xref: /linux-6.15/include/linux/sched.h (revision fc5dfebc)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <linux/rv.h>
38 #include <asm/kmap_size.h>
39 
40 /* task_struct member predeclarations (sorted alphabetically): */
41 struct audit_context;
42 struct backing_dev_info;
43 struct bio_list;
44 struct blk_plug;
45 struct bpf_local_storage;
46 struct bpf_run_ctx;
47 struct capture_control;
48 struct cfs_rq;
49 struct fs_struct;
50 struct futex_pi_state;
51 struct io_context;
52 struct io_uring_task;
53 struct mempolicy;
54 struct nameidata;
55 struct nsproxy;
56 struct perf_event_context;
57 struct pid_namespace;
58 struct pipe_inode_info;
59 struct rcu_node;
60 struct reclaim_state;
61 struct robust_list_head;
62 struct root_domain;
63 struct rq;
64 struct sched_attr;
65 struct sched_param;
66 struct seq_file;
67 struct sighand_struct;
68 struct signal_struct;
69 struct task_delay_info;
70 struct task_group;
71 
72 /*
73  * Task state bitmask. NOTE! These bits are also
74  * encoded in fs/proc/array.c: get_task_state().
75  *
76  * We have two separate sets of flags: task->state
77  * is about runnability, while task->exit_state are
78  * about the task exiting. Confusing, but this way
79  * modifying one set can't modify the other one by
80  * mistake.
81  */
82 
83 /* Used in tsk->state: */
84 #define TASK_RUNNING			0x0000
85 #define TASK_INTERRUPTIBLE		0x0001
86 #define TASK_UNINTERRUPTIBLE		0x0002
87 #define __TASK_STOPPED			0x0004
88 #define __TASK_TRACED			0x0008
89 /* Used in tsk->exit_state: */
90 #define EXIT_DEAD			0x0010
91 #define EXIT_ZOMBIE			0x0020
92 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
93 /* Used in tsk->state again: */
94 #define TASK_PARKED			0x0040
95 #define TASK_DEAD			0x0080
96 #define TASK_WAKEKILL			0x0100
97 #define TASK_WAKING			0x0200
98 #define TASK_NOLOAD			0x0400
99 #define TASK_NEW			0x0800
100 /* RT specific auxilliary flag to mark RT lock waiters */
101 #define TASK_RTLOCK_WAIT		0x1000
102 #define TASK_STATE_MAX			0x2000
103 
104 /* Convenience macros for the sake of set_current_state: */
105 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
106 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
107 #define TASK_TRACED			__TASK_TRACED
108 
109 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
110 
111 /* Convenience macros for the sake of wake_up(): */
112 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
113 
114 /* get_task_state(): */
115 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
116 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
117 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
118 					 TASK_PARKED)
119 
120 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
121 
122 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
123 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
124 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
125 
126 /*
127  * Special states are those that do not use the normal wait-loop pattern. See
128  * the comment with set_special_state().
129  */
130 #define is_special_task_state(state)				\
131 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
132 
133 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
134 # define debug_normal_state_change(state_value)				\
135 	do {								\
136 		WARN_ON_ONCE(is_special_task_state(state_value));	\
137 		current->task_state_change = _THIS_IP_;			\
138 	} while (0)
139 
140 # define debug_special_state_change(state_value)			\
141 	do {								\
142 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
143 		current->task_state_change = _THIS_IP_;			\
144 	} while (0)
145 
146 # define debug_rtlock_wait_set_state()					\
147 	do {								 \
148 		current->saved_state_change = current->task_state_change;\
149 		current->task_state_change = _THIS_IP_;			 \
150 	} while (0)
151 
152 # define debug_rtlock_wait_restore_state()				\
153 	do {								 \
154 		current->task_state_change = current->saved_state_change;\
155 	} while (0)
156 
157 #else
158 # define debug_normal_state_change(cond)	do { } while (0)
159 # define debug_special_state_change(cond)	do { } while (0)
160 # define debug_rtlock_wait_set_state()		do { } while (0)
161 # define debug_rtlock_wait_restore_state()	do { } while (0)
162 #endif
163 
164 /*
165  * set_current_state() includes a barrier so that the write of current->state
166  * is correctly serialised wrt the caller's subsequent test of whether to
167  * actually sleep:
168  *
169  *   for (;;) {
170  *	set_current_state(TASK_UNINTERRUPTIBLE);
171  *	if (CONDITION)
172  *	   break;
173  *
174  *	schedule();
175  *   }
176  *   __set_current_state(TASK_RUNNING);
177  *
178  * If the caller does not need such serialisation (because, for instance, the
179  * CONDITION test and condition change and wakeup are under the same lock) then
180  * use __set_current_state().
181  *
182  * The above is typically ordered against the wakeup, which does:
183  *
184  *   CONDITION = 1;
185  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
186  *
187  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
188  * accessing p->state.
189  *
190  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
191  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
192  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
193  *
194  * However, with slightly different timing the wakeup TASK_RUNNING store can
195  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
196  * a problem either because that will result in one extra go around the loop
197  * and our @cond test will save the day.
198  *
199  * Also see the comments of try_to_wake_up().
200  */
201 #define __set_current_state(state_value)				\
202 	do {								\
203 		debug_normal_state_change((state_value));		\
204 		WRITE_ONCE(current->__state, (state_value));		\
205 	} while (0)
206 
207 #define set_current_state(state_value)					\
208 	do {								\
209 		debug_normal_state_change((state_value));		\
210 		smp_store_mb(current->__state, (state_value));		\
211 	} while (0)
212 
213 /*
214  * set_special_state() should be used for those states when the blocking task
215  * can not use the regular condition based wait-loop. In that case we must
216  * serialize against wakeups such that any possible in-flight TASK_RUNNING
217  * stores will not collide with our state change.
218  */
219 #define set_special_state(state_value)					\
220 	do {								\
221 		unsigned long flags; /* may shadow */			\
222 									\
223 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
224 		debug_special_state_change((state_value));		\
225 		WRITE_ONCE(current->__state, (state_value));		\
226 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
227 	} while (0)
228 
229 /*
230  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
231  *
232  * RT's spin/rwlock substitutions are state preserving. The state of the
233  * task when blocking on the lock is saved in task_struct::saved_state and
234  * restored after the lock has been acquired.  These operations are
235  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
236  * lock related wakeups while the task is blocked on the lock are
237  * redirected to operate on task_struct::saved_state to ensure that these
238  * are not dropped. On restore task_struct::saved_state is set to
239  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
240  *
241  * The lock operation looks like this:
242  *
243  *	current_save_and_set_rtlock_wait_state();
244  *	for (;;) {
245  *		if (try_lock())
246  *			break;
247  *		raw_spin_unlock_irq(&lock->wait_lock);
248  *		schedule_rtlock();
249  *		raw_spin_lock_irq(&lock->wait_lock);
250  *		set_current_state(TASK_RTLOCK_WAIT);
251  *	}
252  *	current_restore_rtlock_saved_state();
253  */
254 #define current_save_and_set_rtlock_wait_state()			\
255 	do {								\
256 		lockdep_assert_irqs_disabled();				\
257 		raw_spin_lock(&current->pi_lock);			\
258 		current->saved_state = current->__state;		\
259 		debug_rtlock_wait_set_state();				\
260 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
261 		raw_spin_unlock(&current->pi_lock);			\
262 	} while (0);
263 
264 #define current_restore_rtlock_saved_state()				\
265 	do {								\
266 		lockdep_assert_irqs_disabled();				\
267 		raw_spin_lock(&current->pi_lock);			\
268 		debug_rtlock_wait_restore_state();			\
269 		WRITE_ONCE(current->__state, current->saved_state);	\
270 		current->saved_state = TASK_RUNNING;			\
271 		raw_spin_unlock(&current->pi_lock);			\
272 	} while (0);
273 
274 #define get_current_state()	READ_ONCE(current->__state)
275 
276 /*
277  * Define the task command name length as enum, then it can be visible to
278  * BPF programs.
279  */
280 enum {
281 	TASK_COMM_LEN = 16,
282 };
283 
284 extern void scheduler_tick(void);
285 
286 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
287 
288 extern long schedule_timeout(long timeout);
289 extern long schedule_timeout_interruptible(long timeout);
290 extern long schedule_timeout_killable(long timeout);
291 extern long schedule_timeout_uninterruptible(long timeout);
292 extern long schedule_timeout_idle(long timeout);
293 asmlinkage void schedule(void);
294 extern void schedule_preempt_disabled(void);
295 asmlinkage void preempt_schedule_irq(void);
296 #ifdef CONFIG_PREEMPT_RT
297  extern void schedule_rtlock(void);
298 #endif
299 
300 extern int __must_check io_schedule_prepare(void);
301 extern void io_schedule_finish(int token);
302 extern long io_schedule_timeout(long timeout);
303 extern void io_schedule(void);
304 
305 /**
306  * struct prev_cputime - snapshot of system and user cputime
307  * @utime: time spent in user mode
308  * @stime: time spent in system mode
309  * @lock: protects the above two fields
310  *
311  * Stores previous user/system time values such that we can guarantee
312  * monotonicity.
313  */
314 struct prev_cputime {
315 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
316 	u64				utime;
317 	u64				stime;
318 	raw_spinlock_t			lock;
319 #endif
320 };
321 
322 enum vtime_state {
323 	/* Task is sleeping or running in a CPU with VTIME inactive: */
324 	VTIME_INACTIVE = 0,
325 	/* Task is idle */
326 	VTIME_IDLE,
327 	/* Task runs in kernelspace in a CPU with VTIME active: */
328 	VTIME_SYS,
329 	/* Task runs in userspace in a CPU with VTIME active: */
330 	VTIME_USER,
331 	/* Task runs as guests in a CPU with VTIME active: */
332 	VTIME_GUEST,
333 };
334 
335 struct vtime {
336 	seqcount_t		seqcount;
337 	unsigned long long	starttime;
338 	enum vtime_state	state;
339 	unsigned int		cpu;
340 	u64			utime;
341 	u64			stime;
342 	u64			gtime;
343 };
344 
345 /*
346  * Utilization clamp constraints.
347  * @UCLAMP_MIN:	Minimum utilization
348  * @UCLAMP_MAX:	Maximum utilization
349  * @UCLAMP_CNT:	Utilization clamp constraints count
350  */
351 enum uclamp_id {
352 	UCLAMP_MIN = 0,
353 	UCLAMP_MAX,
354 	UCLAMP_CNT
355 };
356 
357 #ifdef CONFIG_SMP
358 extern struct root_domain def_root_domain;
359 extern struct mutex sched_domains_mutex;
360 #endif
361 
362 struct sched_info {
363 #ifdef CONFIG_SCHED_INFO
364 	/* Cumulative counters: */
365 
366 	/* # of times we have run on this CPU: */
367 	unsigned long			pcount;
368 
369 	/* Time spent waiting on a runqueue: */
370 	unsigned long long		run_delay;
371 
372 	/* Timestamps: */
373 
374 	/* When did we last run on a CPU? */
375 	unsigned long long		last_arrival;
376 
377 	/* When were we last queued to run? */
378 	unsigned long long		last_queued;
379 
380 #endif /* CONFIG_SCHED_INFO */
381 };
382 
383 /*
384  * Integer metrics need fixed point arithmetic, e.g., sched/fair
385  * has a few: load, load_avg, util_avg, freq, and capacity.
386  *
387  * We define a basic fixed point arithmetic range, and then formalize
388  * all these metrics based on that basic range.
389  */
390 # define SCHED_FIXEDPOINT_SHIFT		10
391 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
392 
393 /* Increase resolution of cpu_capacity calculations */
394 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
395 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
396 
397 struct load_weight {
398 	unsigned long			weight;
399 	u32				inv_weight;
400 };
401 
402 /**
403  * struct util_est - Estimation utilization of FAIR tasks
404  * @enqueued: instantaneous estimated utilization of a task/cpu
405  * @ewma:     the Exponential Weighted Moving Average (EWMA)
406  *            utilization of a task
407  *
408  * Support data structure to track an Exponential Weighted Moving Average
409  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
410  * average each time a task completes an activation. Sample's weight is chosen
411  * so that the EWMA will be relatively insensitive to transient changes to the
412  * task's workload.
413  *
414  * The enqueued attribute has a slightly different meaning for tasks and cpus:
415  * - task:   the task's util_avg at last task dequeue time
416  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
417  * Thus, the util_est.enqueued of a task represents the contribution on the
418  * estimated utilization of the CPU where that task is currently enqueued.
419  *
420  * Only for tasks we track a moving average of the past instantaneous
421  * estimated utilization. This allows to absorb sporadic drops in utilization
422  * of an otherwise almost periodic task.
423  *
424  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
425  * updates. When a task is dequeued, its util_est should not be updated if its
426  * util_avg has not been updated in the meantime.
427  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
428  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
429  * for a task) it is safe to use MSB.
430  */
431 struct util_est {
432 	unsigned int			enqueued;
433 	unsigned int			ewma;
434 #define UTIL_EST_WEIGHT_SHIFT		2
435 #define UTIL_AVG_UNCHANGED		0x80000000
436 } __attribute__((__aligned__(sizeof(u64))));
437 
438 /*
439  * The load/runnable/util_avg accumulates an infinite geometric series
440  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
441  *
442  * [load_avg definition]
443  *
444  *   load_avg = runnable% * scale_load_down(load)
445  *
446  * [runnable_avg definition]
447  *
448  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
449  *
450  * [util_avg definition]
451  *
452  *   util_avg = running% * SCHED_CAPACITY_SCALE
453  *
454  * where runnable% is the time ratio that a sched_entity is runnable and
455  * running% the time ratio that a sched_entity is running.
456  *
457  * For cfs_rq, they are the aggregated values of all runnable and blocked
458  * sched_entities.
459  *
460  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
461  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
462  * for computing those signals (see update_rq_clock_pelt())
463  *
464  * N.B., the above ratios (runnable% and running%) themselves are in the
465  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
466  * to as large a range as necessary. This is for example reflected by
467  * util_avg's SCHED_CAPACITY_SCALE.
468  *
469  * [Overflow issue]
470  *
471  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
472  * with the highest load (=88761), always runnable on a single cfs_rq,
473  * and should not overflow as the number already hits PID_MAX_LIMIT.
474  *
475  * For all other cases (including 32-bit kernels), struct load_weight's
476  * weight will overflow first before we do, because:
477  *
478  *    Max(load_avg) <= Max(load.weight)
479  *
480  * Then it is the load_weight's responsibility to consider overflow
481  * issues.
482  */
483 struct sched_avg {
484 	u64				last_update_time;
485 	u64				load_sum;
486 	u64				runnable_sum;
487 	u32				util_sum;
488 	u32				period_contrib;
489 	unsigned long			load_avg;
490 	unsigned long			runnable_avg;
491 	unsigned long			util_avg;
492 	struct util_est			util_est;
493 } ____cacheline_aligned;
494 
495 struct sched_statistics {
496 #ifdef CONFIG_SCHEDSTATS
497 	u64				wait_start;
498 	u64				wait_max;
499 	u64				wait_count;
500 	u64				wait_sum;
501 	u64				iowait_count;
502 	u64				iowait_sum;
503 
504 	u64				sleep_start;
505 	u64				sleep_max;
506 	s64				sum_sleep_runtime;
507 
508 	u64				block_start;
509 	u64				block_max;
510 	s64				sum_block_runtime;
511 
512 	u64				exec_max;
513 	u64				slice_max;
514 
515 	u64				nr_migrations_cold;
516 	u64				nr_failed_migrations_affine;
517 	u64				nr_failed_migrations_running;
518 	u64				nr_failed_migrations_hot;
519 	u64				nr_forced_migrations;
520 
521 	u64				nr_wakeups;
522 	u64				nr_wakeups_sync;
523 	u64				nr_wakeups_migrate;
524 	u64				nr_wakeups_local;
525 	u64				nr_wakeups_remote;
526 	u64				nr_wakeups_affine;
527 	u64				nr_wakeups_affine_attempts;
528 	u64				nr_wakeups_passive;
529 	u64				nr_wakeups_idle;
530 
531 #ifdef CONFIG_SCHED_CORE
532 	u64				core_forceidle_sum;
533 #endif
534 #endif /* CONFIG_SCHEDSTATS */
535 } ____cacheline_aligned;
536 
537 struct sched_entity {
538 	/* For load-balancing: */
539 	struct load_weight		load;
540 	struct rb_node			run_node;
541 	struct list_head		group_node;
542 	unsigned int			on_rq;
543 
544 	u64				exec_start;
545 	u64				sum_exec_runtime;
546 	u64				vruntime;
547 	u64				prev_sum_exec_runtime;
548 
549 	u64				nr_migrations;
550 
551 #ifdef CONFIG_FAIR_GROUP_SCHED
552 	int				depth;
553 	struct sched_entity		*parent;
554 	/* rq on which this entity is (to be) queued: */
555 	struct cfs_rq			*cfs_rq;
556 	/* rq "owned" by this entity/group: */
557 	struct cfs_rq			*my_q;
558 	/* cached value of my_q->h_nr_running */
559 	unsigned long			runnable_weight;
560 #endif
561 
562 #ifdef CONFIG_SMP
563 	/*
564 	 * Per entity load average tracking.
565 	 *
566 	 * Put into separate cache line so it does not
567 	 * collide with read-mostly values above.
568 	 */
569 	struct sched_avg		avg;
570 #endif
571 };
572 
573 struct sched_rt_entity {
574 	struct list_head		run_list;
575 	unsigned long			timeout;
576 	unsigned long			watchdog_stamp;
577 	unsigned int			time_slice;
578 	unsigned short			on_rq;
579 	unsigned short			on_list;
580 
581 	struct sched_rt_entity		*back;
582 #ifdef CONFIG_RT_GROUP_SCHED
583 	struct sched_rt_entity		*parent;
584 	/* rq on which this entity is (to be) queued: */
585 	struct rt_rq			*rt_rq;
586 	/* rq "owned" by this entity/group: */
587 	struct rt_rq			*my_q;
588 #endif
589 } __randomize_layout;
590 
591 struct sched_dl_entity {
592 	struct rb_node			rb_node;
593 
594 	/*
595 	 * Original scheduling parameters. Copied here from sched_attr
596 	 * during sched_setattr(), they will remain the same until
597 	 * the next sched_setattr().
598 	 */
599 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
600 	u64				dl_deadline;	/* Relative deadline of each instance	*/
601 	u64				dl_period;	/* Separation of two instances (period) */
602 	u64				dl_bw;		/* dl_runtime / dl_period		*/
603 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
604 
605 	/*
606 	 * Actual scheduling parameters. Initialized with the values above,
607 	 * they are continuously updated during task execution. Note that
608 	 * the remaining runtime could be < 0 in case we are in overrun.
609 	 */
610 	s64				runtime;	/* Remaining runtime for this instance	*/
611 	u64				deadline;	/* Absolute deadline for this instance	*/
612 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
613 
614 	/*
615 	 * Some bool flags:
616 	 *
617 	 * @dl_throttled tells if we exhausted the runtime. If so, the
618 	 * task has to wait for a replenishment to be performed at the
619 	 * next firing of dl_timer.
620 	 *
621 	 * @dl_yielded tells if task gave up the CPU before consuming
622 	 * all its available runtime during the last job.
623 	 *
624 	 * @dl_non_contending tells if the task is inactive while still
625 	 * contributing to the active utilization. In other words, it
626 	 * indicates if the inactive timer has been armed and its handler
627 	 * has not been executed yet. This flag is useful to avoid race
628 	 * conditions between the inactive timer handler and the wakeup
629 	 * code.
630 	 *
631 	 * @dl_overrun tells if the task asked to be informed about runtime
632 	 * overruns.
633 	 */
634 	unsigned int			dl_throttled      : 1;
635 	unsigned int			dl_yielded        : 1;
636 	unsigned int			dl_non_contending : 1;
637 	unsigned int			dl_overrun	  : 1;
638 
639 	/*
640 	 * Bandwidth enforcement timer. Each -deadline task has its
641 	 * own bandwidth to be enforced, thus we need one timer per task.
642 	 */
643 	struct hrtimer			dl_timer;
644 
645 	/*
646 	 * Inactive timer, responsible for decreasing the active utilization
647 	 * at the "0-lag time". When a -deadline task blocks, it contributes
648 	 * to GRUB's active utilization until the "0-lag time", hence a
649 	 * timer is needed to decrease the active utilization at the correct
650 	 * time.
651 	 */
652 	struct hrtimer inactive_timer;
653 
654 #ifdef CONFIG_RT_MUTEXES
655 	/*
656 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
657 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
658 	 * to (the original one/itself).
659 	 */
660 	struct sched_dl_entity *pi_se;
661 #endif
662 };
663 
664 #ifdef CONFIG_UCLAMP_TASK
665 /* Number of utilization clamp buckets (shorter alias) */
666 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
667 
668 /*
669  * Utilization clamp for a scheduling entity
670  * @value:		clamp value "assigned" to a se
671  * @bucket_id:		bucket index corresponding to the "assigned" value
672  * @active:		the se is currently refcounted in a rq's bucket
673  * @user_defined:	the requested clamp value comes from user-space
674  *
675  * The bucket_id is the index of the clamp bucket matching the clamp value
676  * which is pre-computed and stored to avoid expensive integer divisions from
677  * the fast path.
678  *
679  * The active bit is set whenever a task has got an "effective" value assigned,
680  * which can be different from the clamp value "requested" from user-space.
681  * This allows to know a task is refcounted in the rq's bucket corresponding
682  * to the "effective" bucket_id.
683  *
684  * The user_defined bit is set whenever a task has got a task-specific clamp
685  * value requested from userspace, i.e. the system defaults apply to this task
686  * just as a restriction. This allows to relax default clamps when a less
687  * restrictive task-specific value has been requested, thus allowing to
688  * implement a "nice" semantic. For example, a task running with a 20%
689  * default boost can still drop its own boosting to 0%.
690  */
691 struct uclamp_se {
692 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
693 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
694 	unsigned int active		: 1;
695 	unsigned int user_defined	: 1;
696 };
697 #endif /* CONFIG_UCLAMP_TASK */
698 
699 union rcu_special {
700 	struct {
701 		u8			blocked;
702 		u8			need_qs;
703 		u8			exp_hint; /* Hint for performance. */
704 		u8			need_mb; /* Readers need smp_mb(). */
705 	} b; /* Bits. */
706 	u32 s; /* Set of bits. */
707 };
708 
709 enum perf_event_task_context {
710 	perf_invalid_context = -1,
711 	perf_hw_context = 0,
712 	perf_sw_context,
713 	perf_nr_task_contexts,
714 };
715 
716 struct wake_q_node {
717 	struct wake_q_node *next;
718 };
719 
720 struct kmap_ctrl {
721 #ifdef CONFIG_KMAP_LOCAL
722 	int				idx;
723 	pte_t				pteval[KM_MAX_IDX];
724 #endif
725 };
726 
727 struct task_struct {
728 #ifdef CONFIG_THREAD_INFO_IN_TASK
729 	/*
730 	 * For reasons of header soup (see current_thread_info()), this
731 	 * must be the first element of task_struct.
732 	 */
733 	struct thread_info		thread_info;
734 #endif
735 	unsigned int			__state;
736 
737 #ifdef CONFIG_PREEMPT_RT
738 	/* saved state for "spinlock sleepers" */
739 	unsigned int			saved_state;
740 #endif
741 
742 	/*
743 	 * This begins the randomizable portion of task_struct. Only
744 	 * scheduling-critical items should be added above here.
745 	 */
746 	randomized_struct_fields_start
747 
748 	void				*stack;
749 	refcount_t			usage;
750 	/* Per task flags (PF_*), defined further below: */
751 	unsigned int			flags;
752 	unsigned int			ptrace;
753 
754 #ifdef CONFIG_SMP
755 	int				on_cpu;
756 	struct __call_single_node	wake_entry;
757 	unsigned int			wakee_flips;
758 	unsigned long			wakee_flip_decay_ts;
759 	struct task_struct		*last_wakee;
760 
761 	/*
762 	 * recent_used_cpu is initially set as the last CPU used by a task
763 	 * that wakes affine another task. Waker/wakee relationships can
764 	 * push tasks around a CPU where each wakeup moves to the next one.
765 	 * Tracking a recently used CPU allows a quick search for a recently
766 	 * used CPU that may be idle.
767 	 */
768 	int				recent_used_cpu;
769 	int				wake_cpu;
770 #endif
771 	int				on_rq;
772 
773 	int				prio;
774 	int				static_prio;
775 	int				normal_prio;
776 	unsigned int			rt_priority;
777 
778 	struct sched_entity		se;
779 	struct sched_rt_entity		rt;
780 	struct sched_dl_entity		dl;
781 	const struct sched_class	*sched_class;
782 
783 #ifdef CONFIG_SCHED_CORE
784 	struct rb_node			core_node;
785 	unsigned long			core_cookie;
786 	unsigned int			core_occupation;
787 #endif
788 
789 #ifdef CONFIG_CGROUP_SCHED
790 	struct task_group		*sched_task_group;
791 #endif
792 
793 #ifdef CONFIG_UCLAMP_TASK
794 	/*
795 	 * Clamp values requested for a scheduling entity.
796 	 * Must be updated with task_rq_lock() held.
797 	 */
798 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
799 	/*
800 	 * Effective clamp values used for a scheduling entity.
801 	 * Must be updated with task_rq_lock() held.
802 	 */
803 	struct uclamp_se		uclamp[UCLAMP_CNT];
804 #endif
805 
806 	struct sched_statistics         stats;
807 
808 #ifdef CONFIG_PREEMPT_NOTIFIERS
809 	/* List of struct preempt_notifier: */
810 	struct hlist_head		preempt_notifiers;
811 #endif
812 
813 #ifdef CONFIG_BLK_DEV_IO_TRACE
814 	unsigned int			btrace_seq;
815 #endif
816 
817 	unsigned int			policy;
818 	int				nr_cpus_allowed;
819 	const cpumask_t			*cpus_ptr;
820 	cpumask_t			*user_cpus_ptr;
821 	cpumask_t			cpus_mask;
822 	void				*migration_pending;
823 #ifdef CONFIG_SMP
824 	unsigned short			migration_disabled;
825 #endif
826 	unsigned short			migration_flags;
827 
828 #ifdef CONFIG_PREEMPT_RCU
829 	int				rcu_read_lock_nesting;
830 	union rcu_special		rcu_read_unlock_special;
831 	struct list_head		rcu_node_entry;
832 	struct rcu_node			*rcu_blocked_node;
833 #endif /* #ifdef CONFIG_PREEMPT_RCU */
834 
835 #ifdef CONFIG_TASKS_RCU
836 	unsigned long			rcu_tasks_nvcsw;
837 	u8				rcu_tasks_holdout;
838 	u8				rcu_tasks_idx;
839 	int				rcu_tasks_idle_cpu;
840 	struct list_head		rcu_tasks_holdout_list;
841 #endif /* #ifdef CONFIG_TASKS_RCU */
842 
843 #ifdef CONFIG_TASKS_TRACE_RCU
844 	int				trc_reader_nesting;
845 	int				trc_ipi_to_cpu;
846 	union rcu_special		trc_reader_special;
847 	struct list_head		trc_holdout_list;
848 	struct list_head		trc_blkd_node;
849 	int				trc_blkd_cpu;
850 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
851 
852 	struct sched_info		sched_info;
853 
854 	struct list_head		tasks;
855 #ifdef CONFIG_SMP
856 	struct plist_node		pushable_tasks;
857 	struct rb_node			pushable_dl_tasks;
858 #endif
859 
860 	struct mm_struct		*mm;
861 	struct mm_struct		*active_mm;
862 
863 	/* Per-thread vma caching: */
864 
865 #ifdef SPLIT_RSS_COUNTING
866 	struct task_rss_stat		rss_stat;
867 #endif
868 	int				exit_state;
869 	int				exit_code;
870 	int				exit_signal;
871 	/* The signal sent when the parent dies: */
872 	int				pdeath_signal;
873 	/* JOBCTL_*, siglock protected: */
874 	unsigned long			jobctl;
875 
876 	/* Used for emulating ABI behavior of previous Linux versions: */
877 	unsigned int			personality;
878 
879 	/* Scheduler bits, serialized by scheduler locks: */
880 	unsigned			sched_reset_on_fork:1;
881 	unsigned			sched_contributes_to_load:1;
882 	unsigned			sched_migrated:1;
883 #ifdef CONFIG_PSI
884 	unsigned			sched_psi_wake_requeue:1;
885 #endif
886 
887 	/* Force alignment to the next boundary: */
888 	unsigned			:0;
889 
890 	/* Unserialized, strictly 'current' */
891 
892 	/*
893 	 * This field must not be in the scheduler word above due to wakelist
894 	 * queueing no longer being serialized by p->on_cpu. However:
895 	 *
896 	 * p->XXX = X;			ttwu()
897 	 * schedule()			  if (p->on_rq && ..) // false
898 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
899 	 *   deactivate_task()		      ttwu_queue_wakelist())
900 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
901 	 *
902 	 * guarantees all stores of 'current' are visible before
903 	 * ->sched_remote_wakeup gets used, so it can be in this word.
904 	 */
905 	unsigned			sched_remote_wakeup:1;
906 
907 	/* Bit to tell LSMs we're in execve(): */
908 	unsigned			in_execve:1;
909 	unsigned			in_iowait:1;
910 #ifndef TIF_RESTORE_SIGMASK
911 	unsigned			restore_sigmask:1;
912 #endif
913 #ifdef CONFIG_MEMCG
914 	unsigned			in_user_fault:1;
915 #endif
916 #ifdef CONFIG_LRU_GEN
917 	/* whether the LRU algorithm may apply to this access */
918 	unsigned			in_lru_fault:1;
919 #endif
920 #ifdef CONFIG_COMPAT_BRK
921 	unsigned			brk_randomized:1;
922 #endif
923 #ifdef CONFIG_CGROUPS
924 	/* disallow userland-initiated cgroup migration */
925 	unsigned			no_cgroup_migration:1;
926 	/* task is frozen/stopped (used by the cgroup freezer) */
927 	unsigned			frozen:1;
928 #endif
929 #ifdef CONFIG_BLK_CGROUP
930 	unsigned			use_memdelay:1;
931 #endif
932 #ifdef CONFIG_PSI
933 	/* Stalled due to lack of memory */
934 	unsigned			in_memstall:1;
935 #endif
936 #ifdef CONFIG_PAGE_OWNER
937 	/* Used by page_owner=on to detect recursion in page tracking. */
938 	unsigned			in_page_owner:1;
939 #endif
940 #ifdef CONFIG_EVENTFD
941 	/* Recursion prevention for eventfd_signal() */
942 	unsigned			in_eventfd_signal:1;
943 #endif
944 #ifdef CONFIG_IOMMU_SVA
945 	unsigned			pasid_activated:1;
946 #endif
947 #ifdef	CONFIG_CPU_SUP_INTEL
948 	unsigned			reported_split_lock:1;
949 #endif
950 #ifdef CONFIG_TASK_DELAY_ACCT
951 	/* delay due to memory thrashing */
952 	unsigned                        in_thrashing:1;
953 #endif
954 
955 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
956 
957 	struct restart_block		restart_block;
958 
959 	pid_t				pid;
960 	pid_t				tgid;
961 
962 #ifdef CONFIG_STACKPROTECTOR
963 	/* Canary value for the -fstack-protector GCC feature: */
964 	unsigned long			stack_canary;
965 #endif
966 	/*
967 	 * Pointers to the (original) parent process, youngest child, younger sibling,
968 	 * older sibling, respectively.  (p->father can be replaced with
969 	 * p->real_parent->pid)
970 	 */
971 
972 	/* Real parent process: */
973 	struct task_struct __rcu	*real_parent;
974 
975 	/* Recipient of SIGCHLD, wait4() reports: */
976 	struct task_struct __rcu	*parent;
977 
978 	/*
979 	 * Children/sibling form the list of natural children:
980 	 */
981 	struct list_head		children;
982 	struct list_head		sibling;
983 	struct task_struct		*group_leader;
984 
985 	/*
986 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
987 	 *
988 	 * This includes both natural children and PTRACE_ATTACH targets.
989 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
990 	 */
991 	struct list_head		ptraced;
992 	struct list_head		ptrace_entry;
993 
994 	/* PID/PID hash table linkage. */
995 	struct pid			*thread_pid;
996 	struct hlist_node		pid_links[PIDTYPE_MAX];
997 	struct list_head		thread_group;
998 	struct list_head		thread_node;
999 
1000 	struct completion		*vfork_done;
1001 
1002 	/* CLONE_CHILD_SETTID: */
1003 	int __user			*set_child_tid;
1004 
1005 	/* CLONE_CHILD_CLEARTID: */
1006 	int __user			*clear_child_tid;
1007 
1008 	/* PF_KTHREAD | PF_IO_WORKER */
1009 	void				*worker_private;
1010 
1011 	u64				utime;
1012 	u64				stime;
1013 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1014 	u64				utimescaled;
1015 	u64				stimescaled;
1016 #endif
1017 	u64				gtime;
1018 	struct prev_cputime		prev_cputime;
1019 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1020 	struct vtime			vtime;
1021 #endif
1022 
1023 #ifdef CONFIG_NO_HZ_FULL
1024 	atomic_t			tick_dep_mask;
1025 #endif
1026 	/* Context switch counts: */
1027 	unsigned long			nvcsw;
1028 	unsigned long			nivcsw;
1029 
1030 	/* Monotonic time in nsecs: */
1031 	u64				start_time;
1032 
1033 	/* Boot based time in nsecs: */
1034 	u64				start_boottime;
1035 
1036 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1037 	unsigned long			min_flt;
1038 	unsigned long			maj_flt;
1039 
1040 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1041 	struct posix_cputimers		posix_cputimers;
1042 
1043 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1044 	struct posix_cputimers_work	posix_cputimers_work;
1045 #endif
1046 
1047 	/* Process credentials: */
1048 
1049 	/* Tracer's credentials at attach: */
1050 	const struct cred __rcu		*ptracer_cred;
1051 
1052 	/* Objective and real subjective task credentials (COW): */
1053 	const struct cred __rcu		*real_cred;
1054 
1055 	/* Effective (overridable) subjective task credentials (COW): */
1056 	const struct cred __rcu		*cred;
1057 
1058 #ifdef CONFIG_KEYS
1059 	/* Cached requested key. */
1060 	struct key			*cached_requested_key;
1061 #endif
1062 
1063 	/*
1064 	 * executable name, excluding path.
1065 	 *
1066 	 * - normally initialized setup_new_exec()
1067 	 * - access it with [gs]et_task_comm()
1068 	 * - lock it with task_lock()
1069 	 */
1070 	char				comm[TASK_COMM_LEN];
1071 
1072 	struct nameidata		*nameidata;
1073 
1074 #ifdef CONFIG_SYSVIPC
1075 	struct sysv_sem			sysvsem;
1076 	struct sysv_shm			sysvshm;
1077 #endif
1078 #ifdef CONFIG_DETECT_HUNG_TASK
1079 	unsigned long			last_switch_count;
1080 	unsigned long			last_switch_time;
1081 #endif
1082 	/* Filesystem information: */
1083 	struct fs_struct		*fs;
1084 
1085 	/* Open file information: */
1086 	struct files_struct		*files;
1087 
1088 #ifdef CONFIG_IO_URING
1089 	struct io_uring_task		*io_uring;
1090 #endif
1091 
1092 	/* Namespaces: */
1093 	struct nsproxy			*nsproxy;
1094 
1095 	/* Signal handlers: */
1096 	struct signal_struct		*signal;
1097 	struct sighand_struct __rcu		*sighand;
1098 	sigset_t			blocked;
1099 	sigset_t			real_blocked;
1100 	/* Restored if set_restore_sigmask() was used: */
1101 	sigset_t			saved_sigmask;
1102 	struct sigpending		pending;
1103 	unsigned long			sas_ss_sp;
1104 	size_t				sas_ss_size;
1105 	unsigned int			sas_ss_flags;
1106 
1107 	struct callback_head		*task_works;
1108 
1109 #ifdef CONFIG_AUDIT
1110 #ifdef CONFIG_AUDITSYSCALL
1111 	struct audit_context		*audit_context;
1112 #endif
1113 	kuid_t				loginuid;
1114 	unsigned int			sessionid;
1115 #endif
1116 	struct seccomp			seccomp;
1117 	struct syscall_user_dispatch	syscall_dispatch;
1118 
1119 	/* Thread group tracking: */
1120 	u64				parent_exec_id;
1121 	u64				self_exec_id;
1122 
1123 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1124 	spinlock_t			alloc_lock;
1125 
1126 	/* Protection of the PI data structures: */
1127 	raw_spinlock_t			pi_lock;
1128 
1129 	struct wake_q_node		wake_q;
1130 
1131 #ifdef CONFIG_RT_MUTEXES
1132 	/* PI waiters blocked on a rt_mutex held by this task: */
1133 	struct rb_root_cached		pi_waiters;
1134 	/* Updated under owner's pi_lock and rq lock */
1135 	struct task_struct		*pi_top_task;
1136 	/* Deadlock detection and priority inheritance handling: */
1137 	struct rt_mutex_waiter		*pi_blocked_on;
1138 #endif
1139 
1140 #ifdef CONFIG_DEBUG_MUTEXES
1141 	/* Mutex deadlock detection: */
1142 	struct mutex_waiter		*blocked_on;
1143 #endif
1144 
1145 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1146 	int				non_block_count;
1147 #endif
1148 
1149 #ifdef CONFIG_TRACE_IRQFLAGS
1150 	struct irqtrace_events		irqtrace;
1151 	unsigned int			hardirq_threaded;
1152 	u64				hardirq_chain_key;
1153 	int				softirqs_enabled;
1154 	int				softirq_context;
1155 	int				irq_config;
1156 #endif
1157 #ifdef CONFIG_PREEMPT_RT
1158 	int				softirq_disable_cnt;
1159 #endif
1160 
1161 #ifdef CONFIG_LOCKDEP
1162 # define MAX_LOCK_DEPTH			48UL
1163 	u64				curr_chain_key;
1164 	int				lockdep_depth;
1165 	unsigned int			lockdep_recursion;
1166 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1167 #endif
1168 
1169 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1170 	unsigned int			in_ubsan;
1171 #endif
1172 
1173 	/* Journalling filesystem info: */
1174 	void				*journal_info;
1175 
1176 	/* Stacked block device info: */
1177 	struct bio_list			*bio_list;
1178 
1179 	/* Stack plugging: */
1180 	struct blk_plug			*plug;
1181 
1182 	/* VM state: */
1183 	struct reclaim_state		*reclaim_state;
1184 
1185 	struct backing_dev_info		*backing_dev_info;
1186 
1187 	struct io_context		*io_context;
1188 
1189 #ifdef CONFIG_COMPACTION
1190 	struct capture_control		*capture_control;
1191 #endif
1192 	/* Ptrace state: */
1193 	unsigned long			ptrace_message;
1194 	kernel_siginfo_t		*last_siginfo;
1195 
1196 	struct task_io_accounting	ioac;
1197 #ifdef CONFIG_PSI
1198 	/* Pressure stall state */
1199 	unsigned int			psi_flags;
1200 #endif
1201 #ifdef CONFIG_TASK_XACCT
1202 	/* Accumulated RSS usage: */
1203 	u64				acct_rss_mem1;
1204 	/* Accumulated virtual memory usage: */
1205 	u64				acct_vm_mem1;
1206 	/* stime + utime since last update: */
1207 	u64				acct_timexpd;
1208 #endif
1209 #ifdef CONFIG_CPUSETS
1210 	/* Protected by ->alloc_lock: */
1211 	nodemask_t			mems_allowed;
1212 	/* Sequence number to catch updates: */
1213 	seqcount_spinlock_t		mems_allowed_seq;
1214 	int				cpuset_mem_spread_rotor;
1215 	int				cpuset_slab_spread_rotor;
1216 #endif
1217 #ifdef CONFIG_CGROUPS
1218 	/* Control Group info protected by css_set_lock: */
1219 	struct css_set __rcu		*cgroups;
1220 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1221 	struct list_head		cg_list;
1222 #endif
1223 #ifdef CONFIG_X86_CPU_RESCTRL
1224 	u32				closid;
1225 	u32				rmid;
1226 #endif
1227 #ifdef CONFIG_FUTEX
1228 	struct robust_list_head __user	*robust_list;
1229 #ifdef CONFIG_COMPAT
1230 	struct compat_robust_list_head __user *compat_robust_list;
1231 #endif
1232 	struct list_head		pi_state_list;
1233 	struct futex_pi_state		*pi_state_cache;
1234 	struct mutex			futex_exit_mutex;
1235 	unsigned int			futex_state;
1236 #endif
1237 #ifdef CONFIG_PERF_EVENTS
1238 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1239 	struct mutex			perf_event_mutex;
1240 	struct list_head		perf_event_list;
1241 #endif
1242 #ifdef CONFIG_DEBUG_PREEMPT
1243 	unsigned long			preempt_disable_ip;
1244 #endif
1245 #ifdef CONFIG_NUMA
1246 	/* Protected by alloc_lock: */
1247 	struct mempolicy		*mempolicy;
1248 	short				il_prev;
1249 	short				pref_node_fork;
1250 #endif
1251 #ifdef CONFIG_NUMA_BALANCING
1252 	int				numa_scan_seq;
1253 	unsigned int			numa_scan_period;
1254 	unsigned int			numa_scan_period_max;
1255 	int				numa_preferred_nid;
1256 	unsigned long			numa_migrate_retry;
1257 	/* Migration stamp: */
1258 	u64				node_stamp;
1259 	u64				last_task_numa_placement;
1260 	u64				last_sum_exec_runtime;
1261 	struct callback_head		numa_work;
1262 
1263 	/*
1264 	 * This pointer is only modified for current in syscall and
1265 	 * pagefault context (and for tasks being destroyed), so it can be read
1266 	 * from any of the following contexts:
1267 	 *  - RCU read-side critical section
1268 	 *  - current->numa_group from everywhere
1269 	 *  - task's runqueue locked, task not running
1270 	 */
1271 	struct numa_group __rcu		*numa_group;
1272 
1273 	/*
1274 	 * numa_faults is an array split into four regions:
1275 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1276 	 * in this precise order.
1277 	 *
1278 	 * faults_memory: Exponential decaying average of faults on a per-node
1279 	 * basis. Scheduling placement decisions are made based on these
1280 	 * counts. The values remain static for the duration of a PTE scan.
1281 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1282 	 * hinting fault was incurred.
1283 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1284 	 * during the current scan window. When the scan completes, the counts
1285 	 * in faults_memory and faults_cpu decay and these values are copied.
1286 	 */
1287 	unsigned long			*numa_faults;
1288 	unsigned long			total_numa_faults;
1289 
1290 	/*
1291 	 * numa_faults_locality tracks if faults recorded during the last
1292 	 * scan window were remote/local or failed to migrate. The task scan
1293 	 * period is adapted based on the locality of the faults with different
1294 	 * weights depending on whether they were shared or private faults
1295 	 */
1296 	unsigned long			numa_faults_locality[3];
1297 
1298 	unsigned long			numa_pages_migrated;
1299 #endif /* CONFIG_NUMA_BALANCING */
1300 
1301 #ifdef CONFIG_RSEQ
1302 	struct rseq __user *rseq;
1303 	u32 rseq_sig;
1304 	/*
1305 	 * RmW on rseq_event_mask must be performed atomically
1306 	 * with respect to preemption.
1307 	 */
1308 	unsigned long rseq_event_mask;
1309 #endif
1310 
1311 	struct tlbflush_unmap_batch	tlb_ubc;
1312 
1313 	union {
1314 		refcount_t		rcu_users;
1315 		struct rcu_head		rcu;
1316 	};
1317 
1318 	/* Cache last used pipe for splice(): */
1319 	struct pipe_inode_info		*splice_pipe;
1320 
1321 	struct page_frag		task_frag;
1322 
1323 #ifdef CONFIG_TASK_DELAY_ACCT
1324 	struct task_delay_info		*delays;
1325 #endif
1326 
1327 #ifdef CONFIG_FAULT_INJECTION
1328 	int				make_it_fail;
1329 	unsigned int			fail_nth;
1330 #endif
1331 	/*
1332 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1333 	 * balance_dirty_pages() for a dirty throttling pause:
1334 	 */
1335 	int				nr_dirtied;
1336 	int				nr_dirtied_pause;
1337 	/* Start of a write-and-pause period: */
1338 	unsigned long			dirty_paused_when;
1339 
1340 #ifdef CONFIG_LATENCYTOP
1341 	int				latency_record_count;
1342 	struct latency_record		latency_record[LT_SAVECOUNT];
1343 #endif
1344 	/*
1345 	 * Time slack values; these are used to round up poll() and
1346 	 * select() etc timeout values. These are in nanoseconds.
1347 	 */
1348 	u64				timer_slack_ns;
1349 	u64				default_timer_slack_ns;
1350 
1351 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1352 	unsigned int			kasan_depth;
1353 #endif
1354 
1355 #ifdef CONFIG_KCSAN
1356 	struct kcsan_ctx		kcsan_ctx;
1357 #ifdef CONFIG_TRACE_IRQFLAGS
1358 	struct irqtrace_events		kcsan_save_irqtrace;
1359 #endif
1360 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1361 	int				kcsan_stack_depth;
1362 #endif
1363 #endif
1364 
1365 #if IS_ENABLED(CONFIG_KUNIT)
1366 	struct kunit			*kunit_test;
1367 #endif
1368 
1369 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1370 	/* Index of current stored address in ret_stack: */
1371 	int				curr_ret_stack;
1372 	int				curr_ret_depth;
1373 
1374 	/* Stack of return addresses for return function tracing: */
1375 	struct ftrace_ret_stack		*ret_stack;
1376 
1377 	/* Timestamp for last schedule: */
1378 	unsigned long long		ftrace_timestamp;
1379 
1380 	/*
1381 	 * Number of functions that haven't been traced
1382 	 * because of depth overrun:
1383 	 */
1384 	atomic_t			trace_overrun;
1385 
1386 	/* Pause tracing: */
1387 	atomic_t			tracing_graph_pause;
1388 #endif
1389 
1390 #ifdef CONFIG_TRACING
1391 	/* State flags for use by tracers: */
1392 	unsigned long			trace;
1393 
1394 	/* Bitmask and counter of trace recursion: */
1395 	unsigned long			trace_recursion;
1396 #endif /* CONFIG_TRACING */
1397 
1398 #ifdef CONFIG_KCOV
1399 	/* See kernel/kcov.c for more details. */
1400 
1401 	/* Coverage collection mode enabled for this task (0 if disabled): */
1402 	unsigned int			kcov_mode;
1403 
1404 	/* Size of the kcov_area: */
1405 	unsigned int			kcov_size;
1406 
1407 	/* Buffer for coverage collection: */
1408 	void				*kcov_area;
1409 
1410 	/* KCOV descriptor wired with this task or NULL: */
1411 	struct kcov			*kcov;
1412 
1413 	/* KCOV common handle for remote coverage collection: */
1414 	u64				kcov_handle;
1415 
1416 	/* KCOV sequence number: */
1417 	int				kcov_sequence;
1418 
1419 	/* Collect coverage from softirq context: */
1420 	unsigned int			kcov_softirq;
1421 #endif
1422 
1423 #ifdef CONFIG_MEMCG
1424 	struct mem_cgroup		*memcg_in_oom;
1425 	gfp_t				memcg_oom_gfp_mask;
1426 	int				memcg_oom_order;
1427 
1428 	/* Number of pages to reclaim on returning to userland: */
1429 	unsigned int			memcg_nr_pages_over_high;
1430 
1431 	/* Used by memcontrol for targeted memcg charge: */
1432 	struct mem_cgroup		*active_memcg;
1433 #endif
1434 
1435 #ifdef CONFIG_BLK_CGROUP
1436 	struct request_queue		*throttle_queue;
1437 #endif
1438 
1439 #ifdef CONFIG_UPROBES
1440 	struct uprobe_task		*utask;
1441 #endif
1442 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1443 	unsigned int			sequential_io;
1444 	unsigned int			sequential_io_avg;
1445 #endif
1446 	struct kmap_ctrl		kmap_ctrl;
1447 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1448 	unsigned long			task_state_change;
1449 # ifdef CONFIG_PREEMPT_RT
1450 	unsigned long			saved_state_change;
1451 # endif
1452 #endif
1453 	int				pagefault_disabled;
1454 #ifdef CONFIG_MMU
1455 	struct task_struct		*oom_reaper_list;
1456 	struct timer_list		oom_reaper_timer;
1457 #endif
1458 #ifdef CONFIG_VMAP_STACK
1459 	struct vm_struct		*stack_vm_area;
1460 #endif
1461 #ifdef CONFIG_THREAD_INFO_IN_TASK
1462 	/* A live task holds one reference: */
1463 	refcount_t			stack_refcount;
1464 #endif
1465 #ifdef CONFIG_LIVEPATCH
1466 	int patch_state;
1467 #endif
1468 #ifdef CONFIG_SECURITY
1469 	/* Used by LSM modules for access restriction: */
1470 	void				*security;
1471 #endif
1472 #ifdef CONFIG_BPF_SYSCALL
1473 	/* Used by BPF task local storage */
1474 	struct bpf_local_storage __rcu	*bpf_storage;
1475 	/* Used for BPF run context */
1476 	struct bpf_run_ctx		*bpf_ctx;
1477 #endif
1478 
1479 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1480 	unsigned long			lowest_stack;
1481 	unsigned long			prev_lowest_stack;
1482 #endif
1483 
1484 #ifdef CONFIG_X86_MCE
1485 	void __user			*mce_vaddr;
1486 	__u64				mce_kflags;
1487 	u64				mce_addr;
1488 	__u64				mce_ripv : 1,
1489 					mce_whole_page : 1,
1490 					__mce_reserved : 62;
1491 	struct callback_head		mce_kill_me;
1492 	int				mce_count;
1493 #endif
1494 
1495 #ifdef CONFIG_KRETPROBES
1496 	struct llist_head               kretprobe_instances;
1497 #endif
1498 #ifdef CONFIG_RETHOOK
1499 	struct llist_head               rethooks;
1500 #endif
1501 
1502 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1503 	/*
1504 	 * If L1D flush is supported on mm context switch
1505 	 * then we use this callback head to queue kill work
1506 	 * to kill tasks that are not running on SMT disabled
1507 	 * cores
1508 	 */
1509 	struct callback_head		l1d_flush_kill;
1510 #endif
1511 
1512 #ifdef CONFIG_RV
1513 	/*
1514 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1515 	 * If we find justification for more monitors, we can think
1516 	 * about adding more or developing a dynamic method. So far,
1517 	 * none of these are justified.
1518 	 */
1519 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1520 #endif
1521 
1522 	/*
1523 	 * New fields for task_struct should be added above here, so that
1524 	 * they are included in the randomized portion of task_struct.
1525 	 */
1526 	randomized_struct_fields_end
1527 
1528 	/* CPU-specific state of this task: */
1529 	struct thread_struct		thread;
1530 
1531 	/*
1532 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1533 	 * structure.  It *MUST* be at the end of 'task_struct'.
1534 	 *
1535 	 * Do not put anything below here!
1536 	 */
1537 };
1538 
1539 static inline struct pid *task_pid(struct task_struct *task)
1540 {
1541 	return task->thread_pid;
1542 }
1543 
1544 /*
1545  * the helpers to get the task's different pids as they are seen
1546  * from various namespaces
1547  *
1548  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1549  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1550  *                     current.
1551  * task_xid_nr_ns()  : id seen from the ns specified;
1552  *
1553  * see also pid_nr() etc in include/linux/pid.h
1554  */
1555 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1556 
1557 static inline pid_t task_pid_nr(struct task_struct *tsk)
1558 {
1559 	return tsk->pid;
1560 }
1561 
1562 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1563 {
1564 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1565 }
1566 
1567 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1568 {
1569 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1570 }
1571 
1572 
1573 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1574 {
1575 	return tsk->tgid;
1576 }
1577 
1578 /**
1579  * pid_alive - check that a task structure is not stale
1580  * @p: Task structure to be checked.
1581  *
1582  * Test if a process is not yet dead (at most zombie state)
1583  * If pid_alive fails, then pointers within the task structure
1584  * can be stale and must not be dereferenced.
1585  *
1586  * Return: 1 if the process is alive. 0 otherwise.
1587  */
1588 static inline int pid_alive(const struct task_struct *p)
1589 {
1590 	return p->thread_pid != NULL;
1591 }
1592 
1593 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1594 {
1595 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1596 }
1597 
1598 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1599 {
1600 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1601 }
1602 
1603 
1604 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1605 {
1606 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1607 }
1608 
1609 static inline pid_t task_session_vnr(struct task_struct *tsk)
1610 {
1611 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1612 }
1613 
1614 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1615 {
1616 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1617 }
1618 
1619 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1620 {
1621 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1622 }
1623 
1624 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1625 {
1626 	pid_t pid = 0;
1627 
1628 	rcu_read_lock();
1629 	if (pid_alive(tsk))
1630 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1631 	rcu_read_unlock();
1632 
1633 	return pid;
1634 }
1635 
1636 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1637 {
1638 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1639 }
1640 
1641 /* Obsolete, do not use: */
1642 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1643 {
1644 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1645 }
1646 
1647 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1648 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1649 
1650 static inline unsigned int __task_state_index(unsigned int tsk_state,
1651 					      unsigned int tsk_exit_state)
1652 {
1653 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1654 
1655 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1656 
1657 	if (tsk_state == TASK_IDLE)
1658 		state = TASK_REPORT_IDLE;
1659 
1660 	/*
1661 	 * We're lying here, but rather than expose a completely new task state
1662 	 * to userspace, we can make this appear as if the task has gone through
1663 	 * a regular rt_mutex_lock() call.
1664 	 */
1665 	if (tsk_state == TASK_RTLOCK_WAIT)
1666 		state = TASK_UNINTERRUPTIBLE;
1667 
1668 	return fls(state);
1669 }
1670 
1671 static inline unsigned int task_state_index(struct task_struct *tsk)
1672 {
1673 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1674 }
1675 
1676 static inline char task_index_to_char(unsigned int state)
1677 {
1678 	static const char state_char[] = "RSDTtXZPI";
1679 
1680 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1681 
1682 	return state_char[state];
1683 }
1684 
1685 static inline char task_state_to_char(struct task_struct *tsk)
1686 {
1687 	return task_index_to_char(task_state_index(tsk));
1688 }
1689 
1690 /**
1691  * is_global_init - check if a task structure is init. Since init
1692  * is free to have sub-threads we need to check tgid.
1693  * @tsk: Task structure to be checked.
1694  *
1695  * Check if a task structure is the first user space task the kernel created.
1696  *
1697  * Return: 1 if the task structure is init. 0 otherwise.
1698  */
1699 static inline int is_global_init(struct task_struct *tsk)
1700 {
1701 	return task_tgid_nr(tsk) == 1;
1702 }
1703 
1704 extern struct pid *cad_pid;
1705 
1706 /*
1707  * Per process flags
1708  */
1709 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1710 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1711 #define PF_EXITING		0x00000004	/* Getting shut down */
1712 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1713 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1714 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1715 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1716 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1717 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1718 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1719 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1720 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1721 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1722 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1723 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1724 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1725 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1726 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1727 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1728 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1729 						 * I am cleaning dirty pages from some other bdi. */
1730 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1731 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1732 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1733 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1734 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1735 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1736 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1737 
1738 /*
1739  * Only the _current_ task can read/write to tsk->flags, but other
1740  * tasks can access tsk->flags in readonly mode for example
1741  * with tsk_used_math (like during threaded core dumping).
1742  * There is however an exception to this rule during ptrace
1743  * or during fork: the ptracer task is allowed to write to the
1744  * child->flags of its traced child (same goes for fork, the parent
1745  * can write to the child->flags), because we're guaranteed the
1746  * child is not running and in turn not changing child->flags
1747  * at the same time the parent does it.
1748  */
1749 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1750 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1751 #define clear_used_math()			clear_stopped_child_used_math(current)
1752 #define set_used_math()				set_stopped_child_used_math(current)
1753 
1754 #define conditional_stopped_child_used_math(condition, child) \
1755 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1756 
1757 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1758 
1759 #define copy_to_stopped_child_used_math(child) \
1760 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1761 
1762 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1763 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1764 #define used_math()				tsk_used_math(current)
1765 
1766 static __always_inline bool is_percpu_thread(void)
1767 {
1768 #ifdef CONFIG_SMP
1769 	return (current->flags & PF_NO_SETAFFINITY) &&
1770 		(current->nr_cpus_allowed  == 1);
1771 #else
1772 	return true;
1773 #endif
1774 }
1775 
1776 /* Per-process atomic flags. */
1777 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1778 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1779 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1780 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1781 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1782 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1783 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1784 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1785 
1786 #define TASK_PFA_TEST(name, func)					\
1787 	static inline bool task_##func(struct task_struct *p)		\
1788 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1789 
1790 #define TASK_PFA_SET(name, func)					\
1791 	static inline void task_set_##func(struct task_struct *p)	\
1792 	{ set_bit(PFA_##name, &p->atomic_flags); }
1793 
1794 #define TASK_PFA_CLEAR(name, func)					\
1795 	static inline void task_clear_##func(struct task_struct *p)	\
1796 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1797 
1798 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1799 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1800 
1801 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1802 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1803 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1804 
1805 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1806 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1807 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1808 
1809 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1810 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1811 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1812 
1813 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1814 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1815 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1816 
1817 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1818 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1819 
1820 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1821 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1822 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1823 
1824 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1825 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1826 
1827 static inline void
1828 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1829 {
1830 	current->flags &= ~flags;
1831 	current->flags |= orig_flags & flags;
1832 }
1833 
1834 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1835 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_effective_cpus);
1836 #ifdef CONFIG_SMP
1837 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1838 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1839 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1840 extern void release_user_cpus_ptr(struct task_struct *p);
1841 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1842 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1843 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1844 #else
1845 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1846 {
1847 }
1848 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1849 {
1850 	if (!cpumask_test_cpu(0, new_mask))
1851 		return -EINVAL;
1852 	return 0;
1853 }
1854 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1855 {
1856 	if (src->user_cpus_ptr)
1857 		return -EINVAL;
1858 	return 0;
1859 }
1860 static inline void release_user_cpus_ptr(struct task_struct *p)
1861 {
1862 	WARN_ON(p->user_cpus_ptr);
1863 }
1864 
1865 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1866 {
1867 	return 0;
1868 }
1869 #endif
1870 
1871 extern int yield_to(struct task_struct *p, bool preempt);
1872 extern void set_user_nice(struct task_struct *p, long nice);
1873 extern int task_prio(const struct task_struct *p);
1874 
1875 /**
1876  * task_nice - return the nice value of a given task.
1877  * @p: the task in question.
1878  *
1879  * Return: The nice value [ -20 ... 0 ... 19 ].
1880  */
1881 static inline int task_nice(const struct task_struct *p)
1882 {
1883 	return PRIO_TO_NICE((p)->static_prio);
1884 }
1885 
1886 extern int can_nice(const struct task_struct *p, const int nice);
1887 extern int task_curr(const struct task_struct *p);
1888 extern int idle_cpu(int cpu);
1889 extern int available_idle_cpu(int cpu);
1890 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1891 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1892 extern void sched_set_fifo(struct task_struct *p);
1893 extern void sched_set_fifo_low(struct task_struct *p);
1894 extern void sched_set_normal(struct task_struct *p, int nice);
1895 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1896 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1897 extern struct task_struct *idle_task(int cpu);
1898 
1899 /**
1900  * is_idle_task - is the specified task an idle task?
1901  * @p: the task in question.
1902  *
1903  * Return: 1 if @p is an idle task. 0 otherwise.
1904  */
1905 static __always_inline bool is_idle_task(const struct task_struct *p)
1906 {
1907 	return !!(p->flags & PF_IDLE);
1908 }
1909 
1910 extern struct task_struct *curr_task(int cpu);
1911 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1912 
1913 void yield(void);
1914 
1915 union thread_union {
1916 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1917 	struct task_struct task;
1918 #endif
1919 #ifndef CONFIG_THREAD_INFO_IN_TASK
1920 	struct thread_info thread_info;
1921 #endif
1922 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1923 };
1924 
1925 #ifndef CONFIG_THREAD_INFO_IN_TASK
1926 extern struct thread_info init_thread_info;
1927 #endif
1928 
1929 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1930 
1931 #ifdef CONFIG_THREAD_INFO_IN_TASK
1932 # define task_thread_info(task)	(&(task)->thread_info)
1933 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1934 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1935 #endif
1936 
1937 /*
1938  * find a task by one of its numerical ids
1939  *
1940  * find_task_by_pid_ns():
1941  *      finds a task by its pid in the specified namespace
1942  * find_task_by_vpid():
1943  *      finds a task by its virtual pid
1944  *
1945  * see also find_vpid() etc in include/linux/pid.h
1946  */
1947 
1948 extern struct task_struct *find_task_by_vpid(pid_t nr);
1949 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1950 
1951 /*
1952  * find a task by its virtual pid and get the task struct
1953  */
1954 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1955 
1956 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1957 extern int wake_up_process(struct task_struct *tsk);
1958 extern void wake_up_new_task(struct task_struct *tsk);
1959 
1960 #ifdef CONFIG_SMP
1961 extern void kick_process(struct task_struct *tsk);
1962 #else
1963 static inline void kick_process(struct task_struct *tsk) { }
1964 #endif
1965 
1966 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1967 
1968 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1969 {
1970 	__set_task_comm(tsk, from, false);
1971 }
1972 
1973 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1974 #define get_task_comm(buf, tsk) ({			\
1975 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1976 	__get_task_comm(buf, sizeof(buf), tsk);		\
1977 })
1978 
1979 #ifdef CONFIG_SMP
1980 static __always_inline void scheduler_ipi(void)
1981 {
1982 	/*
1983 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1984 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1985 	 * this IPI.
1986 	 */
1987 	preempt_fold_need_resched();
1988 }
1989 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1990 #else
1991 static inline void scheduler_ipi(void) { }
1992 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1993 {
1994 	return 1;
1995 }
1996 #endif
1997 
1998 /*
1999  * Set thread flags in other task's structures.
2000  * See asm/thread_info.h for TIF_xxxx flags available:
2001  */
2002 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2003 {
2004 	set_ti_thread_flag(task_thread_info(tsk), flag);
2005 }
2006 
2007 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2008 {
2009 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2010 }
2011 
2012 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2013 					  bool value)
2014 {
2015 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2016 }
2017 
2018 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2019 {
2020 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2021 }
2022 
2023 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2024 {
2025 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2026 }
2027 
2028 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2029 {
2030 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2031 }
2032 
2033 static inline void set_tsk_need_resched(struct task_struct *tsk)
2034 {
2035 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2036 }
2037 
2038 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2039 {
2040 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2041 }
2042 
2043 static inline int test_tsk_need_resched(struct task_struct *tsk)
2044 {
2045 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2046 }
2047 
2048 /*
2049  * cond_resched() and cond_resched_lock(): latency reduction via
2050  * explicit rescheduling in places that are safe. The return
2051  * value indicates whether a reschedule was done in fact.
2052  * cond_resched_lock() will drop the spinlock before scheduling,
2053  */
2054 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2055 extern int __cond_resched(void);
2056 
2057 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2058 
2059 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2060 
2061 static __always_inline int _cond_resched(void)
2062 {
2063 	return static_call_mod(cond_resched)();
2064 }
2065 
2066 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2067 extern int dynamic_cond_resched(void);
2068 
2069 static __always_inline int _cond_resched(void)
2070 {
2071 	return dynamic_cond_resched();
2072 }
2073 
2074 #else
2075 
2076 static inline int _cond_resched(void)
2077 {
2078 	return __cond_resched();
2079 }
2080 
2081 #endif /* CONFIG_PREEMPT_DYNAMIC */
2082 
2083 #else
2084 
2085 static inline int _cond_resched(void) { return 0; }
2086 
2087 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2088 
2089 #define cond_resched() ({			\
2090 	__might_resched(__FILE__, __LINE__, 0);	\
2091 	_cond_resched();			\
2092 })
2093 
2094 extern int __cond_resched_lock(spinlock_t *lock);
2095 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2096 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2097 
2098 #define MIGHT_RESCHED_RCU_SHIFT		8
2099 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2100 
2101 #ifndef CONFIG_PREEMPT_RT
2102 /*
2103  * Non RT kernels have an elevated preempt count due to the held lock,
2104  * but are not allowed to be inside a RCU read side critical section
2105  */
2106 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2107 #else
2108 /*
2109  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2110  * cond_resched*lock() has to take that into account because it checks for
2111  * preempt_count() and rcu_preempt_depth().
2112  */
2113 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2114 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2115 #endif
2116 
2117 #define cond_resched_lock(lock) ({						\
2118 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2119 	__cond_resched_lock(lock);						\
2120 })
2121 
2122 #define cond_resched_rwlock_read(lock) ({					\
2123 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2124 	__cond_resched_rwlock_read(lock);					\
2125 })
2126 
2127 #define cond_resched_rwlock_write(lock) ({					\
2128 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2129 	__cond_resched_rwlock_write(lock);					\
2130 })
2131 
2132 static inline void cond_resched_rcu(void)
2133 {
2134 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2135 	rcu_read_unlock();
2136 	cond_resched();
2137 	rcu_read_lock();
2138 #endif
2139 }
2140 
2141 #ifdef CONFIG_PREEMPT_DYNAMIC
2142 
2143 extern bool preempt_model_none(void);
2144 extern bool preempt_model_voluntary(void);
2145 extern bool preempt_model_full(void);
2146 
2147 #else
2148 
2149 static inline bool preempt_model_none(void)
2150 {
2151 	return IS_ENABLED(CONFIG_PREEMPT_NONE);
2152 }
2153 static inline bool preempt_model_voluntary(void)
2154 {
2155 	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2156 }
2157 static inline bool preempt_model_full(void)
2158 {
2159 	return IS_ENABLED(CONFIG_PREEMPT);
2160 }
2161 
2162 #endif
2163 
2164 static inline bool preempt_model_rt(void)
2165 {
2166 	return IS_ENABLED(CONFIG_PREEMPT_RT);
2167 }
2168 
2169 /*
2170  * Does the preemption model allow non-cooperative preemption?
2171  *
2172  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2173  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2174  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2175  * PREEMPT_NONE model.
2176  */
2177 static inline bool preempt_model_preemptible(void)
2178 {
2179 	return preempt_model_full() || preempt_model_rt();
2180 }
2181 
2182 /*
2183  * Does a critical section need to be broken due to another
2184  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2185  * but a general need for low latency)
2186  */
2187 static inline int spin_needbreak(spinlock_t *lock)
2188 {
2189 #ifdef CONFIG_PREEMPTION
2190 	return spin_is_contended(lock);
2191 #else
2192 	return 0;
2193 #endif
2194 }
2195 
2196 /*
2197  * Check if a rwlock is contended.
2198  * Returns non-zero if there is another task waiting on the rwlock.
2199  * Returns zero if the lock is not contended or the system / underlying
2200  * rwlock implementation does not support contention detection.
2201  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2202  * for low latency.
2203  */
2204 static inline int rwlock_needbreak(rwlock_t *lock)
2205 {
2206 #ifdef CONFIG_PREEMPTION
2207 	return rwlock_is_contended(lock);
2208 #else
2209 	return 0;
2210 #endif
2211 }
2212 
2213 static __always_inline bool need_resched(void)
2214 {
2215 	return unlikely(tif_need_resched());
2216 }
2217 
2218 /*
2219  * Wrappers for p->thread_info->cpu access. No-op on UP.
2220  */
2221 #ifdef CONFIG_SMP
2222 
2223 static inline unsigned int task_cpu(const struct task_struct *p)
2224 {
2225 	return READ_ONCE(task_thread_info(p)->cpu);
2226 }
2227 
2228 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2229 
2230 #else
2231 
2232 static inline unsigned int task_cpu(const struct task_struct *p)
2233 {
2234 	return 0;
2235 }
2236 
2237 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2238 {
2239 }
2240 
2241 #endif /* CONFIG_SMP */
2242 
2243 extern bool sched_task_on_rq(struct task_struct *p);
2244 extern unsigned long get_wchan(struct task_struct *p);
2245 extern struct task_struct *cpu_curr_snapshot(int cpu);
2246 
2247 /*
2248  * In order to reduce various lock holder preemption latencies provide an
2249  * interface to see if a vCPU is currently running or not.
2250  *
2251  * This allows us to terminate optimistic spin loops and block, analogous to
2252  * the native optimistic spin heuristic of testing if the lock owner task is
2253  * running or not.
2254  */
2255 #ifndef vcpu_is_preempted
2256 static inline bool vcpu_is_preempted(int cpu)
2257 {
2258 	return false;
2259 }
2260 #endif
2261 
2262 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2263 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2264 
2265 #ifndef TASK_SIZE_OF
2266 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2267 #endif
2268 
2269 #ifdef CONFIG_SMP
2270 static inline bool owner_on_cpu(struct task_struct *owner)
2271 {
2272 	/*
2273 	 * As lock holder preemption issue, we both skip spinning if
2274 	 * task is not on cpu or its cpu is preempted
2275 	 */
2276 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2277 }
2278 
2279 /* Returns effective CPU energy utilization, as seen by the scheduler */
2280 unsigned long sched_cpu_util(int cpu);
2281 #endif /* CONFIG_SMP */
2282 
2283 #ifdef CONFIG_RSEQ
2284 
2285 /*
2286  * Map the event mask on the user-space ABI enum rseq_cs_flags
2287  * for direct mask checks.
2288  */
2289 enum rseq_event_mask_bits {
2290 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2291 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2292 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2293 };
2294 
2295 enum rseq_event_mask {
2296 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2297 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2298 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2299 };
2300 
2301 static inline void rseq_set_notify_resume(struct task_struct *t)
2302 {
2303 	if (t->rseq)
2304 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2305 }
2306 
2307 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2308 
2309 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2310 					     struct pt_regs *regs)
2311 {
2312 	if (current->rseq)
2313 		__rseq_handle_notify_resume(ksig, regs);
2314 }
2315 
2316 static inline void rseq_signal_deliver(struct ksignal *ksig,
2317 				       struct pt_regs *regs)
2318 {
2319 	preempt_disable();
2320 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2321 	preempt_enable();
2322 	rseq_handle_notify_resume(ksig, regs);
2323 }
2324 
2325 /* rseq_preempt() requires preemption to be disabled. */
2326 static inline void rseq_preempt(struct task_struct *t)
2327 {
2328 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2329 	rseq_set_notify_resume(t);
2330 }
2331 
2332 /* rseq_migrate() requires preemption to be disabled. */
2333 static inline void rseq_migrate(struct task_struct *t)
2334 {
2335 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2336 	rseq_set_notify_resume(t);
2337 }
2338 
2339 /*
2340  * If parent process has a registered restartable sequences area, the
2341  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2342  */
2343 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2344 {
2345 	if (clone_flags & CLONE_VM) {
2346 		t->rseq = NULL;
2347 		t->rseq_sig = 0;
2348 		t->rseq_event_mask = 0;
2349 	} else {
2350 		t->rseq = current->rseq;
2351 		t->rseq_sig = current->rseq_sig;
2352 		t->rseq_event_mask = current->rseq_event_mask;
2353 	}
2354 }
2355 
2356 static inline void rseq_execve(struct task_struct *t)
2357 {
2358 	t->rseq = NULL;
2359 	t->rseq_sig = 0;
2360 	t->rseq_event_mask = 0;
2361 }
2362 
2363 #else
2364 
2365 static inline void rseq_set_notify_resume(struct task_struct *t)
2366 {
2367 }
2368 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2369 					     struct pt_regs *regs)
2370 {
2371 }
2372 static inline void rseq_signal_deliver(struct ksignal *ksig,
2373 				       struct pt_regs *regs)
2374 {
2375 }
2376 static inline void rseq_preempt(struct task_struct *t)
2377 {
2378 }
2379 static inline void rseq_migrate(struct task_struct *t)
2380 {
2381 }
2382 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2383 {
2384 }
2385 static inline void rseq_execve(struct task_struct *t)
2386 {
2387 }
2388 
2389 #endif
2390 
2391 #ifdef CONFIG_DEBUG_RSEQ
2392 
2393 void rseq_syscall(struct pt_regs *regs);
2394 
2395 #else
2396 
2397 static inline void rseq_syscall(struct pt_regs *regs)
2398 {
2399 }
2400 
2401 #endif
2402 
2403 #ifdef CONFIG_SCHED_CORE
2404 extern void sched_core_free(struct task_struct *tsk);
2405 extern void sched_core_fork(struct task_struct *p);
2406 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2407 				unsigned long uaddr);
2408 #else
2409 static inline void sched_core_free(struct task_struct *tsk) { }
2410 static inline void sched_core_fork(struct task_struct *p) { }
2411 #endif
2412 
2413 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2414 
2415 #endif
2416