xref: /linux-6.15/include/linux/security.h (revision 06842415)
1 /*
2  * Linux Security plug
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <[email protected]>
5  * Copyright (C) 2001 Greg Kroah-Hartman <[email protected]>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
7  * Copyright (C) 2001 James Morris <[email protected]>
8  * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9  *
10  *	This program is free software; you can redistribute it and/or modify
11  *	it under the terms of the GNU General Public License as published by
12  *	the Free Software Foundation; either version 2 of the License, or
13  *	(at your option) any later version.
14  *
15  *	Due to this file being licensed under the GPL there is controversy over
16  *	whether this permits you to write a module that #includes this file
17  *	without placing your module under the GPL.  Please consult a lawyer for
18  *	advice before doing this.
19  *
20  */
21 
22 #ifndef __LINUX_SECURITY_H
23 #define __LINUX_SECURITY_H
24 
25 #include <linux/fs.h>
26 #include <linux/binfmts.h>
27 #include <linux/signal.h>
28 #include <linux/resource.h>
29 #include <linux/sem.h>
30 #include <linux/shm.h>
31 #include <linux/msg.h>
32 #include <linux/sched.h>
33 #include <linux/key.h>
34 
35 struct ctl_table;
36 
37 /*
38  * These functions are in security/capability.c and are used
39  * as the default capabilities functions
40  */
41 extern int cap_capable (struct task_struct *tsk, int cap);
42 extern int cap_settime (struct timespec *ts, struct timezone *tz);
43 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child);
44 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
45 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
46 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
47 extern int cap_bprm_set_security (struct linux_binprm *bprm);
48 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe);
49 extern int cap_bprm_secureexec(struct linux_binprm *bprm);
50 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags);
51 extern int cap_inode_removexattr(struct dentry *dentry, char *name);
52 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
53 extern void cap_task_reparent_to_init (struct task_struct *p);
54 extern int cap_syslog (int type);
55 extern int cap_vm_enough_memory (long pages);
56 
57 struct msghdr;
58 struct sk_buff;
59 struct sock;
60 struct sockaddr;
61 struct socket;
62 struct flowi;
63 struct dst_entry;
64 struct xfrm_selector;
65 struct xfrm_policy;
66 struct xfrm_state;
67 struct xfrm_user_sec_ctx;
68 
69 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
70 extern int cap_netlink_recv(struct sk_buff *skb);
71 
72 /*
73  * Values used in the task_security_ops calls
74  */
75 /* setuid or setgid, id0 == uid or gid */
76 #define LSM_SETID_ID	1
77 
78 /* setreuid or setregid, id0 == real, id1 == eff */
79 #define LSM_SETID_RE	2
80 
81 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
82 #define LSM_SETID_RES	4
83 
84 /* setfsuid or setfsgid, id0 == fsuid or fsgid */
85 #define LSM_SETID_FS	8
86 
87 /* forward declares to avoid warnings */
88 struct nfsctl_arg;
89 struct sched_param;
90 struct swap_info_struct;
91 
92 /* bprm_apply_creds unsafe reasons */
93 #define LSM_UNSAFE_SHARE	1
94 #define LSM_UNSAFE_PTRACE	2
95 #define LSM_UNSAFE_PTRACE_CAP	4
96 
97 #ifdef CONFIG_SECURITY
98 
99 /**
100  * struct security_operations - main security structure
101  *
102  * Security hooks for program execution operations.
103  *
104  * @bprm_alloc_security:
105  *	Allocate and attach a security structure to the @bprm->security field.
106  *	The security field is initialized to NULL when the bprm structure is
107  *	allocated.
108  *	@bprm contains the linux_binprm structure to be modified.
109  *	Return 0 if operation was successful.
110  * @bprm_free_security:
111  *	@bprm contains the linux_binprm structure to be modified.
112  *	Deallocate and clear the @bprm->security field.
113  * @bprm_apply_creds:
114  *	Compute and set the security attributes of a process being transformed
115  *	by an execve operation based on the old attributes (current->security)
116  *	and the information saved in @bprm->security by the set_security hook.
117  *	Since this hook function (and its caller) are void, this hook can not
118  *	return an error.  However, it can leave the security attributes of the
119  *	process unchanged if an access failure occurs at this point.
120  *	bprm_apply_creds is called under task_lock.  @unsafe indicates various
121  *	reasons why it may be unsafe to change security state.
122  *	@bprm contains the linux_binprm structure.
123  * @bprm_post_apply_creds:
124  *	Runs after bprm_apply_creds with the task_lock dropped, so that
125  *	functions which cannot be called safely under the task_lock can
126  *	be used.  This hook is a good place to perform state changes on
127  *	the process such as closing open file descriptors to which access
128  *	is no longer granted if the attributes were changed.
129  *	Note that a security module might need to save state between
130  *	bprm_apply_creds and bprm_post_apply_creds to store the decision
131  *	on whether the process may proceed.
132  *	@bprm contains the linux_binprm structure.
133  * @bprm_set_security:
134  *	Save security information in the bprm->security field, typically based
135  *	on information about the bprm->file, for later use by the apply_creds
136  *	hook.  This hook may also optionally check permissions (e.g. for
137  *	transitions between security domains).
138  *	This hook may be called multiple times during a single execve, e.g. for
139  *	interpreters.  The hook can tell whether it has already been called by
140  *	checking to see if @bprm->security is non-NULL.  If so, then the hook
141  *	may decide either to retain the security information saved earlier or
142  *	to replace it.
143  *	@bprm contains the linux_binprm structure.
144  *	Return 0 if the hook is successful and permission is granted.
145  * @bprm_check_security:
146  * 	This hook mediates the point when a search for a binary handler	will
147  * 	begin.  It allows a check the @bprm->security value which is set in
148  * 	the preceding set_security call.  The primary difference from
149  * 	set_security is that the argv list and envp list are reliably
150  * 	available in @bprm.  This hook may be called multiple times
151  * 	during a single execve; and in each pass set_security is called
152  * 	first.
153  * 	@bprm contains the linux_binprm structure.
154  *	Return 0 if the hook is successful and permission is granted.
155  * @bprm_secureexec:
156  *      Return a boolean value (0 or 1) indicating whether a "secure exec"
157  *      is required.  The flag is passed in the auxiliary table
158  *      on the initial stack to the ELF interpreter to indicate whether libc
159  *      should enable secure mode.
160  *      @bprm contains the linux_binprm structure.
161  *
162  * Security hooks for filesystem operations.
163  *
164  * @sb_alloc_security:
165  *	Allocate and attach a security structure to the sb->s_security field.
166  *	The s_security field is initialized to NULL when the structure is
167  *	allocated.
168  *	@sb contains the super_block structure to be modified.
169  *	Return 0 if operation was successful.
170  * @sb_free_security:
171  *	Deallocate and clear the sb->s_security field.
172  *	@sb contains the super_block structure to be modified.
173  * @sb_statfs:
174  *	Check permission before obtaining filesystem statistics for the @sb
175  *	filesystem.
176  *	@sb contains the super_block structure for the filesystem.
177  *	Return 0 if permission is granted.
178  * @sb_mount:
179  *	Check permission before an object specified by @dev_name is mounted on
180  *	the mount point named by @nd.  For an ordinary mount, @dev_name
181  *	identifies a device if the file system type requires a device.  For a
182  *	remount (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a
183  *	loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
184  *	pathname of the object being mounted.
185  *	@dev_name contains the name for object being mounted.
186  *	@nd contains the nameidata structure for mount point object.
187  *	@type contains the filesystem type.
188  *	@flags contains the mount flags.
189  *	@data contains the filesystem-specific data.
190  *	Return 0 if permission is granted.
191  * @sb_copy_data:
192  *	Allow mount option data to be copied prior to parsing by the filesystem,
193  *	so that the security module can extract security-specific mount
194  *	options cleanly (a filesystem may modify the data e.g. with strsep()).
195  *	This also allows the original mount data to be stripped of security-
196  *	specific options to avoid having to make filesystems aware of them.
197  *	@type the type of filesystem being mounted.
198  *	@orig the original mount data copied from userspace.
199  *	@copy copied data which will be passed to the security module.
200  *	Returns 0 if the copy was successful.
201  * @sb_check_sb:
202  *	Check permission before the device with superblock @mnt->sb is mounted
203  *	on the mount point named by @nd.
204  *	@mnt contains the vfsmount for device being mounted.
205  *	@nd contains the nameidata object for the mount point.
206  *	Return 0 if permission is granted.
207  * @sb_umount:
208  *	Check permission before the @mnt file system is unmounted.
209  *	@mnt contains the mounted file system.
210  *	@flags contains the unmount flags, e.g. MNT_FORCE.
211  *	Return 0 if permission is granted.
212  * @sb_umount_close:
213  *	Close any files in the @mnt mounted filesystem that are held open by
214  *	the security module.  This hook is called during an umount operation
215  *	prior to checking whether the filesystem is still busy.
216  *	@mnt contains the mounted filesystem.
217  * @sb_umount_busy:
218  *	Handle a failed umount of the @mnt mounted filesystem, e.g.  re-opening
219  *	any files that were closed by umount_close.  This hook is called during
220  *	an umount operation if the umount fails after a call to the
221  *	umount_close hook.
222  *	@mnt contains the mounted filesystem.
223  * @sb_post_remount:
224  *	Update the security module's state when a filesystem is remounted.
225  *	This hook is only called if the remount was successful.
226  *	@mnt contains the mounted file system.
227  *	@flags contains the new filesystem flags.
228  *	@data contains the filesystem-specific data.
229  * @sb_post_mountroot:
230  *	Update the security module's state when the root filesystem is mounted.
231  *	This hook is only called if the mount was successful.
232  * @sb_post_addmount:
233  *	Update the security module's state when a filesystem is mounted.
234  *	This hook is called any time a mount is successfully grafetd to
235  *	the tree.
236  *	@mnt contains the mounted filesystem.
237  *	@mountpoint_nd contains the nameidata structure for the mount point.
238  * @sb_pivotroot:
239  *	Check permission before pivoting the root filesystem.
240  *	@old_nd contains the nameidata structure for the new location of the current root (put_old).
241  *      @new_nd contains the nameidata structure for the new root (new_root).
242  *	Return 0 if permission is granted.
243  * @sb_post_pivotroot:
244  *	Update module state after a successful pivot.
245  *	@old_nd contains the nameidata structure for the old root.
246  *      @new_nd contains the nameidata structure for the new root.
247  *
248  * Security hooks for inode operations.
249  *
250  * @inode_alloc_security:
251  *	Allocate and attach a security structure to @inode->i_security.  The
252  *	i_security field is initialized to NULL when the inode structure is
253  *	allocated.
254  *	@inode contains the inode structure.
255  *	Return 0 if operation was successful.
256  * @inode_free_security:
257  *	@inode contains the inode structure.
258  *	Deallocate the inode security structure and set @inode->i_security to
259  *	NULL.
260  * @inode_init_security:
261  * 	Obtain the security attribute name suffix and value to set on a newly
262  *	created inode and set up the incore security field for the new inode.
263  *	This hook is called by the fs code as part of the inode creation
264  *	transaction and provides for atomic labeling of the inode, unlike
265  *	the post_create/mkdir/... hooks called by the VFS.  The hook function
266  *	is expected to allocate the name and value via kmalloc, with the caller
267  *	being responsible for calling kfree after using them.
268  *	If the security module does not use security attributes or does
269  *	not wish to put a security attribute on this particular inode,
270  *	then it should return -EOPNOTSUPP to skip this processing.
271  *	@inode contains the inode structure of the newly created inode.
272  *	@dir contains the inode structure of the parent directory.
273  *	@name will be set to the allocated name suffix (e.g. selinux).
274  *	@value will be set to the allocated attribute value.
275  *	@len will be set to the length of the value.
276  *	Returns 0 if @name and @value have been successfully set,
277  *		-EOPNOTSUPP if no security attribute is needed, or
278  *		-ENOMEM on memory allocation failure.
279  * @inode_create:
280  *	Check permission to create a regular file.
281  *	@dir contains inode structure of the parent of the new file.
282  *	@dentry contains the dentry structure for the file to be created.
283  *	@mode contains the file mode of the file to be created.
284  *	Return 0 if permission is granted.
285  * @inode_link:
286  *	Check permission before creating a new hard link to a file.
287  *	@old_dentry contains the dentry structure for an existing link to the file.
288  *	@dir contains the inode structure of the parent directory of the new link.
289  *	@new_dentry contains the dentry structure for the new link.
290  *	Return 0 if permission is granted.
291  * @inode_unlink:
292  *	Check the permission to remove a hard link to a file.
293  *	@dir contains the inode structure of parent directory of the file.
294  *	@dentry contains the dentry structure for file to be unlinked.
295  *	Return 0 if permission is granted.
296  * @inode_symlink:
297  *	Check the permission to create a symbolic link to a file.
298  *	@dir contains the inode structure of parent directory of the symbolic link.
299  *	@dentry contains the dentry structure of the symbolic link.
300  *	@old_name contains the pathname of file.
301  *	Return 0 if permission is granted.
302  * @inode_mkdir:
303  *	Check permissions to create a new directory in the existing directory
304  *	associated with inode strcture @dir.
305  *	@dir containst the inode structure of parent of the directory to be created.
306  *	@dentry contains the dentry structure of new directory.
307  *	@mode contains the mode of new directory.
308  *	Return 0 if permission is granted.
309  * @inode_rmdir:
310  *	Check the permission to remove a directory.
311  *	@dir contains the inode structure of parent of the directory to be removed.
312  *	@dentry contains the dentry structure of directory to be removed.
313  *	Return 0 if permission is granted.
314  * @inode_mknod:
315  *	Check permissions when creating a special file (or a socket or a fifo
316  *	file created via the mknod system call).  Note that if mknod operation
317  *	is being done for a regular file, then the create hook will be called
318  *	and not this hook.
319  *	@dir contains the inode structure of parent of the new file.
320  *	@dentry contains the dentry structure of the new file.
321  *	@mode contains the mode of the new file.
322  *	@dev contains the the device number.
323  *	Return 0 if permission is granted.
324  * @inode_rename:
325  *	Check for permission to rename a file or directory.
326  *	@old_dir contains the inode structure for parent of the old link.
327  *	@old_dentry contains the dentry structure of the old link.
328  *	@new_dir contains the inode structure for parent of the new link.
329  *	@new_dentry contains the dentry structure of the new link.
330  *	Return 0 if permission is granted.
331  * @inode_readlink:
332  *	Check the permission to read the symbolic link.
333  *	@dentry contains the dentry structure for the file link.
334  *	Return 0 if permission is granted.
335  * @inode_follow_link:
336  *	Check permission to follow a symbolic link when looking up a pathname.
337  *	@dentry contains the dentry structure for the link.
338  *	@nd contains the nameidata structure for the parent directory.
339  *	Return 0 if permission is granted.
340  * @inode_permission:
341  *	Check permission before accessing an inode.  This hook is called by the
342  *	existing Linux permission function, so a security module can use it to
343  *	provide additional checking for existing Linux permission checks.
344  *	Notice that this hook is called when a file is opened (as well as many
345  *	other operations), whereas the file_security_ops permission hook is
346  *	called when the actual read/write operations are performed.
347  *	@inode contains the inode structure to check.
348  *	@mask contains the permission mask.
349  *     @nd contains the nameidata (may be NULL).
350  *	Return 0 if permission is granted.
351  * @inode_setattr:
352  *	Check permission before setting file attributes.  Note that the kernel
353  *	call to notify_change is performed from several locations, whenever
354  *	file attributes change (such as when a file is truncated, chown/chmod
355  *	operations, transferring disk quotas, etc).
356  *	@dentry contains the dentry structure for the file.
357  *	@attr is the iattr structure containing the new file attributes.
358  *	Return 0 if permission is granted.
359  * @inode_getattr:
360  *	Check permission before obtaining file attributes.
361  *	@mnt is the vfsmount where the dentry was looked up
362  *	@dentry contains the dentry structure for the file.
363  *	Return 0 if permission is granted.
364  * @inode_delete:
365  *	@inode contains the inode structure for deleted inode.
366  *	This hook is called when a deleted inode is released (i.e. an inode
367  *	with no hard links has its use count drop to zero).  A security module
368  *	can use this hook to release any persistent label associated with the
369  *	inode.
370  * @inode_setxattr:
371  * 	Check permission before setting the extended attributes
372  * 	@value identified by @name for @dentry.
373  * 	Return 0 if permission is granted.
374  * @inode_post_setxattr:
375  * 	Update inode security field after successful setxattr operation.
376  * 	@value identified by @name for @dentry.
377  * @inode_getxattr:
378  * 	Check permission before obtaining the extended attributes
379  * 	identified by @name for @dentry.
380  * 	Return 0 if permission is granted.
381  * @inode_listxattr:
382  * 	Check permission before obtaining the list of extended attribute
383  * 	names for @dentry.
384  * 	Return 0 if permission is granted.
385  * @inode_removexattr:
386  * 	Check permission before removing the extended attribute
387  * 	identified by @name for @dentry.
388  * 	Return 0 if permission is granted.
389  * @inode_getsecurity:
390  *	Copy the extended attribute representation of the security label
391  *	associated with @name for @inode into @buffer.  @buffer may be
392  *	NULL to request the size of the buffer required.  @size indicates
393  *	the size of @buffer in bytes.  Note that @name is the remainder
394  *	of the attribute name after the security. prefix has been removed.
395  *	@err is the return value from the preceding fs getxattr call,
396  *	and can be used by the security module to determine whether it
397  *	should try and canonicalize the attribute value.
398  *	Return number of bytes used/required on success.
399  * @inode_setsecurity:
400  *	Set the security label associated with @name for @inode from the
401  *	extended attribute value @value.  @size indicates the size of the
402  *	@value in bytes.  @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
403  *	Note that @name is the remainder of the attribute name after the
404  *	security. prefix has been removed.
405  *	Return 0 on success.
406  * @inode_listsecurity:
407  *	Copy the extended attribute names for the security labels
408  *	associated with @inode into @buffer.  The maximum size of @buffer
409  *	is specified by @buffer_size.  @buffer may be NULL to request
410  *	the size of the buffer required.
411  *	Returns number of bytes used/required on success.
412  *
413  * Security hooks for file operations
414  *
415  * @file_permission:
416  *	Check file permissions before accessing an open file.  This hook is
417  *	called by various operations that read or write files.  A security
418  *	module can use this hook to perform additional checking on these
419  *	operations, e.g.  to revalidate permissions on use to support privilege
420  *	bracketing or policy changes.  Notice that this hook is used when the
421  *	actual read/write operations are performed, whereas the
422  *	inode_security_ops hook is called when a file is opened (as well as
423  *	many other operations).
424  *	Caveat:  Although this hook can be used to revalidate permissions for
425  *	various system call operations that read or write files, it does not
426  *	address the revalidation of permissions for memory-mapped files.
427  *	Security modules must handle this separately if they need such
428  *	revalidation.
429  *	@file contains the file structure being accessed.
430  *	@mask contains the requested permissions.
431  *	Return 0 if permission is granted.
432  * @file_alloc_security:
433  *	Allocate and attach a security structure to the file->f_security field.
434  *	The security field is initialized to NULL when the structure is first
435  *	created.
436  *	@file contains the file structure to secure.
437  *	Return 0 if the hook is successful and permission is granted.
438  * @file_free_security:
439  *	Deallocate and free any security structures stored in file->f_security.
440  *	@file contains the file structure being modified.
441  * @file_ioctl:
442  *	@file contains the file structure.
443  *	@cmd contains the operation to perform.
444  *	@arg contains the operational arguments.
445  *	Check permission for an ioctl operation on @file.  Note that @arg can
446  *	sometimes represents a user space pointer; in other cases, it may be a
447  *	simple integer value.  When @arg represents a user space pointer, it
448  *	should never be used by the security module.
449  *	Return 0 if permission is granted.
450  * @file_mmap :
451  *	Check permissions for a mmap operation.  The @file may be NULL, e.g.
452  *	if mapping anonymous memory.
453  *	@file contains the file structure for file to map (may be NULL).
454  *	@reqprot contains the protection requested by the application.
455  *	@prot contains the protection that will be applied by the kernel.
456  *	@flags contains the operational flags.
457  *	Return 0 if permission is granted.
458  * @file_mprotect:
459  *	Check permissions before changing memory access permissions.
460  *	@vma contains the memory region to modify.
461  *	@reqprot contains the protection requested by the application.
462  *	@prot contains the protection that will be applied by the kernel.
463  *	Return 0 if permission is granted.
464  * @file_lock:
465  *	Check permission before performing file locking operations.
466  *	Note: this hook mediates both flock and fcntl style locks.
467  *	@file contains the file structure.
468  *	@cmd contains the posix-translated lock operation to perform
469  *	(e.g. F_RDLCK, F_WRLCK).
470  *	Return 0 if permission is granted.
471  * @file_fcntl:
472  *	Check permission before allowing the file operation specified by @cmd
473  *	from being performed on the file @file.  Note that @arg can sometimes
474  *	represents a user space pointer; in other cases, it may be a simple
475  *	integer value.  When @arg represents a user space pointer, it should
476  *	never be used by the security module.
477  *	@file contains the file structure.
478  *	@cmd contains the operation to be performed.
479  *	@arg contains the operational arguments.
480  *	Return 0 if permission is granted.
481  * @file_set_fowner:
482  *	Save owner security information (typically from current->security) in
483  *	file->f_security for later use by the send_sigiotask hook.
484  *	@file contains the file structure to update.
485  *	Return 0 on success.
486  * @file_send_sigiotask:
487  *	Check permission for the file owner @fown to send SIGIO or SIGURG to the
488  *	process @tsk.  Note that this hook is sometimes called from interrupt.
489  *	Note that the fown_struct, @fown, is never outside the context of a
490  *	struct file, so the file structure (and associated security information)
491  *	can always be obtained:
492  *		(struct file *)((long)fown - offsetof(struct file,f_owner));
493  * 	@tsk contains the structure of task receiving signal.
494  *	@fown contains the file owner information.
495  *	@sig is the signal that will be sent.  When 0, kernel sends SIGIO.
496  *	Return 0 if permission is granted.
497  * @file_receive:
498  *	This hook allows security modules to control the ability of a process
499  *	to receive an open file descriptor via socket IPC.
500  *	@file contains the file structure being received.
501  *	Return 0 if permission is granted.
502  *
503  * Security hooks for task operations.
504  *
505  * @task_create:
506  *	Check permission before creating a child process.  See the clone(2)
507  *	manual page for definitions of the @clone_flags.
508  *	@clone_flags contains the flags indicating what should be shared.
509  *	Return 0 if permission is granted.
510  * @task_alloc_security:
511  *	@p contains the task_struct for child process.
512  *	Allocate and attach a security structure to the p->security field. The
513  *	security field is initialized to NULL when the task structure is
514  *	allocated.
515  *	Return 0 if operation was successful.
516  * @task_free_security:
517  *	@p contains the task_struct for process.
518  *	Deallocate and clear the p->security field.
519  * @task_setuid:
520  *	Check permission before setting one or more of the user identity
521  *	attributes of the current process.  The @flags parameter indicates
522  *	which of the set*uid system calls invoked this hook and how to
523  *	interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
524  *	definitions at the beginning of this file for the @flags values and
525  *	their meanings.
526  *	@id0 contains a uid.
527  *	@id1 contains a uid.
528  *	@id2 contains a uid.
529  *	@flags contains one of the LSM_SETID_* values.
530  *	Return 0 if permission is granted.
531  * @task_post_setuid:
532  *	Update the module's state after setting one or more of the user
533  *	identity attributes of the current process.  The @flags parameter
534  *	indicates which of the set*uid system calls invoked this hook.  If
535  *	@flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
536  *	parameters are not used.
537  *	@old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
538  *	@old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
539  *	@old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
540  *	@flags contains one of the LSM_SETID_* values.
541  *	Return 0 on success.
542  * @task_setgid:
543  *	Check permission before setting one or more of the group identity
544  *	attributes of the current process.  The @flags parameter indicates
545  *	which of the set*gid system calls invoked this hook and how to
546  *	interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
547  *	definitions at the beginning of this file for the @flags values and
548  *	their meanings.
549  *	@id0 contains a gid.
550  *	@id1 contains a gid.
551  *	@id2 contains a gid.
552  *	@flags contains one of the LSM_SETID_* values.
553  *	Return 0 if permission is granted.
554  * @task_setpgid:
555  *	Check permission before setting the process group identifier of the
556  *	process @p to @pgid.
557  *	@p contains the task_struct for process being modified.
558  *	@pgid contains the new pgid.
559  *	Return 0 if permission is granted.
560  * @task_getpgid:
561  *	Check permission before getting the process group identifier of the
562  *	process @p.
563  *	@p contains the task_struct for the process.
564  *	Return 0 if permission is granted.
565  * @task_getsid:
566  *	Check permission before getting the session identifier of the process
567  *	@p.
568  *	@p contains the task_struct for the process.
569  *	Return 0 if permission is granted.
570  * @task_setgroups:
571  *	Check permission before setting the supplementary group set of the
572  *	current process.
573  *	@group_info contains the new group information.
574  *	Return 0 if permission is granted.
575  * @task_setnice:
576  *	Check permission before setting the nice value of @p to @nice.
577  *	@p contains the task_struct of process.
578  *	@nice contains the new nice value.
579  *	Return 0 if permission is granted.
580  * @task_setrlimit:
581  *	Check permission before setting the resource limits of the current
582  *	process for @resource to @new_rlim.  The old resource limit values can
583  *	be examined by dereferencing (current->signal->rlim + resource).
584  *	@resource contains the resource whose limit is being set.
585  *	@new_rlim contains the new limits for @resource.
586  *	Return 0 if permission is granted.
587  * @task_setscheduler:
588  *	Check permission before setting scheduling policy and/or parameters of
589  *	process @p based on @policy and @lp.
590  *	@p contains the task_struct for process.
591  *	@policy contains the scheduling policy.
592  *	@lp contains the scheduling parameters.
593  *	Return 0 if permission is granted.
594  * @task_getscheduler:
595  *	Check permission before obtaining scheduling information for process
596  *	@p.
597  *	@p contains the task_struct for process.
598  *	Return 0 if permission is granted.
599  * @task_kill:
600  *	Check permission before sending signal @sig to @p.  @info can be NULL,
601  *	the constant 1, or a pointer to a siginfo structure.  If @info is 1 or
602  *	SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
603  *	from the kernel and should typically be permitted.
604  *	SIGIO signals are handled separately by the send_sigiotask hook in
605  *	file_security_ops.
606  *	@p contains the task_struct for process.
607  *	@info contains the signal information.
608  *	@sig contains the signal value.
609  *	Return 0 if permission is granted.
610  * @task_wait:
611  *	Check permission before allowing a process to reap a child process @p
612  *	and collect its status information.
613  *	@p contains the task_struct for process.
614  *	Return 0 if permission is granted.
615  * @task_prctl:
616  *	Check permission before performing a process control operation on the
617  *	current process.
618  *	@option contains the operation.
619  *	@arg2 contains a argument.
620  *	@arg3 contains a argument.
621  *	@arg4 contains a argument.
622  *	@arg5 contains a argument.
623  *	Return 0 if permission is granted.
624  * @task_reparent_to_init:
625  * 	Set the security attributes in @p->security for a kernel thread that
626  * 	is being reparented to the init task.
627  *	@p contains the task_struct for the kernel thread.
628  * @task_to_inode:
629  * 	Set the security attributes for an inode based on an associated task's
630  * 	security attributes, e.g. for /proc/pid inodes.
631  *	@p contains the task_struct for the task.
632  *	@inode contains the inode structure for the inode.
633  *
634  * Security hooks for Netlink messaging.
635  *
636  * @netlink_send:
637  *	Save security information for a netlink message so that permission
638  *	checking can be performed when the message is processed.  The security
639  *	information can be saved using the eff_cap field of the
640  *      netlink_skb_parms structure.  Also may be used to provide fine
641  *	grained control over message transmission.
642  *	@sk associated sock of task sending the message.,
643  *	@skb contains the sk_buff structure for the netlink message.
644  *	Return 0 if the information was successfully saved and message
645  *	is allowed to be transmitted.
646  * @netlink_recv:
647  *	Check permission before processing the received netlink message in
648  *	@skb.
649  *	@skb contains the sk_buff structure for the netlink message.
650  *	Return 0 if permission is granted.
651  *
652  * Security hooks for Unix domain networking.
653  *
654  * @unix_stream_connect:
655  *	Check permissions before establishing a Unix domain stream connection
656  *	between @sock and @other.
657  *	@sock contains the socket structure.
658  *	@other contains the peer socket structure.
659  *	Return 0 if permission is granted.
660  * @unix_may_send:
661  *	Check permissions before connecting or sending datagrams from @sock to
662  *	@other.
663  *	@sock contains the socket structure.
664  *	@sock contains the peer socket structure.
665  *	Return 0 if permission is granted.
666  *
667  * The @unix_stream_connect and @unix_may_send hooks were necessary because
668  * Linux provides an alternative to the conventional file name space for Unix
669  * domain sockets.  Whereas binding and connecting to sockets in the file name
670  * space is mediated by the typical file permissions (and caught by the mknod
671  * and permission hooks in inode_security_ops), binding and connecting to
672  * sockets in the abstract name space is completely unmediated.  Sufficient
673  * control of Unix domain sockets in the abstract name space isn't possible
674  * using only the socket layer hooks, since we need to know the actual target
675  * socket, which is not looked up until we are inside the af_unix code.
676  *
677  * Security hooks for socket operations.
678  *
679  * @socket_create:
680  *	Check permissions prior to creating a new socket.
681  *	@family contains the requested protocol family.
682  *	@type contains the requested communications type.
683  *	@protocol contains the requested protocol.
684  *	@kern set to 1 if a kernel socket.
685  *	Return 0 if permission is granted.
686  * @socket_post_create:
687  *	This hook allows a module to update or allocate a per-socket security
688  *	structure. Note that the security field was not added directly to the
689  *	socket structure, but rather, the socket security information is stored
690  *	in the associated inode.  Typically, the inode alloc_security hook will
691  *	allocate and and attach security information to
692  *	sock->inode->i_security.  This hook may be used to update the
693  *	sock->inode->i_security field with additional information that wasn't
694  *	available when the inode was allocated.
695  *	@sock contains the newly created socket structure.
696  *	@family contains the requested protocol family.
697  *	@type contains the requested communications type.
698  *	@protocol contains the requested protocol.
699  *	@kern set to 1 if a kernel socket.
700  * @socket_bind:
701  *	Check permission before socket protocol layer bind operation is
702  *	performed and the socket @sock is bound to the address specified in the
703  *	@address parameter.
704  *	@sock contains the socket structure.
705  *	@address contains the address to bind to.
706  *	@addrlen contains the length of address.
707  *	Return 0 if permission is granted.
708  * @socket_connect:
709  *	Check permission before socket protocol layer connect operation
710  *	attempts to connect socket @sock to a remote address, @address.
711  *	@sock contains the socket structure.
712  *	@address contains the address of remote endpoint.
713  *	@addrlen contains the length of address.
714  *	Return 0 if permission is granted.
715  * @socket_listen:
716  *	Check permission before socket protocol layer listen operation.
717  *	@sock contains the socket structure.
718  *	@backlog contains the maximum length for the pending connection queue.
719  *	Return 0 if permission is granted.
720  * @socket_accept:
721  *	Check permission before accepting a new connection.  Note that the new
722  *	socket, @newsock, has been created and some information copied to it,
723  *	but the accept operation has not actually been performed.
724  *	@sock contains the listening socket structure.
725  *	@newsock contains the newly created server socket for connection.
726  *	Return 0 if permission is granted.
727  * @socket_post_accept:
728  *	This hook allows a security module to copy security
729  *	information into the newly created socket's inode.
730  *	@sock contains the listening socket structure.
731  *	@newsock contains the newly created server socket for connection.
732  * @socket_sendmsg:
733  *	Check permission before transmitting a message to another socket.
734  *	@sock contains the socket structure.
735  *	@msg contains the message to be transmitted.
736  *	@size contains the size of message.
737  *	Return 0 if permission is granted.
738  * @socket_recvmsg:
739  *	Check permission before receiving a message from a socket.
740  *	@sock contains the socket structure.
741  *	@msg contains the message structure.
742  *	@size contains the size of message structure.
743  *	@flags contains the operational flags.
744  *	Return 0 if permission is granted.
745  * @socket_getsockname:
746  *	Check permission before the local address (name) of the socket object
747  *	@sock is retrieved.
748  *	@sock contains the socket structure.
749  *	Return 0 if permission is granted.
750  * @socket_getpeername:
751  *	Check permission before the remote address (name) of a socket object
752  *	@sock is retrieved.
753  *	@sock contains the socket structure.
754  *	Return 0 if permission is granted.
755  * @socket_getsockopt:
756  *	Check permissions before retrieving the options associated with socket
757  *	@sock.
758  *	@sock contains the socket structure.
759  *	@level contains the protocol level to retrieve option from.
760  *	@optname contains the name of option to retrieve.
761  *	Return 0 if permission is granted.
762  * @socket_setsockopt:
763  *	Check permissions before setting the options associated with socket
764  *	@sock.
765  *	@sock contains the socket structure.
766  *	@level contains the protocol level to set options for.
767  *	@optname contains the name of the option to set.
768  *	Return 0 if permission is granted.
769  * @socket_shutdown:
770  *	Checks permission before all or part of a connection on the socket
771  *	@sock is shut down.
772  *	@sock contains the socket structure.
773  *	@how contains the flag indicating how future sends and receives are handled.
774  *	Return 0 if permission is granted.
775  * @socket_sock_rcv_skb:
776  *	Check permissions on incoming network packets.  This hook is distinct
777  *	from Netfilter's IP input hooks since it is the first time that the
778  *	incoming sk_buff @skb has been associated with a particular socket, @sk.
779  *	@sk contains the sock (not socket) associated with the incoming sk_buff.
780  *	@skb contains the incoming network data.
781  * @socket_getpeersec:
782  *	This hook allows the security module to provide peer socket security
783  *	state to userspace via getsockopt SO_GETPEERSEC.
784  *	@sock is the local socket.
785  *	@optval userspace memory where the security state is to be copied.
786  *	@optlen userspace int where the module should copy the actual length
787  *	of the security state.
788  *	@len as input is the maximum length to copy to userspace provided
789  *	by the caller.
790  *	Return 0 if all is well, otherwise, typical getsockopt return
791  *	values.
792  * @sk_alloc_security:
793  *      Allocate and attach a security structure to the sk->sk_security field,
794  *      which is used to copy security attributes between local stream sockets.
795  * @sk_free_security:
796  *	Deallocate security structure.
797  * @sk_getsid:
798  *	Retrieve the LSM-specific sid for the sock to enable caching of network
799  *	authorizations.
800  *
801  * Security hooks for XFRM operations.
802  *
803  * @xfrm_policy_alloc_security:
804  *	@xp contains the xfrm_policy being added to Security Policy Database
805  *	used by the XFRM system.
806  *	@sec_ctx contains the security context information being provided by
807  *	the user-level policy update program (e.g., setkey).
808  *	Allocate a security structure to the xp->selector.security field.
809  *	The security field is initialized to NULL when the xfrm_policy is
810  *	allocated.
811  *	Return 0 if operation was successful (memory to allocate, legal context)
812  * @xfrm_policy_clone_security:
813  *	@old contains an existing xfrm_policy in the SPD.
814  *	@new contains a new xfrm_policy being cloned from old.
815  *	Allocate a security structure to the new->selector.security field
816  *	that contains the information from the old->selector.security field.
817  *	Return 0 if operation was successful (memory to allocate).
818  * @xfrm_policy_free_security:
819  *	@xp contains the xfrm_policy
820  *	Deallocate xp->selector.security.
821  * @xfrm_state_alloc_security:
822  *	@x contains the xfrm_state being added to the Security Association
823  *	Database by the XFRM system.
824  *	@sec_ctx contains the security context information being provided by
825  *	the user-level SA generation program (e.g., setkey or racoon).
826  *	Allocate a security structure to the x->sel.security field.  The
827  *	security field is initialized to NULL when the xfrm_state is
828  *	allocated.
829  *	Return 0 if operation was successful (memory to allocate, legal context).
830  * @xfrm_state_free_security:
831  *	@x contains the xfrm_state.
832  *	Deallocate x>sel.security.
833  * @xfrm_policy_lookup:
834  *	@xp contains the xfrm_policy for which the access control is being
835  *	checked.
836  *	@sk_sid contains the sock security label that is used to authorize
837  *	access to the policy xp.
838  *	@dir contains the direction of the flow (input or output).
839  *	Check permission when a sock selects a xfrm_policy for processing
840  *	XFRMs on a packet.  The hook is called when selecting either a
841  *	per-socket policy or a generic xfrm policy.
842  *	Return 0 if permission is granted.
843  *
844  * Security hooks affecting all Key Management operations
845  *
846  * @key_alloc:
847  *	Permit allocation of a key and assign security data. Note that key does
848  *	not have a serial number assigned at this point.
849  *	@key points to the key.
850  *	Return 0 if permission is granted, -ve error otherwise.
851  * @key_free:
852  *	Notification of destruction; free security data.
853  *	@key points to the key.
854  *	No return value.
855  * @key_permission:
856  *	See whether a specific operational right is granted to a process on a
857  *      key.
858  *	@key_ref refers to the key (key pointer + possession attribute bit).
859  *	@context points to the process to provide the context against which to
860  *       evaluate the security data on the key.
861  *	@perm describes the combination of permissions required of this key.
862  *	Return 1 if permission granted, 0 if permission denied and -ve it the
863  *      normal permissions model should be effected.
864  *
865  * Security hooks affecting all System V IPC operations.
866  *
867  * @ipc_permission:
868  *	Check permissions for access to IPC
869  *	@ipcp contains the kernel IPC permission structure
870  *	@flag contains the desired (requested) permission set
871  *	Return 0 if permission is granted.
872  *
873  * Security hooks for individual messages held in System V IPC message queues
874  * @msg_msg_alloc_security:
875  *	Allocate and attach a security structure to the msg->security field.
876  *	The security field is initialized to NULL when the structure is first
877  *	created.
878  *	@msg contains the message structure to be modified.
879  *	Return 0 if operation was successful and permission is granted.
880  * @msg_msg_free_security:
881  *	Deallocate the security structure for this message.
882  *	@msg contains the message structure to be modified.
883  *
884  * Security hooks for System V IPC Message Queues
885  *
886  * @msg_queue_alloc_security:
887  *	Allocate and attach a security structure to the
888  *	msq->q_perm.security field. The security field is initialized to
889  *	NULL when the structure is first created.
890  *	@msq contains the message queue structure to be modified.
891  *	Return 0 if operation was successful and permission is granted.
892  * @msg_queue_free_security:
893  *	Deallocate security structure for this message queue.
894  *	@msq contains the message queue structure to be modified.
895  * @msg_queue_associate:
896  *	Check permission when a message queue is requested through the
897  *	msgget system call.  This hook is only called when returning the
898  *	message queue identifier for an existing message queue, not when a
899  *	new message queue is created.
900  *	@msq contains the message queue to act upon.
901  *	@msqflg contains the operation control flags.
902  *	Return 0 if permission is granted.
903  * @msg_queue_msgctl:
904  *	Check permission when a message control operation specified by @cmd
905  *	is to be performed on the message queue @msq.
906  *	The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
907  *	@msq contains the message queue to act upon.  May be NULL.
908  *	@cmd contains the operation to be performed.
909  *	Return 0 if permission is granted.
910  * @msg_queue_msgsnd:
911  *	Check permission before a message, @msg, is enqueued on the message
912  *	queue, @msq.
913  *	@msq contains the message queue to send message to.
914  *	@msg contains the message to be enqueued.
915  *	@msqflg contains operational flags.
916  *	Return 0 if permission is granted.
917  * @msg_queue_msgrcv:
918  *	Check permission before a message, @msg, is removed from the message
919  *	queue, @msq.  The @target task structure contains a pointer to the
920  *	process that will be receiving the message (not equal to the current
921  *	process when inline receives are being performed).
922  *	@msq contains the message queue to retrieve message from.
923  *	@msg contains the message destination.
924  *	@target contains the task structure for recipient process.
925  *	@type contains the type of message requested.
926  *	@mode contains the operational flags.
927  *	Return 0 if permission is granted.
928  *
929  * Security hooks for System V Shared Memory Segments
930  *
931  * @shm_alloc_security:
932  *	Allocate and attach a security structure to the shp->shm_perm.security
933  *	field.  The security field is initialized to NULL when the structure is
934  *	first created.
935  *	@shp contains the shared memory structure to be modified.
936  *	Return 0 if operation was successful and permission is granted.
937  * @shm_free_security:
938  *	Deallocate the security struct for this memory segment.
939  *	@shp contains the shared memory structure to be modified.
940  * @shm_associate:
941  *	Check permission when a shared memory region is requested through the
942  *	shmget system call.  This hook is only called when returning the shared
943  *	memory region identifier for an existing region, not when a new shared
944  *	memory region is created.
945  *	@shp contains the shared memory structure to be modified.
946  *	@shmflg contains the operation control flags.
947  *	Return 0 if permission is granted.
948  * @shm_shmctl:
949  *	Check permission when a shared memory control operation specified by
950  *	@cmd is to be performed on the shared memory region @shp.
951  *	The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
952  *	@shp contains shared memory structure to be modified.
953  *	@cmd contains the operation to be performed.
954  *	Return 0 if permission is granted.
955  * @shm_shmat:
956  *	Check permissions prior to allowing the shmat system call to attach the
957  *	shared memory segment @shp to the data segment of the calling process.
958  *	The attaching address is specified by @shmaddr.
959  *	@shp contains the shared memory structure to be modified.
960  *	@shmaddr contains the address to attach memory region to.
961  *	@shmflg contains the operational flags.
962  *	Return 0 if permission is granted.
963  *
964  * Security hooks for System V Semaphores
965  *
966  * @sem_alloc_security:
967  *	Allocate and attach a security structure to the sma->sem_perm.security
968  *	field.  The security field is initialized to NULL when the structure is
969  *	first created.
970  *	@sma contains the semaphore structure
971  *	Return 0 if operation was successful and permission is granted.
972  * @sem_free_security:
973  *	deallocate security struct for this semaphore
974  *	@sma contains the semaphore structure.
975  * @sem_associate:
976  *	Check permission when a semaphore is requested through the semget
977  *	system call.  This hook is only called when returning the semaphore
978  *	identifier for an existing semaphore, not when a new one must be
979  *	created.
980  *	@sma contains the semaphore structure.
981  *	@semflg contains the operation control flags.
982  *	Return 0 if permission is granted.
983  * @sem_semctl:
984  *	Check permission when a semaphore operation specified by @cmd is to be
985  *	performed on the semaphore @sma.  The @sma may be NULL, e.g. for
986  *	IPC_INFO or SEM_INFO.
987  *	@sma contains the semaphore structure.  May be NULL.
988  *	@cmd contains the operation to be performed.
989  *	Return 0 if permission is granted.
990  * @sem_semop
991  *	Check permissions before performing operations on members of the
992  *	semaphore set @sma.  If the @alter flag is nonzero, the semaphore set
993  *      may be modified.
994  *	@sma contains the semaphore structure.
995  *	@sops contains the operations to perform.
996  *	@nsops contains the number of operations to perform.
997  *	@alter contains the flag indicating whether changes are to be made.
998  *	Return 0 if permission is granted.
999  *
1000  * @ptrace:
1001  *	Check permission before allowing the @parent process to trace the
1002  *	@child process.
1003  *	Security modules may also want to perform a process tracing check
1004  *	during an execve in the set_security or apply_creds hooks of
1005  *	binprm_security_ops if the process is being traced and its security
1006  *	attributes would be changed by the execve.
1007  *	@parent contains the task_struct structure for parent process.
1008  *	@child contains the task_struct structure for child process.
1009  *	Return 0 if permission is granted.
1010  * @capget:
1011  *	Get the @effective, @inheritable, and @permitted capability sets for
1012  *	the @target process.  The hook may also perform permission checking to
1013  *	determine if the current process is allowed to see the capability sets
1014  *	of the @target process.
1015  *	@target contains the task_struct structure for target process.
1016  *	@effective contains the effective capability set.
1017  *	@inheritable contains the inheritable capability set.
1018  *	@permitted contains the permitted capability set.
1019  *	Return 0 if the capability sets were successfully obtained.
1020  * @capset_check:
1021  *	Check permission before setting the @effective, @inheritable, and
1022  *	@permitted capability sets for the @target process.
1023  *	Caveat:  @target is also set to current if a set of processes is
1024  *	specified (i.e. all processes other than current and init or a
1025  *	particular process group).  Hence, the capset_set hook may need to
1026  *	revalidate permission to the actual target process.
1027  *	@target contains the task_struct structure for target process.
1028  *	@effective contains the effective capability set.
1029  *	@inheritable contains the inheritable capability set.
1030  *	@permitted contains the permitted capability set.
1031  *	Return 0 if permission is granted.
1032  * @capset_set:
1033  *	Set the @effective, @inheritable, and @permitted capability sets for
1034  *	the @target process.  Since capset_check cannot always check permission
1035  *	to the real @target process, this hook may also perform permission
1036  *	checking to determine if the current process is allowed to set the
1037  *	capability sets of the @target process.  However, this hook has no way
1038  *	of returning an error due to the structure of the sys_capset code.
1039  *	@target contains the task_struct structure for target process.
1040  *	@effective contains the effective capability set.
1041  *	@inheritable contains the inheritable capability set.
1042  *	@permitted contains the permitted capability set.
1043  * @capable:
1044  *	Check whether the @tsk process has the @cap capability.
1045  *	@tsk contains the task_struct for the process.
1046  *	@cap contains the capability <include/linux/capability.h>.
1047  *	Return 0 if the capability is granted for @tsk.
1048  * @acct:
1049  *	Check permission before enabling or disabling process accounting.  If
1050  *	accounting is being enabled, then @file refers to the open file used to
1051  *	store accounting records.  If accounting is being disabled, then @file
1052  *	is NULL.
1053  *	@file contains the file structure for the accounting file (may be NULL).
1054  *	Return 0 if permission is granted.
1055  * @sysctl:
1056  *	Check permission before accessing the @table sysctl variable in the
1057  *	manner specified by @op.
1058  *	@table contains the ctl_table structure for the sysctl variable.
1059  *	@op contains the operation (001 = search, 002 = write, 004 = read).
1060  *	Return 0 if permission is granted.
1061  * @syslog:
1062  *	Check permission before accessing the kernel message ring or changing
1063  *	logging to the console.
1064  *	See the syslog(2) manual page for an explanation of the @type values.
1065  *	@type contains the type of action.
1066  *	Return 0 if permission is granted.
1067  * @settime:
1068  *	Check permission to change the system time.
1069  *	struct timespec and timezone are defined in include/linux/time.h
1070  *	@ts contains new time
1071  *	@tz contains new timezone
1072  *	Return 0 if permission is granted.
1073  * @vm_enough_memory:
1074  *	Check permissions for allocating a new virtual mapping.
1075  *      @pages contains the number of pages.
1076  *	Return 0 if permission is granted.
1077  *
1078  * @register_security:
1079  * 	allow module stacking.
1080  * 	@name contains the name of the security module being stacked.
1081  * 	@ops contains a pointer to the struct security_operations of the module to stack.
1082  * @unregister_security:
1083  *	remove a stacked module.
1084  *	@name contains the name of the security module being unstacked.
1085  *	@ops contains a pointer to the struct security_operations of the module to unstack.
1086  *
1087  * This is the main security structure.
1088  */
1089 struct security_operations {
1090 	int (*ptrace) (struct task_struct * parent, struct task_struct * child);
1091 	int (*capget) (struct task_struct * target,
1092 		       kernel_cap_t * effective,
1093 		       kernel_cap_t * inheritable, kernel_cap_t * permitted);
1094 	int (*capset_check) (struct task_struct * target,
1095 			     kernel_cap_t * effective,
1096 			     kernel_cap_t * inheritable,
1097 			     kernel_cap_t * permitted);
1098 	void (*capset_set) (struct task_struct * target,
1099 			    kernel_cap_t * effective,
1100 			    kernel_cap_t * inheritable,
1101 			    kernel_cap_t * permitted);
1102 	int (*capable) (struct task_struct * tsk, int cap);
1103 	int (*acct) (struct file * file);
1104 	int (*sysctl) (struct ctl_table * table, int op);
1105 	int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
1106 	int (*quota_on) (struct dentry * dentry);
1107 	int (*syslog) (int type);
1108 	int (*settime) (struct timespec *ts, struct timezone *tz);
1109 	int (*vm_enough_memory) (long pages);
1110 
1111 	int (*bprm_alloc_security) (struct linux_binprm * bprm);
1112 	void (*bprm_free_security) (struct linux_binprm * bprm);
1113 	void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
1114 	void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
1115 	int (*bprm_set_security) (struct linux_binprm * bprm);
1116 	int (*bprm_check_security) (struct linux_binprm * bprm);
1117 	int (*bprm_secureexec) (struct linux_binprm * bprm);
1118 
1119 	int (*sb_alloc_security) (struct super_block * sb);
1120 	void (*sb_free_security) (struct super_block * sb);
1121 	int (*sb_copy_data)(struct file_system_type *type,
1122 			    void *orig, void *copy);
1123 	int (*sb_kern_mount) (struct super_block *sb, void *data);
1124 	int (*sb_statfs) (struct super_block * sb);
1125 	int (*sb_mount) (char *dev_name, struct nameidata * nd,
1126 			 char *type, unsigned long flags, void *data);
1127 	int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
1128 	int (*sb_umount) (struct vfsmount * mnt, int flags);
1129 	void (*sb_umount_close) (struct vfsmount * mnt);
1130 	void (*sb_umount_busy) (struct vfsmount * mnt);
1131 	void (*sb_post_remount) (struct vfsmount * mnt,
1132 				 unsigned long flags, void *data);
1133 	void (*sb_post_mountroot) (void);
1134 	void (*sb_post_addmount) (struct vfsmount * mnt,
1135 				  struct nameidata * mountpoint_nd);
1136 	int (*sb_pivotroot) (struct nameidata * old_nd,
1137 			     struct nameidata * new_nd);
1138 	void (*sb_post_pivotroot) (struct nameidata * old_nd,
1139 				   struct nameidata * new_nd);
1140 
1141 	int (*inode_alloc_security) (struct inode *inode);
1142 	void (*inode_free_security) (struct inode *inode);
1143 	int (*inode_init_security) (struct inode *inode, struct inode *dir,
1144 				    char **name, void **value, size_t *len);
1145 	int (*inode_create) (struct inode *dir,
1146 	                     struct dentry *dentry, int mode);
1147 	int (*inode_link) (struct dentry *old_dentry,
1148 	                   struct inode *dir, struct dentry *new_dentry);
1149 	int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1150 	int (*inode_symlink) (struct inode *dir,
1151 	                      struct dentry *dentry, const char *old_name);
1152 	int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
1153 	int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1154 	int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1155 	                    int mode, dev_t dev);
1156 	int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1157 	                     struct inode *new_dir, struct dentry *new_dentry);
1158 	int (*inode_readlink) (struct dentry *dentry);
1159 	int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1160 	int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
1161 	int (*inode_setattr)	(struct dentry *dentry, struct iattr *attr);
1162 	int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1163         void (*inode_delete) (struct inode *inode);
1164 	int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
1165 			       size_t size, int flags);
1166 	void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
1167 				     size_t size, int flags);
1168 	int (*inode_getxattr) (struct dentry *dentry, char *name);
1169 	int (*inode_listxattr) (struct dentry *dentry);
1170 	int (*inode_removexattr) (struct dentry *dentry, char *name);
1171   	int (*inode_getsecurity)(struct inode *inode, const char *name, void *buffer, size_t size, int err);
1172   	int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1173   	int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
1174 
1175 	int (*file_permission) (struct file * file, int mask);
1176 	int (*file_alloc_security) (struct file * file);
1177 	void (*file_free_security) (struct file * file);
1178 	int (*file_ioctl) (struct file * file, unsigned int cmd,
1179 			   unsigned long arg);
1180 	int (*file_mmap) (struct file * file,
1181 			  unsigned long reqprot,
1182 			  unsigned long prot, unsigned long flags);
1183 	int (*file_mprotect) (struct vm_area_struct * vma,
1184 			      unsigned long reqprot,
1185 			      unsigned long prot);
1186 	int (*file_lock) (struct file * file, unsigned int cmd);
1187 	int (*file_fcntl) (struct file * file, unsigned int cmd,
1188 			   unsigned long arg);
1189 	int (*file_set_fowner) (struct file * file);
1190 	int (*file_send_sigiotask) (struct task_struct * tsk,
1191 				    struct fown_struct * fown, int sig);
1192 	int (*file_receive) (struct file * file);
1193 
1194 	int (*task_create) (unsigned long clone_flags);
1195 	int (*task_alloc_security) (struct task_struct * p);
1196 	void (*task_free_security) (struct task_struct * p);
1197 	int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
1198 	int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
1199 				 uid_t old_euid, uid_t old_suid, int flags);
1200 	int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
1201 	int (*task_setpgid) (struct task_struct * p, pid_t pgid);
1202 	int (*task_getpgid) (struct task_struct * p);
1203 	int (*task_getsid) (struct task_struct * p);
1204 	int (*task_setgroups) (struct group_info *group_info);
1205 	int (*task_setnice) (struct task_struct * p, int nice);
1206 	int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
1207 	int (*task_setscheduler) (struct task_struct * p, int policy,
1208 				  struct sched_param * lp);
1209 	int (*task_getscheduler) (struct task_struct * p);
1210 	int (*task_kill) (struct task_struct * p,
1211 			  struct siginfo * info, int sig);
1212 	int (*task_wait) (struct task_struct * p);
1213 	int (*task_prctl) (int option, unsigned long arg2,
1214 			   unsigned long arg3, unsigned long arg4,
1215 			   unsigned long arg5);
1216 	void (*task_reparent_to_init) (struct task_struct * p);
1217 	void (*task_to_inode)(struct task_struct *p, struct inode *inode);
1218 
1219 	int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
1220 
1221 	int (*msg_msg_alloc_security) (struct msg_msg * msg);
1222 	void (*msg_msg_free_security) (struct msg_msg * msg);
1223 
1224 	int (*msg_queue_alloc_security) (struct msg_queue * msq);
1225 	void (*msg_queue_free_security) (struct msg_queue * msq);
1226 	int (*msg_queue_associate) (struct msg_queue * msq, int msqflg);
1227 	int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd);
1228 	int (*msg_queue_msgsnd) (struct msg_queue * msq,
1229 				 struct msg_msg * msg, int msqflg);
1230 	int (*msg_queue_msgrcv) (struct msg_queue * msq,
1231 				 struct msg_msg * msg,
1232 				 struct task_struct * target,
1233 				 long type, int mode);
1234 
1235 	int (*shm_alloc_security) (struct shmid_kernel * shp);
1236 	void (*shm_free_security) (struct shmid_kernel * shp);
1237 	int (*shm_associate) (struct shmid_kernel * shp, int shmflg);
1238 	int (*shm_shmctl) (struct shmid_kernel * shp, int cmd);
1239 	int (*shm_shmat) (struct shmid_kernel * shp,
1240 			  char __user *shmaddr, int shmflg);
1241 
1242 	int (*sem_alloc_security) (struct sem_array * sma);
1243 	void (*sem_free_security) (struct sem_array * sma);
1244 	int (*sem_associate) (struct sem_array * sma, int semflg);
1245 	int (*sem_semctl) (struct sem_array * sma, int cmd);
1246 	int (*sem_semop) (struct sem_array * sma,
1247 			  struct sembuf * sops, unsigned nsops, int alter);
1248 
1249 	int (*netlink_send) (struct sock * sk, struct sk_buff * skb);
1250 	int (*netlink_recv) (struct sk_buff * skb);
1251 
1252 	/* allow module stacking */
1253 	int (*register_security) (const char *name,
1254 	                          struct security_operations *ops);
1255 	int (*unregister_security) (const char *name,
1256 	                            struct security_operations *ops);
1257 
1258 	void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1259 
1260  	int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1261  	int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1262 
1263 #ifdef CONFIG_SECURITY_NETWORK
1264 	int (*unix_stream_connect) (struct socket * sock,
1265 				    struct socket * other, struct sock * newsk);
1266 	int (*unix_may_send) (struct socket * sock, struct socket * other);
1267 
1268 	int (*socket_create) (int family, int type, int protocol, int kern);
1269 	void (*socket_post_create) (struct socket * sock, int family,
1270 				    int type, int protocol, int kern);
1271 	int (*socket_bind) (struct socket * sock,
1272 			    struct sockaddr * address, int addrlen);
1273 	int (*socket_connect) (struct socket * sock,
1274 			       struct sockaddr * address, int addrlen);
1275 	int (*socket_listen) (struct socket * sock, int backlog);
1276 	int (*socket_accept) (struct socket * sock, struct socket * newsock);
1277 	void (*socket_post_accept) (struct socket * sock,
1278 				    struct socket * newsock);
1279 	int (*socket_sendmsg) (struct socket * sock,
1280 			       struct msghdr * msg, int size);
1281 	int (*socket_recvmsg) (struct socket * sock,
1282 			       struct msghdr * msg, int size, int flags);
1283 	int (*socket_getsockname) (struct socket * sock);
1284 	int (*socket_getpeername) (struct socket * sock);
1285 	int (*socket_getsockopt) (struct socket * sock, int level, int optname);
1286 	int (*socket_setsockopt) (struct socket * sock, int level, int optname);
1287 	int (*socket_shutdown) (struct socket * sock, int how);
1288 	int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb);
1289 	int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1290 	int (*socket_getpeersec_dgram) (struct sk_buff *skb, char **secdata, u32 *seclen);
1291 	int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1292 	void (*sk_free_security) (struct sock *sk);
1293 	unsigned int (*sk_getsid) (struct sock *sk, struct flowi *fl, u8 dir);
1294 #endif	/* CONFIG_SECURITY_NETWORK */
1295 
1296 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1297 	int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx);
1298 	int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new);
1299 	void (*xfrm_policy_free_security) (struct xfrm_policy *xp);
1300 	int (*xfrm_state_alloc_security) (struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx);
1301 	void (*xfrm_state_free_security) (struct xfrm_state *x);
1302 	int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 sk_sid, u8 dir);
1303 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1304 
1305 	/* key management security hooks */
1306 #ifdef CONFIG_KEYS
1307 	int (*key_alloc)(struct key *key);
1308 	void (*key_free)(struct key *key);
1309 	int (*key_permission)(key_ref_t key_ref,
1310 			      struct task_struct *context,
1311 			      key_perm_t perm);
1312 
1313 #endif	/* CONFIG_KEYS */
1314 
1315 };
1316 
1317 /* global variables */
1318 extern struct security_operations *security_ops;
1319 
1320 /* inline stuff */
1321 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child)
1322 {
1323 	return security_ops->ptrace (parent, child);
1324 }
1325 
1326 static inline int security_capget (struct task_struct *target,
1327 				   kernel_cap_t *effective,
1328 				   kernel_cap_t *inheritable,
1329 				   kernel_cap_t *permitted)
1330 {
1331 	return security_ops->capget (target, effective, inheritable, permitted);
1332 }
1333 
1334 static inline int security_capset_check (struct task_struct *target,
1335 					 kernel_cap_t *effective,
1336 					 kernel_cap_t *inheritable,
1337 					 kernel_cap_t *permitted)
1338 {
1339 	return security_ops->capset_check (target, effective, inheritable, permitted);
1340 }
1341 
1342 static inline void security_capset_set (struct task_struct *target,
1343 					kernel_cap_t *effective,
1344 					kernel_cap_t *inheritable,
1345 					kernel_cap_t *permitted)
1346 {
1347 	security_ops->capset_set (target, effective, inheritable, permitted);
1348 }
1349 
1350 static inline int security_capable(struct task_struct *tsk, int cap)
1351 {
1352 	return security_ops->capable(tsk, cap);
1353 }
1354 
1355 static inline int security_acct (struct file *file)
1356 {
1357 	return security_ops->acct (file);
1358 }
1359 
1360 static inline int security_sysctl(struct ctl_table *table, int op)
1361 {
1362 	return security_ops->sysctl(table, op);
1363 }
1364 
1365 static inline int security_quotactl (int cmds, int type, int id,
1366 				     struct super_block *sb)
1367 {
1368 	return security_ops->quotactl (cmds, type, id, sb);
1369 }
1370 
1371 static inline int security_quota_on (struct dentry * dentry)
1372 {
1373 	return security_ops->quota_on (dentry);
1374 }
1375 
1376 static inline int security_syslog(int type)
1377 {
1378 	return security_ops->syslog(type);
1379 }
1380 
1381 static inline int security_settime(struct timespec *ts, struct timezone *tz)
1382 {
1383 	return security_ops->settime(ts, tz);
1384 }
1385 
1386 
1387 static inline int security_vm_enough_memory(long pages)
1388 {
1389 	return security_ops->vm_enough_memory(pages);
1390 }
1391 
1392 static inline int security_bprm_alloc (struct linux_binprm *bprm)
1393 {
1394 	return security_ops->bprm_alloc_security (bprm);
1395 }
1396 static inline void security_bprm_free (struct linux_binprm *bprm)
1397 {
1398 	security_ops->bprm_free_security (bprm);
1399 }
1400 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
1401 {
1402 	security_ops->bprm_apply_creds (bprm, unsafe);
1403 }
1404 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
1405 {
1406 	security_ops->bprm_post_apply_creds (bprm);
1407 }
1408 static inline int security_bprm_set (struct linux_binprm *bprm)
1409 {
1410 	return security_ops->bprm_set_security (bprm);
1411 }
1412 
1413 static inline int security_bprm_check (struct linux_binprm *bprm)
1414 {
1415 	return security_ops->bprm_check_security (bprm);
1416 }
1417 
1418 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
1419 {
1420 	return security_ops->bprm_secureexec (bprm);
1421 }
1422 
1423 static inline int security_sb_alloc (struct super_block *sb)
1424 {
1425 	return security_ops->sb_alloc_security (sb);
1426 }
1427 
1428 static inline void security_sb_free (struct super_block *sb)
1429 {
1430 	security_ops->sb_free_security (sb);
1431 }
1432 
1433 static inline int security_sb_copy_data (struct file_system_type *type,
1434 					 void *orig, void *copy)
1435 {
1436 	return security_ops->sb_copy_data (type, orig, copy);
1437 }
1438 
1439 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
1440 {
1441 	return security_ops->sb_kern_mount (sb, data);
1442 }
1443 
1444 static inline int security_sb_statfs (struct super_block *sb)
1445 {
1446 	return security_ops->sb_statfs (sb);
1447 }
1448 
1449 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
1450 				    char *type, unsigned long flags,
1451 				    void *data)
1452 {
1453 	return security_ops->sb_mount (dev_name, nd, type, flags, data);
1454 }
1455 
1456 static inline int security_sb_check_sb (struct vfsmount *mnt,
1457 					struct nameidata *nd)
1458 {
1459 	return security_ops->sb_check_sb (mnt, nd);
1460 }
1461 
1462 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
1463 {
1464 	return security_ops->sb_umount (mnt, flags);
1465 }
1466 
1467 static inline void security_sb_umount_close (struct vfsmount *mnt)
1468 {
1469 	security_ops->sb_umount_close (mnt);
1470 }
1471 
1472 static inline void security_sb_umount_busy (struct vfsmount *mnt)
1473 {
1474 	security_ops->sb_umount_busy (mnt);
1475 }
1476 
1477 static inline void security_sb_post_remount (struct vfsmount *mnt,
1478 					     unsigned long flags, void *data)
1479 {
1480 	security_ops->sb_post_remount (mnt, flags, data);
1481 }
1482 
1483 static inline void security_sb_post_mountroot (void)
1484 {
1485 	security_ops->sb_post_mountroot ();
1486 }
1487 
1488 static inline void security_sb_post_addmount (struct vfsmount *mnt,
1489 					      struct nameidata *mountpoint_nd)
1490 {
1491 	security_ops->sb_post_addmount (mnt, mountpoint_nd);
1492 }
1493 
1494 static inline int security_sb_pivotroot (struct nameidata *old_nd,
1495 					 struct nameidata *new_nd)
1496 {
1497 	return security_ops->sb_pivotroot (old_nd, new_nd);
1498 }
1499 
1500 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
1501 					       struct nameidata *new_nd)
1502 {
1503 	security_ops->sb_post_pivotroot (old_nd, new_nd);
1504 }
1505 
1506 static inline int security_inode_alloc (struct inode *inode)
1507 {
1508 	return security_ops->inode_alloc_security (inode);
1509 }
1510 
1511 static inline void security_inode_free (struct inode *inode)
1512 {
1513 	security_ops->inode_free_security (inode);
1514 }
1515 
1516 static inline int security_inode_init_security (struct inode *inode,
1517 						struct inode *dir,
1518 						char **name,
1519 						void **value,
1520 						size_t *len)
1521 {
1522 	if (unlikely (IS_PRIVATE (inode)))
1523 		return -EOPNOTSUPP;
1524 	return security_ops->inode_init_security (inode, dir, name, value, len);
1525 }
1526 
1527 static inline int security_inode_create (struct inode *dir,
1528 					 struct dentry *dentry,
1529 					 int mode)
1530 {
1531 	if (unlikely (IS_PRIVATE (dir)))
1532 		return 0;
1533 	return security_ops->inode_create (dir, dentry, mode);
1534 }
1535 
1536 static inline int security_inode_link (struct dentry *old_dentry,
1537 				       struct inode *dir,
1538 				       struct dentry *new_dentry)
1539 {
1540 	if (unlikely (IS_PRIVATE (old_dentry->d_inode)))
1541 		return 0;
1542 	return security_ops->inode_link (old_dentry, dir, new_dentry);
1543 }
1544 
1545 static inline int security_inode_unlink (struct inode *dir,
1546 					 struct dentry *dentry)
1547 {
1548 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1549 		return 0;
1550 	return security_ops->inode_unlink (dir, dentry);
1551 }
1552 
1553 static inline int security_inode_symlink (struct inode *dir,
1554 					  struct dentry *dentry,
1555 					  const char *old_name)
1556 {
1557 	if (unlikely (IS_PRIVATE (dir)))
1558 		return 0;
1559 	return security_ops->inode_symlink (dir, dentry, old_name);
1560 }
1561 
1562 static inline int security_inode_mkdir (struct inode *dir,
1563 					struct dentry *dentry,
1564 					int mode)
1565 {
1566 	if (unlikely (IS_PRIVATE (dir)))
1567 		return 0;
1568 	return security_ops->inode_mkdir (dir, dentry, mode);
1569 }
1570 
1571 static inline int security_inode_rmdir (struct inode *dir,
1572 					struct dentry *dentry)
1573 {
1574 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1575 		return 0;
1576 	return security_ops->inode_rmdir (dir, dentry);
1577 }
1578 
1579 static inline int security_inode_mknod (struct inode *dir,
1580 					struct dentry *dentry,
1581 					int mode, dev_t dev)
1582 {
1583 	if (unlikely (IS_PRIVATE (dir)))
1584 		return 0;
1585 	return security_ops->inode_mknod (dir, dentry, mode, dev);
1586 }
1587 
1588 static inline int security_inode_rename (struct inode *old_dir,
1589 					 struct dentry *old_dentry,
1590 					 struct inode *new_dir,
1591 					 struct dentry *new_dentry)
1592 {
1593         if (unlikely (IS_PRIVATE (old_dentry->d_inode) ||
1594             (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode))))
1595 		return 0;
1596 	return security_ops->inode_rename (old_dir, old_dentry,
1597 					   new_dir, new_dentry);
1598 }
1599 
1600 static inline int security_inode_readlink (struct dentry *dentry)
1601 {
1602 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1603 		return 0;
1604 	return security_ops->inode_readlink (dentry);
1605 }
1606 
1607 static inline int security_inode_follow_link (struct dentry *dentry,
1608 					      struct nameidata *nd)
1609 {
1610 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1611 		return 0;
1612 	return security_ops->inode_follow_link (dentry, nd);
1613 }
1614 
1615 static inline int security_inode_permission (struct inode *inode, int mask,
1616 					     struct nameidata *nd)
1617 {
1618 	if (unlikely (IS_PRIVATE (inode)))
1619 		return 0;
1620 	return security_ops->inode_permission (inode, mask, nd);
1621 }
1622 
1623 static inline int security_inode_setattr (struct dentry *dentry,
1624 					  struct iattr *attr)
1625 {
1626 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1627 		return 0;
1628 	return security_ops->inode_setattr (dentry, attr);
1629 }
1630 
1631 static inline int security_inode_getattr (struct vfsmount *mnt,
1632 					  struct dentry *dentry)
1633 {
1634 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1635 		return 0;
1636 	return security_ops->inode_getattr (mnt, dentry);
1637 }
1638 
1639 static inline void security_inode_delete (struct inode *inode)
1640 {
1641 	if (unlikely (IS_PRIVATE (inode)))
1642 		return;
1643 	security_ops->inode_delete (inode);
1644 }
1645 
1646 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
1647 					   void *value, size_t size, int flags)
1648 {
1649 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1650 		return 0;
1651 	return security_ops->inode_setxattr (dentry, name, value, size, flags);
1652 }
1653 
1654 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
1655 						void *value, size_t size, int flags)
1656 {
1657 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1658 		return;
1659 	security_ops->inode_post_setxattr (dentry, name, value, size, flags);
1660 }
1661 
1662 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
1663 {
1664 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1665 		return 0;
1666 	return security_ops->inode_getxattr (dentry, name);
1667 }
1668 
1669 static inline int security_inode_listxattr (struct dentry *dentry)
1670 {
1671 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1672 		return 0;
1673 	return security_ops->inode_listxattr (dentry);
1674 }
1675 
1676 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
1677 {
1678 	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1679 		return 0;
1680 	return security_ops->inode_removexattr (dentry, name);
1681 }
1682 
1683 static inline int security_inode_getsecurity(struct inode *inode, const char *name, void *buffer, size_t size, int err)
1684 {
1685 	if (unlikely (IS_PRIVATE (inode)))
1686 		return 0;
1687 	return security_ops->inode_getsecurity(inode, name, buffer, size, err);
1688 }
1689 
1690 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1691 {
1692 	if (unlikely (IS_PRIVATE (inode)))
1693 		return 0;
1694 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
1695 }
1696 
1697 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1698 {
1699 	if (unlikely (IS_PRIVATE (inode)))
1700 		return 0;
1701 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
1702 }
1703 
1704 static inline int security_file_permission (struct file *file, int mask)
1705 {
1706 	return security_ops->file_permission (file, mask);
1707 }
1708 
1709 static inline int security_file_alloc (struct file *file)
1710 {
1711 	return security_ops->file_alloc_security (file);
1712 }
1713 
1714 static inline void security_file_free (struct file *file)
1715 {
1716 	security_ops->file_free_security (file);
1717 }
1718 
1719 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
1720 				       unsigned long arg)
1721 {
1722 	return security_ops->file_ioctl (file, cmd, arg);
1723 }
1724 
1725 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
1726 				      unsigned long prot,
1727 				      unsigned long flags)
1728 {
1729 	return security_ops->file_mmap (file, reqprot, prot, flags);
1730 }
1731 
1732 static inline int security_file_mprotect (struct vm_area_struct *vma,
1733 					  unsigned long reqprot,
1734 					  unsigned long prot)
1735 {
1736 	return security_ops->file_mprotect (vma, reqprot, prot);
1737 }
1738 
1739 static inline int security_file_lock (struct file *file, unsigned int cmd)
1740 {
1741 	return security_ops->file_lock (file, cmd);
1742 }
1743 
1744 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
1745 				       unsigned long arg)
1746 {
1747 	return security_ops->file_fcntl (file, cmd, arg);
1748 }
1749 
1750 static inline int security_file_set_fowner (struct file *file)
1751 {
1752 	return security_ops->file_set_fowner (file);
1753 }
1754 
1755 static inline int security_file_send_sigiotask (struct task_struct *tsk,
1756 						struct fown_struct *fown,
1757 						int sig)
1758 {
1759 	return security_ops->file_send_sigiotask (tsk, fown, sig);
1760 }
1761 
1762 static inline int security_file_receive (struct file *file)
1763 {
1764 	return security_ops->file_receive (file);
1765 }
1766 
1767 static inline int security_task_create (unsigned long clone_flags)
1768 {
1769 	return security_ops->task_create (clone_flags);
1770 }
1771 
1772 static inline int security_task_alloc (struct task_struct *p)
1773 {
1774 	return security_ops->task_alloc_security (p);
1775 }
1776 
1777 static inline void security_task_free (struct task_struct *p)
1778 {
1779 	security_ops->task_free_security (p);
1780 }
1781 
1782 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
1783 					int flags)
1784 {
1785 	return security_ops->task_setuid (id0, id1, id2, flags);
1786 }
1787 
1788 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
1789 					     uid_t old_suid, int flags)
1790 {
1791 	return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags);
1792 }
1793 
1794 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
1795 					int flags)
1796 {
1797 	return security_ops->task_setgid (id0, id1, id2, flags);
1798 }
1799 
1800 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
1801 {
1802 	return security_ops->task_setpgid (p, pgid);
1803 }
1804 
1805 static inline int security_task_getpgid (struct task_struct *p)
1806 {
1807 	return security_ops->task_getpgid (p);
1808 }
1809 
1810 static inline int security_task_getsid (struct task_struct *p)
1811 {
1812 	return security_ops->task_getsid (p);
1813 }
1814 
1815 static inline int security_task_setgroups (struct group_info *group_info)
1816 {
1817 	return security_ops->task_setgroups (group_info);
1818 }
1819 
1820 static inline int security_task_setnice (struct task_struct *p, int nice)
1821 {
1822 	return security_ops->task_setnice (p, nice);
1823 }
1824 
1825 static inline int security_task_setrlimit (unsigned int resource,
1826 					   struct rlimit *new_rlim)
1827 {
1828 	return security_ops->task_setrlimit (resource, new_rlim);
1829 }
1830 
1831 static inline int security_task_setscheduler (struct task_struct *p,
1832 					      int policy,
1833 					      struct sched_param *lp)
1834 {
1835 	return security_ops->task_setscheduler (p, policy, lp);
1836 }
1837 
1838 static inline int security_task_getscheduler (struct task_struct *p)
1839 {
1840 	return security_ops->task_getscheduler (p);
1841 }
1842 
1843 static inline int security_task_kill (struct task_struct *p,
1844 				      struct siginfo *info, int sig)
1845 {
1846 	return security_ops->task_kill (p, info, sig);
1847 }
1848 
1849 static inline int security_task_wait (struct task_struct *p)
1850 {
1851 	return security_ops->task_wait (p);
1852 }
1853 
1854 static inline int security_task_prctl (int option, unsigned long arg2,
1855 				       unsigned long arg3,
1856 				       unsigned long arg4,
1857 				       unsigned long arg5)
1858 {
1859 	return security_ops->task_prctl (option, arg2, arg3, arg4, arg5);
1860 }
1861 
1862 static inline void security_task_reparent_to_init (struct task_struct *p)
1863 {
1864 	security_ops->task_reparent_to_init (p);
1865 }
1866 
1867 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
1868 {
1869 	security_ops->task_to_inode(p, inode);
1870 }
1871 
1872 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
1873 					   short flag)
1874 {
1875 	return security_ops->ipc_permission (ipcp, flag);
1876 }
1877 
1878 static inline int security_msg_msg_alloc (struct msg_msg * msg)
1879 {
1880 	return security_ops->msg_msg_alloc_security (msg);
1881 }
1882 
1883 static inline void security_msg_msg_free (struct msg_msg * msg)
1884 {
1885 	security_ops->msg_msg_free_security(msg);
1886 }
1887 
1888 static inline int security_msg_queue_alloc (struct msg_queue *msq)
1889 {
1890 	return security_ops->msg_queue_alloc_security (msq);
1891 }
1892 
1893 static inline void security_msg_queue_free (struct msg_queue *msq)
1894 {
1895 	security_ops->msg_queue_free_security (msq);
1896 }
1897 
1898 static inline int security_msg_queue_associate (struct msg_queue * msq,
1899 						int msqflg)
1900 {
1901 	return security_ops->msg_queue_associate (msq, msqflg);
1902 }
1903 
1904 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
1905 {
1906 	return security_ops->msg_queue_msgctl (msq, cmd);
1907 }
1908 
1909 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
1910 					     struct msg_msg * msg, int msqflg)
1911 {
1912 	return security_ops->msg_queue_msgsnd (msq, msg, msqflg);
1913 }
1914 
1915 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
1916 					     struct msg_msg * msg,
1917 					     struct task_struct * target,
1918 					     long type, int mode)
1919 {
1920 	return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode);
1921 }
1922 
1923 static inline int security_shm_alloc (struct shmid_kernel *shp)
1924 {
1925 	return security_ops->shm_alloc_security (shp);
1926 }
1927 
1928 static inline void security_shm_free (struct shmid_kernel *shp)
1929 {
1930 	security_ops->shm_free_security (shp);
1931 }
1932 
1933 static inline int security_shm_associate (struct shmid_kernel * shp,
1934 					  int shmflg)
1935 {
1936 	return security_ops->shm_associate(shp, shmflg);
1937 }
1938 
1939 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
1940 {
1941 	return security_ops->shm_shmctl (shp, cmd);
1942 }
1943 
1944 static inline int security_shm_shmat (struct shmid_kernel * shp,
1945 				      char __user *shmaddr, int shmflg)
1946 {
1947 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
1948 }
1949 
1950 static inline int security_sem_alloc (struct sem_array *sma)
1951 {
1952 	return security_ops->sem_alloc_security (sma);
1953 }
1954 
1955 static inline void security_sem_free (struct sem_array *sma)
1956 {
1957 	security_ops->sem_free_security (sma);
1958 }
1959 
1960 static inline int security_sem_associate (struct sem_array * sma, int semflg)
1961 {
1962 	return security_ops->sem_associate (sma, semflg);
1963 }
1964 
1965 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
1966 {
1967 	return security_ops->sem_semctl(sma, cmd);
1968 }
1969 
1970 static inline int security_sem_semop (struct sem_array * sma,
1971 				      struct sembuf * sops, unsigned nsops,
1972 				      int alter)
1973 {
1974 	return security_ops->sem_semop(sma, sops, nsops, alter);
1975 }
1976 
1977 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
1978 {
1979 	if (unlikely (inode && IS_PRIVATE (inode)))
1980 		return;
1981 	security_ops->d_instantiate (dentry, inode);
1982 }
1983 
1984 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
1985 {
1986 	return security_ops->getprocattr(p, name, value, size);
1987 }
1988 
1989 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1990 {
1991 	return security_ops->setprocattr(p, name, value, size);
1992 }
1993 
1994 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb)
1995 {
1996 	return security_ops->netlink_send(sk, skb);
1997 }
1998 
1999 static inline int security_netlink_recv(struct sk_buff * skb)
2000 {
2001 	return security_ops->netlink_recv(skb);
2002 }
2003 
2004 /* prototypes */
2005 extern int security_init	(void);
2006 extern int register_security	(struct security_operations *ops);
2007 extern int unregister_security	(struct security_operations *ops);
2008 extern int mod_reg_security	(const char *name, struct security_operations *ops);
2009 extern int mod_unreg_security	(const char *name, struct security_operations *ops);
2010 extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
2011 					     struct dentry *parent, void *data,
2012 					     struct file_operations *fops);
2013 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
2014 extern void securityfs_remove(struct dentry *dentry);
2015 
2016 
2017 #else /* CONFIG_SECURITY */
2018 
2019 /*
2020  * This is the default capabilities functionality.  Most of these functions
2021  * are just stubbed out, but a few must call the proper capable code.
2022  */
2023 
2024 static inline int security_init(void)
2025 {
2026 	return 0;
2027 }
2028 
2029 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child)
2030 {
2031 	return cap_ptrace (parent, child);
2032 }
2033 
2034 static inline int security_capget (struct task_struct *target,
2035 				   kernel_cap_t *effective,
2036 				   kernel_cap_t *inheritable,
2037 				   kernel_cap_t *permitted)
2038 {
2039 	return cap_capget (target, effective, inheritable, permitted);
2040 }
2041 
2042 static inline int security_capset_check (struct task_struct *target,
2043 					 kernel_cap_t *effective,
2044 					 kernel_cap_t *inheritable,
2045 					 kernel_cap_t *permitted)
2046 {
2047 	return cap_capset_check (target, effective, inheritable, permitted);
2048 }
2049 
2050 static inline void security_capset_set (struct task_struct *target,
2051 					kernel_cap_t *effective,
2052 					kernel_cap_t *inheritable,
2053 					kernel_cap_t *permitted)
2054 {
2055 	cap_capset_set (target, effective, inheritable, permitted);
2056 }
2057 
2058 static inline int security_capable(struct task_struct *tsk, int cap)
2059 {
2060 	return cap_capable(tsk, cap);
2061 }
2062 
2063 static inline int security_acct (struct file *file)
2064 {
2065 	return 0;
2066 }
2067 
2068 static inline int security_sysctl(struct ctl_table *table, int op)
2069 {
2070 	return 0;
2071 }
2072 
2073 static inline int security_quotactl (int cmds, int type, int id,
2074 				     struct super_block * sb)
2075 {
2076 	return 0;
2077 }
2078 
2079 static inline int security_quota_on (struct dentry * dentry)
2080 {
2081 	return 0;
2082 }
2083 
2084 static inline int security_syslog(int type)
2085 {
2086 	return cap_syslog(type);
2087 }
2088 
2089 static inline int security_settime(struct timespec *ts, struct timezone *tz)
2090 {
2091 	return cap_settime(ts, tz);
2092 }
2093 
2094 static inline int security_vm_enough_memory(long pages)
2095 {
2096 	return cap_vm_enough_memory(pages);
2097 }
2098 
2099 static inline int security_bprm_alloc (struct linux_binprm *bprm)
2100 {
2101 	return 0;
2102 }
2103 
2104 static inline void security_bprm_free (struct linux_binprm *bprm)
2105 { }
2106 
2107 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
2108 {
2109 	cap_bprm_apply_creds (bprm, unsafe);
2110 }
2111 
2112 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
2113 {
2114 	return;
2115 }
2116 
2117 static inline int security_bprm_set (struct linux_binprm *bprm)
2118 {
2119 	return cap_bprm_set_security (bprm);
2120 }
2121 
2122 static inline int security_bprm_check (struct linux_binprm *bprm)
2123 {
2124 	return 0;
2125 }
2126 
2127 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
2128 {
2129 	return cap_bprm_secureexec(bprm);
2130 }
2131 
2132 static inline int security_sb_alloc (struct super_block *sb)
2133 {
2134 	return 0;
2135 }
2136 
2137 static inline void security_sb_free (struct super_block *sb)
2138 { }
2139 
2140 static inline int security_sb_copy_data (struct file_system_type *type,
2141 					 void *orig, void *copy)
2142 {
2143 	return 0;
2144 }
2145 
2146 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
2147 {
2148 	return 0;
2149 }
2150 
2151 static inline int security_sb_statfs (struct super_block *sb)
2152 {
2153 	return 0;
2154 }
2155 
2156 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
2157 				    char *type, unsigned long flags,
2158 				    void *data)
2159 {
2160 	return 0;
2161 }
2162 
2163 static inline int security_sb_check_sb (struct vfsmount *mnt,
2164 					struct nameidata *nd)
2165 {
2166 	return 0;
2167 }
2168 
2169 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
2170 {
2171 	return 0;
2172 }
2173 
2174 static inline void security_sb_umount_close (struct vfsmount *mnt)
2175 { }
2176 
2177 static inline void security_sb_umount_busy (struct vfsmount *mnt)
2178 { }
2179 
2180 static inline void security_sb_post_remount (struct vfsmount *mnt,
2181 					     unsigned long flags, void *data)
2182 { }
2183 
2184 static inline void security_sb_post_mountroot (void)
2185 { }
2186 
2187 static inline void security_sb_post_addmount (struct vfsmount *mnt,
2188 					      struct nameidata *mountpoint_nd)
2189 { }
2190 
2191 static inline int security_sb_pivotroot (struct nameidata *old_nd,
2192 					 struct nameidata *new_nd)
2193 {
2194 	return 0;
2195 }
2196 
2197 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
2198 					       struct nameidata *new_nd)
2199 { }
2200 
2201 static inline int security_inode_alloc (struct inode *inode)
2202 {
2203 	return 0;
2204 }
2205 
2206 static inline void security_inode_free (struct inode *inode)
2207 { }
2208 
2209 static inline int security_inode_init_security (struct inode *inode,
2210 						struct inode *dir,
2211 						char **name,
2212 						void **value,
2213 						size_t *len)
2214 {
2215 	return -EOPNOTSUPP;
2216 }
2217 
2218 static inline int security_inode_create (struct inode *dir,
2219 					 struct dentry *dentry,
2220 					 int mode)
2221 {
2222 	return 0;
2223 }
2224 
2225 static inline int security_inode_link (struct dentry *old_dentry,
2226 				       struct inode *dir,
2227 				       struct dentry *new_dentry)
2228 {
2229 	return 0;
2230 }
2231 
2232 static inline int security_inode_unlink (struct inode *dir,
2233 					 struct dentry *dentry)
2234 {
2235 	return 0;
2236 }
2237 
2238 static inline int security_inode_symlink (struct inode *dir,
2239 					  struct dentry *dentry,
2240 					  const char *old_name)
2241 {
2242 	return 0;
2243 }
2244 
2245 static inline int security_inode_mkdir (struct inode *dir,
2246 					struct dentry *dentry,
2247 					int mode)
2248 {
2249 	return 0;
2250 }
2251 
2252 static inline int security_inode_rmdir (struct inode *dir,
2253 					struct dentry *dentry)
2254 {
2255 	return 0;
2256 }
2257 
2258 static inline int security_inode_mknod (struct inode *dir,
2259 					struct dentry *dentry,
2260 					int mode, dev_t dev)
2261 {
2262 	return 0;
2263 }
2264 
2265 static inline int security_inode_rename (struct inode *old_dir,
2266 					 struct dentry *old_dentry,
2267 					 struct inode *new_dir,
2268 					 struct dentry *new_dentry)
2269 {
2270 	return 0;
2271 }
2272 
2273 static inline int security_inode_readlink (struct dentry *dentry)
2274 {
2275 	return 0;
2276 }
2277 
2278 static inline int security_inode_follow_link (struct dentry *dentry,
2279 					      struct nameidata *nd)
2280 {
2281 	return 0;
2282 }
2283 
2284 static inline int security_inode_permission (struct inode *inode, int mask,
2285 					     struct nameidata *nd)
2286 {
2287 	return 0;
2288 }
2289 
2290 static inline int security_inode_setattr (struct dentry *dentry,
2291 					  struct iattr *attr)
2292 {
2293 	return 0;
2294 }
2295 
2296 static inline int security_inode_getattr (struct vfsmount *mnt,
2297 					  struct dentry *dentry)
2298 {
2299 	return 0;
2300 }
2301 
2302 static inline void security_inode_delete (struct inode *inode)
2303 { }
2304 
2305 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
2306 					   void *value, size_t size, int flags)
2307 {
2308 	return cap_inode_setxattr(dentry, name, value, size, flags);
2309 }
2310 
2311 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
2312 						 void *value, size_t size, int flags)
2313 { }
2314 
2315 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
2316 {
2317 	return 0;
2318 }
2319 
2320 static inline int security_inode_listxattr (struct dentry *dentry)
2321 {
2322 	return 0;
2323 }
2324 
2325 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
2326 {
2327 	return cap_inode_removexattr(dentry, name);
2328 }
2329 
2330 static inline int security_inode_getsecurity(struct inode *inode, const char *name, void *buffer, size_t size, int err)
2331 {
2332 	return -EOPNOTSUPP;
2333 }
2334 
2335 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2336 {
2337 	return -EOPNOTSUPP;
2338 }
2339 
2340 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2341 {
2342 	return 0;
2343 }
2344 
2345 static inline int security_file_permission (struct file *file, int mask)
2346 {
2347 	return 0;
2348 }
2349 
2350 static inline int security_file_alloc (struct file *file)
2351 {
2352 	return 0;
2353 }
2354 
2355 static inline void security_file_free (struct file *file)
2356 { }
2357 
2358 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
2359 				       unsigned long arg)
2360 {
2361 	return 0;
2362 }
2363 
2364 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
2365 				      unsigned long prot,
2366 				      unsigned long flags)
2367 {
2368 	return 0;
2369 }
2370 
2371 static inline int security_file_mprotect (struct vm_area_struct *vma,
2372 					  unsigned long reqprot,
2373 					  unsigned long prot)
2374 {
2375 	return 0;
2376 }
2377 
2378 static inline int security_file_lock (struct file *file, unsigned int cmd)
2379 {
2380 	return 0;
2381 }
2382 
2383 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
2384 				       unsigned long arg)
2385 {
2386 	return 0;
2387 }
2388 
2389 static inline int security_file_set_fowner (struct file *file)
2390 {
2391 	return 0;
2392 }
2393 
2394 static inline int security_file_send_sigiotask (struct task_struct *tsk,
2395 						struct fown_struct *fown,
2396 						int sig)
2397 {
2398 	return 0;
2399 }
2400 
2401 static inline int security_file_receive (struct file *file)
2402 {
2403 	return 0;
2404 }
2405 
2406 static inline int security_task_create (unsigned long clone_flags)
2407 {
2408 	return 0;
2409 }
2410 
2411 static inline int security_task_alloc (struct task_struct *p)
2412 {
2413 	return 0;
2414 }
2415 
2416 static inline void security_task_free (struct task_struct *p)
2417 { }
2418 
2419 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
2420 					int flags)
2421 {
2422 	return 0;
2423 }
2424 
2425 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
2426 					     uid_t old_suid, int flags)
2427 {
2428 	return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags);
2429 }
2430 
2431 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
2432 					int flags)
2433 {
2434 	return 0;
2435 }
2436 
2437 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
2438 {
2439 	return 0;
2440 }
2441 
2442 static inline int security_task_getpgid (struct task_struct *p)
2443 {
2444 	return 0;
2445 }
2446 
2447 static inline int security_task_getsid (struct task_struct *p)
2448 {
2449 	return 0;
2450 }
2451 
2452 static inline int security_task_setgroups (struct group_info *group_info)
2453 {
2454 	return 0;
2455 }
2456 
2457 static inline int security_task_setnice (struct task_struct *p, int nice)
2458 {
2459 	return 0;
2460 }
2461 
2462 static inline int security_task_setrlimit (unsigned int resource,
2463 					   struct rlimit *new_rlim)
2464 {
2465 	return 0;
2466 }
2467 
2468 static inline int security_task_setscheduler (struct task_struct *p,
2469 					      int policy,
2470 					      struct sched_param *lp)
2471 {
2472 	return 0;
2473 }
2474 
2475 static inline int security_task_getscheduler (struct task_struct *p)
2476 {
2477 	return 0;
2478 }
2479 
2480 static inline int security_task_kill (struct task_struct *p,
2481 				      struct siginfo *info, int sig)
2482 {
2483 	return 0;
2484 }
2485 
2486 static inline int security_task_wait (struct task_struct *p)
2487 {
2488 	return 0;
2489 }
2490 
2491 static inline int security_task_prctl (int option, unsigned long arg2,
2492 				       unsigned long arg3,
2493 				       unsigned long arg4,
2494 				       unsigned long arg5)
2495 {
2496 	return 0;
2497 }
2498 
2499 static inline void security_task_reparent_to_init (struct task_struct *p)
2500 {
2501 	cap_task_reparent_to_init (p);
2502 }
2503 
2504 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2505 { }
2506 
2507 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
2508 					   short flag)
2509 {
2510 	return 0;
2511 }
2512 
2513 static inline int security_msg_msg_alloc (struct msg_msg * msg)
2514 {
2515 	return 0;
2516 }
2517 
2518 static inline void security_msg_msg_free (struct msg_msg * msg)
2519 { }
2520 
2521 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2522 {
2523 	return 0;
2524 }
2525 
2526 static inline void security_msg_queue_free (struct msg_queue *msq)
2527 { }
2528 
2529 static inline int security_msg_queue_associate (struct msg_queue * msq,
2530 						int msqflg)
2531 {
2532 	return 0;
2533 }
2534 
2535 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2536 {
2537 	return 0;
2538 }
2539 
2540 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2541 					     struct msg_msg * msg, int msqflg)
2542 {
2543 	return 0;
2544 }
2545 
2546 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2547 					     struct msg_msg * msg,
2548 					     struct task_struct * target,
2549 					     long type, int mode)
2550 {
2551 	return 0;
2552 }
2553 
2554 static inline int security_shm_alloc (struct shmid_kernel *shp)
2555 {
2556 	return 0;
2557 }
2558 
2559 static inline void security_shm_free (struct shmid_kernel *shp)
2560 { }
2561 
2562 static inline int security_shm_associate (struct shmid_kernel * shp,
2563 					  int shmflg)
2564 {
2565 	return 0;
2566 }
2567 
2568 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2569 {
2570 	return 0;
2571 }
2572 
2573 static inline int security_shm_shmat (struct shmid_kernel * shp,
2574 				      char __user *shmaddr, int shmflg)
2575 {
2576 	return 0;
2577 }
2578 
2579 static inline int security_sem_alloc (struct sem_array *sma)
2580 {
2581 	return 0;
2582 }
2583 
2584 static inline void security_sem_free (struct sem_array *sma)
2585 { }
2586 
2587 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2588 {
2589 	return 0;
2590 }
2591 
2592 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2593 {
2594 	return 0;
2595 }
2596 
2597 static inline int security_sem_semop (struct sem_array * sma,
2598 				      struct sembuf * sops, unsigned nsops,
2599 				      int alter)
2600 {
2601 	return 0;
2602 }
2603 
2604 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2605 { }
2606 
2607 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
2608 {
2609 	return -EINVAL;
2610 }
2611 
2612 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2613 {
2614 	return -EINVAL;
2615 }
2616 
2617 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb)
2618 {
2619 	return cap_netlink_send (sk, skb);
2620 }
2621 
2622 static inline int security_netlink_recv (struct sk_buff *skb)
2623 {
2624 	return cap_netlink_recv (skb);
2625 }
2626 
2627 static inline struct dentry *securityfs_create_dir(const char *name,
2628 					struct dentry *parent)
2629 {
2630 	return ERR_PTR(-ENODEV);
2631 }
2632 
2633 static inline struct dentry *securityfs_create_file(const char *name,
2634 						mode_t mode,
2635 						struct dentry *parent,
2636 						void *data,
2637 						struct file_operations *fops)
2638 {
2639 	return ERR_PTR(-ENODEV);
2640 }
2641 
2642 static inline void securityfs_remove(struct dentry *dentry)
2643 {
2644 }
2645 
2646 #endif	/* CONFIG_SECURITY */
2647 
2648 #ifdef CONFIG_SECURITY_NETWORK
2649 static inline int security_unix_stream_connect(struct socket * sock,
2650 					       struct socket * other,
2651 					       struct sock * newsk)
2652 {
2653 	return security_ops->unix_stream_connect(sock, other, newsk);
2654 }
2655 
2656 
2657 static inline int security_unix_may_send(struct socket * sock,
2658 					 struct socket * other)
2659 {
2660 	return security_ops->unix_may_send(sock, other);
2661 }
2662 
2663 static inline int security_socket_create (int family, int type,
2664 					  int protocol, int kern)
2665 {
2666 	return security_ops->socket_create(family, type, protocol, kern);
2667 }
2668 
2669 static inline void security_socket_post_create(struct socket * sock,
2670 					       int family,
2671 					       int type,
2672 					       int protocol, int kern)
2673 {
2674 	security_ops->socket_post_create(sock, family, type,
2675 					 protocol, kern);
2676 }
2677 
2678 static inline int security_socket_bind(struct socket * sock,
2679 				       struct sockaddr * address,
2680 				       int addrlen)
2681 {
2682 	return security_ops->socket_bind(sock, address, addrlen);
2683 }
2684 
2685 static inline int security_socket_connect(struct socket * sock,
2686 					  struct sockaddr * address,
2687 					  int addrlen)
2688 {
2689 	return security_ops->socket_connect(sock, address, addrlen);
2690 }
2691 
2692 static inline int security_socket_listen(struct socket * sock, int backlog)
2693 {
2694 	return security_ops->socket_listen(sock, backlog);
2695 }
2696 
2697 static inline int security_socket_accept(struct socket * sock,
2698 					 struct socket * newsock)
2699 {
2700 	return security_ops->socket_accept(sock, newsock);
2701 }
2702 
2703 static inline void security_socket_post_accept(struct socket * sock,
2704 					       struct socket * newsock)
2705 {
2706 	security_ops->socket_post_accept(sock, newsock);
2707 }
2708 
2709 static inline int security_socket_sendmsg(struct socket * sock,
2710 					  struct msghdr * msg, int size)
2711 {
2712 	return security_ops->socket_sendmsg(sock, msg, size);
2713 }
2714 
2715 static inline int security_socket_recvmsg(struct socket * sock,
2716 					  struct msghdr * msg, int size,
2717 					  int flags)
2718 {
2719 	return security_ops->socket_recvmsg(sock, msg, size, flags);
2720 }
2721 
2722 static inline int security_socket_getsockname(struct socket * sock)
2723 {
2724 	return security_ops->socket_getsockname(sock);
2725 }
2726 
2727 static inline int security_socket_getpeername(struct socket * sock)
2728 {
2729 	return security_ops->socket_getpeername(sock);
2730 }
2731 
2732 static inline int security_socket_getsockopt(struct socket * sock,
2733 					     int level, int optname)
2734 {
2735 	return security_ops->socket_getsockopt(sock, level, optname);
2736 }
2737 
2738 static inline int security_socket_setsockopt(struct socket * sock,
2739 					     int level, int optname)
2740 {
2741 	return security_ops->socket_setsockopt(sock, level, optname);
2742 }
2743 
2744 static inline int security_socket_shutdown(struct socket * sock, int how)
2745 {
2746 	return security_ops->socket_shutdown(sock, how);
2747 }
2748 
2749 static inline int security_sock_rcv_skb (struct sock * sk,
2750 					 struct sk_buff * skb)
2751 {
2752 	return security_ops->socket_sock_rcv_skb (sk, skb);
2753 }
2754 
2755 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2756 						    int __user *optlen, unsigned len)
2757 {
2758 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
2759 }
2760 
2761 static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata,
2762 						   u32 *seclen)
2763 {
2764 	return security_ops->socket_getpeersec_dgram(skb, secdata, seclen);
2765 }
2766 
2767 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2768 {
2769 	return security_ops->sk_alloc_security(sk, family, priority);
2770 }
2771 
2772 static inline void security_sk_free(struct sock *sk)
2773 {
2774 	return security_ops->sk_free_security(sk);
2775 }
2776 
2777 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir)
2778 {
2779 	return security_ops->sk_getsid(sk, fl, dir);
2780 }
2781 #else	/* CONFIG_SECURITY_NETWORK */
2782 static inline int security_unix_stream_connect(struct socket * sock,
2783 					       struct socket * other,
2784 					       struct sock * newsk)
2785 {
2786 	return 0;
2787 }
2788 
2789 static inline int security_unix_may_send(struct socket * sock,
2790 					 struct socket * other)
2791 {
2792 	return 0;
2793 }
2794 
2795 static inline int security_socket_create (int family, int type,
2796 					  int protocol, int kern)
2797 {
2798 	return 0;
2799 }
2800 
2801 static inline void security_socket_post_create(struct socket * sock,
2802 					       int family,
2803 					       int type,
2804 					       int protocol, int kern)
2805 {
2806 }
2807 
2808 static inline int security_socket_bind(struct socket * sock,
2809 				       struct sockaddr * address,
2810 				       int addrlen)
2811 {
2812 	return 0;
2813 }
2814 
2815 static inline int security_socket_connect(struct socket * sock,
2816 					  struct sockaddr * address,
2817 					  int addrlen)
2818 {
2819 	return 0;
2820 }
2821 
2822 static inline int security_socket_listen(struct socket * sock, int backlog)
2823 {
2824 	return 0;
2825 }
2826 
2827 static inline int security_socket_accept(struct socket * sock,
2828 					 struct socket * newsock)
2829 {
2830 	return 0;
2831 }
2832 
2833 static inline void security_socket_post_accept(struct socket * sock,
2834 					       struct socket * newsock)
2835 {
2836 }
2837 
2838 static inline int security_socket_sendmsg(struct socket * sock,
2839 					  struct msghdr * msg, int size)
2840 {
2841 	return 0;
2842 }
2843 
2844 static inline int security_socket_recvmsg(struct socket * sock,
2845 					  struct msghdr * msg, int size,
2846 					  int flags)
2847 {
2848 	return 0;
2849 }
2850 
2851 static inline int security_socket_getsockname(struct socket * sock)
2852 {
2853 	return 0;
2854 }
2855 
2856 static inline int security_socket_getpeername(struct socket * sock)
2857 {
2858 	return 0;
2859 }
2860 
2861 static inline int security_socket_getsockopt(struct socket * sock,
2862 					     int level, int optname)
2863 {
2864 	return 0;
2865 }
2866 
2867 static inline int security_socket_setsockopt(struct socket * sock,
2868 					     int level, int optname)
2869 {
2870 	return 0;
2871 }
2872 
2873 static inline int security_socket_shutdown(struct socket * sock, int how)
2874 {
2875 	return 0;
2876 }
2877 static inline int security_sock_rcv_skb (struct sock * sk,
2878 					 struct sk_buff * skb)
2879 {
2880 	return 0;
2881 }
2882 
2883 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2884 						    int __user *optlen, unsigned len)
2885 {
2886 	return -ENOPROTOOPT;
2887 }
2888 
2889 static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata,
2890 						   u32 *seclen)
2891 {
2892 	return -ENOPROTOOPT;
2893 }
2894 
2895 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2896 {
2897 	return 0;
2898 }
2899 
2900 static inline void security_sk_free(struct sock *sk)
2901 {
2902 }
2903 
2904 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir)
2905 {
2906 	return 0;
2907 }
2908 #endif	/* CONFIG_SECURITY_NETWORK */
2909 
2910 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2911 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
2912 {
2913 	return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
2914 }
2915 
2916 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
2917 {
2918 	return security_ops->xfrm_policy_clone_security(old, new);
2919 }
2920 
2921 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
2922 {
2923 	security_ops->xfrm_policy_free_security(xp);
2924 }
2925 
2926 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
2927 {
2928 	return security_ops->xfrm_state_alloc_security(x, sec_ctx);
2929 }
2930 
2931 static inline void security_xfrm_state_free(struct xfrm_state *x)
2932 {
2933 	security_ops->xfrm_state_free_security(x);
2934 }
2935 
2936 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir)
2937 {
2938 	return security_ops->xfrm_policy_lookup(xp, sk_sid, dir);
2939 }
2940 #else	/* CONFIG_SECURITY_NETWORK_XFRM */
2941 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
2942 {
2943 	return 0;
2944 }
2945 
2946 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
2947 {
2948 	return 0;
2949 }
2950 
2951 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
2952 {
2953 }
2954 
2955 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
2956 {
2957 	return 0;
2958 }
2959 
2960 static inline void security_xfrm_state_free(struct xfrm_state *x)
2961 {
2962 }
2963 
2964 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir)
2965 {
2966 	return 0;
2967 }
2968 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2969 
2970 #ifdef CONFIG_KEYS
2971 #ifdef CONFIG_SECURITY
2972 static inline int security_key_alloc(struct key *key)
2973 {
2974 	return security_ops->key_alloc(key);
2975 }
2976 
2977 static inline void security_key_free(struct key *key)
2978 {
2979 	security_ops->key_free(key);
2980 }
2981 
2982 static inline int security_key_permission(key_ref_t key_ref,
2983 					  struct task_struct *context,
2984 					  key_perm_t perm)
2985 {
2986 	return security_ops->key_permission(key_ref, context, perm);
2987 }
2988 
2989 #else
2990 
2991 static inline int security_key_alloc(struct key *key)
2992 {
2993 	return 0;
2994 }
2995 
2996 static inline void security_key_free(struct key *key)
2997 {
2998 }
2999 
3000 static inline int security_key_permission(key_ref_t key_ref,
3001 					  struct task_struct *context,
3002 					  key_perm_t perm)
3003 {
3004 	return 0;
3005 }
3006 
3007 #endif
3008 #endif /* CONFIG_KEYS */
3009 
3010 #endif /* ! __LINUX_SECURITY_H */
3011 
3012