1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/seccomp.h> 44 #include <linux/rcupdate.h> 45 #include <linux/rculist.h> 46 #include <linux/rtmutex.h> 47 48 #include <linux/time.h> 49 #include <linux/param.h> 50 #include <linux/resource.h> 51 #include <linux/timer.h> 52 #include <linux/hrtimer.h> 53 #include <linux/kcov.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void cpu_load_update_nohz_start(void); 181 extern void cpu_load_update_nohz_stop(void); 182 #else 183 static inline void cpu_load_update_nohz_start(void) { } 184 static inline void cpu_load_update_nohz_stop(void) { } 185 #endif 186 187 extern void dump_cpu_task(int cpu); 188 189 struct seq_file; 190 struct cfs_rq; 191 struct task_group; 192 #ifdef CONFIG_SCHED_DEBUG 193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194 extern void proc_sched_set_task(struct task_struct *p); 195 #endif 196 197 /* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207 #define TASK_RUNNING 0 208 #define TASK_INTERRUPTIBLE 1 209 #define TASK_UNINTERRUPTIBLE 2 210 #define __TASK_STOPPED 4 211 #define __TASK_TRACED 8 212 /* in tsk->exit_state */ 213 #define EXIT_DEAD 16 214 #define EXIT_ZOMBIE 32 215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216 /* in tsk->state again */ 217 #define TASK_DEAD 64 218 #define TASK_WAKEKILL 128 219 #define TASK_WAKING 256 220 #define TASK_PARKED 512 221 #define TASK_NOLOAD 1024 222 #define TASK_STATE_MAX 2048 223 224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN" 225 226 extern char ___assert_task_state[1 - 2*!!( 227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 228 229 /* Convenience macros for the sake of set_task_state */ 230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 233 234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 235 236 /* Convenience macros for the sake of wake_up */ 237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 239 240 /* get_task_state() */ 241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 244 245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 247 #define task_is_stopped_or_traced(task) \ 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 249 #define task_contributes_to_load(task) \ 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 251 (task->flags & PF_FROZEN) == 0 && \ 252 (task->state & TASK_NOLOAD) == 0) 253 254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 255 256 #define __set_task_state(tsk, state_value) \ 257 do { \ 258 (tsk)->task_state_change = _THIS_IP_; \ 259 (tsk)->state = (state_value); \ 260 } while (0) 261 #define set_task_state(tsk, state_value) \ 262 do { \ 263 (tsk)->task_state_change = _THIS_IP_; \ 264 smp_store_mb((tsk)->state, (state_value)); \ 265 } while (0) 266 267 /* 268 * set_current_state() includes a barrier so that the write of current->state 269 * is correctly serialised wrt the caller's subsequent test of whether to 270 * actually sleep: 271 * 272 * set_current_state(TASK_UNINTERRUPTIBLE); 273 * if (do_i_need_to_sleep()) 274 * schedule(); 275 * 276 * If the caller does not need such serialisation then use __set_current_state() 277 */ 278 #define __set_current_state(state_value) \ 279 do { \ 280 current->task_state_change = _THIS_IP_; \ 281 current->state = (state_value); \ 282 } while (0) 283 #define set_current_state(state_value) \ 284 do { \ 285 current->task_state_change = _THIS_IP_; \ 286 smp_store_mb(current->state, (state_value)); \ 287 } while (0) 288 289 #else 290 291 #define __set_task_state(tsk, state_value) \ 292 do { (tsk)->state = (state_value); } while (0) 293 #define set_task_state(tsk, state_value) \ 294 smp_store_mb((tsk)->state, (state_value)) 295 296 /* 297 * set_current_state() includes a barrier so that the write of current->state 298 * is correctly serialised wrt the caller's subsequent test of whether to 299 * actually sleep: 300 * 301 * set_current_state(TASK_UNINTERRUPTIBLE); 302 * if (do_i_need_to_sleep()) 303 * schedule(); 304 * 305 * If the caller does not need such serialisation then use __set_current_state() 306 */ 307 #define __set_current_state(state_value) \ 308 do { current->state = (state_value); } while (0) 309 #define set_current_state(state_value) \ 310 smp_store_mb(current->state, (state_value)) 311 312 #endif 313 314 /* Task command name length */ 315 #define TASK_COMM_LEN 16 316 317 #include <linux/spinlock.h> 318 319 /* 320 * This serializes "schedule()" and also protects 321 * the run-queue from deletions/modifications (but 322 * _adding_ to the beginning of the run-queue has 323 * a separate lock). 324 */ 325 extern rwlock_t tasklist_lock; 326 extern spinlock_t mmlist_lock; 327 328 struct task_struct; 329 330 #ifdef CONFIG_PROVE_RCU 331 extern int lockdep_tasklist_lock_is_held(void); 332 #endif /* #ifdef CONFIG_PROVE_RCU */ 333 334 extern void sched_init(void); 335 extern void sched_init_smp(void); 336 extern asmlinkage void schedule_tail(struct task_struct *prev); 337 extern void init_idle(struct task_struct *idle, int cpu); 338 extern void init_idle_bootup_task(struct task_struct *idle); 339 340 extern cpumask_var_t cpu_isolated_map; 341 342 extern int runqueue_is_locked(int cpu); 343 344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 345 extern void nohz_balance_enter_idle(int cpu); 346 extern void set_cpu_sd_state_idle(void); 347 extern int get_nohz_timer_target(void); 348 #else 349 static inline void nohz_balance_enter_idle(int cpu) { } 350 static inline void set_cpu_sd_state_idle(void) { } 351 #endif 352 353 /* 354 * Only dump TASK_* tasks. (0 for all tasks) 355 */ 356 extern void show_state_filter(unsigned long state_filter); 357 358 static inline void show_state(void) 359 { 360 show_state_filter(0); 361 } 362 363 extern void show_regs(struct pt_regs *); 364 365 /* 366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 367 * task), SP is the stack pointer of the first frame that should be shown in the back 368 * trace (or NULL if the entire call-chain of the task should be shown). 369 */ 370 extern void show_stack(struct task_struct *task, unsigned long *sp); 371 372 extern void cpu_init (void); 373 extern void trap_init(void); 374 extern void update_process_times(int user); 375 extern void scheduler_tick(void); 376 extern int sched_cpu_starting(unsigned int cpu); 377 extern int sched_cpu_activate(unsigned int cpu); 378 extern int sched_cpu_deactivate(unsigned int cpu); 379 380 #ifdef CONFIG_HOTPLUG_CPU 381 extern int sched_cpu_dying(unsigned int cpu); 382 #else 383 # define sched_cpu_dying NULL 384 #endif 385 386 extern void sched_show_task(struct task_struct *p); 387 388 #ifdef CONFIG_LOCKUP_DETECTOR 389 extern void touch_softlockup_watchdog_sched(void); 390 extern void touch_softlockup_watchdog(void); 391 extern void touch_softlockup_watchdog_sync(void); 392 extern void touch_all_softlockup_watchdogs(void); 393 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 394 void __user *buffer, 395 size_t *lenp, loff_t *ppos); 396 extern unsigned int softlockup_panic; 397 extern unsigned int hardlockup_panic; 398 void lockup_detector_init(void); 399 #else 400 static inline void touch_softlockup_watchdog_sched(void) 401 { 402 } 403 static inline void touch_softlockup_watchdog(void) 404 { 405 } 406 static inline void touch_softlockup_watchdog_sync(void) 407 { 408 } 409 static inline void touch_all_softlockup_watchdogs(void) 410 { 411 } 412 static inline void lockup_detector_init(void) 413 { 414 } 415 #endif 416 417 #ifdef CONFIG_DETECT_HUNG_TASK 418 void reset_hung_task_detector(void); 419 #else 420 static inline void reset_hung_task_detector(void) 421 { 422 } 423 #endif 424 425 /* Attach to any functions which should be ignored in wchan output. */ 426 #define __sched __attribute__((__section__(".sched.text"))) 427 428 /* Linker adds these: start and end of __sched functions */ 429 extern char __sched_text_start[], __sched_text_end[]; 430 431 /* Is this address in the __sched functions? */ 432 extern int in_sched_functions(unsigned long addr); 433 434 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 435 extern signed long schedule_timeout(signed long timeout); 436 extern signed long schedule_timeout_interruptible(signed long timeout); 437 extern signed long schedule_timeout_killable(signed long timeout); 438 extern signed long schedule_timeout_uninterruptible(signed long timeout); 439 extern signed long schedule_timeout_idle(signed long timeout); 440 asmlinkage void schedule(void); 441 extern void schedule_preempt_disabled(void); 442 443 extern long io_schedule_timeout(long timeout); 444 445 static inline void io_schedule(void) 446 { 447 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 448 } 449 450 struct nsproxy; 451 struct user_namespace; 452 453 #ifdef CONFIG_MMU 454 extern void arch_pick_mmap_layout(struct mm_struct *mm); 455 extern unsigned long 456 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 457 unsigned long, unsigned long); 458 extern unsigned long 459 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 460 unsigned long len, unsigned long pgoff, 461 unsigned long flags); 462 #else 463 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 464 #endif 465 466 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 467 #define SUID_DUMP_USER 1 /* Dump as user of process */ 468 #define SUID_DUMP_ROOT 2 /* Dump as root */ 469 470 /* mm flags */ 471 472 /* for SUID_DUMP_* above */ 473 #define MMF_DUMPABLE_BITS 2 474 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 475 476 extern void set_dumpable(struct mm_struct *mm, int value); 477 /* 478 * This returns the actual value of the suid_dumpable flag. For things 479 * that are using this for checking for privilege transitions, it must 480 * test against SUID_DUMP_USER rather than treating it as a boolean 481 * value. 482 */ 483 static inline int __get_dumpable(unsigned long mm_flags) 484 { 485 return mm_flags & MMF_DUMPABLE_MASK; 486 } 487 488 static inline int get_dumpable(struct mm_struct *mm) 489 { 490 return __get_dumpable(mm->flags); 491 } 492 493 /* coredump filter bits */ 494 #define MMF_DUMP_ANON_PRIVATE 2 495 #define MMF_DUMP_ANON_SHARED 3 496 #define MMF_DUMP_MAPPED_PRIVATE 4 497 #define MMF_DUMP_MAPPED_SHARED 5 498 #define MMF_DUMP_ELF_HEADERS 6 499 #define MMF_DUMP_HUGETLB_PRIVATE 7 500 #define MMF_DUMP_HUGETLB_SHARED 8 501 #define MMF_DUMP_DAX_PRIVATE 9 502 #define MMF_DUMP_DAX_SHARED 10 503 504 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 505 #define MMF_DUMP_FILTER_BITS 9 506 #define MMF_DUMP_FILTER_MASK \ 507 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 508 #define MMF_DUMP_FILTER_DEFAULT \ 509 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 510 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 511 512 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 513 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 514 #else 515 # define MMF_DUMP_MASK_DEFAULT_ELF 0 516 #endif 517 /* leave room for more dump flags */ 518 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 519 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 520 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 521 522 #define MMF_HAS_UPROBES 19 /* has uprobes */ 523 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 524 #define MMF_OOM_REAPED 21 /* mm has been already reaped */ 525 526 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 527 528 struct sighand_struct { 529 atomic_t count; 530 struct k_sigaction action[_NSIG]; 531 spinlock_t siglock; 532 wait_queue_head_t signalfd_wqh; 533 }; 534 535 struct pacct_struct { 536 int ac_flag; 537 long ac_exitcode; 538 unsigned long ac_mem; 539 cputime_t ac_utime, ac_stime; 540 unsigned long ac_minflt, ac_majflt; 541 }; 542 543 struct cpu_itimer { 544 cputime_t expires; 545 cputime_t incr; 546 u32 error; 547 u32 incr_error; 548 }; 549 550 /** 551 * struct prev_cputime - snaphsot of system and user cputime 552 * @utime: time spent in user mode 553 * @stime: time spent in system mode 554 * @lock: protects the above two fields 555 * 556 * Stores previous user/system time values such that we can guarantee 557 * monotonicity. 558 */ 559 struct prev_cputime { 560 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 561 cputime_t utime; 562 cputime_t stime; 563 raw_spinlock_t lock; 564 #endif 565 }; 566 567 static inline void prev_cputime_init(struct prev_cputime *prev) 568 { 569 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 570 prev->utime = prev->stime = 0; 571 raw_spin_lock_init(&prev->lock); 572 #endif 573 } 574 575 /** 576 * struct task_cputime - collected CPU time counts 577 * @utime: time spent in user mode, in &cputime_t units 578 * @stime: time spent in kernel mode, in &cputime_t units 579 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 580 * 581 * This structure groups together three kinds of CPU time that are tracked for 582 * threads and thread groups. Most things considering CPU time want to group 583 * these counts together and treat all three of them in parallel. 584 */ 585 struct task_cputime { 586 cputime_t utime; 587 cputime_t stime; 588 unsigned long long sum_exec_runtime; 589 }; 590 591 /* Alternate field names when used to cache expirations. */ 592 #define virt_exp utime 593 #define prof_exp stime 594 #define sched_exp sum_exec_runtime 595 596 #define INIT_CPUTIME \ 597 (struct task_cputime) { \ 598 .utime = 0, \ 599 .stime = 0, \ 600 .sum_exec_runtime = 0, \ 601 } 602 603 /* 604 * This is the atomic variant of task_cputime, which can be used for 605 * storing and updating task_cputime statistics without locking. 606 */ 607 struct task_cputime_atomic { 608 atomic64_t utime; 609 atomic64_t stime; 610 atomic64_t sum_exec_runtime; 611 }; 612 613 #define INIT_CPUTIME_ATOMIC \ 614 (struct task_cputime_atomic) { \ 615 .utime = ATOMIC64_INIT(0), \ 616 .stime = ATOMIC64_INIT(0), \ 617 .sum_exec_runtime = ATOMIC64_INIT(0), \ 618 } 619 620 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 621 622 /* 623 * Disable preemption until the scheduler is running -- use an unconditional 624 * value so that it also works on !PREEMPT_COUNT kernels. 625 * 626 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 627 */ 628 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET 629 630 /* 631 * Initial preempt_count value; reflects the preempt_count schedule invariant 632 * which states that during context switches: 633 * 634 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 635 * 636 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 637 * Note: See finish_task_switch(). 638 */ 639 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 640 641 /** 642 * struct thread_group_cputimer - thread group interval timer counts 643 * @cputime_atomic: atomic thread group interval timers. 644 * @running: true when there are timers running and 645 * @cputime_atomic receives updates. 646 * @checking_timer: true when a thread in the group is in the 647 * process of checking for thread group timers. 648 * 649 * This structure contains the version of task_cputime, above, that is 650 * used for thread group CPU timer calculations. 651 */ 652 struct thread_group_cputimer { 653 struct task_cputime_atomic cputime_atomic; 654 bool running; 655 bool checking_timer; 656 }; 657 658 #include <linux/rwsem.h> 659 struct autogroup; 660 661 /* 662 * NOTE! "signal_struct" does not have its own 663 * locking, because a shared signal_struct always 664 * implies a shared sighand_struct, so locking 665 * sighand_struct is always a proper superset of 666 * the locking of signal_struct. 667 */ 668 struct signal_struct { 669 atomic_t sigcnt; 670 atomic_t live; 671 int nr_threads; 672 atomic_t oom_victims; /* # of TIF_MEDIE threads in this thread group */ 673 struct list_head thread_head; 674 675 wait_queue_head_t wait_chldexit; /* for wait4() */ 676 677 /* current thread group signal load-balancing target: */ 678 struct task_struct *curr_target; 679 680 /* shared signal handling: */ 681 struct sigpending shared_pending; 682 683 /* thread group exit support */ 684 int group_exit_code; 685 /* overloaded: 686 * - notify group_exit_task when ->count is equal to notify_count 687 * - everyone except group_exit_task is stopped during signal delivery 688 * of fatal signals, group_exit_task processes the signal. 689 */ 690 int notify_count; 691 struct task_struct *group_exit_task; 692 693 /* thread group stop support, overloads group_exit_code too */ 694 int group_stop_count; 695 unsigned int flags; /* see SIGNAL_* flags below */ 696 697 /* 698 * PR_SET_CHILD_SUBREAPER marks a process, like a service 699 * manager, to re-parent orphan (double-forking) child processes 700 * to this process instead of 'init'. The service manager is 701 * able to receive SIGCHLD signals and is able to investigate 702 * the process until it calls wait(). All children of this 703 * process will inherit a flag if they should look for a 704 * child_subreaper process at exit. 705 */ 706 unsigned int is_child_subreaper:1; 707 unsigned int has_child_subreaper:1; 708 709 /* POSIX.1b Interval Timers */ 710 int posix_timer_id; 711 struct list_head posix_timers; 712 713 /* ITIMER_REAL timer for the process */ 714 struct hrtimer real_timer; 715 struct pid *leader_pid; 716 ktime_t it_real_incr; 717 718 /* 719 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 720 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 721 * values are defined to 0 and 1 respectively 722 */ 723 struct cpu_itimer it[2]; 724 725 /* 726 * Thread group totals for process CPU timers. 727 * See thread_group_cputimer(), et al, for details. 728 */ 729 struct thread_group_cputimer cputimer; 730 731 /* Earliest-expiration cache. */ 732 struct task_cputime cputime_expires; 733 734 #ifdef CONFIG_NO_HZ_FULL 735 atomic_t tick_dep_mask; 736 #endif 737 738 struct list_head cpu_timers[3]; 739 740 struct pid *tty_old_pgrp; 741 742 /* boolean value for session group leader */ 743 int leader; 744 745 struct tty_struct *tty; /* NULL if no tty */ 746 747 #ifdef CONFIG_SCHED_AUTOGROUP 748 struct autogroup *autogroup; 749 #endif 750 /* 751 * Cumulative resource counters for dead threads in the group, 752 * and for reaped dead child processes forked by this group. 753 * Live threads maintain their own counters and add to these 754 * in __exit_signal, except for the group leader. 755 */ 756 seqlock_t stats_lock; 757 cputime_t utime, stime, cutime, cstime; 758 cputime_t gtime; 759 cputime_t cgtime; 760 struct prev_cputime prev_cputime; 761 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 762 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 763 unsigned long inblock, oublock, cinblock, coublock; 764 unsigned long maxrss, cmaxrss; 765 struct task_io_accounting ioac; 766 767 /* 768 * Cumulative ns of schedule CPU time fo dead threads in the 769 * group, not including a zombie group leader, (This only differs 770 * from jiffies_to_ns(utime + stime) if sched_clock uses something 771 * other than jiffies.) 772 */ 773 unsigned long long sum_sched_runtime; 774 775 /* 776 * We don't bother to synchronize most readers of this at all, 777 * because there is no reader checking a limit that actually needs 778 * to get both rlim_cur and rlim_max atomically, and either one 779 * alone is a single word that can safely be read normally. 780 * getrlimit/setrlimit use task_lock(current->group_leader) to 781 * protect this instead of the siglock, because they really 782 * have no need to disable irqs. 783 */ 784 struct rlimit rlim[RLIM_NLIMITS]; 785 786 #ifdef CONFIG_BSD_PROCESS_ACCT 787 struct pacct_struct pacct; /* per-process accounting information */ 788 #endif 789 #ifdef CONFIG_TASKSTATS 790 struct taskstats *stats; 791 #endif 792 #ifdef CONFIG_AUDIT 793 unsigned audit_tty; 794 struct tty_audit_buf *tty_audit_buf; 795 #endif 796 797 /* 798 * Thread is the potential origin of an oom condition; kill first on 799 * oom 800 */ 801 bool oom_flag_origin; 802 short oom_score_adj; /* OOM kill score adjustment */ 803 short oom_score_adj_min; /* OOM kill score adjustment min value. 804 * Only settable by CAP_SYS_RESOURCE. */ 805 806 struct mutex cred_guard_mutex; /* guard against foreign influences on 807 * credential calculations 808 * (notably. ptrace) */ 809 }; 810 811 /* 812 * Bits in flags field of signal_struct. 813 */ 814 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 815 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 816 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 817 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 818 /* 819 * Pending notifications to parent. 820 */ 821 #define SIGNAL_CLD_STOPPED 0x00000010 822 #define SIGNAL_CLD_CONTINUED 0x00000020 823 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 824 825 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 826 827 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 828 static inline int signal_group_exit(const struct signal_struct *sig) 829 { 830 return (sig->flags & SIGNAL_GROUP_EXIT) || 831 (sig->group_exit_task != NULL); 832 } 833 834 /* 835 * Some day this will be a full-fledged user tracking system.. 836 */ 837 struct user_struct { 838 atomic_t __count; /* reference count */ 839 atomic_t processes; /* How many processes does this user have? */ 840 atomic_t sigpending; /* How many pending signals does this user have? */ 841 #ifdef CONFIG_INOTIFY_USER 842 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 843 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 844 #endif 845 #ifdef CONFIG_FANOTIFY 846 atomic_t fanotify_listeners; 847 #endif 848 #ifdef CONFIG_EPOLL 849 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 850 #endif 851 #ifdef CONFIG_POSIX_MQUEUE 852 /* protected by mq_lock */ 853 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 854 #endif 855 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 856 unsigned long unix_inflight; /* How many files in flight in unix sockets */ 857 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ 858 859 #ifdef CONFIG_KEYS 860 struct key *uid_keyring; /* UID specific keyring */ 861 struct key *session_keyring; /* UID's default session keyring */ 862 #endif 863 864 /* Hash table maintenance information */ 865 struct hlist_node uidhash_node; 866 kuid_t uid; 867 868 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) 869 atomic_long_t locked_vm; 870 #endif 871 }; 872 873 extern int uids_sysfs_init(void); 874 875 extern struct user_struct *find_user(kuid_t); 876 877 extern struct user_struct root_user; 878 #define INIT_USER (&root_user) 879 880 881 struct backing_dev_info; 882 struct reclaim_state; 883 884 #ifdef CONFIG_SCHED_INFO 885 struct sched_info { 886 /* cumulative counters */ 887 unsigned long pcount; /* # of times run on this cpu */ 888 unsigned long long run_delay; /* time spent waiting on a runqueue */ 889 890 /* timestamps */ 891 unsigned long long last_arrival,/* when we last ran on a cpu */ 892 last_queued; /* when we were last queued to run */ 893 }; 894 #endif /* CONFIG_SCHED_INFO */ 895 896 #ifdef CONFIG_TASK_DELAY_ACCT 897 struct task_delay_info { 898 spinlock_t lock; 899 unsigned int flags; /* Private per-task flags */ 900 901 /* For each stat XXX, add following, aligned appropriately 902 * 903 * struct timespec XXX_start, XXX_end; 904 * u64 XXX_delay; 905 * u32 XXX_count; 906 * 907 * Atomicity of updates to XXX_delay, XXX_count protected by 908 * single lock above (split into XXX_lock if contention is an issue). 909 */ 910 911 /* 912 * XXX_count is incremented on every XXX operation, the delay 913 * associated with the operation is added to XXX_delay. 914 * XXX_delay contains the accumulated delay time in nanoseconds. 915 */ 916 u64 blkio_start; /* Shared by blkio, swapin */ 917 u64 blkio_delay; /* wait for sync block io completion */ 918 u64 swapin_delay; /* wait for swapin block io completion */ 919 u32 blkio_count; /* total count of the number of sync block */ 920 /* io operations performed */ 921 u32 swapin_count; /* total count of the number of swapin block */ 922 /* io operations performed */ 923 924 u64 freepages_start; 925 u64 freepages_delay; /* wait for memory reclaim */ 926 u32 freepages_count; /* total count of memory reclaim */ 927 }; 928 #endif /* CONFIG_TASK_DELAY_ACCT */ 929 930 static inline int sched_info_on(void) 931 { 932 #ifdef CONFIG_SCHEDSTATS 933 return 1; 934 #elif defined(CONFIG_TASK_DELAY_ACCT) 935 extern int delayacct_on; 936 return delayacct_on; 937 #else 938 return 0; 939 #endif 940 } 941 942 #ifdef CONFIG_SCHEDSTATS 943 void force_schedstat_enabled(void); 944 #endif 945 946 enum cpu_idle_type { 947 CPU_IDLE, 948 CPU_NOT_IDLE, 949 CPU_NEWLY_IDLE, 950 CPU_MAX_IDLE_TYPES 951 }; 952 953 /* 954 * Integer metrics need fixed point arithmetic, e.g., sched/fair 955 * has a few: load, load_avg, util_avg, freq, and capacity. 956 * 957 * We define a basic fixed point arithmetic range, and then formalize 958 * all these metrics based on that basic range. 959 */ 960 # define SCHED_FIXEDPOINT_SHIFT 10 961 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 962 963 /* 964 * Increase resolution of cpu_capacity calculations 965 */ 966 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 967 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 968 969 /* 970 * Wake-queues are lists of tasks with a pending wakeup, whose 971 * callers have already marked the task as woken internally, 972 * and can thus carry on. A common use case is being able to 973 * do the wakeups once the corresponding user lock as been 974 * released. 975 * 976 * We hold reference to each task in the list across the wakeup, 977 * thus guaranteeing that the memory is still valid by the time 978 * the actual wakeups are performed in wake_up_q(). 979 * 980 * One per task suffices, because there's never a need for a task to be 981 * in two wake queues simultaneously; it is forbidden to abandon a task 982 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 983 * already in a wake queue, the wakeup will happen soon and the second 984 * waker can just skip it. 985 * 986 * The WAKE_Q macro declares and initializes the list head. 987 * wake_up_q() does NOT reinitialize the list; it's expected to be 988 * called near the end of a function, where the fact that the queue is 989 * not used again will be easy to see by inspection. 990 * 991 * Note that this can cause spurious wakeups. schedule() callers 992 * must ensure the call is done inside a loop, confirming that the 993 * wakeup condition has in fact occurred. 994 */ 995 struct wake_q_node { 996 struct wake_q_node *next; 997 }; 998 999 struct wake_q_head { 1000 struct wake_q_node *first; 1001 struct wake_q_node **lastp; 1002 }; 1003 1004 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 1005 1006 #define WAKE_Q(name) \ 1007 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 1008 1009 extern void wake_q_add(struct wake_q_head *head, 1010 struct task_struct *task); 1011 extern void wake_up_q(struct wake_q_head *head); 1012 1013 /* 1014 * sched-domains (multiprocessor balancing) declarations: 1015 */ 1016 #ifdef CONFIG_SMP 1017 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 1018 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 1019 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 1020 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 1021 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 1022 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 1023 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 1024 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 1025 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 1026 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 1027 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 1028 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 1029 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 1030 #define SD_NUMA 0x4000 /* cross-node balancing */ 1031 1032 #ifdef CONFIG_SCHED_SMT 1033 static inline int cpu_smt_flags(void) 1034 { 1035 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1036 } 1037 #endif 1038 1039 #ifdef CONFIG_SCHED_MC 1040 static inline int cpu_core_flags(void) 1041 { 1042 return SD_SHARE_PKG_RESOURCES; 1043 } 1044 #endif 1045 1046 #ifdef CONFIG_NUMA 1047 static inline int cpu_numa_flags(void) 1048 { 1049 return SD_NUMA; 1050 } 1051 #endif 1052 1053 struct sched_domain_attr { 1054 int relax_domain_level; 1055 }; 1056 1057 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1058 .relax_domain_level = -1, \ 1059 } 1060 1061 extern int sched_domain_level_max; 1062 1063 struct sched_group; 1064 1065 struct sched_domain { 1066 /* These fields must be setup */ 1067 struct sched_domain *parent; /* top domain must be null terminated */ 1068 struct sched_domain *child; /* bottom domain must be null terminated */ 1069 struct sched_group *groups; /* the balancing groups of the domain */ 1070 unsigned long min_interval; /* Minimum balance interval ms */ 1071 unsigned long max_interval; /* Maximum balance interval ms */ 1072 unsigned int busy_factor; /* less balancing by factor if busy */ 1073 unsigned int imbalance_pct; /* No balance until over watermark */ 1074 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1075 unsigned int busy_idx; 1076 unsigned int idle_idx; 1077 unsigned int newidle_idx; 1078 unsigned int wake_idx; 1079 unsigned int forkexec_idx; 1080 unsigned int smt_gain; 1081 1082 int nohz_idle; /* NOHZ IDLE status */ 1083 int flags; /* See SD_* */ 1084 int level; 1085 1086 /* Runtime fields. */ 1087 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1088 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1089 unsigned int nr_balance_failed; /* initialise to 0 */ 1090 1091 /* idle_balance() stats */ 1092 u64 max_newidle_lb_cost; 1093 unsigned long next_decay_max_lb_cost; 1094 1095 #ifdef CONFIG_SCHEDSTATS 1096 /* load_balance() stats */ 1097 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1098 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1099 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1100 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1101 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1102 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1103 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1104 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1105 1106 /* Active load balancing */ 1107 unsigned int alb_count; 1108 unsigned int alb_failed; 1109 unsigned int alb_pushed; 1110 1111 /* SD_BALANCE_EXEC stats */ 1112 unsigned int sbe_count; 1113 unsigned int sbe_balanced; 1114 unsigned int sbe_pushed; 1115 1116 /* SD_BALANCE_FORK stats */ 1117 unsigned int sbf_count; 1118 unsigned int sbf_balanced; 1119 unsigned int sbf_pushed; 1120 1121 /* try_to_wake_up() stats */ 1122 unsigned int ttwu_wake_remote; 1123 unsigned int ttwu_move_affine; 1124 unsigned int ttwu_move_balance; 1125 #endif 1126 #ifdef CONFIG_SCHED_DEBUG 1127 char *name; 1128 #endif 1129 union { 1130 void *private; /* used during construction */ 1131 struct rcu_head rcu; /* used during destruction */ 1132 }; 1133 1134 unsigned int span_weight; 1135 /* 1136 * Span of all CPUs in this domain. 1137 * 1138 * NOTE: this field is variable length. (Allocated dynamically 1139 * by attaching extra space to the end of the structure, 1140 * depending on how many CPUs the kernel has booted up with) 1141 */ 1142 unsigned long span[0]; 1143 }; 1144 1145 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1146 { 1147 return to_cpumask(sd->span); 1148 } 1149 1150 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1151 struct sched_domain_attr *dattr_new); 1152 1153 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1154 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1155 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1156 1157 bool cpus_share_cache(int this_cpu, int that_cpu); 1158 1159 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1160 typedef int (*sched_domain_flags_f)(void); 1161 1162 #define SDTL_OVERLAP 0x01 1163 1164 struct sd_data { 1165 struct sched_domain **__percpu sd; 1166 struct sched_group **__percpu sg; 1167 struct sched_group_capacity **__percpu sgc; 1168 }; 1169 1170 struct sched_domain_topology_level { 1171 sched_domain_mask_f mask; 1172 sched_domain_flags_f sd_flags; 1173 int flags; 1174 int numa_level; 1175 struct sd_data data; 1176 #ifdef CONFIG_SCHED_DEBUG 1177 char *name; 1178 #endif 1179 }; 1180 1181 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1182 extern void wake_up_if_idle(int cpu); 1183 1184 #ifdef CONFIG_SCHED_DEBUG 1185 # define SD_INIT_NAME(type) .name = #type 1186 #else 1187 # define SD_INIT_NAME(type) 1188 #endif 1189 1190 #else /* CONFIG_SMP */ 1191 1192 struct sched_domain_attr; 1193 1194 static inline void 1195 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1196 struct sched_domain_attr *dattr_new) 1197 { 1198 } 1199 1200 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1201 { 1202 return true; 1203 } 1204 1205 #endif /* !CONFIG_SMP */ 1206 1207 1208 struct io_context; /* See blkdev.h */ 1209 1210 1211 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1212 extern void prefetch_stack(struct task_struct *t); 1213 #else 1214 static inline void prefetch_stack(struct task_struct *t) { } 1215 #endif 1216 1217 struct audit_context; /* See audit.c */ 1218 struct mempolicy; 1219 struct pipe_inode_info; 1220 struct uts_namespace; 1221 1222 struct load_weight { 1223 unsigned long weight; 1224 u32 inv_weight; 1225 }; 1226 1227 /* 1228 * The load_avg/util_avg accumulates an infinite geometric series 1229 * (see __update_load_avg() in kernel/sched/fair.c). 1230 * 1231 * [load_avg definition] 1232 * 1233 * load_avg = runnable% * scale_load_down(load) 1234 * 1235 * where runnable% is the time ratio that a sched_entity is runnable. 1236 * For cfs_rq, it is the aggregated load_avg of all runnable and 1237 * blocked sched_entities. 1238 * 1239 * load_avg may also take frequency scaling into account: 1240 * 1241 * load_avg = runnable% * scale_load_down(load) * freq% 1242 * 1243 * where freq% is the CPU frequency normalized to the highest frequency. 1244 * 1245 * [util_avg definition] 1246 * 1247 * util_avg = running% * SCHED_CAPACITY_SCALE 1248 * 1249 * where running% is the time ratio that a sched_entity is running on 1250 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 1251 * and blocked sched_entities. 1252 * 1253 * util_avg may also factor frequency scaling and CPU capacity scaling: 1254 * 1255 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% 1256 * 1257 * where freq% is the same as above, and capacity% is the CPU capacity 1258 * normalized to the greatest capacity (due to uarch differences, etc). 1259 * 1260 * N.B., the above ratios (runnable%, running%, freq%, and capacity%) 1261 * themselves are in the range of [0, 1]. To do fixed point arithmetics, 1262 * we therefore scale them to as large a range as necessary. This is for 1263 * example reflected by util_avg's SCHED_CAPACITY_SCALE. 1264 * 1265 * [Overflow issue] 1266 * 1267 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 1268 * with the highest load (=88761), always runnable on a single cfs_rq, 1269 * and should not overflow as the number already hits PID_MAX_LIMIT. 1270 * 1271 * For all other cases (including 32-bit kernels), struct load_weight's 1272 * weight will overflow first before we do, because: 1273 * 1274 * Max(load_avg) <= Max(load.weight) 1275 * 1276 * Then it is the load_weight's responsibility to consider overflow 1277 * issues. 1278 */ 1279 struct sched_avg { 1280 u64 last_update_time, load_sum; 1281 u32 util_sum, period_contrib; 1282 unsigned long load_avg, util_avg; 1283 }; 1284 1285 #ifdef CONFIG_SCHEDSTATS 1286 struct sched_statistics { 1287 u64 wait_start; 1288 u64 wait_max; 1289 u64 wait_count; 1290 u64 wait_sum; 1291 u64 iowait_count; 1292 u64 iowait_sum; 1293 1294 u64 sleep_start; 1295 u64 sleep_max; 1296 s64 sum_sleep_runtime; 1297 1298 u64 block_start; 1299 u64 block_max; 1300 u64 exec_max; 1301 u64 slice_max; 1302 1303 u64 nr_migrations_cold; 1304 u64 nr_failed_migrations_affine; 1305 u64 nr_failed_migrations_running; 1306 u64 nr_failed_migrations_hot; 1307 u64 nr_forced_migrations; 1308 1309 u64 nr_wakeups; 1310 u64 nr_wakeups_sync; 1311 u64 nr_wakeups_migrate; 1312 u64 nr_wakeups_local; 1313 u64 nr_wakeups_remote; 1314 u64 nr_wakeups_affine; 1315 u64 nr_wakeups_affine_attempts; 1316 u64 nr_wakeups_passive; 1317 u64 nr_wakeups_idle; 1318 }; 1319 #endif 1320 1321 struct sched_entity { 1322 struct load_weight load; /* for load-balancing */ 1323 struct rb_node run_node; 1324 struct list_head group_node; 1325 unsigned int on_rq; 1326 1327 u64 exec_start; 1328 u64 sum_exec_runtime; 1329 u64 vruntime; 1330 u64 prev_sum_exec_runtime; 1331 1332 u64 nr_migrations; 1333 1334 #ifdef CONFIG_SCHEDSTATS 1335 struct sched_statistics statistics; 1336 #endif 1337 1338 #ifdef CONFIG_FAIR_GROUP_SCHED 1339 int depth; 1340 struct sched_entity *parent; 1341 /* rq on which this entity is (to be) queued: */ 1342 struct cfs_rq *cfs_rq; 1343 /* rq "owned" by this entity/group: */ 1344 struct cfs_rq *my_q; 1345 #endif 1346 1347 #ifdef CONFIG_SMP 1348 /* 1349 * Per entity load average tracking. 1350 * 1351 * Put into separate cache line so it does not 1352 * collide with read-mostly values above. 1353 */ 1354 struct sched_avg avg ____cacheline_aligned_in_smp; 1355 #endif 1356 }; 1357 1358 struct sched_rt_entity { 1359 struct list_head run_list; 1360 unsigned long timeout; 1361 unsigned long watchdog_stamp; 1362 unsigned int time_slice; 1363 unsigned short on_rq; 1364 unsigned short on_list; 1365 1366 struct sched_rt_entity *back; 1367 #ifdef CONFIG_RT_GROUP_SCHED 1368 struct sched_rt_entity *parent; 1369 /* rq on which this entity is (to be) queued: */ 1370 struct rt_rq *rt_rq; 1371 /* rq "owned" by this entity/group: */ 1372 struct rt_rq *my_q; 1373 #endif 1374 }; 1375 1376 struct sched_dl_entity { 1377 struct rb_node rb_node; 1378 1379 /* 1380 * Original scheduling parameters. Copied here from sched_attr 1381 * during sched_setattr(), they will remain the same until 1382 * the next sched_setattr(). 1383 */ 1384 u64 dl_runtime; /* maximum runtime for each instance */ 1385 u64 dl_deadline; /* relative deadline of each instance */ 1386 u64 dl_period; /* separation of two instances (period) */ 1387 u64 dl_bw; /* dl_runtime / dl_deadline */ 1388 1389 /* 1390 * Actual scheduling parameters. Initialized with the values above, 1391 * they are continously updated during task execution. Note that 1392 * the remaining runtime could be < 0 in case we are in overrun. 1393 */ 1394 s64 runtime; /* remaining runtime for this instance */ 1395 u64 deadline; /* absolute deadline for this instance */ 1396 unsigned int flags; /* specifying the scheduler behaviour */ 1397 1398 /* 1399 * Some bool flags: 1400 * 1401 * @dl_throttled tells if we exhausted the runtime. If so, the 1402 * task has to wait for a replenishment to be performed at the 1403 * next firing of dl_timer. 1404 * 1405 * @dl_boosted tells if we are boosted due to DI. If so we are 1406 * outside bandwidth enforcement mechanism (but only until we 1407 * exit the critical section); 1408 * 1409 * @dl_yielded tells if task gave up the cpu before consuming 1410 * all its available runtime during the last job. 1411 */ 1412 int dl_throttled, dl_boosted, dl_yielded; 1413 1414 /* 1415 * Bandwidth enforcement timer. Each -deadline task has its 1416 * own bandwidth to be enforced, thus we need one timer per task. 1417 */ 1418 struct hrtimer dl_timer; 1419 }; 1420 1421 union rcu_special { 1422 struct { 1423 u8 blocked; 1424 u8 need_qs; 1425 u8 exp_need_qs; 1426 u8 pad; /* Otherwise the compiler can store garbage here. */ 1427 } b; /* Bits. */ 1428 u32 s; /* Set of bits. */ 1429 }; 1430 struct rcu_node; 1431 1432 enum perf_event_task_context { 1433 perf_invalid_context = -1, 1434 perf_hw_context = 0, 1435 perf_sw_context, 1436 perf_nr_task_contexts, 1437 }; 1438 1439 /* Track pages that require TLB flushes */ 1440 struct tlbflush_unmap_batch { 1441 /* 1442 * Each bit set is a CPU that potentially has a TLB entry for one of 1443 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1444 */ 1445 struct cpumask cpumask; 1446 1447 /* True if any bit in cpumask is set */ 1448 bool flush_required; 1449 1450 /* 1451 * If true then the PTE was dirty when unmapped. The entry must be 1452 * flushed before IO is initiated or a stale TLB entry potentially 1453 * allows an update without redirtying the page. 1454 */ 1455 bool writable; 1456 }; 1457 1458 struct task_struct { 1459 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1460 void *stack; 1461 atomic_t usage; 1462 unsigned int flags; /* per process flags, defined below */ 1463 unsigned int ptrace; 1464 1465 #ifdef CONFIG_SMP 1466 struct llist_node wake_entry; 1467 int on_cpu; 1468 unsigned int wakee_flips; 1469 unsigned long wakee_flip_decay_ts; 1470 struct task_struct *last_wakee; 1471 1472 int wake_cpu; 1473 #endif 1474 int on_rq; 1475 1476 int prio, static_prio, normal_prio; 1477 unsigned int rt_priority; 1478 const struct sched_class *sched_class; 1479 struct sched_entity se; 1480 struct sched_rt_entity rt; 1481 #ifdef CONFIG_CGROUP_SCHED 1482 struct task_group *sched_task_group; 1483 #endif 1484 struct sched_dl_entity dl; 1485 1486 #ifdef CONFIG_PREEMPT_NOTIFIERS 1487 /* list of struct preempt_notifier: */ 1488 struct hlist_head preempt_notifiers; 1489 #endif 1490 1491 #ifdef CONFIG_BLK_DEV_IO_TRACE 1492 unsigned int btrace_seq; 1493 #endif 1494 1495 unsigned int policy; 1496 int nr_cpus_allowed; 1497 cpumask_t cpus_allowed; 1498 1499 #ifdef CONFIG_PREEMPT_RCU 1500 int rcu_read_lock_nesting; 1501 union rcu_special rcu_read_unlock_special; 1502 struct list_head rcu_node_entry; 1503 struct rcu_node *rcu_blocked_node; 1504 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1505 #ifdef CONFIG_TASKS_RCU 1506 unsigned long rcu_tasks_nvcsw; 1507 bool rcu_tasks_holdout; 1508 struct list_head rcu_tasks_holdout_list; 1509 int rcu_tasks_idle_cpu; 1510 #endif /* #ifdef CONFIG_TASKS_RCU */ 1511 1512 #ifdef CONFIG_SCHED_INFO 1513 struct sched_info sched_info; 1514 #endif 1515 1516 struct list_head tasks; 1517 #ifdef CONFIG_SMP 1518 struct plist_node pushable_tasks; 1519 struct rb_node pushable_dl_tasks; 1520 #endif 1521 1522 struct mm_struct *mm, *active_mm; 1523 /* per-thread vma caching */ 1524 u32 vmacache_seqnum; 1525 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1526 #if defined(SPLIT_RSS_COUNTING) 1527 struct task_rss_stat rss_stat; 1528 #endif 1529 /* task state */ 1530 int exit_state; 1531 int exit_code, exit_signal; 1532 int pdeath_signal; /* The signal sent when the parent dies */ 1533 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1534 1535 /* Used for emulating ABI behavior of previous Linux versions */ 1536 unsigned int personality; 1537 1538 /* scheduler bits, serialized by scheduler locks */ 1539 unsigned sched_reset_on_fork:1; 1540 unsigned sched_contributes_to_load:1; 1541 unsigned sched_migrated:1; 1542 unsigned :0; /* force alignment to the next boundary */ 1543 1544 /* unserialized, strictly 'current' */ 1545 unsigned in_execve:1; /* bit to tell LSMs we're in execve */ 1546 unsigned in_iowait:1; 1547 #ifdef CONFIG_MEMCG 1548 unsigned memcg_may_oom:1; 1549 #ifndef CONFIG_SLOB 1550 unsigned memcg_kmem_skip_account:1; 1551 #endif 1552 #endif 1553 #ifdef CONFIG_COMPAT_BRK 1554 unsigned brk_randomized:1; 1555 #endif 1556 1557 unsigned long atomic_flags; /* Flags needing atomic access. */ 1558 1559 struct restart_block restart_block; 1560 1561 pid_t pid; 1562 pid_t tgid; 1563 1564 #ifdef CONFIG_CC_STACKPROTECTOR 1565 /* Canary value for the -fstack-protector gcc feature */ 1566 unsigned long stack_canary; 1567 #endif 1568 /* 1569 * pointers to (original) parent process, youngest child, younger sibling, 1570 * older sibling, respectively. (p->father can be replaced with 1571 * p->real_parent->pid) 1572 */ 1573 struct task_struct __rcu *real_parent; /* real parent process */ 1574 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1575 /* 1576 * children/sibling forms the list of my natural children 1577 */ 1578 struct list_head children; /* list of my children */ 1579 struct list_head sibling; /* linkage in my parent's children list */ 1580 struct task_struct *group_leader; /* threadgroup leader */ 1581 1582 /* 1583 * ptraced is the list of tasks this task is using ptrace on. 1584 * This includes both natural children and PTRACE_ATTACH targets. 1585 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1586 */ 1587 struct list_head ptraced; 1588 struct list_head ptrace_entry; 1589 1590 /* PID/PID hash table linkage. */ 1591 struct pid_link pids[PIDTYPE_MAX]; 1592 struct list_head thread_group; 1593 struct list_head thread_node; 1594 1595 struct completion *vfork_done; /* for vfork() */ 1596 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1597 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1598 1599 cputime_t utime, stime, utimescaled, stimescaled; 1600 cputime_t gtime; 1601 struct prev_cputime prev_cputime; 1602 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1603 seqcount_t vtime_seqcount; 1604 unsigned long long vtime_snap; 1605 enum { 1606 /* Task is sleeping or running in a CPU with VTIME inactive */ 1607 VTIME_INACTIVE = 0, 1608 /* Task runs in userspace in a CPU with VTIME active */ 1609 VTIME_USER, 1610 /* Task runs in kernelspace in a CPU with VTIME active */ 1611 VTIME_SYS, 1612 } vtime_snap_whence; 1613 #endif 1614 1615 #ifdef CONFIG_NO_HZ_FULL 1616 atomic_t tick_dep_mask; 1617 #endif 1618 unsigned long nvcsw, nivcsw; /* context switch counts */ 1619 u64 start_time; /* monotonic time in nsec */ 1620 u64 real_start_time; /* boot based time in nsec */ 1621 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1622 unsigned long min_flt, maj_flt; 1623 1624 struct task_cputime cputime_expires; 1625 struct list_head cpu_timers[3]; 1626 1627 /* process credentials */ 1628 const struct cred __rcu *real_cred; /* objective and real subjective task 1629 * credentials (COW) */ 1630 const struct cred __rcu *cred; /* effective (overridable) subjective task 1631 * credentials (COW) */ 1632 char comm[TASK_COMM_LEN]; /* executable name excluding path 1633 - access with [gs]et_task_comm (which lock 1634 it with task_lock()) 1635 - initialized normally by setup_new_exec */ 1636 /* file system info */ 1637 struct nameidata *nameidata; 1638 #ifdef CONFIG_SYSVIPC 1639 /* ipc stuff */ 1640 struct sysv_sem sysvsem; 1641 struct sysv_shm sysvshm; 1642 #endif 1643 #ifdef CONFIG_DETECT_HUNG_TASK 1644 /* hung task detection */ 1645 unsigned long last_switch_count; 1646 #endif 1647 /* filesystem information */ 1648 struct fs_struct *fs; 1649 /* open file information */ 1650 struct files_struct *files; 1651 /* namespaces */ 1652 struct nsproxy *nsproxy; 1653 /* signal handlers */ 1654 struct signal_struct *signal; 1655 struct sighand_struct *sighand; 1656 1657 sigset_t blocked, real_blocked; 1658 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1659 struct sigpending pending; 1660 1661 unsigned long sas_ss_sp; 1662 size_t sas_ss_size; 1663 unsigned sas_ss_flags; 1664 1665 struct callback_head *task_works; 1666 1667 struct audit_context *audit_context; 1668 #ifdef CONFIG_AUDITSYSCALL 1669 kuid_t loginuid; 1670 unsigned int sessionid; 1671 #endif 1672 struct seccomp seccomp; 1673 1674 /* Thread group tracking */ 1675 u32 parent_exec_id; 1676 u32 self_exec_id; 1677 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1678 * mempolicy */ 1679 spinlock_t alloc_lock; 1680 1681 /* Protection of the PI data structures: */ 1682 raw_spinlock_t pi_lock; 1683 1684 struct wake_q_node wake_q; 1685 1686 #ifdef CONFIG_RT_MUTEXES 1687 /* PI waiters blocked on a rt_mutex held by this task */ 1688 struct rb_root pi_waiters; 1689 struct rb_node *pi_waiters_leftmost; 1690 /* Deadlock detection and priority inheritance handling */ 1691 struct rt_mutex_waiter *pi_blocked_on; 1692 #endif 1693 1694 #ifdef CONFIG_DEBUG_MUTEXES 1695 /* mutex deadlock detection */ 1696 struct mutex_waiter *blocked_on; 1697 #endif 1698 #ifdef CONFIG_TRACE_IRQFLAGS 1699 unsigned int irq_events; 1700 unsigned long hardirq_enable_ip; 1701 unsigned long hardirq_disable_ip; 1702 unsigned int hardirq_enable_event; 1703 unsigned int hardirq_disable_event; 1704 int hardirqs_enabled; 1705 int hardirq_context; 1706 unsigned long softirq_disable_ip; 1707 unsigned long softirq_enable_ip; 1708 unsigned int softirq_disable_event; 1709 unsigned int softirq_enable_event; 1710 int softirqs_enabled; 1711 int softirq_context; 1712 #endif 1713 #ifdef CONFIG_LOCKDEP 1714 # define MAX_LOCK_DEPTH 48UL 1715 u64 curr_chain_key; 1716 int lockdep_depth; 1717 unsigned int lockdep_recursion; 1718 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1719 gfp_t lockdep_reclaim_gfp; 1720 #endif 1721 #ifdef CONFIG_UBSAN 1722 unsigned int in_ubsan; 1723 #endif 1724 1725 /* journalling filesystem info */ 1726 void *journal_info; 1727 1728 /* stacked block device info */ 1729 struct bio_list *bio_list; 1730 1731 #ifdef CONFIG_BLOCK 1732 /* stack plugging */ 1733 struct blk_plug *plug; 1734 #endif 1735 1736 /* VM state */ 1737 struct reclaim_state *reclaim_state; 1738 1739 struct backing_dev_info *backing_dev_info; 1740 1741 struct io_context *io_context; 1742 1743 unsigned long ptrace_message; 1744 siginfo_t *last_siginfo; /* For ptrace use. */ 1745 struct task_io_accounting ioac; 1746 #if defined(CONFIG_TASK_XACCT) 1747 u64 acct_rss_mem1; /* accumulated rss usage */ 1748 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1749 cputime_t acct_timexpd; /* stime + utime since last update */ 1750 #endif 1751 #ifdef CONFIG_CPUSETS 1752 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1753 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1754 int cpuset_mem_spread_rotor; 1755 int cpuset_slab_spread_rotor; 1756 #endif 1757 #ifdef CONFIG_CGROUPS 1758 /* Control Group info protected by css_set_lock */ 1759 struct css_set __rcu *cgroups; 1760 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1761 struct list_head cg_list; 1762 #endif 1763 #ifdef CONFIG_FUTEX 1764 struct robust_list_head __user *robust_list; 1765 #ifdef CONFIG_COMPAT 1766 struct compat_robust_list_head __user *compat_robust_list; 1767 #endif 1768 struct list_head pi_state_list; 1769 struct futex_pi_state *pi_state_cache; 1770 #endif 1771 #ifdef CONFIG_PERF_EVENTS 1772 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1773 struct mutex perf_event_mutex; 1774 struct list_head perf_event_list; 1775 #endif 1776 #ifdef CONFIG_DEBUG_PREEMPT 1777 unsigned long preempt_disable_ip; 1778 #endif 1779 #ifdef CONFIG_NUMA 1780 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1781 short il_next; 1782 short pref_node_fork; 1783 #endif 1784 #ifdef CONFIG_NUMA_BALANCING 1785 int numa_scan_seq; 1786 unsigned int numa_scan_period; 1787 unsigned int numa_scan_period_max; 1788 int numa_preferred_nid; 1789 unsigned long numa_migrate_retry; 1790 u64 node_stamp; /* migration stamp */ 1791 u64 last_task_numa_placement; 1792 u64 last_sum_exec_runtime; 1793 struct callback_head numa_work; 1794 1795 struct list_head numa_entry; 1796 struct numa_group *numa_group; 1797 1798 /* 1799 * numa_faults is an array split into four regions: 1800 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1801 * in this precise order. 1802 * 1803 * faults_memory: Exponential decaying average of faults on a per-node 1804 * basis. Scheduling placement decisions are made based on these 1805 * counts. The values remain static for the duration of a PTE scan. 1806 * faults_cpu: Track the nodes the process was running on when a NUMA 1807 * hinting fault was incurred. 1808 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1809 * during the current scan window. When the scan completes, the counts 1810 * in faults_memory and faults_cpu decay and these values are copied. 1811 */ 1812 unsigned long *numa_faults; 1813 unsigned long total_numa_faults; 1814 1815 /* 1816 * numa_faults_locality tracks if faults recorded during the last 1817 * scan window were remote/local or failed to migrate. The task scan 1818 * period is adapted based on the locality of the faults with different 1819 * weights depending on whether they were shared or private faults 1820 */ 1821 unsigned long numa_faults_locality[3]; 1822 1823 unsigned long numa_pages_migrated; 1824 #endif /* CONFIG_NUMA_BALANCING */ 1825 1826 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1827 struct tlbflush_unmap_batch tlb_ubc; 1828 #endif 1829 1830 struct rcu_head rcu; 1831 1832 /* 1833 * cache last used pipe for splice 1834 */ 1835 struct pipe_inode_info *splice_pipe; 1836 1837 struct page_frag task_frag; 1838 1839 #ifdef CONFIG_TASK_DELAY_ACCT 1840 struct task_delay_info *delays; 1841 #endif 1842 #ifdef CONFIG_FAULT_INJECTION 1843 int make_it_fail; 1844 #endif 1845 /* 1846 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1847 * balance_dirty_pages() for some dirty throttling pause 1848 */ 1849 int nr_dirtied; 1850 int nr_dirtied_pause; 1851 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1852 1853 #ifdef CONFIG_LATENCYTOP 1854 int latency_record_count; 1855 struct latency_record latency_record[LT_SAVECOUNT]; 1856 #endif 1857 /* 1858 * time slack values; these are used to round up poll() and 1859 * select() etc timeout values. These are in nanoseconds. 1860 */ 1861 u64 timer_slack_ns; 1862 u64 default_timer_slack_ns; 1863 1864 #ifdef CONFIG_KASAN 1865 unsigned int kasan_depth; 1866 #endif 1867 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1868 /* Index of current stored address in ret_stack */ 1869 int curr_ret_stack; 1870 /* Stack of return addresses for return function tracing */ 1871 struct ftrace_ret_stack *ret_stack; 1872 /* time stamp for last schedule */ 1873 unsigned long long ftrace_timestamp; 1874 /* 1875 * Number of functions that haven't been traced 1876 * because of depth overrun. 1877 */ 1878 atomic_t trace_overrun; 1879 /* Pause for the tracing */ 1880 atomic_t tracing_graph_pause; 1881 #endif 1882 #ifdef CONFIG_TRACING 1883 /* state flags for use by tracers */ 1884 unsigned long trace; 1885 /* bitmask and counter of trace recursion */ 1886 unsigned long trace_recursion; 1887 #endif /* CONFIG_TRACING */ 1888 #ifdef CONFIG_KCOV 1889 /* Coverage collection mode enabled for this task (0 if disabled). */ 1890 enum kcov_mode kcov_mode; 1891 /* Size of the kcov_area. */ 1892 unsigned kcov_size; 1893 /* Buffer for coverage collection. */ 1894 void *kcov_area; 1895 /* kcov desciptor wired with this task or NULL. */ 1896 struct kcov *kcov; 1897 #endif 1898 #ifdef CONFIG_MEMCG 1899 struct mem_cgroup *memcg_in_oom; 1900 gfp_t memcg_oom_gfp_mask; 1901 int memcg_oom_order; 1902 1903 /* number of pages to reclaim on returning to userland */ 1904 unsigned int memcg_nr_pages_over_high; 1905 #endif 1906 #ifdef CONFIG_UPROBES 1907 struct uprobe_task *utask; 1908 #endif 1909 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1910 unsigned int sequential_io; 1911 unsigned int sequential_io_avg; 1912 #endif 1913 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1914 unsigned long task_state_change; 1915 #endif 1916 int pagefault_disabled; 1917 #ifdef CONFIG_MMU 1918 struct task_struct *oom_reaper_list; 1919 #endif 1920 /* CPU-specific state of this task */ 1921 struct thread_struct thread; 1922 /* 1923 * WARNING: on x86, 'thread_struct' contains a variable-sized 1924 * structure. It *MUST* be at the end of 'task_struct'. 1925 * 1926 * Do not put anything below here! 1927 */ 1928 }; 1929 1930 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1931 extern int arch_task_struct_size __read_mostly; 1932 #else 1933 # define arch_task_struct_size (sizeof(struct task_struct)) 1934 #endif 1935 1936 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1937 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1938 1939 static inline int tsk_nr_cpus_allowed(struct task_struct *p) 1940 { 1941 return p->nr_cpus_allowed; 1942 } 1943 1944 #define TNF_MIGRATED 0x01 1945 #define TNF_NO_GROUP 0x02 1946 #define TNF_SHARED 0x04 1947 #define TNF_FAULT_LOCAL 0x08 1948 #define TNF_MIGRATE_FAIL 0x10 1949 1950 #ifdef CONFIG_NUMA_BALANCING 1951 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1952 extern pid_t task_numa_group_id(struct task_struct *p); 1953 extern void set_numabalancing_state(bool enabled); 1954 extern void task_numa_free(struct task_struct *p); 1955 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1956 int src_nid, int dst_cpu); 1957 #else 1958 static inline void task_numa_fault(int last_node, int node, int pages, 1959 int flags) 1960 { 1961 } 1962 static inline pid_t task_numa_group_id(struct task_struct *p) 1963 { 1964 return 0; 1965 } 1966 static inline void set_numabalancing_state(bool enabled) 1967 { 1968 } 1969 static inline void task_numa_free(struct task_struct *p) 1970 { 1971 } 1972 static inline bool should_numa_migrate_memory(struct task_struct *p, 1973 struct page *page, int src_nid, int dst_cpu) 1974 { 1975 return true; 1976 } 1977 #endif 1978 1979 static inline struct pid *task_pid(struct task_struct *task) 1980 { 1981 return task->pids[PIDTYPE_PID].pid; 1982 } 1983 1984 static inline struct pid *task_tgid(struct task_struct *task) 1985 { 1986 return task->group_leader->pids[PIDTYPE_PID].pid; 1987 } 1988 1989 /* 1990 * Without tasklist or rcu lock it is not safe to dereference 1991 * the result of task_pgrp/task_session even if task == current, 1992 * we can race with another thread doing sys_setsid/sys_setpgid. 1993 */ 1994 static inline struct pid *task_pgrp(struct task_struct *task) 1995 { 1996 return task->group_leader->pids[PIDTYPE_PGID].pid; 1997 } 1998 1999 static inline struct pid *task_session(struct task_struct *task) 2000 { 2001 return task->group_leader->pids[PIDTYPE_SID].pid; 2002 } 2003 2004 struct pid_namespace; 2005 2006 /* 2007 * the helpers to get the task's different pids as they are seen 2008 * from various namespaces 2009 * 2010 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 2011 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 2012 * current. 2013 * task_xid_nr_ns() : id seen from the ns specified; 2014 * 2015 * set_task_vxid() : assigns a virtual id to a task; 2016 * 2017 * see also pid_nr() etc in include/linux/pid.h 2018 */ 2019 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 2020 struct pid_namespace *ns); 2021 2022 static inline pid_t task_pid_nr(struct task_struct *tsk) 2023 { 2024 return tsk->pid; 2025 } 2026 2027 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 2028 struct pid_namespace *ns) 2029 { 2030 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 2031 } 2032 2033 static inline pid_t task_pid_vnr(struct task_struct *tsk) 2034 { 2035 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 2036 } 2037 2038 2039 static inline pid_t task_tgid_nr(struct task_struct *tsk) 2040 { 2041 return tsk->tgid; 2042 } 2043 2044 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 2045 2046 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 2047 { 2048 return pid_vnr(task_tgid(tsk)); 2049 } 2050 2051 2052 static inline int pid_alive(const struct task_struct *p); 2053 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 2054 { 2055 pid_t pid = 0; 2056 2057 rcu_read_lock(); 2058 if (pid_alive(tsk)) 2059 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 2060 rcu_read_unlock(); 2061 2062 return pid; 2063 } 2064 2065 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 2066 { 2067 return task_ppid_nr_ns(tsk, &init_pid_ns); 2068 } 2069 2070 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 2071 struct pid_namespace *ns) 2072 { 2073 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 2074 } 2075 2076 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 2077 { 2078 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 2079 } 2080 2081 2082 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 2083 struct pid_namespace *ns) 2084 { 2085 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 2086 } 2087 2088 static inline pid_t task_session_vnr(struct task_struct *tsk) 2089 { 2090 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 2091 } 2092 2093 /* obsolete, do not use */ 2094 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 2095 { 2096 return task_pgrp_nr_ns(tsk, &init_pid_ns); 2097 } 2098 2099 /** 2100 * pid_alive - check that a task structure is not stale 2101 * @p: Task structure to be checked. 2102 * 2103 * Test if a process is not yet dead (at most zombie state) 2104 * If pid_alive fails, then pointers within the task structure 2105 * can be stale and must not be dereferenced. 2106 * 2107 * Return: 1 if the process is alive. 0 otherwise. 2108 */ 2109 static inline int pid_alive(const struct task_struct *p) 2110 { 2111 return p->pids[PIDTYPE_PID].pid != NULL; 2112 } 2113 2114 /** 2115 * is_global_init - check if a task structure is init. Since init 2116 * is free to have sub-threads we need to check tgid. 2117 * @tsk: Task structure to be checked. 2118 * 2119 * Check if a task structure is the first user space task the kernel created. 2120 * 2121 * Return: 1 if the task structure is init. 0 otherwise. 2122 */ 2123 static inline int is_global_init(struct task_struct *tsk) 2124 { 2125 return task_tgid_nr(tsk) == 1; 2126 } 2127 2128 extern struct pid *cad_pid; 2129 2130 extern void free_task(struct task_struct *tsk); 2131 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2132 2133 extern void __put_task_struct(struct task_struct *t); 2134 2135 static inline void put_task_struct(struct task_struct *t) 2136 { 2137 if (atomic_dec_and_test(&t->usage)) 2138 __put_task_struct(t); 2139 } 2140 2141 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2142 extern void task_cputime(struct task_struct *t, 2143 cputime_t *utime, cputime_t *stime); 2144 extern void task_cputime_scaled(struct task_struct *t, 2145 cputime_t *utimescaled, cputime_t *stimescaled); 2146 extern cputime_t task_gtime(struct task_struct *t); 2147 #else 2148 static inline void task_cputime(struct task_struct *t, 2149 cputime_t *utime, cputime_t *stime) 2150 { 2151 if (utime) 2152 *utime = t->utime; 2153 if (stime) 2154 *stime = t->stime; 2155 } 2156 2157 static inline void task_cputime_scaled(struct task_struct *t, 2158 cputime_t *utimescaled, 2159 cputime_t *stimescaled) 2160 { 2161 if (utimescaled) 2162 *utimescaled = t->utimescaled; 2163 if (stimescaled) 2164 *stimescaled = t->stimescaled; 2165 } 2166 2167 static inline cputime_t task_gtime(struct task_struct *t) 2168 { 2169 return t->gtime; 2170 } 2171 #endif 2172 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2173 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2174 2175 /* 2176 * Per process flags 2177 */ 2178 #define PF_EXITING 0x00000004 /* getting shut down */ 2179 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2180 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2181 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2182 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2183 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2184 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2185 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2186 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2187 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2188 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2189 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2190 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2191 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2192 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2193 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2194 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2195 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2196 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2197 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2198 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2199 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2200 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2201 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2202 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2203 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2204 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2205 2206 /* 2207 * Only the _current_ task can read/write to tsk->flags, but other 2208 * tasks can access tsk->flags in readonly mode for example 2209 * with tsk_used_math (like during threaded core dumping). 2210 * There is however an exception to this rule during ptrace 2211 * or during fork: the ptracer task is allowed to write to the 2212 * child->flags of its traced child (same goes for fork, the parent 2213 * can write to the child->flags), because we're guaranteed the 2214 * child is not running and in turn not changing child->flags 2215 * at the same time the parent does it. 2216 */ 2217 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2218 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2219 #define clear_used_math() clear_stopped_child_used_math(current) 2220 #define set_used_math() set_stopped_child_used_math(current) 2221 #define conditional_stopped_child_used_math(condition, child) \ 2222 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2223 #define conditional_used_math(condition) \ 2224 conditional_stopped_child_used_math(condition, current) 2225 #define copy_to_stopped_child_used_math(child) \ 2226 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2227 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2228 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2229 #define used_math() tsk_used_math(current) 2230 2231 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2232 * __GFP_FS is also cleared as it implies __GFP_IO. 2233 */ 2234 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2235 { 2236 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2237 flags &= ~(__GFP_IO | __GFP_FS); 2238 return flags; 2239 } 2240 2241 static inline unsigned int memalloc_noio_save(void) 2242 { 2243 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2244 current->flags |= PF_MEMALLOC_NOIO; 2245 return flags; 2246 } 2247 2248 static inline void memalloc_noio_restore(unsigned int flags) 2249 { 2250 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2251 } 2252 2253 /* Per-process atomic flags. */ 2254 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2255 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2256 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2257 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */ 2258 2259 2260 #define TASK_PFA_TEST(name, func) \ 2261 static inline bool task_##func(struct task_struct *p) \ 2262 { return test_bit(PFA_##name, &p->atomic_flags); } 2263 #define TASK_PFA_SET(name, func) \ 2264 static inline void task_set_##func(struct task_struct *p) \ 2265 { set_bit(PFA_##name, &p->atomic_flags); } 2266 #define TASK_PFA_CLEAR(name, func) \ 2267 static inline void task_clear_##func(struct task_struct *p) \ 2268 { clear_bit(PFA_##name, &p->atomic_flags); } 2269 2270 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2271 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2272 2273 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2274 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2275 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2276 2277 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2278 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2279 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2280 2281 TASK_PFA_TEST(LMK_WAITING, lmk_waiting) 2282 TASK_PFA_SET(LMK_WAITING, lmk_waiting) 2283 2284 /* 2285 * task->jobctl flags 2286 */ 2287 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2288 2289 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2290 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2291 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2292 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2293 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2294 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2295 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2296 2297 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2298 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2299 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2300 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2301 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2302 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2303 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2304 2305 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2306 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2307 2308 extern bool task_set_jobctl_pending(struct task_struct *task, 2309 unsigned long mask); 2310 extern void task_clear_jobctl_trapping(struct task_struct *task); 2311 extern void task_clear_jobctl_pending(struct task_struct *task, 2312 unsigned long mask); 2313 2314 static inline void rcu_copy_process(struct task_struct *p) 2315 { 2316 #ifdef CONFIG_PREEMPT_RCU 2317 p->rcu_read_lock_nesting = 0; 2318 p->rcu_read_unlock_special.s = 0; 2319 p->rcu_blocked_node = NULL; 2320 INIT_LIST_HEAD(&p->rcu_node_entry); 2321 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2322 #ifdef CONFIG_TASKS_RCU 2323 p->rcu_tasks_holdout = false; 2324 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2325 p->rcu_tasks_idle_cpu = -1; 2326 #endif /* #ifdef CONFIG_TASKS_RCU */ 2327 } 2328 2329 static inline void tsk_restore_flags(struct task_struct *task, 2330 unsigned long orig_flags, unsigned long flags) 2331 { 2332 task->flags &= ~flags; 2333 task->flags |= orig_flags & flags; 2334 } 2335 2336 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2337 const struct cpumask *trial); 2338 extern int task_can_attach(struct task_struct *p, 2339 const struct cpumask *cs_cpus_allowed); 2340 #ifdef CONFIG_SMP 2341 extern void do_set_cpus_allowed(struct task_struct *p, 2342 const struct cpumask *new_mask); 2343 2344 extern int set_cpus_allowed_ptr(struct task_struct *p, 2345 const struct cpumask *new_mask); 2346 #else 2347 static inline void do_set_cpus_allowed(struct task_struct *p, 2348 const struct cpumask *new_mask) 2349 { 2350 } 2351 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2352 const struct cpumask *new_mask) 2353 { 2354 if (!cpumask_test_cpu(0, new_mask)) 2355 return -EINVAL; 2356 return 0; 2357 } 2358 #endif 2359 2360 #ifdef CONFIG_NO_HZ_COMMON 2361 void calc_load_enter_idle(void); 2362 void calc_load_exit_idle(void); 2363 #else 2364 static inline void calc_load_enter_idle(void) { } 2365 static inline void calc_load_exit_idle(void) { } 2366 #endif /* CONFIG_NO_HZ_COMMON */ 2367 2368 /* 2369 * Do not use outside of architecture code which knows its limitations. 2370 * 2371 * sched_clock() has no promise of monotonicity or bounded drift between 2372 * CPUs, use (which you should not) requires disabling IRQs. 2373 * 2374 * Please use one of the three interfaces below. 2375 */ 2376 extern unsigned long long notrace sched_clock(void); 2377 /* 2378 * See the comment in kernel/sched/clock.c 2379 */ 2380 extern u64 running_clock(void); 2381 extern u64 sched_clock_cpu(int cpu); 2382 2383 2384 extern void sched_clock_init(void); 2385 2386 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2387 static inline void sched_clock_tick(void) 2388 { 2389 } 2390 2391 static inline void sched_clock_idle_sleep_event(void) 2392 { 2393 } 2394 2395 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2396 { 2397 } 2398 2399 static inline u64 cpu_clock(int cpu) 2400 { 2401 return sched_clock(); 2402 } 2403 2404 static inline u64 local_clock(void) 2405 { 2406 return sched_clock(); 2407 } 2408 #else 2409 /* 2410 * Architectures can set this to 1 if they have specified 2411 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2412 * but then during bootup it turns out that sched_clock() 2413 * is reliable after all: 2414 */ 2415 extern int sched_clock_stable(void); 2416 extern void set_sched_clock_stable(void); 2417 extern void clear_sched_clock_stable(void); 2418 2419 extern void sched_clock_tick(void); 2420 extern void sched_clock_idle_sleep_event(void); 2421 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2422 2423 /* 2424 * As outlined in clock.c, provides a fast, high resolution, nanosecond 2425 * time source that is monotonic per cpu argument and has bounded drift 2426 * between cpus. 2427 * 2428 * ######################### BIG FAT WARNING ########################## 2429 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 2430 * # go backwards !! # 2431 * #################################################################### 2432 */ 2433 static inline u64 cpu_clock(int cpu) 2434 { 2435 return sched_clock_cpu(cpu); 2436 } 2437 2438 static inline u64 local_clock(void) 2439 { 2440 return sched_clock_cpu(raw_smp_processor_id()); 2441 } 2442 #endif 2443 2444 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2445 /* 2446 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2447 * The reason for this explicit opt-in is not to have perf penalty with 2448 * slow sched_clocks. 2449 */ 2450 extern void enable_sched_clock_irqtime(void); 2451 extern void disable_sched_clock_irqtime(void); 2452 #else 2453 static inline void enable_sched_clock_irqtime(void) {} 2454 static inline void disable_sched_clock_irqtime(void) {} 2455 #endif 2456 2457 extern unsigned long long 2458 task_sched_runtime(struct task_struct *task); 2459 2460 /* sched_exec is called by processes performing an exec */ 2461 #ifdef CONFIG_SMP 2462 extern void sched_exec(void); 2463 #else 2464 #define sched_exec() {} 2465 #endif 2466 2467 extern void sched_clock_idle_sleep_event(void); 2468 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2469 2470 #ifdef CONFIG_HOTPLUG_CPU 2471 extern void idle_task_exit(void); 2472 #else 2473 static inline void idle_task_exit(void) {} 2474 #endif 2475 2476 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2477 extern void wake_up_nohz_cpu(int cpu); 2478 #else 2479 static inline void wake_up_nohz_cpu(int cpu) { } 2480 #endif 2481 2482 #ifdef CONFIG_NO_HZ_FULL 2483 extern u64 scheduler_tick_max_deferment(void); 2484 #endif 2485 2486 #ifdef CONFIG_SCHED_AUTOGROUP 2487 extern void sched_autogroup_create_attach(struct task_struct *p); 2488 extern void sched_autogroup_detach(struct task_struct *p); 2489 extern void sched_autogroup_fork(struct signal_struct *sig); 2490 extern void sched_autogroup_exit(struct signal_struct *sig); 2491 #ifdef CONFIG_PROC_FS 2492 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2493 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2494 #endif 2495 #else 2496 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2497 static inline void sched_autogroup_detach(struct task_struct *p) { } 2498 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2499 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2500 #endif 2501 2502 extern int yield_to(struct task_struct *p, bool preempt); 2503 extern void set_user_nice(struct task_struct *p, long nice); 2504 extern int task_prio(const struct task_struct *p); 2505 /** 2506 * task_nice - return the nice value of a given task. 2507 * @p: the task in question. 2508 * 2509 * Return: The nice value [ -20 ... 0 ... 19 ]. 2510 */ 2511 static inline int task_nice(const struct task_struct *p) 2512 { 2513 return PRIO_TO_NICE((p)->static_prio); 2514 } 2515 extern int can_nice(const struct task_struct *p, const int nice); 2516 extern int task_curr(const struct task_struct *p); 2517 extern int idle_cpu(int cpu); 2518 extern int sched_setscheduler(struct task_struct *, int, 2519 const struct sched_param *); 2520 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2521 const struct sched_param *); 2522 extern int sched_setattr(struct task_struct *, 2523 const struct sched_attr *); 2524 extern struct task_struct *idle_task(int cpu); 2525 /** 2526 * is_idle_task - is the specified task an idle task? 2527 * @p: the task in question. 2528 * 2529 * Return: 1 if @p is an idle task. 0 otherwise. 2530 */ 2531 static inline bool is_idle_task(const struct task_struct *p) 2532 { 2533 return p->pid == 0; 2534 } 2535 extern struct task_struct *curr_task(int cpu); 2536 extern void set_curr_task(int cpu, struct task_struct *p); 2537 2538 void yield(void); 2539 2540 union thread_union { 2541 struct thread_info thread_info; 2542 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2543 }; 2544 2545 #ifndef __HAVE_ARCH_KSTACK_END 2546 static inline int kstack_end(void *addr) 2547 { 2548 /* Reliable end of stack detection: 2549 * Some APM bios versions misalign the stack 2550 */ 2551 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2552 } 2553 #endif 2554 2555 extern union thread_union init_thread_union; 2556 extern struct task_struct init_task; 2557 2558 extern struct mm_struct init_mm; 2559 2560 extern struct pid_namespace init_pid_ns; 2561 2562 /* 2563 * find a task by one of its numerical ids 2564 * 2565 * find_task_by_pid_ns(): 2566 * finds a task by its pid in the specified namespace 2567 * find_task_by_vpid(): 2568 * finds a task by its virtual pid 2569 * 2570 * see also find_vpid() etc in include/linux/pid.h 2571 */ 2572 2573 extern struct task_struct *find_task_by_vpid(pid_t nr); 2574 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2575 struct pid_namespace *ns); 2576 2577 /* per-UID process charging. */ 2578 extern struct user_struct * alloc_uid(kuid_t); 2579 static inline struct user_struct *get_uid(struct user_struct *u) 2580 { 2581 atomic_inc(&u->__count); 2582 return u; 2583 } 2584 extern void free_uid(struct user_struct *); 2585 2586 #include <asm/current.h> 2587 2588 extern void xtime_update(unsigned long ticks); 2589 2590 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2591 extern int wake_up_process(struct task_struct *tsk); 2592 extern void wake_up_new_task(struct task_struct *tsk); 2593 #ifdef CONFIG_SMP 2594 extern void kick_process(struct task_struct *tsk); 2595 #else 2596 static inline void kick_process(struct task_struct *tsk) { } 2597 #endif 2598 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2599 extern void sched_dead(struct task_struct *p); 2600 2601 extern void proc_caches_init(void); 2602 extern void flush_signals(struct task_struct *); 2603 extern void ignore_signals(struct task_struct *); 2604 extern void flush_signal_handlers(struct task_struct *, int force_default); 2605 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2606 2607 static inline int kernel_dequeue_signal(siginfo_t *info) 2608 { 2609 struct task_struct *tsk = current; 2610 siginfo_t __info; 2611 int ret; 2612 2613 spin_lock_irq(&tsk->sighand->siglock); 2614 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 2615 spin_unlock_irq(&tsk->sighand->siglock); 2616 2617 return ret; 2618 } 2619 2620 static inline void kernel_signal_stop(void) 2621 { 2622 spin_lock_irq(¤t->sighand->siglock); 2623 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 2624 __set_current_state(TASK_STOPPED); 2625 spin_unlock_irq(¤t->sighand->siglock); 2626 2627 schedule(); 2628 } 2629 2630 extern void release_task(struct task_struct * p); 2631 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2632 extern int force_sigsegv(int, struct task_struct *); 2633 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2634 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2635 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2636 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2637 const struct cred *, u32); 2638 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2639 extern int kill_pid(struct pid *pid, int sig, int priv); 2640 extern int kill_proc_info(int, struct siginfo *, pid_t); 2641 extern __must_check bool do_notify_parent(struct task_struct *, int); 2642 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2643 extern void force_sig(int, struct task_struct *); 2644 extern int send_sig(int, struct task_struct *, int); 2645 extern int zap_other_threads(struct task_struct *p); 2646 extern struct sigqueue *sigqueue_alloc(void); 2647 extern void sigqueue_free(struct sigqueue *); 2648 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2649 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2650 2651 static inline void restore_saved_sigmask(void) 2652 { 2653 if (test_and_clear_restore_sigmask()) 2654 __set_current_blocked(¤t->saved_sigmask); 2655 } 2656 2657 static inline sigset_t *sigmask_to_save(void) 2658 { 2659 sigset_t *res = ¤t->blocked; 2660 if (unlikely(test_restore_sigmask())) 2661 res = ¤t->saved_sigmask; 2662 return res; 2663 } 2664 2665 static inline int kill_cad_pid(int sig, int priv) 2666 { 2667 return kill_pid(cad_pid, sig, priv); 2668 } 2669 2670 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2671 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2672 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2673 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2674 2675 /* 2676 * True if we are on the alternate signal stack. 2677 */ 2678 static inline int on_sig_stack(unsigned long sp) 2679 { 2680 /* 2681 * If the signal stack is SS_AUTODISARM then, by construction, we 2682 * can't be on the signal stack unless user code deliberately set 2683 * SS_AUTODISARM when we were already on it. 2684 * 2685 * This improves reliability: if user state gets corrupted such that 2686 * the stack pointer points very close to the end of the signal stack, 2687 * then this check will enable the signal to be handled anyway. 2688 */ 2689 if (current->sas_ss_flags & SS_AUTODISARM) 2690 return 0; 2691 2692 #ifdef CONFIG_STACK_GROWSUP 2693 return sp >= current->sas_ss_sp && 2694 sp - current->sas_ss_sp < current->sas_ss_size; 2695 #else 2696 return sp > current->sas_ss_sp && 2697 sp - current->sas_ss_sp <= current->sas_ss_size; 2698 #endif 2699 } 2700 2701 static inline int sas_ss_flags(unsigned long sp) 2702 { 2703 if (!current->sas_ss_size) 2704 return SS_DISABLE; 2705 2706 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2707 } 2708 2709 static inline void sas_ss_reset(struct task_struct *p) 2710 { 2711 p->sas_ss_sp = 0; 2712 p->sas_ss_size = 0; 2713 p->sas_ss_flags = SS_DISABLE; 2714 } 2715 2716 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2717 { 2718 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2719 #ifdef CONFIG_STACK_GROWSUP 2720 return current->sas_ss_sp; 2721 #else 2722 return current->sas_ss_sp + current->sas_ss_size; 2723 #endif 2724 return sp; 2725 } 2726 2727 /* 2728 * Routines for handling mm_structs 2729 */ 2730 extern struct mm_struct * mm_alloc(void); 2731 2732 /* mmdrop drops the mm and the page tables */ 2733 extern void __mmdrop(struct mm_struct *); 2734 static inline void mmdrop(struct mm_struct *mm) 2735 { 2736 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2737 __mmdrop(mm); 2738 } 2739 2740 static inline bool mmget_not_zero(struct mm_struct *mm) 2741 { 2742 return atomic_inc_not_zero(&mm->mm_users); 2743 } 2744 2745 /* mmput gets rid of the mappings and all user-space */ 2746 extern void mmput(struct mm_struct *); 2747 /* same as above but performs the slow path from the async kontext. Can 2748 * be called from the atomic context as well 2749 */ 2750 extern void mmput_async(struct mm_struct *); 2751 2752 /* Grab a reference to a task's mm, if it is not already going away */ 2753 extern struct mm_struct *get_task_mm(struct task_struct *task); 2754 /* 2755 * Grab a reference to a task's mm, if it is not already going away 2756 * and ptrace_may_access with the mode parameter passed to it 2757 * succeeds. 2758 */ 2759 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2760 /* Remove the current tasks stale references to the old mm_struct */ 2761 extern void mm_release(struct task_struct *, struct mm_struct *); 2762 2763 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2764 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2765 struct task_struct *, unsigned long); 2766 #else 2767 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2768 struct task_struct *); 2769 2770 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2771 * via pt_regs, so ignore the tls argument passed via C. */ 2772 static inline int copy_thread_tls( 2773 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2774 struct task_struct *p, unsigned long tls) 2775 { 2776 return copy_thread(clone_flags, sp, arg, p); 2777 } 2778 #endif 2779 extern void flush_thread(void); 2780 2781 #ifdef CONFIG_HAVE_EXIT_THREAD 2782 extern void exit_thread(struct task_struct *tsk); 2783 #else 2784 static inline void exit_thread(struct task_struct *tsk) 2785 { 2786 } 2787 #endif 2788 2789 extern void exit_files(struct task_struct *); 2790 extern void __cleanup_sighand(struct sighand_struct *); 2791 2792 extern void exit_itimers(struct signal_struct *); 2793 extern void flush_itimer_signals(void); 2794 2795 extern void do_group_exit(int); 2796 2797 extern int do_execve(struct filename *, 2798 const char __user * const __user *, 2799 const char __user * const __user *); 2800 extern int do_execveat(int, struct filename *, 2801 const char __user * const __user *, 2802 const char __user * const __user *, 2803 int); 2804 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2805 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2806 struct task_struct *fork_idle(int); 2807 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2808 2809 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2810 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2811 { 2812 __set_task_comm(tsk, from, false); 2813 } 2814 extern char *get_task_comm(char *to, struct task_struct *tsk); 2815 2816 #ifdef CONFIG_SMP 2817 void scheduler_ipi(void); 2818 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2819 #else 2820 static inline void scheduler_ipi(void) { } 2821 static inline unsigned long wait_task_inactive(struct task_struct *p, 2822 long match_state) 2823 { 2824 return 1; 2825 } 2826 #endif 2827 2828 #define tasklist_empty() \ 2829 list_empty(&init_task.tasks) 2830 2831 #define next_task(p) \ 2832 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2833 2834 #define for_each_process(p) \ 2835 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2836 2837 extern bool current_is_single_threaded(void); 2838 2839 /* 2840 * Careful: do_each_thread/while_each_thread is a double loop so 2841 * 'break' will not work as expected - use goto instead. 2842 */ 2843 #define do_each_thread(g, t) \ 2844 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2845 2846 #define while_each_thread(g, t) \ 2847 while ((t = next_thread(t)) != g) 2848 2849 #define __for_each_thread(signal, t) \ 2850 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2851 2852 #define for_each_thread(p, t) \ 2853 __for_each_thread((p)->signal, t) 2854 2855 /* Careful: this is a double loop, 'break' won't work as expected. */ 2856 #define for_each_process_thread(p, t) \ 2857 for_each_process(p) for_each_thread(p, t) 2858 2859 static inline int get_nr_threads(struct task_struct *tsk) 2860 { 2861 return tsk->signal->nr_threads; 2862 } 2863 2864 static inline bool thread_group_leader(struct task_struct *p) 2865 { 2866 return p->exit_signal >= 0; 2867 } 2868 2869 /* Do to the insanities of de_thread it is possible for a process 2870 * to have the pid of the thread group leader without actually being 2871 * the thread group leader. For iteration through the pids in proc 2872 * all we care about is that we have a task with the appropriate 2873 * pid, we don't actually care if we have the right task. 2874 */ 2875 static inline bool has_group_leader_pid(struct task_struct *p) 2876 { 2877 return task_pid(p) == p->signal->leader_pid; 2878 } 2879 2880 static inline 2881 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2882 { 2883 return p1->signal == p2->signal; 2884 } 2885 2886 static inline struct task_struct *next_thread(const struct task_struct *p) 2887 { 2888 return list_entry_rcu(p->thread_group.next, 2889 struct task_struct, thread_group); 2890 } 2891 2892 static inline int thread_group_empty(struct task_struct *p) 2893 { 2894 return list_empty(&p->thread_group); 2895 } 2896 2897 #define delay_group_leader(p) \ 2898 (thread_group_leader(p) && !thread_group_empty(p)) 2899 2900 /* 2901 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2902 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2903 * pins the final release of task.io_context. Also protects ->cpuset and 2904 * ->cgroup.subsys[]. And ->vfork_done. 2905 * 2906 * Nests both inside and outside of read_lock(&tasklist_lock). 2907 * It must not be nested with write_lock_irq(&tasklist_lock), 2908 * neither inside nor outside. 2909 */ 2910 static inline void task_lock(struct task_struct *p) 2911 { 2912 spin_lock(&p->alloc_lock); 2913 } 2914 2915 static inline void task_unlock(struct task_struct *p) 2916 { 2917 spin_unlock(&p->alloc_lock); 2918 } 2919 2920 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2921 unsigned long *flags); 2922 2923 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2924 unsigned long *flags) 2925 { 2926 struct sighand_struct *ret; 2927 2928 ret = __lock_task_sighand(tsk, flags); 2929 (void)__cond_lock(&tsk->sighand->siglock, ret); 2930 return ret; 2931 } 2932 2933 static inline void unlock_task_sighand(struct task_struct *tsk, 2934 unsigned long *flags) 2935 { 2936 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2937 } 2938 2939 /** 2940 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 2941 * @tsk: task causing the changes 2942 * 2943 * All operations which modify a threadgroup - a new thread joining the 2944 * group, death of a member thread (the assertion of PF_EXITING) and 2945 * exec(2) dethreading the process and replacing the leader - are wrapped 2946 * by threadgroup_change_{begin|end}(). This is to provide a place which 2947 * subsystems needing threadgroup stability can hook into for 2948 * synchronization. 2949 */ 2950 static inline void threadgroup_change_begin(struct task_struct *tsk) 2951 { 2952 might_sleep(); 2953 cgroup_threadgroup_change_begin(tsk); 2954 } 2955 2956 /** 2957 * threadgroup_change_end - mark the end of changes to a threadgroup 2958 * @tsk: task causing the changes 2959 * 2960 * See threadgroup_change_begin(). 2961 */ 2962 static inline void threadgroup_change_end(struct task_struct *tsk) 2963 { 2964 cgroup_threadgroup_change_end(tsk); 2965 } 2966 2967 #ifndef __HAVE_THREAD_FUNCTIONS 2968 2969 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2970 #define task_stack_page(task) ((task)->stack) 2971 2972 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2973 { 2974 *task_thread_info(p) = *task_thread_info(org); 2975 task_thread_info(p)->task = p; 2976 } 2977 2978 /* 2979 * Return the address of the last usable long on the stack. 2980 * 2981 * When the stack grows down, this is just above the thread 2982 * info struct. Going any lower will corrupt the threadinfo. 2983 * 2984 * When the stack grows up, this is the highest address. 2985 * Beyond that position, we corrupt data on the next page. 2986 */ 2987 static inline unsigned long *end_of_stack(struct task_struct *p) 2988 { 2989 #ifdef CONFIG_STACK_GROWSUP 2990 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2991 #else 2992 return (unsigned long *)(task_thread_info(p) + 1); 2993 #endif 2994 } 2995 2996 #endif 2997 #define task_stack_end_corrupted(task) \ 2998 (*(end_of_stack(task)) != STACK_END_MAGIC) 2999 3000 static inline int object_is_on_stack(void *obj) 3001 { 3002 void *stack = task_stack_page(current); 3003 3004 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 3005 } 3006 3007 extern void thread_info_cache_init(void); 3008 3009 #ifdef CONFIG_DEBUG_STACK_USAGE 3010 static inline unsigned long stack_not_used(struct task_struct *p) 3011 { 3012 unsigned long *n = end_of_stack(p); 3013 3014 do { /* Skip over canary */ 3015 # ifdef CONFIG_STACK_GROWSUP 3016 n--; 3017 # else 3018 n++; 3019 # endif 3020 } while (!*n); 3021 3022 # ifdef CONFIG_STACK_GROWSUP 3023 return (unsigned long)end_of_stack(p) - (unsigned long)n; 3024 # else 3025 return (unsigned long)n - (unsigned long)end_of_stack(p); 3026 # endif 3027 } 3028 #endif 3029 extern void set_task_stack_end_magic(struct task_struct *tsk); 3030 3031 /* set thread flags in other task's structures 3032 * - see asm/thread_info.h for TIF_xxxx flags available 3033 */ 3034 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 3035 { 3036 set_ti_thread_flag(task_thread_info(tsk), flag); 3037 } 3038 3039 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3040 { 3041 clear_ti_thread_flag(task_thread_info(tsk), flag); 3042 } 3043 3044 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 3045 { 3046 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 3047 } 3048 3049 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3050 { 3051 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 3052 } 3053 3054 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 3055 { 3056 return test_ti_thread_flag(task_thread_info(tsk), flag); 3057 } 3058 3059 static inline void set_tsk_need_resched(struct task_struct *tsk) 3060 { 3061 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3062 } 3063 3064 static inline void clear_tsk_need_resched(struct task_struct *tsk) 3065 { 3066 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3067 } 3068 3069 static inline int test_tsk_need_resched(struct task_struct *tsk) 3070 { 3071 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 3072 } 3073 3074 static inline int restart_syscall(void) 3075 { 3076 set_tsk_thread_flag(current, TIF_SIGPENDING); 3077 return -ERESTARTNOINTR; 3078 } 3079 3080 static inline int signal_pending(struct task_struct *p) 3081 { 3082 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 3083 } 3084 3085 static inline int __fatal_signal_pending(struct task_struct *p) 3086 { 3087 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 3088 } 3089 3090 static inline int fatal_signal_pending(struct task_struct *p) 3091 { 3092 return signal_pending(p) && __fatal_signal_pending(p); 3093 } 3094 3095 static inline int signal_pending_state(long state, struct task_struct *p) 3096 { 3097 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 3098 return 0; 3099 if (!signal_pending(p)) 3100 return 0; 3101 3102 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 3103 } 3104 3105 /* 3106 * cond_resched() and cond_resched_lock(): latency reduction via 3107 * explicit rescheduling in places that are safe. The return 3108 * value indicates whether a reschedule was done in fact. 3109 * cond_resched_lock() will drop the spinlock before scheduling, 3110 * cond_resched_softirq() will enable bhs before scheduling. 3111 */ 3112 extern int _cond_resched(void); 3113 3114 #define cond_resched() ({ \ 3115 ___might_sleep(__FILE__, __LINE__, 0); \ 3116 _cond_resched(); \ 3117 }) 3118 3119 extern int __cond_resched_lock(spinlock_t *lock); 3120 3121 #define cond_resched_lock(lock) ({ \ 3122 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 3123 __cond_resched_lock(lock); \ 3124 }) 3125 3126 extern int __cond_resched_softirq(void); 3127 3128 #define cond_resched_softirq() ({ \ 3129 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 3130 __cond_resched_softirq(); \ 3131 }) 3132 3133 static inline void cond_resched_rcu(void) 3134 { 3135 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 3136 rcu_read_unlock(); 3137 cond_resched(); 3138 rcu_read_lock(); 3139 #endif 3140 } 3141 3142 /* 3143 * Does a critical section need to be broken due to another 3144 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 3145 * but a general need for low latency) 3146 */ 3147 static inline int spin_needbreak(spinlock_t *lock) 3148 { 3149 #ifdef CONFIG_PREEMPT 3150 return spin_is_contended(lock); 3151 #else 3152 return 0; 3153 #endif 3154 } 3155 3156 /* 3157 * Idle thread specific functions to determine the need_resched 3158 * polling state. 3159 */ 3160 #ifdef TIF_POLLING_NRFLAG 3161 static inline int tsk_is_polling(struct task_struct *p) 3162 { 3163 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 3164 } 3165 3166 static inline void __current_set_polling(void) 3167 { 3168 set_thread_flag(TIF_POLLING_NRFLAG); 3169 } 3170 3171 static inline bool __must_check current_set_polling_and_test(void) 3172 { 3173 __current_set_polling(); 3174 3175 /* 3176 * Polling state must be visible before we test NEED_RESCHED, 3177 * paired by resched_curr() 3178 */ 3179 smp_mb__after_atomic(); 3180 3181 return unlikely(tif_need_resched()); 3182 } 3183 3184 static inline void __current_clr_polling(void) 3185 { 3186 clear_thread_flag(TIF_POLLING_NRFLAG); 3187 } 3188 3189 static inline bool __must_check current_clr_polling_and_test(void) 3190 { 3191 __current_clr_polling(); 3192 3193 /* 3194 * Polling state must be visible before we test NEED_RESCHED, 3195 * paired by resched_curr() 3196 */ 3197 smp_mb__after_atomic(); 3198 3199 return unlikely(tif_need_resched()); 3200 } 3201 3202 #else 3203 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3204 static inline void __current_set_polling(void) { } 3205 static inline void __current_clr_polling(void) { } 3206 3207 static inline bool __must_check current_set_polling_and_test(void) 3208 { 3209 return unlikely(tif_need_resched()); 3210 } 3211 static inline bool __must_check current_clr_polling_and_test(void) 3212 { 3213 return unlikely(tif_need_resched()); 3214 } 3215 #endif 3216 3217 static inline void current_clr_polling(void) 3218 { 3219 __current_clr_polling(); 3220 3221 /* 3222 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3223 * Once the bit is cleared, we'll get IPIs with every new 3224 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3225 * fold. 3226 */ 3227 smp_mb(); /* paired with resched_curr() */ 3228 3229 preempt_fold_need_resched(); 3230 } 3231 3232 static __always_inline bool need_resched(void) 3233 { 3234 return unlikely(tif_need_resched()); 3235 } 3236 3237 /* 3238 * Thread group CPU time accounting. 3239 */ 3240 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3241 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3242 3243 /* 3244 * Reevaluate whether the task has signals pending delivery. 3245 * Wake the task if so. 3246 * This is required every time the blocked sigset_t changes. 3247 * callers must hold sighand->siglock. 3248 */ 3249 extern void recalc_sigpending_and_wake(struct task_struct *t); 3250 extern void recalc_sigpending(void); 3251 3252 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3253 3254 static inline void signal_wake_up(struct task_struct *t, bool resume) 3255 { 3256 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3257 } 3258 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3259 { 3260 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3261 } 3262 3263 /* 3264 * Wrappers for p->thread_info->cpu access. No-op on UP. 3265 */ 3266 #ifdef CONFIG_SMP 3267 3268 static inline unsigned int task_cpu(const struct task_struct *p) 3269 { 3270 return task_thread_info(p)->cpu; 3271 } 3272 3273 static inline int task_node(const struct task_struct *p) 3274 { 3275 return cpu_to_node(task_cpu(p)); 3276 } 3277 3278 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3279 3280 #else 3281 3282 static inline unsigned int task_cpu(const struct task_struct *p) 3283 { 3284 return 0; 3285 } 3286 3287 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3288 { 3289 } 3290 3291 #endif /* CONFIG_SMP */ 3292 3293 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3294 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3295 3296 #ifdef CONFIG_CGROUP_SCHED 3297 extern struct task_group root_task_group; 3298 #endif /* CONFIG_CGROUP_SCHED */ 3299 3300 extern int task_can_switch_user(struct user_struct *up, 3301 struct task_struct *tsk); 3302 3303 #ifdef CONFIG_TASK_XACCT 3304 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3305 { 3306 tsk->ioac.rchar += amt; 3307 } 3308 3309 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3310 { 3311 tsk->ioac.wchar += amt; 3312 } 3313 3314 static inline void inc_syscr(struct task_struct *tsk) 3315 { 3316 tsk->ioac.syscr++; 3317 } 3318 3319 static inline void inc_syscw(struct task_struct *tsk) 3320 { 3321 tsk->ioac.syscw++; 3322 } 3323 #else 3324 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3325 { 3326 } 3327 3328 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3329 { 3330 } 3331 3332 static inline void inc_syscr(struct task_struct *tsk) 3333 { 3334 } 3335 3336 static inline void inc_syscw(struct task_struct *tsk) 3337 { 3338 } 3339 #endif 3340 3341 #ifndef TASK_SIZE_OF 3342 #define TASK_SIZE_OF(tsk) TASK_SIZE 3343 #endif 3344 3345 #ifdef CONFIG_MEMCG 3346 extern void mm_update_next_owner(struct mm_struct *mm); 3347 #else 3348 static inline void mm_update_next_owner(struct mm_struct *mm) 3349 { 3350 } 3351 #endif /* CONFIG_MEMCG */ 3352 3353 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3354 unsigned int limit) 3355 { 3356 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3357 } 3358 3359 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3360 unsigned int limit) 3361 { 3362 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3363 } 3364 3365 static inline unsigned long rlimit(unsigned int limit) 3366 { 3367 return task_rlimit(current, limit); 3368 } 3369 3370 static inline unsigned long rlimit_max(unsigned int limit) 3371 { 3372 return task_rlimit_max(current, limit); 3373 } 3374 3375 #ifdef CONFIG_CPU_FREQ 3376 struct update_util_data { 3377 void (*func)(struct update_util_data *data, 3378 u64 time, unsigned long util, unsigned long max); 3379 }; 3380 3381 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data, 3382 void (*func)(struct update_util_data *data, u64 time, 3383 unsigned long util, unsigned long max)); 3384 void cpufreq_remove_update_util_hook(int cpu); 3385 #endif /* CONFIG_CPU_FREQ */ 3386 3387 #endif 3388