xref: /linux-6.15/include/linux/sched/mm.h (revision 540e00a7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_MM_H
3 #define _LINUX_SCHED_MM_H
4 
5 #include <linux/kernel.h>
6 #include <linux/atomic.h>
7 #include <linux/sched.h>
8 #include <linux/mm_types.h>
9 #include <linux/gfp.h>
10 #include <linux/sync_core.h>
11 #include <linux/sched/coredump.h>
12 
13 /*
14  * Routines for handling mm_structs
15  */
16 extern struct mm_struct *mm_alloc(void);
17 
18 /**
19  * mmgrab() - Pin a &struct mm_struct.
20  * @mm: The &struct mm_struct to pin.
21  *
22  * Make sure that @mm will not get freed even after the owning task
23  * exits. This doesn't guarantee that the associated address space
24  * will still exist later on and mmget_not_zero() has to be used before
25  * accessing it.
26  *
27  * This is a preferred way to pin @mm for a longer/unbounded amount
28  * of time.
29  *
30  * Use mmdrop() to release the reference acquired by mmgrab().
31  *
32  * See also <Documentation/mm/active_mm.rst> for an in-depth explanation
33  * of &mm_struct.mm_count vs &mm_struct.mm_users.
34  */
35 static inline void mmgrab(struct mm_struct *mm)
36 {
37 	atomic_inc(&mm->mm_count);
38 }
39 
40 static inline void smp_mb__after_mmgrab(void)
41 {
42 	smp_mb__after_atomic();
43 }
44 
45 extern void __mmdrop(struct mm_struct *mm);
46 
47 static inline void mmdrop(struct mm_struct *mm)
48 {
49 	/*
50 	 * The implicit full barrier implied by atomic_dec_and_test() is
51 	 * required by the membarrier system call before returning to
52 	 * user-space, after storing to rq->curr.
53 	 */
54 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
55 		__mmdrop(mm);
56 }
57 
58 #ifdef CONFIG_PREEMPT_RT
59 /*
60  * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is
61  * by far the least expensive way to do that.
62  */
63 static inline void __mmdrop_delayed(struct rcu_head *rhp)
64 {
65 	struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop);
66 
67 	__mmdrop(mm);
68 }
69 
70 /*
71  * Invoked from finish_task_switch(). Delegates the heavy lifting on RT
72  * kernels via RCU.
73  */
74 static inline void mmdrop_sched(struct mm_struct *mm)
75 {
76 	/* Provides a full memory barrier. See mmdrop() */
77 	if (atomic_dec_and_test(&mm->mm_count))
78 		call_rcu(&mm->delayed_drop, __mmdrop_delayed);
79 }
80 #else
81 static inline void mmdrop_sched(struct mm_struct *mm)
82 {
83 	mmdrop(mm);
84 }
85 #endif
86 
87 /* Helpers for lazy TLB mm refcounting */
88 static inline void mmgrab_lazy_tlb(struct mm_struct *mm)
89 {
90 	if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT))
91 		mmgrab(mm);
92 }
93 
94 static inline void mmdrop_lazy_tlb(struct mm_struct *mm)
95 {
96 	if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) {
97 		mmdrop(mm);
98 	} else {
99 		/*
100 		 * mmdrop_lazy_tlb must provide a full memory barrier, see the
101 		 * membarrier comment finish_task_switch which relies on this.
102 		 */
103 		smp_mb();
104 	}
105 }
106 
107 static inline void mmdrop_lazy_tlb_sched(struct mm_struct *mm)
108 {
109 	if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT))
110 		mmdrop_sched(mm);
111 	else
112 		smp_mb(); /* see mmdrop_lazy_tlb() above */
113 }
114 
115 /**
116  * mmget() - Pin the address space associated with a &struct mm_struct.
117  * @mm: The address space to pin.
118  *
119  * Make sure that the address space of the given &struct mm_struct doesn't
120  * go away. This does not protect against parts of the address space being
121  * modified or freed, however.
122  *
123  * Never use this function to pin this address space for an
124  * unbounded/indefinite amount of time.
125  *
126  * Use mmput() to release the reference acquired by mmget().
127  *
128  * See also <Documentation/mm/active_mm.rst> for an in-depth explanation
129  * of &mm_struct.mm_count vs &mm_struct.mm_users.
130  */
131 static inline void mmget(struct mm_struct *mm)
132 {
133 	atomic_inc(&mm->mm_users);
134 }
135 
136 static inline bool mmget_not_zero(struct mm_struct *mm)
137 {
138 	return atomic_inc_not_zero(&mm->mm_users);
139 }
140 
141 /* mmput gets rid of the mappings and all user-space */
142 extern void mmput(struct mm_struct *);
143 #ifdef CONFIG_MMU
144 /* same as above but performs the slow path from the async context. Can
145  * be called from the atomic context as well
146  */
147 void mmput_async(struct mm_struct *);
148 #endif
149 
150 /* Grab a reference to a task's mm, if it is not already going away */
151 extern struct mm_struct *get_task_mm(struct task_struct *task);
152 /*
153  * Grab a reference to a task's mm, if it is not already going away
154  * and ptrace_may_access with the mode parameter passed to it
155  * succeeds.
156  */
157 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
158 /* Remove the current tasks stale references to the old mm_struct on exit() */
159 extern void exit_mm_release(struct task_struct *, struct mm_struct *);
160 /* Remove the current tasks stale references to the old mm_struct on exec() */
161 extern void exec_mm_release(struct task_struct *, struct mm_struct *);
162 
163 #ifdef CONFIG_MEMCG
164 extern void mm_update_next_owner(struct mm_struct *mm);
165 #else
166 static inline void mm_update_next_owner(struct mm_struct *mm)
167 {
168 }
169 #endif /* CONFIG_MEMCG */
170 
171 #ifdef CONFIG_MMU
172 #ifndef arch_get_mmap_end
173 #define arch_get_mmap_end(addr, len, flags)	(TASK_SIZE)
174 #endif
175 
176 #ifndef arch_get_mmap_base
177 #define arch_get_mmap_base(addr, base) (base)
178 #endif
179 
180 extern void arch_pick_mmap_layout(struct mm_struct *mm,
181 				  struct rlimit *rlim_stack);
182 
183 unsigned long
184 arch_get_unmapped_area(struct file *filp, unsigned long addr,
185 		       unsigned long len, unsigned long pgoff,
186 		       unsigned long flags, vm_flags_t vm_flags);
187 unsigned long
188 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
189 			       unsigned long len, unsigned long pgoff,
190 			       unsigned long flags, vm_flags_t);
191 
192 unsigned long mm_get_unmapped_area(struct mm_struct *mm, struct file *filp,
193 				   unsigned long addr, unsigned long len,
194 				   unsigned long pgoff, unsigned long flags);
195 
196 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm,
197 					   struct file *filp,
198 					   unsigned long addr,
199 					   unsigned long len,
200 					   unsigned long pgoff,
201 					   unsigned long flags,
202 					   vm_flags_t vm_flags);
203 
204 unsigned long
205 generic_get_unmapped_area(struct file *filp, unsigned long addr,
206 			  unsigned long len, unsigned long pgoff,
207 			  unsigned long flags, vm_flags_t vm_flags);
208 unsigned long
209 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
210 				  unsigned long len, unsigned long pgoff,
211 				  unsigned long flags, vm_flags_t vm_flags);
212 #else
213 static inline void arch_pick_mmap_layout(struct mm_struct *mm,
214 					 struct rlimit *rlim_stack) {}
215 #endif
216 
217 static inline bool in_vfork(struct task_struct *tsk)
218 {
219 	bool ret;
220 
221 	/*
222 	 * need RCU to access ->real_parent if CLONE_VM was used along with
223 	 * CLONE_PARENT.
224 	 *
225 	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
226 	 * imply CLONE_VM
227 	 *
228 	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
229 	 * ->real_parent is not necessarily the task doing vfork(), so in
230 	 * theory we can't rely on task_lock() if we want to dereference it.
231 	 *
232 	 * And in this case we can't trust the real_parent->mm == tsk->mm
233 	 * check, it can be false negative. But we do not care, if init or
234 	 * another oom-unkillable task does this it should blame itself.
235 	 */
236 	rcu_read_lock();
237 	ret = tsk->vfork_done &&
238 			rcu_dereference(tsk->real_parent)->mm == tsk->mm;
239 	rcu_read_unlock();
240 
241 	return ret;
242 }
243 
244 /*
245  * Applies per-task gfp context to the given allocation flags.
246  * PF_MEMALLOC_NOIO implies GFP_NOIO
247  * PF_MEMALLOC_NOFS implies GFP_NOFS
248  * PF_MEMALLOC_PIN  implies !GFP_MOVABLE
249  */
250 static inline gfp_t current_gfp_context(gfp_t flags)
251 {
252 	unsigned int pflags = READ_ONCE(current->flags);
253 
254 	if (unlikely(pflags & (PF_MEMALLOC_NOIO |
255 			       PF_MEMALLOC_NOFS |
256 			       PF_MEMALLOC_NORECLAIM |
257 			       PF_MEMALLOC_NOWARN |
258 			       PF_MEMALLOC_PIN))) {
259 		/*
260 		 * Stronger flags before weaker flags:
261 		 * NORECLAIM implies NOIO, which in turn implies NOFS
262 		 */
263 		if (pflags & PF_MEMALLOC_NORECLAIM)
264 			flags &= ~__GFP_DIRECT_RECLAIM;
265 		else if (pflags & PF_MEMALLOC_NOIO)
266 			flags &= ~(__GFP_IO | __GFP_FS);
267 		else if (pflags & PF_MEMALLOC_NOFS)
268 			flags &= ~__GFP_FS;
269 
270 		if (pflags & PF_MEMALLOC_NOWARN)
271 			flags |= __GFP_NOWARN;
272 
273 		if (pflags & PF_MEMALLOC_PIN)
274 			flags &= ~__GFP_MOVABLE;
275 	}
276 	return flags;
277 }
278 
279 #ifdef CONFIG_LOCKDEP
280 extern void __fs_reclaim_acquire(unsigned long ip);
281 extern void __fs_reclaim_release(unsigned long ip);
282 extern void fs_reclaim_acquire(gfp_t gfp_mask);
283 extern void fs_reclaim_release(gfp_t gfp_mask);
284 #else
285 static inline void __fs_reclaim_acquire(unsigned long ip) { }
286 static inline void __fs_reclaim_release(unsigned long ip) { }
287 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
288 static inline void fs_reclaim_release(gfp_t gfp_mask) { }
289 #endif
290 
291 /* Any memory-allocation retry loop should use
292  * memalloc_retry_wait(), and pass the flags for the most
293  * constrained allocation attempt that might have failed.
294  * This provides useful documentation of where loops are,
295  * and a central place to fine tune the waiting as the MM
296  * implementation changes.
297  */
298 static inline void memalloc_retry_wait(gfp_t gfp_flags)
299 {
300 	/* We use io_schedule_timeout because waiting for memory
301 	 * typically included waiting for dirty pages to be
302 	 * written out, which requires IO.
303 	 */
304 	__set_current_state(TASK_UNINTERRUPTIBLE);
305 	gfp_flags = current_gfp_context(gfp_flags);
306 	if (gfpflags_allow_blocking(gfp_flags) &&
307 	    !(gfp_flags & __GFP_NORETRY))
308 		/* Probably waited already, no need for much more */
309 		io_schedule_timeout(1);
310 	else
311 		/* Probably didn't wait, and has now released a lock,
312 		 * so now is a good time to wait
313 		 */
314 		io_schedule_timeout(HZ/50);
315 }
316 
317 /**
318  * might_alloc - Mark possible allocation sites
319  * @gfp_mask: gfp_t flags that would be used to allocate
320  *
321  * Similar to might_sleep() and other annotations, this can be used in functions
322  * that might allocate, but often don't. Compiles to nothing without
323  * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking.
324  */
325 static inline void might_alloc(gfp_t gfp_mask)
326 {
327 	fs_reclaim_acquire(gfp_mask);
328 	fs_reclaim_release(gfp_mask);
329 
330 	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
331 }
332 
333 /**
334  * memalloc_flags_save - Add a PF_* flag to current->flags, save old value
335  *
336  * This allows PF_* flags to be conveniently added, irrespective of current
337  * value, and then the old version restored with memalloc_flags_restore().
338  */
339 static inline unsigned memalloc_flags_save(unsigned flags)
340 {
341 	unsigned oldflags = ~current->flags & flags;
342 	current->flags |= flags;
343 	return oldflags;
344 }
345 
346 static inline void memalloc_flags_restore(unsigned flags)
347 {
348 	current->flags &= ~flags;
349 }
350 
351 /**
352  * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
353  *
354  * This functions marks the beginning of the GFP_NOIO allocation scope.
355  * All further allocations will implicitly drop __GFP_IO flag and so
356  * they are safe for the IO critical section from the allocation recursion
357  * point of view. Use memalloc_noio_restore to end the scope with flags
358  * returned by this function.
359  *
360  * Context: This function is safe to be used from any context.
361  * Return: The saved flags to be passed to memalloc_noio_restore.
362  */
363 static inline unsigned int memalloc_noio_save(void)
364 {
365 	return memalloc_flags_save(PF_MEMALLOC_NOIO);
366 }
367 
368 /**
369  * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
370  * @flags: Flags to restore.
371  *
372  * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
373  * Always make sure that the given flags is the return value from the
374  * pairing memalloc_noio_save call.
375  */
376 static inline void memalloc_noio_restore(unsigned int flags)
377 {
378 	memalloc_flags_restore(flags);
379 }
380 
381 /**
382  * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
383  *
384  * This functions marks the beginning of the GFP_NOFS allocation scope.
385  * All further allocations will implicitly drop __GFP_FS flag and so
386  * they are safe for the FS critical section from the allocation recursion
387  * point of view. Use memalloc_nofs_restore to end the scope with flags
388  * returned by this function.
389  *
390  * Context: This function is safe to be used from any context.
391  * Return: The saved flags to be passed to memalloc_nofs_restore.
392  */
393 static inline unsigned int memalloc_nofs_save(void)
394 {
395 	return memalloc_flags_save(PF_MEMALLOC_NOFS);
396 }
397 
398 /**
399  * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
400  * @flags: Flags to restore.
401  *
402  * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
403  * Always make sure that the given flags is the return value from the
404  * pairing memalloc_nofs_save call.
405  */
406 static inline void memalloc_nofs_restore(unsigned int flags)
407 {
408 	memalloc_flags_restore(flags);
409 }
410 
411 /**
412  * memalloc_noreclaim_save - Marks implicit __GFP_MEMALLOC scope.
413  *
414  * This function marks the beginning of the __GFP_MEMALLOC allocation scope.
415  * All further allocations will implicitly add the __GFP_MEMALLOC flag, which
416  * prevents entering reclaim and allows access to all memory reserves. This
417  * should only be used when the caller guarantees the allocation will allow more
418  * memory to be freed very shortly, i.e. it needs to allocate some memory in
419  * the process of freeing memory, and cannot reclaim due to potential recursion.
420  *
421  * Users of this scope have to be extremely careful to not deplete the reserves
422  * completely and implement a throttling mechanism which controls the
423  * consumption of the reserve based on the amount of freed memory. Usage of a
424  * pre-allocated pool (e.g. mempool) should be always considered before using
425  * this scope.
426  *
427  * Individual allocations under the scope can opt out using __GFP_NOMEMALLOC
428  *
429  * Context: This function should not be used in an interrupt context as that one
430  *          does not give PF_MEMALLOC access to reserves.
431  *          See __gfp_pfmemalloc_flags().
432  * Return: The saved flags to be passed to memalloc_noreclaim_restore.
433  */
434 static inline unsigned int memalloc_noreclaim_save(void)
435 {
436 	return memalloc_flags_save(PF_MEMALLOC);
437 }
438 
439 /**
440  * memalloc_noreclaim_restore - Ends the implicit __GFP_MEMALLOC scope.
441  * @flags: Flags to restore.
442  *
443  * Ends the implicit __GFP_MEMALLOC scope started by memalloc_noreclaim_save
444  * function. Always make sure that the given flags is the return value from the
445  * pairing memalloc_noreclaim_save call.
446  */
447 static inline void memalloc_noreclaim_restore(unsigned int flags)
448 {
449 	memalloc_flags_restore(flags);
450 }
451 
452 /**
453  * memalloc_pin_save - Marks implicit ~__GFP_MOVABLE scope.
454  *
455  * This function marks the beginning of the ~__GFP_MOVABLE allocation scope.
456  * All further allocations will implicitly remove the __GFP_MOVABLE flag, which
457  * will constraint the allocations to zones that allow long term pinning, i.e.
458  * not ZONE_MOVABLE zones.
459  *
460  * Return: The saved flags to be passed to memalloc_pin_restore.
461  */
462 static inline unsigned int memalloc_pin_save(void)
463 {
464 	return memalloc_flags_save(PF_MEMALLOC_PIN);
465 }
466 
467 /**
468  * memalloc_pin_restore - Ends the implicit ~__GFP_MOVABLE scope.
469  * @flags: Flags to restore.
470  *
471  * Ends the implicit ~__GFP_MOVABLE scope started by memalloc_pin_save function.
472  * Always make sure that the given flags is the return value from the pairing
473  * memalloc_pin_save call.
474  */
475 static inline void memalloc_pin_restore(unsigned int flags)
476 {
477 	memalloc_flags_restore(flags);
478 }
479 
480 #ifdef CONFIG_MEMCG
481 DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg);
482 /**
483  * set_active_memcg - Starts the remote memcg charging scope.
484  * @memcg: memcg to charge.
485  *
486  * This function marks the beginning of the remote memcg charging scope. All the
487  * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
488  * given memcg.
489  *
490  * Please, make sure that caller has a reference to the passed memcg structure,
491  * so its lifetime is guaranteed to exceed the scope between two
492  * set_active_memcg() calls.
493  *
494  * NOTE: This function can nest. Users must save the return value and
495  * reset the previous value after their own charging scope is over.
496  */
497 static inline struct mem_cgroup *
498 set_active_memcg(struct mem_cgroup *memcg)
499 {
500 	struct mem_cgroup *old;
501 
502 	if (!in_task()) {
503 		old = this_cpu_read(int_active_memcg);
504 		this_cpu_write(int_active_memcg, memcg);
505 	} else {
506 		old = current->active_memcg;
507 		current->active_memcg = memcg;
508 	}
509 
510 	return old;
511 }
512 #else
513 static inline struct mem_cgroup *
514 set_active_memcg(struct mem_cgroup *memcg)
515 {
516 	return NULL;
517 }
518 #endif
519 
520 #ifdef CONFIG_MEMBARRIER
521 enum {
522 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY		= (1U << 0),
523 	MEMBARRIER_STATE_PRIVATE_EXPEDITED			= (1U << 1),
524 	MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY			= (1U << 2),
525 	MEMBARRIER_STATE_GLOBAL_EXPEDITED			= (1U << 3),
526 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY	= (1U << 4),
527 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE		= (1U << 5),
528 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY		= (1U << 6),
529 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ			= (1U << 7),
530 };
531 
532 enum {
533 	MEMBARRIER_FLAG_SYNC_CORE	= (1U << 0),
534 	MEMBARRIER_FLAG_RSEQ		= (1U << 1),
535 };
536 
537 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
538 #include <asm/membarrier.h>
539 #endif
540 
541 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
542 {
543 	if (current->mm != mm)
544 		return;
545 	if (likely(!(atomic_read(&mm->membarrier_state) &
546 		     MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
547 		return;
548 	sync_core_before_usermode();
549 }
550 
551 extern void membarrier_exec_mmap(struct mm_struct *mm);
552 
553 extern void membarrier_update_current_mm(struct mm_struct *next_mm);
554 
555 #else
556 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
557 static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
558 					     struct mm_struct *next,
559 					     struct task_struct *tsk)
560 {
561 }
562 #endif
563 static inline void membarrier_exec_mmap(struct mm_struct *mm)
564 {
565 }
566 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
567 {
568 }
569 static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
570 {
571 }
572 #endif
573 
574 #endif /* _LINUX_SCHED_MM_H */
575