xref: /linux-6.15/include/linux/sched.h (revision beda0e72)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/signal_types.h>
29 #include <linux/psi_types.h>
30 #include <linux/mm_types_task.h>
31 #include <linux/task_io_accounting.h>
32 #include <linux/rseq.h>
33 
34 /* task_struct member predeclarations (sorted alphabetically): */
35 struct audit_context;
36 struct backing_dev_info;
37 struct bio_list;
38 struct blk_plug;
39 struct cfs_rq;
40 struct fs_struct;
41 struct futex_pi_state;
42 struct io_context;
43 struct mempolicy;
44 struct nameidata;
45 struct nsproxy;
46 struct perf_event_context;
47 struct pid_namespace;
48 struct pipe_inode_info;
49 struct rcu_node;
50 struct reclaim_state;
51 struct robust_list_head;
52 struct sched_attr;
53 struct sched_param;
54 struct seq_file;
55 struct sighand_struct;
56 struct signal_struct;
57 struct task_delay_info;
58 struct task_group;
59 
60 /*
61  * Task state bitmask. NOTE! These bits are also
62  * encoded in fs/proc/array.c: get_task_state().
63  *
64  * We have two separate sets of flags: task->state
65  * is about runnability, while task->exit_state are
66  * about the task exiting. Confusing, but this way
67  * modifying one set can't modify the other one by
68  * mistake.
69  */
70 
71 /* Used in tsk->state: */
72 #define TASK_RUNNING			0x0000
73 #define TASK_INTERRUPTIBLE		0x0001
74 #define TASK_UNINTERRUPTIBLE		0x0002
75 #define __TASK_STOPPED			0x0004
76 #define __TASK_TRACED			0x0008
77 /* Used in tsk->exit_state: */
78 #define EXIT_DEAD			0x0010
79 #define EXIT_ZOMBIE			0x0020
80 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
81 /* Used in tsk->state again: */
82 #define TASK_PARKED			0x0040
83 #define TASK_DEAD			0x0080
84 #define TASK_WAKEKILL			0x0100
85 #define TASK_WAKING			0x0200
86 #define TASK_NOLOAD			0x0400
87 #define TASK_NEW			0x0800
88 #define TASK_STATE_MAX			0x1000
89 
90 /* Convenience macros for the sake of set_current_state: */
91 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
92 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
93 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
94 
95 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
96 
97 /* Convenience macros for the sake of wake_up(): */
98 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
99 
100 /* get_task_state(): */
101 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
102 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
103 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
104 					 TASK_PARKED)
105 
106 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
107 
108 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
109 
110 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
111 
112 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
113 					 (task->flags & PF_FROZEN) == 0 && \
114 					 (task->state & TASK_NOLOAD) == 0)
115 
116 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
117 
118 /*
119  * Special states are those that do not use the normal wait-loop pattern. See
120  * the comment with set_special_state().
121  */
122 #define is_special_task_state(state)				\
123 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
124 
125 #define __set_current_state(state_value)			\
126 	do {							\
127 		WARN_ON_ONCE(is_special_task_state(state_value));\
128 		current->task_state_change = _THIS_IP_;		\
129 		current->state = (state_value);			\
130 	} while (0)
131 
132 #define set_current_state(state_value)				\
133 	do {							\
134 		WARN_ON_ONCE(is_special_task_state(state_value));\
135 		current->task_state_change = _THIS_IP_;		\
136 		smp_store_mb(current->state, (state_value));	\
137 	} while (0)
138 
139 #define set_special_state(state_value)					\
140 	do {								\
141 		unsigned long flags; /* may shadow */			\
142 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
143 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
144 		current->task_state_change = _THIS_IP_;			\
145 		current->state = (state_value);				\
146 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
147 	} while (0)
148 #else
149 /*
150  * set_current_state() includes a barrier so that the write of current->state
151  * is correctly serialised wrt the caller's subsequent test of whether to
152  * actually sleep:
153  *
154  *   for (;;) {
155  *	set_current_state(TASK_UNINTERRUPTIBLE);
156  *	if (!need_sleep)
157  *		break;
158  *
159  *	schedule();
160  *   }
161  *   __set_current_state(TASK_RUNNING);
162  *
163  * If the caller does not need such serialisation (because, for instance, the
164  * condition test and condition change and wakeup are under the same lock) then
165  * use __set_current_state().
166  *
167  * The above is typically ordered against the wakeup, which does:
168  *
169  *   need_sleep = false;
170  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
171  *
172  * where wake_up_state() executes a full memory barrier before accessing the
173  * task state.
174  *
175  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
176  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
177  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
178  *
179  * However, with slightly different timing the wakeup TASK_RUNNING store can
180  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
181  * a problem either because that will result in one extra go around the loop
182  * and our @cond test will save the day.
183  *
184  * Also see the comments of try_to_wake_up().
185  */
186 #define __set_current_state(state_value)				\
187 	current->state = (state_value)
188 
189 #define set_current_state(state_value)					\
190 	smp_store_mb(current->state, (state_value))
191 
192 /*
193  * set_special_state() should be used for those states when the blocking task
194  * can not use the regular condition based wait-loop. In that case we must
195  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
196  * will not collide with our state change.
197  */
198 #define set_special_state(state_value)					\
199 	do {								\
200 		unsigned long flags; /* may shadow */			\
201 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
202 		current->state = (state_value);				\
203 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
204 	} while (0)
205 
206 #endif
207 
208 /* Task command name length: */
209 #define TASK_COMM_LEN			16
210 
211 extern void scheduler_tick(void);
212 
213 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
214 
215 extern long schedule_timeout(long timeout);
216 extern long schedule_timeout_interruptible(long timeout);
217 extern long schedule_timeout_killable(long timeout);
218 extern long schedule_timeout_uninterruptible(long timeout);
219 extern long schedule_timeout_idle(long timeout);
220 asmlinkage void schedule(void);
221 extern void schedule_preempt_disabled(void);
222 
223 extern int __must_check io_schedule_prepare(void);
224 extern void io_schedule_finish(int token);
225 extern long io_schedule_timeout(long timeout);
226 extern void io_schedule(void);
227 
228 /**
229  * struct prev_cputime - snapshot of system and user cputime
230  * @utime: time spent in user mode
231  * @stime: time spent in system mode
232  * @lock: protects the above two fields
233  *
234  * Stores previous user/system time values such that we can guarantee
235  * monotonicity.
236  */
237 struct prev_cputime {
238 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
239 	u64				utime;
240 	u64				stime;
241 	raw_spinlock_t			lock;
242 #endif
243 };
244 
245 /**
246  * struct task_cputime - collected CPU time counts
247  * @utime:		time spent in user mode, in nanoseconds
248  * @stime:		time spent in kernel mode, in nanoseconds
249  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
250  *
251  * This structure groups together three kinds of CPU time that are tracked for
252  * threads and thread groups.  Most things considering CPU time want to group
253  * these counts together and treat all three of them in parallel.
254  */
255 struct task_cputime {
256 	u64				utime;
257 	u64				stime;
258 	unsigned long long		sum_exec_runtime;
259 };
260 
261 /* Alternate field names when used on cache expirations: */
262 #define virt_exp			utime
263 #define prof_exp			stime
264 #define sched_exp			sum_exec_runtime
265 
266 enum vtime_state {
267 	/* Task is sleeping or running in a CPU with VTIME inactive: */
268 	VTIME_INACTIVE = 0,
269 	/* Task runs in userspace in a CPU with VTIME active: */
270 	VTIME_USER,
271 	/* Task runs in kernelspace in a CPU with VTIME active: */
272 	VTIME_SYS,
273 };
274 
275 struct vtime {
276 	seqcount_t		seqcount;
277 	unsigned long long	starttime;
278 	enum vtime_state	state;
279 	u64			utime;
280 	u64			stime;
281 	u64			gtime;
282 };
283 
284 struct sched_info {
285 #ifdef CONFIG_SCHED_INFO
286 	/* Cumulative counters: */
287 
288 	/* # of times we have run on this CPU: */
289 	unsigned long			pcount;
290 
291 	/* Time spent waiting on a runqueue: */
292 	unsigned long long		run_delay;
293 
294 	/* Timestamps: */
295 
296 	/* When did we last run on a CPU? */
297 	unsigned long long		last_arrival;
298 
299 	/* When were we last queued to run? */
300 	unsigned long long		last_queued;
301 
302 #endif /* CONFIG_SCHED_INFO */
303 };
304 
305 /*
306  * Integer metrics need fixed point arithmetic, e.g., sched/fair
307  * has a few: load, load_avg, util_avg, freq, and capacity.
308  *
309  * We define a basic fixed point arithmetic range, and then formalize
310  * all these metrics based on that basic range.
311  */
312 # define SCHED_FIXEDPOINT_SHIFT		10
313 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
314 
315 struct load_weight {
316 	unsigned long			weight;
317 	u32				inv_weight;
318 };
319 
320 /**
321  * struct util_est - Estimation utilization of FAIR tasks
322  * @enqueued: instantaneous estimated utilization of a task/cpu
323  * @ewma:     the Exponential Weighted Moving Average (EWMA)
324  *            utilization of a task
325  *
326  * Support data structure to track an Exponential Weighted Moving Average
327  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
328  * average each time a task completes an activation. Sample's weight is chosen
329  * so that the EWMA will be relatively insensitive to transient changes to the
330  * task's workload.
331  *
332  * The enqueued attribute has a slightly different meaning for tasks and cpus:
333  * - task:   the task's util_avg at last task dequeue time
334  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
335  * Thus, the util_est.enqueued of a task represents the contribution on the
336  * estimated utilization of the CPU where that task is currently enqueued.
337  *
338  * Only for tasks we track a moving average of the past instantaneous
339  * estimated utilization. This allows to absorb sporadic drops in utilization
340  * of an otherwise almost periodic task.
341  */
342 struct util_est {
343 	unsigned int			enqueued;
344 	unsigned int			ewma;
345 #define UTIL_EST_WEIGHT_SHIFT		2
346 } __attribute__((__aligned__(sizeof(u64))));
347 
348 /*
349  * The load_avg/util_avg accumulates an infinite geometric series
350  * (see __update_load_avg() in kernel/sched/fair.c).
351  *
352  * [load_avg definition]
353  *
354  *   load_avg = runnable% * scale_load_down(load)
355  *
356  * where runnable% is the time ratio that a sched_entity is runnable.
357  * For cfs_rq, it is the aggregated load_avg of all runnable and
358  * blocked sched_entities.
359  *
360  * [util_avg definition]
361  *
362  *   util_avg = running% * SCHED_CAPACITY_SCALE
363  *
364  * where running% is the time ratio that a sched_entity is running on
365  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
366  * and blocked sched_entities.
367  *
368  * load_avg and util_avg don't direcly factor frequency scaling and CPU
369  * capacity scaling. The scaling is done through the rq_clock_pelt that
370  * is used for computing those signals (see update_rq_clock_pelt())
371  *
372  * N.B., the above ratios (runnable% and running%) themselves are in the
373  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
374  * to as large a range as necessary. This is for example reflected by
375  * util_avg's SCHED_CAPACITY_SCALE.
376  *
377  * [Overflow issue]
378  *
379  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
380  * with the highest load (=88761), always runnable on a single cfs_rq,
381  * and should not overflow as the number already hits PID_MAX_LIMIT.
382  *
383  * For all other cases (including 32-bit kernels), struct load_weight's
384  * weight will overflow first before we do, because:
385  *
386  *    Max(load_avg) <= Max(load.weight)
387  *
388  * Then it is the load_weight's responsibility to consider overflow
389  * issues.
390  */
391 struct sched_avg {
392 	u64				last_update_time;
393 	u64				load_sum;
394 	u64				runnable_load_sum;
395 	u32				util_sum;
396 	u32				period_contrib;
397 	unsigned long			load_avg;
398 	unsigned long			runnable_load_avg;
399 	unsigned long			util_avg;
400 	struct util_est			util_est;
401 } ____cacheline_aligned;
402 
403 struct sched_statistics {
404 #ifdef CONFIG_SCHEDSTATS
405 	u64				wait_start;
406 	u64				wait_max;
407 	u64				wait_count;
408 	u64				wait_sum;
409 	u64				iowait_count;
410 	u64				iowait_sum;
411 
412 	u64				sleep_start;
413 	u64				sleep_max;
414 	s64				sum_sleep_runtime;
415 
416 	u64				block_start;
417 	u64				block_max;
418 	u64				exec_max;
419 	u64				slice_max;
420 
421 	u64				nr_migrations_cold;
422 	u64				nr_failed_migrations_affine;
423 	u64				nr_failed_migrations_running;
424 	u64				nr_failed_migrations_hot;
425 	u64				nr_forced_migrations;
426 
427 	u64				nr_wakeups;
428 	u64				nr_wakeups_sync;
429 	u64				nr_wakeups_migrate;
430 	u64				nr_wakeups_local;
431 	u64				nr_wakeups_remote;
432 	u64				nr_wakeups_affine;
433 	u64				nr_wakeups_affine_attempts;
434 	u64				nr_wakeups_passive;
435 	u64				nr_wakeups_idle;
436 #endif
437 };
438 
439 struct sched_entity {
440 	/* For load-balancing: */
441 	struct load_weight		load;
442 	unsigned long			runnable_weight;
443 	struct rb_node			run_node;
444 	struct list_head		group_node;
445 	unsigned int			on_rq;
446 
447 	u64				exec_start;
448 	u64				sum_exec_runtime;
449 	u64				vruntime;
450 	u64				prev_sum_exec_runtime;
451 
452 	u64				nr_migrations;
453 
454 	struct sched_statistics		statistics;
455 
456 #ifdef CONFIG_FAIR_GROUP_SCHED
457 	int				depth;
458 	struct sched_entity		*parent;
459 	/* rq on which this entity is (to be) queued: */
460 	struct cfs_rq			*cfs_rq;
461 	/* rq "owned" by this entity/group: */
462 	struct cfs_rq			*my_q;
463 #endif
464 
465 #ifdef CONFIG_SMP
466 	/*
467 	 * Per entity load average tracking.
468 	 *
469 	 * Put into separate cache line so it does not
470 	 * collide with read-mostly values above.
471 	 */
472 	struct sched_avg		avg;
473 #endif
474 };
475 
476 struct sched_rt_entity {
477 	struct list_head		run_list;
478 	unsigned long			timeout;
479 	unsigned long			watchdog_stamp;
480 	unsigned int			time_slice;
481 	unsigned short			on_rq;
482 	unsigned short			on_list;
483 
484 	struct sched_rt_entity		*back;
485 #ifdef CONFIG_RT_GROUP_SCHED
486 	struct sched_rt_entity		*parent;
487 	/* rq on which this entity is (to be) queued: */
488 	struct rt_rq			*rt_rq;
489 	/* rq "owned" by this entity/group: */
490 	struct rt_rq			*my_q;
491 #endif
492 } __randomize_layout;
493 
494 struct sched_dl_entity {
495 	struct rb_node			rb_node;
496 
497 	/*
498 	 * Original scheduling parameters. Copied here from sched_attr
499 	 * during sched_setattr(), they will remain the same until
500 	 * the next sched_setattr().
501 	 */
502 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
503 	u64				dl_deadline;	/* Relative deadline of each instance	*/
504 	u64				dl_period;	/* Separation of two instances (period) */
505 	u64				dl_bw;		/* dl_runtime / dl_period		*/
506 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
507 
508 	/*
509 	 * Actual scheduling parameters. Initialized with the values above,
510 	 * they are continuously updated during task execution. Note that
511 	 * the remaining runtime could be < 0 in case we are in overrun.
512 	 */
513 	s64				runtime;	/* Remaining runtime for this instance	*/
514 	u64				deadline;	/* Absolute deadline for this instance	*/
515 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
516 
517 	/*
518 	 * Some bool flags:
519 	 *
520 	 * @dl_throttled tells if we exhausted the runtime. If so, the
521 	 * task has to wait for a replenishment to be performed at the
522 	 * next firing of dl_timer.
523 	 *
524 	 * @dl_boosted tells if we are boosted due to DI. If so we are
525 	 * outside bandwidth enforcement mechanism (but only until we
526 	 * exit the critical section);
527 	 *
528 	 * @dl_yielded tells if task gave up the CPU before consuming
529 	 * all its available runtime during the last job.
530 	 *
531 	 * @dl_non_contending tells if the task is inactive while still
532 	 * contributing to the active utilization. In other words, it
533 	 * indicates if the inactive timer has been armed and its handler
534 	 * has not been executed yet. This flag is useful to avoid race
535 	 * conditions between the inactive timer handler and the wakeup
536 	 * code.
537 	 *
538 	 * @dl_overrun tells if the task asked to be informed about runtime
539 	 * overruns.
540 	 */
541 	unsigned int			dl_throttled      : 1;
542 	unsigned int			dl_boosted        : 1;
543 	unsigned int			dl_yielded        : 1;
544 	unsigned int			dl_non_contending : 1;
545 	unsigned int			dl_overrun	  : 1;
546 
547 	/*
548 	 * Bandwidth enforcement timer. Each -deadline task has its
549 	 * own bandwidth to be enforced, thus we need one timer per task.
550 	 */
551 	struct hrtimer			dl_timer;
552 
553 	/*
554 	 * Inactive timer, responsible for decreasing the active utilization
555 	 * at the "0-lag time". When a -deadline task blocks, it contributes
556 	 * to GRUB's active utilization until the "0-lag time", hence a
557 	 * timer is needed to decrease the active utilization at the correct
558 	 * time.
559 	 */
560 	struct hrtimer inactive_timer;
561 };
562 
563 union rcu_special {
564 	struct {
565 		u8			blocked;
566 		u8			need_qs;
567 		u8			exp_hint; /* Hint for performance. */
568 		u8			pad; /* No garbage from compiler! */
569 	} b; /* Bits. */
570 	u32 s; /* Set of bits. */
571 };
572 
573 enum perf_event_task_context {
574 	perf_invalid_context = -1,
575 	perf_hw_context = 0,
576 	perf_sw_context,
577 	perf_nr_task_contexts,
578 };
579 
580 struct wake_q_node {
581 	struct wake_q_node *next;
582 };
583 
584 struct task_struct {
585 #ifdef CONFIG_THREAD_INFO_IN_TASK
586 	/*
587 	 * For reasons of header soup (see current_thread_info()), this
588 	 * must be the first element of task_struct.
589 	 */
590 	struct thread_info		thread_info;
591 #endif
592 	/* -1 unrunnable, 0 runnable, >0 stopped: */
593 	volatile long			state;
594 
595 	/*
596 	 * This begins the randomizable portion of task_struct. Only
597 	 * scheduling-critical items should be added above here.
598 	 */
599 	randomized_struct_fields_start
600 
601 	void				*stack;
602 	refcount_t			usage;
603 	/* Per task flags (PF_*), defined further below: */
604 	unsigned int			flags;
605 	unsigned int			ptrace;
606 
607 #ifdef CONFIG_SMP
608 	struct llist_node		wake_entry;
609 	int				on_cpu;
610 #ifdef CONFIG_THREAD_INFO_IN_TASK
611 	/* Current CPU: */
612 	unsigned int			cpu;
613 #endif
614 	unsigned int			wakee_flips;
615 	unsigned long			wakee_flip_decay_ts;
616 	struct task_struct		*last_wakee;
617 
618 	/*
619 	 * recent_used_cpu is initially set as the last CPU used by a task
620 	 * that wakes affine another task. Waker/wakee relationships can
621 	 * push tasks around a CPU where each wakeup moves to the next one.
622 	 * Tracking a recently used CPU allows a quick search for a recently
623 	 * used CPU that may be idle.
624 	 */
625 	int				recent_used_cpu;
626 	int				wake_cpu;
627 #endif
628 	int				on_rq;
629 
630 	int				prio;
631 	int				static_prio;
632 	int				normal_prio;
633 	unsigned int			rt_priority;
634 
635 	const struct sched_class	*sched_class;
636 	struct sched_entity		se;
637 	struct sched_rt_entity		rt;
638 #ifdef CONFIG_CGROUP_SCHED
639 	struct task_group		*sched_task_group;
640 #endif
641 	struct sched_dl_entity		dl;
642 
643 #ifdef CONFIG_PREEMPT_NOTIFIERS
644 	/* List of struct preempt_notifier: */
645 	struct hlist_head		preempt_notifiers;
646 #endif
647 
648 #ifdef CONFIG_BLK_DEV_IO_TRACE
649 	unsigned int			btrace_seq;
650 #endif
651 
652 	unsigned int			policy;
653 	int				nr_cpus_allowed;
654 	cpumask_t			cpus_allowed;
655 
656 #ifdef CONFIG_PREEMPT_RCU
657 	int				rcu_read_lock_nesting;
658 	union rcu_special		rcu_read_unlock_special;
659 	struct list_head		rcu_node_entry;
660 	struct rcu_node			*rcu_blocked_node;
661 #endif /* #ifdef CONFIG_PREEMPT_RCU */
662 
663 #ifdef CONFIG_TASKS_RCU
664 	unsigned long			rcu_tasks_nvcsw;
665 	u8				rcu_tasks_holdout;
666 	u8				rcu_tasks_idx;
667 	int				rcu_tasks_idle_cpu;
668 	struct list_head		rcu_tasks_holdout_list;
669 #endif /* #ifdef CONFIG_TASKS_RCU */
670 
671 	struct sched_info		sched_info;
672 
673 	struct list_head		tasks;
674 #ifdef CONFIG_SMP
675 	struct plist_node		pushable_tasks;
676 	struct rb_node			pushable_dl_tasks;
677 #endif
678 
679 	struct mm_struct		*mm;
680 	struct mm_struct		*active_mm;
681 
682 	/* Per-thread vma caching: */
683 	struct vmacache			vmacache;
684 
685 #ifdef SPLIT_RSS_COUNTING
686 	struct task_rss_stat		rss_stat;
687 #endif
688 	int				exit_state;
689 	int				exit_code;
690 	int				exit_signal;
691 	/* The signal sent when the parent dies: */
692 	int				pdeath_signal;
693 	/* JOBCTL_*, siglock protected: */
694 	unsigned long			jobctl;
695 
696 	/* Used for emulating ABI behavior of previous Linux versions: */
697 	unsigned int			personality;
698 
699 	/* Scheduler bits, serialized by scheduler locks: */
700 	unsigned			sched_reset_on_fork:1;
701 	unsigned			sched_contributes_to_load:1;
702 	unsigned			sched_migrated:1;
703 	unsigned			sched_remote_wakeup:1;
704 #ifdef CONFIG_PSI
705 	unsigned			sched_psi_wake_requeue:1;
706 #endif
707 
708 	/* Force alignment to the next boundary: */
709 	unsigned			:0;
710 
711 	/* Unserialized, strictly 'current' */
712 
713 	/* Bit to tell LSMs we're in execve(): */
714 	unsigned			in_execve:1;
715 	unsigned			in_iowait:1;
716 #ifndef TIF_RESTORE_SIGMASK
717 	unsigned			restore_sigmask:1;
718 #endif
719 #ifdef CONFIG_MEMCG
720 	unsigned			in_user_fault:1;
721 #endif
722 #ifdef CONFIG_COMPAT_BRK
723 	unsigned			brk_randomized:1;
724 #endif
725 #ifdef CONFIG_CGROUPS
726 	/* disallow userland-initiated cgroup migration */
727 	unsigned			no_cgroup_migration:1;
728 #endif
729 #ifdef CONFIG_BLK_CGROUP
730 	/* to be used once the psi infrastructure lands upstream. */
731 	unsigned			use_memdelay:1;
732 #endif
733 
734 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
735 
736 	struct restart_block		restart_block;
737 
738 	pid_t				pid;
739 	pid_t				tgid;
740 
741 #ifdef CONFIG_STACKPROTECTOR
742 	/* Canary value for the -fstack-protector GCC feature: */
743 	unsigned long			stack_canary;
744 #endif
745 	/*
746 	 * Pointers to the (original) parent process, youngest child, younger sibling,
747 	 * older sibling, respectively.  (p->father can be replaced with
748 	 * p->real_parent->pid)
749 	 */
750 
751 	/* Real parent process: */
752 	struct task_struct __rcu	*real_parent;
753 
754 	/* Recipient of SIGCHLD, wait4() reports: */
755 	struct task_struct __rcu	*parent;
756 
757 	/*
758 	 * Children/sibling form the list of natural children:
759 	 */
760 	struct list_head		children;
761 	struct list_head		sibling;
762 	struct task_struct		*group_leader;
763 
764 	/*
765 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
766 	 *
767 	 * This includes both natural children and PTRACE_ATTACH targets.
768 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
769 	 */
770 	struct list_head		ptraced;
771 	struct list_head		ptrace_entry;
772 
773 	/* PID/PID hash table linkage. */
774 	struct pid			*thread_pid;
775 	struct hlist_node		pid_links[PIDTYPE_MAX];
776 	struct list_head		thread_group;
777 	struct list_head		thread_node;
778 
779 	struct completion		*vfork_done;
780 
781 	/* CLONE_CHILD_SETTID: */
782 	int __user			*set_child_tid;
783 
784 	/* CLONE_CHILD_CLEARTID: */
785 	int __user			*clear_child_tid;
786 
787 	u64				utime;
788 	u64				stime;
789 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
790 	u64				utimescaled;
791 	u64				stimescaled;
792 #endif
793 	u64				gtime;
794 	struct prev_cputime		prev_cputime;
795 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
796 	struct vtime			vtime;
797 #endif
798 
799 #ifdef CONFIG_NO_HZ_FULL
800 	atomic_t			tick_dep_mask;
801 #endif
802 	/* Context switch counts: */
803 	unsigned long			nvcsw;
804 	unsigned long			nivcsw;
805 
806 	/* Monotonic time in nsecs: */
807 	u64				start_time;
808 
809 	/* Boot based time in nsecs: */
810 	u64				real_start_time;
811 
812 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
813 	unsigned long			min_flt;
814 	unsigned long			maj_flt;
815 
816 #ifdef CONFIG_POSIX_TIMERS
817 	struct task_cputime		cputime_expires;
818 	struct list_head		cpu_timers[3];
819 #endif
820 
821 	/* Process credentials: */
822 
823 	/* Tracer's credentials at attach: */
824 	const struct cred __rcu		*ptracer_cred;
825 
826 	/* Objective and real subjective task credentials (COW): */
827 	const struct cred __rcu		*real_cred;
828 
829 	/* Effective (overridable) subjective task credentials (COW): */
830 	const struct cred __rcu		*cred;
831 
832 	/*
833 	 * executable name, excluding path.
834 	 *
835 	 * - normally initialized setup_new_exec()
836 	 * - access it with [gs]et_task_comm()
837 	 * - lock it with task_lock()
838 	 */
839 	char				comm[TASK_COMM_LEN];
840 
841 	struct nameidata		*nameidata;
842 
843 #ifdef CONFIG_SYSVIPC
844 	struct sysv_sem			sysvsem;
845 	struct sysv_shm			sysvshm;
846 #endif
847 #ifdef CONFIG_DETECT_HUNG_TASK
848 	unsigned long			last_switch_count;
849 	unsigned long			last_switch_time;
850 #endif
851 	/* Filesystem information: */
852 	struct fs_struct		*fs;
853 
854 	/* Open file information: */
855 	struct files_struct		*files;
856 
857 	/* Namespaces: */
858 	struct nsproxy			*nsproxy;
859 
860 	/* Signal handlers: */
861 	struct signal_struct		*signal;
862 	struct sighand_struct		*sighand;
863 	sigset_t			blocked;
864 	sigset_t			real_blocked;
865 	/* Restored if set_restore_sigmask() was used: */
866 	sigset_t			saved_sigmask;
867 	struct sigpending		pending;
868 	unsigned long			sas_ss_sp;
869 	size_t				sas_ss_size;
870 	unsigned int			sas_ss_flags;
871 
872 	struct callback_head		*task_works;
873 
874 	struct audit_context		*audit_context;
875 #ifdef CONFIG_AUDITSYSCALL
876 	kuid_t				loginuid;
877 	unsigned int			sessionid;
878 #endif
879 	struct seccomp			seccomp;
880 
881 	/* Thread group tracking: */
882 	u32				parent_exec_id;
883 	u32				self_exec_id;
884 
885 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
886 	spinlock_t			alloc_lock;
887 
888 	/* Protection of the PI data structures: */
889 	raw_spinlock_t			pi_lock;
890 
891 	struct wake_q_node		wake_q;
892 
893 #ifdef CONFIG_RT_MUTEXES
894 	/* PI waiters blocked on a rt_mutex held by this task: */
895 	struct rb_root_cached		pi_waiters;
896 	/* Updated under owner's pi_lock and rq lock */
897 	struct task_struct		*pi_top_task;
898 	/* Deadlock detection and priority inheritance handling: */
899 	struct rt_mutex_waiter		*pi_blocked_on;
900 #endif
901 
902 #ifdef CONFIG_DEBUG_MUTEXES
903 	/* Mutex deadlock detection: */
904 	struct mutex_waiter		*blocked_on;
905 #endif
906 
907 #ifdef CONFIG_TRACE_IRQFLAGS
908 	unsigned int			irq_events;
909 	unsigned long			hardirq_enable_ip;
910 	unsigned long			hardirq_disable_ip;
911 	unsigned int			hardirq_enable_event;
912 	unsigned int			hardirq_disable_event;
913 	int				hardirqs_enabled;
914 	int				hardirq_context;
915 	unsigned long			softirq_disable_ip;
916 	unsigned long			softirq_enable_ip;
917 	unsigned int			softirq_disable_event;
918 	unsigned int			softirq_enable_event;
919 	int				softirqs_enabled;
920 	int				softirq_context;
921 #endif
922 
923 #ifdef CONFIG_LOCKDEP
924 # define MAX_LOCK_DEPTH			48UL
925 	u64				curr_chain_key;
926 	int				lockdep_depth;
927 	unsigned int			lockdep_recursion;
928 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
929 #endif
930 
931 #ifdef CONFIG_UBSAN
932 	unsigned int			in_ubsan;
933 #endif
934 
935 	/* Journalling filesystem info: */
936 	void				*journal_info;
937 
938 	/* Stacked block device info: */
939 	struct bio_list			*bio_list;
940 
941 #ifdef CONFIG_BLOCK
942 	/* Stack plugging: */
943 	struct blk_plug			*plug;
944 #endif
945 
946 	/* VM state: */
947 	struct reclaim_state		*reclaim_state;
948 
949 	struct backing_dev_info		*backing_dev_info;
950 
951 	struct io_context		*io_context;
952 
953 	/* Ptrace state: */
954 	unsigned long			ptrace_message;
955 	kernel_siginfo_t		*last_siginfo;
956 
957 	struct task_io_accounting	ioac;
958 #ifdef CONFIG_PSI
959 	/* Pressure stall state */
960 	unsigned int			psi_flags;
961 #endif
962 #ifdef CONFIG_TASK_XACCT
963 	/* Accumulated RSS usage: */
964 	u64				acct_rss_mem1;
965 	/* Accumulated virtual memory usage: */
966 	u64				acct_vm_mem1;
967 	/* stime + utime since last update: */
968 	u64				acct_timexpd;
969 #endif
970 #ifdef CONFIG_CPUSETS
971 	/* Protected by ->alloc_lock: */
972 	nodemask_t			mems_allowed;
973 	/* Seqence number to catch updates: */
974 	seqcount_t			mems_allowed_seq;
975 	int				cpuset_mem_spread_rotor;
976 	int				cpuset_slab_spread_rotor;
977 #endif
978 #ifdef CONFIG_CGROUPS
979 	/* Control Group info protected by css_set_lock: */
980 	struct css_set __rcu		*cgroups;
981 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
982 	struct list_head		cg_list;
983 #endif
984 #ifdef CONFIG_X86_CPU_RESCTRL
985 	u32				closid;
986 	u32				rmid;
987 #endif
988 #ifdef CONFIG_FUTEX
989 	struct robust_list_head __user	*robust_list;
990 #ifdef CONFIG_COMPAT
991 	struct compat_robust_list_head __user *compat_robust_list;
992 #endif
993 	struct list_head		pi_state_list;
994 	struct futex_pi_state		*pi_state_cache;
995 #endif
996 #ifdef CONFIG_PERF_EVENTS
997 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
998 	struct mutex			perf_event_mutex;
999 	struct list_head		perf_event_list;
1000 #endif
1001 #ifdef CONFIG_DEBUG_PREEMPT
1002 	unsigned long			preempt_disable_ip;
1003 #endif
1004 #ifdef CONFIG_NUMA
1005 	/* Protected by alloc_lock: */
1006 	struct mempolicy		*mempolicy;
1007 	short				il_prev;
1008 	short				pref_node_fork;
1009 #endif
1010 #ifdef CONFIG_NUMA_BALANCING
1011 	int				numa_scan_seq;
1012 	unsigned int			numa_scan_period;
1013 	unsigned int			numa_scan_period_max;
1014 	int				numa_preferred_nid;
1015 	unsigned long			numa_migrate_retry;
1016 	/* Migration stamp: */
1017 	u64				node_stamp;
1018 	u64				last_task_numa_placement;
1019 	u64				last_sum_exec_runtime;
1020 	struct callback_head		numa_work;
1021 
1022 	struct numa_group		*numa_group;
1023 
1024 	/*
1025 	 * numa_faults is an array split into four regions:
1026 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1027 	 * in this precise order.
1028 	 *
1029 	 * faults_memory: Exponential decaying average of faults on a per-node
1030 	 * basis. Scheduling placement decisions are made based on these
1031 	 * counts. The values remain static for the duration of a PTE scan.
1032 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1033 	 * hinting fault was incurred.
1034 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1035 	 * during the current scan window. When the scan completes, the counts
1036 	 * in faults_memory and faults_cpu decay and these values are copied.
1037 	 */
1038 	unsigned long			*numa_faults;
1039 	unsigned long			total_numa_faults;
1040 
1041 	/*
1042 	 * numa_faults_locality tracks if faults recorded during the last
1043 	 * scan window were remote/local or failed to migrate. The task scan
1044 	 * period is adapted based on the locality of the faults with different
1045 	 * weights depending on whether they were shared or private faults
1046 	 */
1047 	unsigned long			numa_faults_locality[3];
1048 
1049 	unsigned long			numa_pages_migrated;
1050 #endif /* CONFIG_NUMA_BALANCING */
1051 
1052 #ifdef CONFIG_RSEQ
1053 	struct rseq __user *rseq;
1054 	u32 rseq_len;
1055 	u32 rseq_sig;
1056 	/*
1057 	 * RmW on rseq_event_mask must be performed atomically
1058 	 * with respect to preemption.
1059 	 */
1060 	unsigned long rseq_event_mask;
1061 #endif
1062 
1063 	struct tlbflush_unmap_batch	tlb_ubc;
1064 
1065 	struct rcu_head			rcu;
1066 
1067 	/* Cache last used pipe for splice(): */
1068 	struct pipe_inode_info		*splice_pipe;
1069 
1070 	struct page_frag		task_frag;
1071 
1072 #ifdef CONFIG_TASK_DELAY_ACCT
1073 	struct task_delay_info		*delays;
1074 #endif
1075 
1076 #ifdef CONFIG_FAULT_INJECTION
1077 	int				make_it_fail;
1078 	unsigned int			fail_nth;
1079 #endif
1080 	/*
1081 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1082 	 * balance_dirty_pages() for a dirty throttling pause:
1083 	 */
1084 	int				nr_dirtied;
1085 	int				nr_dirtied_pause;
1086 	/* Start of a write-and-pause period: */
1087 	unsigned long			dirty_paused_when;
1088 
1089 #ifdef CONFIG_LATENCYTOP
1090 	int				latency_record_count;
1091 	struct latency_record		latency_record[LT_SAVECOUNT];
1092 #endif
1093 	/*
1094 	 * Time slack values; these are used to round up poll() and
1095 	 * select() etc timeout values. These are in nanoseconds.
1096 	 */
1097 	u64				timer_slack_ns;
1098 	u64				default_timer_slack_ns;
1099 
1100 #ifdef CONFIG_KASAN
1101 	unsigned int			kasan_depth;
1102 #endif
1103 
1104 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1105 	/* Index of current stored address in ret_stack: */
1106 	int				curr_ret_stack;
1107 	int				curr_ret_depth;
1108 
1109 	/* Stack of return addresses for return function tracing: */
1110 	struct ftrace_ret_stack		*ret_stack;
1111 
1112 	/* Timestamp for last schedule: */
1113 	unsigned long long		ftrace_timestamp;
1114 
1115 	/*
1116 	 * Number of functions that haven't been traced
1117 	 * because of depth overrun:
1118 	 */
1119 	atomic_t			trace_overrun;
1120 
1121 	/* Pause tracing: */
1122 	atomic_t			tracing_graph_pause;
1123 #endif
1124 
1125 #ifdef CONFIG_TRACING
1126 	/* State flags for use by tracers: */
1127 	unsigned long			trace;
1128 
1129 	/* Bitmask and counter of trace recursion: */
1130 	unsigned long			trace_recursion;
1131 #endif /* CONFIG_TRACING */
1132 
1133 #ifdef CONFIG_KCOV
1134 	/* Coverage collection mode enabled for this task (0 if disabled): */
1135 	unsigned int			kcov_mode;
1136 
1137 	/* Size of the kcov_area: */
1138 	unsigned int			kcov_size;
1139 
1140 	/* Buffer for coverage collection: */
1141 	void				*kcov_area;
1142 
1143 	/* KCOV descriptor wired with this task or NULL: */
1144 	struct kcov			*kcov;
1145 #endif
1146 
1147 #ifdef CONFIG_MEMCG
1148 	struct mem_cgroup		*memcg_in_oom;
1149 	gfp_t				memcg_oom_gfp_mask;
1150 	int				memcg_oom_order;
1151 
1152 	/* Number of pages to reclaim on returning to userland: */
1153 	unsigned int			memcg_nr_pages_over_high;
1154 
1155 	/* Used by memcontrol for targeted memcg charge: */
1156 	struct mem_cgroup		*active_memcg;
1157 #endif
1158 
1159 #ifdef CONFIG_BLK_CGROUP
1160 	struct request_queue		*throttle_queue;
1161 #endif
1162 
1163 #ifdef CONFIG_UPROBES
1164 	struct uprobe_task		*utask;
1165 #endif
1166 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1167 	unsigned int			sequential_io;
1168 	unsigned int			sequential_io_avg;
1169 #endif
1170 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1171 	unsigned long			task_state_change;
1172 #endif
1173 	int				pagefault_disabled;
1174 #ifdef CONFIG_MMU
1175 	struct task_struct		*oom_reaper_list;
1176 #endif
1177 #ifdef CONFIG_VMAP_STACK
1178 	struct vm_struct		*stack_vm_area;
1179 #endif
1180 #ifdef CONFIG_THREAD_INFO_IN_TASK
1181 	/* A live task holds one reference: */
1182 	refcount_t			stack_refcount;
1183 #endif
1184 #ifdef CONFIG_LIVEPATCH
1185 	int patch_state;
1186 #endif
1187 #ifdef CONFIG_SECURITY
1188 	/* Used by LSM modules for access restriction: */
1189 	void				*security;
1190 #endif
1191 
1192 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1193 	unsigned long			lowest_stack;
1194 	unsigned long			prev_lowest_stack;
1195 #endif
1196 
1197 	/*
1198 	 * New fields for task_struct should be added above here, so that
1199 	 * they are included in the randomized portion of task_struct.
1200 	 */
1201 	randomized_struct_fields_end
1202 
1203 	/* CPU-specific state of this task: */
1204 	struct thread_struct		thread;
1205 
1206 	/*
1207 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1208 	 * structure.  It *MUST* be at the end of 'task_struct'.
1209 	 *
1210 	 * Do not put anything below here!
1211 	 */
1212 };
1213 
1214 static inline struct pid *task_pid(struct task_struct *task)
1215 {
1216 	return task->thread_pid;
1217 }
1218 
1219 /*
1220  * the helpers to get the task's different pids as they are seen
1221  * from various namespaces
1222  *
1223  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1224  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1225  *                     current.
1226  * task_xid_nr_ns()  : id seen from the ns specified;
1227  *
1228  * see also pid_nr() etc in include/linux/pid.h
1229  */
1230 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1231 
1232 static inline pid_t task_pid_nr(struct task_struct *tsk)
1233 {
1234 	return tsk->pid;
1235 }
1236 
1237 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1238 {
1239 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1240 }
1241 
1242 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1243 {
1244 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1245 }
1246 
1247 
1248 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1249 {
1250 	return tsk->tgid;
1251 }
1252 
1253 /**
1254  * pid_alive - check that a task structure is not stale
1255  * @p: Task structure to be checked.
1256  *
1257  * Test if a process is not yet dead (at most zombie state)
1258  * If pid_alive fails, then pointers within the task structure
1259  * can be stale and must not be dereferenced.
1260  *
1261  * Return: 1 if the process is alive. 0 otherwise.
1262  */
1263 static inline int pid_alive(const struct task_struct *p)
1264 {
1265 	return p->thread_pid != NULL;
1266 }
1267 
1268 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1269 {
1270 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1271 }
1272 
1273 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1274 {
1275 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1276 }
1277 
1278 
1279 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1280 {
1281 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1282 }
1283 
1284 static inline pid_t task_session_vnr(struct task_struct *tsk)
1285 {
1286 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1287 }
1288 
1289 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1290 {
1291 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1292 }
1293 
1294 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1295 {
1296 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1297 }
1298 
1299 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1300 {
1301 	pid_t pid = 0;
1302 
1303 	rcu_read_lock();
1304 	if (pid_alive(tsk))
1305 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1306 	rcu_read_unlock();
1307 
1308 	return pid;
1309 }
1310 
1311 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1312 {
1313 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1314 }
1315 
1316 /* Obsolete, do not use: */
1317 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1318 {
1319 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1320 }
1321 
1322 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1323 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1324 
1325 static inline unsigned int task_state_index(struct task_struct *tsk)
1326 {
1327 	unsigned int tsk_state = READ_ONCE(tsk->state);
1328 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1329 
1330 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1331 
1332 	if (tsk_state == TASK_IDLE)
1333 		state = TASK_REPORT_IDLE;
1334 
1335 	return fls(state);
1336 }
1337 
1338 static inline char task_index_to_char(unsigned int state)
1339 {
1340 	static const char state_char[] = "RSDTtXZPI";
1341 
1342 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1343 
1344 	return state_char[state];
1345 }
1346 
1347 static inline char task_state_to_char(struct task_struct *tsk)
1348 {
1349 	return task_index_to_char(task_state_index(tsk));
1350 }
1351 
1352 /**
1353  * is_global_init - check if a task structure is init. Since init
1354  * is free to have sub-threads we need to check tgid.
1355  * @tsk: Task structure to be checked.
1356  *
1357  * Check if a task structure is the first user space task the kernel created.
1358  *
1359  * Return: 1 if the task structure is init. 0 otherwise.
1360  */
1361 static inline int is_global_init(struct task_struct *tsk)
1362 {
1363 	return task_tgid_nr(tsk) == 1;
1364 }
1365 
1366 extern struct pid *cad_pid;
1367 
1368 /*
1369  * Per process flags
1370  */
1371 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1372 #define PF_EXITING		0x00000004	/* Getting shut down */
1373 #define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
1374 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1375 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1376 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1377 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1378 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1379 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1380 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1381 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1382 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1383 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1384 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1385 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1386 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1387 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1388 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1389 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1390 #define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
1391 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1392 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1393 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1394 #define PF_MEMSTALL		0x01000000	/* Stalled due to lack of memory */
1395 #define PF_UMH			0x02000000	/* I'm an Usermodehelper process */
1396 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1397 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1398 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1399 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1400 
1401 /*
1402  * Only the _current_ task can read/write to tsk->flags, but other
1403  * tasks can access tsk->flags in readonly mode for example
1404  * with tsk_used_math (like during threaded core dumping).
1405  * There is however an exception to this rule during ptrace
1406  * or during fork: the ptracer task is allowed to write to the
1407  * child->flags of its traced child (same goes for fork, the parent
1408  * can write to the child->flags), because we're guaranteed the
1409  * child is not running and in turn not changing child->flags
1410  * at the same time the parent does it.
1411  */
1412 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1413 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1414 #define clear_used_math()			clear_stopped_child_used_math(current)
1415 #define set_used_math()				set_stopped_child_used_math(current)
1416 
1417 #define conditional_stopped_child_used_math(condition, child) \
1418 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1419 
1420 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1421 
1422 #define copy_to_stopped_child_used_math(child) \
1423 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1424 
1425 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1426 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1427 #define used_math()				tsk_used_math(current)
1428 
1429 static inline bool is_percpu_thread(void)
1430 {
1431 #ifdef CONFIG_SMP
1432 	return (current->flags & PF_NO_SETAFFINITY) &&
1433 		(current->nr_cpus_allowed  == 1);
1434 #else
1435 	return true;
1436 #endif
1437 }
1438 
1439 /* Per-process atomic flags. */
1440 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1441 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1442 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1443 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1444 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1445 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1446 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1447 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1448 
1449 #define TASK_PFA_TEST(name, func)					\
1450 	static inline bool task_##func(struct task_struct *p)		\
1451 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1452 
1453 #define TASK_PFA_SET(name, func)					\
1454 	static inline void task_set_##func(struct task_struct *p)	\
1455 	{ set_bit(PFA_##name, &p->atomic_flags); }
1456 
1457 #define TASK_PFA_CLEAR(name, func)					\
1458 	static inline void task_clear_##func(struct task_struct *p)	\
1459 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1460 
1461 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1462 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1463 
1464 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1465 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1466 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1467 
1468 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1469 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1470 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1471 
1472 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1473 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1474 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1475 
1476 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1477 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1478 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1479 
1480 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1481 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1482 
1483 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1484 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1485 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1486 
1487 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1488 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1489 
1490 static inline void
1491 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1492 {
1493 	current->flags &= ~flags;
1494 	current->flags |= orig_flags & flags;
1495 }
1496 
1497 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1498 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1499 #ifdef CONFIG_SMP
1500 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1501 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1502 #else
1503 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1504 {
1505 }
1506 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1507 {
1508 	if (!cpumask_test_cpu(0, new_mask))
1509 		return -EINVAL;
1510 	return 0;
1511 }
1512 #endif
1513 
1514 #ifndef cpu_relax_yield
1515 #define cpu_relax_yield() cpu_relax()
1516 #endif
1517 
1518 extern int yield_to(struct task_struct *p, bool preempt);
1519 extern void set_user_nice(struct task_struct *p, long nice);
1520 extern int task_prio(const struct task_struct *p);
1521 
1522 /**
1523  * task_nice - return the nice value of a given task.
1524  * @p: the task in question.
1525  *
1526  * Return: The nice value [ -20 ... 0 ... 19 ].
1527  */
1528 static inline int task_nice(const struct task_struct *p)
1529 {
1530 	return PRIO_TO_NICE((p)->static_prio);
1531 }
1532 
1533 extern int can_nice(const struct task_struct *p, const int nice);
1534 extern int task_curr(const struct task_struct *p);
1535 extern int idle_cpu(int cpu);
1536 extern int available_idle_cpu(int cpu);
1537 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1538 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1539 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1540 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1541 extern struct task_struct *idle_task(int cpu);
1542 
1543 /**
1544  * is_idle_task - is the specified task an idle task?
1545  * @p: the task in question.
1546  *
1547  * Return: 1 if @p is an idle task. 0 otherwise.
1548  */
1549 static inline bool is_idle_task(const struct task_struct *p)
1550 {
1551 	return !!(p->flags & PF_IDLE);
1552 }
1553 
1554 extern struct task_struct *curr_task(int cpu);
1555 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1556 
1557 void yield(void);
1558 
1559 union thread_union {
1560 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1561 	struct task_struct task;
1562 #endif
1563 #ifndef CONFIG_THREAD_INFO_IN_TASK
1564 	struct thread_info thread_info;
1565 #endif
1566 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1567 };
1568 
1569 #ifndef CONFIG_THREAD_INFO_IN_TASK
1570 extern struct thread_info init_thread_info;
1571 #endif
1572 
1573 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1574 
1575 #ifdef CONFIG_THREAD_INFO_IN_TASK
1576 static inline struct thread_info *task_thread_info(struct task_struct *task)
1577 {
1578 	return &task->thread_info;
1579 }
1580 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1581 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1582 #endif
1583 
1584 /*
1585  * find a task by one of its numerical ids
1586  *
1587  * find_task_by_pid_ns():
1588  *      finds a task by its pid in the specified namespace
1589  * find_task_by_vpid():
1590  *      finds a task by its virtual pid
1591  *
1592  * see also find_vpid() etc in include/linux/pid.h
1593  */
1594 
1595 extern struct task_struct *find_task_by_vpid(pid_t nr);
1596 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1597 
1598 /*
1599  * find a task by its virtual pid and get the task struct
1600  */
1601 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1602 
1603 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1604 extern int wake_up_process(struct task_struct *tsk);
1605 extern void wake_up_new_task(struct task_struct *tsk);
1606 
1607 #ifdef CONFIG_SMP
1608 extern void kick_process(struct task_struct *tsk);
1609 #else
1610 static inline void kick_process(struct task_struct *tsk) { }
1611 #endif
1612 
1613 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1614 
1615 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1616 {
1617 	__set_task_comm(tsk, from, false);
1618 }
1619 
1620 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1621 #define get_task_comm(buf, tsk) ({			\
1622 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1623 	__get_task_comm(buf, sizeof(buf), tsk);		\
1624 })
1625 
1626 #ifdef CONFIG_SMP
1627 void scheduler_ipi(void);
1628 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1629 #else
1630 static inline void scheduler_ipi(void) { }
1631 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1632 {
1633 	return 1;
1634 }
1635 #endif
1636 
1637 /*
1638  * Set thread flags in other task's structures.
1639  * See asm/thread_info.h for TIF_xxxx flags available:
1640  */
1641 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1642 {
1643 	set_ti_thread_flag(task_thread_info(tsk), flag);
1644 }
1645 
1646 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1647 {
1648 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1649 }
1650 
1651 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1652 					  bool value)
1653 {
1654 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1655 }
1656 
1657 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1658 {
1659 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1660 }
1661 
1662 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1663 {
1664 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1665 }
1666 
1667 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1668 {
1669 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1670 }
1671 
1672 static inline void set_tsk_need_resched(struct task_struct *tsk)
1673 {
1674 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1675 }
1676 
1677 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1678 {
1679 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1680 }
1681 
1682 static inline int test_tsk_need_resched(struct task_struct *tsk)
1683 {
1684 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1685 }
1686 
1687 /*
1688  * cond_resched() and cond_resched_lock(): latency reduction via
1689  * explicit rescheduling in places that are safe. The return
1690  * value indicates whether a reschedule was done in fact.
1691  * cond_resched_lock() will drop the spinlock before scheduling,
1692  */
1693 #ifndef CONFIG_PREEMPT
1694 extern int _cond_resched(void);
1695 #else
1696 static inline int _cond_resched(void) { return 0; }
1697 #endif
1698 
1699 #define cond_resched() ({			\
1700 	___might_sleep(__FILE__, __LINE__, 0);	\
1701 	_cond_resched();			\
1702 })
1703 
1704 extern int __cond_resched_lock(spinlock_t *lock);
1705 
1706 #define cond_resched_lock(lock) ({				\
1707 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1708 	__cond_resched_lock(lock);				\
1709 })
1710 
1711 static inline void cond_resched_rcu(void)
1712 {
1713 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1714 	rcu_read_unlock();
1715 	cond_resched();
1716 	rcu_read_lock();
1717 #endif
1718 }
1719 
1720 /*
1721  * Does a critical section need to be broken due to another
1722  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1723  * but a general need for low latency)
1724  */
1725 static inline int spin_needbreak(spinlock_t *lock)
1726 {
1727 #ifdef CONFIG_PREEMPT
1728 	return spin_is_contended(lock);
1729 #else
1730 	return 0;
1731 #endif
1732 }
1733 
1734 static __always_inline bool need_resched(void)
1735 {
1736 	return unlikely(tif_need_resched());
1737 }
1738 
1739 /*
1740  * Wrappers for p->thread_info->cpu access. No-op on UP.
1741  */
1742 #ifdef CONFIG_SMP
1743 
1744 static inline unsigned int task_cpu(const struct task_struct *p)
1745 {
1746 #ifdef CONFIG_THREAD_INFO_IN_TASK
1747 	return READ_ONCE(p->cpu);
1748 #else
1749 	return READ_ONCE(task_thread_info(p)->cpu);
1750 #endif
1751 }
1752 
1753 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1754 
1755 #else
1756 
1757 static inline unsigned int task_cpu(const struct task_struct *p)
1758 {
1759 	return 0;
1760 }
1761 
1762 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1763 {
1764 }
1765 
1766 #endif /* CONFIG_SMP */
1767 
1768 /*
1769  * In order to reduce various lock holder preemption latencies provide an
1770  * interface to see if a vCPU is currently running or not.
1771  *
1772  * This allows us to terminate optimistic spin loops and block, analogous to
1773  * the native optimistic spin heuristic of testing if the lock owner task is
1774  * running or not.
1775  */
1776 #ifndef vcpu_is_preempted
1777 # define vcpu_is_preempted(cpu)	false
1778 #endif
1779 
1780 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1781 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1782 
1783 #ifndef TASK_SIZE_OF
1784 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1785 #endif
1786 
1787 #ifdef CONFIG_RSEQ
1788 
1789 /*
1790  * Map the event mask on the user-space ABI enum rseq_cs_flags
1791  * for direct mask checks.
1792  */
1793 enum rseq_event_mask_bits {
1794 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1795 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1796 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1797 };
1798 
1799 enum rseq_event_mask {
1800 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
1801 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
1802 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
1803 };
1804 
1805 static inline void rseq_set_notify_resume(struct task_struct *t)
1806 {
1807 	if (t->rseq)
1808 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1809 }
1810 
1811 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1812 
1813 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1814 					     struct pt_regs *regs)
1815 {
1816 	if (current->rseq)
1817 		__rseq_handle_notify_resume(ksig, regs);
1818 }
1819 
1820 static inline void rseq_signal_deliver(struct ksignal *ksig,
1821 				       struct pt_regs *regs)
1822 {
1823 	preempt_disable();
1824 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1825 	preempt_enable();
1826 	rseq_handle_notify_resume(ksig, regs);
1827 }
1828 
1829 /* rseq_preempt() requires preemption to be disabled. */
1830 static inline void rseq_preempt(struct task_struct *t)
1831 {
1832 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1833 	rseq_set_notify_resume(t);
1834 }
1835 
1836 /* rseq_migrate() requires preemption to be disabled. */
1837 static inline void rseq_migrate(struct task_struct *t)
1838 {
1839 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1840 	rseq_set_notify_resume(t);
1841 }
1842 
1843 /*
1844  * If parent process has a registered restartable sequences area, the
1845  * child inherits. Only applies when forking a process, not a thread.
1846  */
1847 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1848 {
1849 	if (clone_flags & CLONE_THREAD) {
1850 		t->rseq = NULL;
1851 		t->rseq_len = 0;
1852 		t->rseq_sig = 0;
1853 		t->rseq_event_mask = 0;
1854 	} else {
1855 		t->rseq = current->rseq;
1856 		t->rseq_len = current->rseq_len;
1857 		t->rseq_sig = current->rseq_sig;
1858 		t->rseq_event_mask = current->rseq_event_mask;
1859 	}
1860 }
1861 
1862 static inline void rseq_execve(struct task_struct *t)
1863 {
1864 	t->rseq = NULL;
1865 	t->rseq_len = 0;
1866 	t->rseq_sig = 0;
1867 	t->rseq_event_mask = 0;
1868 }
1869 
1870 #else
1871 
1872 static inline void rseq_set_notify_resume(struct task_struct *t)
1873 {
1874 }
1875 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1876 					     struct pt_regs *regs)
1877 {
1878 }
1879 static inline void rseq_signal_deliver(struct ksignal *ksig,
1880 				       struct pt_regs *regs)
1881 {
1882 }
1883 static inline void rseq_preempt(struct task_struct *t)
1884 {
1885 }
1886 static inline void rseq_migrate(struct task_struct *t)
1887 {
1888 }
1889 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1890 {
1891 }
1892 static inline void rseq_execve(struct task_struct *t)
1893 {
1894 }
1895 
1896 #endif
1897 
1898 void __exit_umh(struct task_struct *tsk);
1899 
1900 static inline void exit_umh(struct task_struct *tsk)
1901 {
1902 	if (unlikely(tsk->flags & PF_UMH))
1903 		__exit_umh(tsk);
1904 }
1905 
1906 #ifdef CONFIG_DEBUG_RSEQ
1907 
1908 void rseq_syscall(struct pt_regs *regs);
1909 
1910 #else
1911 
1912 static inline void rseq_syscall(struct pt_regs *regs)
1913 {
1914 }
1915 
1916 #endif
1917 
1918 #endif
1919