1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/mutex.h> 18 #include <linux/plist.h> 19 #include <linux/hrtimer.h> 20 #include <linux/irqflags.h> 21 #include <linux/seccomp.h> 22 #include <linux/nodemask.h> 23 #include <linux/rcupdate.h> 24 #include <linux/refcount.h> 25 #include <linux/resource.h> 26 #include <linux/latencytop.h> 27 #include <linux/sched/prio.h> 28 #include <linux/sched/types.h> 29 #include <linux/signal_types.h> 30 #include <linux/syscall_user_dispatch.h> 31 #include <linux/mm_types_task.h> 32 #include <linux/task_io_accounting.h> 33 #include <linux/posix-timers.h> 34 #include <linux/rseq.h> 35 #include <linux/seqlock.h> 36 #include <linux/kcsan.h> 37 #include <linux/rv.h> 38 #include <asm/kmap_size.h> 39 40 /* task_struct member predeclarations (sorted alphabetically): */ 41 struct audit_context; 42 struct backing_dev_info; 43 struct bio_list; 44 struct blk_plug; 45 struct bpf_local_storage; 46 struct bpf_run_ctx; 47 struct capture_control; 48 struct cfs_rq; 49 struct fs_struct; 50 struct futex_pi_state; 51 struct io_context; 52 struct io_uring_task; 53 struct mempolicy; 54 struct nameidata; 55 struct nsproxy; 56 struct perf_event_context; 57 struct pid_namespace; 58 struct pipe_inode_info; 59 struct rcu_node; 60 struct reclaim_state; 61 struct robust_list_head; 62 struct root_domain; 63 struct rq; 64 struct sched_attr; 65 struct sched_param; 66 struct seq_file; 67 struct sighand_struct; 68 struct signal_struct; 69 struct task_delay_info; 70 struct task_group; 71 72 /* 73 * Task state bitmask. NOTE! These bits are also 74 * encoded in fs/proc/array.c: get_task_state(). 75 * 76 * We have two separate sets of flags: task->state 77 * is about runnability, while task->exit_state are 78 * about the task exiting. Confusing, but this way 79 * modifying one set can't modify the other one by 80 * mistake. 81 */ 82 83 /* Used in tsk->state: */ 84 #define TASK_RUNNING 0x0000 85 #define TASK_INTERRUPTIBLE 0x0001 86 #define TASK_UNINTERRUPTIBLE 0x0002 87 #define __TASK_STOPPED 0x0004 88 #define __TASK_TRACED 0x0008 89 /* Used in tsk->exit_state: */ 90 #define EXIT_DEAD 0x0010 91 #define EXIT_ZOMBIE 0x0020 92 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 93 /* Used in tsk->state again: */ 94 #define TASK_PARKED 0x0040 95 #define TASK_DEAD 0x0080 96 #define TASK_WAKEKILL 0x0100 97 #define TASK_WAKING 0x0200 98 #define TASK_NOLOAD 0x0400 99 #define TASK_NEW 0x0800 100 /* RT specific auxilliary flag to mark RT lock waiters */ 101 #define TASK_RTLOCK_WAIT 0x1000 102 #define TASK_STATE_MAX 0x2000 103 104 /* Convenience macros for the sake of set_current_state: */ 105 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 106 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 107 #define TASK_TRACED __TASK_TRACED 108 109 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 110 111 /* Convenience macros for the sake of wake_up(): */ 112 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 113 114 /* get_task_state(): */ 115 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 116 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 117 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 118 TASK_PARKED) 119 120 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING) 121 122 #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0) 123 #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0) 124 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0) 125 126 /* 127 * Special states are those that do not use the normal wait-loop pattern. See 128 * the comment with set_special_state(). 129 */ 130 #define is_special_task_state(state) \ 131 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 132 133 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 134 # define debug_normal_state_change(state_value) \ 135 do { \ 136 WARN_ON_ONCE(is_special_task_state(state_value)); \ 137 current->task_state_change = _THIS_IP_; \ 138 } while (0) 139 140 # define debug_special_state_change(state_value) \ 141 do { \ 142 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 143 current->task_state_change = _THIS_IP_; \ 144 } while (0) 145 146 # define debug_rtlock_wait_set_state() \ 147 do { \ 148 current->saved_state_change = current->task_state_change;\ 149 current->task_state_change = _THIS_IP_; \ 150 } while (0) 151 152 # define debug_rtlock_wait_restore_state() \ 153 do { \ 154 current->task_state_change = current->saved_state_change;\ 155 } while (0) 156 157 #else 158 # define debug_normal_state_change(cond) do { } while (0) 159 # define debug_special_state_change(cond) do { } while (0) 160 # define debug_rtlock_wait_set_state() do { } while (0) 161 # define debug_rtlock_wait_restore_state() do { } while (0) 162 #endif 163 164 /* 165 * set_current_state() includes a barrier so that the write of current->state 166 * is correctly serialised wrt the caller's subsequent test of whether to 167 * actually sleep: 168 * 169 * for (;;) { 170 * set_current_state(TASK_UNINTERRUPTIBLE); 171 * if (CONDITION) 172 * break; 173 * 174 * schedule(); 175 * } 176 * __set_current_state(TASK_RUNNING); 177 * 178 * If the caller does not need such serialisation (because, for instance, the 179 * CONDITION test and condition change and wakeup are under the same lock) then 180 * use __set_current_state(). 181 * 182 * The above is typically ordered against the wakeup, which does: 183 * 184 * CONDITION = 1; 185 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 186 * 187 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before 188 * accessing p->state. 189 * 190 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 191 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 192 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 193 * 194 * However, with slightly different timing the wakeup TASK_RUNNING store can 195 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 196 * a problem either because that will result in one extra go around the loop 197 * and our @cond test will save the day. 198 * 199 * Also see the comments of try_to_wake_up(). 200 */ 201 #define __set_current_state(state_value) \ 202 do { \ 203 debug_normal_state_change((state_value)); \ 204 WRITE_ONCE(current->__state, (state_value)); \ 205 } while (0) 206 207 #define set_current_state(state_value) \ 208 do { \ 209 debug_normal_state_change((state_value)); \ 210 smp_store_mb(current->__state, (state_value)); \ 211 } while (0) 212 213 /* 214 * set_special_state() should be used for those states when the blocking task 215 * can not use the regular condition based wait-loop. In that case we must 216 * serialize against wakeups such that any possible in-flight TASK_RUNNING 217 * stores will not collide with our state change. 218 */ 219 #define set_special_state(state_value) \ 220 do { \ 221 unsigned long flags; /* may shadow */ \ 222 \ 223 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 224 debug_special_state_change((state_value)); \ 225 WRITE_ONCE(current->__state, (state_value)); \ 226 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 227 } while (0) 228 229 /* 230 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks 231 * 232 * RT's spin/rwlock substitutions are state preserving. The state of the 233 * task when blocking on the lock is saved in task_struct::saved_state and 234 * restored after the lock has been acquired. These operations are 235 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT 236 * lock related wakeups while the task is blocked on the lock are 237 * redirected to operate on task_struct::saved_state to ensure that these 238 * are not dropped. On restore task_struct::saved_state is set to 239 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail. 240 * 241 * The lock operation looks like this: 242 * 243 * current_save_and_set_rtlock_wait_state(); 244 * for (;;) { 245 * if (try_lock()) 246 * break; 247 * raw_spin_unlock_irq(&lock->wait_lock); 248 * schedule_rtlock(); 249 * raw_spin_lock_irq(&lock->wait_lock); 250 * set_current_state(TASK_RTLOCK_WAIT); 251 * } 252 * current_restore_rtlock_saved_state(); 253 */ 254 #define current_save_and_set_rtlock_wait_state() \ 255 do { \ 256 lockdep_assert_irqs_disabled(); \ 257 raw_spin_lock(¤t->pi_lock); \ 258 current->saved_state = current->__state; \ 259 debug_rtlock_wait_set_state(); \ 260 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \ 261 raw_spin_unlock(¤t->pi_lock); \ 262 } while (0); 263 264 #define current_restore_rtlock_saved_state() \ 265 do { \ 266 lockdep_assert_irqs_disabled(); \ 267 raw_spin_lock(¤t->pi_lock); \ 268 debug_rtlock_wait_restore_state(); \ 269 WRITE_ONCE(current->__state, current->saved_state); \ 270 current->saved_state = TASK_RUNNING; \ 271 raw_spin_unlock(¤t->pi_lock); \ 272 } while (0); 273 274 #define get_current_state() READ_ONCE(current->__state) 275 276 /* 277 * Define the task command name length as enum, then it can be visible to 278 * BPF programs. 279 */ 280 enum { 281 TASK_COMM_LEN = 16, 282 }; 283 284 extern void scheduler_tick(void); 285 286 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 287 288 extern long schedule_timeout(long timeout); 289 extern long schedule_timeout_interruptible(long timeout); 290 extern long schedule_timeout_killable(long timeout); 291 extern long schedule_timeout_uninterruptible(long timeout); 292 extern long schedule_timeout_idle(long timeout); 293 asmlinkage void schedule(void); 294 extern void schedule_preempt_disabled(void); 295 asmlinkage void preempt_schedule_irq(void); 296 #ifdef CONFIG_PREEMPT_RT 297 extern void schedule_rtlock(void); 298 #endif 299 300 extern int __must_check io_schedule_prepare(void); 301 extern void io_schedule_finish(int token); 302 extern long io_schedule_timeout(long timeout); 303 extern void io_schedule(void); 304 305 /** 306 * struct prev_cputime - snapshot of system and user cputime 307 * @utime: time spent in user mode 308 * @stime: time spent in system mode 309 * @lock: protects the above two fields 310 * 311 * Stores previous user/system time values such that we can guarantee 312 * monotonicity. 313 */ 314 struct prev_cputime { 315 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 316 u64 utime; 317 u64 stime; 318 raw_spinlock_t lock; 319 #endif 320 }; 321 322 enum vtime_state { 323 /* Task is sleeping or running in a CPU with VTIME inactive: */ 324 VTIME_INACTIVE = 0, 325 /* Task is idle */ 326 VTIME_IDLE, 327 /* Task runs in kernelspace in a CPU with VTIME active: */ 328 VTIME_SYS, 329 /* Task runs in userspace in a CPU with VTIME active: */ 330 VTIME_USER, 331 /* Task runs as guests in a CPU with VTIME active: */ 332 VTIME_GUEST, 333 }; 334 335 struct vtime { 336 seqcount_t seqcount; 337 unsigned long long starttime; 338 enum vtime_state state; 339 unsigned int cpu; 340 u64 utime; 341 u64 stime; 342 u64 gtime; 343 }; 344 345 /* 346 * Utilization clamp constraints. 347 * @UCLAMP_MIN: Minimum utilization 348 * @UCLAMP_MAX: Maximum utilization 349 * @UCLAMP_CNT: Utilization clamp constraints count 350 */ 351 enum uclamp_id { 352 UCLAMP_MIN = 0, 353 UCLAMP_MAX, 354 UCLAMP_CNT 355 }; 356 357 #ifdef CONFIG_SMP 358 extern struct root_domain def_root_domain; 359 extern struct mutex sched_domains_mutex; 360 #endif 361 362 struct sched_info { 363 #ifdef CONFIG_SCHED_INFO 364 /* Cumulative counters: */ 365 366 /* # of times we have run on this CPU: */ 367 unsigned long pcount; 368 369 /* Time spent waiting on a runqueue: */ 370 unsigned long long run_delay; 371 372 /* Timestamps: */ 373 374 /* When did we last run on a CPU? */ 375 unsigned long long last_arrival; 376 377 /* When were we last queued to run? */ 378 unsigned long long last_queued; 379 380 #endif /* CONFIG_SCHED_INFO */ 381 }; 382 383 /* 384 * Integer metrics need fixed point arithmetic, e.g., sched/fair 385 * has a few: load, load_avg, util_avg, freq, and capacity. 386 * 387 * We define a basic fixed point arithmetic range, and then formalize 388 * all these metrics based on that basic range. 389 */ 390 # define SCHED_FIXEDPOINT_SHIFT 10 391 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 392 393 /* Increase resolution of cpu_capacity calculations */ 394 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 395 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 396 397 struct load_weight { 398 unsigned long weight; 399 u32 inv_weight; 400 }; 401 402 /** 403 * struct util_est - Estimation utilization of FAIR tasks 404 * @enqueued: instantaneous estimated utilization of a task/cpu 405 * @ewma: the Exponential Weighted Moving Average (EWMA) 406 * utilization of a task 407 * 408 * Support data structure to track an Exponential Weighted Moving Average 409 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 410 * average each time a task completes an activation. Sample's weight is chosen 411 * so that the EWMA will be relatively insensitive to transient changes to the 412 * task's workload. 413 * 414 * The enqueued attribute has a slightly different meaning for tasks and cpus: 415 * - task: the task's util_avg at last task dequeue time 416 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 417 * Thus, the util_est.enqueued of a task represents the contribution on the 418 * estimated utilization of the CPU where that task is currently enqueued. 419 * 420 * Only for tasks we track a moving average of the past instantaneous 421 * estimated utilization. This allows to absorb sporadic drops in utilization 422 * of an otherwise almost periodic task. 423 * 424 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg 425 * updates. When a task is dequeued, its util_est should not be updated if its 426 * util_avg has not been updated in the meantime. 427 * This information is mapped into the MSB bit of util_est.enqueued at dequeue 428 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg 429 * for a task) it is safe to use MSB. 430 */ 431 struct util_est { 432 unsigned int enqueued; 433 unsigned int ewma; 434 #define UTIL_EST_WEIGHT_SHIFT 2 435 #define UTIL_AVG_UNCHANGED 0x80000000 436 } __attribute__((__aligned__(sizeof(u64)))); 437 438 /* 439 * The load/runnable/util_avg accumulates an infinite geometric series 440 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). 441 * 442 * [load_avg definition] 443 * 444 * load_avg = runnable% * scale_load_down(load) 445 * 446 * [runnable_avg definition] 447 * 448 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE 449 * 450 * [util_avg definition] 451 * 452 * util_avg = running% * SCHED_CAPACITY_SCALE 453 * 454 * where runnable% is the time ratio that a sched_entity is runnable and 455 * running% the time ratio that a sched_entity is running. 456 * 457 * For cfs_rq, they are the aggregated values of all runnable and blocked 458 * sched_entities. 459 * 460 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU 461 * capacity scaling. The scaling is done through the rq_clock_pelt that is used 462 * for computing those signals (see update_rq_clock_pelt()) 463 * 464 * N.B., the above ratios (runnable% and running%) themselves are in the 465 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 466 * to as large a range as necessary. This is for example reflected by 467 * util_avg's SCHED_CAPACITY_SCALE. 468 * 469 * [Overflow issue] 470 * 471 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 472 * with the highest load (=88761), always runnable on a single cfs_rq, 473 * and should not overflow as the number already hits PID_MAX_LIMIT. 474 * 475 * For all other cases (including 32-bit kernels), struct load_weight's 476 * weight will overflow first before we do, because: 477 * 478 * Max(load_avg) <= Max(load.weight) 479 * 480 * Then it is the load_weight's responsibility to consider overflow 481 * issues. 482 */ 483 struct sched_avg { 484 u64 last_update_time; 485 u64 load_sum; 486 u64 runnable_sum; 487 u32 util_sum; 488 u32 period_contrib; 489 unsigned long load_avg; 490 unsigned long runnable_avg; 491 unsigned long util_avg; 492 struct util_est util_est; 493 } ____cacheline_aligned; 494 495 struct sched_statistics { 496 #ifdef CONFIG_SCHEDSTATS 497 u64 wait_start; 498 u64 wait_max; 499 u64 wait_count; 500 u64 wait_sum; 501 u64 iowait_count; 502 u64 iowait_sum; 503 504 u64 sleep_start; 505 u64 sleep_max; 506 s64 sum_sleep_runtime; 507 508 u64 block_start; 509 u64 block_max; 510 s64 sum_block_runtime; 511 512 u64 exec_max; 513 u64 slice_max; 514 515 u64 nr_migrations_cold; 516 u64 nr_failed_migrations_affine; 517 u64 nr_failed_migrations_running; 518 u64 nr_failed_migrations_hot; 519 u64 nr_forced_migrations; 520 521 u64 nr_wakeups; 522 u64 nr_wakeups_sync; 523 u64 nr_wakeups_migrate; 524 u64 nr_wakeups_local; 525 u64 nr_wakeups_remote; 526 u64 nr_wakeups_affine; 527 u64 nr_wakeups_affine_attempts; 528 u64 nr_wakeups_passive; 529 u64 nr_wakeups_idle; 530 531 #ifdef CONFIG_SCHED_CORE 532 u64 core_forceidle_sum; 533 #endif 534 #endif /* CONFIG_SCHEDSTATS */ 535 } ____cacheline_aligned; 536 537 struct sched_entity { 538 /* For load-balancing: */ 539 struct load_weight load; 540 struct rb_node run_node; 541 struct list_head group_node; 542 unsigned int on_rq; 543 544 u64 exec_start; 545 u64 sum_exec_runtime; 546 u64 vruntime; 547 u64 prev_sum_exec_runtime; 548 549 u64 nr_migrations; 550 551 #ifdef CONFIG_FAIR_GROUP_SCHED 552 int depth; 553 struct sched_entity *parent; 554 /* rq on which this entity is (to be) queued: */ 555 struct cfs_rq *cfs_rq; 556 /* rq "owned" by this entity/group: */ 557 struct cfs_rq *my_q; 558 /* cached value of my_q->h_nr_running */ 559 unsigned long runnable_weight; 560 #endif 561 562 #ifdef CONFIG_SMP 563 /* 564 * Per entity load average tracking. 565 * 566 * Put into separate cache line so it does not 567 * collide with read-mostly values above. 568 */ 569 struct sched_avg avg; 570 #endif 571 }; 572 573 struct sched_rt_entity { 574 struct list_head run_list; 575 unsigned long timeout; 576 unsigned long watchdog_stamp; 577 unsigned int time_slice; 578 unsigned short on_rq; 579 unsigned short on_list; 580 581 struct sched_rt_entity *back; 582 #ifdef CONFIG_RT_GROUP_SCHED 583 struct sched_rt_entity *parent; 584 /* rq on which this entity is (to be) queued: */ 585 struct rt_rq *rt_rq; 586 /* rq "owned" by this entity/group: */ 587 struct rt_rq *my_q; 588 #endif 589 } __randomize_layout; 590 591 struct sched_dl_entity { 592 struct rb_node rb_node; 593 594 /* 595 * Original scheduling parameters. Copied here from sched_attr 596 * during sched_setattr(), they will remain the same until 597 * the next sched_setattr(). 598 */ 599 u64 dl_runtime; /* Maximum runtime for each instance */ 600 u64 dl_deadline; /* Relative deadline of each instance */ 601 u64 dl_period; /* Separation of two instances (period) */ 602 u64 dl_bw; /* dl_runtime / dl_period */ 603 u64 dl_density; /* dl_runtime / dl_deadline */ 604 605 /* 606 * Actual scheduling parameters. Initialized with the values above, 607 * they are continuously updated during task execution. Note that 608 * the remaining runtime could be < 0 in case we are in overrun. 609 */ 610 s64 runtime; /* Remaining runtime for this instance */ 611 u64 deadline; /* Absolute deadline for this instance */ 612 unsigned int flags; /* Specifying the scheduler behaviour */ 613 614 /* 615 * Some bool flags: 616 * 617 * @dl_throttled tells if we exhausted the runtime. If so, the 618 * task has to wait for a replenishment to be performed at the 619 * next firing of dl_timer. 620 * 621 * @dl_yielded tells if task gave up the CPU before consuming 622 * all its available runtime during the last job. 623 * 624 * @dl_non_contending tells if the task is inactive while still 625 * contributing to the active utilization. In other words, it 626 * indicates if the inactive timer has been armed and its handler 627 * has not been executed yet. This flag is useful to avoid race 628 * conditions between the inactive timer handler and the wakeup 629 * code. 630 * 631 * @dl_overrun tells if the task asked to be informed about runtime 632 * overruns. 633 */ 634 unsigned int dl_throttled : 1; 635 unsigned int dl_yielded : 1; 636 unsigned int dl_non_contending : 1; 637 unsigned int dl_overrun : 1; 638 639 /* 640 * Bandwidth enforcement timer. Each -deadline task has its 641 * own bandwidth to be enforced, thus we need one timer per task. 642 */ 643 struct hrtimer dl_timer; 644 645 /* 646 * Inactive timer, responsible for decreasing the active utilization 647 * at the "0-lag time". When a -deadline task blocks, it contributes 648 * to GRUB's active utilization until the "0-lag time", hence a 649 * timer is needed to decrease the active utilization at the correct 650 * time. 651 */ 652 struct hrtimer inactive_timer; 653 654 #ifdef CONFIG_RT_MUTEXES 655 /* 656 * Priority Inheritance. When a DEADLINE scheduling entity is boosted 657 * pi_se points to the donor, otherwise points to the dl_se it belongs 658 * to (the original one/itself). 659 */ 660 struct sched_dl_entity *pi_se; 661 #endif 662 }; 663 664 #ifdef CONFIG_UCLAMP_TASK 665 /* Number of utilization clamp buckets (shorter alias) */ 666 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 667 668 /* 669 * Utilization clamp for a scheduling entity 670 * @value: clamp value "assigned" to a se 671 * @bucket_id: bucket index corresponding to the "assigned" value 672 * @active: the se is currently refcounted in a rq's bucket 673 * @user_defined: the requested clamp value comes from user-space 674 * 675 * The bucket_id is the index of the clamp bucket matching the clamp value 676 * which is pre-computed and stored to avoid expensive integer divisions from 677 * the fast path. 678 * 679 * The active bit is set whenever a task has got an "effective" value assigned, 680 * which can be different from the clamp value "requested" from user-space. 681 * This allows to know a task is refcounted in the rq's bucket corresponding 682 * to the "effective" bucket_id. 683 * 684 * The user_defined bit is set whenever a task has got a task-specific clamp 685 * value requested from userspace, i.e. the system defaults apply to this task 686 * just as a restriction. This allows to relax default clamps when a less 687 * restrictive task-specific value has been requested, thus allowing to 688 * implement a "nice" semantic. For example, a task running with a 20% 689 * default boost can still drop its own boosting to 0%. 690 */ 691 struct uclamp_se { 692 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 693 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 694 unsigned int active : 1; 695 unsigned int user_defined : 1; 696 }; 697 #endif /* CONFIG_UCLAMP_TASK */ 698 699 union rcu_special { 700 struct { 701 u8 blocked; 702 u8 need_qs; 703 u8 exp_hint; /* Hint for performance. */ 704 u8 need_mb; /* Readers need smp_mb(). */ 705 } b; /* Bits. */ 706 u32 s; /* Set of bits. */ 707 }; 708 709 enum perf_event_task_context { 710 perf_invalid_context = -1, 711 perf_hw_context = 0, 712 perf_sw_context, 713 perf_nr_task_contexts, 714 }; 715 716 struct wake_q_node { 717 struct wake_q_node *next; 718 }; 719 720 struct kmap_ctrl { 721 #ifdef CONFIG_KMAP_LOCAL 722 int idx; 723 pte_t pteval[KM_MAX_IDX]; 724 #endif 725 }; 726 727 struct task_struct { 728 #ifdef CONFIG_THREAD_INFO_IN_TASK 729 /* 730 * For reasons of header soup (see current_thread_info()), this 731 * must be the first element of task_struct. 732 */ 733 struct thread_info thread_info; 734 #endif 735 unsigned int __state; 736 737 #ifdef CONFIG_PREEMPT_RT 738 /* saved state for "spinlock sleepers" */ 739 unsigned int saved_state; 740 #endif 741 742 /* 743 * This begins the randomizable portion of task_struct. Only 744 * scheduling-critical items should be added above here. 745 */ 746 randomized_struct_fields_start 747 748 void *stack; 749 refcount_t usage; 750 /* Per task flags (PF_*), defined further below: */ 751 unsigned int flags; 752 unsigned int ptrace; 753 754 #ifdef CONFIG_SMP 755 int on_cpu; 756 struct __call_single_node wake_entry; 757 unsigned int wakee_flips; 758 unsigned long wakee_flip_decay_ts; 759 struct task_struct *last_wakee; 760 761 /* 762 * recent_used_cpu is initially set as the last CPU used by a task 763 * that wakes affine another task. Waker/wakee relationships can 764 * push tasks around a CPU where each wakeup moves to the next one. 765 * Tracking a recently used CPU allows a quick search for a recently 766 * used CPU that may be idle. 767 */ 768 int recent_used_cpu; 769 int wake_cpu; 770 #endif 771 int on_rq; 772 773 int prio; 774 int static_prio; 775 int normal_prio; 776 unsigned int rt_priority; 777 778 struct sched_entity se; 779 struct sched_rt_entity rt; 780 struct sched_dl_entity dl; 781 const struct sched_class *sched_class; 782 783 #ifdef CONFIG_SCHED_CORE 784 struct rb_node core_node; 785 unsigned long core_cookie; 786 unsigned int core_occupation; 787 #endif 788 789 #ifdef CONFIG_CGROUP_SCHED 790 struct task_group *sched_task_group; 791 #endif 792 793 #ifdef CONFIG_UCLAMP_TASK 794 /* 795 * Clamp values requested for a scheduling entity. 796 * Must be updated with task_rq_lock() held. 797 */ 798 struct uclamp_se uclamp_req[UCLAMP_CNT]; 799 /* 800 * Effective clamp values used for a scheduling entity. 801 * Must be updated with task_rq_lock() held. 802 */ 803 struct uclamp_se uclamp[UCLAMP_CNT]; 804 #endif 805 806 struct sched_statistics stats; 807 808 #ifdef CONFIG_PREEMPT_NOTIFIERS 809 /* List of struct preempt_notifier: */ 810 struct hlist_head preempt_notifiers; 811 #endif 812 813 #ifdef CONFIG_BLK_DEV_IO_TRACE 814 unsigned int btrace_seq; 815 #endif 816 817 unsigned int policy; 818 int nr_cpus_allowed; 819 const cpumask_t *cpus_ptr; 820 cpumask_t *user_cpus_ptr; 821 cpumask_t cpus_mask; 822 void *migration_pending; 823 #ifdef CONFIG_SMP 824 unsigned short migration_disabled; 825 #endif 826 unsigned short migration_flags; 827 828 #ifdef CONFIG_PREEMPT_RCU 829 int rcu_read_lock_nesting; 830 union rcu_special rcu_read_unlock_special; 831 struct list_head rcu_node_entry; 832 struct rcu_node *rcu_blocked_node; 833 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 834 835 #ifdef CONFIG_TASKS_RCU 836 unsigned long rcu_tasks_nvcsw; 837 u8 rcu_tasks_holdout; 838 u8 rcu_tasks_idx; 839 int rcu_tasks_idle_cpu; 840 struct list_head rcu_tasks_holdout_list; 841 #endif /* #ifdef CONFIG_TASKS_RCU */ 842 843 #ifdef CONFIG_TASKS_TRACE_RCU 844 int trc_reader_nesting; 845 int trc_ipi_to_cpu; 846 union rcu_special trc_reader_special; 847 struct list_head trc_holdout_list; 848 struct list_head trc_blkd_node; 849 int trc_blkd_cpu; 850 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 851 852 struct sched_info sched_info; 853 854 struct list_head tasks; 855 #ifdef CONFIG_SMP 856 struct plist_node pushable_tasks; 857 struct rb_node pushable_dl_tasks; 858 #endif 859 860 struct mm_struct *mm; 861 struct mm_struct *active_mm; 862 863 /* Per-thread vma caching: */ 864 865 #ifdef SPLIT_RSS_COUNTING 866 struct task_rss_stat rss_stat; 867 #endif 868 int exit_state; 869 int exit_code; 870 int exit_signal; 871 /* The signal sent when the parent dies: */ 872 int pdeath_signal; 873 /* JOBCTL_*, siglock protected: */ 874 unsigned long jobctl; 875 876 /* Used for emulating ABI behavior of previous Linux versions: */ 877 unsigned int personality; 878 879 /* Scheduler bits, serialized by scheduler locks: */ 880 unsigned sched_reset_on_fork:1; 881 unsigned sched_contributes_to_load:1; 882 unsigned sched_migrated:1; 883 #ifdef CONFIG_PSI 884 unsigned sched_psi_wake_requeue:1; 885 #endif 886 887 /* Force alignment to the next boundary: */ 888 unsigned :0; 889 890 /* Unserialized, strictly 'current' */ 891 892 /* 893 * This field must not be in the scheduler word above due to wakelist 894 * queueing no longer being serialized by p->on_cpu. However: 895 * 896 * p->XXX = X; ttwu() 897 * schedule() if (p->on_rq && ..) // false 898 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true 899 * deactivate_task() ttwu_queue_wakelist()) 900 * p->on_rq = 0; p->sched_remote_wakeup = Y; 901 * 902 * guarantees all stores of 'current' are visible before 903 * ->sched_remote_wakeup gets used, so it can be in this word. 904 */ 905 unsigned sched_remote_wakeup:1; 906 907 /* Bit to tell LSMs we're in execve(): */ 908 unsigned in_execve:1; 909 unsigned in_iowait:1; 910 #ifndef TIF_RESTORE_SIGMASK 911 unsigned restore_sigmask:1; 912 #endif 913 #ifdef CONFIG_MEMCG 914 unsigned in_user_fault:1; 915 #endif 916 #ifdef CONFIG_LRU_GEN 917 /* whether the LRU algorithm may apply to this access */ 918 unsigned in_lru_fault:1; 919 #endif 920 #ifdef CONFIG_COMPAT_BRK 921 unsigned brk_randomized:1; 922 #endif 923 #ifdef CONFIG_CGROUPS 924 /* disallow userland-initiated cgroup migration */ 925 unsigned no_cgroup_migration:1; 926 /* task is frozen/stopped (used by the cgroup freezer) */ 927 unsigned frozen:1; 928 #endif 929 #ifdef CONFIG_BLK_CGROUP 930 unsigned use_memdelay:1; 931 #endif 932 #ifdef CONFIG_PSI 933 /* Stalled due to lack of memory */ 934 unsigned in_memstall:1; 935 #endif 936 #ifdef CONFIG_PAGE_OWNER 937 /* Used by page_owner=on to detect recursion in page tracking. */ 938 unsigned in_page_owner:1; 939 #endif 940 #ifdef CONFIG_EVENTFD 941 /* Recursion prevention for eventfd_signal() */ 942 unsigned in_eventfd_signal:1; 943 #endif 944 #ifdef CONFIG_IOMMU_SVA 945 unsigned pasid_activated:1; 946 #endif 947 #ifdef CONFIG_CPU_SUP_INTEL 948 unsigned reported_split_lock:1; 949 #endif 950 #ifdef CONFIG_TASK_DELAY_ACCT 951 /* delay due to memory thrashing */ 952 unsigned in_thrashing:1; 953 #endif 954 955 unsigned long atomic_flags; /* Flags requiring atomic access. */ 956 957 struct restart_block restart_block; 958 959 pid_t pid; 960 pid_t tgid; 961 962 #ifdef CONFIG_STACKPROTECTOR 963 /* Canary value for the -fstack-protector GCC feature: */ 964 unsigned long stack_canary; 965 #endif 966 /* 967 * Pointers to the (original) parent process, youngest child, younger sibling, 968 * older sibling, respectively. (p->father can be replaced with 969 * p->real_parent->pid) 970 */ 971 972 /* Real parent process: */ 973 struct task_struct __rcu *real_parent; 974 975 /* Recipient of SIGCHLD, wait4() reports: */ 976 struct task_struct __rcu *parent; 977 978 /* 979 * Children/sibling form the list of natural children: 980 */ 981 struct list_head children; 982 struct list_head sibling; 983 struct task_struct *group_leader; 984 985 /* 986 * 'ptraced' is the list of tasks this task is using ptrace() on. 987 * 988 * This includes both natural children and PTRACE_ATTACH targets. 989 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 990 */ 991 struct list_head ptraced; 992 struct list_head ptrace_entry; 993 994 /* PID/PID hash table linkage. */ 995 struct pid *thread_pid; 996 struct hlist_node pid_links[PIDTYPE_MAX]; 997 struct list_head thread_group; 998 struct list_head thread_node; 999 1000 struct completion *vfork_done; 1001 1002 /* CLONE_CHILD_SETTID: */ 1003 int __user *set_child_tid; 1004 1005 /* CLONE_CHILD_CLEARTID: */ 1006 int __user *clear_child_tid; 1007 1008 /* PF_KTHREAD | PF_IO_WORKER */ 1009 void *worker_private; 1010 1011 u64 utime; 1012 u64 stime; 1013 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1014 u64 utimescaled; 1015 u64 stimescaled; 1016 #endif 1017 u64 gtime; 1018 struct prev_cputime prev_cputime; 1019 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1020 struct vtime vtime; 1021 #endif 1022 1023 #ifdef CONFIG_NO_HZ_FULL 1024 atomic_t tick_dep_mask; 1025 #endif 1026 /* Context switch counts: */ 1027 unsigned long nvcsw; 1028 unsigned long nivcsw; 1029 1030 /* Monotonic time in nsecs: */ 1031 u64 start_time; 1032 1033 /* Boot based time in nsecs: */ 1034 u64 start_boottime; 1035 1036 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 1037 unsigned long min_flt; 1038 unsigned long maj_flt; 1039 1040 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 1041 struct posix_cputimers posix_cputimers; 1042 1043 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 1044 struct posix_cputimers_work posix_cputimers_work; 1045 #endif 1046 1047 /* Process credentials: */ 1048 1049 /* Tracer's credentials at attach: */ 1050 const struct cred __rcu *ptracer_cred; 1051 1052 /* Objective and real subjective task credentials (COW): */ 1053 const struct cred __rcu *real_cred; 1054 1055 /* Effective (overridable) subjective task credentials (COW): */ 1056 const struct cred __rcu *cred; 1057 1058 #ifdef CONFIG_KEYS 1059 /* Cached requested key. */ 1060 struct key *cached_requested_key; 1061 #endif 1062 1063 /* 1064 * executable name, excluding path. 1065 * 1066 * - normally initialized setup_new_exec() 1067 * - access it with [gs]et_task_comm() 1068 * - lock it with task_lock() 1069 */ 1070 char comm[TASK_COMM_LEN]; 1071 1072 struct nameidata *nameidata; 1073 1074 #ifdef CONFIG_SYSVIPC 1075 struct sysv_sem sysvsem; 1076 struct sysv_shm sysvshm; 1077 #endif 1078 #ifdef CONFIG_DETECT_HUNG_TASK 1079 unsigned long last_switch_count; 1080 unsigned long last_switch_time; 1081 #endif 1082 /* Filesystem information: */ 1083 struct fs_struct *fs; 1084 1085 /* Open file information: */ 1086 struct files_struct *files; 1087 1088 #ifdef CONFIG_IO_URING 1089 struct io_uring_task *io_uring; 1090 #endif 1091 1092 /* Namespaces: */ 1093 struct nsproxy *nsproxy; 1094 1095 /* Signal handlers: */ 1096 struct signal_struct *signal; 1097 struct sighand_struct __rcu *sighand; 1098 sigset_t blocked; 1099 sigset_t real_blocked; 1100 /* Restored if set_restore_sigmask() was used: */ 1101 sigset_t saved_sigmask; 1102 struct sigpending pending; 1103 unsigned long sas_ss_sp; 1104 size_t sas_ss_size; 1105 unsigned int sas_ss_flags; 1106 1107 struct callback_head *task_works; 1108 1109 #ifdef CONFIG_AUDIT 1110 #ifdef CONFIG_AUDITSYSCALL 1111 struct audit_context *audit_context; 1112 #endif 1113 kuid_t loginuid; 1114 unsigned int sessionid; 1115 #endif 1116 struct seccomp seccomp; 1117 struct syscall_user_dispatch syscall_dispatch; 1118 1119 /* Thread group tracking: */ 1120 u64 parent_exec_id; 1121 u64 self_exec_id; 1122 1123 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 1124 spinlock_t alloc_lock; 1125 1126 /* Protection of the PI data structures: */ 1127 raw_spinlock_t pi_lock; 1128 1129 struct wake_q_node wake_q; 1130 1131 #ifdef CONFIG_RT_MUTEXES 1132 /* PI waiters blocked on a rt_mutex held by this task: */ 1133 struct rb_root_cached pi_waiters; 1134 /* Updated under owner's pi_lock and rq lock */ 1135 struct task_struct *pi_top_task; 1136 /* Deadlock detection and priority inheritance handling: */ 1137 struct rt_mutex_waiter *pi_blocked_on; 1138 #endif 1139 1140 #ifdef CONFIG_DEBUG_MUTEXES 1141 /* Mutex deadlock detection: */ 1142 struct mutex_waiter *blocked_on; 1143 #endif 1144 1145 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1146 int non_block_count; 1147 #endif 1148 1149 #ifdef CONFIG_TRACE_IRQFLAGS 1150 struct irqtrace_events irqtrace; 1151 unsigned int hardirq_threaded; 1152 u64 hardirq_chain_key; 1153 int softirqs_enabled; 1154 int softirq_context; 1155 int irq_config; 1156 #endif 1157 #ifdef CONFIG_PREEMPT_RT 1158 int softirq_disable_cnt; 1159 #endif 1160 1161 #ifdef CONFIG_LOCKDEP 1162 # define MAX_LOCK_DEPTH 48UL 1163 u64 curr_chain_key; 1164 int lockdep_depth; 1165 unsigned int lockdep_recursion; 1166 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1167 #endif 1168 1169 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP) 1170 unsigned int in_ubsan; 1171 #endif 1172 1173 /* Journalling filesystem info: */ 1174 void *journal_info; 1175 1176 /* Stacked block device info: */ 1177 struct bio_list *bio_list; 1178 1179 /* Stack plugging: */ 1180 struct blk_plug *plug; 1181 1182 /* VM state: */ 1183 struct reclaim_state *reclaim_state; 1184 1185 struct backing_dev_info *backing_dev_info; 1186 1187 struct io_context *io_context; 1188 1189 #ifdef CONFIG_COMPACTION 1190 struct capture_control *capture_control; 1191 #endif 1192 /* Ptrace state: */ 1193 unsigned long ptrace_message; 1194 kernel_siginfo_t *last_siginfo; 1195 1196 struct task_io_accounting ioac; 1197 #ifdef CONFIG_PSI 1198 /* Pressure stall state */ 1199 unsigned int psi_flags; 1200 #endif 1201 #ifdef CONFIG_TASK_XACCT 1202 /* Accumulated RSS usage: */ 1203 u64 acct_rss_mem1; 1204 /* Accumulated virtual memory usage: */ 1205 u64 acct_vm_mem1; 1206 /* stime + utime since last update: */ 1207 u64 acct_timexpd; 1208 #endif 1209 #ifdef CONFIG_CPUSETS 1210 /* Protected by ->alloc_lock: */ 1211 nodemask_t mems_allowed; 1212 /* Sequence number to catch updates: */ 1213 seqcount_spinlock_t mems_allowed_seq; 1214 int cpuset_mem_spread_rotor; 1215 int cpuset_slab_spread_rotor; 1216 #endif 1217 #ifdef CONFIG_CGROUPS 1218 /* Control Group info protected by css_set_lock: */ 1219 struct css_set __rcu *cgroups; 1220 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1221 struct list_head cg_list; 1222 #endif 1223 #ifdef CONFIG_X86_CPU_RESCTRL 1224 u32 closid; 1225 u32 rmid; 1226 #endif 1227 #ifdef CONFIG_FUTEX 1228 struct robust_list_head __user *robust_list; 1229 #ifdef CONFIG_COMPAT 1230 struct compat_robust_list_head __user *compat_robust_list; 1231 #endif 1232 struct list_head pi_state_list; 1233 struct futex_pi_state *pi_state_cache; 1234 struct mutex futex_exit_mutex; 1235 unsigned int futex_state; 1236 #endif 1237 #ifdef CONFIG_PERF_EVENTS 1238 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1239 struct mutex perf_event_mutex; 1240 struct list_head perf_event_list; 1241 #endif 1242 #ifdef CONFIG_DEBUG_PREEMPT 1243 unsigned long preempt_disable_ip; 1244 #endif 1245 #ifdef CONFIG_NUMA 1246 /* Protected by alloc_lock: */ 1247 struct mempolicy *mempolicy; 1248 short il_prev; 1249 short pref_node_fork; 1250 #endif 1251 #ifdef CONFIG_NUMA_BALANCING 1252 int numa_scan_seq; 1253 unsigned int numa_scan_period; 1254 unsigned int numa_scan_period_max; 1255 int numa_preferred_nid; 1256 unsigned long numa_migrate_retry; 1257 /* Migration stamp: */ 1258 u64 node_stamp; 1259 u64 last_task_numa_placement; 1260 u64 last_sum_exec_runtime; 1261 struct callback_head numa_work; 1262 1263 /* 1264 * This pointer is only modified for current in syscall and 1265 * pagefault context (and for tasks being destroyed), so it can be read 1266 * from any of the following contexts: 1267 * - RCU read-side critical section 1268 * - current->numa_group from everywhere 1269 * - task's runqueue locked, task not running 1270 */ 1271 struct numa_group __rcu *numa_group; 1272 1273 /* 1274 * numa_faults is an array split into four regions: 1275 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1276 * in this precise order. 1277 * 1278 * faults_memory: Exponential decaying average of faults on a per-node 1279 * basis. Scheduling placement decisions are made based on these 1280 * counts. The values remain static for the duration of a PTE scan. 1281 * faults_cpu: Track the nodes the process was running on when a NUMA 1282 * hinting fault was incurred. 1283 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1284 * during the current scan window. When the scan completes, the counts 1285 * in faults_memory and faults_cpu decay and these values are copied. 1286 */ 1287 unsigned long *numa_faults; 1288 unsigned long total_numa_faults; 1289 1290 /* 1291 * numa_faults_locality tracks if faults recorded during the last 1292 * scan window were remote/local or failed to migrate. The task scan 1293 * period is adapted based on the locality of the faults with different 1294 * weights depending on whether they were shared or private faults 1295 */ 1296 unsigned long numa_faults_locality[3]; 1297 1298 unsigned long numa_pages_migrated; 1299 #endif /* CONFIG_NUMA_BALANCING */ 1300 1301 #ifdef CONFIG_RSEQ 1302 struct rseq __user *rseq; 1303 u32 rseq_sig; 1304 /* 1305 * RmW on rseq_event_mask must be performed atomically 1306 * with respect to preemption. 1307 */ 1308 unsigned long rseq_event_mask; 1309 #endif 1310 1311 struct tlbflush_unmap_batch tlb_ubc; 1312 1313 union { 1314 refcount_t rcu_users; 1315 struct rcu_head rcu; 1316 }; 1317 1318 /* Cache last used pipe for splice(): */ 1319 struct pipe_inode_info *splice_pipe; 1320 1321 struct page_frag task_frag; 1322 1323 #ifdef CONFIG_TASK_DELAY_ACCT 1324 struct task_delay_info *delays; 1325 #endif 1326 1327 #ifdef CONFIG_FAULT_INJECTION 1328 int make_it_fail; 1329 unsigned int fail_nth; 1330 #endif 1331 /* 1332 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1333 * balance_dirty_pages() for a dirty throttling pause: 1334 */ 1335 int nr_dirtied; 1336 int nr_dirtied_pause; 1337 /* Start of a write-and-pause period: */ 1338 unsigned long dirty_paused_when; 1339 1340 #ifdef CONFIG_LATENCYTOP 1341 int latency_record_count; 1342 struct latency_record latency_record[LT_SAVECOUNT]; 1343 #endif 1344 /* 1345 * Time slack values; these are used to round up poll() and 1346 * select() etc timeout values. These are in nanoseconds. 1347 */ 1348 u64 timer_slack_ns; 1349 u64 default_timer_slack_ns; 1350 1351 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 1352 unsigned int kasan_depth; 1353 #endif 1354 1355 #ifdef CONFIG_KCSAN 1356 struct kcsan_ctx kcsan_ctx; 1357 #ifdef CONFIG_TRACE_IRQFLAGS 1358 struct irqtrace_events kcsan_save_irqtrace; 1359 #endif 1360 #ifdef CONFIG_KCSAN_WEAK_MEMORY 1361 int kcsan_stack_depth; 1362 #endif 1363 #endif 1364 1365 #if IS_ENABLED(CONFIG_KUNIT) 1366 struct kunit *kunit_test; 1367 #endif 1368 1369 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1370 /* Index of current stored address in ret_stack: */ 1371 int curr_ret_stack; 1372 int curr_ret_depth; 1373 1374 /* Stack of return addresses for return function tracing: */ 1375 struct ftrace_ret_stack *ret_stack; 1376 1377 /* Timestamp for last schedule: */ 1378 unsigned long long ftrace_timestamp; 1379 1380 /* 1381 * Number of functions that haven't been traced 1382 * because of depth overrun: 1383 */ 1384 atomic_t trace_overrun; 1385 1386 /* Pause tracing: */ 1387 atomic_t tracing_graph_pause; 1388 #endif 1389 1390 #ifdef CONFIG_TRACING 1391 /* State flags for use by tracers: */ 1392 unsigned long trace; 1393 1394 /* Bitmask and counter of trace recursion: */ 1395 unsigned long trace_recursion; 1396 #endif /* CONFIG_TRACING */ 1397 1398 #ifdef CONFIG_KCOV 1399 /* See kernel/kcov.c for more details. */ 1400 1401 /* Coverage collection mode enabled for this task (0 if disabled): */ 1402 unsigned int kcov_mode; 1403 1404 /* Size of the kcov_area: */ 1405 unsigned int kcov_size; 1406 1407 /* Buffer for coverage collection: */ 1408 void *kcov_area; 1409 1410 /* KCOV descriptor wired with this task or NULL: */ 1411 struct kcov *kcov; 1412 1413 /* KCOV common handle for remote coverage collection: */ 1414 u64 kcov_handle; 1415 1416 /* KCOV sequence number: */ 1417 int kcov_sequence; 1418 1419 /* Collect coverage from softirq context: */ 1420 unsigned int kcov_softirq; 1421 #endif 1422 1423 #ifdef CONFIG_MEMCG 1424 struct mem_cgroup *memcg_in_oom; 1425 gfp_t memcg_oom_gfp_mask; 1426 int memcg_oom_order; 1427 1428 /* Number of pages to reclaim on returning to userland: */ 1429 unsigned int memcg_nr_pages_over_high; 1430 1431 /* Used by memcontrol for targeted memcg charge: */ 1432 struct mem_cgroup *active_memcg; 1433 #endif 1434 1435 #ifdef CONFIG_BLK_CGROUP 1436 struct request_queue *throttle_queue; 1437 #endif 1438 1439 #ifdef CONFIG_UPROBES 1440 struct uprobe_task *utask; 1441 #endif 1442 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1443 unsigned int sequential_io; 1444 unsigned int sequential_io_avg; 1445 #endif 1446 struct kmap_ctrl kmap_ctrl; 1447 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1448 unsigned long task_state_change; 1449 # ifdef CONFIG_PREEMPT_RT 1450 unsigned long saved_state_change; 1451 # endif 1452 #endif 1453 int pagefault_disabled; 1454 #ifdef CONFIG_MMU 1455 struct task_struct *oom_reaper_list; 1456 struct timer_list oom_reaper_timer; 1457 #endif 1458 #ifdef CONFIG_VMAP_STACK 1459 struct vm_struct *stack_vm_area; 1460 #endif 1461 #ifdef CONFIG_THREAD_INFO_IN_TASK 1462 /* A live task holds one reference: */ 1463 refcount_t stack_refcount; 1464 #endif 1465 #ifdef CONFIG_LIVEPATCH 1466 int patch_state; 1467 #endif 1468 #ifdef CONFIG_SECURITY 1469 /* Used by LSM modules for access restriction: */ 1470 void *security; 1471 #endif 1472 #ifdef CONFIG_BPF_SYSCALL 1473 /* Used by BPF task local storage */ 1474 struct bpf_local_storage __rcu *bpf_storage; 1475 /* Used for BPF run context */ 1476 struct bpf_run_ctx *bpf_ctx; 1477 #endif 1478 1479 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1480 unsigned long lowest_stack; 1481 unsigned long prev_lowest_stack; 1482 #endif 1483 1484 #ifdef CONFIG_X86_MCE 1485 void __user *mce_vaddr; 1486 __u64 mce_kflags; 1487 u64 mce_addr; 1488 __u64 mce_ripv : 1, 1489 mce_whole_page : 1, 1490 __mce_reserved : 62; 1491 struct callback_head mce_kill_me; 1492 int mce_count; 1493 #endif 1494 1495 #ifdef CONFIG_KRETPROBES 1496 struct llist_head kretprobe_instances; 1497 #endif 1498 #ifdef CONFIG_RETHOOK 1499 struct llist_head rethooks; 1500 #endif 1501 1502 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH 1503 /* 1504 * If L1D flush is supported on mm context switch 1505 * then we use this callback head to queue kill work 1506 * to kill tasks that are not running on SMT disabled 1507 * cores 1508 */ 1509 struct callback_head l1d_flush_kill; 1510 #endif 1511 1512 #ifdef CONFIG_RV 1513 /* 1514 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS. 1515 * If we find justification for more monitors, we can think 1516 * about adding more or developing a dynamic method. So far, 1517 * none of these are justified. 1518 */ 1519 union rv_task_monitor rv[RV_PER_TASK_MONITORS]; 1520 #endif 1521 1522 /* 1523 * New fields for task_struct should be added above here, so that 1524 * they are included in the randomized portion of task_struct. 1525 */ 1526 randomized_struct_fields_end 1527 1528 /* CPU-specific state of this task: */ 1529 struct thread_struct thread; 1530 1531 /* 1532 * WARNING: on x86, 'thread_struct' contains a variable-sized 1533 * structure. It *MUST* be at the end of 'task_struct'. 1534 * 1535 * Do not put anything below here! 1536 */ 1537 }; 1538 1539 static inline struct pid *task_pid(struct task_struct *task) 1540 { 1541 return task->thread_pid; 1542 } 1543 1544 /* 1545 * the helpers to get the task's different pids as they are seen 1546 * from various namespaces 1547 * 1548 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1549 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1550 * current. 1551 * task_xid_nr_ns() : id seen from the ns specified; 1552 * 1553 * see also pid_nr() etc in include/linux/pid.h 1554 */ 1555 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1556 1557 static inline pid_t task_pid_nr(struct task_struct *tsk) 1558 { 1559 return tsk->pid; 1560 } 1561 1562 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1563 { 1564 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1565 } 1566 1567 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1568 { 1569 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1570 } 1571 1572 1573 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1574 { 1575 return tsk->tgid; 1576 } 1577 1578 /** 1579 * pid_alive - check that a task structure is not stale 1580 * @p: Task structure to be checked. 1581 * 1582 * Test if a process is not yet dead (at most zombie state) 1583 * If pid_alive fails, then pointers within the task structure 1584 * can be stale and must not be dereferenced. 1585 * 1586 * Return: 1 if the process is alive. 0 otherwise. 1587 */ 1588 static inline int pid_alive(const struct task_struct *p) 1589 { 1590 return p->thread_pid != NULL; 1591 } 1592 1593 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1594 { 1595 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1596 } 1597 1598 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1599 { 1600 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1601 } 1602 1603 1604 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1605 { 1606 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1607 } 1608 1609 static inline pid_t task_session_vnr(struct task_struct *tsk) 1610 { 1611 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1612 } 1613 1614 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1615 { 1616 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1617 } 1618 1619 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1620 { 1621 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1622 } 1623 1624 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1625 { 1626 pid_t pid = 0; 1627 1628 rcu_read_lock(); 1629 if (pid_alive(tsk)) 1630 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1631 rcu_read_unlock(); 1632 1633 return pid; 1634 } 1635 1636 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1637 { 1638 return task_ppid_nr_ns(tsk, &init_pid_ns); 1639 } 1640 1641 /* Obsolete, do not use: */ 1642 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1643 { 1644 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1645 } 1646 1647 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1648 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1649 1650 static inline unsigned int __task_state_index(unsigned int tsk_state, 1651 unsigned int tsk_exit_state) 1652 { 1653 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT; 1654 1655 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1656 1657 if (tsk_state == TASK_IDLE) 1658 state = TASK_REPORT_IDLE; 1659 1660 /* 1661 * We're lying here, but rather than expose a completely new task state 1662 * to userspace, we can make this appear as if the task has gone through 1663 * a regular rt_mutex_lock() call. 1664 */ 1665 if (tsk_state == TASK_RTLOCK_WAIT) 1666 state = TASK_UNINTERRUPTIBLE; 1667 1668 return fls(state); 1669 } 1670 1671 static inline unsigned int task_state_index(struct task_struct *tsk) 1672 { 1673 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state); 1674 } 1675 1676 static inline char task_index_to_char(unsigned int state) 1677 { 1678 static const char state_char[] = "RSDTtXZPI"; 1679 1680 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1681 1682 return state_char[state]; 1683 } 1684 1685 static inline char task_state_to_char(struct task_struct *tsk) 1686 { 1687 return task_index_to_char(task_state_index(tsk)); 1688 } 1689 1690 /** 1691 * is_global_init - check if a task structure is init. Since init 1692 * is free to have sub-threads we need to check tgid. 1693 * @tsk: Task structure to be checked. 1694 * 1695 * Check if a task structure is the first user space task the kernel created. 1696 * 1697 * Return: 1 if the task structure is init. 0 otherwise. 1698 */ 1699 static inline int is_global_init(struct task_struct *tsk) 1700 { 1701 return task_tgid_nr(tsk) == 1; 1702 } 1703 1704 extern struct pid *cad_pid; 1705 1706 /* 1707 * Per process flags 1708 */ 1709 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */ 1710 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1711 #define PF_EXITING 0x00000004 /* Getting shut down */ 1712 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */ 1713 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */ 1714 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1715 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1716 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1717 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1718 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1719 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1720 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1721 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1722 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1723 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1724 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1725 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1726 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1727 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1728 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, 1729 * I am cleaning dirty pages from some other bdi. */ 1730 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1731 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1732 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1733 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1734 #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */ 1735 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1736 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1737 1738 /* 1739 * Only the _current_ task can read/write to tsk->flags, but other 1740 * tasks can access tsk->flags in readonly mode for example 1741 * with tsk_used_math (like during threaded core dumping). 1742 * There is however an exception to this rule during ptrace 1743 * or during fork: the ptracer task is allowed to write to the 1744 * child->flags of its traced child (same goes for fork, the parent 1745 * can write to the child->flags), because we're guaranteed the 1746 * child is not running and in turn not changing child->flags 1747 * at the same time the parent does it. 1748 */ 1749 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1750 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1751 #define clear_used_math() clear_stopped_child_used_math(current) 1752 #define set_used_math() set_stopped_child_used_math(current) 1753 1754 #define conditional_stopped_child_used_math(condition, child) \ 1755 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1756 1757 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1758 1759 #define copy_to_stopped_child_used_math(child) \ 1760 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1761 1762 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1763 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1764 #define used_math() tsk_used_math(current) 1765 1766 static __always_inline bool is_percpu_thread(void) 1767 { 1768 #ifdef CONFIG_SMP 1769 return (current->flags & PF_NO_SETAFFINITY) && 1770 (current->nr_cpus_allowed == 1); 1771 #else 1772 return true; 1773 #endif 1774 } 1775 1776 /* Per-process atomic flags. */ 1777 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1778 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1779 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1780 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1781 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1782 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1783 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1784 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1785 1786 #define TASK_PFA_TEST(name, func) \ 1787 static inline bool task_##func(struct task_struct *p) \ 1788 { return test_bit(PFA_##name, &p->atomic_flags); } 1789 1790 #define TASK_PFA_SET(name, func) \ 1791 static inline void task_set_##func(struct task_struct *p) \ 1792 { set_bit(PFA_##name, &p->atomic_flags); } 1793 1794 #define TASK_PFA_CLEAR(name, func) \ 1795 static inline void task_clear_##func(struct task_struct *p) \ 1796 { clear_bit(PFA_##name, &p->atomic_flags); } 1797 1798 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1799 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1800 1801 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1802 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1803 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1804 1805 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1806 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1807 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1808 1809 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1810 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1811 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1812 1813 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1814 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1815 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1816 1817 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1818 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1819 1820 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1821 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1822 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1823 1824 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1825 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1826 1827 static inline void 1828 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1829 { 1830 current->flags &= ~flags; 1831 current->flags |= orig_flags & flags; 1832 } 1833 1834 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1835 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_effective_cpus); 1836 #ifdef CONFIG_SMP 1837 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1838 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1839 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node); 1840 extern void release_user_cpus_ptr(struct task_struct *p); 1841 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask); 1842 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p); 1843 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p); 1844 #else 1845 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1846 { 1847 } 1848 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1849 { 1850 if (!cpumask_test_cpu(0, new_mask)) 1851 return -EINVAL; 1852 return 0; 1853 } 1854 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node) 1855 { 1856 if (src->user_cpus_ptr) 1857 return -EINVAL; 1858 return 0; 1859 } 1860 static inline void release_user_cpus_ptr(struct task_struct *p) 1861 { 1862 WARN_ON(p->user_cpus_ptr); 1863 } 1864 1865 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 1866 { 1867 return 0; 1868 } 1869 #endif 1870 1871 extern int yield_to(struct task_struct *p, bool preempt); 1872 extern void set_user_nice(struct task_struct *p, long nice); 1873 extern int task_prio(const struct task_struct *p); 1874 1875 /** 1876 * task_nice - return the nice value of a given task. 1877 * @p: the task in question. 1878 * 1879 * Return: The nice value [ -20 ... 0 ... 19 ]. 1880 */ 1881 static inline int task_nice(const struct task_struct *p) 1882 { 1883 return PRIO_TO_NICE((p)->static_prio); 1884 } 1885 1886 extern int can_nice(const struct task_struct *p, const int nice); 1887 extern int task_curr(const struct task_struct *p); 1888 extern int idle_cpu(int cpu); 1889 extern int available_idle_cpu(int cpu); 1890 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1891 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1892 extern void sched_set_fifo(struct task_struct *p); 1893 extern void sched_set_fifo_low(struct task_struct *p); 1894 extern void sched_set_normal(struct task_struct *p, int nice); 1895 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1896 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1897 extern struct task_struct *idle_task(int cpu); 1898 1899 /** 1900 * is_idle_task - is the specified task an idle task? 1901 * @p: the task in question. 1902 * 1903 * Return: 1 if @p is an idle task. 0 otherwise. 1904 */ 1905 static __always_inline bool is_idle_task(const struct task_struct *p) 1906 { 1907 return !!(p->flags & PF_IDLE); 1908 } 1909 1910 extern struct task_struct *curr_task(int cpu); 1911 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1912 1913 void yield(void); 1914 1915 union thread_union { 1916 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1917 struct task_struct task; 1918 #endif 1919 #ifndef CONFIG_THREAD_INFO_IN_TASK 1920 struct thread_info thread_info; 1921 #endif 1922 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1923 }; 1924 1925 #ifndef CONFIG_THREAD_INFO_IN_TASK 1926 extern struct thread_info init_thread_info; 1927 #endif 1928 1929 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1930 1931 #ifdef CONFIG_THREAD_INFO_IN_TASK 1932 # define task_thread_info(task) (&(task)->thread_info) 1933 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1934 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1935 #endif 1936 1937 /* 1938 * find a task by one of its numerical ids 1939 * 1940 * find_task_by_pid_ns(): 1941 * finds a task by its pid in the specified namespace 1942 * find_task_by_vpid(): 1943 * finds a task by its virtual pid 1944 * 1945 * see also find_vpid() etc in include/linux/pid.h 1946 */ 1947 1948 extern struct task_struct *find_task_by_vpid(pid_t nr); 1949 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1950 1951 /* 1952 * find a task by its virtual pid and get the task struct 1953 */ 1954 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1955 1956 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1957 extern int wake_up_process(struct task_struct *tsk); 1958 extern void wake_up_new_task(struct task_struct *tsk); 1959 1960 #ifdef CONFIG_SMP 1961 extern void kick_process(struct task_struct *tsk); 1962 #else 1963 static inline void kick_process(struct task_struct *tsk) { } 1964 #endif 1965 1966 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1967 1968 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1969 { 1970 __set_task_comm(tsk, from, false); 1971 } 1972 1973 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1974 #define get_task_comm(buf, tsk) ({ \ 1975 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1976 __get_task_comm(buf, sizeof(buf), tsk); \ 1977 }) 1978 1979 #ifdef CONFIG_SMP 1980 static __always_inline void scheduler_ipi(void) 1981 { 1982 /* 1983 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1984 * TIF_NEED_RESCHED remotely (for the first time) will also send 1985 * this IPI. 1986 */ 1987 preempt_fold_need_resched(); 1988 } 1989 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state); 1990 #else 1991 static inline void scheduler_ipi(void) { } 1992 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 1993 { 1994 return 1; 1995 } 1996 #endif 1997 1998 /* 1999 * Set thread flags in other task's structures. 2000 * See asm/thread_info.h for TIF_xxxx flags available: 2001 */ 2002 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2003 { 2004 set_ti_thread_flag(task_thread_info(tsk), flag); 2005 } 2006 2007 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2008 { 2009 clear_ti_thread_flag(task_thread_info(tsk), flag); 2010 } 2011 2012 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 2013 bool value) 2014 { 2015 update_ti_thread_flag(task_thread_info(tsk), flag, value); 2016 } 2017 2018 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2019 { 2020 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2021 } 2022 2023 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2024 { 2025 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2026 } 2027 2028 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2029 { 2030 return test_ti_thread_flag(task_thread_info(tsk), flag); 2031 } 2032 2033 static inline void set_tsk_need_resched(struct task_struct *tsk) 2034 { 2035 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2036 } 2037 2038 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2039 { 2040 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2041 } 2042 2043 static inline int test_tsk_need_resched(struct task_struct *tsk) 2044 { 2045 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2046 } 2047 2048 /* 2049 * cond_resched() and cond_resched_lock(): latency reduction via 2050 * explicit rescheduling in places that are safe. The return 2051 * value indicates whether a reschedule was done in fact. 2052 * cond_resched_lock() will drop the spinlock before scheduling, 2053 */ 2054 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 2055 extern int __cond_resched(void); 2056 2057 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 2058 2059 DECLARE_STATIC_CALL(cond_resched, __cond_resched); 2060 2061 static __always_inline int _cond_resched(void) 2062 { 2063 return static_call_mod(cond_resched)(); 2064 } 2065 2066 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 2067 extern int dynamic_cond_resched(void); 2068 2069 static __always_inline int _cond_resched(void) 2070 { 2071 return dynamic_cond_resched(); 2072 } 2073 2074 #else 2075 2076 static inline int _cond_resched(void) 2077 { 2078 return __cond_resched(); 2079 } 2080 2081 #endif /* CONFIG_PREEMPT_DYNAMIC */ 2082 2083 #else 2084 2085 static inline int _cond_resched(void) { return 0; } 2086 2087 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */ 2088 2089 #define cond_resched() ({ \ 2090 __might_resched(__FILE__, __LINE__, 0); \ 2091 _cond_resched(); \ 2092 }) 2093 2094 extern int __cond_resched_lock(spinlock_t *lock); 2095 extern int __cond_resched_rwlock_read(rwlock_t *lock); 2096 extern int __cond_resched_rwlock_write(rwlock_t *lock); 2097 2098 #define MIGHT_RESCHED_RCU_SHIFT 8 2099 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1) 2100 2101 #ifndef CONFIG_PREEMPT_RT 2102 /* 2103 * Non RT kernels have an elevated preempt count due to the held lock, 2104 * but are not allowed to be inside a RCU read side critical section 2105 */ 2106 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET 2107 #else 2108 /* 2109 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in 2110 * cond_resched*lock() has to take that into account because it checks for 2111 * preempt_count() and rcu_preempt_depth(). 2112 */ 2113 # define PREEMPT_LOCK_RESCHED_OFFSETS \ 2114 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT)) 2115 #endif 2116 2117 #define cond_resched_lock(lock) ({ \ 2118 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ 2119 __cond_resched_lock(lock); \ 2120 }) 2121 2122 #define cond_resched_rwlock_read(lock) ({ \ 2123 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ 2124 __cond_resched_rwlock_read(lock); \ 2125 }) 2126 2127 #define cond_resched_rwlock_write(lock) ({ \ 2128 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ 2129 __cond_resched_rwlock_write(lock); \ 2130 }) 2131 2132 static inline void cond_resched_rcu(void) 2133 { 2134 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2135 rcu_read_unlock(); 2136 cond_resched(); 2137 rcu_read_lock(); 2138 #endif 2139 } 2140 2141 #ifdef CONFIG_PREEMPT_DYNAMIC 2142 2143 extern bool preempt_model_none(void); 2144 extern bool preempt_model_voluntary(void); 2145 extern bool preempt_model_full(void); 2146 2147 #else 2148 2149 static inline bool preempt_model_none(void) 2150 { 2151 return IS_ENABLED(CONFIG_PREEMPT_NONE); 2152 } 2153 static inline bool preempt_model_voluntary(void) 2154 { 2155 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY); 2156 } 2157 static inline bool preempt_model_full(void) 2158 { 2159 return IS_ENABLED(CONFIG_PREEMPT); 2160 } 2161 2162 #endif 2163 2164 static inline bool preempt_model_rt(void) 2165 { 2166 return IS_ENABLED(CONFIG_PREEMPT_RT); 2167 } 2168 2169 /* 2170 * Does the preemption model allow non-cooperative preemption? 2171 * 2172 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with 2173 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the 2174 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the 2175 * PREEMPT_NONE model. 2176 */ 2177 static inline bool preempt_model_preemptible(void) 2178 { 2179 return preempt_model_full() || preempt_model_rt(); 2180 } 2181 2182 /* 2183 * Does a critical section need to be broken due to another 2184 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 2185 * but a general need for low latency) 2186 */ 2187 static inline int spin_needbreak(spinlock_t *lock) 2188 { 2189 #ifdef CONFIG_PREEMPTION 2190 return spin_is_contended(lock); 2191 #else 2192 return 0; 2193 #endif 2194 } 2195 2196 /* 2197 * Check if a rwlock is contended. 2198 * Returns non-zero if there is another task waiting on the rwlock. 2199 * Returns zero if the lock is not contended or the system / underlying 2200 * rwlock implementation does not support contention detection. 2201 * Technically does not depend on CONFIG_PREEMPTION, but a general need 2202 * for low latency. 2203 */ 2204 static inline int rwlock_needbreak(rwlock_t *lock) 2205 { 2206 #ifdef CONFIG_PREEMPTION 2207 return rwlock_is_contended(lock); 2208 #else 2209 return 0; 2210 #endif 2211 } 2212 2213 static __always_inline bool need_resched(void) 2214 { 2215 return unlikely(tif_need_resched()); 2216 } 2217 2218 /* 2219 * Wrappers for p->thread_info->cpu access. No-op on UP. 2220 */ 2221 #ifdef CONFIG_SMP 2222 2223 static inline unsigned int task_cpu(const struct task_struct *p) 2224 { 2225 return READ_ONCE(task_thread_info(p)->cpu); 2226 } 2227 2228 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2229 2230 #else 2231 2232 static inline unsigned int task_cpu(const struct task_struct *p) 2233 { 2234 return 0; 2235 } 2236 2237 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2238 { 2239 } 2240 2241 #endif /* CONFIG_SMP */ 2242 2243 extern bool sched_task_on_rq(struct task_struct *p); 2244 extern unsigned long get_wchan(struct task_struct *p); 2245 extern struct task_struct *cpu_curr_snapshot(int cpu); 2246 2247 /* 2248 * In order to reduce various lock holder preemption latencies provide an 2249 * interface to see if a vCPU is currently running or not. 2250 * 2251 * This allows us to terminate optimistic spin loops and block, analogous to 2252 * the native optimistic spin heuristic of testing if the lock owner task is 2253 * running or not. 2254 */ 2255 #ifndef vcpu_is_preempted 2256 static inline bool vcpu_is_preempted(int cpu) 2257 { 2258 return false; 2259 } 2260 #endif 2261 2262 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2263 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2264 2265 #ifndef TASK_SIZE_OF 2266 #define TASK_SIZE_OF(tsk) TASK_SIZE 2267 #endif 2268 2269 #ifdef CONFIG_SMP 2270 static inline bool owner_on_cpu(struct task_struct *owner) 2271 { 2272 /* 2273 * As lock holder preemption issue, we both skip spinning if 2274 * task is not on cpu or its cpu is preempted 2275 */ 2276 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner)); 2277 } 2278 2279 /* Returns effective CPU energy utilization, as seen by the scheduler */ 2280 unsigned long sched_cpu_util(int cpu); 2281 #endif /* CONFIG_SMP */ 2282 2283 #ifdef CONFIG_RSEQ 2284 2285 /* 2286 * Map the event mask on the user-space ABI enum rseq_cs_flags 2287 * for direct mask checks. 2288 */ 2289 enum rseq_event_mask_bits { 2290 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 2291 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 2292 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 2293 }; 2294 2295 enum rseq_event_mask { 2296 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 2297 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 2298 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 2299 }; 2300 2301 static inline void rseq_set_notify_resume(struct task_struct *t) 2302 { 2303 if (t->rseq) 2304 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 2305 } 2306 2307 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 2308 2309 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 2310 struct pt_regs *regs) 2311 { 2312 if (current->rseq) 2313 __rseq_handle_notify_resume(ksig, regs); 2314 } 2315 2316 static inline void rseq_signal_deliver(struct ksignal *ksig, 2317 struct pt_regs *regs) 2318 { 2319 preempt_disable(); 2320 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 2321 preempt_enable(); 2322 rseq_handle_notify_resume(ksig, regs); 2323 } 2324 2325 /* rseq_preempt() requires preemption to be disabled. */ 2326 static inline void rseq_preempt(struct task_struct *t) 2327 { 2328 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 2329 rseq_set_notify_resume(t); 2330 } 2331 2332 /* rseq_migrate() requires preemption to be disabled. */ 2333 static inline void rseq_migrate(struct task_struct *t) 2334 { 2335 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 2336 rseq_set_notify_resume(t); 2337 } 2338 2339 /* 2340 * If parent process has a registered restartable sequences area, the 2341 * child inherits. Unregister rseq for a clone with CLONE_VM set. 2342 */ 2343 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2344 { 2345 if (clone_flags & CLONE_VM) { 2346 t->rseq = NULL; 2347 t->rseq_sig = 0; 2348 t->rseq_event_mask = 0; 2349 } else { 2350 t->rseq = current->rseq; 2351 t->rseq_sig = current->rseq_sig; 2352 t->rseq_event_mask = current->rseq_event_mask; 2353 } 2354 } 2355 2356 static inline void rseq_execve(struct task_struct *t) 2357 { 2358 t->rseq = NULL; 2359 t->rseq_sig = 0; 2360 t->rseq_event_mask = 0; 2361 } 2362 2363 #else 2364 2365 static inline void rseq_set_notify_resume(struct task_struct *t) 2366 { 2367 } 2368 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 2369 struct pt_regs *regs) 2370 { 2371 } 2372 static inline void rseq_signal_deliver(struct ksignal *ksig, 2373 struct pt_regs *regs) 2374 { 2375 } 2376 static inline void rseq_preempt(struct task_struct *t) 2377 { 2378 } 2379 static inline void rseq_migrate(struct task_struct *t) 2380 { 2381 } 2382 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2383 { 2384 } 2385 static inline void rseq_execve(struct task_struct *t) 2386 { 2387 } 2388 2389 #endif 2390 2391 #ifdef CONFIG_DEBUG_RSEQ 2392 2393 void rseq_syscall(struct pt_regs *regs); 2394 2395 #else 2396 2397 static inline void rseq_syscall(struct pt_regs *regs) 2398 { 2399 } 2400 2401 #endif 2402 2403 #ifdef CONFIG_SCHED_CORE 2404 extern void sched_core_free(struct task_struct *tsk); 2405 extern void sched_core_fork(struct task_struct *p); 2406 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type, 2407 unsigned long uaddr); 2408 #else 2409 static inline void sched_core_free(struct task_struct *tsk) { } 2410 static inline void sched_core_fork(struct task_struct *p) { } 2411 #endif 2412 2413 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 2414 2415 #endif 2416