1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_MM_H 3 #define _LINUX_SCHED_MM_H 4 5 #include <linux/kernel.h> 6 #include <linux/atomic.h> 7 #include <linux/sched.h> 8 #include <linux/mm_types.h> 9 #include <linux/gfp.h> 10 #include <linux/sync_core.h> 11 #include <linux/sched/coredump.h> 12 13 /* 14 * Routines for handling mm_structs 15 */ 16 extern struct mm_struct *mm_alloc(void); 17 18 /** 19 * mmgrab() - Pin a &struct mm_struct. 20 * @mm: The &struct mm_struct to pin. 21 * 22 * Make sure that @mm will not get freed even after the owning task 23 * exits. This doesn't guarantee that the associated address space 24 * will still exist later on and mmget_not_zero() has to be used before 25 * accessing it. 26 * 27 * This is a preferred way to pin @mm for a longer/unbounded amount 28 * of time. 29 * 30 * Use mmdrop() to release the reference acquired by mmgrab(). 31 * 32 * See also <Documentation/mm/active_mm.rst> for an in-depth explanation 33 * of &mm_struct.mm_count vs &mm_struct.mm_users. 34 */ 35 static inline void mmgrab(struct mm_struct *mm) 36 { 37 atomic_inc(&mm->mm_count); 38 } 39 40 static inline void smp_mb__after_mmgrab(void) 41 { 42 smp_mb__after_atomic(); 43 } 44 45 extern void __mmdrop(struct mm_struct *mm); 46 47 static inline void mmdrop(struct mm_struct *mm) 48 { 49 /* 50 * The implicit full barrier implied by atomic_dec_and_test() is 51 * required by the membarrier system call before returning to 52 * user-space, after storing to rq->curr. 53 */ 54 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 55 __mmdrop(mm); 56 } 57 58 #ifdef CONFIG_PREEMPT_RT 59 /* 60 * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is 61 * by far the least expensive way to do that. 62 */ 63 static inline void __mmdrop_delayed(struct rcu_head *rhp) 64 { 65 struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop); 66 67 __mmdrop(mm); 68 } 69 70 /* 71 * Invoked from finish_task_switch(). Delegates the heavy lifting on RT 72 * kernels via RCU. 73 */ 74 static inline void mmdrop_sched(struct mm_struct *mm) 75 { 76 /* Provides a full memory barrier. See mmdrop() */ 77 if (atomic_dec_and_test(&mm->mm_count)) 78 call_rcu(&mm->delayed_drop, __mmdrop_delayed); 79 } 80 #else 81 static inline void mmdrop_sched(struct mm_struct *mm) 82 { 83 mmdrop(mm); 84 } 85 #endif 86 87 /* Helpers for lazy TLB mm refcounting */ 88 static inline void mmgrab_lazy_tlb(struct mm_struct *mm) 89 { 90 if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) 91 mmgrab(mm); 92 } 93 94 static inline void mmdrop_lazy_tlb(struct mm_struct *mm) 95 { 96 if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) { 97 mmdrop(mm); 98 } else { 99 /* 100 * mmdrop_lazy_tlb must provide a full memory barrier, see the 101 * membarrier comment finish_task_switch which relies on this. 102 */ 103 smp_mb(); 104 } 105 } 106 107 static inline void mmdrop_lazy_tlb_sched(struct mm_struct *mm) 108 { 109 if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) 110 mmdrop_sched(mm); 111 else 112 smp_mb(); /* see mmdrop_lazy_tlb() above */ 113 } 114 115 /** 116 * mmget() - Pin the address space associated with a &struct mm_struct. 117 * @mm: The address space to pin. 118 * 119 * Make sure that the address space of the given &struct mm_struct doesn't 120 * go away. This does not protect against parts of the address space being 121 * modified or freed, however. 122 * 123 * Never use this function to pin this address space for an 124 * unbounded/indefinite amount of time. 125 * 126 * Use mmput() to release the reference acquired by mmget(). 127 * 128 * See also <Documentation/mm/active_mm.rst> for an in-depth explanation 129 * of &mm_struct.mm_count vs &mm_struct.mm_users. 130 */ 131 static inline void mmget(struct mm_struct *mm) 132 { 133 atomic_inc(&mm->mm_users); 134 } 135 136 static inline bool mmget_not_zero(struct mm_struct *mm) 137 { 138 return atomic_inc_not_zero(&mm->mm_users); 139 } 140 141 /* mmput gets rid of the mappings and all user-space */ 142 extern void mmput(struct mm_struct *); 143 #ifdef CONFIG_MMU 144 /* same as above but performs the slow path from the async context. Can 145 * be called from the atomic context as well 146 */ 147 void mmput_async(struct mm_struct *); 148 #endif 149 150 /* Grab a reference to a task's mm, if it is not already going away */ 151 extern struct mm_struct *get_task_mm(struct task_struct *task); 152 /* 153 * Grab a reference to a task's mm, if it is not already going away 154 * and ptrace_may_access with the mode parameter passed to it 155 * succeeds. 156 */ 157 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 158 /* Remove the current tasks stale references to the old mm_struct on exit() */ 159 extern void exit_mm_release(struct task_struct *, struct mm_struct *); 160 /* Remove the current tasks stale references to the old mm_struct on exec() */ 161 extern void exec_mm_release(struct task_struct *, struct mm_struct *); 162 163 #ifdef CONFIG_MEMCG 164 extern void mm_update_next_owner(struct mm_struct *mm); 165 #else 166 static inline void mm_update_next_owner(struct mm_struct *mm) 167 { 168 } 169 #endif /* CONFIG_MEMCG */ 170 171 #ifdef CONFIG_MMU 172 #ifndef arch_get_mmap_end 173 #define arch_get_mmap_end(addr, len, flags) (TASK_SIZE) 174 #endif 175 176 #ifndef arch_get_mmap_base 177 #define arch_get_mmap_base(addr, base) (base) 178 #endif 179 180 extern void arch_pick_mmap_layout(struct mm_struct *mm, 181 struct rlimit *rlim_stack); 182 183 unsigned long 184 arch_get_unmapped_area(struct file *filp, unsigned long addr, 185 unsigned long len, unsigned long pgoff, 186 unsigned long flags, vm_flags_t vm_flags); 187 unsigned long 188 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 189 unsigned long len, unsigned long pgoff, 190 unsigned long flags, vm_flags_t); 191 192 unsigned long mm_get_unmapped_area(struct mm_struct *mm, struct file *filp, 193 unsigned long addr, unsigned long len, 194 unsigned long pgoff, unsigned long flags); 195 196 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, 197 struct file *filp, 198 unsigned long addr, 199 unsigned long len, 200 unsigned long pgoff, 201 unsigned long flags, 202 vm_flags_t vm_flags); 203 204 unsigned long 205 generic_get_unmapped_area(struct file *filp, unsigned long addr, 206 unsigned long len, unsigned long pgoff, 207 unsigned long flags, vm_flags_t vm_flags); 208 unsigned long 209 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 210 unsigned long len, unsigned long pgoff, 211 unsigned long flags, vm_flags_t vm_flags); 212 #else 213 static inline void arch_pick_mmap_layout(struct mm_struct *mm, 214 struct rlimit *rlim_stack) {} 215 #endif 216 217 static inline bool in_vfork(struct task_struct *tsk) 218 { 219 bool ret; 220 221 /* 222 * need RCU to access ->real_parent if CLONE_VM was used along with 223 * CLONE_PARENT. 224 * 225 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not 226 * imply CLONE_VM 227 * 228 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus 229 * ->real_parent is not necessarily the task doing vfork(), so in 230 * theory we can't rely on task_lock() if we want to dereference it. 231 * 232 * And in this case we can't trust the real_parent->mm == tsk->mm 233 * check, it can be false negative. But we do not care, if init or 234 * another oom-unkillable task does this it should blame itself. 235 */ 236 rcu_read_lock(); 237 ret = tsk->vfork_done && 238 rcu_dereference(tsk->real_parent)->mm == tsk->mm; 239 rcu_read_unlock(); 240 241 return ret; 242 } 243 244 /* 245 * Applies per-task gfp context to the given allocation flags. 246 * PF_MEMALLOC_NOIO implies GFP_NOIO 247 * PF_MEMALLOC_NOFS implies GFP_NOFS 248 * PF_MEMALLOC_PIN implies !GFP_MOVABLE 249 */ 250 static inline gfp_t current_gfp_context(gfp_t flags) 251 { 252 unsigned int pflags = READ_ONCE(current->flags); 253 254 if (unlikely(pflags & (PF_MEMALLOC_NOIO | 255 PF_MEMALLOC_NOFS | 256 PF_MEMALLOC_NORECLAIM | 257 PF_MEMALLOC_NOWARN | 258 PF_MEMALLOC_PIN))) { 259 /* 260 * Stronger flags before weaker flags: 261 * NORECLAIM implies NOIO, which in turn implies NOFS 262 */ 263 if (pflags & PF_MEMALLOC_NORECLAIM) 264 flags &= ~__GFP_DIRECT_RECLAIM; 265 else if (pflags & PF_MEMALLOC_NOIO) 266 flags &= ~(__GFP_IO | __GFP_FS); 267 else if (pflags & PF_MEMALLOC_NOFS) 268 flags &= ~__GFP_FS; 269 270 if (pflags & PF_MEMALLOC_NOWARN) 271 flags |= __GFP_NOWARN; 272 273 if (pflags & PF_MEMALLOC_PIN) 274 flags &= ~__GFP_MOVABLE; 275 } 276 return flags; 277 } 278 279 #ifdef CONFIG_LOCKDEP 280 extern void __fs_reclaim_acquire(unsigned long ip); 281 extern void __fs_reclaim_release(unsigned long ip); 282 extern void fs_reclaim_acquire(gfp_t gfp_mask); 283 extern void fs_reclaim_release(gfp_t gfp_mask); 284 #else 285 static inline void __fs_reclaim_acquire(unsigned long ip) { } 286 static inline void __fs_reclaim_release(unsigned long ip) { } 287 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } 288 static inline void fs_reclaim_release(gfp_t gfp_mask) { } 289 #endif 290 291 /* Any memory-allocation retry loop should use 292 * memalloc_retry_wait(), and pass the flags for the most 293 * constrained allocation attempt that might have failed. 294 * This provides useful documentation of where loops are, 295 * and a central place to fine tune the waiting as the MM 296 * implementation changes. 297 */ 298 static inline void memalloc_retry_wait(gfp_t gfp_flags) 299 { 300 /* We use io_schedule_timeout because waiting for memory 301 * typically included waiting for dirty pages to be 302 * written out, which requires IO. 303 */ 304 __set_current_state(TASK_UNINTERRUPTIBLE); 305 gfp_flags = current_gfp_context(gfp_flags); 306 if (gfpflags_allow_blocking(gfp_flags) && 307 !(gfp_flags & __GFP_NORETRY)) 308 /* Probably waited already, no need for much more */ 309 io_schedule_timeout(1); 310 else 311 /* Probably didn't wait, and has now released a lock, 312 * so now is a good time to wait 313 */ 314 io_schedule_timeout(HZ/50); 315 } 316 317 /** 318 * might_alloc - Mark possible allocation sites 319 * @gfp_mask: gfp_t flags that would be used to allocate 320 * 321 * Similar to might_sleep() and other annotations, this can be used in functions 322 * that might allocate, but often don't. Compiles to nothing without 323 * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking. 324 */ 325 static inline void might_alloc(gfp_t gfp_mask) 326 { 327 fs_reclaim_acquire(gfp_mask); 328 fs_reclaim_release(gfp_mask); 329 330 might_sleep_if(gfpflags_allow_blocking(gfp_mask)); 331 } 332 333 /** 334 * memalloc_flags_save - Add a PF_* flag to current->flags, save old value 335 * 336 * This allows PF_* flags to be conveniently added, irrespective of current 337 * value, and then the old version restored with memalloc_flags_restore(). 338 */ 339 static inline unsigned memalloc_flags_save(unsigned flags) 340 { 341 unsigned oldflags = ~current->flags & flags; 342 current->flags |= flags; 343 return oldflags; 344 } 345 346 static inline void memalloc_flags_restore(unsigned flags) 347 { 348 current->flags &= ~flags; 349 } 350 351 /** 352 * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope. 353 * 354 * This functions marks the beginning of the GFP_NOIO allocation scope. 355 * All further allocations will implicitly drop __GFP_IO flag and so 356 * they are safe for the IO critical section from the allocation recursion 357 * point of view. Use memalloc_noio_restore to end the scope with flags 358 * returned by this function. 359 * 360 * Context: This function is safe to be used from any context. 361 * Return: The saved flags to be passed to memalloc_noio_restore. 362 */ 363 static inline unsigned int memalloc_noio_save(void) 364 { 365 return memalloc_flags_save(PF_MEMALLOC_NOIO); 366 } 367 368 /** 369 * memalloc_noio_restore - Ends the implicit GFP_NOIO scope. 370 * @flags: Flags to restore. 371 * 372 * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. 373 * Always make sure that the given flags is the return value from the 374 * pairing memalloc_noio_save call. 375 */ 376 static inline void memalloc_noio_restore(unsigned int flags) 377 { 378 memalloc_flags_restore(flags); 379 } 380 381 /** 382 * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope. 383 * 384 * This functions marks the beginning of the GFP_NOFS allocation scope. 385 * All further allocations will implicitly drop __GFP_FS flag and so 386 * they are safe for the FS critical section from the allocation recursion 387 * point of view. Use memalloc_nofs_restore to end the scope with flags 388 * returned by this function. 389 * 390 * Context: This function is safe to be used from any context. 391 * Return: The saved flags to be passed to memalloc_nofs_restore. 392 */ 393 static inline unsigned int memalloc_nofs_save(void) 394 { 395 return memalloc_flags_save(PF_MEMALLOC_NOFS); 396 } 397 398 /** 399 * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope. 400 * @flags: Flags to restore. 401 * 402 * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. 403 * Always make sure that the given flags is the return value from the 404 * pairing memalloc_nofs_save call. 405 */ 406 static inline void memalloc_nofs_restore(unsigned int flags) 407 { 408 memalloc_flags_restore(flags); 409 } 410 411 /** 412 * memalloc_noreclaim_save - Marks implicit __GFP_MEMALLOC scope. 413 * 414 * This function marks the beginning of the __GFP_MEMALLOC allocation scope. 415 * All further allocations will implicitly add the __GFP_MEMALLOC flag, which 416 * prevents entering reclaim and allows access to all memory reserves. This 417 * should only be used when the caller guarantees the allocation will allow more 418 * memory to be freed very shortly, i.e. it needs to allocate some memory in 419 * the process of freeing memory, and cannot reclaim due to potential recursion. 420 * 421 * Users of this scope have to be extremely careful to not deplete the reserves 422 * completely and implement a throttling mechanism which controls the 423 * consumption of the reserve based on the amount of freed memory. Usage of a 424 * pre-allocated pool (e.g. mempool) should be always considered before using 425 * this scope. 426 * 427 * Individual allocations under the scope can opt out using __GFP_NOMEMALLOC 428 * 429 * Context: This function should not be used in an interrupt context as that one 430 * does not give PF_MEMALLOC access to reserves. 431 * See __gfp_pfmemalloc_flags(). 432 * Return: The saved flags to be passed to memalloc_noreclaim_restore. 433 */ 434 static inline unsigned int memalloc_noreclaim_save(void) 435 { 436 return memalloc_flags_save(PF_MEMALLOC); 437 } 438 439 /** 440 * memalloc_noreclaim_restore - Ends the implicit __GFP_MEMALLOC scope. 441 * @flags: Flags to restore. 442 * 443 * Ends the implicit __GFP_MEMALLOC scope started by memalloc_noreclaim_save 444 * function. Always make sure that the given flags is the return value from the 445 * pairing memalloc_noreclaim_save call. 446 */ 447 static inline void memalloc_noreclaim_restore(unsigned int flags) 448 { 449 memalloc_flags_restore(flags); 450 } 451 452 /** 453 * memalloc_pin_save - Marks implicit ~__GFP_MOVABLE scope. 454 * 455 * This function marks the beginning of the ~__GFP_MOVABLE allocation scope. 456 * All further allocations will implicitly remove the __GFP_MOVABLE flag, which 457 * will constraint the allocations to zones that allow long term pinning, i.e. 458 * not ZONE_MOVABLE zones. 459 * 460 * Return: The saved flags to be passed to memalloc_pin_restore. 461 */ 462 static inline unsigned int memalloc_pin_save(void) 463 { 464 return memalloc_flags_save(PF_MEMALLOC_PIN); 465 } 466 467 /** 468 * memalloc_pin_restore - Ends the implicit ~__GFP_MOVABLE scope. 469 * @flags: Flags to restore. 470 * 471 * Ends the implicit ~__GFP_MOVABLE scope started by memalloc_pin_save function. 472 * Always make sure that the given flags is the return value from the pairing 473 * memalloc_pin_save call. 474 */ 475 static inline void memalloc_pin_restore(unsigned int flags) 476 { 477 memalloc_flags_restore(flags); 478 } 479 480 #ifdef CONFIG_MEMCG 481 DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg); 482 /** 483 * set_active_memcg - Starts the remote memcg charging scope. 484 * @memcg: memcg to charge. 485 * 486 * This function marks the beginning of the remote memcg charging scope. All the 487 * __GFP_ACCOUNT allocations till the end of the scope will be charged to the 488 * given memcg. 489 * 490 * Please, make sure that caller has a reference to the passed memcg structure, 491 * so its lifetime is guaranteed to exceed the scope between two 492 * set_active_memcg() calls. 493 * 494 * NOTE: This function can nest. Users must save the return value and 495 * reset the previous value after their own charging scope is over. 496 */ 497 static inline struct mem_cgroup * 498 set_active_memcg(struct mem_cgroup *memcg) 499 { 500 struct mem_cgroup *old; 501 502 if (!in_task()) { 503 old = this_cpu_read(int_active_memcg); 504 this_cpu_write(int_active_memcg, memcg); 505 } else { 506 old = current->active_memcg; 507 current->active_memcg = memcg; 508 } 509 510 return old; 511 } 512 #else 513 static inline struct mem_cgroup * 514 set_active_memcg(struct mem_cgroup *memcg) 515 { 516 return NULL; 517 } 518 #endif 519 520 #ifdef CONFIG_MEMBARRIER 521 enum { 522 MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0), 523 MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1), 524 MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2), 525 MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3), 526 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4), 527 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5), 528 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6), 529 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7), 530 }; 531 532 enum { 533 MEMBARRIER_FLAG_SYNC_CORE = (1U << 0), 534 MEMBARRIER_FLAG_RSEQ = (1U << 1), 535 }; 536 537 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS 538 #include <asm/membarrier.h> 539 #endif 540 541 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) 542 { 543 if (current->mm != mm) 544 return; 545 if (likely(!(atomic_read(&mm->membarrier_state) & 546 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE))) 547 return; 548 sync_core_before_usermode(); 549 } 550 551 extern void membarrier_exec_mmap(struct mm_struct *mm); 552 553 extern void membarrier_update_current_mm(struct mm_struct *next_mm); 554 555 #else 556 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS 557 static inline void membarrier_arch_switch_mm(struct mm_struct *prev, 558 struct mm_struct *next, 559 struct task_struct *tsk) 560 { 561 } 562 #endif 563 static inline void membarrier_exec_mmap(struct mm_struct *mm) 564 { 565 } 566 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) 567 { 568 } 569 static inline void membarrier_update_current_mm(struct mm_struct *next_mm) 570 { 571 } 572 #endif 573 574 #endif /* _LINUX_SCHED_MM_H */ 575