1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 7 struct sched_param { 8 int sched_priority; 9 }; 10 11 #include <asm/param.h> /* for HZ */ 12 13 #include <linux/capability.h> 14 #include <linux/threads.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/timex.h> 18 #include <linux/jiffies.h> 19 #include <linux/rbtree.h> 20 #include <linux/thread_info.h> 21 #include <linux/cpumask.h> 22 #include <linux/errno.h> 23 #include <linux/nodemask.h> 24 #include <linux/mm_types.h> 25 26 #include <asm/page.h> 27 #include <asm/ptrace.h> 28 #include <asm/cputime.h> 29 30 #include <linux/smp.h> 31 #include <linux/sem.h> 32 #include <linux/signal.h> 33 #include <linux/compiler.h> 34 #include <linux/completion.h> 35 #include <linux/pid.h> 36 #include <linux/percpu.h> 37 #include <linux/topology.h> 38 #include <linux/proportions.h> 39 #include <linux/seccomp.h> 40 #include <linux/rcupdate.h> 41 #include <linux/rculist.h> 42 #include <linux/rtmutex.h> 43 44 #include <linux/time.h> 45 #include <linux/param.h> 46 #include <linux/resource.h> 47 #include <linux/timer.h> 48 #include <linux/hrtimer.h> 49 #include <linux/task_io_accounting.h> 50 #include <linux/latencytop.h> 51 #include <linux/cred.h> 52 #include <linux/llist.h> 53 #include <linux/uidgid.h> 54 #include <linux/gfp.h> 55 56 #include <asm/processor.h> 57 58 struct exec_domain; 59 struct futex_pi_state; 60 struct robust_list_head; 61 struct bio_list; 62 struct fs_struct; 63 struct perf_event_context; 64 struct blk_plug; 65 66 /* 67 * List of flags we want to share for kernel threads, 68 * if only because they are not used by them anyway. 69 */ 70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 71 72 /* 73 * These are the constant used to fake the fixed-point load-average 74 * counting. Some notes: 75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 76 * a load-average precision of 10 bits integer + 11 bits fractional 77 * - if you want to count load-averages more often, you need more 78 * precision, or rounding will get you. With 2-second counting freq, 79 * the EXP_n values would be 1981, 2034 and 2043 if still using only 80 * 11 bit fractions. 81 */ 82 extern unsigned long avenrun[]; /* Load averages */ 83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 84 85 #define FSHIFT 11 /* nr of bits of precision */ 86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 89 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 90 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 91 92 #define CALC_LOAD(load,exp,n) \ 93 load *= exp; \ 94 load += n*(FIXED_1-exp); \ 95 load >>= FSHIFT; 96 97 extern unsigned long total_forks; 98 extern int nr_threads; 99 DECLARE_PER_CPU(unsigned long, process_counts); 100 extern int nr_processes(void); 101 extern unsigned long nr_running(void); 102 extern unsigned long nr_iowait(void); 103 extern unsigned long nr_iowait_cpu(int cpu); 104 extern unsigned long this_cpu_load(void); 105 106 107 extern void calc_global_load(unsigned long ticks); 108 extern void update_cpu_load_nohz(void); 109 110 /* Notifier for when a task gets migrated to a new CPU */ 111 struct task_migration_notifier { 112 struct task_struct *task; 113 int from_cpu; 114 int to_cpu; 115 }; 116 extern void register_task_migration_notifier(struct notifier_block *n); 117 118 extern unsigned long get_parent_ip(unsigned long addr); 119 120 extern void dump_cpu_task(int cpu); 121 122 struct seq_file; 123 struct cfs_rq; 124 struct task_group; 125 #ifdef CONFIG_SCHED_DEBUG 126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 127 extern void proc_sched_set_task(struct task_struct *p); 128 extern void 129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 130 #endif 131 132 /* 133 * Task state bitmask. NOTE! These bits are also 134 * encoded in fs/proc/array.c: get_task_state(). 135 * 136 * We have two separate sets of flags: task->state 137 * is about runnability, while task->exit_state are 138 * about the task exiting. Confusing, but this way 139 * modifying one set can't modify the other one by 140 * mistake. 141 */ 142 #define TASK_RUNNING 0 143 #define TASK_INTERRUPTIBLE 1 144 #define TASK_UNINTERRUPTIBLE 2 145 #define __TASK_STOPPED 4 146 #define __TASK_TRACED 8 147 /* in tsk->exit_state */ 148 #define EXIT_ZOMBIE 16 149 #define EXIT_DEAD 32 150 /* in tsk->state again */ 151 #define TASK_DEAD 64 152 #define TASK_WAKEKILL 128 153 #define TASK_WAKING 256 154 #define TASK_PARKED 512 155 #define TASK_STATE_MAX 1024 156 157 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 158 159 extern char ___assert_task_state[1 - 2*!!( 160 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 161 162 /* Convenience macros for the sake of set_task_state */ 163 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 164 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 165 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 166 167 /* Convenience macros for the sake of wake_up */ 168 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 169 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 170 171 /* get_task_state() */ 172 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 173 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 174 __TASK_TRACED) 175 176 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 177 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 178 #define task_is_dead(task) ((task)->exit_state != 0) 179 #define task_is_stopped_or_traced(task) \ 180 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 181 #define task_contributes_to_load(task) \ 182 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 183 (task->flags & PF_FROZEN) == 0) 184 185 #define __set_task_state(tsk, state_value) \ 186 do { (tsk)->state = (state_value); } while (0) 187 #define set_task_state(tsk, state_value) \ 188 set_mb((tsk)->state, (state_value)) 189 190 /* 191 * set_current_state() includes a barrier so that the write of current->state 192 * is correctly serialised wrt the caller's subsequent test of whether to 193 * actually sleep: 194 * 195 * set_current_state(TASK_UNINTERRUPTIBLE); 196 * if (do_i_need_to_sleep()) 197 * schedule(); 198 * 199 * If the caller does not need such serialisation then use __set_current_state() 200 */ 201 #define __set_current_state(state_value) \ 202 do { current->state = (state_value); } while (0) 203 #define set_current_state(state_value) \ 204 set_mb(current->state, (state_value)) 205 206 /* Task command name length */ 207 #define TASK_COMM_LEN 16 208 209 #include <linux/spinlock.h> 210 211 /* 212 * This serializes "schedule()" and also protects 213 * the run-queue from deletions/modifications (but 214 * _adding_ to the beginning of the run-queue has 215 * a separate lock). 216 */ 217 extern rwlock_t tasklist_lock; 218 extern spinlock_t mmlist_lock; 219 220 struct task_struct; 221 222 #ifdef CONFIG_PROVE_RCU 223 extern int lockdep_tasklist_lock_is_held(void); 224 #endif /* #ifdef CONFIG_PROVE_RCU */ 225 226 extern void sched_init(void); 227 extern void sched_init_smp(void); 228 extern asmlinkage void schedule_tail(struct task_struct *prev); 229 extern void init_idle(struct task_struct *idle, int cpu); 230 extern void init_idle_bootup_task(struct task_struct *idle); 231 232 extern int runqueue_is_locked(int cpu); 233 234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 235 extern void nohz_balance_enter_idle(int cpu); 236 extern void set_cpu_sd_state_idle(void); 237 extern int get_nohz_timer_target(void); 238 #else 239 static inline void nohz_balance_enter_idle(int cpu) { } 240 static inline void set_cpu_sd_state_idle(void) { } 241 #endif 242 243 /* 244 * Only dump TASK_* tasks. (0 for all tasks) 245 */ 246 extern void show_state_filter(unsigned long state_filter); 247 248 static inline void show_state(void) 249 { 250 show_state_filter(0); 251 } 252 253 extern void show_regs(struct pt_regs *); 254 255 /* 256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 257 * task), SP is the stack pointer of the first frame that should be shown in the back 258 * trace (or NULL if the entire call-chain of the task should be shown). 259 */ 260 extern void show_stack(struct task_struct *task, unsigned long *sp); 261 262 void io_schedule(void); 263 long io_schedule_timeout(long timeout); 264 265 extern void cpu_init (void); 266 extern void trap_init(void); 267 extern void update_process_times(int user); 268 extern void scheduler_tick(void); 269 270 extern void sched_show_task(struct task_struct *p); 271 272 #ifdef CONFIG_LOCKUP_DETECTOR 273 extern void touch_softlockup_watchdog(void); 274 extern void touch_softlockup_watchdog_sync(void); 275 extern void touch_all_softlockup_watchdogs(void); 276 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 277 void __user *buffer, 278 size_t *lenp, loff_t *ppos); 279 extern unsigned int softlockup_panic; 280 void lockup_detector_init(void); 281 #else 282 static inline void touch_softlockup_watchdog(void) 283 { 284 } 285 static inline void touch_softlockup_watchdog_sync(void) 286 { 287 } 288 static inline void touch_all_softlockup_watchdogs(void) 289 { 290 } 291 static inline void lockup_detector_init(void) 292 { 293 } 294 #endif 295 296 /* Attach to any functions which should be ignored in wchan output. */ 297 #define __sched __attribute__((__section__(".sched.text"))) 298 299 /* Linker adds these: start and end of __sched functions */ 300 extern char __sched_text_start[], __sched_text_end[]; 301 302 /* Is this address in the __sched functions? */ 303 extern int in_sched_functions(unsigned long addr); 304 305 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 306 extern signed long schedule_timeout(signed long timeout); 307 extern signed long schedule_timeout_interruptible(signed long timeout); 308 extern signed long schedule_timeout_killable(signed long timeout); 309 extern signed long schedule_timeout_uninterruptible(signed long timeout); 310 asmlinkage void schedule(void); 311 extern void schedule_preempt_disabled(void); 312 313 struct nsproxy; 314 struct user_namespace; 315 316 #ifdef CONFIG_MMU 317 extern void arch_pick_mmap_layout(struct mm_struct *mm); 318 extern unsigned long 319 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 320 unsigned long, unsigned long); 321 extern unsigned long 322 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 323 unsigned long len, unsigned long pgoff, 324 unsigned long flags); 325 #else 326 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 327 #endif 328 329 330 extern void set_dumpable(struct mm_struct *mm, int value); 331 extern int get_dumpable(struct mm_struct *mm); 332 333 /* mm flags */ 334 /* dumpable bits */ 335 #define MMF_DUMPABLE 0 /* core dump is permitted */ 336 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 337 338 #define MMF_DUMPABLE_BITS 2 339 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 340 341 /* coredump filter bits */ 342 #define MMF_DUMP_ANON_PRIVATE 2 343 #define MMF_DUMP_ANON_SHARED 3 344 #define MMF_DUMP_MAPPED_PRIVATE 4 345 #define MMF_DUMP_MAPPED_SHARED 5 346 #define MMF_DUMP_ELF_HEADERS 6 347 #define MMF_DUMP_HUGETLB_PRIVATE 7 348 #define MMF_DUMP_HUGETLB_SHARED 8 349 350 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 351 #define MMF_DUMP_FILTER_BITS 7 352 #define MMF_DUMP_FILTER_MASK \ 353 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 354 #define MMF_DUMP_FILTER_DEFAULT \ 355 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 356 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 357 358 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 359 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 360 #else 361 # define MMF_DUMP_MASK_DEFAULT_ELF 0 362 #endif 363 /* leave room for more dump flags */ 364 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 365 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 366 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 367 368 #define MMF_HAS_UPROBES 19 /* has uprobes */ 369 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 370 371 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 372 373 struct sighand_struct { 374 atomic_t count; 375 struct k_sigaction action[_NSIG]; 376 spinlock_t siglock; 377 wait_queue_head_t signalfd_wqh; 378 }; 379 380 struct pacct_struct { 381 int ac_flag; 382 long ac_exitcode; 383 unsigned long ac_mem; 384 cputime_t ac_utime, ac_stime; 385 unsigned long ac_minflt, ac_majflt; 386 }; 387 388 struct cpu_itimer { 389 cputime_t expires; 390 cputime_t incr; 391 u32 error; 392 u32 incr_error; 393 }; 394 395 /** 396 * struct cputime - snaphsot of system and user cputime 397 * @utime: time spent in user mode 398 * @stime: time spent in system mode 399 * 400 * Gathers a generic snapshot of user and system time. 401 */ 402 struct cputime { 403 cputime_t utime; 404 cputime_t stime; 405 }; 406 407 /** 408 * struct task_cputime - collected CPU time counts 409 * @utime: time spent in user mode, in &cputime_t units 410 * @stime: time spent in kernel mode, in &cputime_t units 411 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 412 * 413 * This is an extension of struct cputime that includes the total runtime 414 * spent by the task from the scheduler point of view. 415 * 416 * As a result, this structure groups together three kinds of CPU time 417 * that are tracked for threads and thread groups. Most things considering 418 * CPU time want to group these counts together and treat all three 419 * of them in parallel. 420 */ 421 struct task_cputime { 422 cputime_t utime; 423 cputime_t stime; 424 unsigned long long sum_exec_runtime; 425 }; 426 /* Alternate field names when used to cache expirations. */ 427 #define prof_exp stime 428 #define virt_exp utime 429 #define sched_exp sum_exec_runtime 430 431 #define INIT_CPUTIME \ 432 (struct task_cputime) { \ 433 .utime = 0, \ 434 .stime = 0, \ 435 .sum_exec_runtime = 0, \ 436 } 437 438 /* 439 * Disable preemption until the scheduler is running. 440 * Reset by start_kernel()->sched_init()->init_idle(). 441 * 442 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 443 * before the scheduler is active -- see should_resched(). 444 */ 445 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 446 447 /** 448 * struct thread_group_cputimer - thread group interval timer counts 449 * @cputime: thread group interval timers. 450 * @running: non-zero when there are timers running and 451 * @cputime receives updates. 452 * @lock: lock for fields in this struct. 453 * 454 * This structure contains the version of task_cputime, above, that is 455 * used for thread group CPU timer calculations. 456 */ 457 struct thread_group_cputimer { 458 struct task_cputime cputime; 459 int running; 460 raw_spinlock_t lock; 461 }; 462 463 #include <linux/rwsem.h> 464 struct autogroup; 465 466 /* 467 * NOTE! "signal_struct" does not have its own 468 * locking, because a shared signal_struct always 469 * implies a shared sighand_struct, so locking 470 * sighand_struct is always a proper superset of 471 * the locking of signal_struct. 472 */ 473 struct signal_struct { 474 atomic_t sigcnt; 475 atomic_t live; 476 int nr_threads; 477 478 wait_queue_head_t wait_chldexit; /* for wait4() */ 479 480 /* current thread group signal load-balancing target: */ 481 struct task_struct *curr_target; 482 483 /* shared signal handling: */ 484 struct sigpending shared_pending; 485 486 /* thread group exit support */ 487 int group_exit_code; 488 /* overloaded: 489 * - notify group_exit_task when ->count is equal to notify_count 490 * - everyone except group_exit_task is stopped during signal delivery 491 * of fatal signals, group_exit_task processes the signal. 492 */ 493 int notify_count; 494 struct task_struct *group_exit_task; 495 496 /* thread group stop support, overloads group_exit_code too */ 497 int group_stop_count; 498 unsigned int flags; /* see SIGNAL_* flags below */ 499 500 /* 501 * PR_SET_CHILD_SUBREAPER marks a process, like a service 502 * manager, to re-parent orphan (double-forking) child processes 503 * to this process instead of 'init'. The service manager is 504 * able to receive SIGCHLD signals and is able to investigate 505 * the process until it calls wait(). All children of this 506 * process will inherit a flag if they should look for a 507 * child_subreaper process at exit. 508 */ 509 unsigned int is_child_subreaper:1; 510 unsigned int has_child_subreaper:1; 511 512 /* POSIX.1b Interval Timers */ 513 int posix_timer_id; 514 struct list_head posix_timers; 515 516 /* ITIMER_REAL timer for the process */ 517 struct hrtimer real_timer; 518 struct pid *leader_pid; 519 ktime_t it_real_incr; 520 521 /* 522 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 523 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 524 * values are defined to 0 and 1 respectively 525 */ 526 struct cpu_itimer it[2]; 527 528 /* 529 * Thread group totals for process CPU timers. 530 * See thread_group_cputimer(), et al, for details. 531 */ 532 struct thread_group_cputimer cputimer; 533 534 /* Earliest-expiration cache. */ 535 struct task_cputime cputime_expires; 536 537 struct list_head cpu_timers[3]; 538 539 struct pid *tty_old_pgrp; 540 541 /* boolean value for session group leader */ 542 int leader; 543 544 struct tty_struct *tty; /* NULL if no tty */ 545 546 #ifdef CONFIG_SCHED_AUTOGROUP 547 struct autogroup *autogroup; 548 #endif 549 /* 550 * Cumulative resource counters for dead threads in the group, 551 * and for reaped dead child processes forked by this group. 552 * Live threads maintain their own counters and add to these 553 * in __exit_signal, except for the group leader. 554 */ 555 cputime_t utime, stime, cutime, cstime; 556 cputime_t gtime; 557 cputime_t cgtime; 558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 559 struct cputime prev_cputime; 560 #endif 561 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 562 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 563 unsigned long inblock, oublock, cinblock, coublock; 564 unsigned long maxrss, cmaxrss; 565 struct task_io_accounting ioac; 566 567 /* 568 * Cumulative ns of schedule CPU time fo dead threads in the 569 * group, not including a zombie group leader, (This only differs 570 * from jiffies_to_ns(utime + stime) if sched_clock uses something 571 * other than jiffies.) 572 */ 573 unsigned long long sum_sched_runtime; 574 575 /* 576 * We don't bother to synchronize most readers of this at all, 577 * because there is no reader checking a limit that actually needs 578 * to get both rlim_cur and rlim_max atomically, and either one 579 * alone is a single word that can safely be read normally. 580 * getrlimit/setrlimit use task_lock(current->group_leader) to 581 * protect this instead of the siglock, because they really 582 * have no need to disable irqs. 583 */ 584 struct rlimit rlim[RLIM_NLIMITS]; 585 586 #ifdef CONFIG_BSD_PROCESS_ACCT 587 struct pacct_struct pacct; /* per-process accounting information */ 588 #endif 589 #ifdef CONFIG_TASKSTATS 590 struct taskstats *stats; 591 #endif 592 #ifdef CONFIG_AUDIT 593 unsigned audit_tty; 594 unsigned audit_tty_log_passwd; 595 struct tty_audit_buf *tty_audit_buf; 596 #endif 597 #ifdef CONFIG_CGROUPS 598 /* 599 * group_rwsem prevents new tasks from entering the threadgroup and 600 * member tasks from exiting,a more specifically, setting of 601 * PF_EXITING. fork and exit paths are protected with this rwsem 602 * using threadgroup_change_begin/end(). Users which require 603 * threadgroup to remain stable should use threadgroup_[un]lock() 604 * which also takes care of exec path. Currently, cgroup is the 605 * only user. 606 */ 607 struct rw_semaphore group_rwsem; 608 #endif 609 610 oom_flags_t oom_flags; 611 short oom_score_adj; /* OOM kill score adjustment */ 612 short oom_score_adj_min; /* OOM kill score adjustment min value. 613 * Only settable by CAP_SYS_RESOURCE. */ 614 615 struct mutex cred_guard_mutex; /* guard against foreign influences on 616 * credential calculations 617 * (notably. ptrace) */ 618 }; 619 620 /* 621 * Bits in flags field of signal_struct. 622 */ 623 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 624 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 625 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 626 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 627 /* 628 * Pending notifications to parent. 629 */ 630 #define SIGNAL_CLD_STOPPED 0x00000010 631 #define SIGNAL_CLD_CONTINUED 0x00000020 632 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 633 634 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 635 636 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 637 static inline int signal_group_exit(const struct signal_struct *sig) 638 { 639 return (sig->flags & SIGNAL_GROUP_EXIT) || 640 (sig->group_exit_task != NULL); 641 } 642 643 /* 644 * Some day this will be a full-fledged user tracking system.. 645 */ 646 struct user_struct { 647 atomic_t __count; /* reference count */ 648 atomic_t processes; /* How many processes does this user have? */ 649 atomic_t files; /* How many open files does this user have? */ 650 atomic_t sigpending; /* How many pending signals does this user have? */ 651 #ifdef CONFIG_INOTIFY_USER 652 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 653 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 654 #endif 655 #ifdef CONFIG_FANOTIFY 656 atomic_t fanotify_listeners; 657 #endif 658 #ifdef CONFIG_EPOLL 659 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 660 #endif 661 #ifdef CONFIG_POSIX_MQUEUE 662 /* protected by mq_lock */ 663 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 664 #endif 665 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 666 667 #ifdef CONFIG_KEYS 668 struct key *uid_keyring; /* UID specific keyring */ 669 struct key *session_keyring; /* UID's default session keyring */ 670 #endif 671 672 /* Hash table maintenance information */ 673 struct hlist_node uidhash_node; 674 kuid_t uid; 675 676 #ifdef CONFIG_PERF_EVENTS 677 atomic_long_t locked_vm; 678 #endif 679 }; 680 681 extern int uids_sysfs_init(void); 682 683 extern struct user_struct *find_user(kuid_t); 684 685 extern struct user_struct root_user; 686 #define INIT_USER (&root_user) 687 688 689 struct backing_dev_info; 690 struct reclaim_state; 691 692 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 693 struct sched_info { 694 /* cumulative counters */ 695 unsigned long pcount; /* # of times run on this cpu */ 696 unsigned long long run_delay; /* time spent waiting on a runqueue */ 697 698 /* timestamps */ 699 unsigned long long last_arrival,/* when we last ran on a cpu */ 700 last_queued; /* when we were last queued to run */ 701 }; 702 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 703 704 #ifdef CONFIG_TASK_DELAY_ACCT 705 struct task_delay_info { 706 spinlock_t lock; 707 unsigned int flags; /* Private per-task flags */ 708 709 /* For each stat XXX, add following, aligned appropriately 710 * 711 * struct timespec XXX_start, XXX_end; 712 * u64 XXX_delay; 713 * u32 XXX_count; 714 * 715 * Atomicity of updates to XXX_delay, XXX_count protected by 716 * single lock above (split into XXX_lock if contention is an issue). 717 */ 718 719 /* 720 * XXX_count is incremented on every XXX operation, the delay 721 * associated with the operation is added to XXX_delay. 722 * XXX_delay contains the accumulated delay time in nanoseconds. 723 */ 724 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 725 u64 blkio_delay; /* wait for sync block io completion */ 726 u64 swapin_delay; /* wait for swapin block io completion */ 727 u32 blkio_count; /* total count of the number of sync block */ 728 /* io operations performed */ 729 u32 swapin_count; /* total count of the number of swapin block */ 730 /* io operations performed */ 731 732 struct timespec freepages_start, freepages_end; 733 u64 freepages_delay; /* wait for memory reclaim */ 734 u32 freepages_count; /* total count of memory reclaim */ 735 }; 736 #endif /* CONFIG_TASK_DELAY_ACCT */ 737 738 static inline int sched_info_on(void) 739 { 740 #ifdef CONFIG_SCHEDSTATS 741 return 1; 742 #elif defined(CONFIG_TASK_DELAY_ACCT) 743 extern int delayacct_on; 744 return delayacct_on; 745 #else 746 return 0; 747 #endif 748 } 749 750 enum cpu_idle_type { 751 CPU_IDLE, 752 CPU_NOT_IDLE, 753 CPU_NEWLY_IDLE, 754 CPU_MAX_IDLE_TYPES 755 }; 756 757 /* 758 * Increase resolution of cpu_power calculations 759 */ 760 #define SCHED_POWER_SHIFT 10 761 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 762 763 /* 764 * sched-domains (multiprocessor balancing) declarations: 765 */ 766 #ifdef CONFIG_SMP 767 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 768 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 769 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 770 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 771 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 772 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 773 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 774 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 775 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 776 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 777 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 778 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 779 780 extern int __weak arch_sd_sibiling_asym_packing(void); 781 782 struct sched_domain_attr { 783 int relax_domain_level; 784 }; 785 786 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 787 .relax_domain_level = -1, \ 788 } 789 790 extern int sched_domain_level_max; 791 792 struct sched_group; 793 794 struct sched_domain { 795 /* These fields must be setup */ 796 struct sched_domain *parent; /* top domain must be null terminated */ 797 struct sched_domain *child; /* bottom domain must be null terminated */ 798 struct sched_group *groups; /* the balancing groups of the domain */ 799 unsigned long min_interval; /* Minimum balance interval ms */ 800 unsigned long max_interval; /* Maximum balance interval ms */ 801 unsigned int busy_factor; /* less balancing by factor if busy */ 802 unsigned int imbalance_pct; /* No balance until over watermark */ 803 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 804 unsigned int busy_idx; 805 unsigned int idle_idx; 806 unsigned int newidle_idx; 807 unsigned int wake_idx; 808 unsigned int forkexec_idx; 809 unsigned int smt_gain; 810 811 int nohz_idle; /* NOHZ IDLE status */ 812 int flags; /* See SD_* */ 813 int level; 814 815 /* Runtime fields. */ 816 unsigned long last_balance; /* init to jiffies. units in jiffies */ 817 unsigned int balance_interval; /* initialise to 1. units in ms. */ 818 unsigned int nr_balance_failed; /* initialise to 0 */ 819 820 u64 last_update; 821 822 #ifdef CONFIG_SCHEDSTATS 823 /* load_balance() stats */ 824 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 825 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 826 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 827 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 828 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 829 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 830 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 831 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 832 833 /* Active load balancing */ 834 unsigned int alb_count; 835 unsigned int alb_failed; 836 unsigned int alb_pushed; 837 838 /* SD_BALANCE_EXEC stats */ 839 unsigned int sbe_count; 840 unsigned int sbe_balanced; 841 unsigned int sbe_pushed; 842 843 /* SD_BALANCE_FORK stats */ 844 unsigned int sbf_count; 845 unsigned int sbf_balanced; 846 unsigned int sbf_pushed; 847 848 /* try_to_wake_up() stats */ 849 unsigned int ttwu_wake_remote; 850 unsigned int ttwu_move_affine; 851 unsigned int ttwu_move_balance; 852 #endif 853 #ifdef CONFIG_SCHED_DEBUG 854 char *name; 855 #endif 856 union { 857 void *private; /* used during construction */ 858 struct rcu_head rcu; /* used during destruction */ 859 }; 860 861 unsigned int span_weight; 862 /* 863 * Span of all CPUs in this domain. 864 * 865 * NOTE: this field is variable length. (Allocated dynamically 866 * by attaching extra space to the end of the structure, 867 * depending on how many CPUs the kernel has booted up with) 868 */ 869 unsigned long span[0]; 870 }; 871 872 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 873 { 874 return to_cpumask(sd->span); 875 } 876 877 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 878 struct sched_domain_attr *dattr_new); 879 880 /* Allocate an array of sched domains, for partition_sched_domains(). */ 881 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 882 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 883 884 bool cpus_share_cache(int this_cpu, int that_cpu); 885 886 #else /* CONFIG_SMP */ 887 888 struct sched_domain_attr; 889 890 static inline void 891 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 892 struct sched_domain_attr *dattr_new) 893 { 894 } 895 896 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 897 { 898 return true; 899 } 900 901 #endif /* !CONFIG_SMP */ 902 903 904 struct io_context; /* See blkdev.h */ 905 906 907 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 908 extern void prefetch_stack(struct task_struct *t); 909 #else 910 static inline void prefetch_stack(struct task_struct *t) { } 911 #endif 912 913 struct audit_context; /* See audit.c */ 914 struct mempolicy; 915 struct pipe_inode_info; 916 struct uts_namespace; 917 918 struct load_weight { 919 unsigned long weight, inv_weight; 920 }; 921 922 struct sched_avg { 923 /* 924 * These sums represent an infinite geometric series and so are bound 925 * above by 1024/(1-y). Thus we only need a u32 to store them for all 926 * choices of y < 1-2^(-32)*1024. 927 */ 928 u32 runnable_avg_sum, runnable_avg_period; 929 u64 last_runnable_update; 930 s64 decay_count; 931 unsigned long load_avg_contrib; 932 }; 933 934 #ifdef CONFIG_SCHEDSTATS 935 struct sched_statistics { 936 u64 wait_start; 937 u64 wait_max; 938 u64 wait_count; 939 u64 wait_sum; 940 u64 iowait_count; 941 u64 iowait_sum; 942 943 u64 sleep_start; 944 u64 sleep_max; 945 s64 sum_sleep_runtime; 946 947 u64 block_start; 948 u64 block_max; 949 u64 exec_max; 950 u64 slice_max; 951 952 u64 nr_migrations_cold; 953 u64 nr_failed_migrations_affine; 954 u64 nr_failed_migrations_running; 955 u64 nr_failed_migrations_hot; 956 u64 nr_forced_migrations; 957 958 u64 nr_wakeups; 959 u64 nr_wakeups_sync; 960 u64 nr_wakeups_migrate; 961 u64 nr_wakeups_local; 962 u64 nr_wakeups_remote; 963 u64 nr_wakeups_affine; 964 u64 nr_wakeups_affine_attempts; 965 u64 nr_wakeups_passive; 966 u64 nr_wakeups_idle; 967 }; 968 #endif 969 970 struct sched_entity { 971 struct load_weight load; /* for load-balancing */ 972 struct rb_node run_node; 973 struct list_head group_node; 974 unsigned int on_rq; 975 976 u64 exec_start; 977 u64 sum_exec_runtime; 978 u64 vruntime; 979 u64 prev_sum_exec_runtime; 980 981 u64 nr_migrations; 982 983 #ifdef CONFIG_SCHEDSTATS 984 struct sched_statistics statistics; 985 #endif 986 987 #ifdef CONFIG_FAIR_GROUP_SCHED 988 struct sched_entity *parent; 989 /* rq on which this entity is (to be) queued: */ 990 struct cfs_rq *cfs_rq; 991 /* rq "owned" by this entity/group: */ 992 struct cfs_rq *my_q; 993 #endif 994 995 #ifdef CONFIG_SMP 996 /* Per-entity load-tracking */ 997 struct sched_avg avg; 998 #endif 999 }; 1000 1001 struct sched_rt_entity { 1002 struct list_head run_list; 1003 unsigned long timeout; 1004 unsigned long watchdog_stamp; 1005 unsigned int time_slice; 1006 1007 struct sched_rt_entity *back; 1008 #ifdef CONFIG_RT_GROUP_SCHED 1009 struct sched_rt_entity *parent; 1010 /* rq on which this entity is (to be) queued: */ 1011 struct rt_rq *rt_rq; 1012 /* rq "owned" by this entity/group: */ 1013 struct rt_rq *my_q; 1014 #endif 1015 }; 1016 1017 1018 struct rcu_node; 1019 1020 enum perf_event_task_context { 1021 perf_invalid_context = -1, 1022 perf_hw_context = 0, 1023 perf_sw_context, 1024 perf_nr_task_contexts, 1025 }; 1026 1027 struct task_struct { 1028 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1029 void *stack; 1030 atomic_t usage; 1031 unsigned int flags; /* per process flags, defined below */ 1032 unsigned int ptrace; 1033 1034 #ifdef CONFIG_SMP 1035 struct llist_node wake_entry; 1036 int on_cpu; 1037 #endif 1038 int on_rq; 1039 1040 int prio, static_prio, normal_prio; 1041 unsigned int rt_priority; 1042 const struct sched_class *sched_class; 1043 struct sched_entity se; 1044 struct sched_rt_entity rt; 1045 #ifdef CONFIG_CGROUP_SCHED 1046 struct task_group *sched_task_group; 1047 #endif 1048 1049 #ifdef CONFIG_PREEMPT_NOTIFIERS 1050 /* list of struct preempt_notifier: */ 1051 struct hlist_head preempt_notifiers; 1052 #endif 1053 1054 /* 1055 * fpu_counter contains the number of consecutive context switches 1056 * that the FPU is used. If this is over a threshold, the lazy fpu 1057 * saving becomes unlazy to save the trap. This is an unsigned char 1058 * so that after 256 times the counter wraps and the behavior turns 1059 * lazy again; this to deal with bursty apps that only use FPU for 1060 * a short time 1061 */ 1062 unsigned char fpu_counter; 1063 #ifdef CONFIG_BLK_DEV_IO_TRACE 1064 unsigned int btrace_seq; 1065 #endif 1066 1067 unsigned int policy; 1068 int nr_cpus_allowed; 1069 cpumask_t cpus_allowed; 1070 1071 #ifdef CONFIG_PREEMPT_RCU 1072 int rcu_read_lock_nesting; 1073 char rcu_read_unlock_special; 1074 struct list_head rcu_node_entry; 1075 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1076 #ifdef CONFIG_TREE_PREEMPT_RCU 1077 struct rcu_node *rcu_blocked_node; 1078 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1079 #ifdef CONFIG_RCU_BOOST 1080 struct rt_mutex *rcu_boost_mutex; 1081 #endif /* #ifdef CONFIG_RCU_BOOST */ 1082 1083 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1084 struct sched_info sched_info; 1085 #endif 1086 1087 struct list_head tasks; 1088 #ifdef CONFIG_SMP 1089 struct plist_node pushable_tasks; 1090 #endif 1091 1092 struct mm_struct *mm, *active_mm; 1093 #ifdef CONFIG_COMPAT_BRK 1094 unsigned brk_randomized:1; 1095 #endif 1096 #if defined(SPLIT_RSS_COUNTING) 1097 struct task_rss_stat rss_stat; 1098 #endif 1099 /* task state */ 1100 int exit_state; 1101 int exit_code, exit_signal; 1102 int pdeath_signal; /* The signal sent when the parent dies */ 1103 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1104 1105 /* Used for emulating ABI behavior of previous Linux versions */ 1106 unsigned int personality; 1107 1108 unsigned did_exec:1; 1109 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1110 * execve */ 1111 unsigned in_iowait:1; 1112 1113 /* task may not gain privileges */ 1114 unsigned no_new_privs:1; 1115 1116 /* Revert to default priority/policy when forking */ 1117 unsigned sched_reset_on_fork:1; 1118 unsigned sched_contributes_to_load:1; 1119 1120 pid_t pid; 1121 pid_t tgid; 1122 1123 #ifdef CONFIG_CC_STACKPROTECTOR 1124 /* Canary value for the -fstack-protector gcc feature */ 1125 unsigned long stack_canary; 1126 #endif 1127 /* 1128 * pointers to (original) parent process, youngest child, younger sibling, 1129 * older sibling, respectively. (p->father can be replaced with 1130 * p->real_parent->pid) 1131 */ 1132 struct task_struct __rcu *real_parent; /* real parent process */ 1133 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1134 /* 1135 * children/sibling forms the list of my natural children 1136 */ 1137 struct list_head children; /* list of my children */ 1138 struct list_head sibling; /* linkage in my parent's children list */ 1139 struct task_struct *group_leader; /* threadgroup leader */ 1140 1141 /* 1142 * ptraced is the list of tasks this task is using ptrace on. 1143 * This includes both natural children and PTRACE_ATTACH targets. 1144 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1145 */ 1146 struct list_head ptraced; 1147 struct list_head ptrace_entry; 1148 1149 /* PID/PID hash table linkage. */ 1150 struct pid_link pids[PIDTYPE_MAX]; 1151 struct list_head thread_group; 1152 1153 struct completion *vfork_done; /* for vfork() */ 1154 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1155 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1156 1157 cputime_t utime, stime, utimescaled, stimescaled; 1158 cputime_t gtime; 1159 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1160 struct cputime prev_cputime; 1161 #endif 1162 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1163 seqlock_t vtime_seqlock; 1164 unsigned long long vtime_snap; 1165 enum { 1166 VTIME_SLEEPING = 0, 1167 VTIME_USER, 1168 VTIME_SYS, 1169 } vtime_snap_whence; 1170 #endif 1171 unsigned long nvcsw, nivcsw; /* context switch counts */ 1172 struct timespec start_time; /* monotonic time */ 1173 struct timespec real_start_time; /* boot based time */ 1174 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1175 unsigned long min_flt, maj_flt; 1176 1177 struct task_cputime cputime_expires; 1178 struct list_head cpu_timers[3]; 1179 1180 /* process credentials */ 1181 const struct cred __rcu *real_cred; /* objective and real subjective task 1182 * credentials (COW) */ 1183 const struct cred __rcu *cred; /* effective (overridable) subjective task 1184 * credentials (COW) */ 1185 char comm[TASK_COMM_LEN]; /* executable name excluding path 1186 - access with [gs]et_task_comm (which lock 1187 it with task_lock()) 1188 - initialized normally by setup_new_exec */ 1189 /* file system info */ 1190 int link_count, total_link_count; 1191 #ifdef CONFIG_SYSVIPC 1192 /* ipc stuff */ 1193 struct sysv_sem sysvsem; 1194 #endif 1195 #ifdef CONFIG_DETECT_HUNG_TASK 1196 /* hung task detection */ 1197 unsigned long last_switch_count; 1198 #endif 1199 /* CPU-specific state of this task */ 1200 struct thread_struct thread; 1201 /* filesystem information */ 1202 struct fs_struct *fs; 1203 /* open file information */ 1204 struct files_struct *files; 1205 /* namespaces */ 1206 struct nsproxy *nsproxy; 1207 /* signal handlers */ 1208 struct signal_struct *signal; 1209 struct sighand_struct *sighand; 1210 1211 sigset_t blocked, real_blocked; 1212 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1213 struct sigpending pending; 1214 1215 unsigned long sas_ss_sp; 1216 size_t sas_ss_size; 1217 int (*notifier)(void *priv); 1218 void *notifier_data; 1219 sigset_t *notifier_mask; 1220 struct callback_head *task_works; 1221 1222 struct audit_context *audit_context; 1223 #ifdef CONFIG_AUDITSYSCALL 1224 kuid_t loginuid; 1225 unsigned int sessionid; 1226 #endif 1227 struct seccomp seccomp; 1228 1229 /* Thread group tracking */ 1230 u32 parent_exec_id; 1231 u32 self_exec_id; 1232 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1233 * mempolicy */ 1234 spinlock_t alloc_lock; 1235 1236 /* Protection of the PI data structures: */ 1237 raw_spinlock_t pi_lock; 1238 1239 #ifdef CONFIG_RT_MUTEXES 1240 /* PI waiters blocked on a rt_mutex held by this task */ 1241 struct plist_head pi_waiters; 1242 /* Deadlock detection and priority inheritance handling */ 1243 struct rt_mutex_waiter *pi_blocked_on; 1244 #endif 1245 1246 #ifdef CONFIG_DEBUG_MUTEXES 1247 /* mutex deadlock detection */ 1248 struct mutex_waiter *blocked_on; 1249 #endif 1250 #ifdef CONFIG_TRACE_IRQFLAGS 1251 unsigned int irq_events; 1252 unsigned long hardirq_enable_ip; 1253 unsigned long hardirq_disable_ip; 1254 unsigned int hardirq_enable_event; 1255 unsigned int hardirq_disable_event; 1256 int hardirqs_enabled; 1257 int hardirq_context; 1258 unsigned long softirq_disable_ip; 1259 unsigned long softirq_enable_ip; 1260 unsigned int softirq_disable_event; 1261 unsigned int softirq_enable_event; 1262 int softirqs_enabled; 1263 int softirq_context; 1264 #endif 1265 #ifdef CONFIG_LOCKDEP 1266 # define MAX_LOCK_DEPTH 48UL 1267 u64 curr_chain_key; 1268 int lockdep_depth; 1269 unsigned int lockdep_recursion; 1270 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1271 gfp_t lockdep_reclaim_gfp; 1272 #endif 1273 1274 /* journalling filesystem info */ 1275 void *journal_info; 1276 1277 /* stacked block device info */ 1278 struct bio_list *bio_list; 1279 1280 #ifdef CONFIG_BLOCK 1281 /* stack plugging */ 1282 struct blk_plug *plug; 1283 #endif 1284 1285 /* VM state */ 1286 struct reclaim_state *reclaim_state; 1287 1288 struct backing_dev_info *backing_dev_info; 1289 1290 struct io_context *io_context; 1291 1292 unsigned long ptrace_message; 1293 siginfo_t *last_siginfo; /* For ptrace use. */ 1294 struct task_io_accounting ioac; 1295 #if defined(CONFIG_TASK_XACCT) 1296 u64 acct_rss_mem1; /* accumulated rss usage */ 1297 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1298 cputime_t acct_timexpd; /* stime + utime since last update */ 1299 #endif 1300 #ifdef CONFIG_CPUSETS 1301 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1302 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1303 int cpuset_mem_spread_rotor; 1304 int cpuset_slab_spread_rotor; 1305 #endif 1306 #ifdef CONFIG_CGROUPS 1307 /* Control Group info protected by css_set_lock */ 1308 struct css_set __rcu *cgroups; 1309 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1310 struct list_head cg_list; 1311 #endif 1312 #ifdef CONFIG_FUTEX 1313 struct robust_list_head __user *robust_list; 1314 #ifdef CONFIG_COMPAT 1315 struct compat_robust_list_head __user *compat_robust_list; 1316 #endif 1317 struct list_head pi_state_list; 1318 struct futex_pi_state *pi_state_cache; 1319 #endif 1320 #ifdef CONFIG_PERF_EVENTS 1321 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1322 struct mutex perf_event_mutex; 1323 struct list_head perf_event_list; 1324 #endif 1325 #ifdef CONFIG_NUMA 1326 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1327 short il_next; 1328 short pref_node_fork; 1329 #endif 1330 #ifdef CONFIG_NUMA_BALANCING 1331 int numa_scan_seq; 1332 int numa_migrate_seq; 1333 unsigned int numa_scan_period; 1334 u64 node_stamp; /* migration stamp */ 1335 struct callback_head numa_work; 1336 #endif /* CONFIG_NUMA_BALANCING */ 1337 1338 struct rcu_head rcu; 1339 1340 /* 1341 * cache last used pipe for splice 1342 */ 1343 struct pipe_inode_info *splice_pipe; 1344 1345 struct page_frag task_frag; 1346 1347 #ifdef CONFIG_TASK_DELAY_ACCT 1348 struct task_delay_info *delays; 1349 #endif 1350 #ifdef CONFIG_FAULT_INJECTION 1351 int make_it_fail; 1352 #endif 1353 /* 1354 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1355 * balance_dirty_pages() for some dirty throttling pause 1356 */ 1357 int nr_dirtied; 1358 int nr_dirtied_pause; 1359 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1360 1361 #ifdef CONFIG_LATENCYTOP 1362 int latency_record_count; 1363 struct latency_record latency_record[LT_SAVECOUNT]; 1364 #endif 1365 /* 1366 * time slack values; these are used to round up poll() and 1367 * select() etc timeout values. These are in nanoseconds. 1368 */ 1369 unsigned long timer_slack_ns; 1370 unsigned long default_timer_slack_ns; 1371 1372 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1373 /* Index of current stored address in ret_stack */ 1374 int curr_ret_stack; 1375 /* Stack of return addresses for return function tracing */ 1376 struct ftrace_ret_stack *ret_stack; 1377 /* time stamp for last schedule */ 1378 unsigned long long ftrace_timestamp; 1379 /* 1380 * Number of functions that haven't been traced 1381 * because of depth overrun. 1382 */ 1383 atomic_t trace_overrun; 1384 /* Pause for the tracing */ 1385 atomic_t tracing_graph_pause; 1386 #endif 1387 #ifdef CONFIG_TRACING 1388 /* state flags for use by tracers */ 1389 unsigned long trace; 1390 /* bitmask and counter of trace recursion */ 1391 unsigned long trace_recursion; 1392 #endif /* CONFIG_TRACING */ 1393 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1394 struct memcg_batch_info { 1395 int do_batch; /* incremented when batch uncharge started */ 1396 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1397 unsigned long nr_pages; /* uncharged usage */ 1398 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1399 } memcg_batch; 1400 unsigned int memcg_kmem_skip_account; 1401 #endif 1402 #ifdef CONFIG_UPROBES 1403 struct uprobe_task *utask; 1404 #endif 1405 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1406 unsigned int sequential_io; 1407 unsigned int sequential_io_avg; 1408 #endif 1409 }; 1410 1411 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1412 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1413 1414 #ifdef CONFIG_NUMA_BALANCING 1415 extern void task_numa_fault(int node, int pages, bool migrated); 1416 extern void set_numabalancing_state(bool enabled); 1417 #else 1418 static inline void task_numa_fault(int node, int pages, bool migrated) 1419 { 1420 } 1421 static inline void set_numabalancing_state(bool enabled) 1422 { 1423 } 1424 #endif 1425 1426 static inline struct pid *task_pid(struct task_struct *task) 1427 { 1428 return task->pids[PIDTYPE_PID].pid; 1429 } 1430 1431 static inline struct pid *task_tgid(struct task_struct *task) 1432 { 1433 return task->group_leader->pids[PIDTYPE_PID].pid; 1434 } 1435 1436 /* 1437 * Without tasklist or rcu lock it is not safe to dereference 1438 * the result of task_pgrp/task_session even if task == current, 1439 * we can race with another thread doing sys_setsid/sys_setpgid. 1440 */ 1441 static inline struct pid *task_pgrp(struct task_struct *task) 1442 { 1443 return task->group_leader->pids[PIDTYPE_PGID].pid; 1444 } 1445 1446 static inline struct pid *task_session(struct task_struct *task) 1447 { 1448 return task->group_leader->pids[PIDTYPE_SID].pid; 1449 } 1450 1451 struct pid_namespace; 1452 1453 /* 1454 * the helpers to get the task's different pids as they are seen 1455 * from various namespaces 1456 * 1457 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1458 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1459 * current. 1460 * task_xid_nr_ns() : id seen from the ns specified; 1461 * 1462 * set_task_vxid() : assigns a virtual id to a task; 1463 * 1464 * see also pid_nr() etc in include/linux/pid.h 1465 */ 1466 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1467 struct pid_namespace *ns); 1468 1469 static inline pid_t task_pid_nr(struct task_struct *tsk) 1470 { 1471 return tsk->pid; 1472 } 1473 1474 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1475 struct pid_namespace *ns) 1476 { 1477 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1478 } 1479 1480 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1481 { 1482 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1483 } 1484 1485 1486 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1487 { 1488 return tsk->tgid; 1489 } 1490 1491 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1492 1493 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1494 { 1495 return pid_vnr(task_tgid(tsk)); 1496 } 1497 1498 1499 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1500 struct pid_namespace *ns) 1501 { 1502 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1503 } 1504 1505 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1506 { 1507 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1508 } 1509 1510 1511 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1512 struct pid_namespace *ns) 1513 { 1514 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1515 } 1516 1517 static inline pid_t task_session_vnr(struct task_struct *tsk) 1518 { 1519 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1520 } 1521 1522 /* obsolete, do not use */ 1523 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1524 { 1525 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1526 } 1527 1528 /** 1529 * pid_alive - check that a task structure is not stale 1530 * @p: Task structure to be checked. 1531 * 1532 * Test if a process is not yet dead (at most zombie state) 1533 * If pid_alive fails, then pointers within the task structure 1534 * can be stale and must not be dereferenced. 1535 */ 1536 static inline int pid_alive(struct task_struct *p) 1537 { 1538 return p->pids[PIDTYPE_PID].pid != NULL; 1539 } 1540 1541 /** 1542 * is_global_init - check if a task structure is init 1543 * @tsk: Task structure to be checked. 1544 * 1545 * Check if a task structure is the first user space task the kernel created. 1546 */ 1547 static inline int is_global_init(struct task_struct *tsk) 1548 { 1549 return tsk->pid == 1; 1550 } 1551 1552 extern struct pid *cad_pid; 1553 1554 extern void free_task(struct task_struct *tsk); 1555 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1556 1557 extern void __put_task_struct(struct task_struct *t); 1558 1559 static inline void put_task_struct(struct task_struct *t) 1560 { 1561 if (atomic_dec_and_test(&t->usage)) 1562 __put_task_struct(t); 1563 } 1564 1565 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1566 extern void task_cputime(struct task_struct *t, 1567 cputime_t *utime, cputime_t *stime); 1568 extern void task_cputime_scaled(struct task_struct *t, 1569 cputime_t *utimescaled, cputime_t *stimescaled); 1570 extern cputime_t task_gtime(struct task_struct *t); 1571 #else 1572 static inline void task_cputime(struct task_struct *t, 1573 cputime_t *utime, cputime_t *stime) 1574 { 1575 if (utime) 1576 *utime = t->utime; 1577 if (stime) 1578 *stime = t->stime; 1579 } 1580 1581 static inline void task_cputime_scaled(struct task_struct *t, 1582 cputime_t *utimescaled, 1583 cputime_t *stimescaled) 1584 { 1585 if (utimescaled) 1586 *utimescaled = t->utimescaled; 1587 if (stimescaled) 1588 *stimescaled = t->stimescaled; 1589 } 1590 1591 static inline cputime_t task_gtime(struct task_struct *t) 1592 { 1593 return t->gtime; 1594 } 1595 #endif 1596 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1597 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1598 1599 /* 1600 * Per process flags 1601 */ 1602 #define PF_EXITING 0x00000004 /* getting shut down */ 1603 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1604 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1605 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1606 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1607 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1608 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1609 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1610 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1611 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1612 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1613 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1614 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1615 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1616 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1617 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1618 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1619 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1620 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1621 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1622 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1623 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1624 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1625 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1626 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1627 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1628 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1629 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1630 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1631 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 1632 1633 /* 1634 * Only the _current_ task can read/write to tsk->flags, but other 1635 * tasks can access tsk->flags in readonly mode for example 1636 * with tsk_used_math (like during threaded core dumping). 1637 * There is however an exception to this rule during ptrace 1638 * or during fork: the ptracer task is allowed to write to the 1639 * child->flags of its traced child (same goes for fork, the parent 1640 * can write to the child->flags), because we're guaranteed the 1641 * child is not running and in turn not changing child->flags 1642 * at the same time the parent does it. 1643 */ 1644 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1645 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1646 #define clear_used_math() clear_stopped_child_used_math(current) 1647 #define set_used_math() set_stopped_child_used_math(current) 1648 #define conditional_stopped_child_used_math(condition, child) \ 1649 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1650 #define conditional_used_math(condition) \ 1651 conditional_stopped_child_used_math(condition, current) 1652 #define copy_to_stopped_child_used_math(child) \ 1653 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1654 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1655 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1656 #define used_math() tsk_used_math(current) 1657 1658 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */ 1659 static inline gfp_t memalloc_noio_flags(gfp_t flags) 1660 { 1661 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 1662 flags &= ~__GFP_IO; 1663 return flags; 1664 } 1665 1666 static inline unsigned int memalloc_noio_save(void) 1667 { 1668 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 1669 current->flags |= PF_MEMALLOC_NOIO; 1670 return flags; 1671 } 1672 1673 static inline void memalloc_noio_restore(unsigned int flags) 1674 { 1675 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 1676 } 1677 1678 /* 1679 * task->jobctl flags 1680 */ 1681 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1682 1683 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1684 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1685 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1686 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1687 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1688 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1689 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1690 1691 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1692 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1693 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1694 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1695 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1696 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1697 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1698 1699 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1700 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1701 1702 extern bool task_set_jobctl_pending(struct task_struct *task, 1703 unsigned int mask); 1704 extern void task_clear_jobctl_trapping(struct task_struct *task); 1705 extern void task_clear_jobctl_pending(struct task_struct *task, 1706 unsigned int mask); 1707 1708 #ifdef CONFIG_PREEMPT_RCU 1709 1710 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1711 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1712 1713 static inline void rcu_copy_process(struct task_struct *p) 1714 { 1715 p->rcu_read_lock_nesting = 0; 1716 p->rcu_read_unlock_special = 0; 1717 #ifdef CONFIG_TREE_PREEMPT_RCU 1718 p->rcu_blocked_node = NULL; 1719 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1720 #ifdef CONFIG_RCU_BOOST 1721 p->rcu_boost_mutex = NULL; 1722 #endif /* #ifdef CONFIG_RCU_BOOST */ 1723 INIT_LIST_HEAD(&p->rcu_node_entry); 1724 } 1725 1726 #else 1727 1728 static inline void rcu_copy_process(struct task_struct *p) 1729 { 1730 } 1731 1732 #endif 1733 1734 static inline void tsk_restore_flags(struct task_struct *task, 1735 unsigned long orig_flags, unsigned long flags) 1736 { 1737 task->flags &= ~flags; 1738 task->flags |= orig_flags & flags; 1739 } 1740 1741 #ifdef CONFIG_SMP 1742 extern void do_set_cpus_allowed(struct task_struct *p, 1743 const struct cpumask *new_mask); 1744 1745 extern int set_cpus_allowed_ptr(struct task_struct *p, 1746 const struct cpumask *new_mask); 1747 #else 1748 static inline void do_set_cpus_allowed(struct task_struct *p, 1749 const struct cpumask *new_mask) 1750 { 1751 } 1752 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1753 const struct cpumask *new_mask) 1754 { 1755 if (!cpumask_test_cpu(0, new_mask)) 1756 return -EINVAL; 1757 return 0; 1758 } 1759 #endif 1760 1761 #ifdef CONFIG_NO_HZ_COMMON 1762 void calc_load_enter_idle(void); 1763 void calc_load_exit_idle(void); 1764 #else 1765 static inline void calc_load_enter_idle(void) { } 1766 static inline void calc_load_exit_idle(void) { } 1767 #endif /* CONFIG_NO_HZ_COMMON */ 1768 1769 #ifndef CONFIG_CPUMASK_OFFSTACK 1770 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1771 { 1772 return set_cpus_allowed_ptr(p, &new_mask); 1773 } 1774 #endif 1775 1776 /* 1777 * Do not use outside of architecture code which knows its limitations. 1778 * 1779 * sched_clock() has no promise of monotonicity or bounded drift between 1780 * CPUs, use (which you should not) requires disabling IRQs. 1781 * 1782 * Please use one of the three interfaces below. 1783 */ 1784 extern unsigned long long notrace sched_clock(void); 1785 /* 1786 * See the comment in kernel/sched/clock.c 1787 */ 1788 extern u64 cpu_clock(int cpu); 1789 extern u64 local_clock(void); 1790 extern u64 sched_clock_cpu(int cpu); 1791 1792 1793 extern void sched_clock_init(void); 1794 1795 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1796 static inline void sched_clock_tick(void) 1797 { 1798 } 1799 1800 static inline void sched_clock_idle_sleep_event(void) 1801 { 1802 } 1803 1804 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1805 { 1806 } 1807 #else 1808 /* 1809 * Architectures can set this to 1 if they have specified 1810 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1811 * but then during bootup it turns out that sched_clock() 1812 * is reliable after all: 1813 */ 1814 extern int sched_clock_stable; 1815 1816 extern void sched_clock_tick(void); 1817 extern void sched_clock_idle_sleep_event(void); 1818 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1819 #endif 1820 1821 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1822 /* 1823 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1824 * The reason for this explicit opt-in is not to have perf penalty with 1825 * slow sched_clocks. 1826 */ 1827 extern void enable_sched_clock_irqtime(void); 1828 extern void disable_sched_clock_irqtime(void); 1829 #else 1830 static inline void enable_sched_clock_irqtime(void) {} 1831 static inline void disable_sched_clock_irqtime(void) {} 1832 #endif 1833 1834 extern unsigned long long 1835 task_sched_runtime(struct task_struct *task); 1836 1837 /* sched_exec is called by processes performing an exec */ 1838 #ifdef CONFIG_SMP 1839 extern void sched_exec(void); 1840 #else 1841 #define sched_exec() {} 1842 #endif 1843 1844 extern void sched_clock_idle_sleep_event(void); 1845 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1846 1847 #ifdef CONFIG_HOTPLUG_CPU 1848 extern void idle_task_exit(void); 1849 #else 1850 static inline void idle_task_exit(void) {} 1851 #endif 1852 1853 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 1854 extern void wake_up_nohz_cpu(int cpu); 1855 #else 1856 static inline void wake_up_nohz_cpu(int cpu) { } 1857 #endif 1858 1859 #ifdef CONFIG_NO_HZ_FULL 1860 extern bool sched_can_stop_tick(void); 1861 extern u64 scheduler_tick_max_deferment(void); 1862 #else 1863 static inline bool sched_can_stop_tick(void) { return false; } 1864 #endif 1865 1866 #ifdef CONFIG_SCHED_AUTOGROUP 1867 extern void sched_autogroup_create_attach(struct task_struct *p); 1868 extern void sched_autogroup_detach(struct task_struct *p); 1869 extern void sched_autogroup_fork(struct signal_struct *sig); 1870 extern void sched_autogroup_exit(struct signal_struct *sig); 1871 #ifdef CONFIG_PROC_FS 1872 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 1873 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 1874 #endif 1875 #else 1876 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 1877 static inline void sched_autogroup_detach(struct task_struct *p) { } 1878 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 1879 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 1880 #endif 1881 1882 extern bool yield_to(struct task_struct *p, bool preempt); 1883 extern void set_user_nice(struct task_struct *p, long nice); 1884 extern int task_prio(const struct task_struct *p); 1885 extern int task_nice(const struct task_struct *p); 1886 extern int can_nice(const struct task_struct *p, const int nice); 1887 extern int task_curr(const struct task_struct *p); 1888 extern int idle_cpu(int cpu); 1889 extern int sched_setscheduler(struct task_struct *, int, 1890 const struct sched_param *); 1891 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1892 const struct sched_param *); 1893 extern struct task_struct *idle_task(int cpu); 1894 /** 1895 * is_idle_task - is the specified task an idle task? 1896 * @p: the task in question. 1897 */ 1898 static inline bool is_idle_task(const struct task_struct *p) 1899 { 1900 return p->pid == 0; 1901 } 1902 extern struct task_struct *curr_task(int cpu); 1903 extern void set_curr_task(int cpu, struct task_struct *p); 1904 1905 void yield(void); 1906 1907 /* 1908 * The default (Linux) execution domain. 1909 */ 1910 extern struct exec_domain default_exec_domain; 1911 1912 union thread_union { 1913 struct thread_info thread_info; 1914 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1915 }; 1916 1917 #ifndef __HAVE_ARCH_KSTACK_END 1918 static inline int kstack_end(void *addr) 1919 { 1920 /* Reliable end of stack detection: 1921 * Some APM bios versions misalign the stack 1922 */ 1923 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1924 } 1925 #endif 1926 1927 extern union thread_union init_thread_union; 1928 extern struct task_struct init_task; 1929 1930 extern struct mm_struct init_mm; 1931 1932 extern struct pid_namespace init_pid_ns; 1933 1934 /* 1935 * find a task by one of its numerical ids 1936 * 1937 * find_task_by_pid_ns(): 1938 * finds a task by its pid in the specified namespace 1939 * find_task_by_vpid(): 1940 * finds a task by its virtual pid 1941 * 1942 * see also find_vpid() etc in include/linux/pid.h 1943 */ 1944 1945 extern struct task_struct *find_task_by_vpid(pid_t nr); 1946 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1947 struct pid_namespace *ns); 1948 1949 /* per-UID process charging. */ 1950 extern struct user_struct * alloc_uid(kuid_t); 1951 static inline struct user_struct *get_uid(struct user_struct *u) 1952 { 1953 atomic_inc(&u->__count); 1954 return u; 1955 } 1956 extern void free_uid(struct user_struct *); 1957 1958 #include <asm/current.h> 1959 1960 extern void xtime_update(unsigned long ticks); 1961 1962 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1963 extern int wake_up_process(struct task_struct *tsk); 1964 extern void wake_up_new_task(struct task_struct *tsk); 1965 #ifdef CONFIG_SMP 1966 extern void kick_process(struct task_struct *tsk); 1967 #else 1968 static inline void kick_process(struct task_struct *tsk) { } 1969 #endif 1970 extern void sched_fork(struct task_struct *p); 1971 extern void sched_dead(struct task_struct *p); 1972 1973 extern void proc_caches_init(void); 1974 extern void flush_signals(struct task_struct *); 1975 extern void __flush_signals(struct task_struct *); 1976 extern void ignore_signals(struct task_struct *); 1977 extern void flush_signal_handlers(struct task_struct *, int force_default); 1978 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1979 1980 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1981 { 1982 unsigned long flags; 1983 int ret; 1984 1985 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1986 ret = dequeue_signal(tsk, mask, info); 1987 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1988 1989 return ret; 1990 } 1991 1992 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1993 sigset_t *mask); 1994 extern void unblock_all_signals(void); 1995 extern void release_task(struct task_struct * p); 1996 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1997 extern int force_sigsegv(int, struct task_struct *); 1998 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1999 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2000 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2001 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2002 const struct cred *, u32); 2003 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2004 extern int kill_pid(struct pid *pid, int sig, int priv); 2005 extern int kill_proc_info(int, struct siginfo *, pid_t); 2006 extern __must_check bool do_notify_parent(struct task_struct *, int); 2007 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2008 extern void force_sig(int, struct task_struct *); 2009 extern int send_sig(int, struct task_struct *, int); 2010 extern int zap_other_threads(struct task_struct *p); 2011 extern struct sigqueue *sigqueue_alloc(void); 2012 extern void sigqueue_free(struct sigqueue *); 2013 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2014 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2015 2016 static inline void restore_saved_sigmask(void) 2017 { 2018 if (test_and_clear_restore_sigmask()) 2019 __set_current_blocked(¤t->saved_sigmask); 2020 } 2021 2022 static inline sigset_t *sigmask_to_save(void) 2023 { 2024 sigset_t *res = ¤t->blocked; 2025 if (unlikely(test_restore_sigmask())) 2026 res = ¤t->saved_sigmask; 2027 return res; 2028 } 2029 2030 static inline int kill_cad_pid(int sig, int priv) 2031 { 2032 return kill_pid(cad_pid, sig, priv); 2033 } 2034 2035 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2036 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2037 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2038 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2039 2040 /* 2041 * True if we are on the alternate signal stack. 2042 */ 2043 static inline int on_sig_stack(unsigned long sp) 2044 { 2045 #ifdef CONFIG_STACK_GROWSUP 2046 return sp >= current->sas_ss_sp && 2047 sp - current->sas_ss_sp < current->sas_ss_size; 2048 #else 2049 return sp > current->sas_ss_sp && 2050 sp - current->sas_ss_sp <= current->sas_ss_size; 2051 #endif 2052 } 2053 2054 static inline int sas_ss_flags(unsigned long sp) 2055 { 2056 return (current->sas_ss_size == 0 ? SS_DISABLE 2057 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2058 } 2059 2060 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2061 { 2062 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2063 #ifdef CONFIG_STACK_GROWSUP 2064 return current->sas_ss_sp; 2065 #else 2066 return current->sas_ss_sp + current->sas_ss_size; 2067 #endif 2068 return sp; 2069 } 2070 2071 /* 2072 * Routines for handling mm_structs 2073 */ 2074 extern struct mm_struct * mm_alloc(void); 2075 2076 /* mmdrop drops the mm and the page tables */ 2077 extern void __mmdrop(struct mm_struct *); 2078 static inline void mmdrop(struct mm_struct * mm) 2079 { 2080 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2081 __mmdrop(mm); 2082 } 2083 2084 /* mmput gets rid of the mappings and all user-space */ 2085 extern void mmput(struct mm_struct *); 2086 /* Grab a reference to a task's mm, if it is not already going away */ 2087 extern struct mm_struct *get_task_mm(struct task_struct *task); 2088 /* 2089 * Grab a reference to a task's mm, if it is not already going away 2090 * and ptrace_may_access with the mode parameter passed to it 2091 * succeeds. 2092 */ 2093 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2094 /* Remove the current tasks stale references to the old mm_struct */ 2095 extern void mm_release(struct task_struct *, struct mm_struct *); 2096 /* Allocate a new mm structure and copy contents from tsk->mm */ 2097 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2098 2099 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2100 struct task_struct *); 2101 extern void flush_thread(void); 2102 extern void exit_thread(void); 2103 2104 extern void exit_files(struct task_struct *); 2105 extern void __cleanup_sighand(struct sighand_struct *); 2106 2107 extern void exit_itimers(struct signal_struct *); 2108 extern void flush_itimer_signals(void); 2109 2110 extern void do_group_exit(int); 2111 2112 extern int allow_signal(int); 2113 extern int disallow_signal(int); 2114 2115 extern int do_execve(const char *, 2116 const char __user * const __user *, 2117 const char __user * const __user *); 2118 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2119 struct task_struct *fork_idle(int); 2120 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2121 2122 extern void set_task_comm(struct task_struct *tsk, char *from); 2123 extern char *get_task_comm(char *to, struct task_struct *tsk); 2124 2125 #ifdef CONFIG_SMP 2126 void scheduler_ipi(void); 2127 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2128 #else 2129 static inline void scheduler_ipi(void) { } 2130 static inline unsigned long wait_task_inactive(struct task_struct *p, 2131 long match_state) 2132 { 2133 return 1; 2134 } 2135 #endif 2136 2137 #define next_task(p) \ 2138 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2139 2140 #define for_each_process(p) \ 2141 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2142 2143 extern bool current_is_single_threaded(void); 2144 2145 /* 2146 * Careful: do_each_thread/while_each_thread is a double loop so 2147 * 'break' will not work as expected - use goto instead. 2148 */ 2149 #define do_each_thread(g, t) \ 2150 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2151 2152 #define while_each_thread(g, t) \ 2153 while ((t = next_thread(t)) != g) 2154 2155 static inline int get_nr_threads(struct task_struct *tsk) 2156 { 2157 return tsk->signal->nr_threads; 2158 } 2159 2160 static inline bool thread_group_leader(struct task_struct *p) 2161 { 2162 return p->exit_signal >= 0; 2163 } 2164 2165 /* Do to the insanities of de_thread it is possible for a process 2166 * to have the pid of the thread group leader without actually being 2167 * the thread group leader. For iteration through the pids in proc 2168 * all we care about is that we have a task with the appropriate 2169 * pid, we don't actually care if we have the right task. 2170 */ 2171 static inline int has_group_leader_pid(struct task_struct *p) 2172 { 2173 return p->pid == p->tgid; 2174 } 2175 2176 static inline 2177 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2178 { 2179 return p1->tgid == p2->tgid; 2180 } 2181 2182 static inline struct task_struct *next_thread(const struct task_struct *p) 2183 { 2184 return list_entry_rcu(p->thread_group.next, 2185 struct task_struct, thread_group); 2186 } 2187 2188 static inline int thread_group_empty(struct task_struct *p) 2189 { 2190 return list_empty(&p->thread_group); 2191 } 2192 2193 #define delay_group_leader(p) \ 2194 (thread_group_leader(p) && !thread_group_empty(p)) 2195 2196 /* 2197 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2198 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2199 * pins the final release of task.io_context. Also protects ->cpuset and 2200 * ->cgroup.subsys[]. And ->vfork_done. 2201 * 2202 * Nests both inside and outside of read_lock(&tasklist_lock). 2203 * It must not be nested with write_lock_irq(&tasklist_lock), 2204 * neither inside nor outside. 2205 */ 2206 static inline void task_lock(struct task_struct *p) 2207 { 2208 spin_lock(&p->alloc_lock); 2209 } 2210 2211 static inline void task_unlock(struct task_struct *p) 2212 { 2213 spin_unlock(&p->alloc_lock); 2214 } 2215 2216 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2217 unsigned long *flags); 2218 2219 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2220 unsigned long *flags) 2221 { 2222 struct sighand_struct *ret; 2223 2224 ret = __lock_task_sighand(tsk, flags); 2225 (void)__cond_lock(&tsk->sighand->siglock, ret); 2226 return ret; 2227 } 2228 2229 static inline void unlock_task_sighand(struct task_struct *tsk, 2230 unsigned long *flags) 2231 { 2232 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2233 } 2234 2235 #ifdef CONFIG_CGROUPS 2236 static inline void threadgroup_change_begin(struct task_struct *tsk) 2237 { 2238 down_read(&tsk->signal->group_rwsem); 2239 } 2240 static inline void threadgroup_change_end(struct task_struct *tsk) 2241 { 2242 up_read(&tsk->signal->group_rwsem); 2243 } 2244 2245 /** 2246 * threadgroup_lock - lock threadgroup 2247 * @tsk: member task of the threadgroup to lock 2248 * 2249 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2250 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2251 * change ->group_leader/pid. This is useful for cases where the threadgroup 2252 * needs to stay stable across blockable operations. 2253 * 2254 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2255 * synchronization. While held, no new task will be added to threadgroup 2256 * and no existing live task will have its PF_EXITING set. 2257 * 2258 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2259 * sub-thread becomes a new leader. 2260 */ 2261 static inline void threadgroup_lock(struct task_struct *tsk) 2262 { 2263 down_write(&tsk->signal->group_rwsem); 2264 } 2265 2266 /** 2267 * threadgroup_unlock - unlock threadgroup 2268 * @tsk: member task of the threadgroup to unlock 2269 * 2270 * Reverse threadgroup_lock(). 2271 */ 2272 static inline void threadgroup_unlock(struct task_struct *tsk) 2273 { 2274 up_write(&tsk->signal->group_rwsem); 2275 } 2276 #else 2277 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2278 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2279 static inline void threadgroup_lock(struct task_struct *tsk) {} 2280 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2281 #endif 2282 2283 #ifndef __HAVE_THREAD_FUNCTIONS 2284 2285 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2286 #define task_stack_page(task) ((task)->stack) 2287 2288 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2289 { 2290 *task_thread_info(p) = *task_thread_info(org); 2291 task_thread_info(p)->task = p; 2292 } 2293 2294 static inline unsigned long *end_of_stack(struct task_struct *p) 2295 { 2296 return (unsigned long *)(task_thread_info(p) + 1); 2297 } 2298 2299 #endif 2300 2301 static inline int object_is_on_stack(void *obj) 2302 { 2303 void *stack = task_stack_page(current); 2304 2305 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2306 } 2307 2308 extern void thread_info_cache_init(void); 2309 2310 #ifdef CONFIG_DEBUG_STACK_USAGE 2311 static inline unsigned long stack_not_used(struct task_struct *p) 2312 { 2313 unsigned long *n = end_of_stack(p); 2314 2315 do { /* Skip over canary */ 2316 n++; 2317 } while (!*n); 2318 2319 return (unsigned long)n - (unsigned long)end_of_stack(p); 2320 } 2321 #endif 2322 2323 /* set thread flags in other task's structures 2324 * - see asm/thread_info.h for TIF_xxxx flags available 2325 */ 2326 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2327 { 2328 set_ti_thread_flag(task_thread_info(tsk), flag); 2329 } 2330 2331 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2332 { 2333 clear_ti_thread_flag(task_thread_info(tsk), flag); 2334 } 2335 2336 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2337 { 2338 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2339 } 2340 2341 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2342 { 2343 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2344 } 2345 2346 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2347 { 2348 return test_ti_thread_flag(task_thread_info(tsk), flag); 2349 } 2350 2351 static inline void set_tsk_need_resched(struct task_struct *tsk) 2352 { 2353 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2354 } 2355 2356 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2357 { 2358 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2359 } 2360 2361 static inline int test_tsk_need_resched(struct task_struct *tsk) 2362 { 2363 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2364 } 2365 2366 static inline int restart_syscall(void) 2367 { 2368 set_tsk_thread_flag(current, TIF_SIGPENDING); 2369 return -ERESTARTNOINTR; 2370 } 2371 2372 static inline int signal_pending(struct task_struct *p) 2373 { 2374 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2375 } 2376 2377 static inline int __fatal_signal_pending(struct task_struct *p) 2378 { 2379 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2380 } 2381 2382 static inline int fatal_signal_pending(struct task_struct *p) 2383 { 2384 return signal_pending(p) && __fatal_signal_pending(p); 2385 } 2386 2387 static inline int signal_pending_state(long state, struct task_struct *p) 2388 { 2389 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2390 return 0; 2391 if (!signal_pending(p)) 2392 return 0; 2393 2394 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2395 } 2396 2397 static inline int need_resched(void) 2398 { 2399 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2400 } 2401 2402 /* 2403 * cond_resched() and cond_resched_lock(): latency reduction via 2404 * explicit rescheduling in places that are safe. The return 2405 * value indicates whether a reschedule was done in fact. 2406 * cond_resched_lock() will drop the spinlock before scheduling, 2407 * cond_resched_softirq() will enable bhs before scheduling. 2408 */ 2409 extern int _cond_resched(void); 2410 2411 #define cond_resched() ({ \ 2412 __might_sleep(__FILE__, __LINE__, 0); \ 2413 _cond_resched(); \ 2414 }) 2415 2416 extern int __cond_resched_lock(spinlock_t *lock); 2417 2418 #ifdef CONFIG_PREEMPT_COUNT 2419 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2420 #else 2421 #define PREEMPT_LOCK_OFFSET 0 2422 #endif 2423 2424 #define cond_resched_lock(lock) ({ \ 2425 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2426 __cond_resched_lock(lock); \ 2427 }) 2428 2429 extern int __cond_resched_softirq(void); 2430 2431 #define cond_resched_softirq() ({ \ 2432 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2433 __cond_resched_softirq(); \ 2434 }) 2435 2436 static inline void cond_resched_rcu(void) 2437 { 2438 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2439 rcu_read_unlock(); 2440 cond_resched(); 2441 rcu_read_lock(); 2442 #endif 2443 } 2444 2445 /* 2446 * Does a critical section need to be broken due to another 2447 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2448 * but a general need for low latency) 2449 */ 2450 static inline int spin_needbreak(spinlock_t *lock) 2451 { 2452 #ifdef CONFIG_PREEMPT 2453 return spin_is_contended(lock); 2454 #else 2455 return 0; 2456 #endif 2457 } 2458 2459 /* 2460 * Idle thread specific functions to determine the need_resched 2461 * polling state. We have two versions, one based on TS_POLLING in 2462 * thread_info.status and one based on TIF_POLLING_NRFLAG in 2463 * thread_info.flags 2464 */ 2465 #ifdef TS_POLLING 2466 static inline int tsk_is_polling(struct task_struct *p) 2467 { 2468 return task_thread_info(p)->status & TS_POLLING; 2469 } 2470 static inline void current_set_polling(void) 2471 { 2472 current_thread_info()->status |= TS_POLLING; 2473 } 2474 2475 static inline void current_clr_polling(void) 2476 { 2477 current_thread_info()->status &= ~TS_POLLING; 2478 smp_mb__after_clear_bit(); 2479 } 2480 #elif defined(TIF_POLLING_NRFLAG) 2481 static inline int tsk_is_polling(struct task_struct *p) 2482 { 2483 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2484 } 2485 static inline void current_set_polling(void) 2486 { 2487 set_thread_flag(TIF_POLLING_NRFLAG); 2488 } 2489 2490 static inline void current_clr_polling(void) 2491 { 2492 clear_thread_flag(TIF_POLLING_NRFLAG); 2493 } 2494 #else 2495 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2496 static inline void current_set_polling(void) { } 2497 static inline void current_clr_polling(void) { } 2498 #endif 2499 2500 /* 2501 * Thread group CPU time accounting. 2502 */ 2503 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2504 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2505 2506 static inline void thread_group_cputime_init(struct signal_struct *sig) 2507 { 2508 raw_spin_lock_init(&sig->cputimer.lock); 2509 } 2510 2511 /* 2512 * Reevaluate whether the task has signals pending delivery. 2513 * Wake the task if so. 2514 * This is required every time the blocked sigset_t changes. 2515 * callers must hold sighand->siglock. 2516 */ 2517 extern void recalc_sigpending_and_wake(struct task_struct *t); 2518 extern void recalc_sigpending(void); 2519 2520 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2521 2522 static inline void signal_wake_up(struct task_struct *t, bool resume) 2523 { 2524 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2525 } 2526 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2527 { 2528 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2529 } 2530 2531 /* 2532 * Wrappers for p->thread_info->cpu access. No-op on UP. 2533 */ 2534 #ifdef CONFIG_SMP 2535 2536 static inline unsigned int task_cpu(const struct task_struct *p) 2537 { 2538 return task_thread_info(p)->cpu; 2539 } 2540 2541 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2542 2543 #else 2544 2545 static inline unsigned int task_cpu(const struct task_struct *p) 2546 { 2547 return 0; 2548 } 2549 2550 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2551 { 2552 } 2553 2554 #endif /* CONFIG_SMP */ 2555 2556 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2557 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2558 2559 #ifdef CONFIG_CGROUP_SCHED 2560 extern struct task_group root_task_group; 2561 #endif /* CONFIG_CGROUP_SCHED */ 2562 2563 extern int task_can_switch_user(struct user_struct *up, 2564 struct task_struct *tsk); 2565 2566 #ifdef CONFIG_TASK_XACCT 2567 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2568 { 2569 tsk->ioac.rchar += amt; 2570 } 2571 2572 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2573 { 2574 tsk->ioac.wchar += amt; 2575 } 2576 2577 static inline void inc_syscr(struct task_struct *tsk) 2578 { 2579 tsk->ioac.syscr++; 2580 } 2581 2582 static inline void inc_syscw(struct task_struct *tsk) 2583 { 2584 tsk->ioac.syscw++; 2585 } 2586 #else 2587 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2588 { 2589 } 2590 2591 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2592 { 2593 } 2594 2595 static inline void inc_syscr(struct task_struct *tsk) 2596 { 2597 } 2598 2599 static inline void inc_syscw(struct task_struct *tsk) 2600 { 2601 } 2602 #endif 2603 2604 #ifndef TASK_SIZE_OF 2605 #define TASK_SIZE_OF(tsk) TASK_SIZE 2606 #endif 2607 2608 #ifdef CONFIG_MM_OWNER 2609 extern void mm_update_next_owner(struct mm_struct *mm); 2610 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2611 #else 2612 static inline void mm_update_next_owner(struct mm_struct *mm) 2613 { 2614 } 2615 2616 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2617 { 2618 } 2619 #endif /* CONFIG_MM_OWNER */ 2620 2621 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2622 unsigned int limit) 2623 { 2624 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2625 } 2626 2627 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2628 unsigned int limit) 2629 { 2630 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2631 } 2632 2633 static inline unsigned long rlimit(unsigned int limit) 2634 { 2635 return task_rlimit(current, limit); 2636 } 2637 2638 static inline unsigned long rlimit_max(unsigned int limit) 2639 { 2640 return task_rlimit_max(current, limit); 2641 } 2642 2643 #endif 2644