1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_MM_H 3 #define _LINUX_SCHED_MM_H 4 5 #include <linux/kernel.h> 6 #include <linux/atomic.h> 7 #include <linux/sched.h> 8 #include <linux/mm_types.h> 9 #include <linux/gfp.h> 10 #include <linux/sync_core.h> 11 #include <linux/sched/coredump.h> 12 13 /* 14 * Routines for handling mm_structs 15 */ 16 extern struct mm_struct *mm_alloc(void); 17 18 /** 19 * mmgrab() - Pin a &struct mm_struct. 20 * @mm: The &struct mm_struct to pin. 21 * 22 * Make sure that @mm will not get freed even after the owning task 23 * exits. This doesn't guarantee that the associated address space 24 * will still exist later on and mmget_not_zero() has to be used before 25 * accessing it. 26 * 27 * This is a preferred way to pin @mm for a longer/unbounded amount 28 * of time. 29 * 30 * Use mmdrop() to release the reference acquired by mmgrab(). 31 * 32 * See also <Documentation/mm/active_mm.rst> for an in-depth explanation 33 * of &mm_struct.mm_count vs &mm_struct.mm_users. 34 */ 35 static inline void mmgrab(struct mm_struct *mm) 36 { 37 atomic_inc(&mm->mm_count); 38 } 39 40 static inline void smp_mb__after_mmgrab(void) 41 { 42 smp_mb__after_atomic(); 43 } 44 45 extern void __mmdrop(struct mm_struct *mm); 46 47 static inline void mmdrop(struct mm_struct *mm) 48 { 49 /* 50 * The implicit full barrier implied by atomic_dec_and_test() is 51 * required by the membarrier system call before returning to 52 * user-space, after storing to rq->curr. 53 */ 54 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 55 __mmdrop(mm); 56 } 57 58 #ifdef CONFIG_PREEMPT_RT 59 /* 60 * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is 61 * by far the least expensive way to do that. 62 */ 63 static inline void __mmdrop_delayed(struct rcu_head *rhp) 64 { 65 struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop); 66 67 __mmdrop(mm); 68 } 69 70 /* 71 * Invoked from finish_task_switch(). Delegates the heavy lifting on RT 72 * kernels via RCU. 73 */ 74 static inline void mmdrop_sched(struct mm_struct *mm) 75 { 76 /* Provides a full memory barrier. See mmdrop() */ 77 if (atomic_dec_and_test(&mm->mm_count)) 78 call_rcu(&mm->delayed_drop, __mmdrop_delayed); 79 } 80 #else 81 static inline void mmdrop_sched(struct mm_struct *mm) 82 { 83 mmdrop(mm); 84 } 85 #endif 86 87 /* Helpers for lazy TLB mm refcounting */ 88 static inline void mmgrab_lazy_tlb(struct mm_struct *mm) 89 { 90 if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) 91 mmgrab(mm); 92 } 93 94 static inline void mmdrop_lazy_tlb(struct mm_struct *mm) 95 { 96 if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) { 97 mmdrop(mm); 98 } else { 99 /* 100 * mmdrop_lazy_tlb must provide a full memory barrier, see the 101 * membarrier comment finish_task_switch which relies on this. 102 */ 103 smp_mb(); 104 } 105 } 106 107 static inline void mmdrop_lazy_tlb_sched(struct mm_struct *mm) 108 { 109 if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) 110 mmdrop_sched(mm); 111 else 112 smp_mb(); /* see mmdrop_lazy_tlb() above */ 113 } 114 115 /** 116 * mmget() - Pin the address space associated with a &struct mm_struct. 117 * @mm: The address space to pin. 118 * 119 * Make sure that the address space of the given &struct mm_struct doesn't 120 * go away. This does not protect against parts of the address space being 121 * modified or freed, however. 122 * 123 * Never use this function to pin this address space for an 124 * unbounded/indefinite amount of time. 125 * 126 * Use mmput() to release the reference acquired by mmget(). 127 * 128 * See also <Documentation/mm/active_mm.rst> for an in-depth explanation 129 * of &mm_struct.mm_count vs &mm_struct.mm_users. 130 */ 131 static inline void mmget(struct mm_struct *mm) 132 { 133 atomic_inc(&mm->mm_users); 134 } 135 136 static inline bool mmget_not_zero(struct mm_struct *mm) 137 { 138 return atomic_inc_not_zero(&mm->mm_users); 139 } 140 141 /* mmput gets rid of the mappings and all user-space */ 142 extern void mmput(struct mm_struct *); 143 #ifdef CONFIG_MMU 144 /* same as above but performs the slow path from the async context. Can 145 * be called from the atomic context as well 146 */ 147 void mmput_async(struct mm_struct *); 148 #endif 149 150 /* Grab a reference to a task's mm, if it is not already going away */ 151 extern struct mm_struct *get_task_mm(struct task_struct *task); 152 /* 153 * Grab a reference to a task's mm, if it is not already going away 154 * and ptrace_may_access with the mode parameter passed to it 155 * succeeds. 156 */ 157 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 158 /* Remove the current tasks stale references to the old mm_struct on exit() */ 159 extern void exit_mm_release(struct task_struct *, struct mm_struct *); 160 /* Remove the current tasks stale references to the old mm_struct on exec() */ 161 extern void exec_mm_release(struct task_struct *, struct mm_struct *); 162 163 #ifdef CONFIG_MEMCG 164 extern void mm_update_next_owner(struct mm_struct *mm); 165 #else 166 static inline void mm_update_next_owner(struct mm_struct *mm) 167 { 168 } 169 #endif /* CONFIG_MEMCG */ 170 171 #ifdef CONFIG_MMU 172 #ifndef arch_get_mmap_end 173 #define arch_get_mmap_end(addr, len, flags) (TASK_SIZE) 174 #endif 175 176 #ifndef arch_get_mmap_base 177 #define arch_get_mmap_base(addr, base) (base) 178 #endif 179 180 extern void arch_pick_mmap_layout(struct mm_struct *mm, 181 struct rlimit *rlim_stack); 182 183 unsigned long 184 arch_get_unmapped_area(struct file *filp, unsigned long addr, 185 unsigned long len, unsigned long pgoff, 186 unsigned long flags, vm_flags_t vm_flags); 187 unsigned long 188 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 189 unsigned long len, unsigned long pgoff, 190 unsigned long flags, vm_flags_t); 191 192 unsigned long mm_get_unmapped_area(struct mm_struct *mm, struct file *filp, 193 unsigned long addr, unsigned long len, 194 unsigned long pgoff, unsigned long flags); 195 196 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, 197 struct file *filp, 198 unsigned long addr, 199 unsigned long len, 200 unsigned long pgoff, 201 unsigned long flags, 202 vm_flags_t vm_flags); 203 204 unsigned long 205 generic_get_unmapped_area(struct file *filp, unsigned long addr, 206 unsigned long len, unsigned long pgoff, 207 unsigned long flags, vm_flags_t vm_flags); 208 unsigned long 209 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 210 unsigned long len, unsigned long pgoff, 211 unsigned long flags, vm_flags_t vm_flags); 212 #else 213 static inline void arch_pick_mmap_layout(struct mm_struct *mm, 214 struct rlimit *rlim_stack) {} 215 #endif 216 217 static inline bool in_vfork(struct task_struct *tsk) 218 { 219 bool ret; 220 221 /* 222 * need RCU to access ->real_parent if CLONE_VM was used along with 223 * CLONE_PARENT. 224 * 225 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not 226 * imply CLONE_VM 227 * 228 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus 229 * ->real_parent is not necessarily the task doing vfork(), so in 230 * theory we can't rely on task_lock() if we want to dereference it. 231 * 232 * And in this case we can't trust the real_parent->mm == tsk->mm 233 * check, it can be false negative. But we do not care, if init or 234 * another oom-unkillable task does this it should blame itself. 235 */ 236 rcu_read_lock(); 237 ret = tsk->vfork_done && 238 rcu_dereference(tsk->real_parent)->mm == tsk->mm; 239 rcu_read_unlock(); 240 241 return ret; 242 } 243 244 /* 245 * Applies per-task gfp context to the given allocation flags. 246 * PF_MEMALLOC_NOIO implies GFP_NOIO 247 * PF_MEMALLOC_NOFS implies GFP_NOFS 248 * PF_MEMALLOC_PIN implies !GFP_MOVABLE 249 */ 250 static inline gfp_t current_gfp_context(gfp_t flags) 251 { 252 unsigned int pflags = READ_ONCE(current->flags); 253 254 if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) { 255 /* 256 * NOIO implies both NOIO and NOFS and it is a weaker context 257 * so always make sure it makes precedence 258 */ 259 if (pflags & PF_MEMALLOC_NOIO) 260 flags &= ~(__GFP_IO | __GFP_FS); 261 else if (pflags & PF_MEMALLOC_NOFS) 262 flags &= ~__GFP_FS; 263 264 if (pflags & PF_MEMALLOC_PIN) 265 flags &= ~__GFP_MOVABLE; 266 } 267 return flags; 268 } 269 270 #ifdef CONFIG_LOCKDEP 271 extern void __fs_reclaim_acquire(unsigned long ip); 272 extern void __fs_reclaim_release(unsigned long ip); 273 extern void fs_reclaim_acquire(gfp_t gfp_mask); 274 extern void fs_reclaim_release(gfp_t gfp_mask); 275 #else 276 static inline void __fs_reclaim_acquire(unsigned long ip) { } 277 static inline void __fs_reclaim_release(unsigned long ip) { } 278 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } 279 static inline void fs_reclaim_release(gfp_t gfp_mask) { } 280 #endif 281 282 /* Any memory-allocation retry loop should use 283 * memalloc_retry_wait(), and pass the flags for the most 284 * constrained allocation attempt that might have failed. 285 * This provides useful documentation of where loops are, 286 * and a central place to fine tune the waiting as the MM 287 * implementation changes. 288 */ 289 static inline void memalloc_retry_wait(gfp_t gfp_flags) 290 { 291 /* We use io_schedule_timeout because waiting for memory 292 * typically included waiting for dirty pages to be 293 * written out, which requires IO. 294 */ 295 __set_current_state(TASK_UNINTERRUPTIBLE); 296 gfp_flags = current_gfp_context(gfp_flags); 297 if (gfpflags_allow_blocking(gfp_flags) && 298 !(gfp_flags & __GFP_NORETRY)) 299 /* Probably waited already, no need for much more */ 300 io_schedule_timeout(1); 301 else 302 /* Probably didn't wait, and has now released a lock, 303 * so now is a good time to wait 304 */ 305 io_schedule_timeout(HZ/50); 306 } 307 308 /** 309 * might_alloc - Mark possible allocation sites 310 * @gfp_mask: gfp_t flags that would be used to allocate 311 * 312 * Similar to might_sleep() and other annotations, this can be used in functions 313 * that might allocate, but often don't. Compiles to nothing without 314 * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking. 315 */ 316 static inline void might_alloc(gfp_t gfp_mask) 317 { 318 fs_reclaim_acquire(gfp_mask); 319 fs_reclaim_release(gfp_mask); 320 321 might_sleep_if(gfpflags_allow_blocking(gfp_mask)); 322 } 323 324 /** 325 * memalloc_flags_save - Add a PF_* flag to current->flags, save old value 326 * 327 * This allows PF_* flags to be conveniently added, irrespective of current 328 * value, and then the old version restored with memalloc_flags_restore(). 329 */ 330 static inline unsigned memalloc_flags_save(unsigned flags) 331 { 332 unsigned oldflags = ~current->flags & flags; 333 current->flags |= flags; 334 return oldflags; 335 } 336 337 static inline void memalloc_flags_restore(unsigned flags) 338 { 339 current->flags &= ~flags; 340 } 341 342 /** 343 * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope. 344 * 345 * This functions marks the beginning of the GFP_NOIO allocation scope. 346 * All further allocations will implicitly drop __GFP_IO flag and so 347 * they are safe for the IO critical section from the allocation recursion 348 * point of view. Use memalloc_noio_restore to end the scope with flags 349 * returned by this function. 350 * 351 * Context: This function is safe to be used from any context. 352 * Return: The saved flags to be passed to memalloc_noio_restore. 353 */ 354 static inline unsigned int memalloc_noio_save(void) 355 { 356 return memalloc_flags_save(PF_MEMALLOC_NOIO); 357 } 358 359 /** 360 * memalloc_noio_restore - Ends the implicit GFP_NOIO scope. 361 * @flags: Flags to restore. 362 * 363 * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. 364 * Always make sure that the given flags is the return value from the 365 * pairing memalloc_noio_save call. 366 */ 367 static inline void memalloc_noio_restore(unsigned int flags) 368 { 369 memalloc_flags_restore(flags); 370 } 371 372 /** 373 * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope. 374 * 375 * This functions marks the beginning of the GFP_NOFS allocation scope. 376 * All further allocations will implicitly drop __GFP_FS flag and so 377 * they are safe for the FS critical section from the allocation recursion 378 * point of view. Use memalloc_nofs_restore to end the scope with flags 379 * returned by this function. 380 * 381 * Context: This function is safe to be used from any context. 382 * Return: The saved flags to be passed to memalloc_nofs_restore. 383 */ 384 static inline unsigned int memalloc_nofs_save(void) 385 { 386 return memalloc_flags_save(PF_MEMALLOC_NOFS); 387 } 388 389 /** 390 * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope. 391 * @flags: Flags to restore. 392 * 393 * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. 394 * Always make sure that the given flags is the return value from the 395 * pairing memalloc_nofs_save call. 396 */ 397 static inline void memalloc_nofs_restore(unsigned int flags) 398 { 399 memalloc_flags_restore(flags); 400 } 401 402 /** 403 * memalloc_noreclaim_save - Marks implicit __GFP_MEMALLOC scope. 404 * 405 * This function marks the beginning of the __GFP_MEMALLOC allocation scope. 406 * All further allocations will implicitly add the __GFP_MEMALLOC flag, which 407 * prevents entering reclaim and allows access to all memory reserves. This 408 * should only be used when the caller guarantees the allocation will allow more 409 * memory to be freed very shortly, i.e. it needs to allocate some memory in 410 * the process of freeing memory, and cannot reclaim due to potential recursion. 411 * 412 * Users of this scope have to be extremely careful to not deplete the reserves 413 * completely and implement a throttling mechanism which controls the 414 * consumption of the reserve based on the amount of freed memory. Usage of a 415 * pre-allocated pool (e.g. mempool) should be always considered before using 416 * this scope. 417 * 418 * Individual allocations under the scope can opt out using __GFP_NOMEMALLOC 419 * 420 * Context: This function should not be used in an interrupt context as that one 421 * does not give PF_MEMALLOC access to reserves. 422 * See __gfp_pfmemalloc_flags(). 423 * Return: The saved flags to be passed to memalloc_noreclaim_restore. 424 */ 425 static inline unsigned int memalloc_noreclaim_save(void) 426 { 427 return memalloc_flags_save(PF_MEMALLOC); 428 } 429 430 /** 431 * memalloc_noreclaim_restore - Ends the implicit __GFP_MEMALLOC scope. 432 * @flags: Flags to restore. 433 * 434 * Ends the implicit __GFP_MEMALLOC scope started by memalloc_noreclaim_save 435 * function. Always make sure that the given flags is the return value from the 436 * pairing memalloc_noreclaim_save call. 437 */ 438 static inline void memalloc_noreclaim_restore(unsigned int flags) 439 { 440 memalloc_flags_restore(flags); 441 } 442 443 /** 444 * memalloc_pin_save - Marks implicit ~__GFP_MOVABLE scope. 445 * 446 * This function marks the beginning of the ~__GFP_MOVABLE allocation scope. 447 * All further allocations will implicitly remove the __GFP_MOVABLE flag, which 448 * will constraint the allocations to zones that allow long term pinning, i.e. 449 * not ZONE_MOVABLE zones. 450 * 451 * Return: The saved flags to be passed to memalloc_pin_restore. 452 */ 453 static inline unsigned int memalloc_pin_save(void) 454 { 455 return memalloc_flags_save(PF_MEMALLOC_PIN); 456 } 457 458 /** 459 * memalloc_pin_restore - Ends the implicit ~__GFP_MOVABLE scope. 460 * @flags: Flags to restore. 461 * 462 * Ends the implicit ~__GFP_MOVABLE scope started by memalloc_pin_save function. 463 * Always make sure that the given flags is the return value from the pairing 464 * memalloc_pin_save call. 465 */ 466 static inline void memalloc_pin_restore(unsigned int flags) 467 { 468 memalloc_flags_restore(flags); 469 } 470 471 #ifdef CONFIG_MEMCG 472 DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg); 473 /** 474 * set_active_memcg - Starts the remote memcg charging scope. 475 * @memcg: memcg to charge. 476 * 477 * This function marks the beginning of the remote memcg charging scope. All the 478 * __GFP_ACCOUNT allocations till the end of the scope will be charged to the 479 * given memcg. 480 * 481 * Please, make sure that caller has a reference to the passed memcg structure, 482 * so its lifetime is guaranteed to exceed the scope between two 483 * set_active_memcg() calls. 484 * 485 * NOTE: This function can nest. Users must save the return value and 486 * reset the previous value after their own charging scope is over. 487 */ 488 static inline struct mem_cgroup * 489 set_active_memcg(struct mem_cgroup *memcg) 490 { 491 struct mem_cgroup *old; 492 493 if (!in_task()) { 494 old = this_cpu_read(int_active_memcg); 495 this_cpu_write(int_active_memcg, memcg); 496 } else { 497 old = current->active_memcg; 498 current->active_memcg = memcg; 499 } 500 501 return old; 502 } 503 #else 504 static inline struct mem_cgroup * 505 set_active_memcg(struct mem_cgroup *memcg) 506 { 507 return NULL; 508 } 509 #endif 510 511 #ifdef CONFIG_MEMBARRIER 512 enum { 513 MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0), 514 MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1), 515 MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2), 516 MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3), 517 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4), 518 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5), 519 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6), 520 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7), 521 }; 522 523 enum { 524 MEMBARRIER_FLAG_SYNC_CORE = (1U << 0), 525 MEMBARRIER_FLAG_RSEQ = (1U << 1), 526 }; 527 528 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS 529 #include <asm/membarrier.h> 530 #endif 531 532 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) 533 { 534 if (current->mm != mm) 535 return; 536 if (likely(!(atomic_read(&mm->membarrier_state) & 537 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE))) 538 return; 539 sync_core_before_usermode(); 540 } 541 542 extern void membarrier_exec_mmap(struct mm_struct *mm); 543 544 extern void membarrier_update_current_mm(struct mm_struct *next_mm); 545 546 #else 547 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS 548 static inline void membarrier_arch_switch_mm(struct mm_struct *prev, 549 struct mm_struct *next, 550 struct task_struct *tsk) 551 { 552 } 553 #endif 554 static inline void membarrier_exec_mmap(struct mm_struct *mm) 555 { 556 } 557 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) 558 { 559 } 560 static inline void membarrier_update_current_mm(struct mm_struct *next_mm) 561 { 562 } 563 #endif 564 565 #endif /* _LINUX_SCHED_MM_H */ 566