * sock, 1278 struct socket * newsock); 1279 int (*socket_sendmsg) (struct socket * sock, 1280 struct msghdr * msg, int size); 1281 int (*socket_recvmsg) (struct socket * sock, 1282 struct msghdr * msg, int size, int flags); 1283 int (*socket_getsockname) (struct socket * sock); 1284 int (*socket_getpeername) (struct socket * sock); 1285 int (*socket_getsockopt) (struct socket * sock, int level, int optname); 1286 int (*socket_setsockopt) (struct socket * sock, int level, int optname); 1287 int (*socket_shutdown) (struct socket * sock, int how); 1288 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb); 1289 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); 1290 int (*socket_getpeersec_dgram) (struct sk_buff *skb, char **secdata, u32 *seclen); 1291 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); 1292 void (*sk_free_security) (struct sock *sk); 1293 unsigned int (*sk_getsid) (struct sock *sk, struct flowi *fl, u8 dir); 1294 #endif /* CONFIG_SECURITY_NETWORK */ 1295 1296 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1297 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx); 1298 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new); 1299 void (*xfrm_policy_free_security) (struct xfrm_policy *xp); 1300 int (*xfrm_state_alloc_security) (struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx); 1301 void (*xfrm_state_free_security) (struct xfrm_state *x); 1302 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 sk_sid, u8 dir); 1303 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1304 1305 /* key management security hooks */ 1306 #ifdef CONFIG_KEYS 1307 int (*key_alloc)(struct key *key); 1308 void (*key_free)(struct key *key); 1309 int (*key_permission)(key_ref_t key_ref, 1310 struct task_struct *context, 1311 key_perm_t perm); 1312 1313 #endif /* CONFIG_KEYS */ 1314 1315 }; 1316 1317 /* global variables */ 1318 extern struct security_operations *security_ops; 1319 1320 /* inline stuff */ 1321 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child) 1322 { 1323 return security_ops->ptrace (parent, child); 1324 } 1325 1326 static inline int security_capget (struct task_struct *target, 1327 kernel_cap_t *effective, 1328 kernel_cap_t *inheritable, 1329 kernel_cap_t *permitted) 1330 { 1331 return security_ops->capget (target, effective, inheritable, permitted); 1332 } 1333 1334 static inline int security_capset_check (struct task_struct *target, 1335 kernel_cap_t *effective, 1336 kernel_cap_t *inheritable, 1337 kernel_cap_t *permitted) 1338 { 1339 return security_ops->capset_check (target, effective, inheritable, permitted); 1340 } 1341 1342 static inline void security_capset_set (struct task_struct *target, 1343 kernel_cap_t *effective, 1344 kernel_cap_t *inheritable, 1345 kernel_cap_t *permitted) 1346 { 1347 security_ops->capset_set (target, effective, inheritable, permitted); 1348 } 1349 1350 static inline int security_capable(struct task_struct *tsk, int cap) 1351 { 1352 return security_ops->capable(tsk, cap); 1353 } 1354 1355 static inline int security_acct (struct file *file) 1356 { 1357 return security_ops->acct (file); 1358 } 1359 1360 static inline int security_sysctl(struct ctl_table *table, int op) 1361 { 1362 return security_ops->sysctl(table, op); 1363 } 1364 1365 static inline int security_quotactl (int cmds, int type, int id, 1366 struct super_block *sb) 1367 { 1368 return security_ops->quotactl (cmds, type, id, sb); 1369 } 1370 1371 static inline int security_quota_on (struct dentry * dentry) 1372 { 1373 return security_ops->quota_on (dentry); 1374 } 1375 1376 static inline int security_syslog(int type) 1377 { 1378 return security_ops->syslog(type); 1379 } 1380 1381 static inline int security_settime(struct timespec *ts, struct timezone *tz) 1382 { 1383 return security_ops->settime(ts, tz); 1384 } 1385 1386 1387 static inline int security_vm_enough_memory(long pages) 1388 { 1389 return security_ops->vm_enough_memory(pages); 1390 } 1391 1392 static inline int security_bprm_alloc (struct linux_binprm *bprm) 1393 { 1394 return security_ops->bprm_alloc_security (bprm); 1395 } 1396 static inline void security_bprm_free (struct linux_binprm *bprm) 1397 { 1398 security_ops->bprm_free_security (bprm); 1399 } 1400 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 1401 { 1402 security_ops->bprm_apply_creds (bprm, unsafe); 1403 } 1404 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 1405 { 1406 security_ops->bprm_post_apply_creds (bprm); 1407 } 1408 static inline int security_bprm_set (struct linux_binprm *bprm) 1409 { 1410 return security_ops->bprm_set_security (bprm); 1411 } 1412 1413 static inline int security_bprm_check (struct linux_binprm *bprm) 1414 { 1415 return security_ops->bprm_check_security (bprm); 1416 } 1417 1418 static inline int security_bprm_secureexec (struct linux_binprm *bprm) 1419 { 1420 return security_ops->bprm_secureexec (bprm); 1421 } 1422 1423 static inline int security_sb_alloc (struct super_block *sb) 1424 { 1425 return security_ops->sb_alloc_security (sb); 1426 } 1427 1428 static inline void security_sb_free (struct super_block *sb) 1429 { 1430 security_ops->sb_free_security (sb); 1431 } 1432 1433 static inline int security_sb_copy_data (struct file_system_type *type, 1434 void *orig, void *copy) 1435 { 1436 return security_ops->sb_copy_data (type, orig, copy); 1437 } 1438 1439 static inline int security_sb_kern_mount (struct super_block *sb, void *data) 1440 { 1441 return security_ops->sb_kern_mount (sb, data); 1442 } 1443 1444 static inline int security_sb_statfs (struct super_block *sb) 1445 { 1446 return security_ops->sb_statfs (sb); 1447 } 1448 1449 static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 1450 char *type, unsigned long flags, 1451 void *data) 1452 { 1453 return security_ops->sb_mount (dev_name, nd, type, flags, data); 1454 } 1455 1456 static inline int security_sb_check_sb (struct vfsmount *mnt, 1457 struct nameidata *nd) 1458 { 1459 return security_ops->sb_check_sb (mnt, nd); 1460 } 1461 1462 static inline int security_sb_umount (struct vfsmount *mnt, int flags) 1463 { 1464 return security_ops->sb_umount (mnt, flags); 1465 } 1466 1467 static inline void security_sb_umount_close (struct vfsmount *mnt) 1468 { 1469 security_ops->sb_umount_close (mnt); 1470 } 1471 1472 static inline void security_sb_umount_busy (struct vfsmount *mnt) 1473 { 1474 security_ops->sb_umount_busy (mnt); 1475 } 1476 1477 static inline void security_sb_post_remount (struct vfsmount *mnt, 1478 unsigned long flags, void *data) 1479 { 1480 security_ops->sb_post_remount (mnt, flags, data); 1481 } 1482 1483 static inline void security_sb_post_mountroot (void) 1484 { 1485 security_ops->sb_post_mountroot (); 1486 } 1487 1488 static inline void security_sb_post_addmount (struct vfsmount *mnt, 1489 struct nameidata *mountpoint_nd) 1490 { 1491 security_ops->sb_post_addmount (mnt, mountpoint_nd); 1492 } 1493 1494 static inline int security_sb_pivotroot (struct nameidata *old_nd, 1495 struct nameidata *new_nd) 1496 { 1497 return security_ops->sb_pivotroot (old_nd, new_nd); 1498 } 1499 1500 static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 1501 struct nameidata *new_nd) 1502 { 1503 security_ops->sb_post_pivotroot (old_nd, new_nd); 1504 } 1505 1506 static inline int security_inode_alloc (struct inode *inode) 1507 { 1508 return security_ops->inode_alloc_security (inode); 1509 } 1510 1511 static inline void security_inode_free (struct inode *inode) 1512 { 1513 security_ops->inode_free_security (inode); 1514 } 1515 1516 static inline int security_inode_init_security (struct inode *inode, 1517 struct inode *dir, 1518 char **name, 1519 void **value, 1520 size_t *len) 1521 { 1522 if (unlikely (IS_PRIVATE (inode))) 1523 return -EOPNOTSUPP; 1524 return security_ops->inode_init_security (inode, dir, name, value, len); 1525 } 1526 1527 static inline int security_inode_create (struct inode *dir, 1528 struct dentry *dentry, 1529 int mode) 1530 { 1531 if (unlikely (IS_PRIVATE (dir))) 1532 return 0; 1533 return security_ops->inode_create (dir, dentry, mode); 1534 } 1535 1536 static inline int security_inode_link (struct dentry *old_dentry, 1537 struct inode *dir, 1538 struct dentry *new_dentry) 1539 { 1540 if (unlikely (IS_PRIVATE (old_dentry->d_inode))) 1541 return 0; 1542 return security_ops->inode_link (old_dentry, dir, new_dentry); 1543 } 1544 1545 static inline int security_inode_unlink (struct inode *dir, 1546 struct dentry *dentry) 1547 { 1548 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1549 return 0; 1550 return security_ops->inode_unlink (dir, dentry); 1551 } 1552 1553 static inline int security_inode_symlink (struct inode *dir, 1554 struct dentry *dentry, 1555 const char *old_name) 1556 { 1557 if (unlikely (IS_PRIVATE (dir))) 1558 return 0; 1559 return security_ops->inode_symlink (dir, dentry, old_name); 1560 } 1561 1562 static inline int security_inode_mkdir (struct inode *dir, 1563 struct dentry *dentry, 1564 int mode) 1565 { 1566 if (unlikely (IS_PRIVATE (dir))) 1567 return 0; 1568 return security_ops->inode_mkdir (dir, dentry, mode); 1569 } 1570 1571 static inline int security_inode_rmdir (struct inode *dir, 1572 struct dentry *dentry) 1573 { 1574 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1575 return 0; 1576 return security_ops->inode_rmdir (dir, dentry); 1577 } 1578 1579 static inline int security_inode_mknod (struct inode *dir, 1580 struct dentry *dentry, 1581 int mode, dev_t dev) 1582 { 1583 if (unlikely (IS_PRIVATE (dir))) 1584 return 0; 1585 return security_ops->inode_mknod (dir, dentry, mode, dev); 1586 } 1587 1588 static inline int security_inode_rename (struct inode *old_dir, 1589 struct dentry *old_dentry, 1590 struct inode *new_dir, 1591 struct dentry *new_dentry) 1592 { 1593 if (unlikely (IS_PRIVATE (old_dentry->d_inode) || 1594 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode)))) 1595 return 0; 1596 return security_ops->inode_rename (old_dir, old_dentry, 1597 new_dir, new_dentry); 1598 } 1599 1600 static inline int security_inode_readlink (struct dentry *dentry) 1601 { 1602 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1603 return 0; 1604 return security_ops->inode_readlink (dentry); 1605 } 1606 1607 static inline int security_inode_follow_link (struct dentry *dentry, 1608 struct nameidata *nd) 1609 { 1610 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1611 return 0; 1612 return security_ops->inode_follow_link (dentry, nd); 1613 } 1614 1615 static inline int security_inode_permission (struct inode *inode, int mask, 1616 struct nameidata *nd) 1617 { 1618 if (unlikely (IS_PRIVATE (inode))) 1619 return 0; 1620 return security_ops->inode_permission (inode, mask, nd); 1621 } 1622 1623 static inline int security_inode_setattr (struct dentry *dentry, 1624 struct iattr *attr) 1625 { 1626 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1627 return 0; 1628 return security_ops->inode_setattr (dentry, attr); 1629 } 1630 1631 static inline int security_inode_getattr (struct vfsmount *mnt, 1632 struct dentry *dentry) 1633 { 1634 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1635 return 0; 1636 return security_ops->inode_getattr (mnt, dentry); 1637 } 1638 1639 static inline void security_inode_delete (struct inode *inode) 1640 { 1641 if (unlikely (IS_PRIVATE (inode))) 1642 return; 1643 security_ops->inode_delete (inode); 1644 } 1645 1646 static inline int security_inode_setxattr (struct dentry *dentry, char *name, 1647 void *value, size_t size, int flags) 1648 { 1649 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1650 return 0; 1651 return security_ops->inode_setxattr (dentry, name, value, size, flags); 1652 } 1653 1654 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 1655 void *value, size_t size, int flags) 1656 { 1657 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1658 return; 1659 security_ops->inode_post_setxattr (dentry, name, value, size, flags); 1660 } 1661 1662 static inline int security_inode_getxattr (struct dentry *dentry, char *name) 1663 { 1664 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1665 return 0; 1666 return security_ops->inode_getxattr (dentry, name); 1667 } 1668 1669 static inline int security_inode_listxattr (struct dentry *dentry) 1670 { 1671 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1672 return 0; 1673 return security_ops->inode_listxattr (dentry); 1674 } 1675 1676 static inline int security_inode_removexattr (struct dentry *dentry, char *name) 1677 { 1678 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1679 return 0; 1680 return security_ops->inode_removexattr (dentry, name); 1681 } 1682 1683 static inline int security_inode_getsecurity(struct inode *inode, const char *name, void *buffer, size_t size, int err) 1684 { 1685 if (unlikely (IS_PRIVATE (inode))) 1686 return 0; 1687 return security_ops->inode_getsecurity(inode, name, buffer, size, err); 1688 } 1689 1690 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1691 { 1692 if (unlikely (IS_PRIVATE (inode))) 1693 return 0; 1694 return security_ops->inode_setsecurity(inode, name, value, size, flags); 1695 } 1696 1697 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1698 { 1699 if (unlikely (IS_PRIVATE (inode))) 1700 return 0; 1701 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 1702 } 1703 1704 static inline int security_file_permission (struct file *file, int mask) 1705 { 1706 return security_ops->file_permission (file, mask); 1707 } 1708 1709 static inline int security_file_alloc (struct file *file) 1710 { 1711 return security_ops->file_alloc_security (file); 1712 } 1713 1714 static inline void security_file_free (struct file *file) 1715 { 1716 security_ops->file_free_security (file); 1717 } 1718 1719 static inline int security_file_ioctl (struct file *file, unsigned int cmd, 1720 unsigned long arg) 1721 { 1722 return security_ops->file_ioctl (file, cmd, arg); 1723 } 1724 1725 static inline int security_file_mmap (struct file *file, unsigned long reqprot, 1726 unsigned long prot, 1727 unsigned long flags) 1728 { 1729 return security_ops->file_mmap (file, reqprot, prot, flags); 1730 } 1731 1732 static inline int security_file_mprotect (struct vm_area_struct *vma, 1733 unsigned long reqprot, 1734 unsigned long prot) 1735 { 1736 return security_ops->file_mprotect (vma, reqprot, prot); 1737 } 1738 1739 static inline int security_file_lock (struct file *file, unsigned int cmd) 1740 { 1741 return security_ops->file_lock (file, cmd); 1742 } 1743 1744 static inline int security_file_fcntl (struct file *file, unsigned int cmd, 1745 unsigned long arg) 1746 { 1747 return security_ops->file_fcntl (file, cmd, arg); 1748 } 1749 1750 static inline int security_file_set_fowner (struct file *file) 1751 { 1752 return security_ops->file_set_fowner (file); 1753 } 1754 1755 static inline int security_file_send_sigiotask (struct task_struct *tsk, 1756 struct fown_struct *fown, 1757 int sig) 1758 { 1759 return security_ops->file_send_sigiotask (tsk, fown, sig); 1760 } 1761 1762 static inline int security_file_receive (struct file *file) 1763 { 1764 return security_ops->file_receive (file); 1765 } 1766 1767 static inline int security_task_create (unsigned long clone_flags) 1768 { 1769 return security_ops->task_create (clone_flags); 1770 } 1771 1772 static inline int security_task_alloc (struct task_struct *p) 1773 { 1774 return security_ops->task_alloc_security (p); 1775 } 1776 1777 static inline void security_task_free (struct task_struct *p) 1778 { 1779 security_ops->task_free_security (p); 1780 } 1781 1782 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 1783 int flags) 1784 { 1785 return security_ops->task_setuid (id0, id1, id2, flags); 1786 } 1787 1788 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 1789 uid_t old_suid, int flags) 1790 { 1791 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags); 1792 } 1793 1794 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 1795 int flags) 1796 { 1797 return security_ops->task_setgid (id0, id1, id2, flags); 1798 } 1799 1800 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 1801 { 1802 return security_ops->task_setpgid (p, pgid); 1803 } 1804 1805 static inline int security_task_getpgid (struct task_struct *p) 1806 { 1807 return security_ops->task_getpgid (p); 1808 } 1809 1810 static inline int security_task_getsid (struct task_struct *p) 1811 { 1812 return security_ops->task_getsid (p); 1813 } 1814 1815 static inline int security_task_setgroups (struct group_info *group_info) 1816 { 1817 return security_ops->task_setgroups (group_info); 1818 } 1819 1820 static inline int security_task_setnice (struct task_struct *p, int nice) 1821 { 1822 return security_ops->task_setnice (p, nice); 1823 } 1824 1825 static inline int security_task_setrlimit (unsigned int resource, 1826 struct rlimit *new_rlim) 1827 { 1828 return security_ops->task_setrlimit (resource, new_rlim); 1829 } 1830 1831 static inline int security_task_setscheduler (struct task_struct *p, 1832 int policy, 1833 struct sched_param *lp) 1834 { 1835 return security_ops->task_setscheduler (p, policy, lp); 1836 } 1837 1838 static inline int security_task_getscheduler (struct task_struct *p) 1839 { 1840 return security_ops->task_getscheduler (p); 1841 } 1842 1843 static inline int security_task_kill (struct task_struct *p, 1844 struct siginfo *info, int sig) 1845 { 1846 return security_ops->task_kill (p, info, sig); 1847 } 1848 1849 static inline int security_task_wait (struct task_struct *p) 1850 { 1851 return security_ops->task_wait (p); 1852 } 1853 1854 static inline int security_task_prctl (int option, unsigned long arg2, 1855 unsigned long arg3, 1856 unsigned long arg4, 1857 unsigned long arg5) 1858 { 1859 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5); 1860 } 1861 1862 static inline void security_task_reparent_to_init (struct task_struct *p) 1863 { 1864 security_ops->task_reparent_to_init (p); 1865 } 1866 1867 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 1868 { 1869 security_ops->task_to_inode(p, inode); 1870 } 1871 1872 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 1873 short flag) 1874 { 1875 return security_ops->ipc_permission (ipcp, flag); 1876 } 1877 1878 static inline int security_msg_msg_alloc (struct msg_msg * msg) 1879 { 1880 return security_ops->msg_msg_alloc_security (msg); 1881 } 1882 1883 static inline void security_msg_msg_free (struct msg_msg * msg) 1884 { 1885 security_ops->msg_msg_free_security(msg); 1886 } 1887 1888 static inline int security_msg_queue_alloc (struct msg_queue *msq) 1889 { 1890 return security_ops->msg_queue_alloc_security (msq); 1891 } 1892 1893 static inline void security_msg_queue_free (struct msg_queue *msq) 1894 { 1895 security_ops->msg_queue_free_security (msq); 1896 } 1897 1898 static inline int security_msg_queue_associate (struct msg_queue * msq, 1899 int msqflg) 1900 { 1901 return security_ops->msg_queue_associate (msq, msqflg); 1902 } 1903 1904 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 1905 { 1906 return security_ops->msg_queue_msgctl (msq, cmd); 1907 } 1908 1909 static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 1910 struct msg_msg * msg, int msqflg) 1911 { 1912 return security_ops->msg_queue_msgsnd (msq, msg, msqflg); 1913 } 1914 1915 static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 1916 struct msg_msg * msg, 1917 struct task_struct * target, 1918 long type, int mode) 1919 { 1920 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode); 1921 } 1922 1923 static inline int security_shm_alloc (struct shmid_kernel *shp) 1924 { 1925 return security_ops->shm_alloc_security (shp); 1926 } 1927 1928 static inline void security_shm_free (struct shmid_kernel *shp) 1929 { 1930 security_ops->shm_free_security (shp); 1931 } 1932 1933 static inline int security_shm_associate (struct shmid_kernel * shp, 1934 int shmflg) 1935 { 1936 return security_ops->shm_associate(shp, shmflg); 1937 } 1938 1939 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 1940 { 1941 return security_ops->shm_shmctl (shp, cmd); 1942 } 1943 1944 static inline int security_shm_shmat (struct shmid_kernel * shp, 1945 char __user *shmaddr, int shmflg) 1946 { 1947 return security_ops->shm_shmat(shp, shmaddr, shmflg); 1948 } 1949 1950 static inline int security_sem_alloc (struct sem_array *sma) 1951 { 1952 return security_ops->sem_alloc_security (sma); 1953 } 1954 1955 static inline void security_sem_free (struct sem_array *sma) 1956 { 1957 security_ops->sem_free_security (sma); 1958 } 1959 1960 static inline int security_sem_associate (struct sem_array * sma, int semflg) 1961 { 1962 return security_ops->sem_associate (sma, semflg); 1963 } 1964 1965 static inline int security_sem_semctl (struct sem_array * sma, int cmd) 1966 { 1967 return security_ops->sem_semctl(sma, cmd); 1968 } 1969 1970 static inline int security_sem_semop (struct sem_array * sma, 1971 struct sembuf * sops, unsigned nsops, 1972 int alter) 1973 { 1974 return security_ops->sem_semop(sma, sops, nsops, alter); 1975 } 1976 1977 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 1978 { 1979 if (unlikely (inode && IS_PRIVATE (inode))) 1980 return; 1981 security_ops->d_instantiate (dentry, inode); 1982 } 1983 1984 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) 1985 { 1986 return security_ops->getprocattr(p, name, value, size); 1987 } 1988 1989 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 1990 { 1991 return security_ops->setprocattr(p, name, value, size); 1992 } 1993 1994 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb) 1995 { 1996 return security_ops->netlink_send(sk, skb); 1997 } 1998 1999 static inline int security_netlink_recv(struct sk_buff * skb) 2000 { 2001 return security_ops->netlink_recv(skb); 2002 } 2003 2004 /* prototypes */ 2005 extern int security_init (void); 2006 extern int register_security (struct security_operations *ops); 2007 extern int unregister_security (struct security_operations *ops); 2008 extern int mod_reg_security (const char *name, struct security_operations *ops); 2009 extern int mod_unreg_security (const char *name, struct security_operations *ops); 2010 extern struct dentry *securityfs_create_file(const char *name, mode_t mode, 2011 struct dentry *parent, void *data, 2012 struct file_operations *fops); 2013 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); 2014 extern void securityfs_remove(struct dentry *dentry); 2015 2016 2017 #else /* CONFIG_SECURITY */ 2018 2019 /* 2020 * This is the default capabilities functionality. Most of these functions 2021 * are just stubbed out, but a few must call the proper capable code. 2022 */ 2023 2024 static inline int security_init(void) 2025 { 2026 return 0; 2027 } 2028 2029 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child) 2030 { 2031 return cap_ptrace (parent, child); 2032 } 2033 2034 static inline int security_capget (struct task_struct *target, 2035 kernel_cap_t *effective, 2036 kernel_cap_t *inheritable, 2037 kernel_cap_t *permitted) 2038 { 2039 return cap_capget (target, effective, inheritable, permitted); 2040 } 2041 2042 static inline int security_capset_check (struct task_struct *target, 2043 kernel_cap_t *effective, 2044 kernel_cap_t *inheritable, 2045 kernel_cap_t *permitted) 2046 { 2047 return cap_capset_check (target, effective, inheritable, permitted); 2048 } 2049 2050 static inline void security_capset_set (struct task_struct *target, 2051 kernel_cap_t *effective, 2052 kernel_cap_t *inheritable, 2053 kernel_cap_t *permitted) 2054 { 2055 cap_capset_set (target, effective, inheritable, permitted); 2056 } 2057 2058 static inline int security_capable(struct task_struct *tsk, int cap) 2059 { 2060 return cap_capable(tsk, cap); 2061 } 2062 2063 static inline int security_acct (struct file *file) 2064 { 2065 return 0; 2066 } 2067 2068 static inline int security_sysctl(struct ctl_table *table, int op) 2069 { 2070 return 0; 2071 } 2072 2073 static inline int security_quotactl (int cmds, int type, int id, 2074 struct super_block * sb) 2075 { 2076 return 0; 2077 } 2078 2079 static inline int security_quota_on (struct dentry * dentry) 2080 { 2081 return 0; 2082 } 2083 2084 static inline int security_syslog(int type) 2085 { 2086 return cap_syslog(type); 2087 } 2088 2089 static inline int security_settime(struct timespec *ts, struct timezone *tz) 2090 { 2091 return cap_settime(ts, tz); 2092 } 2093 2094 static inline int security_vm_enough_memory(long pages) 2095 { 2096 return cap_vm_enough_memory(pages); 2097 } 2098 2099 static inline int security_bprm_alloc (struct linux_binprm *bprm) 2100 { 2101 return 0; 2102 } 2103 2104 static inline void security_bprm_free (struct linux_binprm *bprm) 2105 { } 2106 2107 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 2108 { 2109 cap_bprm_apply_creds (bprm, unsafe); 2110 } 2111 2112 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 2113 { 2114 return; 2115 } 2116 2117 static inline int security_bprm_set (struct linux_binprm *bprm) 2118 { 2119 return cap_bprm_set_security (bprm); 2120 } 2121 2122 static inline int security_bprm_check (struct linux_binprm *bprm) 2123 { 2124 return 0; 2125 } 2126 2127 static inline int security_bprm_secureexec (struct linux_binprm *bprm) 2128 { 2129 return cap_bprm_secureexec(bprm); 2130 } 2131 2132 static inline int security_sb_alloc (struct super_block *sb) 2133 { 2134 return 0; 2135 } 2136 2137 static inline void security_sb_free (struct super_block *sb) 2138 { } 2139 2140 static inline int security_sb_copy_data (struct file_system_type *type, 2141 void *orig, void *copy) 2142 { 2143 return 0; 2144 } 2145 2146 static inline int security_sb_kern_mount (struct super_block *sb, void *data) 2147 { 2148 return 0; 2149 } 2150 2151 static inline int security_sb_statfs (struct super_block *sb) 2152 { 2153 return 0; 2154 } 2155 2156 static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 2157 char *type, unsigned long flags, 2158 void *data) 2159 { 2160 return 0; 2161 } 2162 2163 static inline int security_sb_check_sb (struct vfsmount *mnt, 2164 struct nameidata *nd) 2165 { 2166 return 0; 2167 } 2168 2169 static inline int security_sb_umount (struct vfsmount *mnt, int flags) 2170 { 2171 return 0; 2172 } 2173 2174 static inline void security_sb_umount_close (struct vfsmount *mnt) 2175 { } 2176 2177 static inline void security_sb_umount_busy (struct vfsmount *mnt) 2178 { } 2179 2180 static inline void security_sb_post_remount (struct vfsmount *mnt, 2181 unsigned long flags, void *data) 2182 { } 2183 2184 static inline void security_sb_post_mountroot (void) 2185 { } 2186 2187 static inline void security_sb_post_addmount (struct vfsmount *mnt, 2188 struct nameidata *mountpoint_nd) 2189 { } 2190 2191 static inline int security_sb_pivotroot (struct nameidata *old_nd, 2192 struct nameidata *new_nd) 2193 { 2194 return 0; 2195 } 2196 2197 static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 2198 struct nameidata *new_nd) 2199 { } 2200 2201 static inline int security_inode_alloc (struct inode *inode) 2202 { 2203 return 0; 2204 } 2205 2206 static inline void security_inode_free (struct inode *inode) 2207 { } 2208 2209 static inline int security_inode_init_security (struct inode *inode, 2210 struct inode *dir, 2211 char **name, 2212 void **value, 2213 size_t *len) 2214 { 2215 return -EOPNOTSUPP; 2216 } 2217 2218 static inline int security_inode_create (struct inode *dir, 2219 struct dentry *dentry, 2220 int mode) 2221 { 2222 return 0; 2223 } 2224 2225 static inline int security_inode_link (struct dentry *old_dentry, 2226 struct inode *dir, 2227 struct dentry *new_dentry) 2228 { 2229 return 0; 2230 } 2231 2232 static inline int security_inode_unlink (struct inode *dir, 2233 struct dentry *dentry) 2234 { 2235 return 0; 2236 } 2237 2238 static inline int security_inode_symlink (struct inode *dir, 2239 struct dentry *dentry, 2240 const char *old_name) 2241 { 2242 return 0; 2243 } 2244 2245 static inline int security_inode_mkdir (struct inode *dir, 2246 struct dentry *dentry, 2247 int mode) 2248 { 2249 return 0; 2250 } 2251 2252 static inline int security_inode_rmdir (struct inode *dir, 2253 struct dentry *dentry) 2254 { 2255 return 0; 2256 } 2257 2258 static inline int security_inode_mknod (struct inode *dir, 2259 struct dentry *dentry, 2260 int mode, dev_t dev) 2261 { 2262 return 0; 2263 } 2264 2265 static inline int security_inode_rename (struct inode *old_dir, 2266 struct dentry *old_dentry, 2267 struct inode *new_dir, 2268 struct dentry *new_dentry) 2269 { 2270 return 0; 2271 } 2272 2273 static inline int security_inode_readlink (struct dentry *dentry) 2274 { 2275 return 0; 2276 } 2277 2278 static inline int security_inode_follow_link (struct dentry *dentry, 2279 struct nameidata *nd) 2280 { 2281 return 0; 2282 } 2283 2284 static inline int security_inode_permission (struct inode *inode, int mask, 2285 struct nameidata *nd) 2286 { 2287 return 0; 2288 } 2289 2290 static inline int security_inode_setattr (struct dentry *dentry, 2291 struct iattr *attr) 2292 { 2293 return 0; 2294 } 2295 2296 static inline int security_inode_getattr (struct vfsmount *mnt, 2297 struct dentry *dentry) 2298 { 2299 return 0; 2300 } 2301 2302 static inline void security_inode_delete (struct inode *inode) 2303 { } 2304 2305 static inline int security_inode_setxattr (struct dentry *dentry, char *name, 2306 void *value, size_t size, int flags) 2307 { 2308 return cap_inode_setxattr(dentry, name, value, size, flags); 2309 } 2310 2311 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 2312 void *value, size_t size, int flags) 2313 { } 2314 2315 static inline int security_inode_getxattr (struct dentry *dentry, char *name) 2316 { 2317 return 0; 2318 } 2319 2320 static inline int security_inode_listxattr (struct dentry *dentry) 2321 { 2322 return 0; 2323 } 2324 2325 static inline int security_inode_removexattr (struct dentry *dentry, char *name) 2326 { 2327 return cap_inode_removexattr(dentry, name); 2328 } 2329 2330 static inline int security_inode_getsecurity(struct inode *inode, const char *name, void *buffer, size_t size, int err) 2331 { 2332 return -EOPNOTSUPP; 2333 } 2334 2335 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 2336 { 2337 return -EOPNOTSUPP; 2338 } 2339 2340 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2341 { 2342 return 0; 2343 } 2344 2345 static inline int security_file_permission (struct file *file, int mask) 2346 { 2347 return 0; 2348 } 2349 2350 static inline int security_file_alloc (struct file *file) 2351 { 2352 return 0; 2353 } 2354 2355 static inline void security_file_free (struct file *file) 2356 { } 2357 2358 static inline int security_file_ioctl (struct file *file, unsigned int cmd, 2359 unsigned long arg) 2360 { 2361 return 0; 2362 } 2363 2364 static inline int security_file_mmap (struct file *file, unsigned long reqprot, 2365 unsigned long prot, 2366 unsigned long flags) 2367 { 2368 return 0; 2369 } 2370 2371 static inline int security_file_mprotect (struct vm_area_struct *vma, 2372 unsigned long reqprot, 2373 unsigned long prot) 2374 { 2375 return 0; 2376 } 2377 2378 static inline int security_file_lock (struct file *file, unsigned int cmd) 2379 { 2380 return 0; 2381 } 2382 2383 static inline int security_file_fcntl (struct file *file, unsigned int cmd, 2384 unsigned long arg) 2385 { 2386 return 0; 2387 } 2388 2389 static inline int security_file_set_fowner (struct file *file) 2390 { 2391 return 0; 2392 } 2393 2394 static inline int security_file_send_sigiotask (struct task_struct *tsk, 2395 struct fown_struct *fown, 2396 int sig) 2397 { 2398 return 0; 2399 } 2400 2401 static inline int security_file_receive (struct file *file) 2402 { 2403 return 0; 2404 } 2405 2406 static inline int security_task_create (unsigned long clone_flags) 2407 { 2408 return 0; 2409 } 2410 2411 static inline int security_task_alloc (struct task_struct *p) 2412 { 2413 return 0; 2414 } 2415 2416 static inline void security_task_free (struct task_struct *p) 2417 { } 2418 2419 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 2420 int flags) 2421 { 2422 return 0; 2423 } 2424 2425 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 2426 uid_t old_suid, int flags) 2427 { 2428 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags); 2429 } 2430 2431 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 2432 int flags) 2433 { 2434 return 0; 2435 } 2436 2437 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 2438 { 2439 return 0; 2440 } 2441 2442 static inline int security_task_getpgid (struct task_struct *p) 2443 { 2444 return 0; 2445 } 2446 2447 static inline int security_task_getsid (struct task_struct *p) 2448 { 2449 return 0; 2450 } 2451 2452 static inline int security_task_setgroups (struct group_info *group_info) 2453 { 2454 return 0; 2455 } 2456 2457 static inline int security_task_setnice (struct task_struct *p, int nice) 2458 { 2459 return 0; 2460 } 2461 2462 static inline int security_task_setrlimit (unsigned int resource, 2463 struct rlimit *new_rlim) 2464 { 2465 return 0; 2466 } 2467 2468 static inline int security_task_setscheduler (struct task_struct *p, 2469 int policy, 2470 struct sched_param *lp) 2471 { 2472 return 0; 2473 } 2474 2475 static inline int security_task_getscheduler (struct task_struct *p) 2476 { 2477 return 0; 2478 } 2479 2480 static inline int security_task_kill (struct task_struct *p, 2481 struct siginfo *info, int sig) 2482 { 2483 return 0; 2484 } 2485 2486 static inline int security_task_wait (struct task_struct *p) 2487 { 2488 return 0; 2489 } 2490 2491 static inline int security_task_prctl (int option, unsigned long arg2, 2492 unsigned long arg3, 2493 unsigned long arg4, 2494 unsigned long arg5) 2495 { 2496 return 0; 2497 } 2498 2499 static inline void security_task_reparent_to_init (struct task_struct *p) 2500 { 2501 cap_task_reparent_to_init (p); 2502 } 2503 2504 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 2505 { } 2506 2507 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 2508 short flag) 2509 { 2510 return 0; 2511 } 2512 2513 static inline int security_msg_msg_alloc (struct msg_msg * msg) 2514 { 2515 return 0; 2516 } 2517 2518 static inline void security_msg_msg_free (struct msg_msg * msg) 2519 { } 2520 2521 static inline int security_msg_queue_alloc (struct msg_queue *msq) 2522 { 2523 return 0; 2524 } 2525 2526 static inline void security_msg_queue_free (struct msg_queue *msq) 2527 { } 2528 2529 static inline int security_msg_queue_associate (struct msg_queue * msq, 2530 int msqflg) 2531 { 2532 return 0; 2533 } 2534 2535 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 2536 { 2537 return 0; 2538 } 2539 2540 static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 2541 struct msg_msg * msg, int msqflg) 2542 { 2543 return 0; 2544 } 2545 2546 static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 2547 struct msg_msg * msg, 2548 struct task_struct * target, 2549 long type, int mode) 2550 { 2551 return 0; 2552 } 2553 2554 static inline int security_shm_alloc (struct shmid_kernel *shp) 2555 { 2556 return 0; 2557 } 2558 2559 static inline void security_shm_free (struct shmid_kernel *shp) 2560 { } 2561 2562 static inline int security_shm_associate (struct shmid_kernel * shp, 2563 int shmflg) 2564 { 2565 return 0; 2566 } 2567 2568 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 2569 { 2570 return 0; 2571 } 2572 2573 static inline int security_shm_shmat (struct shmid_kernel * shp, 2574 char __user *shmaddr, int shmflg) 2575 { 2576 return 0; 2577 } 2578 2579 static inline int security_sem_alloc (struct sem_array *sma) 2580 { 2581 return 0; 2582 } 2583 2584 static inline void security_sem_free (struct sem_array *sma) 2585 { } 2586 2587 static inline int security_sem_associate (struct sem_array * sma, int semflg) 2588 { 2589 return 0; 2590 } 2591 2592 static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2593 { 2594 return 0; 2595 } 2596 2597 static inline int security_sem_semop (struct sem_array * sma, 2598 struct sembuf * sops, unsigned nsops, 2599 int alter) 2600 { 2601 return 0; 2602 } 2603 2604 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2605 { } 2606 2607 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) 2608 { 2609 return -EINVAL; 2610 } 2611 2612 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2613 { 2614 return -EINVAL; 2615 } 2616 2617 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb) 2618 { 2619 return cap_netlink_send (sk, skb); 2620 } 2621 2622 static inline int security_netlink_recv (struct sk_buff *skb) 2623 { 2624 return cap_netlink_recv (skb); 2625 } 2626 2627 static inline struct dentry *securityfs_create_dir(const char *name, 2628 struct dentry *parent) 2629 { 2630 return ERR_PTR(-ENODEV); 2631 } 2632 2633 static inline struct dentry *securityfs_create_file(const char *name, 2634 mode_t mode, 2635 struct dentry *parent, 2636 void *data, 2637 struct file_operations *fops) 2638 { 2639 return ERR_PTR(-ENODEV); 2640 } 2641 2642 static inline void securityfs_remove(struct dentry *dentry) 2643 { 2644 } 2645 2646 #endif /* CONFIG_SECURITY */ 2647 2648 #ifdef CONFIG_SECURITY_NETWORK 2649 static inline int security_unix_stream_connect(struct socket * sock, 2650 struct socket * other, 2651 struct sock * newsk) 2652 { 2653 return security_ops->unix_stream_connect(sock, other, newsk); 2654 } 2655 2656 2657 static inline int security_unix_may_send(struct socket * sock, 2658 struct socket * other) 2659 { 2660 return security_ops->unix_may_send(sock, other); 2661 } 2662 2663 static inline int security_socket_create (int family, int type, 2664 int protocol, int kern) 2665 { 2666 return security_ops->socket_create(family, type, protocol, kern); 2667 } 2668 2669 static inline void security_socket_post_create(struct socket * sock, 2670 int family, 2671 int type, 2672 int protocol, int kern) 2673 { 2674 security_ops->socket_post_create(sock, family, type, 2675 protocol, kern); 2676 } 2677 2678 static inline int security_socket_bind(struct socket * sock, 2679 struct sockaddr * address, 2680 int addrlen) 2681 { 2682 return security_ops->socket_bind(sock, address, addrlen); 2683 } 2684 2685 static inline int security_socket_connect(struct socket * sock, 2686 struct sockaddr * address, 2687 int addrlen) 2688 { 2689 return security_ops->socket_connect(sock, address, addrlen); 2690 } 2691 2692 static inline int security_socket_listen(struct socket * sock, int backlog) 2693 { 2694 return security_ops->socket_listen(sock, backlog); 2695 } 2696 2697 static inline int security_socket_accept(struct socket * sock, 2698 struct socket * newsock) 2699 { 2700 return security_ops->socket_accept(sock, newsock); 2701 } 2702 2703 static inline void security_socket_post_accept(struct socket * sock, 2704 struct socket * newsock) 2705 { 2706 security_ops->socket_post_accept(sock, newsock); 2707 } 2708 2709 static inline int security_socket_sendmsg(struct socket * sock, 2710 struct msghdr * msg, int size) 2711 { 2712 return security_ops->socket_sendmsg(sock, msg, size); 2713 } 2714 2715 static inline int security_socket_recvmsg(struct socket * sock, 2716 struct msghdr * msg, int size, 2717 int flags) 2718 { 2719 return security_ops->socket_recvmsg(sock, msg, size, flags); 2720 } 2721 2722 static inline int security_socket_getsockname(struct socket * sock) 2723 { 2724 return security_ops->socket_getsockname(sock); 2725 } 2726 2727 static inline int security_socket_getpeername(struct socket * sock) 2728 { 2729 return security_ops->socket_getpeername(sock); 2730 } 2731 2732 static inline int security_socket_getsockopt(struct socket * sock, 2733 int level, int optname) 2734 { 2735 return security_ops->socket_getsockopt(sock, level, optname); 2736 } 2737 2738 static inline int security_socket_setsockopt(struct socket * sock, 2739 int level, int optname) 2740 { 2741 return security_ops->socket_setsockopt(sock, level, optname); 2742 } 2743 2744 static inline int security_socket_shutdown(struct socket * sock, int how) 2745 { 2746 return security_ops->socket_shutdown(sock, how); 2747 } 2748 2749 static inline int security_sock_rcv_skb (struct sock * sk, 2750 struct sk_buff * skb) 2751 { 2752 return security_ops->socket_sock_rcv_skb (sk, skb); 2753 } 2754 2755 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2756 int __user *optlen, unsigned len) 2757 { 2758 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 2759 } 2760 2761 static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata, 2762 u32 *seclen) 2763 { 2764 return security_ops->socket_getpeersec_dgram(skb, secdata, seclen); 2765 } 2766 2767 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2768 { 2769 return security_ops->sk_alloc_security(sk, family, priority); 2770 } 2771 2772 static inline void security_sk_free(struct sock *sk) 2773 { 2774 return security_ops->sk_free_security(sk); 2775 } 2776 2777 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir) 2778 { 2779 return security_ops->sk_getsid(sk, fl, dir); 2780 } 2781 #else /* CONFIG_SECURITY_NETWORK */ 2782 static inline int security_unix_stream_connect(struct socket * sock, 2783 struct socket * other, 2784 struct sock * newsk) 2785 { 2786 return 0; 2787 } 2788 2789 static inline int security_unix_may_send(struct socket * sock, 2790 struct socket * other) 2791 { 2792 return 0; 2793 } 2794 2795 static inline int security_socket_create (int family, int type, 2796 int protocol, int kern) 2797 { 2798 return 0; 2799 } 2800 2801 static inline void security_socket_post_create(struct socket * sock, 2802 int family, 2803 int type, 2804 int protocol, int kern) 2805 { 2806 } 2807 2808 static inline int security_socket_bind(struct socket * sock, 2809 struct sockaddr * address, 2810 int addrlen) 2811 { 2812 return 0; 2813 } 2814 2815 static inline int security_socket_connect(struct socket * sock, 2816 struct sockaddr * address, 2817 int addrlen) 2818 { 2819 return 0; 2820 } 2821 2822 static inline int security_socket_listen(struct socket * sock, int backlog) 2823 { 2824 return 0; 2825 } 2826 2827 static inline int security_socket_accept(struct socket * sock, 2828 struct socket * newsock) 2829 { 2830 return 0; 2831 } 2832 2833 static inline void security_socket_post_accept(struct socket * sock, 2834 struct socket * newsock) 2835 { 2836 } 2837 2838 static inline int security_socket_sendmsg(struct socket * sock, 2839 struct msghdr * msg, int size) 2840 { 2841 return 0; 2842 } 2843 2844 static inline int security_socket_recvmsg(struct socket * sock, 2845 struct msghdr * msg, int size, 2846 int flags) 2847 { 2848 return 0; 2849 } 2850 2851 static inline int security_socket_getsockname(struct socket * sock) 2852 { 2853 return 0; 2854 } 2855 2856 static inline int security_socket_getpeername(struct socket * sock) 2857 { 2858 return 0; 2859 } 2860 2861 static inline int security_socket_getsockopt(struct socket * sock, 2862 int level, int optname) 2863 { 2864 return 0; 2865 } 2866 2867 static inline int security_socket_setsockopt(struct socket * sock, 2868 int level, int optname) 2869 { 2870 return 0; 2871 } 2872 2873 static inline int security_socket_shutdown(struct socket * sock, int how) 2874 { 2875 return 0; 2876 } 2877 static inline int security_sock_rcv_skb (struct sock * sk, 2878 struct sk_buff * skb) 2879 { 2880 return 0; 2881 } 2882 2883 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2884 int __user *optlen, unsigned len) 2885 { 2886 return -ENOPROTOOPT; 2887 } 2888 2889 static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata, 2890 u32 *seclen) 2891 { 2892 return -ENOPROTOOPT; 2893 } 2894 2895 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2896 { 2897 return 0; 2898 } 2899 2900 static inline void security_sk_free(struct sock *sk) 2901 { 2902 } 2903 2904 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir) 2905 { 2906 return 0; 2907 } 2908 #endif /* CONFIG_SECURITY_NETWORK */ 2909 2910 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2911 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 2912 { 2913 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx); 2914 } 2915 2916 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 2917 { 2918 return security_ops->xfrm_policy_clone_security(old, new); 2919 } 2920 2921 static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 2922 { 2923 security_ops->xfrm_policy_free_security(xp); 2924 } 2925 2926 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 2927 { 2928 return security_ops->xfrm_state_alloc_security(x, sec_ctx); 2929 } 2930 2931 static inline void security_xfrm_state_free(struct xfrm_state *x) 2932 { 2933 security_ops->xfrm_state_free_security(x); 2934 } 2935 2936 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir) 2937 { 2938 return security_ops->xfrm_policy_lookup(xp, sk_sid, dir); 2939 } 2940 #else /* CONFIG_SECURITY_NETWORK_XFRM */ 2941 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 2942 { 2943 return 0; 2944 } 2945 2946 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 2947 { 2948 return 0; 2949 } 2950 2951 static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 2952 { 2953 } 2954 2955 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 2956 { 2957 return 0; 2958 } 2959 2960 static inline void security_xfrm_state_free(struct xfrm_state *x) 2961 { 2962 } 2963 2964 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir) 2965 { 2966 return 0; 2967 } 2968 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2969 2970 #ifdef CONFIG_KEYS 2971 #ifdef CONFIG_SECURITY 2972 static inline int security_key_alloc(struct key *key) 2973 { 2974 return security_ops->key_alloc(key); 2975 } 2976 2977 static inline void security_key_free(struct key *key) 2978 { 2979 security_ops->key_free(key); 2980 } 2981 2982 static inline int security_key_permission(key_ref_t key_ref, 2983 struct task_struct *context, 2984 key_perm_t perm) 2985 { 2986 return security_ops->key_permission(key_ref, context, perm); 2987 } 2988 2989 #else 2990 2991 static inline int security_key_alloc(struct key *key) 2992 { 2993 return 0; 2994 } 2995 2996 static inline void security_key_free(struct key *key) 2997 { 2998 } 2999 3000 static inline int security_key_permission(key_ref_t key_ref, 3001 struct task_struct *context, 3002 key_perm_t perm) 3003 { 3004 return 0; 3005 } 3006 3007 #endif 3008 #endif /* CONFIG_KEYS */ 3009 3010 #endif /* ! __LINUX_SECURITY_H */ 3011 3012