1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 30 #define CLONE_IO 0x80000000 /* Clone io context */ 31 32 /* 33 * Scheduling policies 34 */ 35 #define SCHED_NORMAL 0 36 #define SCHED_FIFO 1 37 #define SCHED_RR 2 38 #define SCHED_BATCH 3 39 /* SCHED_ISO: reserved but not implemented yet */ 40 #define SCHED_IDLE 5 41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 42 #define SCHED_RESET_ON_FORK 0x40000000 43 44 #ifdef __KERNEL__ 45 46 struct sched_param { 47 int sched_priority; 48 }; 49 50 #include <asm/param.h> /* for HZ */ 51 52 #include <linux/capability.h> 53 #include <linux/threads.h> 54 #include <linux/kernel.h> 55 #include <linux/types.h> 56 #include <linux/timex.h> 57 #include <linux/jiffies.h> 58 #include <linux/rbtree.h> 59 #include <linux/thread_info.h> 60 #include <linux/cpumask.h> 61 #include <linux/errno.h> 62 #include <linux/nodemask.h> 63 #include <linux/mm_types.h> 64 65 #include <asm/system.h> 66 #include <asm/page.h> 67 #include <asm/ptrace.h> 68 #include <asm/cputime.h> 69 70 #include <linux/smp.h> 71 #include <linux/sem.h> 72 #include <linux/signal.h> 73 #include <linux/path.h> 74 #include <linux/compiler.h> 75 #include <linux/completion.h> 76 #include <linux/pid.h> 77 #include <linux/percpu.h> 78 #include <linux/topology.h> 79 #include <linux/proportions.h> 80 #include <linux/seccomp.h> 81 #include <linux/rcupdate.h> 82 #include <linux/rculist.h> 83 #include <linux/rtmutex.h> 84 85 #include <linux/time.h> 86 #include <linux/param.h> 87 #include <linux/resource.h> 88 #include <linux/timer.h> 89 #include <linux/hrtimer.h> 90 #include <linux/task_io_accounting.h> 91 #include <linux/kobject.h> 92 #include <linux/latencytop.h> 93 #include <linux/cred.h> 94 95 #include <asm/processor.h> 96 97 struct exec_domain; 98 struct futex_pi_state; 99 struct robust_list_head; 100 struct bio_list; 101 struct fs_struct; 102 struct perf_event_context; 103 104 /* 105 * List of flags we want to share for kernel threads, 106 * if only because they are not used by them anyway. 107 */ 108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 109 110 /* 111 * These are the constant used to fake the fixed-point load-average 112 * counting. Some notes: 113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 114 * a load-average precision of 10 bits integer + 11 bits fractional 115 * - if you want to count load-averages more often, you need more 116 * precision, or rounding will get you. With 2-second counting freq, 117 * the EXP_n values would be 1981, 2034 and 2043 if still using only 118 * 11 bit fractions. 119 */ 120 extern unsigned long avenrun[]; /* Load averages */ 121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 122 123 #define FSHIFT 11 /* nr of bits of precision */ 124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 127 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 128 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 129 130 #define CALC_LOAD(load,exp,n) \ 131 load *= exp; \ 132 load += n*(FIXED_1-exp); \ 133 load >>= FSHIFT; 134 135 extern unsigned long total_forks; 136 extern int nr_threads; 137 DECLARE_PER_CPU(unsigned long, process_counts); 138 extern int nr_processes(void); 139 extern unsigned long nr_running(void); 140 extern unsigned long nr_uninterruptible(void); 141 extern unsigned long nr_iowait(void); 142 extern unsigned long nr_iowait_cpu(int cpu); 143 extern unsigned long this_cpu_load(void); 144 145 146 extern void calc_global_load(void); 147 148 extern unsigned long get_parent_ip(unsigned long addr); 149 150 struct seq_file; 151 struct cfs_rq; 152 struct task_group; 153 #ifdef CONFIG_SCHED_DEBUG 154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 155 extern void proc_sched_set_task(struct task_struct *p); 156 extern void 157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 158 #else 159 static inline void 160 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 161 { 162 } 163 static inline void proc_sched_set_task(struct task_struct *p) 164 { 165 } 166 static inline void 167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 168 { 169 } 170 #endif 171 172 /* 173 * Task state bitmask. NOTE! These bits are also 174 * encoded in fs/proc/array.c: get_task_state(). 175 * 176 * We have two separate sets of flags: task->state 177 * is about runnability, while task->exit_state are 178 * about the task exiting. Confusing, but this way 179 * modifying one set can't modify the other one by 180 * mistake. 181 */ 182 #define TASK_RUNNING 0 183 #define TASK_INTERRUPTIBLE 1 184 #define TASK_UNINTERRUPTIBLE 2 185 #define __TASK_STOPPED 4 186 #define __TASK_TRACED 8 187 /* in tsk->exit_state */ 188 #define EXIT_ZOMBIE 16 189 #define EXIT_DEAD 32 190 /* in tsk->state again */ 191 #define TASK_DEAD 64 192 #define TASK_WAKEKILL 128 193 #define TASK_WAKING 256 194 #define TASK_STATE_MAX 512 195 196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 197 198 extern char ___assert_task_state[1 - 2*!!( 199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 200 201 /* Convenience macros for the sake of set_task_state */ 202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 205 206 /* Convenience macros for the sake of wake_up */ 207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 209 210 /* get_task_state() */ 211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 213 __TASK_TRACED) 214 215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 217 #define task_is_dead(task) ((task)->exit_state != 0) 218 #define task_is_stopped_or_traced(task) \ 219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 220 #define task_contributes_to_load(task) \ 221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 222 (task->flags & PF_FREEZING) == 0) 223 224 #define __set_task_state(tsk, state_value) \ 225 do { (tsk)->state = (state_value); } while (0) 226 #define set_task_state(tsk, state_value) \ 227 set_mb((tsk)->state, (state_value)) 228 229 /* 230 * set_current_state() includes a barrier so that the write of current->state 231 * is correctly serialised wrt the caller's subsequent test of whether to 232 * actually sleep: 233 * 234 * set_current_state(TASK_UNINTERRUPTIBLE); 235 * if (do_i_need_to_sleep()) 236 * schedule(); 237 * 238 * If the caller does not need such serialisation then use __set_current_state() 239 */ 240 #define __set_current_state(state_value) \ 241 do { current->state = (state_value); } while (0) 242 #define set_current_state(state_value) \ 243 set_mb(current->state, (state_value)) 244 245 /* Task command name length */ 246 #define TASK_COMM_LEN 16 247 248 #include <linux/spinlock.h> 249 250 /* 251 * This serializes "schedule()" and also protects 252 * the run-queue from deletions/modifications (but 253 * _adding_ to the beginning of the run-queue has 254 * a separate lock). 255 */ 256 extern rwlock_t tasklist_lock; 257 extern spinlock_t mmlist_lock; 258 259 struct task_struct; 260 261 #ifdef CONFIG_PROVE_RCU 262 extern int lockdep_tasklist_lock_is_held(void); 263 #endif /* #ifdef CONFIG_PROVE_RCU */ 264 265 extern void sched_init(void); 266 extern void sched_init_smp(void); 267 extern asmlinkage void schedule_tail(struct task_struct *prev); 268 extern void init_idle(struct task_struct *idle, int cpu); 269 extern void init_idle_bootup_task(struct task_struct *idle); 270 271 extern int runqueue_is_locked(int cpu); 272 273 extern cpumask_var_t nohz_cpu_mask; 274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 275 extern void select_nohz_load_balancer(int stop_tick); 276 extern int get_nohz_timer_target(void); 277 #else 278 static inline void select_nohz_load_balancer(int stop_tick) { } 279 #endif 280 281 /* 282 * Only dump TASK_* tasks. (0 for all tasks) 283 */ 284 extern void show_state_filter(unsigned long state_filter); 285 286 static inline void show_state(void) 287 { 288 show_state_filter(0); 289 } 290 291 extern void show_regs(struct pt_regs *); 292 293 /* 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 295 * task), SP is the stack pointer of the first frame that should be shown in the back 296 * trace (or NULL if the entire call-chain of the task should be shown). 297 */ 298 extern void show_stack(struct task_struct *task, unsigned long *sp); 299 300 void io_schedule(void); 301 long io_schedule_timeout(long timeout); 302 303 extern void cpu_init (void); 304 extern void trap_init(void); 305 extern void update_process_times(int user); 306 extern void scheduler_tick(void); 307 308 extern void sched_show_task(struct task_struct *p); 309 310 #ifdef CONFIG_LOCKUP_DETECTOR 311 extern void touch_softlockup_watchdog(void); 312 extern void touch_softlockup_watchdog_sync(void); 313 extern void touch_all_softlockup_watchdogs(void); 314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 315 void __user *buffer, 316 size_t *lenp, loff_t *ppos); 317 extern unsigned int softlockup_panic; 318 extern int softlockup_thresh; 319 #else 320 static inline void touch_softlockup_watchdog(void) 321 { 322 } 323 static inline void touch_softlockup_watchdog_sync(void) 324 { 325 } 326 static inline void touch_all_softlockup_watchdogs(void) 327 { 328 } 329 #endif 330 331 #ifdef CONFIG_DETECT_HUNG_TASK 332 extern unsigned int sysctl_hung_task_panic; 333 extern unsigned long sysctl_hung_task_check_count; 334 extern unsigned long sysctl_hung_task_timeout_secs; 335 extern unsigned long sysctl_hung_task_warnings; 336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 337 void __user *buffer, 338 size_t *lenp, loff_t *ppos); 339 #endif 340 341 /* Attach to any functions which should be ignored in wchan output. */ 342 #define __sched __attribute__((__section__(".sched.text"))) 343 344 /* Linker adds these: start and end of __sched functions */ 345 extern char __sched_text_start[], __sched_text_end[]; 346 347 /* Is this address in the __sched functions? */ 348 extern int in_sched_functions(unsigned long addr); 349 350 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 351 extern signed long schedule_timeout(signed long timeout); 352 extern signed long schedule_timeout_interruptible(signed long timeout); 353 extern signed long schedule_timeout_killable(signed long timeout); 354 extern signed long schedule_timeout_uninterruptible(signed long timeout); 355 asmlinkage void schedule(void); 356 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 357 358 struct nsproxy; 359 struct user_namespace; 360 361 /* 362 * Default maximum number of active map areas, this limits the number of vmas 363 * per mm struct. Users can overwrite this number by sysctl but there is a 364 * problem. 365 * 366 * When a program's coredump is generated as ELF format, a section is created 367 * per a vma. In ELF, the number of sections is represented in unsigned short. 368 * This means the number of sections should be smaller than 65535 at coredump. 369 * Because the kernel adds some informative sections to a image of program at 370 * generating coredump, we need some margin. The number of extra sections is 371 * 1-3 now and depends on arch. We use "5" as safe margin, here. 372 */ 373 #define MAPCOUNT_ELF_CORE_MARGIN (5) 374 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 375 376 extern int sysctl_max_map_count; 377 378 #include <linux/aio.h> 379 380 #ifdef CONFIG_MMU 381 extern void arch_pick_mmap_layout(struct mm_struct *mm); 382 extern unsigned long 383 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 384 unsigned long, unsigned long); 385 extern unsigned long 386 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 387 unsigned long len, unsigned long pgoff, 388 unsigned long flags); 389 extern void arch_unmap_area(struct mm_struct *, unsigned long); 390 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 391 #else 392 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 393 #endif 394 395 396 extern void set_dumpable(struct mm_struct *mm, int value); 397 extern int get_dumpable(struct mm_struct *mm); 398 399 /* mm flags */ 400 /* dumpable bits */ 401 #define MMF_DUMPABLE 0 /* core dump is permitted */ 402 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 403 404 #define MMF_DUMPABLE_BITS 2 405 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 406 407 /* coredump filter bits */ 408 #define MMF_DUMP_ANON_PRIVATE 2 409 #define MMF_DUMP_ANON_SHARED 3 410 #define MMF_DUMP_MAPPED_PRIVATE 4 411 #define MMF_DUMP_MAPPED_SHARED 5 412 #define MMF_DUMP_ELF_HEADERS 6 413 #define MMF_DUMP_HUGETLB_PRIVATE 7 414 #define MMF_DUMP_HUGETLB_SHARED 8 415 416 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 417 #define MMF_DUMP_FILTER_BITS 7 418 #define MMF_DUMP_FILTER_MASK \ 419 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 420 #define MMF_DUMP_FILTER_DEFAULT \ 421 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 422 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 423 424 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 425 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 426 #else 427 # define MMF_DUMP_MASK_DEFAULT_ELF 0 428 #endif 429 /* leave room for more dump flags */ 430 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 431 432 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 433 434 struct sighand_struct { 435 atomic_t count; 436 struct k_sigaction action[_NSIG]; 437 spinlock_t siglock; 438 wait_queue_head_t signalfd_wqh; 439 }; 440 441 struct pacct_struct { 442 int ac_flag; 443 long ac_exitcode; 444 unsigned long ac_mem; 445 cputime_t ac_utime, ac_stime; 446 unsigned long ac_minflt, ac_majflt; 447 }; 448 449 struct cpu_itimer { 450 cputime_t expires; 451 cputime_t incr; 452 u32 error; 453 u32 incr_error; 454 }; 455 456 /** 457 * struct task_cputime - collected CPU time counts 458 * @utime: time spent in user mode, in &cputime_t units 459 * @stime: time spent in kernel mode, in &cputime_t units 460 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 461 * 462 * This structure groups together three kinds of CPU time that are 463 * tracked for threads and thread groups. Most things considering 464 * CPU time want to group these counts together and treat all three 465 * of them in parallel. 466 */ 467 struct task_cputime { 468 cputime_t utime; 469 cputime_t stime; 470 unsigned long long sum_exec_runtime; 471 }; 472 /* Alternate field names when used to cache expirations. */ 473 #define prof_exp stime 474 #define virt_exp utime 475 #define sched_exp sum_exec_runtime 476 477 #define INIT_CPUTIME \ 478 (struct task_cputime) { \ 479 .utime = cputime_zero, \ 480 .stime = cputime_zero, \ 481 .sum_exec_runtime = 0, \ 482 } 483 484 /* 485 * Disable preemption until the scheduler is running. 486 * Reset by start_kernel()->sched_init()->init_idle(). 487 * 488 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 489 * before the scheduler is active -- see should_resched(). 490 */ 491 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 492 493 /** 494 * struct thread_group_cputimer - thread group interval timer counts 495 * @cputime: thread group interval timers. 496 * @running: non-zero when there are timers running and 497 * @cputime receives updates. 498 * @lock: lock for fields in this struct. 499 * 500 * This structure contains the version of task_cputime, above, that is 501 * used for thread group CPU timer calculations. 502 */ 503 struct thread_group_cputimer { 504 struct task_cputime cputime; 505 int running; 506 spinlock_t lock; 507 }; 508 509 /* 510 * NOTE! "signal_struct" does not have it's own 511 * locking, because a shared signal_struct always 512 * implies a shared sighand_struct, so locking 513 * sighand_struct is always a proper superset of 514 * the locking of signal_struct. 515 */ 516 struct signal_struct { 517 atomic_t sigcnt; 518 atomic_t live; 519 int nr_threads; 520 521 wait_queue_head_t wait_chldexit; /* for wait4() */ 522 523 /* current thread group signal load-balancing target: */ 524 struct task_struct *curr_target; 525 526 /* shared signal handling: */ 527 struct sigpending shared_pending; 528 529 /* thread group exit support */ 530 int group_exit_code; 531 /* overloaded: 532 * - notify group_exit_task when ->count is equal to notify_count 533 * - everyone except group_exit_task is stopped during signal delivery 534 * of fatal signals, group_exit_task processes the signal. 535 */ 536 int notify_count; 537 struct task_struct *group_exit_task; 538 539 /* thread group stop support, overloads group_exit_code too */ 540 int group_stop_count; 541 unsigned int flags; /* see SIGNAL_* flags below */ 542 543 /* POSIX.1b Interval Timers */ 544 struct list_head posix_timers; 545 546 /* ITIMER_REAL timer for the process */ 547 struct hrtimer real_timer; 548 struct pid *leader_pid; 549 ktime_t it_real_incr; 550 551 /* 552 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 553 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 554 * values are defined to 0 and 1 respectively 555 */ 556 struct cpu_itimer it[2]; 557 558 /* 559 * Thread group totals for process CPU timers. 560 * See thread_group_cputimer(), et al, for details. 561 */ 562 struct thread_group_cputimer cputimer; 563 564 /* Earliest-expiration cache. */ 565 struct task_cputime cputime_expires; 566 567 struct list_head cpu_timers[3]; 568 569 struct pid *tty_old_pgrp; 570 571 /* boolean value for session group leader */ 572 int leader; 573 574 struct tty_struct *tty; /* NULL if no tty */ 575 576 /* 577 * Cumulative resource counters for dead threads in the group, 578 * and for reaped dead child processes forked by this group. 579 * Live threads maintain their own counters and add to these 580 * in __exit_signal, except for the group leader. 581 */ 582 cputime_t utime, stime, cutime, cstime; 583 cputime_t gtime; 584 cputime_t cgtime; 585 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 586 cputime_t prev_utime, prev_stime; 587 #endif 588 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 589 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 590 unsigned long inblock, oublock, cinblock, coublock; 591 unsigned long maxrss, cmaxrss; 592 struct task_io_accounting ioac; 593 594 /* 595 * Cumulative ns of schedule CPU time fo dead threads in the 596 * group, not including a zombie group leader, (This only differs 597 * from jiffies_to_ns(utime + stime) if sched_clock uses something 598 * other than jiffies.) 599 */ 600 unsigned long long sum_sched_runtime; 601 602 /* 603 * We don't bother to synchronize most readers of this at all, 604 * because there is no reader checking a limit that actually needs 605 * to get both rlim_cur and rlim_max atomically, and either one 606 * alone is a single word that can safely be read normally. 607 * getrlimit/setrlimit use task_lock(current->group_leader) to 608 * protect this instead of the siglock, because they really 609 * have no need to disable irqs. 610 */ 611 struct rlimit rlim[RLIM_NLIMITS]; 612 613 #ifdef CONFIG_BSD_PROCESS_ACCT 614 struct pacct_struct pacct; /* per-process accounting information */ 615 #endif 616 #ifdef CONFIG_TASKSTATS 617 struct taskstats *stats; 618 #endif 619 #ifdef CONFIG_AUDIT 620 unsigned audit_tty; 621 struct tty_audit_buf *tty_audit_buf; 622 #endif 623 624 int oom_adj; /* OOM kill score adjustment (bit shift) */ 625 int oom_score_adj; /* OOM kill score adjustment */ 626 }; 627 628 /* Context switch must be unlocked if interrupts are to be enabled */ 629 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 630 # define __ARCH_WANT_UNLOCKED_CTXSW 631 #endif 632 633 /* 634 * Bits in flags field of signal_struct. 635 */ 636 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 637 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 638 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 639 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 640 /* 641 * Pending notifications to parent. 642 */ 643 #define SIGNAL_CLD_STOPPED 0x00000010 644 #define SIGNAL_CLD_CONTINUED 0x00000020 645 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 646 647 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 648 649 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 650 static inline int signal_group_exit(const struct signal_struct *sig) 651 { 652 return (sig->flags & SIGNAL_GROUP_EXIT) || 653 (sig->group_exit_task != NULL); 654 } 655 656 /* 657 * Some day this will be a full-fledged user tracking system.. 658 */ 659 struct user_struct { 660 atomic_t __count; /* reference count */ 661 atomic_t processes; /* How many processes does this user have? */ 662 atomic_t files; /* How many open files does this user have? */ 663 atomic_t sigpending; /* How many pending signals does this user have? */ 664 #ifdef CONFIG_INOTIFY_USER 665 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 666 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 667 #endif 668 #ifdef CONFIG_EPOLL 669 atomic_t epoll_watches; /* The number of file descriptors currently watched */ 670 #endif 671 #ifdef CONFIG_POSIX_MQUEUE 672 /* protected by mq_lock */ 673 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 674 #endif 675 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 676 677 #ifdef CONFIG_KEYS 678 struct key *uid_keyring; /* UID specific keyring */ 679 struct key *session_keyring; /* UID's default session keyring */ 680 #endif 681 682 /* Hash table maintenance information */ 683 struct hlist_node uidhash_node; 684 uid_t uid; 685 struct user_namespace *user_ns; 686 687 #ifdef CONFIG_PERF_EVENTS 688 atomic_long_t locked_vm; 689 #endif 690 }; 691 692 extern int uids_sysfs_init(void); 693 694 extern struct user_struct *find_user(uid_t); 695 696 extern struct user_struct root_user; 697 #define INIT_USER (&root_user) 698 699 700 struct backing_dev_info; 701 struct reclaim_state; 702 703 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 704 struct sched_info { 705 /* cumulative counters */ 706 unsigned long pcount; /* # of times run on this cpu */ 707 unsigned long long run_delay; /* time spent waiting on a runqueue */ 708 709 /* timestamps */ 710 unsigned long long last_arrival,/* when we last ran on a cpu */ 711 last_queued; /* when we were last queued to run */ 712 #ifdef CONFIG_SCHEDSTATS 713 /* BKL stats */ 714 unsigned int bkl_count; 715 #endif 716 }; 717 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 718 719 #ifdef CONFIG_TASK_DELAY_ACCT 720 struct task_delay_info { 721 spinlock_t lock; 722 unsigned int flags; /* Private per-task flags */ 723 724 /* For each stat XXX, add following, aligned appropriately 725 * 726 * struct timespec XXX_start, XXX_end; 727 * u64 XXX_delay; 728 * u32 XXX_count; 729 * 730 * Atomicity of updates to XXX_delay, XXX_count protected by 731 * single lock above (split into XXX_lock if contention is an issue). 732 */ 733 734 /* 735 * XXX_count is incremented on every XXX operation, the delay 736 * associated with the operation is added to XXX_delay. 737 * XXX_delay contains the accumulated delay time in nanoseconds. 738 */ 739 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 740 u64 blkio_delay; /* wait for sync block io completion */ 741 u64 swapin_delay; /* wait for swapin block io completion */ 742 u32 blkio_count; /* total count of the number of sync block */ 743 /* io operations performed */ 744 u32 swapin_count; /* total count of the number of swapin block */ 745 /* io operations performed */ 746 747 struct timespec freepages_start, freepages_end; 748 u64 freepages_delay; /* wait for memory reclaim */ 749 u32 freepages_count; /* total count of memory reclaim */ 750 }; 751 #endif /* CONFIG_TASK_DELAY_ACCT */ 752 753 static inline int sched_info_on(void) 754 { 755 #ifdef CONFIG_SCHEDSTATS 756 return 1; 757 #elif defined(CONFIG_TASK_DELAY_ACCT) 758 extern int delayacct_on; 759 return delayacct_on; 760 #else 761 return 0; 762 #endif 763 } 764 765 enum cpu_idle_type { 766 CPU_IDLE, 767 CPU_NOT_IDLE, 768 CPU_NEWLY_IDLE, 769 CPU_MAX_IDLE_TYPES 770 }; 771 772 /* 773 * sched-domains (multiprocessor balancing) declarations: 774 */ 775 776 /* 777 * Increase resolution of nice-level calculations: 778 */ 779 #define SCHED_LOAD_SHIFT 10 780 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 781 782 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 783 784 #ifdef CONFIG_SMP 785 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 786 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 787 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 788 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 789 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 790 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 791 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 792 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 793 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 794 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 795 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 796 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 797 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 798 799 enum powersavings_balance_level { 800 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 801 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 802 * first for long running threads 803 */ 804 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 805 * cpu package for power savings 806 */ 807 MAX_POWERSAVINGS_BALANCE_LEVELS 808 }; 809 810 extern int sched_mc_power_savings, sched_smt_power_savings; 811 812 static inline int sd_balance_for_mc_power(void) 813 { 814 if (sched_smt_power_savings) 815 return SD_POWERSAVINGS_BALANCE; 816 817 if (!sched_mc_power_savings) 818 return SD_PREFER_SIBLING; 819 820 return 0; 821 } 822 823 static inline int sd_balance_for_package_power(void) 824 { 825 if (sched_mc_power_savings | sched_smt_power_savings) 826 return SD_POWERSAVINGS_BALANCE; 827 828 return SD_PREFER_SIBLING; 829 } 830 831 extern int __weak arch_sd_sibiling_asym_packing(void); 832 833 /* 834 * Optimise SD flags for power savings: 835 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 836 * Keep default SD flags if sched_{smt,mc}_power_saving=0 837 */ 838 839 static inline int sd_power_saving_flags(void) 840 { 841 if (sched_mc_power_savings | sched_smt_power_savings) 842 return SD_BALANCE_NEWIDLE; 843 844 return 0; 845 } 846 847 struct sched_group { 848 struct sched_group *next; /* Must be a circular list */ 849 850 /* 851 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 852 * single CPU. 853 */ 854 unsigned int cpu_power, cpu_power_orig; 855 856 /* 857 * The CPUs this group covers. 858 * 859 * NOTE: this field is variable length. (Allocated dynamically 860 * by attaching extra space to the end of the structure, 861 * depending on how many CPUs the kernel has booted up with) 862 * 863 * It is also be embedded into static data structures at build 864 * time. (See 'struct static_sched_group' in kernel/sched.c) 865 */ 866 unsigned long cpumask[0]; 867 }; 868 869 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 870 { 871 return to_cpumask(sg->cpumask); 872 } 873 874 enum sched_domain_level { 875 SD_LV_NONE = 0, 876 SD_LV_SIBLING, 877 SD_LV_MC, 878 SD_LV_BOOK, 879 SD_LV_CPU, 880 SD_LV_NODE, 881 SD_LV_ALLNODES, 882 SD_LV_MAX 883 }; 884 885 struct sched_domain_attr { 886 int relax_domain_level; 887 }; 888 889 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 890 .relax_domain_level = -1, \ 891 } 892 893 struct sched_domain { 894 /* These fields must be setup */ 895 struct sched_domain *parent; /* top domain must be null terminated */ 896 struct sched_domain *child; /* bottom domain must be null terminated */ 897 struct sched_group *groups; /* the balancing groups of the domain */ 898 unsigned long min_interval; /* Minimum balance interval ms */ 899 unsigned long max_interval; /* Maximum balance interval ms */ 900 unsigned int busy_factor; /* less balancing by factor if busy */ 901 unsigned int imbalance_pct; /* No balance until over watermark */ 902 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 903 unsigned int busy_idx; 904 unsigned int idle_idx; 905 unsigned int newidle_idx; 906 unsigned int wake_idx; 907 unsigned int forkexec_idx; 908 unsigned int smt_gain; 909 int flags; /* See SD_* */ 910 enum sched_domain_level level; 911 912 /* Runtime fields. */ 913 unsigned long last_balance; /* init to jiffies. units in jiffies */ 914 unsigned int balance_interval; /* initialise to 1. units in ms. */ 915 unsigned int nr_balance_failed; /* initialise to 0 */ 916 917 u64 last_update; 918 919 #ifdef CONFIG_SCHEDSTATS 920 /* load_balance() stats */ 921 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 922 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 923 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 924 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 925 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 926 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 927 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 928 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 929 930 /* Active load balancing */ 931 unsigned int alb_count; 932 unsigned int alb_failed; 933 unsigned int alb_pushed; 934 935 /* SD_BALANCE_EXEC stats */ 936 unsigned int sbe_count; 937 unsigned int sbe_balanced; 938 unsigned int sbe_pushed; 939 940 /* SD_BALANCE_FORK stats */ 941 unsigned int sbf_count; 942 unsigned int sbf_balanced; 943 unsigned int sbf_pushed; 944 945 /* try_to_wake_up() stats */ 946 unsigned int ttwu_wake_remote; 947 unsigned int ttwu_move_affine; 948 unsigned int ttwu_move_balance; 949 #endif 950 #ifdef CONFIG_SCHED_DEBUG 951 char *name; 952 #endif 953 954 unsigned int span_weight; 955 /* 956 * Span of all CPUs in this domain. 957 * 958 * NOTE: this field is variable length. (Allocated dynamically 959 * by attaching extra space to the end of the structure, 960 * depending on how many CPUs the kernel has booted up with) 961 * 962 * It is also be embedded into static data structures at build 963 * time. (See 'struct static_sched_domain' in kernel/sched.c) 964 */ 965 unsigned long span[0]; 966 }; 967 968 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 969 { 970 return to_cpumask(sd->span); 971 } 972 973 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 974 struct sched_domain_attr *dattr_new); 975 976 /* Allocate an array of sched domains, for partition_sched_domains(). */ 977 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 978 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 979 980 /* Test a flag in parent sched domain */ 981 static inline int test_sd_parent(struct sched_domain *sd, int flag) 982 { 983 if (sd->parent && (sd->parent->flags & flag)) 984 return 1; 985 986 return 0; 987 } 988 989 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 990 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 991 992 #else /* CONFIG_SMP */ 993 994 struct sched_domain_attr; 995 996 static inline void 997 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 998 struct sched_domain_attr *dattr_new) 999 { 1000 } 1001 #endif /* !CONFIG_SMP */ 1002 1003 1004 struct io_context; /* See blkdev.h */ 1005 1006 1007 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1008 extern void prefetch_stack(struct task_struct *t); 1009 #else 1010 static inline void prefetch_stack(struct task_struct *t) { } 1011 #endif 1012 1013 struct audit_context; /* See audit.c */ 1014 struct mempolicy; 1015 struct pipe_inode_info; 1016 struct uts_namespace; 1017 1018 struct rq; 1019 struct sched_domain; 1020 1021 /* 1022 * wake flags 1023 */ 1024 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1025 #define WF_FORK 0x02 /* child wakeup after fork */ 1026 1027 #define ENQUEUE_WAKEUP 1 1028 #define ENQUEUE_WAKING 2 1029 #define ENQUEUE_HEAD 4 1030 1031 #define DEQUEUE_SLEEP 1 1032 1033 struct sched_class { 1034 const struct sched_class *next; 1035 1036 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1037 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1038 void (*yield_task) (struct rq *rq); 1039 1040 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1041 1042 struct task_struct * (*pick_next_task) (struct rq *rq); 1043 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1044 1045 #ifdef CONFIG_SMP 1046 int (*select_task_rq)(struct rq *rq, struct task_struct *p, 1047 int sd_flag, int flags); 1048 1049 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1050 void (*post_schedule) (struct rq *this_rq); 1051 void (*task_waking) (struct rq *this_rq, struct task_struct *task); 1052 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1053 1054 void (*set_cpus_allowed)(struct task_struct *p, 1055 const struct cpumask *newmask); 1056 1057 void (*rq_online)(struct rq *rq); 1058 void (*rq_offline)(struct rq *rq); 1059 #endif 1060 1061 void (*set_curr_task) (struct rq *rq); 1062 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1063 void (*task_fork) (struct task_struct *p); 1064 1065 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 1066 int running); 1067 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 1068 int running); 1069 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1070 int oldprio, int running); 1071 1072 unsigned int (*get_rr_interval) (struct rq *rq, 1073 struct task_struct *task); 1074 1075 #ifdef CONFIG_FAIR_GROUP_SCHED 1076 void (*moved_group) (struct task_struct *p, int on_rq); 1077 #endif 1078 }; 1079 1080 struct load_weight { 1081 unsigned long weight, inv_weight; 1082 }; 1083 1084 #ifdef CONFIG_SCHEDSTATS 1085 struct sched_statistics { 1086 u64 wait_start; 1087 u64 wait_max; 1088 u64 wait_count; 1089 u64 wait_sum; 1090 u64 iowait_count; 1091 u64 iowait_sum; 1092 1093 u64 sleep_start; 1094 u64 sleep_max; 1095 s64 sum_sleep_runtime; 1096 1097 u64 block_start; 1098 u64 block_max; 1099 u64 exec_max; 1100 u64 slice_max; 1101 1102 u64 nr_migrations_cold; 1103 u64 nr_failed_migrations_affine; 1104 u64 nr_failed_migrations_running; 1105 u64 nr_failed_migrations_hot; 1106 u64 nr_forced_migrations; 1107 1108 u64 nr_wakeups; 1109 u64 nr_wakeups_sync; 1110 u64 nr_wakeups_migrate; 1111 u64 nr_wakeups_local; 1112 u64 nr_wakeups_remote; 1113 u64 nr_wakeups_affine; 1114 u64 nr_wakeups_affine_attempts; 1115 u64 nr_wakeups_passive; 1116 u64 nr_wakeups_idle; 1117 }; 1118 #endif 1119 1120 struct sched_entity { 1121 struct load_weight load; /* for load-balancing */ 1122 struct rb_node run_node; 1123 struct list_head group_node; 1124 unsigned int on_rq; 1125 1126 u64 exec_start; 1127 u64 sum_exec_runtime; 1128 u64 vruntime; 1129 u64 prev_sum_exec_runtime; 1130 1131 u64 nr_migrations; 1132 1133 #ifdef CONFIG_SCHEDSTATS 1134 struct sched_statistics statistics; 1135 #endif 1136 1137 #ifdef CONFIG_FAIR_GROUP_SCHED 1138 struct sched_entity *parent; 1139 /* rq on which this entity is (to be) queued: */ 1140 struct cfs_rq *cfs_rq; 1141 /* rq "owned" by this entity/group: */ 1142 struct cfs_rq *my_q; 1143 #endif 1144 }; 1145 1146 struct sched_rt_entity { 1147 struct list_head run_list; 1148 unsigned long timeout; 1149 unsigned int time_slice; 1150 int nr_cpus_allowed; 1151 1152 struct sched_rt_entity *back; 1153 #ifdef CONFIG_RT_GROUP_SCHED 1154 struct sched_rt_entity *parent; 1155 /* rq on which this entity is (to be) queued: */ 1156 struct rt_rq *rt_rq; 1157 /* rq "owned" by this entity/group: */ 1158 struct rt_rq *my_q; 1159 #endif 1160 }; 1161 1162 struct rcu_node; 1163 1164 enum perf_event_task_context { 1165 perf_invalid_context = -1, 1166 perf_hw_context = 0, 1167 perf_sw_context, 1168 perf_nr_task_contexts, 1169 }; 1170 1171 struct task_struct { 1172 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1173 void *stack; 1174 atomic_t usage; 1175 unsigned int flags; /* per process flags, defined below */ 1176 unsigned int ptrace; 1177 1178 int lock_depth; /* BKL lock depth */ 1179 1180 #ifdef CONFIG_SMP 1181 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1182 int oncpu; 1183 #endif 1184 #endif 1185 1186 int prio, static_prio, normal_prio; 1187 unsigned int rt_priority; 1188 const struct sched_class *sched_class; 1189 struct sched_entity se; 1190 struct sched_rt_entity rt; 1191 1192 #ifdef CONFIG_PREEMPT_NOTIFIERS 1193 /* list of struct preempt_notifier: */ 1194 struct hlist_head preempt_notifiers; 1195 #endif 1196 1197 /* 1198 * fpu_counter contains the number of consecutive context switches 1199 * that the FPU is used. If this is over a threshold, the lazy fpu 1200 * saving becomes unlazy to save the trap. This is an unsigned char 1201 * so that after 256 times the counter wraps and the behavior turns 1202 * lazy again; this to deal with bursty apps that only use FPU for 1203 * a short time 1204 */ 1205 unsigned char fpu_counter; 1206 #ifdef CONFIG_BLK_DEV_IO_TRACE 1207 unsigned int btrace_seq; 1208 #endif 1209 1210 unsigned int policy; 1211 cpumask_t cpus_allowed; 1212 1213 #ifdef CONFIG_PREEMPT_RCU 1214 int rcu_read_lock_nesting; 1215 char rcu_read_unlock_special; 1216 struct list_head rcu_node_entry; 1217 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1218 #ifdef CONFIG_TREE_PREEMPT_RCU 1219 struct rcu_node *rcu_blocked_node; 1220 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1221 1222 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1223 struct sched_info sched_info; 1224 #endif 1225 1226 struct list_head tasks; 1227 struct plist_node pushable_tasks; 1228 1229 struct mm_struct *mm, *active_mm; 1230 #if defined(SPLIT_RSS_COUNTING) 1231 struct task_rss_stat rss_stat; 1232 #endif 1233 /* task state */ 1234 int exit_state; 1235 int exit_code, exit_signal; 1236 int pdeath_signal; /* The signal sent when the parent dies */ 1237 /* ??? */ 1238 unsigned int personality; 1239 unsigned did_exec:1; 1240 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1241 * execve */ 1242 unsigned in_iowait:1; 1243 1244 1245 /* Revert to default priority/policy when forking */ 1246 unsigned sched_reset_on_fork:1; 1247 1248 pid_t pid; 1249 pid_t tgid; 1250 1251 #ifdef CONFIG_CC_STACKPROTECTOR 1252 /* Canary value for the -fstack-protector gcc feature */ 1253 unsigned long stack_canary; 1254 #endif 1255 1256 /* 1257 * pointers to (original) parent process, youngest child, younger sibling, 1258 * older sibling, respectively. (p->father can be replaced with 1259 * p->real_parent->pid) 1260 */ 1261 struct task_struct *real_parent; /* real parent process */ 1262 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1263 /* 1264 * children/sibling forms the list of my natural children 1265 */ 1266 struct list_head children; /* list of my children */ 1267 struct list_head sibling; /* linkage in my parent's children list */ 1268 struct task_struct *group_leader; /* threadgroup leader */ 1269 1270 /* 1271 * ptraced is the list of tasks this task is using ptrace on. 1272 * This includes both natural children and PTRACE_ATTACH targets. 1273 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1274 */ 1275 struct list_head ptraced; 1276 struct list_head ptrace_entry; 1277 1278 /* PID/PID hash table linkage. */ 1279 struct pid_link pids[PIDTYPE_MAX]; 1280 struct list_head thread_group; 1281 1282 struct completion *vfork_done; /* for vfork() */ 1283 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1284 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1285 1286 cputime_t utime, stime, utimescaled, stimescaled; 1287 cputime_t gtime; 1288 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1289 cputime_t prev_utime, prev_stime; 1290 #endif 1291 unsigned long nvcsw, nivcsw; /* context switch counts */ 1292 struct timespec start_time; /* monotonic time */ 1293 struct timespec real_start_time; /* boot based time */ 1294 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1295 unsigned long min_flt, maj_flt; 1296 1297 struct task_cputime cputime_expires; 1298 struct list_head cpu_timers[3]; 1299 1300 /* process credentials */ 1301 const struct cred __rcu *real_cred; /* objective and real subjective task 1302 * credentials (COW) */ 1303 const struct cred __rcu *cred; /* effective (overridable) subjective task 1304 * credentials (COW) */ 1305 struct mutex cred_guard_mutex; /* guard against foreign influences on 1306 * credential calculations 1307 * (notably. ptrace) */ 1308 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1309 1310 char comm[TASK_COMM_LEN]; /* executable name excluding path 1311 - access with [gs]et_task_comm (which lock 1312 it with task_lock()) 1313 - initialized normally by setup_new_exec */ 1314 /* file system info */ 1315 int link_count, total_link_count; 1316 #ifdef CONFIG_SYSVIPC 1317 /* ipc stuff */ 1318 struct sysv_sem sysvsem; 1319 #endif 1320 #ifdef CONFIG_DETECT_HUNG_TASK 1321 /* hung task detection */ 1322 unsigned long last_switch_count; 1323 #endif 1324 /* CPU-specific state of this task */ 1325 struct thread_struct thread; 1326 /* filesystem information */ 1327 struct fs_struct *fs; 1328 /* open file information */ 1329 struct files_struct *files; 1330 /* namespaces */ 1331 struct nsproxy *nsproxy; 1332 /* signal handlers */ 1333 struct signal_struct *signal; 1334 struct sighand_struct *sighand; 1335 1336 sigset_t blocked, real_blocked; 1337 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1338 struct sigpending pending; 1339 1340 unsigned long sas_ss_sp; 1341 size_t sas_ss_size; 1342 int (*notifier)(void *priv); 1343 void *notifier_data; 1344 sigset_t *notifier_mask; 1345 struct audit_context *audit_context; 1346 #ifdef CONFIG_AUDITSYSCALL 1347 uid_t loginuid; 1348 unsigned int sessionid; 1349 #endif 1350 seccomp_t seccomp; 1351 1352 /* Thread group tracking */ 1353 u32 parent_exec_id; 1354 u32 self_exec_id; 1355 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1356 * mempolicy */ 1357 spinlock_t alloc_lock; 1358 1359 #ifdef CONFIG_GENERIC_HARDIRQS 1360 /* IRQ handler threads */ 1361 struct irqaction *irqaction; 1362 #endif 1363 1364 /* Protection of the PI data structures: */ 1365 raw_spinlock_t pi_lock; 1366 1367 #ifdef CONFIG_RT_MUTEXES 1368 /* PI waiters blocked on a rt_mutex held by this task */ 1369 struct plist_head pi_waiters; 1370 /* Deadlock detection and priority inheritance handling */ 1371 struct rt_mutex_waiter *pi_blocked_on; 1372 #endif 1373 1374 #ifdef CONFIG_DEBUG_MUTEXES 1375 /* mutex deadlock detection */ 1376 struct mutex_waiter *blocked_on; 1377 #endif 1378 #ifdef CONFIG_TRACE_IRQFLAGS 1379 unsigned int irq_events; 1380 unsigned long hardirq_enable_ip; 1381 unsigned long hardirq_disable_ip; 1382 unsigned int hardirq_enable_event; 1383 unsigned int hardirq_disable_event; 1384 int hardirqs_enabled; 1385 int hardirq_context; 1386 unsigned long softirq_disable_ip; 1387 unsigned long softirq_enable_ip; 1388 unsigned int softirq_disable_event; 1389 unsigned int softirq_enable_event; 1390 int softirqs_enabled; 1391 int softirq_context; 1392 #endif 1393 #ifdef CONFIG_LOCKDEP 1394 # define MAX_LOCK_DEPTH 48UL 1395 u64 curr_chain_key; 1396 int lockdep_depth; 1397 unsigned int lockdep_recursion; 1398 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1399 gfp_t lockdep_reclaim_gfp; 1400 #endif 1401 1402 /* journalling filesystem info */ 1403 void *journal_info; 1404 1405 /* stacked block device info */ 1406 struct bio_list *bio_list; 1407 1408 /* VM state */ 1409 struct reclaim_state *reclaim_state; 1410 1411 struct backing_dev_info *backing_dev_info; 1412 1413 struct io_context *io_context; 1414 1415 unsigned long ptrace_message; 1416 siginfo_t *last_siginfo; /* For ptrace use. */ 1417 struct task_io_accounting ioac; 1418 #if defined(CONFIG_TASK_XACCT) 1419 u64 acct_rss_mem1; /* accumulated rss usage */ 1420 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1421 cputime_t acct_timexpd; /* stime + utime since last update */ 1422 #endif 1423 #ifdef CONFIG_CPUSETS 1424 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1425 int mems_allowed_change_disable; 1426 int cpuset_mem_spread_rotor; 1427 int cpuset_slab_spread_rotor; 1428 #endif 1429 #ifdef CONFIG_CGROUPS 1430 /* Control Group info protected by css_set_lock */ 1431 struct css_set __rcu *cgroups; 1432 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1433 struct list_head cg_list; 1434 #endif 1435 #ifdef CONFIG_FUTEX 1436 struct robust_list_head __user *robust_list; 1437 #ifdef CONFIG_COMPAT 1438 struct compat_robust_list_head __user *compat_robust_list; 1439 #endif 1440 struct list_head pi_state_list; 1441 struct futex_pi_state *pi_state_cache; 1442 #endif 1443 #ifdef CONFIG_PERF_EVENTS 1444 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1445 struct mutex perf_event_mutex; 1446 struct list_head perf_event_list; 1447 #endif 1448 #ifdef CONFIG_NUMA 1449 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1450 short il_next; 1451 #endif 1452 atomic_t fs_excl; /* holding fs exclusive resources */ 1453 struct rcu_head rcu; 1454 1455 /* 1456 * cache last used pipe for splice 1457 */ 1458 struct pipe_inode_info *splice_pipe; 1459 #ifdef CONFIG_TASK_DELAY_ACCT 1460 struct task_delay_info *delays; 1461 #endif 1462 #ifdef CONFIG_FAULT_INJECTION 1463 int make_it_fail; 1464 #endif 1465 struct prop_local_single dirties; 1466 #ifdef CONFIG_LATENCYTOP 1467 int latency_record_count; 1468 struct latency_record latency_record[LT_SAVECOUNT]; 1469 #endif 1470 /* 1471 * time slack values; these are used to round up poll() and 1472 * select() etc timeout values. These are in nanoseconds. 1473 */ 1474 unsigned long timer_slack_ns; 1475 unsigned long default_timer_slack_ns; 1476 1477 struct list_head *scm_work_list; 1478 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1479 /* Index of current stored address in ret_stack */ 1480 int curr_ret_stack; 1481 /* Stack of return addresses for return function tracing */ 1482 struct ftrace_ret_stack *ret_stack; 1483 /* time stamp for last schedule */ 1484 unsigned long long ftrace_timestamp; 1485 /* 1486 * Number of functions that haven't been traced 1487 * because of depth overrun. 1488 */ 1489 atomic_t trace_overrun; 1490 /* Pause for the tracing */ 1491 atomic_t tracing_graph_pause; 1492 #endif 1493 #ifdef CONFIG_TRACING 1494 /* state flags for use by tracers */ 1495 unsigned long trace; 1496 /* bitmask of trace recursion */ 1497 unsigned long trace_recursion; 1498 #endif /* CONFIG_TRACING */ 1499 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1500 struct memcg_batch_info { 1501 int do_batch; /* incremented when batch uncharge started */ 1502 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1503 unsigned long bytes; /* uncharged usage */ 1504 unsigned long memsw_bytes; /* uncharged mem+swap usage */ 1505 } memcg_batch; 1506 #endif 1507 }; 1508 1509 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1510 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1511 1512 /* 1513 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1514 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1515 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1516 * values are inverted: lower p->prio value means higher priority. 1517 * 1518 * The MAX_USER_RT_PRIO value allows the actual maximum 1519 * RT priority to be separate from the value exported to 1520 * user-space. This allows kernel threads to set their 1521 * priority to a value higher than any user task. Note: 1522 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1523 */ 1524 1525 #define MAX_USER_RT_PRIO 100 1526 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1527 1528 #define MAX_PRIO (MAX_RT_PRIO + 40) 1529 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1530 1531 static inline int rt_prio(int prio) 1532 { 1533 if (unlikely(prio < MAX_RT_PRIO)) 1534 return 1; 1535 return 0; 1536 } 1537 1538 static inline int rt_task(struct task_struct *p) 1539 { 1540 return rt_prio(p->prio); 1541 } 1542 1543 static inline struct pid *task_pid(struct task_struct *task) 1544 { 1545 return task->pids[PIDTYPE_PID].pid; 1546 } 1547 1548 static inline struct pid *task_tgid(struct task_struct *task) 1549 { 1550 return task->group_leader->pids[PIDTYPE_PID].pid; 1551 } 1552 1553 /* 1554 * Without tasklist or rcu lock it is not safe to dereference 1555 * the result of task_pgrp/task_session even if task == current, 1556 * we can race with another thread doing sys_setsid/sys_setpgid. 1557 */ 1558 static inline struct pid *task_pgrp(struct task_struct *task) 1559 { 1560 return task->group_leader->pids[PIDTYPE_PGID].pid; 1561 } 1562 1563 static inline struct pid *task_session(struct task_struct *task) 1564 { 1565 return task->group_leader->pids[PIDTYPE_SID].pid; 1566 } 1567 1568 struct pid_namespace; 1569 1570 /* 1571 * the helpers to get the task's different pids as they are seen 1572 * from various namespaces 1573 * 1574 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1575 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1576 * current. 1577 * task_xid_nr_ns() : id seen from the ns specified; 1578 * 1579 * set_task_vxid() : assigns a virtual id to a task; 1580 * 1581 * see also pid_nr() etc in include/linux/pid.h 1582 */ 1583 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1584 struct pid_namespace *ns); 1585 1586 static inline pid_t task_pid_nr(struct task_struct *tsk) 1587 { 1588 return tsk->pid; 1589 } 1590 1591 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1592 struct pid_namespace *ns) 1593 { 1594 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1595 } 1596 1597 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1598 { 1599 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1600 } 1601 1602 1603 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1604 { 1605 return tsk->tgid; 1606 } 1607 1608 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1609 1610 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1611 { 1612 return pid_vnr(task_tgid(tsk)); 1613 } 1614 1615 1616 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1617 struct pid_namespace *ns) 1618 { 1619 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1620 } 1621 1622 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1623 { 1624 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1625 } 1626 1627 1628 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1629 struct pid_namespace *ns) 1630 { 1631 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1632 } 1633 1634 static inline pid_t task_session_vnr(struct task_struct *tsk) 1635 { 1636 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1637 } 1638 1639 /* obsolete, do not use */ 1640 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1641 { 1642 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1643 } 1644 1645 /** 1646 * pid_alive - check that a task structure is not stale 1647 * @p: Task structure to be checked. 1648 * 1649 * Test if a process is not yet dead (at most zombie state) 1650 * If pid_alive fails, then pointers within the task structure 1651 * can be stale and must not be dereferenced. 1652 */ 1653 static inline int pid_alive(struct task_struct *p) 1654 { 1655 return p->pids[PIDTYPE_PID].pid != NULL; 1656 } 1657 1658 /** 1659 * is_global_init - check if a task structure is init 1660 * @tsk: Task structure to be checked. 1661 * 1662 * Check if a task structure is the first user space task the kernel created. 1663 */ 1664 static inline int is_global_init(struct task_struct *tsk) 1665 { 1666 return tsk->pid == 1; 1667 } 1668 1669 /* 1670 * is_container_init: 1671 * check whether in the task is init in its own pid namespace. 1672 */ 1673 extern int is_container_init(struct task_struct *tsk); 1674 1675 extern struct pid *cad_pid; 1676 1677 extern void free_task(struct task_struct *tsk); 1678 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1679 1680 extern void __put_task_struct(struct task_struct *t); 1681 1682 static inline void put_task_struct(struct task_struct *t) 1683 { 1684 if (atomic_dec_and_test(&t->usage)) 1685 __put_task_struct(t); 1686 } 1687 1688 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1689 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1690 1691 /* 1692 * Per process flags 1693 */ 1694 #define PF_KSOFTIRQD 0x00000001 /* I am ksoftirqd */ 1695 #define PF_STARTING 0x00000002 /* being created */ 1696 #define PF_EXITING 0x00000004 /* getting shut down */ 1697 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1698 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1699 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1700 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1701 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1702 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1703 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1704 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1705 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1706 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1707 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1708 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1709 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1710 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1711 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1712 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1713 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1714 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1715 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1716 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1717 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1718 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1719 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1720 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1721 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1722 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1723 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1724 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1725 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1726 1727 /* 1728 * Only the _current_ task can read/write to tsk->flags, but other 1729 * tasks can access tsk->flags in readonly mode for example 1730 * with tsk_used_math (like during threaded core dumping). 1731 * There is however an exception to this rule during ptrace 1732 * or during fork: the ptracer task is allowed to write to the 1733 * child->flags of its traced child (same goes for fork, the parent 1734 * can write to the child->flags), because we're guaranteed the 1735 * child is not running and in turn not changing child->flags 1736 * at the same time the parent does it. 1737 */ 1738 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1739 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1740 #define clear_used_math() clear_stopped_child_used_math(current) 1741 #define set_used_math() set_stopped_child_used_math(current) 1742 #define conditional_stopped_child_used_math(condition, child) \ 1743 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1744 #define conditional_used_math(condition) \ 1745 conditional_stopped_child_used_math(condition, current) 1746 #define copy_to_stopped_child_used_math(child) \ 1747 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1748 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1749 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1750 #define used_math() tsk_used_math(current) 1751 1752 #ifdef CONFIG_PREEMPT_RCU 1753 1754 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1755 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1756 1757 static inline void rcu_copy_process(struct task_struct *p) 1758 { 1759 p->rcu_read_lock_nesting = 0; 1760 p->rcu_read_unlock_special = 0; 1761 #ifdef CONFIG_TREE_PREEMPT_RCU 1762 p->rcu_blocked_node = NULL; 1763 #endif 1764 INIT_LIST_HEAD(&p->rcu_node_entry); 1765 } 1766 1767 #else 1768 1769 static inline void rcu_copy_process(struct task_struct *p) 1770 { 1771 } 1772 1773 #endif 1774 1775 #ifdef CONFIG_SMP 1776 extern int set_cpus_allowed_ptr(struct task_struct *p, 1777 const struct cpumask *new_mask); 1778 #else 1779 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1780 const struct cpumask *new_mask) 1781 { 1782 if (!cpumask_test_cpu(0, new_mask)) 1783 return -EINVAL; 1784 return 0; 1785 } 1786 #endif 1787 1788 #ifndef CONFIG_CPUMASK_OFFSTACK 1789 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1790 { 1791 return set_cpus_allowed_ptr(p, &new_mask); 1792 } 1793 #endif 1794 1795 /* 1796 * Do not use outside of architecture code which knows its limitations. 1797 * 1798 * sched_clock() has no promise of monotonicity or bounded drift between 1799 * CPUs, use (which you should not) requires disabling IRQs. 1800 * 1801 * Please use one of the three interfaces below. 1802 */ 1803 extern unsigned long long notrace sched_clock(void); 1804 /* 1805 * See the comment in kernel/sched_clock.c 1806 */ 1807 extern u64 cpu_clock(int cpu); 1808 extern u64 local_clock(void); 1809 extern u64 sched_clock_cpu(int cpu); 1810 1811 1812 extern void sched_clock_init(void); 1813 1814 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1815 static inline void sched_clock_tick(void) 1816 { 1817 } 1818 1819 static inline void sched_clock_idle_sleep_event(void) 1820 { 1821 } 1822 1823 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1824 { 1825 } 1826 #else 1827 /* 1828 * Architectures can set this to 1 if they have specified 1829 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1830 * but then during bootup it turns out that sched_clock() 1831 * is reliable after all: 1832 */ 1833 extern int sched_clock_stable; 1834 1835 extern void sched_clock_tick(void); 1836 extern void sched_clock_idle_sleep_event(void); 1837 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1838 #endif 1839 1840 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1841 /* 1842 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1843 * The reason for this explicit opt-in is not to have perf penalty with 1844 * slow sched_clocks. 1845 */ 1846 extern void enable_sched_clock_irqtime(void); 1847 extern void disable_sched_clock_irqtime(void); 1848 #else 1849 static inline void enable_sched_clock_irqtime(void) {} 1850 static inline void disable_sched_clock_irqtime(void) {} 1851 #endif 1852 1853 extern unsigned long long 1854 task_sched_runtime(struct task_struct *task); 1855 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1856 1857 /* sched_exec is called by processes performing an exec */ 1858 #ifdef CONFIG_SMP 1859 extern void sched_exec(void); 1860 #else 1861 #define sched_exec() {} 1862 #endif 1863 1864 extern void sched_clock_idle_sleep_event(void); 1865 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1866 1867 #ifdef CONFIG_HOTPLUG_CPU 1868 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p); 1869 extern void idle_task_exit(void); 1870 #else 1871 static inline void idle_task_exit(void) {} 1872 #endif 1873 1874 extern void sched_idle_next(void); 1875 1876 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1877 extern void wake_up_idle_cpu(int cpu); 1878 #else 1879 static inline void wake_up_idle_cpu(int cpu) { } 1880 #endif 1881 1882 extern unsigned int sysctl_sched_latency; 1883 extern unsigned int sysctl_sched_min_granularity; 1884 extern unsigned int sysctl_sched_wakeup_granularity; 1885 extern unsigned int sysctl_sched_shares_ratelimit; 1886 extern unsigned int sysctl_sched_shares_thresh; 1887 extern unsigned int sysctl_sched_child_runs_first; 1888 1889 enum sched_tunable_scaling { 1890 SCHED_TUNABLESCALING_NONE, 1891 SCHED_TUNABLESCALING_LOG, 1892 SCHED_TUNABLESCALING_LINEAR, 1893 SCHED_TUNABLESCALING_END, 1894 }; 1895 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1896 1897 #ifdef CONFIG_SCHED_DEBUG 1898 extern unsigned int sysctl_sched_migration_cost; 1899 extern unsigned int sysctl_sched_nr_migrate; 1900 extern unsigned int sysctl_sched_time_avg; 1901 extern unsigned int sysctl_timer_migration; 1902 1903 int sched_proc_update_handler(struct ctl_table *table, int write, 1904 void __user *buffer, size_t *length, 1905 loff_t *ppos); 1906 #endif 1907 #ifdef CONFIG_SCHED_DEBUG 1908 static inline unsigned int get_sysctl_timer_migration(void) 1909 { 1910 return sysctl_timer_migration; 1911 } 1912 #else 1913 static inline unsigned int get_sysctl_timer_migration(void) 1914 { 1915 return 1; 1916 } 1917 #endif 1918 extern unsigned int sysctl_sched_rt_period; 1919 extern int sysctl_sched_rt_runtime; 1920 1921 int sched_rt_handler(struct ctl_table *table, int write, 1922 void __user *buffer, size_t *lenp, 1923 loff_t *ppos); 1924 1925 extern unsigned int sysctl_sched_compat_yield; 1926 1927 #ifdef CONFIG_RT_MUTEXES 1928 extern int rt_mutex_getprio(struct task_struct *p); 1929 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1930 extern void rt_mutex_adjust_pi(struct task_struct *p); 1931 #else 1932 static inline int rt_mutex_getprio(struct task_struct *p) 1933 { 1934 return p->normal_prio; 1935 } 1936 # define rt_mutex_adjust_pi(p) do { } while (0) 1937 #endif 1938 1939 extern void set_user_nice(struct task_struct *p, long nice); 1940 extern int task_prio(const struct task_struct *p); 1941 extern int task_nice(const struct task_struct *p); 1942 extern int can_nice(const struct task_struct *p, const int nice); 1943 extern int task_curr(const struct task_struct *p); 1944 extern int idle_cpu(int cpu); 1945 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1946 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1947 struct sched_param *); 1948 extern struct task_struct *idle_task(int cpu); 1949 extern struct task_struct *curr_task(int cpu); 1950 extern void set_curr_task(int cpu, struct task_struct *p); 1951 1952 void yield(void); 1953 1954 /* 1955 * The default (Linux) execution domain. 1956 */ 1957 extern struct exec_domain default_exec_domain; 1958 1959 union thread_union { 1960 struct thread_info thread_info; 1961 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1962 }; 1963 1964 #ifndef __HAVE_ARCH_KSTACK_END 1965 static inline int kstack_end(void *addr) 1966 { 1967 /* Reliable end of stack detection: 1968 * Some APM bios versions misalign the stack 1969 */ 1970 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1971 } 1972 #endif 1973 1974 extern union thread_union init_thread_union; 1975 extern struct task_struct init_task; 1976 1977 extern struct mm_struct init_mm; 1978 1979 extern struct pid_namespace init_pid_ns; 1980 1981 /* 1982 * find a task by one of its numerical ids 1983 * 1984 * find_task_by_pid_ns(): 1985 * finds a task by its pid in the specified namespace 1986 * find_task_by_vpid(): 1987 * finds a task by its virtual pid 1988 * 1989 * see also find_vpid() etc in include/linux/pid.h 1990 */ 1991 1992 extern struct task_struct *find_task_by_vpid(pid_t nr); 1993 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1994 struct pid_namespace *ns); 1995 1996 extern void __set_special_pids(struct pid *pid); 1997 1998 /* per-UID process charging. */ 1999 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2000 static inline struct user_struct *get_uid(struct user_struct *u) 2001 { 2002 atomic_inc(&u->__count); 2003 return u; 2004 } 2005 extern void free_uid(struct user_struct *); 2006 extern void release_uids(struct user_namespace *ns); 2007 2008 #include <asm/current.h> 2009 2010 extern void do_timer(unsigned long ticks); 2011 2012 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2013 extern int wake_up_process(struct task_struct *tsk); 2014 extern void wake_up_new_task(struct task_struct *tsk, 2015 unsigned long clone_flags); 2016 #ifdef CONFIG_SMP 2017 extern void kick_process(struct task_struct *tsk); 2018 #else 2019 static inline void kick_process(struct task_struct *tsk) { } 2020 #endif 2021 extern void sched_fork(struct task_struct *p, int clone_flags); 2022 extern void sched_dead(struct task_struct *p); 2023 2024 extern void proc_caches_init(void); 2025 extern void flush_signals(struct task_struct *); 2026 extern void __flush_signals(struct task_struct *); 2027 extern void ignore_signals(struct task_struct *); 2028 extern void flush_signal_handlers(struct task_struct *, int force_default); 2029 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2030 2031 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2032 { 2033 unsigned long flags; 2034 int ret; 2035 2036 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2037 ret = dequeue_signal(tsk, mask, info); 2038 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2039 2040 return ret; 2041 } 2042 2043 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2044 sigset_t *mask); 2045 extern void unblock_all_signals(void); 2046 extern void release_task(struct task_struct * p); 2047 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2048 extern int force_sigsegv(int, struct task_struct *); 2049 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2050 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2051 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2052 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2053 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2054 extern int kill_pid(struct pid *pid, int sig, int priv); 2055 extern int kill_proc_info(int, struct siginfo *, pid_t); 2056 extern int do_notify_parent(struct task_struct *, int); 2057 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2058 extern void force_sig(int, struct task_struct *); 2059 extern int send_sig(int, struct task_struct *, int); 2060 extern int zap_other_threads(struct task_struct *p); 2061 extern struct sigqueue *sigqueue_alloc(void); 2062 extern void sigqueue_free(struct sigqueue *); 2063 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2064 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2065 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2066 2067 static inline int kill_cad_pid(int sig, int priv) 2068 { 2069 return kill_pid(cad_pid, sig, priv); 2070 } 2071 2072 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2073 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2074 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2075 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2076 2077 /* 2078 * True if we are on the alternate signal stack. 2079 */ 2080 static inline int on_sig_stack(unsigned long sp) 2081 { 2082 #ifdef CONFIG_STACK_GROWSUP 2083 return sp >= current->sas_ss_sp && 2084 sp - current->sas_ss_sp < current->sas_ss_size; 2085 #else 2086 return sp > current->sas_ss_sp && 2087 sp - current->sas_ss_sp <= current->sas_ss_size; 2088 #endif 2089 } 2090 2091 static inline int sas_ss_flags(unsigned long sp) 2092 { 2093 return (current->sas_ss_size == 0 ? SS_DISABLE 2094 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2095 } 2096 2097 /* 2098 * Routines for handling mm_structs 2099 */ 2100 extern struct mm_struct * mm_alloc(void); 2101 2102 /* mmdrop drops the mm and the page tables */ 2103 extern void __mmdrop(struct mm_struct *); 2104 static inline void mmdrop(struct mm_struct * mm) 2105 { 2106 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2107 __mmdrop(mm); 2108 } 2109 2110 /* mmput gets rid of the mappings and all user-space */ 2111 extern void mmput(struct mm_struct *); 2112 /* Grab a reference to a task's mm, if it is not already going away */ 2113 extern struct mm_struct *get_task_mm(struct task_struct *task); 2114 /* Remove the current tasks stale references to the old mm_struct */ 2115 extern void mm_release(struct task_struct *, struct mm_struct *); 2116 /* Allocate a new mm structure and copy contents from tsk->mm */ 2117 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2118 2119 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2120 struct task_struct *, struct pt_regs *); 2121 extern void flush_thread(void); 2122 extern void exit_thread(void); 2123 2124 extern void exit_files(struct task_struct *); 2125 extern void __cleanup_sighand(struct sighand_struct *); 2126 2127 extern void exit_itimers(struct signal_struct *); 2128 extern void flush_itimer_signals(void); 2129 2130 extern NORET_TYPE void do_group_exit(int); 2131 2132 extern void daemonize(const char *, ...); 2133 extern int allow_signal(int); 2134 extern int disallow_signal(int); 2135 2136 extern int do_execve(const char *, 2137 const char __user * const __user *, 2138 const char __user * const __user *, struct pt_regs *); 2139 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2140 struct task_struct *fork_idle(int); 2141 2142 extern void set_task_comm(struct task_struct *tsk, char *from); 2143 extern char *get_task_comm(char *to, struct task_struct *tsk); 2144 2145 #ifdef CONFIG_SMP 2146 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2147 #else 2148 static inline unsigned long wait_task_inactive(struct task_struct *p, 2149 long match_state) 2150 { 2151 return 1; 2152 } 2153 #endif 2154 2155 #define next_task(p) \ 2156 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2157 2158 #define for_each_process(p) \ 2159 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2160 2161 extern bool current_is_single_threaded(void); 2162 2163 /* 2164 * Careful: do_each_thread/while_each_thread is a double loop so 2165 * 'break' will not work as expected - use goto instead. 2166 */ 2167 #define do_each_thread(g, t) \ 2168 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2169 2170 #define while_each_thread(g, t) \ 2171 while ((t = next_thread(t)) != g) 2172 2173 static inline int get_nr_threads(struct task_struct *tsk) 2174 { 2175 return tsk->signal->nr_threads; 2176 } 2177 2178 /* de_thread depends on thread_group_leader not being a pid based check */ 2179 #define thread_group_leader(p) (p == p->group_leader) 2180 2181 /* Do to the insanities of de_thread it is possible for a process 2182 * to have the pid of the thread group leader without actually being 2183 * the thread group leader. For iteration through the pids in proc 2184 * all we care about is that we have a task with the appropriate 2185 * pid, we don't actually care if we have the right task. 2186 */ 2187 static inline int has_group_leader_pid(struct task_struct *p) 2188 { 2189 return p->pid == p->tgid; 2190 } 2191 2192 static inline 2193 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2194 { 2195 return p1->tgid == p2->tgid; 2196 } 2197 2198 static inline struct task_struct *next_thread(const struct task_struct *p) 2199 { 2200 return list_entry_rcu(p->thread_group.next, 2201 struct task_struct, thread_group); 2202 } 2203 2204 static inline int thread_group_empty(struct task_struct *p) 2205 { 2206 return list_empty(&p->thread_group); 2207 } 2208 2209 #define delay_group_leader(p) \ 2210 (thread_group_leader(p) && !thread_group_empty(p)) 2211 2212 static inline int task_detached(struct task_struct *p) 2213 { 2214 return p->exit_signal == -1; 2215 } 2216 2217 /* 2218 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2219 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2220 * pins the final release of task.io_context. Also protects ->cpuset and 2221 * ->cgroup.subsys[]. 2222 * 2223 * Nests both inside and outside of read_lock(&tasklist_lock). 2224 * It must not be nested with write_lock_irq(&tasklist_lock), 2225 * neither inside nor outside. 2226 */ 2227 static inline void task_lock(struct task_struct *p) 2228 { 2229 spin_lock(&p->alloc_lock); 2230 } 2231 2232 static inline void task_unlock(struct task_struct *p) 2233 { 2234 spin_unlock(&p->alloc_lock); 2235 } 2236 2237 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2238 unsigned long *flags); 2239 2240 static inline void unlock_task_sighand(struct task_struct *tsk, 2241 unsigned long *flags) 2242 { 2243 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2244 } 2245 2246 #ifndef __HAVE_THREAD_FUNCTIONS 2247 2248 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2249 #define task_stack_page(task) ((task)->stack) 2250 2251 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2252 { 2253 *task_thread_info(p) = *task_thread_info(org); 2254 task_thread_info(p)->task = p; 2255 } 2256 2257 static inline unsigned long *end_of_stack(struct task_struct *p) 2258 { 2259 return (unsigned long *)(task_thread_info(p) + 1); 2260 } 2261 2262 #endif 2263 2264 static inline int object_is_on_stack(void *obj) 2265 { 2266 void *stack = task_stack_page(current); 2267 2268 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2269 } 2270 2271 extern void thread_info_cache_init(void); 2272 2273 #ifdef CONFIG_DEBUG_STACK_USAGE 2274 static inline unsigned long stack_not_used(struct task_struct *p) 2275 { 2276 unsigned long *n = end_of_stack(p); 2277 2278 do { /* Skip over canary */ 2279 n++; 2280 } while (!*n); 2281 2282 return (unsigned long)n - (unsigned long)end_of_stack(p); 2283 } 2284 #endif 2285 2286 /* set thread flags in other task's structures 2287 * - see asm/thread_info.h for TIF_xxxx flags available 2288 */ 2289 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2290 { 2291 set_ti_thread_flag(task_thread_info(tsk), flag); 2292 } 2293 2294 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2295 { 2296 clear_ti_thread_flag(task_thread_info(tsk), flag); 2297 } 2298 2299 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2300 { 2301 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2302 } 2303 2304 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2305 { 2306 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2307 } 2308 2309 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2310 { 2311 return test_ti_thread_flag(task_thread_info(tsk), flag); 2312 } 2313 2314 static inline void set_tsk_need_resched(struct task_struct *tsk) 2315 { 2316 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2317 } 2318 2319 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2320 { 2321 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2322 } 2323 2324 static inline int test_tsk_need_resched(struct task_struct *tsk) 2325 { 2326 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2327 } 2328 2329 static inline int restart_syscall(void) 2330 { 2331 set_tsk_thread_flag(current, TIF_SIGPENDING); 2332 return -ERESTARTNOINTR; 2333 } 2334 2335 static inline int signal_pending(struct task_struct *p) 2336 { 2337 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2338 } 2339 2340 static inline int __fatal_signal_pending(struct task_struct *p) 2341 { 2342 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2343 } 2344 2345 static inline int fatal_signal_pending(struct task_struct *p) 2346 { 2347 return signal_pending(p) && __fatal_signal_pending(p); 2348 } 2349 2350 static inline int signal_pending_state(long state, struct task_struct *p) 2351 { 2352 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2353 return 0; 2354 if (!signal_pending(p)) 2355 return 0; 2356 2357 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2358 } 2359 2360 static inline int need_resched(void) 2361 { 2362 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2363 } 2364 2365 /* 2366 * cond_resched() and cond_resched_lock(): latency reduction via 2367 * explicit rescheduling in places that are safe. The return 2368 * value indicates whether a reschedule was done in fact. 2369 * cond_resched_lock() will drop the spinlock before scheduling, 2370 * cond_resched_softirq() will enable bhs before scheduling. 2371 */ 2372 extern int _cond_resched(void); 2373 2374 #define cond_resched() ({ \ 2375 __might_sleep(__FILE__, __LINE__, 0); \ 2376 _cond_resched(); \ 2377 }) 2378 2379 extern int __cond_resched_lock(spinlock_t *lock); 2380 2381 #ifdef CONFIG_PREEMPT 2382 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2383 #else 2384 #define PREEMPT_LOCK_OFFSET 0 2385 #endif 2386 2387 #define cond_resched_lock(lock) ({ \ 2388 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2389 __cond_resched_lock(lock); \ 2390 }) 2391 2392 extern int __cond_resched_softirq(void); 2393 2394 #define cond_resched_softirq() ({ \ 2395 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2396 __cond_resched_softirq(); \ 2397 }) 2398 2399 /* 2400 * Does a critical section need to be broken due to another 2401 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2402 * but a general need for low latency) 2403 */ 2404 static inline int spin_needbreak(spinlock_t *lock) 2405 { 2406 #ifdef CONFIG_PREEMPT 2407 return spin_is_contended(lock); 2408 #else 2409 return 0; 2410 #endif 2411 } 2412 2413 /* 2414 * Thread group CPU time accounting. 2415 */ 2416 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2417 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2418 2419 static inline void thread_group_cputime_init(struct signal_struct *sig) 2420 { 2421 spin_lock_init(&sig->cputimer.lock); 2422 } 2423 2424 /* 2425 * Reevaluate whether the task has signals pending delivery. 2426 * Wake the task if so. 2427 * This is required every time the blocked sigset_t changes. 2428 * callers must hold sighand->siglock. 2429 */ 2430 extern void recalc_sigpending_and_wake(struct task_struct *t); 2431 extern void recalc_sigpending(void); 2432 2433 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2434 2435 /* 2436 * Wrappers for p->thread_info->cpu access. No-op on UP. 2437 */ 2438 #ifdef CONFIG_SMP 2439 2440 static inline unsigned int task_cpu(const struct task_struct *p) 2441 { 2442 return task_thread_info(p)->cpu; 2443 } 2444 2445 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2446 2447 #else 2448 2449 static inline unsigned int task_cpu(const struct task_struct *p) 2450 { 2451 return 0; 2452 } 2453 2454 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2455 { 2456 } 2457 2458 #endif /* CONFIG_SMP */ 2459 2460 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2461 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2462 2463 extern void normalize_rt_tasks(void); 2464 2465 #ifdef CONFIG_CGROUP_SCHED 2466 2467 extern struct task_group init_task_group; 2468 2469 extern struct task_group *sched_create_group(struct task_group *parent); 2470 extern void sched_destroy_group(struct task_group *tg); 2471 extern void sched_move_task(struct task_struct *tsk); 2472 #ifdef CONFIG_FAIR_GROUP_SCHED 2473 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2474 extern unsigned long sched_group_shares(struct task_group *tg); 2475 #endif 2476 #ifdef CONFIG_RT_GROUP_SCHED 2477 extern int sched_group_set_rt_runtime(struct task_group *tg, 2478 long rt_runtime_us); 2479 extern long sched_group_rt_runtime(struct task_group *tg); 2480 extern int sched_group_set_rt_period(struct task_group *tg, 2481 long rt_period_us); 2482 extern long sched_group_rt_period(struct task_group *tg); 2483 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2484 #endif 2485 #endif 2486 2487 extern int task_can_switch_user(struct user_struct *up, 2488 struct task_struct *tsk); 2489 2490 #ifdef CONFIG_TASK_XACCT 2491 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2492 { 2493 tsk->ioac.rchar += amt; 2494 } 2495 2496 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2497 { 2498 tsk->ioac.wchar += amt; 2499 } 2500 2501 static inline void inc_syscr(struct task_struct *tsk) 2502 { 2503 tsk->ioac.syscr++; 2504 } 2505 2506 static inline void inc_syscw(struct task_struct *tsk) 2507 { 2508 tsk->ioac.syscw++; 2509 } 2510 #else 2511 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2512 { 2513 } 2514 2515 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2516 { 2517 } 2518 2519 static inline void inc_syscr(struct task_struct *tsk) 2520 { 2521 } 2522 2523 static inline void inc_syscw(struct task_struct *tsk) 2524 { 2525 } 2526 #endif 2527 2528 #ifndef TASK_SIZE_OF 2529 #define TASK_SIZE_OF(tsk) TASK_SIZE 2530 #endif 2531 2532 /* 2533 * Call the function if the target task is executing on a CPU right now: 2534 */ 2535 extern void task_oncpu_function_call(struct task_struct *p, 2536 void (*func) (void *info), void *info); 2537 2538 2539 #ifdef CONFIG_MM_OWNER 2540 extern void mm_update_next_owner(struct mm_struct *mm); 2541 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2542 #else 2543 static inline void mm_update_next_owner(struct mm_struct *mm) 2544 { 2545 } 2546 2547 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2548 { 2549 } 2550 #endif /* CONFIG_MM_OWNER */ 2551 2552 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2553 unsigned int limit) 2554 { 2555 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2556 } 2557 2558 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2559 unsigned int limit) 2560 { 2561 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2562 } 2563 2564 static inline unsigned long rlimit(unsigned int limit) 2565 { 2566 return task_rlimit(current, limit); 2567 } 2568 2569 static inline unsigned long rlimit_max(unsigned int limit) 2570 { 2571 return task_rlimit_max(current, limit); 2572 } 2573 2574 #endif /* __KERNEL__ */ 2575 2576 #endif 2577