xref: /linux-6.15/include/linux/sched/mm.h (revision e00a844a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_MM_H
3 #define _LINUX_SCHED_MM_H
4 
5 #include <linux/kernel.h>
6 #include <linux/atomic.h>
7 #include <linux/sched.h>
8 #include <linux/mm_types.h>
9 #include <linux/gfp.h>
10 
11 /*
12  * Routines for handling mm_structs
13  */
14 extern struct mm_struct * mm_alloc(void);
15 
16 /**
17  * mmgrab() - Pin a &struct mm_struct.
18  * @mm: The &struct mm_struct to pin.
19  *
20  * Make sure that @mm will not get freed even after the owning task
21  * exits. This doesn't guarantee that the associated address space
22  * will still exist later on and mmget_not_zero() has to be used before
23  * accessing it.
24  *
25  * This is a preferred way to to pin @mm for a longer/unbounded amount
26  * of time.
27  *
28  * Use mmdrop() to release the reference acquired by mmgrab().
29  *
30  * See also <Documentation/vm/active_mm.txt> for an in-depth explanation
31  * of &mm_struct.mm_count vs &mm_struct.mm_users.
32  */
33 static inline void mmgrab(struct mm_struct *mm)
34 {
35 	atomic_inc(&mm->mm_count);
36 }
37 
38 /* mmdrop drops the mm and the page tables */
39 extern void __mmdrop(struct mm_struct *);
40 static inline void mmdrop(struct mm_struct *mm)
41 {
42 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
43 		__mmdrop(mm);
44 }
45 
46 static inline void mmdrop_async_fn(struct work_struct *work)
47 {
48 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
49 	__mmdrop(mm);
50 }
51 
52 static inline void mmdrop_async(struct mm_struct *mm)
53 {
54 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
55 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
56 		schedule_work(&mm->async_put_work);
57 	}
58 }
59 
60 /**
61  * mmget() - Pin the address space associated with a &struct mm_struct.
62  * @mm: The address space to pin.
63  *
64  * Make sure that the address space of the given &struct mm_struct doesn't
65  * go away. This does not protect against parts of the address space being
66  * modified or freed, however.
67  *
68  * Never use this function to pin this address space for an
69  * unbounded/indefinite amount of time.
70  *
71  * Use mmput() to release the reference acquired by mmget().
72  *
73  * See also <Documentation/vm/active_mm.txt> for an in-depth explanation
74  * of &mm_struct.mm_count vs &mm_struct.mm_users.
75  */
76 static inline void mmget(struct mm_struct *mm)
77 {
78 	atomic_inc(&mm->mm_users);
79 }
80 
81 static inline bool mmget_not_zero(struct mm_struct *mm)
82 {
83 	return atomic_inc_not_zero(&mm->mm_users);
84 }
85 
86 /* mmput gets rid of the mappings and all user-space */
87 extern void mmput(struct mm_struct *);
88 #ifdef CONFIG_MMU
89 /* same as above but performs the slow path from the async context. Can
90  * be called from the atomic context as well
91  */
92 void mmput_async(struct mm_struct *);
93 #endif
94 
95 /* Grab a reference to a task's mm, if it is not already going away */
96 extern struct mm_struct *get_task_mm(struct task_struct *task);
97 /*
98  * Grab a reference to a task's mm, if it is not already going away
99  * and ptrace_may_access with the mode parameter passed to it
100  * succeeds.
101  */
102 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
103 /* Remove the current tasks stale references to the old mm_struct */
104 extern void mm_release(struct task_struct *, struct mm_struct *);
105 
106 #ifdef CONFIG_MEMCG
107 extern void mm_update_next_owner(struct mm_struct *mm);
108 #else
109 static inline void mm_update_next_owner(struct mm_struct *mm)
110 {
111 }
112 #endif /* CONFIG_MEMCG */
113 
114 #ifdef CONFIG_MMU
115 extern void arch_pick_mmap_layout(struct mm_struct *mm);
116 extern unsigned long
117 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
118 		       unsigned long, unsigned long);
119 extern unsigned long
120 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
121 			  unsigned long len, unsigned long pgoff,
122 			  unsigned long flags);
123 #else
124 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
125 #endif
126 
127 static inline bool in_vfork(struct task_struct *tsk)
128 {
129 	bool ret;
130 
131 	/*
132 	 * need RCU to access ->real_parent if CLONE_VM was used along with
133 	 * CLONE_PARENT.
134 	 *
135 	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
136 	 * imply CLONE_VM
137 	 *
138 	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
139 	 * ->real_parent is not necessarily the task doing vfork(), so in
140 	 * theory we can't rely on task_lock() if we want to dereference it.
141 	 *
142 	 * And in this case we can't trust the real_parent->mm == tsk->mm
143 	 * check, it can be false negative. But we do not care, if init or
144 	 * another oom-unkillable task does this it should blame itself.
145 	 */
146 	rcu_read_lock();
147 	ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
148 	rcu_read_unlock();
149 
150 	return ret;
151 }
152 
153 /*
154  * Applies per-task gfp context to the given allocation flags.
155  * PF_MEMALLOC_NOIO implies GFP_NOIO
156  * PF_MEMALLOC_NOFS implies GFP_NOFS
157  */
158 static inline gfp_t current_gfp_context(gfp_t flags)
159 {
160 	/*
161 	 * NOIO implies both NOIO and NOFS and it is a weaker context
162 	 * so always make sure it makes precendence
163 	 */
164 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
165 		flags &= ~(__GFP_IO | __GFP_FS);
166 	else if (unlikely(current->flags & PF_MEMALLOC_NOFS))
167 		flags &= ~__GFP_FS;
168 	return flags;
169 }
170 
171 #ifdef CONFIG_LOCKDEP
172 extern void fs_reclaim_acquire(gfp_t gfp_mask);
173 extern void fs_reclaim_release(gfp_t gfp_mask);
174 #else
175 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
176 static inline void fs_reclaim_release(gfp_t gfp_mask) { }
177 #endif
178 
179 static inline unsigned int memalloc_noio_save(void)
180 {
181 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
182 	current->flags |= PF_MEMALLOC_NOIO;
183 	return flags;
184 }
185 
186 static inline void memalloc_noio_restore(unsigned int flags)
187 {
188 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
189 }
190 
191 static inline unsigned int memalloc_nofs_save(void)
192 {
193 	unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
194 	current->flags |= PF_MEMALLOC_NOFS;
195 	return flags;
196 }
197 
198 static inline void memalloc_nofs_restore(unsigned int flags)
199 {
200 	current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
201 }
202 
203 static inline unsigned int memalloc_noreclaim_save(void)
204 {
205 	unsigned int flags = current->flags & PF_MEMALLOC;
206 	current->flags |= PF_MEMALLOC;
207 	return flags;
208 }
209 
210 static inline void memalloc_noreclaim_restore(unsigned int flags)
211 {
212 	current->flags = (current->flags & ~PF_MEMALLOC) | flags;
213 }
214 
215 #ifdef CONFIG_MEMBARRIER
216 enum {
217 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY	= (1U << 0),
218 	MEMBARRIER_STATE_SWITCH_MM			= (1U << 1),
219 };
220 
221 static inline void membarrier_execve(struct task_struct *t)
222 {
223 	atomic_set(&t->mm->membarrier_state, 0);
224 }
225 #else
226 static inline void membarrier_execve(struct task_struct *t)
227 {
228 }
229 #endif
230 
231 #endif /* _LINUX_SCHED_MM_H */
232