xref: /linux-6.15/include/linux/sched.h (revision eba321a1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/netdevice_xmit.h>
40 #include <linux/task_io_accounting.h>
41 #include <linux/posix-timers_types.h>
42 #include <linux/restart_block.h>
43 #include <uapi/linux/rseq.h>
44 #include <linux/seqlock_types.h>
45 #include <linux/kcsan.h>
46 #include <linux/rv.h>
47 #include <linux/livepatch_sched.h>
48 #include <linux/uidgid_types.h>
49 #include <linux/tracepoint-defs.h>
50 #include <asm/kmap_size.h>
51 
52 /* task_struct member predeclarations (sorted alphabetically): */
53 struct audit_context;
54 struct bio_list;
55 struct blk_plug;
56 struct bpf_local_storage;
57 struct bpf_run_ctx;
58 struct bpf_net_context;
59 struct capture_control;
60 struct cfs_rq;
61 struct fs_struct;
62 struct futex_pi_state;
63 struct io_context;
64 struct io_uring_task;
65 struct mempolicy;
66 struct nameidata;
67 struct nsproxy;
68 struct perf_event_context;
69 struct pid_namespace;
70 struct pipe_inode_info;
71 struct rcu_node;
72 struct reclaim_state;
73 struct robust_list_head;
74 struct root_domain;
75 struct rq;
76 struct sched_attr;
77 struct sched_dl_entity;
78 struct seq_file;
79 struct sighand_struct;
80 struct signal_struct;
81 struct task_delay_info;
82 struct task_group;
83 struct task_struct;
84 struct user_event_mm;
85 
86 #include <linux/sched/ext.h>
87 
88 /*
89  * Task state bitmask. NOTE! These bits are also
90  * encoded in fs/proc/array.c: get_task_state().
91  *
92  * We have two separate sets of flags: task->__state
93  * is about runnability, while task->exit_state are
94  * about the task exiting. Confusing, but this way
95  * modifying one set can't modify the other one by
96  * mistake.
97  */
98 
99 /* Used in tsk->__state: */
100 #define TASK_RUNNING			0x00000000
101 #define TASK_INTERRUPTIBLE		0x00000001
102 #define TASK_UNINTERRUPTIBLE		0x00000002
103 #define __TASK_STOPPED			0x00000004
104 #define __TASK_TRACED			0x00000008
105 /* Used in tsk->exit_state: */
106 #define EXIT_DEAD			0x00000010
107 #define EXIT_ZOMBIE			0x00000020
108 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
109 /* Used in tsk->__state again: */
110 #define TASK_PARKED			0x00000040
111 #define TASK_DEAD			0x00000080
112 #define TASK_WAKEKILL			0x00000100
113 #define TASK_WAKING			0x00000200
114 #define TASK_NOLOAD			0x00000400
115 #define TASK_NEW			0x00000800
116 #define TASK_RTLOCK_WAIT		0x00001000
117 #define TASK_FREEZABLE			0x00002000
118 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
119 #define TASK_FROZEN			0x00008000
120 #define TASK_STATE_MAX			0x00010000
121 
122 #define TASK_ANY			(TASK_STATE_MAX-1)
123 
124 /*
125  * DO NOT ADD ANY NEW USERS !
126  */
127 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
128 
129 /* Convenience macros for the sake of set_current_state: */
130 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
131 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
132 #define TASK_TRACED			__TASK_TRACED
133 
134 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
135 
136 /* Convenience macros for the sake of wake_up(): */
137 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
138 
139 /* get_task_state(): */
140 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
141 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
142 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
143 					 TASK_PARKED)
144 
145 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
146 
147 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
148 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
149 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
150 
151 /*
152  * Special states are those that do not use the normal wait-loop pattern. See
153  * the comment with set_special_state().
154  */
155 #define is_special_task_state(state)					\
156 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |	\
157 		    TASK_DEAD | TASK_FROZEN))
158 
159 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
160 # define debug_normal_state_change(state_value)				\
161 	do {								\
162 		WARN_ON_ONCE(is_special_task_state(state_value));	\
163 		current->task_state_change = _THIS_IP_;			\
164 	} while (0)
165 
166 # define debug_special_state_change(state_value)			\
167 	do {								\
168 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
169 		current->task_state_change = _THIS_IP_;			\
170 	} while (0)
171 
172 # define debug_rtlock_wait_set_state()					\
173 	do {								 \
174 		current->saved_state_change = current->task_state_change;\
175 		current->task_state_change = _THIS_IP_;			 \
176 	} while (0)
177 
178 # define debug_rtlock_wait_restore_state()				\
179 	do {								 \
180 		current->task_state_change = current->saved_state_change;\
181 	} while (0)
182 
183 #else
184 # define debug_normal_state_change(cond)	do { } while (0)
185 # define debug_special_state_change(cond)	do { } while (0)
186 # define debug_rtlock_wait_set_state()		do { } while (0)
187 # define debug_rtlock_wait_restore_state()	do { } while (0)
188 #endif
189 
190 #define trace_set_current_state(state_value)                     \
191 	do {                                                     \
192 		if (tracepoint_enabled(sched_set_state_tp))      \
193 			__trace_set_current_state(state_value); \
194 	} while (0)
195 
196 /*
197  * set_current_state() includes a barrier so that the write of current->__state
198  * is correctly serialised wrt the caller's subsequent test of whether to
199  * actually sleep:
200  *
201  *   for (;;) {
202  *	set_current_state(TASK_UNINTERRUPTIBLE);
203  *	if (CONDITION)
204  *	   break;
205  *
206  *	schedule();
207  *   }
208  *   __set_current_state(TASK_RUNNING);
209  *
210  * If the caller does not need such serialisation (because, for instance, the
211  * CONDITION test and condition change and wakeup are under the same lock) then
212  * use __set_current_state().
213  *
214  * The above is typically ordered against the wakeup, which does:
215  *
216  *   CONDITION = 1;
217  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
218  *
219  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
220  * accessing p->__state.
221  *
222  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
223  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
224  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
225  *
226  * However, with slightly different timing the wakeup TASK_RUNNING store can
227  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
228  * a problem either because that will result in one extra go around the loop
229  * and our @cond test will save the day.
230  *
231  * Also see the comments of try_to_wake_up().
232  */
233 #define __set_current_state(state_value)				\
234 	do {								\
235 		debug_normal_state_change((state_value));		\
236 		trace_set_current_state(state_value);			\
237 		WRITE_ONCE(current->__state, (state_value));		\
238 	} while (0)
239 
240 #define set_current_state(state_value)					\
241 	do {								\
242 		debug_normal_state_change((state_value));		\
243 		trace_set_current_state(state_value);			\
244 		smp_store_mb(current->__state, (state_value));		\
245 	} while (0)
246 
247 /*
248  * set_special_state() should be used for those states when the blocking task
249  * can not use the regular condition based wait-loop. In that case we must
250  * serialize against wakeups such that any possible in-flight TASK_RUNNING
251  * stores will not collide with our state change.
252  */
253 #define set_special_state(state_value)					\
254 	do {								\
255 		unsigned long flags; /* may shadow */			\
256 									\
257 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
258 		debug_special_state_change((state_value));		\
259 		trace_set_current_state(state_value);			\
260 		WRITE_ONCE(current->__state, (state_value));		\
261 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
262 	} while (0)
263 
264 /*
265  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
266  *
267  * RT's spin/rwlock substitutions are state preserving. The state of the
268  * task when blocking on the lock is saved in task_struct::saved_state and
269  * restored after the lock has been acquired.  These operations are
270  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
271  * lock related wakeups while the task is blocked on the lock are
272  * redirected to operate on task_struct::saved_state to ensure that these
273  * are not dropped. On restore task_struct::saved_state is set to
274  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
275  *
276  * The lock operation looks like this:
277  *
278  *	current_save_and_set_rtlock_wait_state();
279  *	for (;;) {
280  *		if (try_lock())
281  *			break;
282  *		raw_spin_unlock_irq(&lock->wait_lock);
283  *		schedule_rtlock();
284  *		raw_spin_lock_irq(&lock->wait_lock);
285  *		set_current_state(TASK_RTLOCK_WAIT);
286  *	}
287  *	current_restore_rtlock_saved_state();
288  */
289 #define current_save_and_set_rtlock_wait_state()			\
290 	do {								\
291 		lockdep_assert_irqs_disabled();				\
292 		raw_spin_lock(&current->pi_lock);			\
293 		current->saved_state = current->__state;		\
294 		debug_rtlock_wait_set_state();				\
295 		trace_set_current_state(TASK_RTLOCK_WAIT);		\
296 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
297 		raw_spin_unlock(&current->pi_lock);			\
298 	} while (0);
299 
300 #define current_restore_rtlock_saved_state()				\
301 	do {								\
302 		lockdep_assert_irqs_disabled();				\
303 		raw_spin_lock(&current->pi_lock);			\
304 		debug_rtlock_wait_restore_state();			\
305 		trace_set_current_state(current->saved_state);		\
306 		WRITE_ONCE(current->__state, current->saved_state);	\
307 		current->saved_state = TASK_RUNNING;			\
308 		raw_spin_unlock(&current->pi_lock);			\
309 	} while (0);
310 
311 #define get_current_state()	READ_ONCE(current->__state)
312 
313 /*
314  * Define the task command name length as enum, then it can be visible to
315  * BPF programs.
316  */
317 enum {
318 	TASK_COMM_LEN = 16,
319 };
320 
321 extern void sched_tick(void);
322 
323 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
324 
325 extern long schedule_timeout(long timeout);
326 extern long schedule_timeout_interruptible(long timeout);
327 extern long schedule_timeout_killable(long timeout);
328 extern long schedule_timeout_uninterruptible(long timeout);
329 extern long schedule_timeout_idle(long timeout);
330 asmlinkage void schedule(void);
331 extern void schedule_preempt_disabled(void);
332 asmlinkage void preempt_schedule_irq(void);
333 #ifdef CONFIG_PREEMPT_RT
334  extern void schedule_rtlock(void);
335 #endif
336 
337 extern int __must_check io_schedule_prepare(void);
338 extern void io_schedule_finish(int token);
339 extern long io_schedule_timeout(long timeout);
340 extern void io_schedule(void);
341 
342 /* wrapper function to trace from this header file */
343 DECLARE_TRACEPOINT(sched_set_state_tp);
344 extern void __trace_set_current_state(int state_value);
345 
346 /**
347  * struct prev_cputime - snapshot of system and user cputime
348  * @utime: time spent in user mode
349  * @stime: time spent in system mode
350  * @lock: protects the above two fields
351  *
352  * Stores previous user/system time values such that we can guarantee
353  * monotonicity.
354  */
355 struct prev_cputime {
356 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
357 	u64				utime;
358 	u64				stime;
359 	raw_spinlock_t			lock;
360 #endif
361 };
362 
363 enum vtime_state {
364 	/* Task is sleeping or running in a CPU with VTIME inactive: */
365 	VTIME_INACTIVE = 0,
366 	/* Task is idle */
367 	VTIME_IDLE,
368 	/* Task runs in kernelspace in a CPU with VTIME active: */
369 	VTIME_SYS,
370 	/* Task runs in userspace in a CPU with VTIME active: */
371 	VTIME_USER,
372 	/* Task runs as guests in a CPU with VTIME active: */
373 	VTIME_GUEST,
374 };
375 
376 struct vtime {
377 	seqcount_t		seqcount;
378 	unsigned long long	starttime;
379 	enum vtime_state	state;
380 	unsigned int		cpu;
381 	u64			utime;
382 	u64			stime;
383 	u64			gtime;
384 };
385 
386 /*
387  * Utilization clamp constraints.
388  * @UCLAMP_MIN:	Minimum utilization
389  * @UCLAMP_MAX:	Maximum utilization
390  * @UCLAMP_CNT:	Utilization clamp constraints count
391  */
392 enum uclamp_id {
393 	UCLAMP_MIN = 0,
394 	UCLAMP_MAX,
395 	UCLAMP_CNT
396 };
397 
398 #ifdef CONFIG_SMP
399 extern struct root_domain def_root_domain;
400 extern struct mutex sched_domains_mutex;
401 #endif
402 
403 struct sched_param {
404 	int sched_priority;
405 };
406 
407 struct sched_info {
408 #ifdef CONFIG_SCHED_INFO
409 	/* Cumulative counters: */
410 
411 	/* # of times we have run on this CPU: */
412 	unsigned long			pcount;
413 
414 	/* Time spent waiting on a runqueue: */
415 	unsigned long long		run_delay;
416 
417 	/* Max time spent waiting on a runqueue: */
418 	unsigned long long		max_run_delay;
419 
420 	/* Min time spent waiting on a runqueue: */
421 	unsigned long long		min_run_delay;
422 
423 	/* Timestamps: */
424 
425 	/* When did we last run on a CPU? */
426 	unsigned long long		last_arrival;
427 
428 	/* When were we last queued to run? */
429 	unsigned long long		last_queued;
430 
431 #endif /* CONFIG_SCHED_INFO */
432 };
433 
434 /*
435  * Integer metrics need fixed point arithmetic, e.g., sched/fair
436  * has a few: load, load_avg, util_avg, freq, and capacity.
437  *
438  * We define a basic fixed point arithmetic range, and then formalize
439  * all these metrics based on that basic range.
440  */
441 # define SCHED_FIXEDPOINT_SHIFT		10
442 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
443 
444 /* Increase resolution of cpu_capacity calculations */
445 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
446 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
447 
448 struct load_weight {
449 	unsigned long			weight;
450 	u32				inv_weight;
451 };
452 
453 /*
454  * The load/runnable/util_avg accumulates an infinite geometric series
455  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
456  *
457  * [load_avg definition]
458  *
459  *   load_avg = runnable% * scale_load_down(load)
460  *
461  * [runnable_avg definition]
462  *
463  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
464  *
465  * [util_avg definition]
466  *
467  *   util_avg = running% * SCHED_CAPACITY_SCALE
468  *
469  * where runnable% is the time ratio that a sched_entity is runnable and
470  * running% the time ratio that a sched_entity is running.
471  *
472  * For cfs_rq, they are the aggregated values of all runnable and blocked
473  * sched_entities.
474  *
475  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
476  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
477  * for computing those signals (see update_rq_clock_pelt())
478  *
479  * N.B., the above ratios (runnable% and running%) themselves are in the
480  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
481  * to as large a range as necessary. This is for example reflected by
482  * util_avg's SCHED_CAPACITY_SCALE.
483  *
484  * [Overflow issue]
485  *
486  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
487  * with the highest load (=88761), always runnable on a single cfs_rq,
488  * and should not overflow as the number already hits PID_MAX_LIMIT.
489  *
490  * For all other cases (including 32-bit kernels), struct load_weight's
491  * weight will overflow first before we do, because:
492  *
493  *    Max(load_avg) <= Max(load.weight)
494  *
495  * Then it is the load_weight's responsibility to consider overflow
496  * issues.
497  */
498 struct sched_avg {
499 	u64				last_update_time;
500 	u64				load_sum;
501 	u64				runnable_sum;
502 	u32				util_sum;
503 	u32				period_contrib;
504 	unsigned long			load_avg;
505 	unsigned long			runnable_avg;
506 	unsigned long			util_avg;
507 	unsigned int			util_est;
508 } ____cacheline_aligned;
509 
510 /*
511  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
512  * updates. When a task is dequeued, its util_est should not be updated if its
513  * util_avg has not been updated in the meantime.
514  * This information is mapped into the MSB bit of util_est at dequeue time.
515  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
516  * it is safe to use MSB.
517  */
518 #define UTIL_EST_WEIGHT_SHIFT		2
519 #define UTIL_AVG_UNCHANGED		0x80000000
520 
521 struct sched_statistics {
522 #ifdef CONFIG_SCHEDSTATS
523 	u64				wait_start;
524 	u64				wait_max;
525 	u64				wait_count;
526 	u64				wait_sum;
527 	u64				iowait_count;
528 	u64				iowait_sum;
529 
530 	u64				sleep_start;
531 	u64				sleep_max;
532 	s64				sum_sleep_runtime;
533 
534 	u64				block_start;
535 	u64				block_max;
536 	s64				sum_block_runtime;
537 
538 	s64				exec_max;
539 	u64				slice_max;
540 
541 	u64				nr_migrations_cold;
542 	u64				nr_failed_migrations_affine;
543 	u64				nr_failed_migrations_running;
544 	u64				nr_failed_migrations_hot;
545 	u64				nr_forced_migrations;
546 
547 	u64				nr_wakeups;
548 	u64				nr_wakeups_sync;
549 	u64				nr_wakeups_migrate;
550 	u64				nr_wakeups_local;
551 	u64				nr_wakeups_remote;
552 	u64				nr_wakeups_affine;
553 	u64				nr_wakeups_affine_attempts;
554 	u64				nr_wakeups_passive;
555 	u64				nr_wakeups_idle;
556 
557 #ifdef CONFIG_SCHED_CORE
558 	u64				core_forceidle_sum;
559 #endif
560 #endif /* CONFIG_SCHEDSTATS */
561 } ____cacheline_aligned;
562 
563 struct sched_entity {
564 	/* For load-balancing: */
565 	struct load_weight		load;
566 	struct rb_node			run_node;
567 	u64				deadline;
568 	u64				min_vruntime;
569 	u64				min_slice;
570 
571 	struct list_head		group_node;
572 	unsigned char			on_rq;
573 	unsigned char			sched_delayed;
574 	unsigned char			rel_deadline;
575 	unsigned char			custom_slice;
576 					/* hole */
577 
578 	u64				exec_start;
579 	u64				sum_exec_runtime;
580 	u64				prev_sum_exec_runtime;
581 	u64				vruntime;
582 	s64				vlag;
583 	u64				slice;
584 
585 	u64				nr_migrations;
586 
587 #ifdef CONFIG_FAIR_GROUP_SCHED
588 	int				depth;
589 	struct sched_entity		*parent;
590 	/* rq on which this entity is (to be) queued: */
591 	struct cfs_rq			*cfs_rq;
592 	/* rq "owned" by this entity/group: */
593 	struct cfs_rq			*my_q;
594 	/* cached value of my_q->h_nr_running */
595 	unsigned long			runnable_weight;
596 #endif
597 
598 #ifdef CONFIG_SMP
599 	/*
600 	 * Per entity load average tracking.
601 	 *
602 	 * Put into separate cache line so it does not
603 	 * collide with read-mostly values above.
604 	 */
605 	struct sched_avg		avg;
606 #endif
607 };
608 
609 struct sched_rt_entity {
610 	struct list_head		run_list;
611 	unsigned long			timeout;
612 	unsigned long			watchdog_stamp;
613 	unsigned int			time_slice;
614 	unsigned short			on_rq;
615 	unsigned short			on_list;
616 
617 	struct sched_rt_entity		*back;
618 #ifdef CONFIG_RT_GROUP_SCHED
619 	struct sched_rt_entity		*parent;
620 	/* rq on which this entity is (to be) queued: */
621 	struct rt_rq			*rt_rq;
622 	/* rq "owned" by this entity/group: */
623 	struct rt_rq			*my_q;
624 #endif
625 } __randomize_layout;
626 
627 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
628 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
629 
630 struct sched_dl_entity {
631 	struct rb_node			rb_node;
632 
633 	/*
634 	 * Original scheduling parameters. Copied here from sched_attr
635 	 * during sched_setattr(), they will remain the same until
636 	 * the next sched_setattr().
637 	 */
638 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
639 	u64				dl_deadline;	/* Relative deadline of each instance	*/
640 	u64				dl_period;	/* Separation of two instances (period) */
641 	u64				dl_bw;		/* dl_runtime / dl_period		*/
642 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
643 
644 	/*
645 	 * Actual scheduling parameters. Initialized with the values above,
646 	 * they are continuously updated during task execution. Note that
647 	 * the remaining runtime could be < 0 in case we are in overrun.
648 	 */
649 	s64				runtime;	/* Remaining runtime for this instance	*/
650 	u64				deadline;	/* Absolute deadline for this instance	*/
651 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
652 
653 	/*
654 	 * Some bool flags:
655 	 *
656 	 * @dl_throttled tells if we exhausted the runtime. If so, the
657 	 * task has to wait for a replenishment to be performed at the
658 	 * next firing of dl_timer.
659 	 *
660 	 * @dl_yielded tells if task gave up the CPU before consuming
661 	 * all its available runtime during the last job.
662 	 *
663 	 * @dl_non_contending tells if the task is inactive while still
664 	 * contributing to the active utilization. In other words, it
665 	 * indicates if the inactive timer has been armed and its handler
666 	 * has not been executed yet. This flag is useful to avoid race
667 	 * conditions between the inactive timer handler and the wakeup
668 	 * code.
669 	 *
670 	 * @dl_overrun tells if the task asked to be informed about runtime
671 	 * overruns.
672 	 *
673 	 * @dl_server tells if this is a server entity.
674 	 *
675 	 * @dl_defer tells if this is a deferred or regular server. For
676 	 * now only defer server exists.
677 	 *
678 	 * @dl_defer_armed tells if the deferrable server is waiting
679 	 * for the replenishment timer to activate it.
680 	 *
681 	 * @dl_server_active tells if the dlserver is active(started).
682 	 * dlserver is started on first cfs enqueue on an idle runqueue
683 	 * and is stopped when a dequeue results in 0 cfs tasks on the
684 	 * runqueue. In other words, dlserver is active only when cpu's
685 	 * runqueue has atleast one cfs task.
686 	 *
687 	 * @dl_defer_running tells if the deferrable server is actually
688 	 * running, skipping the defer phase.
689 	 */
690 	unsigned int			dl_throttled      : 1;
691 	unsigned int			dl_yielded        : 1;
692 	unsigned int			dl_non_contending : 1;
693 	unsigned int			dl_overrun	  : 1;
694 	unsigned int			dl_server         : 1;
695 	unsigned int			dl_server_active  : 1;
696 	unsigned int			dl_defer	  : 1;
697 	unsigned int			dl_defer_armed	  : 1;
698 	unsigned int			dl_defer_running  : 1;
699 
700 	/*
701 	 * Bandwidth enforcement timer. Each -deadline task has its
702 	 * own bandwidth to be enforced, thus we need one timer per task.
703 	 */
704 	struct hrtimer			dl_timer;
705 
706 	/*
707 	 * Inactive timer, responsible for decreasing the active utilization
708 	 * at the "0-lag time". When a -deadline task blocks, it contributes
709 	 * to GRUB's active utilization until the "0-lag time", hence a
710 	 * timer is needed to decrease the active utilization at the correct
711 	 * time.
712 	 */
713 	struct hrtimer			inactive_timer;
714 
715 	/*
716 	 * Bits for DL-server functionality. Also see the comment near
717 	 * dl_server_update().
718 	 *
719 	 * @rq the runqueue this server is for
720 	 *
721 	 * @server_has_tasks() returns true if @server_pick return a
722 	 * runnable task.
723 	 */
724 	struct rq			*rq;
725 	dl_server_has_tasks_f		server_has_tasks;
726 	dl_server_pick_f		server_pick_task;
727 
728 #ifdef CONFIG_RT_MUTEXES
729 	/*
730 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
731 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
732 	 * to (the original one/itself).
733 	 */
734 	struct sched_dl_entity *pi_se;
735 #endif
736 };
737 
738 #ifdef CONFIG_UCLAMP_TASK
739 /* Number of utilization clamp buckets (shorter alias) */
740 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
741 
742 /*
743  * Utilization clamp for a scheduling entity
744  * @value:		clamp value "assigned" to a se
745  * @bucket_id:		bucket index corresponding to the "assigned" value
746  * @active:		the se is currently refcounted in a rq's bucket
747  * @user_defined:	the requested clamp value comes from user-space
748  *
749  * The bucket_id is the index of the clamp bucket matching the clamp value
750  * which is pre-computed and stored to avoid expensive integer divisions from
751  * the fast path.
752  *
753  * The active bit is set whenever a task has got an "effective" value assigned,
754  * which can be different from the clamp value "requested" from user-space.
755  * This allows to know a task is refcounted in the rq's bucket corresponding
756  * to the "effective" bucket_id.
757  *
758  * The user_defined bit is set whenever a task has got a task-specific clamp
759  * value requested from userspace, i.e. the system defaults apply to this task
760  * just as a restriction. This allows to relax default clamps when a less
761  * restrictive task-specific value has been requested, thus allowing to
762  * implement a "nice" semantic. For example, a task running with a 20%
763  * default boost can still drop its own boosting to 0%.
764  */
765 struct uclamp_se {
766 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
767 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
768 	unsigned int active		: 1;
769 	unsigned int user_defined	: 1;
770 };
771 #endif /* CONFIG_UCLAMP_TASK */
772 
773 union rcu_special {
774 	struct {
775 		u8			blocked;
776 		u8			need_qs;
777 		u8			exp_hint; /* Hint for performance. */
778 		u8			need_mb; /* Readers need smp_mb(). */
779 	} b; /* Bits. */
780 	u32 s; /* Set of bits. */
781 };
782 
783 enum perf_event_task_context {
784 	perf_invalid_context = -1,
785 	perf_hw_context = 0,
786 	perf_sw_context,
787 	perf_nr_task_contexts,
788 };
789 
790 /*
791  * Number of contexts where an event can trigger:
792  *      task, softirq, hardirq, nmi.
793  */
794 #define PERF_NR_CONTEXTS	4
795 
796 struct wake_q_node {
797 	struct wake_q_node *next;
798 };
799 
800 struct kmap_ctrl {
801 #ifdef CONFIG_KMAP_LOCAL
802 	int				idx;
803 	pte_t				pteval[KM_MAX_IDX];
804 #endif
805 };
806 
807 struct task_struct {
808 #ifdef CONFIG_THREAD_INFO_IN_TASK
809 	/*
810 	 * For reasons of header soup (see current_thread_info()), this
811 	 * must be the first element of task_struct.
812 	 */
813 	struct thread_info		thread_info;
814 #endif
815 	unsigned int			__state;
816 
817 	/* saved state for "spinlock sleepers" */
818 	unsigned int			saved_state;
819 
820 	/*
821 	 * This begins the randomizable portion of task_struct. Only
822 	 * scheduling-critical items should be added above here.
823 	 */
824 	randomized_struct_fields_start
825 
826 	void				*stack;
827 	refcount_t			usage;
828 	/* Per task flags (PF_*), defined further below: */
829 	unsigned int			flags;
830 	unsigned int			ptrace;
831 
832 #ifdef CONFIG_MEM_ALLOC_PROFILING
833 	struct alloc_tag		*alloc_tag;
834 #endif
835 
836 #ifdef CONFIG_SMP
837 	int				on_cpu;
838 	struct __call_single_node	wake_entry;
839 	unsigned int			wakee_flips;
840 	unsigned long			wakee_flip_decay_ts;
841 	struct task_struct		*last_wakee;
842 
843 	/*
844 	 * recent_used_cpu is initially set as the last CPU used by a task
845 	 * that wakes affine another task. Waker/wakee relationships can
846 	 * push tasks around a CPU where each wakeup moves to the next one.
847 	 * Tracking a recently used CPU allows a quick search for a recently
848 	 * used CPU that may be idle.
849 	 */
850 	int				recent_used_cpu;
851 	int				wake_cpu;
852 #endif
853 	int				on_rq;
854 
855 	int				prio;
856 	int				static_prio;
857 	int				normal_prio;
858 	unsigned int			rt_priority;
859 
860 	struct sched_entity		se;
861 	struct sched_rt_entity		rt;
862 	struct sched_dl_entity		dl;
863 	struct sched_dl_entity		*dl_server;
864 #ifdef CONFIG_SCHED_CLASS_EXT
865 	struct sched_ext_entity		scx;
866 #endif
867 	const struct sched_class	*sched_class;
868 
869 #ifdef CONFIG_SCHED_CORE
870 	struct rb_node			core_node;
871 	unsigned long			core_cookie;
872 	unsigned int			core_occupation;
873 #endif
874 
875 #ifdef CONFIG_CGROUP_SCHED
876 	struct task_group		*sched_task_group;
877 #endif
878 
879 
880 #ifdef CONFIG_UCLAMP_TASK
881 	/*
882 	 * Clamp values requested for a scheduling entity.
883 	 * Must be updated with task_rq_lock() held.
884 	 */
885 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
886 	/*
887 	 * Effective clamp values used for a scheduling entity.
888 	 * Must be updated with task_rq_lock() held.
889 	 */
890 	struct uclamp_se		uclamp[UCLAMP_CNT];
891 #endif
892 
893 	struct sched_statistics         stats;
894 
895 #ifdef CONFIG_PREEMPT_NOTIFIERS
896 	/* List of struct preempt_notifier: */
897 	struct hlist_head		preempt_notifiers;
898 #endif
899 
900 #ifdef CONFIG_BLK_DEV_IO_TRACE
901 	unsigned int			btrace_seq;
902 #endif
903 
904 	unsigned int			policy;
905 	unsigned long			max_allowed_capacity;
906 	int				nr_cpus_allowed;
907 	const cpumask_t			*cpus_ptr;
908 	cpumask_t			*user_cpus_ptr;
909 	cpumask_t			cpus_mask;
910 	void				*migration_pending;
911 #ifdef CONFIG_SMP
912 	unsigned short			migration_disabled;
913 #endif
914 	unsigned short			migration_flags;
915 
916 #ifdef CONFIG_PREEMPT_RCU
917 	int				rcu_read_lock_nesting;
918 	union rcu_special		rcu_read_unlock_special;
919 	struct list_head		rcu_node_entry;
920 	struct rcu_node			*rcu_blocked_node;
921 #endif /* #ifdef CONFIG_PREEMPT_RCU */
922 
923 #ifdef CONFIG_TASKS_RCU
924 	unsigned long			rcu_tasks_nvcsw;
925 	u8				rcu_tasks_holdout;
926 	u8				rcu_tasks_idx;
927 	int				rcu_tasks_idle_cpu;
928 	struct list_head		rcu_tasks_holdout_list;
929 	int				rcu_tasks_exit_cpu;
930 	struct list_head		rcu_tasks_exit_list;
931 #endif /* #ifdef CONFIG_TASKS_RCU */
932 
933 #ifdef CONFIG_TASKS_TRACE_RCU
934 	int				trc_reader_nesting;
935 	int				trc_ipi_to_cpu;
936 	union rcu_special		trc_reader_special;
937 	struct list_head		trc_holdout_list;
938 	struct list_head		trc_blkd_node;
939 	int				trc_blkd_cpu;
940 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
941 
942 	struct sched_info		sched_info;
943 
944 	struct list_head		tasks;
945 #ifdef CONFIG_SMP
946 	struct plist_node		pushable_tasks;
947 	struct rb_node			pushable_dl_tasks;
948 #endif
949 
950 	struct mm_struct		*mm;
951 	struct mm_struct		*active_mm;
952 	struct address_space		*faults_disabled_mapping;
953 
954 	int				exit_state;
955 	int				exit_code;
956 	int				exit_signal;
957 	/* The signal sent when the parent dies: */
958 	int				pdeath_signal;
959 	/* JOBCTL_*, siglock protected: */
960 	unsigned long			jobctl;
961 
962 	/* Used for emulating ABI behavior of previous Linux versions: */
963 	unsigned int			personality;
964 
965 	/* Scheduler bits, serialized by scheduler locks: */
966 	unsigned			sched_reset_on_fork:1;
967 	unsigned			sched_contributes_to_load:1;
968 	unsigned			sched_migrated:1;
969 	unsigned			sched_task_hot:1;
970 
971 	/* Force alignment to the next boundary: */
972 	unsigned			:0;
973 
974 	/* Unserialized, strictly 'current' */
975 
976 	/*
977 	 * This field must not be in the scheduler word above due to wakelist
978 	 * queueing no longer being serialized by p->on_cpu. However:
979 	 *
980 	 * p->XXX = X;			ttwu()
981 	 * schedule()			  if (p->on_rq && ..) // false
982 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
983 	 *   deactivate_task()		      ttwu_queue_wakelist())
984 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
985 	 *
986 	 * guarantees all stores of 'current' are visible before
987 	 * ->sched_remote_wakeup gets used, so it can be in this word.
988 	 */
989 	unsigned			sched_remote_wakeup:1;
990 #ifdef CONFIG_RT_MUTEXES
991 	unsigned			sched_rt_mutex:1;
992 #endif
993 
994 	/* Bit to tell TOMOYO we're in execve(): */
995 	unsigned			in_execve:1;
996 	unsigned			in_iowait:1;
997 #ifndef TIF_RESTORE_SIGMASK
998 	unsigned			restore_sigmask:1;
999 #endif
1000 #ifdef CONFIG_MEMCG_V1
1001 	unsigned			in_user_fault:1;
1002 #endif
1003 #ifdef CONFIG_LRU_GEN
1004 	/* whether the LRU algorithm may apply to this access */
1005 	unsigned			in_lru_fault:1;
1006 #endif
1007 #ifdef CONFIG_COMPAT_BRK
1008 	unsigned			brk_randomized:1;
1009 #endif
1010 #ifdef CONFIG_CGROUPS
1011 	/* disallow userland-initiated cgroup migration */
1012 	unsigned			no_cgroup_migration:1;
1013 	/* task is frozen/stopped (used by the cgroup freezer) */
1014 	unsigned			frozen:1;
1015 #endif
1016 #ifdef CONFIG_BLK_CGROUP
1017 	unsigned			use_memdelay:1;
1018 #endif
1019 #ifdef CONFIG_PSI
1020 	/* Stalled due to lack of memory */
1021 	unsigned			in_memstall:1;
1022 #endif
1023 #ifdef CONFIG_PAGE_OWNER
1024 	/* Used by page_owner=on to detect recursion in page tracking. */
1025 	unsigned			in_page_owner:1;
1026 #endif
1027 #ifdef CONFIG_EVENTFD
1028 	/* Recursion prevention for eventfd_signal() */
1029 	unsigned			in_eventfd:1;
1030 #endif
1031 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1032 	unsigned			pasid_activated:1;
1033 #endif
1034 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1035 	unsigned			reported_split_lock:1;
1036 #endif
1037 #ifdef CONFIG_TASK_DELAY_ACCT
1038 	/* delay due to memory thrashing */
1039 	unsigned                        in_thrashing:1;
1040 #endif
1041 #ifdef CONFIG_PREEMPT_RT
1042 	struct netdev_xmit		net_xmit;
1043 #endif
1044 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1045 
1046 	struct restart_block		restart_block;
1047 
1048 	pid_t				pid;
1049 	pid_t				tgid;
1050 
1051 #ifdef CONFIG_STACKPROTECTOR
1052 	/* Canary value for the -fstack-protector GCC feature: */
1053 	unsigned long			stack_canary;
1054 #endif
1055 	/*
1056 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1057 	 * older sibling, respectively.  (p->father can be replaced with
1058 	 * p->real_parent->pid)
1059 	 */
1060 
1061 	/* Real parent process: */
1062 	struct task_struct __rcu	*real_parent;
1063 
1064 	/* Recipient of SIGCHLD, wait4() reports: */
1065 	struct task_struct __rcu	*parent;
1066 
1067 	/*
1068 	 * Children/sibling form the list of natural children:
1069 	 */
1070 	struct list_head		children;
1071 	struct list_head		sibling;
1072 	struct task_struct		*group_leader;
1073 
1074 	/*
1075 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1076 	 *
1077 	 * This includes both natural children and PTRACE_ATTACH targets.
1078 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1079 	 */
1080 	struct list_head		ptraced;
1081 	struct list_head		ptrace_entry;
1082 
1083 	/* PID/PID hash table linkage. */
1084 	struct pid			*thread_pid;
1085 	struct hlist_node		pid_links[PIDTYPE_MAX];
1086 	struct list_head		thread_node;
1087 
1088 	struct completion		*vfork_done;
1089 
1090 	/* CLONE_CHILD_SETTID: */
1091 	int __user			*set_child_tid;
1092 
1093 	/* CLONE_CHILD_CLEARTID: */
1094 	int __user			*clear_child_tid;
1095 
1096 	/* PF_KTHREAD | PF_IO_WORKER */
1097 	void				*worker_private;
1098 
1099 	u64				utime;
1100 	u64				stime;
1101 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1102 	u64				utimescaled;
1103 	u64				stimescaled;
1104 #endif
1105 	u64				gtime;
1106 	struct prev_cputime		prev_cputime;
1107 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1108 	struct vtime			vtime;
1109 #endif
1110 
1111 #ifdef CONFIG_NO_HZ_FULL
1112 	atomic_t			tick_dep_mask;
1113 #endif
1114 	/* Context switch counts: */
1115 	unsigned long			nvcsw;
1116 	unsigned long			nivcsw;
1117 
1118 	/* Monotonic time in nsecs: */
1119 	u64				start_time;
1120 
1121 	/* Boot based time in nsecs: */
1122 	u64				start_boottime;
1123 
1124 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1125 	unsigned long			min_flt;
1126 	unsigned long			maj_flt;
1127 
1128 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1129 	struct posix_cputimers		posix_cputimers;
1130 
1131 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1132 	struct posix_cputimers_work	posix_cputimers_work;
1133 #endif
1134 
1135 	/* Process credentials: */
1136 
1137 	/* Tracer's credentials at attach: */
1138 	const struct cred __rcu		*ptracer_cred;
1139 
1140 	/* Objective and real subjective task credentials (COW): */
1141 	const struct cred __rcu		*real_cred;
1142 
1143 	/* Effective (overridable) subjective task credentials (COW): */
1144 	const struct cred __rcu		*cred;
1145 
1146 #ifdef CONFIG_KEYS
1147 	/* Cached requested key. */
1148 	struct key			*cached_requested_key;
1149 #endif
1150 
1151 	/*
1152 	 * executable name, excluding path.
1153 	 *
1154 	 * - normally initialized begin_new_exec()
1155 	 * - set it with set_task_comm()
1156 	 *   - strscpy_pad() to ensure it is always NUL-terminated and
1157 	 *     zero-padded
1158 	 *   - task_lock() to ensure the operation is atomic and the name is
1159 	 *     fully updated.
1160 	 */
1161 	char				comm[TASK_COMM_LEN];
1162 
1163 	struct nameidata		*nameidata;
1164 
1165 #ifdef CONFIG_SYSVIPC
1166 	struct sysv_sem			sysvsem;
1167 	struct sysv_shm			sysvshm;
1168 #endif
1169 #ifdef CONFIG_DETECT_HUNG_TASK
1170 	unsigned long			last_switch_count;
1171 	unsigned long			last_switch_time;
1172 #endif
1173 	/* Filesystem information: */
1174 	struct fs_struct		*fs;
1175 
1176 	/* Open file information: */
1177 	struct files_struct		*files;
1178 
1179 #ifdef CONFIG_IO_URING
1180 	struct io_uring_task		*io_uring;
1181 #endif
1182 
1183 	/* Namespaces: */
1184 	struct nsproxy			*nsproxy;
1185 
1186 	/* Signal handlers: */
1187 	struct signal_struct		*signal;
1188 	struct sighand_struct __rcu		*sighand;
1189 	sigset_t			blocked;
1190 	sigset_t			real_blocked;
1191 	/* Restored if set_restore_sigmask() was used: */
1192 	sigset_t			saved_sigmask;
1193 	struct sigpending		pending;
1194 	unsigned long			sas_ss_sp;
1195 	size_t				sas_ss_size;
1196 	unsigned int			sas_ss_flags;
1197 
1198 	struct callback_head		*task_works;
1199 
1200 #ifdef CONFIG_AUDIT
1201 #ifdef CONFIG_AUDITSYSCALL
1202 	struct audit_context		*audit_context;
1203 #endif
1204 	kuid_t				loginuid;
1205 	unsigned int			sessionid;
1206 #endif
1207 	struct seccomp			seccomp;
1208 	struct syscall_user_dispatch	syscall_dispatch;
1209 
1210 	/* Thread group tracking: */
1211 	u64				parent_exec_id;
1212 	u64				self_exec_id;
1213 
1214 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1215 	spinlock_t			alloc_lock;
1216 
1217 	/* Protection of the PI data structures: */
1218 	raw_spinlock_t			pi_lock;
1219 
1220 	struct wake_q_node		wake_q;
1221 
1222 #ifdef CONFIG_RT_MUTEXES
1223 	/* PI waiters blocked on a rt_mutex held by this task: */
1224 	struct rb_root_cached		pi_waiters;
1225 	/* Updated under owner's pi_lock and rq lock */
1226 	struct task_struct		*pi_top_task;
1227 	/* Deadlock detection and priority inheritance handling: */
1228 	struct rt_mutex_waiter		*pi_blocked_on;
1229 #endif
1230 
1231 #ifdef CONFIG_DEBUG_MUTEXES
1232 	/* Mutex deadlock detection: */
1233 	struct mutex_waiter		*blocked_on;
1234 #endif
1235 
1236 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1237 	int				non_block_count;
1238 #endif
1239 
1240 #ifdef CONFIG_TRACE_IRQFLAGS
1241 	struct irqtrace_events		irqtrace;
1242 	unsigned int			hardirq_threaded;
1243 	u64				hardirq_chain_key;
1244 	int				softirqs_enabled;
1245 	int				softirq_context;
1246 	int				irq_config;
1247 #endif
1248 #ifdef CONFIG_PREEMPT_RT
1249 	int				softirq_disable_cnt;
1250 #endif
1251 
1252 #ifdef CONFIG_LOCKDEP
1253 # define MAX_LOCK_DEPTH			48UL
1254 	u64				curr_chain_key;
1255 	int				lockdep_depth;
1256 	unsigned int			lockdep_recursion;
1257 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1258 #endif
1259 
1260 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1261 	unsigned int			in_ubsan;
1262 #endif
1263 
1264 	/* Journalling filesystem info: */
1265 	void				*journal_info;
1266 
1267 	/* Stacked block device info: */
1268 	struct bio_list			*bio_list;
1269 
1270 	/* Stack plugging: */
1271 	struct blk_plug			*plug;
1272 
1273 	/* VM state: */
1274 	struct reclaim_state		*reclaim_state;
1275 
1276 	struct io_context		*io_context;
1277 
1278 #ifdef CONFIG_COMPACTION
1279 	struct capture_control		*capture_control;
1280 #endif
1281 	/* Ptrace state: */
1282 	unsigned long			ptrace_message;
1283 	kernel_siginfo_t		*last_siginfo;
1284 
1285 	struct task_io_accounting	ioac;
1286 #ifdef CONFIG_PSI
1287 	/* Pressure stall state */
1288 	unsigned int			psi_flags;
1289 #endif
1290 #ifdef CONFIG_TASK_XACCT
1291 	/* Accumulated RSS usage: */
1292 	u64				acct_rss_mem1;
1293 	/* Accumulated virtual memory usage: */
1294 	u64				acct_vm_mem1;
1295 	/* stime + utime since last update: */
1296 	u64				acct_timexpd;
1297 #endif
1298 #ifdef CONFIG_CPUSETS
1299 	/* Protected by ->alloc_lock: */
1300 	nodemask_t			mems_allowed;
1301 	/* Sequence number to catch updates: */
1302 	seqcount_spinlock_t		mems_allowed_seq;
1303 	int				cpuset_mem_spread_rotor;
1304 #endif
1305 #ifdef CONFIG_CGROUPS
1306 	/* Control Group info protected by css_set_lock: */
1307 	struct css_set __rcu		*cgroups;
1308 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1309 	struct list_head		cg_list;
1310 #endif
1311 #ifdef CONFIG_X86_CPU_RESCTRL
1312 	u32				closid;
1313 	u32				rmid;
1314 #endif
1315 #ifdef CONFIG_FUTEX
1316 	struct robust_list_head __user	*robust_list;
1317 #ifdef CONFIG_COMPAT
1318 	struct compat_robust_list_head __user *compat_robust_list;
1319 #endif
1320 	struct list_head		pi_state_list;
1321 	struct futex_pi_state		*pi_state_cache;
1322 	struct mutex			futex_exit_mutex;
1323 	unsigned int			futex_state;
1324 #endif
1325 #ifdef CONFIG_PERF_EVENTS
1326 	u8				perf_recursion[PERF_NR_CONTEXTS];
1327 	struct perf_event_context	*perf_event_ctxp;
1328 	struct mutex			perf_event_mutex;
1329 	struct list_head		perf_event_list;
1330 #endif
1331 #ifdef CONFIG_DEBUG_PREEMPT
1332 	unsigned long			preempt_disable_ip;
1333 #endif
1334 #ifdef CONFIG_NUMA
1335 	/* Protected by alloc_lock: */
1336 	struct mempolicy		*mempolicy;
1337 	short				il_prev;
1338 	u8				il_weight;
1339 	short				pref_node_fork;
1340 #endif
1341 #ifdef CONFIG_NUMA_BALANCING
1342 	int				numa_scan_seq;
1343 	unsigned int			numa_scan_period;
1344 	unsigned int			numa_scan_period_max;
1345 	int				numa_preferred_nid;
1346 	unsigned long			numa_migrate_retry;
1347 	/* Migration stamp: */
1348 	u64				node_stamp;
1349 	u64				last_task_numa_placement;
1350 	u64				last_sum_exec_runtime;
1351 	struct callback_head		numa_work;
1352 
1353 	/*
1354 	 * This pointer is only modified for current in syscall and
1355 	 * pagefault context (and for tasks being destroyed), so it can be read
1356 	 * from any of the following contexts:
1357 	 *  - RCU read-side critical section
1358 	 *  - current->numa_group from everywhere
1359 	 *  - task's runqueue locked, task not running
1360 	 */
1361 	struct numa_group __rcu		*numa_group;
1362 
1363 	/*
1364 	 * numa_faults is an array split into four regions:
1365 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1366 	 * in this precise order.
1367 	 *
1368 	 * faults_memory: Exponential decaying average of faults on a per-node
1369 	 * basis. Scheduling placement decisions are made based on these
1370 	 * counts. The values remain static for the duration of a PTE scan.
1371 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1372 	 * hinting fault was incurred.
1373 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1374 	 * during the current scan window. When the scan completes, the counts
1375 	 * in faults_memory and faults_cpu decay and these values are copied.
1376 	 */
1377 	unsigned long			*numa_faults;
1378 	unsigned long			total_numa_faults;
1379 
1380 	/*
1381 	 * numa_faults_locality tracks if faults recorded during the last
1382 	 * scan window were remote/local or failed to migrate. The task scan
1383 	 * period is adapted based on the locality of the faults with different
1384 	 * weights depending on whether they were shared or private faults
1385 	 */
1386 	unsigned long			numa_faults_locality[3];
1387 
1388 	unsigned long			numa_pages_migrated;
1389 #endif /* CONFIG_NUMA_BALANCING */
1390 
1391 #ifdef CONFIG_RSEQ
1392 	struct rseq __user *rseq;
1393 	u32 rseq_len;
1394 	u32 rseq_sig;
1395 	/*
1396 	 * RmW on rseq_event_mask must be performed atomically
1397 	 * with respect to preemption.
1398 	 */
1399 	unsigned long rseq_event_mask;
1400 # ifdef CONFIG_DEBUG_RSEQ
1401 	/*
1402 	 * This is a place holder to save a copy of the rseq fields for
1403 	 * validation of read-only fields. The struct rseq has a
1404 	 * variable-length array at the end, so it cannot be used
1405 	 * directly. Reserve a size large enough for the known fields.
1406 	 */
1407 	char				rseq_fields[sizeof(struct rseq)];
1408 # endif
1409 #endif
1410 
1411 #ifdef CONFIG_SCHED_MM_CID
1412 	int				mm_cid;		/* Current cid in mm */
1413 	int				last_mm_cid;	/* Most recent cid in mm */
1414 	int				migrate_from_cpu;
1415 	int				mm_cid_active;	/* Whether cid bitmap is active */
1416 	struct callback_head		cid_work;
1417 #endif
1418 
1419 	struct tlbflush_unmap_batch	tlb_ubc;
1420 
1421 	/* Cache last used pipe for splice(): */
1422 	struct pipe_inode_info		*splice_pipe;
1423 
1424 	struct page_frag		task_frag;
1425 
1426 #ifdef CONFIG_TASK_DELAY_ACCT
1427 	struct task_delay_info		*delays;
1428 #endif
1429 
1430 #ifdef CONFIG_FAULT_INJECTION
1431 	int				make_it_fail;
1432 	unsigned int			fail_nth;
1433 #endif
1434 	/*
1435 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1436 	 * balance_dirty_pages() for a dirty throttling pause:
1437 	 */
1438 	int				nr_dirtied;
1439 	int				nr_dirtied_pause;
1440 	/* Start of a write-and-pause period: */
1441 	unsigned long			dirty_paused_when;
1442 
1443 #ifdef CONFIG_LATENCYTOP
1444 	int				latency_record_count;
1445 	struct latency_record		latency_record[LT_SAVECOUNT];
1446 #endif
1447 	/*
1448 	 * Time slack values; these are used to round up poll() and
1449 	 * select() etc timeout values. These are in nanoseconds.
1450 	 */
1451 	u64				timer_slack_ns;
1452 	u64				default_timer_slack_ns;
1453 
1454 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1455 	unsigned int			kasan_depth;
1456 #endif
1457 
1458 #ifdef CONFIG_KCSAN
1459 	struct kcsan_ctx		kcsan_ctx;
1460 #ifdef CONFIG_TRACE_IRQFLAGS
1461 	struct irqtrace_events		kcsan_save_irqtrace;
1462 #endif
1463 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1464 	int				kcsan_stack_depth;
1465 #endif
1466 #endif
1467 
1468 #ifdef CONFIG_KMSAN
1469 	struct kmsan_ctx		kmsan_ctx;
1470 #endif
1471 
1472 #if IS_ENABLED(CONFIG_KUNIT)
1473 	struct kunit			*kunit_test;
1474 #endif
1475 
1476 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1477 	/* Index of current stored address in ret_stack: */
1478 	int				curr_ret_stack;
1479 	int				curr_ret_depth;
1480 
1481 	/* Stack of return addresses for return function tracing: */
1482 	unsigned long			*ret_stack;
1483 
1484 	/* Timestamp for last schedule: */
1485 	unsigned long long		ftrace_timestamp;
1486 	unsigned long long		ftrace_sleeptime;
1487 
1488 	/*
1489 	 * Number of functions that haven't been traced
1490 	 * because of depth overrun:
1491 	 */
1492 	atomic_t			trace_overrun;
1493 
1494 	/* Pause tracing: */
1495 	atomic_t			tracing_graph_pause;
1496 #endif
1497 
1498 #ifdef CONFIG_TRACING
1499 	/* Bitmask and counter of trace recursion: */
1500 	unsigned long			trace_recursion;
1501 #endif /* CONFIG_TRACING */
1502 
1503 #ifdef CONFIG_KCOV
1504 	/* See kernel/kcov.c for more details. */
1505 
1506 	/* Coverage collection mode enabled for this task (0 if disabled): */
1507 	unsigned int			kcov_mode;
1508 
1509 	/* Size of the kcov_area: */
1510 	unsigned int			kcov_size;
1511 
1512 	/* Buffer for coverage collection: */
1513 	void				*kcov_area;
1514 
1515 	/* KCOV descriptor wired with this task or NULL: */
1516 	struct kcov			*kcov;
1517 
1518 	/* KCOV common handle for remote coverage collection: */
1519 	u64				kcov_handle;
1520 
1521 	/* KCOV sequence number: */
1522 	int				kcov_sequence;
1523 
1524 	/* Collect coverage from softirq context: */
1525 	unsigned int			kcov_softirq;
1526 #endif
1527 
1528 #ifdef CONFIG_MEMCG_V1
1529 	struct mem_cgroup		*memcg_in_oom;
1530 #endif
1531 
1532 #ifdef CONFIG_MEMCG
1533 	/* Number of pages to reclaim on returning to userland: */
1534 	unsigned int			memcg_nr_pages_over_high;
1535 
1536 	/* Used by memcontrol for targeted memcg charge: */
1537 	struct mem_cgroup		*active_memcg;
1538 
1539 	/* Cache for current->cgroups->memcg->objcg lookups: */
1540 	struct obj_cgroup		*objcg;
1541 #endif
1542 
1543 #ifdef CONFIG_BLK_CGROUP
1544 	struct gendisk			*throttle_disk;
1545 #endif
1546 
1547 #ifdef CONFIG_UPROBES
1548 	struct uprobe_task		*utask;
1549 #endif
1550 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1551 	unsigned int			sequential_io;
1552 	unsigned int			sequential_io_avg;
1553 #endif
1554 	struct kmap_ctrl		kmap_ctrl;
1555 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1556 	unsigned long			task_state_change;
1557 # ifdef CONFIG_PREEMPT_RT
1558 	unsigned long			saved_state_change;
1559 # endif
1560 #endif
1561 	struct rcu_head			rcu;
1562 	refcount_t			rcu_users;
1563 	int				pagefault_disabled;
1564 #ifdef CONFIG_MMU
1565 	struct task_struct		*oom_reaper_list;
1566 	struct timer_list		oom_reaper_timer;
1567 #endif
1568 #ifdef CONFIG_VMAP_STACK
1569 	struct vm_struct		*stack_vm_area;
1570 #endif
1571 #ifdef CONFIG_THREAD_INFO_IN_TASK
1572 	/* A live task holds one reference: */
1573 	refcount_t			stack_refcount;
1574 #endif
1575 #ifdef CONFIG_LIVEPATCH
1576 	int patch_state;
1577 #endif
1578 #ifdef CONFIG_SECURITY
1579 	/* Used by LSM modules for access restriction: */
1580 	void				*security;
1581 #endif
1582 #ifdef CONFIG_BPF_SYSCALL
1583 	/* Used by BPF task local storage */
1584 	struct bpf_local_storage __rcu	*bpf_storage;
1585 	/* Used for BPF run context */
1586 	struct bpf_run_ctx		*bpf_ctx;
1587 #endif
1588 	/* Used by BPF for per-TASK xdp storage */
1589 	struct bpf_net_context		*bpf_net_context;
1590 
1591 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1592 	unsigned long			lowest_stack;
1593 	unsigned long			prev_lowest_stack;
1594 #endif
1595 
1596 #ifdef CONFIG_X86_MCE
1597 	void __user			*mce_vaddr;
1598 	__u64				mce_kflags;
1599 	u64				mce_addr;
1600 	__u64				mce_ripv : 1,
1601 					mce_whole_page : 1,
1602 					__mce_reserved : 62;
1603 	struct callback_head		mce_kill_me;
1604 	int				mce_count;
1605 #endif
1606 
1607 #ifdef CONFIG_KRETPROBES
1608 	struct llist_head               kretprobe_instances;
1609 #endif
1610 #ifdef CONFIG_RETHOOK
1611 	struct llist_head               rethooks;
1612 #endif
1613 
1614 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1615 	/*
1616 	 * If L1D flush is supported on mm context switch
1617 	 * then we use this callback head to queue kill work
1618 	 * to kill tasks that are not running on SMT disabled
1619 	 * cores
1620 	 */
1621 	struct callback_head		l1d_flush_kill;
1622 #endif
1623 
1624 #ifdef CONFIG_RV
1625 	/*
1626 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1627 	 * If we find justification for more monitors, we can think
1628 	 * about adding more or developing a dynamic method. So far,
1629 	 * none of these are justified.
1630 	 */
1631 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1632 #endif
1633 
1634 #ifdef CONFIG_USER_EVENTS
1635 	struct user_event_mm		*user_event_mm;
1636 #endif
1637 
1638 	/*
1639 	 * New fields for task_struct should be added above here, so that
1640 	 * they are included in the randomized portion of task_struct.
1641 	 */
1642 	randomized_struct_fields_end
1643 
1644 	/* CPU-specific state of this task: */
1645 	struct thread_struct		thread;
1646 
1647 	/*
1648 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1649 	 * structure.  It *MUST* be at the end of 'task_struct'.
1650 	 *
1651 	 * Do not put anything below here!
1652 	 */
1653 };
1654 
1655 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1656 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1657 
1658 static inline unsigned int __task_state_index(unsigned int tsk_state,
1659 					      unsigned int tsk_exit_state)
1660 {
1661 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1662 
1663 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1664 
1665 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1666 		state = TASK_REPORT_IDLE;
1667 
1668 	/*
1669 	 * We're lying here, but rather than expose a completely new task state
1670 	 * to userspace, we can make this appear as if the task has gone through
1671 	 * a regular rt_mutex_lock() call.
1672 	 * Report frozen tasks as uninterruptible.
1673 	 */
1674 	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1675 		state = TASK_UNINTERRUPTIBLE;
1676 
1677 	return fls(state);
1678 }
1679 
1680 static inline unsigned int task_state_index(struct task_struct *tsk)
1681 {
1682 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1683 }
1684 
1685 static inline char task_index_to_char(unsigned int state)
1686 {
1687 	static const char state_char[] = "RSDTtXZPI";
1688 
1689 	BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1690 
1691 	return state_char[state];
1692 }
1693 
1694 static inline char task_state_to_char(struct task_struct *tsk)
1695 {
1696 	return task_index_to_char(task_state_index(tsk));
1697 }
1698 
1699 extern struct pid *cad_pid;
1700 
1701 /*
1702  * Per process flags
1703  */
1704 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1705 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1706 #define PF_EXITING		0x00000004	/* Getting shut down */
1707 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1708 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1709 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1710 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1711 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1712 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1713 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1714 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1715 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1716 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1717 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1718 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1719 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1720 #define PF__HOLE__00010000	0x00010000
1721 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1722 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1723 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1724 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1725 						 * I am cleaning dirty pages from some other bdi. */
1726 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1727 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1728 #define PF__HOLE__00800000	0x00800000
1729 #define PF__HOLE__01000000	0x01000000
1730 #define PF__HOLE__02000000	0x02000000
1731 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1732 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1733 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1734 						 * See memalloc_pin_save() */
1735 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1736 #define PF__HOLE__40000000	0x40000000
1737 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1738 
1739 /*
1740  * Only the _current_ task can read/write to tsk->flags, but other
1741  * tasks can access tsk->flags in readonly mode for example
1742  * with tsk_used_math (like during threaded core dumping).
1743  * There is however an exception to this rule during ptrace
1744  * or during fork: the ptracer task is allowed to write to the
1745  * child->flags of its traced child (same goes for fork, the parent
1746  * can write to the child->flags), because we're guaranteed the
1747  * child is not running and in turn not changing child->flags
1748  * at the same time the parent does it.
1749  */
1750 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1751 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1752 #define clear_used_math()			clear_stopped_child_used_math(current)
1753 #define set_used_math()				set_stopped_child_used_math(current)
1754 
1755 #define conditional_stopped_child_used_math(condition, child) \
1756 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1757 
1758 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1759 
1760 #define copy_to_stopped_child_used_math(child) \
1761 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1762 
1763 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1764 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1765 #define used_math()				tsk_used_math(current)
1766 
1767 static __always_inline bool is_percpu_thread(void)
1768 {
1769 #ifdef CONFIG_SMP
1770 	return (current->flags & PF_NO_SETAFFINITY) &&
1771 		(current->nr_cpus_allowed  == 1);
1772 #else
1773 	return true;
1774 #endif
1775 }
1776 
1777 /* Per-process atomic flags. */
1778 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1779 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1780 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1781 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1782 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1783 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1784 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1785 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1786 
1787 #define TASK_PFA_TEST(name, func)					\
1788 	static inline bool task_##func(struct task_struct *p)		\
1789 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1790 
1791 #define TASK_PFA_SET(name, func)					\
1792 	static inline void task_set_##func(struct task_struct *p)	\
1793 	{ set_bit(PFA_##name, &p->atomic_flags); }
1794 
1795 #define TASK_PFA_CLEAR(name, func)					\
1796 	static inline void task_clear_##func(struct task_struct *p)	\
1797 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1798 
1799 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1800 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1801 
1802 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1803 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1804 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1805 
1806 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1807 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1808 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1809 
1810 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1811 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1812 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1813 
1814 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1815 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1816 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1817 
1818 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1819 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1820 
1821 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1822 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1823 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1824 
1825 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1826 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1827 
1828 static inline void
1829 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1830 {
1831 	current->flags &= ~flags;
1832 	current->flags |= orig_flags & flags;
1833 }
1834 
1835 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1836 extern int task_can_attach(struct task_struct *p);
1837 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1838 extern void dl_bw_free(int cpu, u64 dl_bw);
1839 #ifdef CONFIG_SMP
1840 
1841 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1842 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1843 
1844 /**
1845  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1846  * @p: the task
1847  * @new_mask: CPU affinity mask
1848  *
1849  * Return: zero if successful, or a negative error code
1850  */
1851 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1852 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1853 extern void release_user_cpus_ptr(struct task_struct *p);
1854 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1855 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1856 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1857 #else
1858 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1859 {
1860 }
1861 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1862 {
1863 	/* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
1864 	if ((*cpumask_bits(new_mask) & 1) == 0)
1865 		return -EINVAL;
1866 	return 0;
1867 }
1868 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1869 {
1870 	if (src->user_cpus_ptr)
1871 		return -EINVAL;
1872 	return 0;
1873 }
1874 static inline void release_user_cpus_ptr(struct task_struct *p)
1875 {
1876 	WARN_ON(p->user_cpus_ptr);
1877 }
1878 
1879 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1880 {
1881 	return 0;
1882 }
1883 #endif
1884 
1885 extern int yield_to(struct task_struct *p, bool preempt);
1886 extern void set_user_nice(struct task_struct *p, long nice);
1887 extern int task_prio(const struct task_struct *p);
1888 
1889 /**
1890  * task_nice - return the nice value of a given task.
1891  * @p: the task in question.
1892  *
1893  * Return: The nice value [ -20 ... 0 ... 19 ].
1894  */
1895 static inline int task_nice(const struct task_struct *p)
1896 {
1897 	return PRIO_TO_NICE((p)->static_prio);
1898 }
1899 
1900 extern int can_nice(const struct task_struct *p, const int nice);
1901 extern int task_curr(const struct task_struct *p);
1902 extern int idle_cpu(int cpu);
1903 extern int available_idle_cpu(int cpu);
1904 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1905 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1906 extern void sched_set_fifo(struct task_struct *p);
1907 extern void sched_set_fifo_low(struct task_struct *p);
1908 extern void sched_set_normal(struct task_struct *p, int nice);
1909 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1910 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1911 extern struct task_struct *idle_task(int cpu);
1912 
1913 /**
1914  * is_idle_task - is the specified task an idle task?
1915  * @p: the task in question.
1916  *
1917  * Return: 1 if @p is an idle task. 0 otherwise.
1918  */
1919 static __always_inline bool is_idle_task(const struct task_struct *p)
1920 {
1921 	return !!(p->flags & PF_IDLE);
1922 }
1923 
1924 extern struct task_struct *curr_task(int cpu);
1925 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1926 
1927 void yield(void);
1928 
1929 union thread_union {
1930 	struct task_struct task;
1931 #ifndef CONFIG_THREAD_INFO_IN_TASK
1932 	struct thread_info thread_info;
1933 #endif
1934 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1935 };
1936 
1937 #ifndef CONFIG_THREAD_INFO_IN_TASK
1938 extern struct thread_info init_thread_info;
1939 #endif
1940 
1941 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1942 
1943 #ifdef CONFIG_THREAD_INFO_IN_TASK
1944 # define task_thread_info(task)	(&(task)->thread_info)
1945 #else
1946 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1947 #endif
1948 
1949 /*
1950  * find a task by one of its numerical ids
1951  *
1952  * find_task_by_pid_ns():
1953  *      finds a task by its pid in the specified namespace
1954  * find_task_by_vpid():
1955  *      finds a task by its virtual pid
1956  *
1957  * see also find_vpid() etc in include/linux/pid.h
1958  */
1959 
1960 extern struct task_struct *find_task_by_vpid(pid_t nr);
1961 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1962 
1963 /*
1964  * find a task by its virtual pid and get the task struct
1965  */
1966 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1967 
1968 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1969 extern int wake_up_process(struct task_struct *tsk);
1970 extern void wake_up_new_task(struct task_struct *tsk);
1971 
1972 #ifdef CONFIG_SMP
1973 extern void kick_process(struct task_struct *tsk);
1974 #else
1975 static inline void kick_process(struct task_struct *tsk) { }
1976 #endif
1977 
1978 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1979 #define set_task_comm(tsk, from) ({			\
1980 	BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN);	\
1981 	__set_task_comm(tsk, from, false);		\
1982 })
1983 
1984 /*
1985  * - Why not use task_lock()?
1986  *   User space can randomly change their names anyway, so locking for readers
1987  *   doesn't make sense. For writers, locking is probably necessary, as a race
1988  *   condition could lead to long-term mixed results.
1989  *   The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1990  *   always NUL-terminated and zero-padded. Therefore the race condition between
1991  *   reader and writer is not an issue.
1992  *
1993  * - BUILD_BUG_ON() can help prevent the buf from being truncated.
1994  *   Since the callers don't perform any return value checks, this safeguard is
1995  *   necessary.
1996  */
1997 #define get_task_comm(buf, tsk) ({			\
1998 	BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN);	\
1999 	strscpy_pad(buf, (tsk)->comm);			\
2000 	buf;						\
2001 })
2002 
2003 #ifdef CONFIG_SMP
2004 static __always_inline void scheduler_ipi(void)
2005 {
2006 	/*
2007 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2008 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2009 	 * this IPI.
2010 	 */
2011 	preempt_fold_need_resched();
2012 }
2013 #else
2014 static inline void scheduler_ipi(void) { }
2015 #endif
2016 
2017 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2018 
2019 /*
2020  * Set thread flags in other task's structures.
2021  * See asm/thread_info.h for TIF_xxxx flags available:
2022  */
2023 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2024 {
2025 	set_ti_thread_flag(task_thread_info(tsk), flag);
2026 }
2027 
2028 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2029 {
2030 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2031 }
2032 
2033 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2034 					  bool value)
2035 {
2036 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2037 }
2038 
2039 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2040 {
2041 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2042 }
2043 
2044 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2045 {
2046 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2047 }
2048 
2049 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2050 {
2051 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2052 }
2053 
2054 static inline void set_tsk_need_resched(struct task_struct *tsk)
2055 {
2056 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2057 }
2058 
2059 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2060 {
2061 	atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2062 			   (atomic_long_t *)&task_thread_info(tsk)->flags);
2063 }
2064 
2065 static inline int test_tsk_need_resched(struct task_struct *tsk)
2066 {
2067 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2068 }
2069 
2070 /*
2071  * cond_resched() and cond_resched_lock(): latency reduction via
2072  * explicit rescheduling in places that are safe. The return
2073  * value indicates whether a reschedule was done in fact.
2074  * cond_resched_lock() will drop the spinlock before scheduling,
2075  */
2076 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2077 extern int __cond_resched(void);
2078 
2079 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2080 
2081 void sched_dynamic_klp_enable(void);
2082 void sched_dynamic_klp_disable(void);
2083 
2084 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2085 
2086 static __always_inline int _cond_resched(void)
2087 {
2088 	return static_call_mod(cond_resched)();
2089 }
2090 
2091 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2092 
2093 extern int dynamic_cond_resched(void);
2094 
2095 static __always_inline int _cond_resched(void)
2096 {
2097 	return dynamic_cond_resched();
2098 }
2099 
2100 #else /* !CONFIG_PREEMPTION */
2101 
2102 static inline int _cond_resched(void)
2103 {
2104 	klp_sched_try_switch();
2105 	return __cond_resched();
2106 }
2107 
2108 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2109 
2110 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2111 
2112 static inline int _cond_resched(void)
2113 {
2114 	klp_sched_try_switch();
2115 	return 0;
2116 }
2117 
2118 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2119 
2120 #define cond_resched() ({			\
2121 	__might_resched(__FILE__, __LINE__, 0);	\
2122 	_cond_resched();			\
2123 })
2124 
2125 extern int __cond_resched_lock(spinlock_t *lock);
2126 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2127 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2128 
2129 #define MIGHT_RESCHED_RCU_SHIFT		8
2130 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2131 
2132 #ifndef CONFIG_PREEMPT_RT
2133 /*
2134  * Non RT kernels have an elevated preempt count due to the held lock,
2135  * but are not allowed to be inside a RCU read side critical section
2136  */
2137 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2138 #else
2139 /*
2140  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2141  * cond_resched*lock() has to take that into account because it checks for
2142  * preempt_count() and rcu_preempt_depth().
2143  */
2144 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2145 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2146 #endif
2147 
2148 #define cond_resched_lock(lock) ({						\
2149 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2150 	__cond_resched_lock(lock);						\
2151 })
2152 
2153 #define cond_resched_rwlock_read(lock) ({					\
2154 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2155 	__cond_resched_rwlock_read(lock);					\
2156 })
2157 
2158 #define cond_resched_rwlock_write(lock) ({					\
2159 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2160 	__cond_resched_rwlock_write(lock);					\
2161 })
2162 
2163 static __always_inline bool need_resched(void)
2164 {
2165 	return unlikely(tif_need_resched());
2166 }
2167 
2168 /*
2169  * Wrappers for p->thread_info->cpu access. No-op on UP.
2170  */
2171 #ifdef CONFIG_SMP
2172 
2173 static inline unsigned int task_cpu(const struct task_struct *p)
2174 {
2175 	return READ_ONCE(task_thread_info(p)->cpu);
2176 }
2177 
2178 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2179 
2180 #else
2181 
2182 static inline unsigned int task_cpu(const struct task_struct *p)
2183 {
2184 	return 0;
2185 }
2186 
2187 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2188 {
2189 }
2190 
2191 #endif /* CONFIG_SMP */
2192 
2193 static inline bool task_is_runnable(struct task_struct *p)
2194 {
2195 	return p->on_rq && !p->se.sched_delayed;
2196 }
2197 
2198 extern bool sched_task_on_rq(struct task_struct *p);
2199 extern unsigned long get_wchan(struct task_struct *p);
2200 extern struct task_struct *cpu_curr_snapshot(int cpu);
2201 
2202 #include <linux/spinlock.h>
2203 
2204 /*
2205  * In order to reduce various lock holder preemption latencies provide an
2206  * interface to see if a vCPU is currently running or not.
2207  *
2208  * This allows us to terminate optimistic spin loops and block, analogous to
2209  * the native optimistic spin heuristic of testing if the lock owner task is
2210  * running or not.
2211  */
2212 #ifndef vcpu_is_preempted
2213 static inline bool vcpu_is_preempted(int cpu)
2214 {
2215 	return false;
2216 }
2217 #endif
2218 
2219 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2220 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2221 
2222 #ifndef TASK_SIZE_OF
2223 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2224 #endif
2225 
2226 #ifdef CONFIG_SMP
2227 static inline bool owner_on_cpu(struct task_struct *owner)
2228 {
2229 	/*
2230 	 * As lock holder preemption issue, we both skip spinning if
2231 	 * task is not on cpu or its cpu is preempted
2232 	 */
2233 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2234 }
2235 
2236 /* Returns effective CPU energy utilization, as seen by the scheduler */
2237 unsigned long sched_cpu_util(int cpu);
2238 #endif /* CONFIG_SMP */
2239 
2240 #ifdef CONFIG_SCHED_CORE
2241 extern void sched_core_free(struct task_struct *tsk);
2242 extern void sched_core_fork(struct task_struct *p);
2243 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2244 				unsigned long uaddr);
2245 extern int sched_core_idle_cpu(int cpu);
2246 #else
2247 static inline void sched_core_free(struct task_struct *tsk) { }
2248 static inline void sched_core_fork(struct task_struct *p) { }
2249 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2250 #endif
2251 
2252 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2253 
2254 #ifdef CONFIG_MEM_ALLOC_PROFILING
2255 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2256 {
2257 	swap(current->alloc_tag, tag);
2258 	return tag;
2259 }
2260 
2261 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2262 {
2263 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2264 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2265 #endif
2266 	current->alloc_tag = old;
2267 }
2268 #else
2269 #define alloc_tag_save(_tag)			NULL
2270 #define alloc_tag_restore(_tag, _old)		do {} while (0)
2271 #endif
2272 
2273 #endif
2274