1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) 25 and is now available for re-use. */ 26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 30 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 31 #define CLONE_IO 0x80000000 /* Clone io context */ 32 33 /* 34 * Scheduling policies 35 */ 36 #define SCHED_NORMAL 0 37 #define SCHED_FIFO 1 38 #define SCHED_RR 2 39 #define SCHED_BATCH 3 40 /* SCHED_ISO: reserved but not implemented yet */ 41 #define SCHED_IDLE 5 42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 43 #define SCHED_RESET_ON_FORK 0x40000000 44 45 #ifdef __KERNEL__ 46 47 struct sched_param { 48 int sched_priority; 49 }; 50 51 #include <asm/param.h> /* for HZ */ 52 53 #include <linux/capability.h> 54 #include <linux/threads.h> 55 #include <linux/kernel.h> 56 #include <linux/types.h> 57 #include <linux/timex.h> 58 #include <linux/jiffies.h> 59 #include <linux/rbtree.h> 60 #include <linux/thread_info.h> 61 #include <linux/cpumask.h> 62 #include <linux/errno.h> 63 #include <linux/nodemask.h> 64 #include <linux/mm_types.h> 65 66 #include <asm/page.h> 67 #include <asm/ptrace.h> 68 #include <asm/cputime.h> 69 70 #include <linux/smp.h> 71 #include <linux/sem.h> 72 #include <linux/signal.h> 73 #include <linux/compiler.h> 74 #include <linux/completion.h> 75 #include <linux/pid.h> 76 #include <linux/percpu.h> 77 #include <linux/topology.h> 78 #include <linux/proportions.h> 79 #include <linux/seccomp.h> 80 #include <linux/rcupdate.h> 81 #include <linux/rculist.h> 82 #include <linux/rtmutex.h> 83 84 #include <linux/time.h> 85 #include <linux/param.h> 86 #include <linux/resource.h> 87 #include <linux/timer.h> 88 #include <linux/hrtimer.h> 89 #include <linux/task_io_accounting.h> 90 #include <linux/latencytop.h> 91 #include <linux/cred.h> 92 #include <linux/llist.h> 93 #include <linux/uidgid.h> 94 95 #include <asm/processor.h> 96 97 struct exec_domain; 98 struct futex_pi_state; 99 struct robust_list_head; 100 struct bio_list; 101 struct fs_struct; 102 struct perf_event_context; 103 struct blk_plug; 104 105 /* 106 * List of flags we want to share for kernel threads, 107 * if only because they are not used by them anyway. 108 */ 109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 110 111 /* 112 * These are the constant used to fake the fixed-point load-average 113 * counting. Some notes: 114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 115 * a load-average precision of 10 bits integer + 11 bits fractional 116 * - if you want to count load-averages more often, you need more 117 * precision, or rounding will get you. With 2-second counting freq, 118 * the EXP_n values would be 1981, 2034 and 2043 if still using only 119 * 11 bit fractions. 120 */ 121 extern unsigned long avenrun[]; /* Load averages */ 122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 123 124 #define FSHIFT 11 /* nr of bits of precision */ 125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 128 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 129 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 130 131 #define CALC_LOAD(load,exp,n) \ 132 load *= exp; \ 133 load += n*(FIXED_1-exp); \ 134 load >>= FSHIFT; 135 136 extern unsigned long total_forks; 137 extern int nr_threads; 138 DECLARE_PER_CPU(unsigned long, process_counts); 139 extern int nr_processes(void); 140 extern unsigned long nr_running(void); 141 extern unsigned long nr_uninterruptible(void); 142 extern unsigned long nr_iowait(void); 143 extern unsigned long nr_iowait_cpu(int cpu); 144 extern unsigned long this_cpu_load(void); 145 146 147 extern void calc_global_load(unsigned long ticks); 148 extern void update_cpu_load_nohz(void); 149 150 extern unsigned long get_parent_ip(unsigned long addr); 151 152 struct seq_file; 153 struct cfs_rq; 154 struct task_group; 155 #ifdef CONFIG_SCHED_DEBUG 156 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 157 extern void proc_sched_set_task(struct task_struct *p); 158 extern void 159 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 160 #else 161 static inline void 162 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 163 { 164 } 165 static inline void proc_sched_set_task(struct task_struct *p) 166 { 167 } 168 static inline void 169 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 170 { 171 } 172 #endif 173 174 /* 175 * Task state bitmask. NOTE! These bits are also 176 * encoded in fs/proc/array.c: get_task_state(). 177 * 178 * We have two separate sets of flags: task->state 179 * is about runnability, while task->exit_state are 180 * about the task exiting. Confusing, but this way 181 * modifying one set can't modify the other one by 182 * mistake. 183 */ 184 #define TASK_RUNNING 0 185 #define TASK_INTERRUPTIBLE 1 186 #define TASK_UNINTERRUPTIBLE 2 187 #define __TASK_STOPPED 4 188 #define __TASK_TRACED 8 189 /* in tsk->exit_state */ 190 #define EXIT_ZOMBIE 16 191 #define EXIT_DEAD 32 192 /* in tsk->state again */ 193 #define TASK_DEAD 64 194 #define TASK_WAKEKILL 128 195 #define TASK_WAKING 256 196 #define TASK_STATE_MAX 512 197 198 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 199 200 extern char ___assert_task_state[1 - 2*!!( 201 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 202 203 /* Convenience macros for the sake of set_task_state */ 204 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 205 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 206 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 207 208 /* Convenience macros for the sake of wake_up */ 209 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 210 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 211 212 /* get_task_state() */ 213 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 214 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 215 __TASK_TRACED) 216 217 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 218 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 219 #define task_is_dead(task) ((task)->exit_state != 0) 220 #define task_is_stopped_or_traced(task) \ 221 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 222 #define task_contributes_to_load(task) \ 223 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 224 (task->flags & PF_FROZEN) == 0) 225 226 #define __set_task_state(tsk, state_value) \ 227 do { (tsk)->state = (state_value); } while (0) 228 #define set_task_state(tsk, state_value) \ 229 set_mb((tsk)->state, (state_value)) 230 231 /* 232 * set_current_state() includes a barrier so that the write of current->state 233 * is correctly serialised wrt the caller's subsequent test of whether to 234 * actually sleep: 235 * 236 * set_current_state(TASK_UNINTERRUPTIBLE); 237 * if (do_i_need_to_sleep()) 238 * schedule(); 239 * 240 * If the caller does not need such serialisation then use __set_current_state() 241 */ 242 #define __set_current_state(state_value) \ 243 do { current->state = (state_value); } while (0) 244 #define set_current_state(state_value) \ 245 set_mb(current->state, (state_value)) 246 247 /* Task command name length */ 248 #define TASK_COMM_LEN 16 249 250 #include <linux/spinlock.h> 251 252 /* 253 * This serializes "schedule()" and also protects 254 * the run-queue from deletions/modifications (but 255 * _adding_ to the beginning of the run-queue has 256 * a separate lock). 257 */ 258 extern rwlock_t tasklist_lock; 259 extern spinlock_t mmlist_lock; 260 261 struct task_struct; 262 263 #ifdef CONFIG_PROVE_RCU 264 extern int lockdep_tasklist_lock_is_held(void); 265 #endif /* #ifdef CONFIG_PROVE_RCU */ 266 267 extern void sched_init(void); 268 extern void sched_init_smp(void); 269 extern asmlinkage void schedule_tail(struct task_struct *prev); 270 extern void init_idle(struct task_struct *idle, int cpu); 271 extern void init_idle_bootup_task(struct task_struct *idle); 272 273 extern int runqueue_is_locked(int cpu); 274 275 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 276 extern void select_nohz_load_balancer(int stop_tick); 277 extern void set_cpu_sd_state_idle(void); 278 extern int get_nohz_timer_target(void); 279 #else 280 static inline void select_nohz_load_balancer(int stop_tick) { } 281 static inline void set_cpu_sd_state_idle(void) { } 282 #endif 283 284 /* 285 * Only dump TASK_* tasks. (0 for all tasks) 286 */ 287 extern void show_state_filter(unsigned long state_filter); 288 289 static inline void show_state(void) 290 { 291 show_state_filter(0); 292 } 293 294 extern void show_regs(struct pt_regs *); 295 296 /* 297 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 298 * task), SP is the stack pointer of the first frame that should be shown in the back 299 * trace (or NULL if the entire call-chain of the task should be shown). 300 */ 301 extern void show_stack(struct task_struct *task, unsigned long *sp); 302 303 void io_schedule(void); 304 long io_schedule_timeout(long timeout); 305 306 extern void cpu_init (void); 307 extern void trap_init(void); 308 extern void update_process_times(int user); 309 extern void scheduler_tick(void); 310 311 extern void sched_show_task(struct task_struct *p); 312 313 #ifdef CONFIG_LOCKUP_DETECTOR 314 extern void touch_softlockup_watchdog(void); 315 extern void touch_softlockup_watchdog_sync(void); 316 extern void touch_all_softlockup_watchdogs(void); 317 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 318 void __user *buffer, 319 size_t *lenp, loff_t *ppos); 320 extern unsigned int softlockup_panic; 321 void lockup_detector_init(void); 322 #else 323 static inline void touch_softlockup_watchdog(void) 324 { 325 } 326 static inline void touch_softlockup_watchdog_sync(void) 327 { 328 } 329 static inline void touch_all_softlockup_watchdogs(void) 330 { 331 } 332 static inline void lockup_detector_init(void) 333 { 334 } 335 #endif 336 337 #ifdef CONFIG_DETECT_HUNG_TASK 338 extern unsigned int sysctl_hung_task_panic; 339 extern unsigned long sysctl_hung_task_check_count; 340 extern unsigned long sysctl_hung_task_timeout_secs; 341 extern unsigned long sysctl_hung_task_warnings; 342 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 343 void __user *buffer, 344 size_t *lenp, loff_t *ppos); 345 #else 346 /* Avoid need for ifdefs elsewhere in the code */ 347 enum { sysctl_hung_task_timeout_secs = 0 }; 348 #endif 349 350 /* Attach to any functions which should be ignored in wchan output. */ 351 #define __sched __attribute__((__section__(".sched.text"))) 352 353 /* Linker adds these: start and end of __sched functions */ 354 extern char __sched_text_start[], __sched_text_end[]; 355 356 /* Is this address in the __sched functions? */ 357 extern int in_sched_functions(unsigned long addr); 358 359 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 360 extern signed long schedule_timeout(signed long timeout); 361 extern signed long schedule_timeout_interruptible(signed long timeout); 362 extern signed long schedule_timeout_killable(signed long timeout); 363 extern signed long schedule_timeout_uninterruptible(signed long timeout); 364 asmlinkage void schedule(void); 365 extern void schedule_preempt_disabled(void); 366 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 367 368 struct nsproxy; 369 struct user_namespace; 370 371 /* 372 * Default maximum number of active map areas, this limits the number of vmas 373 * per mm struct. Users can overwrite this number by sysctl but there is a 374 * problem. 375 * 376 * When a program's coredump is generated as ELF format, a section is created 377 * per a vma. In ELF, the number of sections is represented in unsigned short. 378 * This means the number of sections should be smaller than 65535 at coredump. 379 * Because the kernel adds some informative sections to a image of program at 380 * generating coredump, we need some margin. The number of extra sections is 381 * 1-3 now and depends on arch. We use "5" as safe margin, here. 382 */ 383 #define MAPCOUNT_ELF_CORE_MARGIN (5) 384 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 385 386 extern int sysctl_max_map_count; 387 388 #include <linux/aio.h> 389 390 #ifdef CONFIG_MMU 391 extern void arch_pick_mmap_layout(struct mm_struct *mm); 392 extern unsigned long 393 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 394 unsigned long, unsigned long); 395 extern unsigned long 396 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 397 unsigned long len, unsigned long pgoff, 398 unsigned long flags); 399 extern void arch_unmap_area(struct mm_struct *, unsigned long); 400 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 401 #else 402 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 403 #endif 404 405 406 extern void set_dumpable(struct mm_struct *mm, int value); 407 extern int get_dumpable(struct mm_struct *mm); 408 409 /* mm flags */ 410 /* dumpable bits */ 411 #define MMF_DUMPABLE 0 /* core dump is permitted */ 412 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 413 414 #define MMF_DUMPABLE_BITS 2 415 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 416 417 /* coredump filter bits */ 418 #define MMF_DUMP_ANON_PRIVATE 2 419 #define MMF_DUMP_ANON_SHARED 3 420 #define MMF_DUMP_MAPPED_PRIVATE 4 421 #define MMF_DUMP_MAPPED_SHARED 5 422 #define MMF_DUMP_ELF_HEADERS 6 423 #define MMF_DUMP_HUGETLB_PRIVATE 7 424 #define MMF_DUMP_HUGETLB_SHARED 8 425 426 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 427 #define MMF_DUMP_FILTER_BITS 7 428 #define MMF_DUMP_FILTER_MASK \ 429 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 430 #define MMF_DUMP_FILTER_DEFAULT \ 431 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 432 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 433 434 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 435 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 436 #else 437 # define MMF_DUMP_MASK_DEFAULT_ELF 0 438 #endif 439 /* leave room for more dump flags */ 440 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 441 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 442 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 443 444 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 445 446 struct sighand_struct { 447 atomic_t count; 448 struct k_sigaction action[_NSIG]; 449 spinlock_t siglock; 450 wait_queue_head_t signalfd_wqh; 451 }; 452 453 struct pacct_struct { 454 int ac_flag; 455 long ac_exitcode; 456 unsigned long ac_mem; 457 cputime_t ac_utime, ac_stime; 458 unsigned long ac_minflt, ac_majflt; 459 }; 460 461 struct cpu_itimer { 462 cputime_t expires; 463 cputime_t incr; 464 u32 error; 465 u32 incr_error; 466 }; 467 468 /** 469 * struct task_cputime - collected CPU time counts 470 * @utime: time spent in user mode, in &cputime_t units 471 * @stime: time spent in kernel mode, in &cputime_t units 472 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 473 * 474 * This structure groups together three kinds of CPU time that are 475 * tracked for threads and thread groups. Most things considering 476 * CPU time want to group these counts together and treat all three 477 * of them in parallel. 478 */ 479 struct task_cputime { 480 cputime_t utime; 481 cputime_t stime; 482 unsigned long long sum_exec_runtime; 483 }; 484 /* Alternate field names when used to cache expirations. */ 485 #define prof_exp stime 486 #define virt_exp utime 487 #define sched_exp sum_exec_runtime 488 489 #define INIT_CPUTIME \ 490 (struct task_cputime) { \ 491 .utime = 0, \ 492 .stime = 0, \ 493 .sum_exec_runtime = 0, \ 494 } 495 496 /* 497 * Disable preemption until the scheduler is running. 498 * Reset by start_kernel()->sched_init()->init_idle(). 499 * 500 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 501 * before the scheduler is active -- see should_resched(). 502 */ 503 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 504 505 /** 506 * struct thread_group_cputimer - thread group interval timer counts 507 * @cputime: thread group interval timers. 508 * @running: non-zero when there are timers running and 509 * @cputime receives updates. 510 * @lock: lock for fields in this struct. 511 * 512 * This structure contains the version of task_cputime, above, that is 513 * used for thread group CPU timer calculations. 514 */ 515 struct thread_group_cputimer { 516 struct task_cputime cputime; 517 int running; 518 raw_spinlock_t lock; 519 }; 520 521 #include <linux/rwsem.h> 522 struct autogroup; 523 524 /* 525 * NOTE! "signal_struct" does not have its own 526 * locking, because a shared signal_struct always 527 * implies a shared sighand_struct, so locking 528 * sighand_struct is always a proper superset of 529 * the locking of signal_struct. 530 */ 531 struct signal_struct { 532 atomic_t sigcnt; 533 atomic_t live; 534 int nr_threads; 535 536 wait_queue_head_t wait_chldexit; /* for wait4() */ 537 538 /* current thread group signal load-balancing target: */ 539 struct task_struct *curr_target; 540 541 /* shared signal handling: */ 542 struct sigpending shared_pending; 543 544 /* thread group exit support */ 545 int group_exit_code; 546 /* overloaded: 547 * - notify group_exit_task when ->count is equal to notify_count 548 * - everyone except group_exit_task is stopped during signal delivery 549 * of fatal signals, group_exit_task processes the signal. 550 */ 551 int notify_count; 552 struct task_struct *group_exit_task; 553 554 /* thread group stop support, overloads group_exit_code too */ 555 int group_stop_count; 556 unsigned int flags; /* see SIGNAL_* flags below */ 557 558 /* 559 * PR_SET_CHILD_SUBREAPER marks a process, like a service 560 * manager, to re-parent orphan (double-forking) child processes 561 * to this process instead of 'init'. The service manager is 562 * able to receive SIGCHLD signals and is able to investigate 563 * the process until it calls wait(). All children of this 564 * process will inherit a flag if they should look for a 565 * child_subreaper process at exit. 566 */ 567 unsigned int is_child_subreaper:1; 568 unsigned int has_child_subreaper:1; 569 570 /* POSIX.1b Interval Timers */ 571 struct list_head posix_timers; 572 573 /* ITIMER_REAL timer for the process */ 574 struct hrtimer real_timer; 575 struct pid *leader_pid; 576 ktime_t it_real_incr; 577 578 /* 579 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 580 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 581 * values are defined to 0 and 1 respectively 582 */ 583 struct cpu_itimer it[2]; 584 585 /* 586 * Thread group totals for process CPU timers. 587 * See thread_group_cputimer(), et al, for details. 588 */ 589 struct thread_group_cputimer cputimer; 590 591 /* Earliest-expiration cache. */ 592 struct task_cputime cputime_expires; 593 594 struct list_head cpu_timers[3]; 595 596 struct pid *tty_old_pgrp; 597 598 /* boolean value for session group leader */ 599 int leader; 600 601 struct tty_struct *tty; /* NULL if no tty */ 602 603 #ifdef CONFIG_SCHED_AUTOGROUP 604 struct autogroup *autogroup; 605 #endif 606 /* 607 * Cumulative resource counters for dead threads in the group, 608 * and for reaped dead child processes forked by this group. 609 * Live threads maintain their own counters and add to these 610 * in __exit_signal, except for the group leader. 611 */ 612 cputime_t utime, stime, cutime, cstime; 613 cputime_t gtime; 614 cputime_t cgtime; 615 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 616 cputime_t prev_utime, prev_stime; 617 #endif 618 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 619 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 620 unsigned long inblock, oublock, cinblock, coublock; 621 unsigned long maxrss, cmaxrss; 622 struct task_io_accounting ioac; 623 624 /* 625 * Cumulative ns of schedule CPU time fo dead threads in the 626 * group, not including a zombie group leader, (This only differs 627 * from jiffies_to_ns(utime + stime) if sched_clock uses something 628 * other than jiffies.) 629 */ 630 unsigned long long sum_sched_runtime; 631 632 /* 633 * We don't bother to synchronize most readers of this at all, 634 * because there is no reader checking a limit that actually needs 635 * to get both rlim_cur and rlim_max atomically, and either one 636 * alone is a single word that can safely be read normally. 637 * getrlimit/setrlimit use task_lock(current->group_leader) to 638 * protect this instead of the siglock, because they really 639 * have no need to disable irqs. 640 */ 641 struct rlimit rlim[RLIM_NLIMITS]; 642 643 #ifdef CONFIG_BSD_PROCESS_ACCT 644 struct pacct_struct pacct; /* per-process accounting information */ 645 #endif 646 #ifdef CONFIG_TASKSTATS 647 struct taskstats *stats; 648 #endif 649 #ifdef CONFIG_AUDIT 650 unsigned audit_tty; 651 struct tty_audit_buf *tty_audit_buf; 652 #endif 653 #ifdef CONFIG_CGROUPS 654 /* 655 * group_rwsem prevents new tasks from entering the threadgroup and 656 * member tasks from exiting,a more specifically, setting of 657 * PF_EXITING. fork and exit paths are protected with this rwsem 658 * using threadgroup_change_begin/end(). Users which require 659 * threadgroup to remain stable should use threadgroup_[un]lock() 660 * which also takes care of exec path. Currently, cgroup is the 661 * only user. 662 */ 663 struct rw_semaphore group_rwsem; 664 #endif 665 666 int oom_adj; /* OOM kill score adjustment (bit shift) */ 667 int oom_score_adj; /* OOM kill score adjustment */ 668 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 669 * Only settable by CAP_SYS_RESOURCE. */ 670 671 struct mutex cred_guard_mutex; /* guard against foreign influences on 672 * credential calculations 673 * (notably. ptrace) */ 674 }; 675 676 /* Context switch must be unlocked if interrupts are to be enabled */ 677 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 678 # define __ARCH_WANT_UNLOCKED_CTXSW 679 #endif 680 681 /* 682 * Bits in flags field of signal_struct. 683 */ 684 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 685 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 686 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 687 /* 688 * Pending notifications to parent. 689 */ 690 #define SIGNAL_CLD_STOPPED 0x00000010 691 #define SIGNAL_CLD_CONTINUED 0x00000020 692 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 693 694 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 695 696 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 697 static inline int signal_group_exit(const struct signal_struct *sig) 698 { 699 return (sig->flags & SIGNAL_GROUP_EXIT) || 700 (sig->group_exit_task != NULL); 701 } 702 703 /* 704 * Some day this will be a full-fledged user tracking system.. 705 */ 706 struct user_struct { 707 atomic_t __count; /* reference count */ 708 atomic_t processes; /* How many processes does this user have? */ 709 atomic_t files; /* How many open files does this user have? */ 710 atomic_t sigpending; /* How many pending signals does this user have? */ 711 #ifdef CONFIG_INOTIFY_USER 712 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 713 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 714 #endif 715 #ifdef CONFIG_FANOTIFY 716 atomic_t fanotify_listeners; 717 #endif 718 #ifdef CONFIG_EPOLL 719 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 720 #endif 721 #ifdef CONFIG_POSIX_MQUEUE 722 /* protected by mq_lock */ 723 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 724 #endif 725 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 726 727 #ifdef CONFIG_KEYS 728 struct key *uid_keyring; /* UID specific keyring */ 729 struct key *session_keyring; /* UID's default session keyring */ 730 #endif 731 732 /* Hash table maintenance information */ 733 struct hlist_node uidhash_node; 734 kuid_t uid; 735 736 #ifdef CONFIG_PERF_EVENTS 737 atomic_long_t locked_vm; 738 #endif 739 }; 740 741 extern int uids_sysfs_init(void); 742 743 extern struct user_struct *find_user(kuid_t); 744 745 extern struct user_struct root_user; 746 #define INIT_USER (&root_user) 747 748 749 struct backing_dev_info; 750 struct reclaim_state; 751 752 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 753 struct sched_info { 754 /* cumulative counters */ 755 unsigned long pcount; /* # of times run on this cpu */ 756 unsigned long long run_delay; /* time spent waiting on a runqueue */ 757 758 /* timestamps */ 759 unsigned long long last_arrival,/* when we last ran on a cpu */ 760 last_queued; /* when we were last queued to run */ 761 }; 762 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 763 764 #ifdef CONFIG_TASK_DELAY_ACCT 765 struct task_delay_info { 766 spinlock_t lock; 767 unsigned int flags; /* Private per-task flags */ 768 769 /* For each stat XXX, add following, aligned appropriately 770 * 771 * struct timespec XXX_start, XXX_end; 772 * u64 XXX_delay; 773 * u32 XXX_count; 774 * 775 * Atomicity of updates to XXX_delay, XXX_count protected by 776 * single lock above (split into XXX_lock if contention is an issue). 777 */ 778 779 /* 780 * XXX_count is incremented on every XXX operation, the delay 781 * associated with the operation is added to XXX_delay. 782 * XXX_delay contains the accumulated delay time in nanoseconds. 783 */ 784 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 785 u64 blkio_delay; /* wait for sync block io completion */ 786 u64 swapin_delay; /* wait for swapin block io completion */ 787 u32 blkio_count; /* total count of the number of sync block */ 788 /* io operations performed */ 789 u32 swapin_count; /* total count of the number of swapin block */ 790 /* io operations performed */ 791 792 struct timespec freepages_start, freepages_end; 793 u64 freepages_delay; /* wait for memory reclaim */ 794 u32 freepages_count; /* total count of memory reclaim */ 795 }; 796 #endif /* CONFIG_TASK_DELAY_ACCT */ 797 798 static inline int sched_info_on(void) 799 { 800 #ifdef CONFIG_SCHEDSTATS 801 return 1; 802 #elif defined(CONFIG_TASK_DELAY_ACCT) 803 extern int delayacct_on; 804 return delayacct_on; 805 #else 806 return 0; 807 #endif 808 } 809 810 enum cpu_idle_type { 811 CPU_IDLE, 812 CPU_NOT_IDLE, 813 CPU_NEWLY_IDLE, 814 CPU_MAX_IDLE_TYPES 815 }; 816 817 /* 818 * Increase resolution of nice-level calculations for 64-bit architectures. 819 * The extra resolution improves shares distribution and load balancing of 820 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 821 * hierarchies, especially on larger systems. This is not a user-visible change 822 * and does not change the user-interface for setting shares/weights. 823 * 824 * We increase resolution only if we have enough bits to allow this increased 825 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 826 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 827 * increased costs. 828 */ 829 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 830 # define SCHED_LOAD_RESOLUTION 10 831 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 832 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 833 #else 834 # define SCHED_LOAD_RESOLUTION 0 835 # define scale_load(w) (w) 836 # define scale_load_down(w) (w) 837 #endif 838 839 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 840 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 841 842 /* 843 * Increase resolution of cpu_power calculations 844 */ 845 #define SCHED_POWER_SHIFT 10 846 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 847 848 /* 849 * sched-domains (multiprocessor balancing) declarations: 850 */ 851 #ifdef CONFIG_SMP 852 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 853 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 854 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 855 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 856 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 857 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 858 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 859 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 860 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 861 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 862 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 863 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 864 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 865 866 extern int __weak arch_sd_sibiling_asym_packing(void); 867 868 struct sched_group_power { 869 atomic_t ref; 870 /* 871 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 872 * single CPU. 873 */ 874 unsigned int power, power_orig; 875 unsigned long next_update; 876 /* 877 * Number of busy cpus in this group. 878 */ 879 atomic_t nr_busy_cpus; 880 881 unsigned long cpumask[0]; /* iteration mask */ 882 }; 883 884 struct sched_group { 885 struct sched_group *next; /* Must be a circular list */ 886 atomic_t ref; 887 888 unsigned int group_weight; 889 struct sched_group_power *sgp; 890 891 /* 892 * The CPUs this group covers. 893 * 894 * NOTE: this field is variable length. (Allocated dynamically 895 * by attaching extra space to the end of the structure, 896 * depending on how many CPUs the kernel has booted up with) 897 */ 898 unsigned long cpumask[0]; 899 }; 900 901 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 902 { 903 return to_cpumask(sg->cpumask); 904 } 905 906 /* 907 * cpumask masking which cpus in the group are allowed to iterate up the domain 908 * tree. 909 */ 910 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 911 { 912 return to_cpumask(sg->sgp->cpumask); 913 } 914 915 /** 916 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 917 * @group: The group whose first cpu is to be returned. 918 */ 919 static inline unsigned int group_first_cpu(struct sched_group *group) 920 { 921 return cpumask_first(sched_group_cpus(group)); 922 } 923 924 struct sched_domain_attr { 925 int relax_domain_level; 926 }; 927 928 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 929 .relax_domain_level = -1, \ 930 } 931 932 extern int sched_domain_level_max; 933 934 struct sched_domain { 935 /* These fields must be setup */ 936 struct sched_domain *parent; /* top domain must be null terminated */ 937 struct sched_domain *child; /* bottom domain must be null terminated */ 938 struct sched_group *groups; /* the balancing groups of the domain */ 939 unsigned long min_interval; /* Minimum balance interval ms */ 940 unsigned long max_interval; /* Maximum balance interval ms */ 941 unsigned int busy_factor; /* less balancing by factor if busy */ 942 unsigned int imbalance_pct; /* No balance until over watermark */ 943 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 944 unsigned int busy_idx; 945 unsigned int idle_idx; 946 unsigned int newidle_idx; 947 unsigned int wake_idx; 948 unsigned int forkexec_idx; 949 unsigned int smt_gain; 950 int flags; /* See SD_* */ 951 int level; 952 953 /* Runtime fields. */ 954 unsigned long last_balance; /* init to jiffies. units in jiffies */ 955 unsigned int balance_interval; /* initialise to 1. units in ms. */ 956 unsigned int nr_balance_failed; /* initialise to 0 */ 957 958 u64 last_update; 959 960 #ifdef CONFIG_SCHEDSTATS 961 /* load_balance() stats */ 962 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 963 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 964 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 965 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 966 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 967 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 968 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 969 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 970 971 /* Active load balancing */ 972 unsigned int alb_count; 973 unsigned int alb_failed; 974 unsigned int alb_pushed; 975 976 /* SD_BALANCE_EXEC stats */ 977 unsigned int sbe_count; 978 unsigned int sbe_balanced; 979 unsigned int sbe_pushed; 980 981 /* SD_BALANCE_FORK stats */ 982 unsigned int sbf_count; 983 unsigned int sbf_balanced; 984 unsigned int sbf_pushed; 985 986 /* try_to_wake_up() stats */ 987 unsigned int ttwu_wake_remote; 988 unsigned int ttwu_move_affine; 989 unsigned int ttwu_move_balance; 990 #endif 991 #ifdef CONFIG_SCHED_DEBUG 992 char *name; 993 #endif 994 union { 995 void *private; /* used during construction */ 996 struct rcu_head rcu; /* used during destruction */ 997 }; 998 999 unsigned int span_weight; 1000 /* 1001 * Span of all CPUs in this domain. 1002 * 1003 * NOTE: this field is variable length. (Allocated dynamically 1004 * by attaching extra space to the end of the structure, 1005 * depending on how many CPUs the kernel has booted up with) 1006 */ 1007 unsigned long span[0]; 1008 }; 1009 1010 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1011 { 1012 return to_cpumask(sd->span); 1013 } 1014 1015 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1016 struct sched_domain_attr *dattr_new); 1017 1018 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1019 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1020 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1021 1022 /* Test a flag in parent sched domain */ 1023 static inline int test_sd_parent(struct sched_domain *sd, int flag) 1024 { 1025 if (sd->parent && (sd->parent->flags & flag)) 1026 return 1; 1027 1028 return 0; 1029 } 1030 1031 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1032 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1033 1034 bool cpus_share_cache(int this_cpu, int that_cpu); 1035 1036 #else /* CONFIG_SMP */ 1037 1038 struct sched_domain_attr; 1039 1040 static inline void 1041 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1042 struct sched_domain_attr *dattr_new) 1043 { 1044 } 1045 1046 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1047 { 1048 return true; 1049 } 1050 1051 #endif /* !CONFIG_SMP */ 1052 1053 1054 struct io_context; /* See blkdev.h */ 1055 1056 1057 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1058 extern void prefetch_stack(struct task_struct *t); 1059 #else 1060 static inline void prefetch_stack(struct task_struct *t) { } 1061 #endif 1062 1063 struct audit_context; /* See audit.c */ 1064 struct mempolicy; 1065 struct pipe_inode_info; 1066 struct uts_namespace; 1067 1068 struct rq; 1069 struct sched_domain; 1070 1071 /* 1072 * wake flags 1073 */ 1074 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1075 #define WF_FORK 0x02 /* child wakeup after fork */ 1076 #define WF_MIGRATED 0x04 /* internal use, task got migrated */ 1077 1078 #define ENQUEUE_WAKEUP 1 1079 #define ENQUEUE_HEAD 2 1080 #ifdef CONFIG_SMP 1081 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1082 #else 1083 #define ENQUEUE_WAKING 0 1084 #endif 1085 1086 #define DEQUEUE_SLEEP 1 1087 1088 struct sched_class { 1089 const struct sched_class *next; 1090 1091 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1092 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1093 void (*yield_task) (struct rq *rq); 1094 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1095 1096 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1097 1098 struct task_struct * (*pick_next_task) (struct rq *rq); 1099 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1100 1101 #ifdef CONFIG_SMP 1102 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1103 1104 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1105 void (*post_schedule) (struct rq *this_rq); 1106 void (*task_waking) (struct task_struct *task); 1107 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1108 1109 void (*set_cpus_allowed)(struct task_struct *p, 1110 const struct cpumask *newmask); 1111 1112 void (*rq_online)(struct rq *rq); 1113 void (*rq_offline)(struct rq *rq); 1114 #endif 1115 1116 void (*set_curr_task) (struct rq *rq); 1117 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1118 void (*task_fork) (struct task_struct *p); 1119 1120 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1121 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1122 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1123 int oldprio); 1124 1125 unsigned int (*get_rr_interval) (struct rq *rq, 1126 struct task_struct *task); 1127 1128 #ifdef CONFIG_FAIR_GROUP_SCHED 1129 void (*task_move_group) (struct task_struct *p, int on_rq); 1130 #endif 1131 }; 1132 1133 struct load_weight { 1134 unsigned long weight, inv_weight; 1135 }; 1136 1137 #ifdef CONFIG_SCHEDSTATS 1138 struct sched_statistics { 1139 u64 wait_start; 1140 u64 wait_max; 1141 u64 wait_count; 1142 u64 wait_sum; 1143 u64 iowait_count; 1144 u64 iowait_sum; 1145 1146 u64 sleep_start; 1147 u64 sleep_max; 1148 s64 sum_sleep_runtime; 1149 1150 u64 block_start; 1151 u64 block_max; 1152 u64 exec_max; 1153 u64 slice_max; 1154 1155 u64 nr_migrations_cold; 1156 u64 nr_failed_migrations_affine; 1157 u64 nr_failed_migrations_running; 1158 u64 nr_failed_migrations_hot; 1159 u64 nr_forced_migrations; 1160 1161 u64 nr_wakeups; 1162 u64 nr_wakeups_sync; 1163 u64 nr_wakeups_migrate; 1164 u64 nr_wakeups_local; 1165 u64 nr_wakeups_remote; 1166 u64 nr_wakeups_affine; 1167 u64 nr_wakeups_affine_attempts; 1168 u64 nr_wakeups_passive; 1169 u64 nr_wakeups_idle; 1170 }; 1171 #endif 1172 1173 struct sched_entity { 1174 struct load_weight load; /* for load-balancing */ 1175 struct rb_node run_node; 1176 struct list_head group_node; 1177 unsigned int on_rq; 1178 1179 u64 exec_start; 1180 u64 sum_exec_runtime; 1181 u64 vruntime; 1182 u64 prev_sum_exec_runtime; 1183 1184 u64 nr_migrations; 1185 1186 #ifdef CONFIG_SCHEDSTATS 1187 struct sched_statistics statistics; 1188 #endif 1189 1190 #ifdef CONFIG_FAIR_GROUP_SCHED 1191 struct sched_entity *parent; 1192 /* rq on which this entity is (to be) queued: */ 1193 struct cfs_rq *cfs_rq; 1194 /* rq "owned" by this entity/group: */ 1195 struct cfs_rq *my_q; 1196 #endif 1197 }; 1198 1199 struct sched_rt_entity { 1200 struct list_head run_list; 1201 unsigned long timeout; 1202 unsigned int time_slice; 1203 1204 struct sched_rt_entity *back; 1205 #ifdef CONFIG_RT_GROUP_SCHED 1206 struct sched_rt_entity *parent; 1207 /* rq on which this entity is (to be) queued: */ 1208 struct rt_rq *rt_rq; 1209 /* rq "owned" by this entity/group: */ 1210 struct rt_rq *my_q; 1211 #endif 1212 }; 1213 1214 /* 1215 * default timeslice is 100 msecs (used only for SCHED_RR tasks). 1216 * Timeslices get refilled after they expire. 1217 */ 1218 #define RR_TIMESLICE (100 * HZ / 1000) 1219 1220 struct rcu_node; 1221 1222 enum perf_event_task_context { 1223 perf_invalid_context = -1, 1224 perf_hw_context = 0, 1225 perf_sw_context, 1226 perf_nr_task_contexts, 1227 }; 1228 1229 struct task_struct { 1230 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1231 void *stack; 1232 atomic_t usage; 1233 unsigned int flags; /* per process flags, defined below */ 1234 unsigned int ptrace; 1235 1236 #ifdef CONFIG_SMP 1237 struct llist_node wake_entry; 1238 int on_cpu; 1239 #endif 1240 int on_rq; 1241 1242 int prio, static_prio, normal_prio; 1243 unsigned int rt_priority; 1244 const struct sched_class *sched_class; 1245 struct sched_entity se; 1246 struct sched_rt_entity rt; 1247 1248 #ifdef CONFIG_PREEMPT_NOTIFIERS 1249 /* list of struct preempt_notifier: */ 1250 struct hlist_head preempt_notifiers; 1251 #endif 1252 1253 /* 1254 * fpu_counter contains the number of consecutive context switches 1255 * that the FPU is used. If this is over a threshold, the lazy fpu 1256 * saving becomes unlazy to save the trap. This is an unsigned char 1257 * so that after 256 times the counter wraps and the behavior turns 1258 * lazy again; this to deal with bursty apps that only use FPU for 1259 * a short time 1260 */ 1261 unsigned char fpu_counter; 1262 #ifdef CONFIG_BLK_DEV_IO_TRACE 1263 unsigned int btrace_seq; 1264 #endif 1265 1266 unsigned int policy; 1267 int nr_cpus_allowed; 1268 cpumask_t cpus_allowed; 1269 1270 #ifdef CONFIG_PREEMPT_RCU 1271 int rcu_read_lock_nesting; 1272 char rcu_read_unlock_special; 1273 struct list_head rcu_node_entry; 1274 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1275 #ifdef CONFIG_TREE_PREEMPT_RCU 1276 struct rcu_node *rcu_blocked_node; 1277 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1278 #ifdef CONFIG_RCU_BOOST 1279 struct rt_mutex *rcu_boost_mutex; 1280 #endif /* #ifdef CONFIG_RCU_BOOST */ 1281 1282 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1283 struct sched_info sched_info; 1284 #endif 1285 1286 struct list_head tasks; 1287 #ifdef CONFIG_SMP 1288 struct plist_node pushable_tasks; 1289 #endif 1290 1291 struct mm_struct *mm, *active_mm; 1292 #ifdef CONFIG_COMPAT_BRK 1293 unsigned brk_randomized:1; 1294 #endif 1295 #if defined(SPLIT_RSS_COUNTING) 1296 struct task_rss_stat rss_stat; 1297 #endif 1298 /* task state */ 1299 int exit_state; 1300 int exit_code, exit_signal; 1301 int pdeath_signal; /* The signal sent when the parent dies */ 1302 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1303 /* ??? */ 1304 unsigned int personality; 1305 unsigned did_exec:1; 1306 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1307 * execve */ 1308 unsigned in_iowait:1; 1309 1310 /* task may not gain privileges */ 1311 unsigned no_new_privs:1; 1312 1313 /* Revert to default priority/policy when forking */ 1314 unsigned sched_reset_on_fork:1; 1315 unsigned sched_contributes_to_load:1; 1316 1317 pid_t pid; 1318 pid_t tgid; 1319 1320 #ifdef CONFIG_CC_STACKPROTECTOR 1321 /* Canary value for the -fstack-protector gcc feature */ 1322 unsigned long stack_canary; 1323 #endif 1324 /* 1325 * pointers to (original) parent process, youngest child, younger sibling, 1326 * older sibling, respectively. (p->father can be replaced with 1327 * p->real_parent->pid) 1328 */ 1329 struct task_struct __rcu *real_parent; /* real parent process */ 1330 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1331 /* 1332 * children/sibling forms the list of my natural children 1333 */ 1334 struct list_head children; /* list of my children */ 1335 struct list_head sibling; /* linkage in my parent's children list */ 1336 struct task_struct *group_leader; /* threadgroup leader */ 1337 1338 /* 1339 * ptraced is the list of tasks this task is using ptrace on. 1340 * This includes both natural children and PTRACE_ATTACH targets. 1341 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1342 */ 1343 struct list_head ptraced; 1344 struct list_head ptrace_entry; 1345 1346 /* PID/PID hash table linkage. */ 1347 struct pid_link pids[PIDTYPE_MAX]; 1348 struct list_head thread_group; 1349 1350 struct completion *vfork_done; /* for vfork() */ 1351 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1352 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1353 1354 cputime_t utime, stime, utimescaled, stimescaled; 1355 cputime_t gtime; 1356 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1357 cputime_t prev_utime, prev_stime; 1358 #endif 1359 unsigned long nvcsw, nivcsw; /* context switch counts */ 1360 struct timespec start_time; /* monotonic time */ 1361 struct timespec real_start_time; /* boot based time */ 1362 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1363 unsigned long min_flt, maj_flt; 1364 1365 struct task_cputime cputime_expires; 1366 struct list_head cpu_timers[3]; 1367 1368 /* process credentials */ 1369 const struct cred __rcu *real_cred; /* objective and real subjective task 1370 * credentials (COW) */ 1371 const struct cred __rcu *cred; /* effective (overridable) subjective task 1372 * credentials (COW) */ 1373 char comm[TASK_COMM_LEN]; /* executable name excluding path 1374 - access with [gs]et_task_comm (which lock 1375 it with task_lock()) 1376 - initialized normally by setup_new_exec */ 1377 /* file system info */ 1378 int link_count, total_link_count; 1379 #ifdef CONFIG_SYSVIPC 1380 /* ipc stuff */ 1381 struct sysv_sem sysvsem; 1382 #endif 1383 #ifdef CONFIG_DETECT_HUNG_TASK 1384 /* hung task detection */ 1385 unsigned long last_switch_count; 1386 #endif 1387 /* CPU-specific state of this task */ 1388 struct thread_struct thread; 1389 /* filesystem information */ 1390 struct fs_struct *fs; 1391 /* open file information */ 1392 struct files_struct *files; 1393 /* namespaces */ 1394 struct nsproxy *nsproxy; 1395 /* signal handlers */ 1396 struct signal_struct *signal; 1397 struct sighand_struct *sighand; 1398 1399 sigset_t blocked, real_blocked; 1400 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1401 struct sigpending pending; 1402 1403 unsigned long sas_ss_sp; 1404 size_t sas_ss_size; 1405 int (*notifier)(void *priv); 1406 void *notifier_data; 1407 sigset_t *notifier_mask; 1408 struct callback_head *task_works; 1409 1410 struct audit_context *audit_context; 1411 #ifdef CONFIG_AUDITSYSCALL 1412 uid_t loginuid; 1413 unsigned int sessionid; 1414 #endif 1415 struct seccomp seccomp; 1416 1417 /* Thread group tracking */ 1418 u32 parent_exec_id; 1419 u32 self_exec_id; 1420 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1421 * mempolicy */ 1422 spinlock_t alloc_lock; 1423 1424 /* Protection of the PI data structures: */ 1425 raw_spinlock_t pi_lock; 1426 1427 #ifdef CONFIG_RT_MUTEXES 1428 /* PI waiters blocked on a rt_mutex held by this task */ 1429 struct plist_head pi_waiters; 1430 /* Deadlock detection and priority inheritance handling */ 1431 struct rt_mutex_waiter *pi_blocked_on; 1432 #endif 1433 1434 #ifdef CONFIG_DEBUG_MUTEXES 1435 /* mutex deadlock detection */ 1436 struct mutex_waiter *blocked_on; 1437 #endif 1438 #ifdef CONFIG_TRACE_IRQFLAGS 1439 unsigned int irq_events; 1440 unsigned long hardirq_enable_ip; 1441 unsigned long hardirq_disable_ip; 1442 unsigned int hardirq_enable_event; 1443 unsigned int hardirq_disable_event; 1444 int hardirqs_enabled; 1445 int hardirq_context; 1446 unsigned long softirq_disable_ip; 1447 unsigned long softirq_enable_ip; 1448 unsigned int softirq_disable_event; 1449 unsigned int softirq_enable_event; 1450 int softirqs_enabled; 1451 int softirq_context; 1452 #endif 1453 #ifdef CONFIG_LOCKDEP 1454 # define MAX_LOCK_DEPTH 48UL 1455 u64 curr_chain_key; 1456 int lockdep_depth; 1457 unsigned int lockdep_recursion; 1458 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1459 gfp_t lockdep_reclaim_gfp; 1460 #endif 1461 1462 /* journalling filesystem info */ 1463 void *journal_info; 1464 1465 /* stacked block device info */ 1466 struct bio_list *bio_list; 1467 1468 #ifdef CONFIG_BLOCK 1469 /* stack plugging */ 1470 struct blk_plug *plug; 1471 #endif 1472 1473 /* VM state */ 1474 struct reclaim_state *reclaim_state; 1475 1476 struct backing_dev_info *backing_dev_info; 1477 1478 struct io_context *io_context; 1479 1480 unsigned long ptrace_message; 1481 siginfo_t *last_siginfo; /* For ptrace use. */ 1482 struct task_io_accounting ioac; 1483 #if defined(CONFIG_TASK_XACCT) 1484 u64 acct_rss_mem1; /* accumulated rss usage */ 1485 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1486 cputime_t acct_timexpd; /* stime + utime since last update */ 1487 #endif 1488 #ifdef CONFIG_CPUSETS 1489 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1490 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1491 int cpuset_mem_spread_rotor; 1492 int cpuset_slab_spread_rotor; 1493 #endif 1494 #ifdef CONFIG_CGROUPS 1495 /* Control Group info protected by css_set_lock */ 1496 struct css_set __rcu *cgroups; 1497 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1498 struct list_head cg_list; 1499 #endif 1500 #ifdef CONFIG_FUTEX 1501 struct robust_list_head __user *robust_list; 1502 #ifdef CONFIG_COMPAT 1503 struct compat_robust_list_head __user *compat_robust_list; 1504 #endif 1505 struct list_head pi_state_list; 1506 struct futex_pi_state *pi_state_cache; 1507 #endif 1508 #ifdef CONFIG_PERF_EVENTS 1509 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1510 struct mutex perf_event_mutex; 1511 struct list_head perf_event_list; 1512 #endif 1513 #ifdef CONFIG_NUMA 1514 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1515 short il_next; 1516 short pref_node_fork; 1517 #endif 1518 struct rcu_head rcu; 1519 1520 /* 1521 * cache last used pipe for splice 1522 */ 1523 struct pipe_inode_info *splice_pipe; 1524 #ifdef CONFIG_TASK_DELAY_ACCT 1525 struct task_delay_info *delays; 1526 #endif 1527 #ifdef CONFIG_FAULT_INJECTION 1528 int make_it_fail; 1529 #endif 1530 /* 1531 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1532 * balance_dirty_pages() for some dirty throttling pause 1533 */ 1534 int nr_dirtied; 1535 int nr_dirtied_pause; 1536 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1537 1538 #ifdef CONFIG_LATENCYTOP 1539 int latency_record_count; 1540 struct latency_record latency_record[LT_SAVECOUNT]; 1541 #endif 1542 /* 1543 * time slack values; these are used to round up poll() and 1544 * select() etc timeout values. These are in nanoseconds. 1545 */ 1546 unsigned long timer_slack_ns; 1547 unsigned long default_timer_slack_ns; 1548 1549 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1550 /* Index of current stored address in ret_stack */ 1551 int curr_ret_stack; 1552 /* Stack of return addresses for return function tracing */ 1553 struct ftrace_ret_stack *ret_stack; 1554 /* time stamp for last schedule */ 1555 unsigned long long ftrace_timestamp; 1556 /* 1557 * Number of functions that haven't been traced 1558 * because of depth overrun. 1559 */ 1560 atomic_t trace_overrun; 1561 /* Pause for the tracing */ 1562 atomic_t tracing_graph_pause; 1563 #endif 1564 #ifdef CONFIG_TRACING 1565 /* state flags for use by tracers */ 1566 unsigned long trace; 1567 /* bitmask and counter of trace recursion */ 1568 unsigned long trace_recursion; 1569 #endif /* CONFIG_TRACING */ 1570 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1571 struct memcg_batch_info { 1572 int do_batch; /* incremented when batch uncharge started */ 1573 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1574 unsigned long nr_pages; /* uncharged usage */ 1575 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1576 } memcg_batch; 1577 #endif 1578 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1579 atomic_t ptrace_bp_refcnt; 1580 #endif 1581 #ifdef CONFIG_UPROBES 1582 struct uprobe_task *utask; 1583 #endif 1584 }; 1585 1586 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1587 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1588 1589 /* 1590 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1591 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1592 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1593 * values are inverted: lower p->prio value means higher priority. 1594 * 1595 * The MAX_USER_RT_PRIO value allows the actual maximum 1596 * RT priority to be separate from the value exported to 1597 * user-space. This allows kernel threads to set their 1598 * priority to a value higher than any user task. Note: 1599 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1600 */ 1601 1602 #define MAX_USER_RT_PRIO 100 1603 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1604 1605 #define MAX_PRIO (MAX_RT_PRIO + 40) 1606 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1607 1608 static inline int rt_prio(int prio) 1609 { 1610 if (unlikely(prio < MAX_RT_PRIO)) 1611 return 1; 1612 return 0; 1613 } 1614 1615 static inline int rt_task(struct task_struct *p) 1616 { 1617 return rt_prio(p->prio); 1618 } 1619 1620 static inline struct pid *task_pid(struct task_struct *task) 1621 { 1622 return task->pids[PIDTYPE_PID].pid; 1623 } 1624 1625 static inline struct pid *task_tgid(struct task_struct *task) 1626 { 1627 return task->group_leader->pids[PIDTYPE_PID].pid; 1628 } 1629 1630 /* 1631 * Without tasklist or rcu lock it is not safe to dereference 1632 * the result of task_pgrp/task_session even if task == current, 1633 * we can race with another thread doing sys_setsid/sys_setpgid. 1634 */ 1635 static inline struct pid *task_pgrp(struct task_struct *task) 1636 { 1637 return task->group_leader->pids[PIDTYPE_PGID].pid; 1638 } 1639 1640 static inline struct pid *task_session(struct task_struct *task) 1641 { 1642 return task->group_leader->pids[PIDTYPE_SID].pid; 1643 } 1644 1645 struct pid_namespace; 1646 1647 /* 1648 * the helpers to get the task's different pids as they are seen 1649 * from various namespaces 1650 * 1651 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1652 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1653 * current. 1654 * task_xid_nr_ns() : id seen from the ns specified; 1655 * 1656 * set_task_vxid() : assigns a virtual id to a task; 1657 * 1658 * see also pid_nr() etc in include/linux/pid.h 1659 */ 1660 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1661 struct pid_namespace *ns); 1662 1663 static inline pid_t task_pid_nr(struct task_struct *tsk) 1664 { 1665 return tsk->pid; 1666 } 1667 1668 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1669 struct pid_namespace *ns) 1670 { 1671 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1672 } 1673 1674 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1675 { 1676 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1677 } 1678 1679 1680 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1681 { 1682 return tsk->tgid; 1683 } 1684 1685 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1686 1687 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1688 { 1689 return pid_vnr(task_tgid(tsk)); 1690 } 1691 1692 1693 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1694 struct pid_namespace *ns) 1695 { 1696 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1697 } 1698 1699 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1700 { 1701 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1702 } 1703 1704 1705 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1706 struct pid_namespace *ns) 1707 { 1708 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1709 } 1710 1711 static inline pid_t task_session_vnr(struct task_struct *tsk) 1712 { 1713 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1714 } 1715 1716 /* obsolete, do not use */ 1717 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1718 { 1719 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1720 } 1721 1722 /** 1723 * pid_alive - check that a task structure is not stale 1724 * @p: Task structure to be checked. 1725 * 1726 * Test if a process is not yet dead (at most zombie state) 1727 * If pid_alive fails, then pointers within the task structure 1728 * can be stale and must not be dereferenced. 1729 */ 1730 static inline int pid_alive(struct task_struct *p) 1731 { 1732 return p->pids[PIDTYPE_PID].pid != NULL; 1733 } 1734 1735 /** 1736 * is_global_init - check if a task structure is init 1737 * @tsk: Task structure to be checked. 1738 * 1739 * Check if a task structure is the first user space task the kernel created. 1740 */ 1741 static inline int is_global_init(struct task_struct *tsk) 1742 { 1743 return tsk->pid == 1; 1744 } 1745 1746 /* 1747 * is_container_init: 1748 * check whether in the task is init in its own pid namespace. 1749 */ 1750 extern int is_container_init(struct task_struct *tsk); 1751 1752 extern struct pid *cad_pid; 1753 1754 extern void free_task(struct task_struct *tsk); 1755 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1756 1757 extern void __put_task_struct(struct task_struct *t); 1758 1759 static inline void put_task_struct(struct task_struct *t) 1760 { 1761 if (atomic_dec_and_test(&t->usage)) 1762 __put_task_struct(t); 1763 } 1764 1765 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1766 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1767 1768 /* 1769 * Per process flags 1770 */ 1771 #define PF_EXITING 0x00000004 /* getting shut down */ 1772 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1773 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1774 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1775 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1776 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1777 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1778 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1779 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1780 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1781 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1782 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1783 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1784 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1785 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1786 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1787 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1788 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1789 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1790 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1791 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1792 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1793 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1794 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1795 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1796 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1797 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1798 1799 /* 1800 * Only the _current_ task can read/write to tsk->flags, but other 1801 * tasks can access tsk->flags in readonly mode for example 1802 * with tsk_used_math (like during threaded core dumping). 1803 * There is however an exception to this rule during ptrace 1804 * or during fork: the ptracer task is allowed to write to the 1805 * child->flags of its traced child (same goes for fork, the parent 1806 * can write to the child->flags), because we're guaranteed the 1807 * child is not running and in turn not changing child->flags 1808 * at the same time the parent does it. 1809 */ 1810 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1811 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1812 #define clear_used_math() clear_stopped_child_used_math(current) 1813 #define set_used_math() set_stopped_child_used_math(current) 1814 #define conditional_stopped_child_used_math(condition, child) \ 1815 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1816 #define conditional_used_math(condition) \ 1817 conditional_stopped_child_used_math(condition, current) 1818 #define copy_to_stopped_child_used_math(child) \ 1819 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1820 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1821 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1822 #define used_math() tsk_used_math(current) 1823 1824 /* 1825 * task->jobctl flags 1826 */ 1827 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1828 1829 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1830 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1831 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1832 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1833 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1834 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1835 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1836 1837 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1838 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1839 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1840 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1841 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1842 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1843 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1844 1845 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1846 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1847 1848 extern bool task_set_jobctl_pending(struct task_struct *task, 1849 unsigned int mask); 1850 extern void task_clear_jobctl_trapping(struct task_struct *task); 1851 extern void task_clear_jobctl_pending(struct task_struct *task, 1852 unsigned int mask); 1853 1854 #ifdef CONFIG_PREEMPT_RCU 1855 1856 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1857 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1858 1859 static inline void rcu_copy_process(struct task_struct *p) 1860 { 1861 p->rcu_read_lock_nesting = 0; 1862 p->rcu_read_unlock_special = 0; 1863 #ifdef CONFIG_TREE_PREEMPT_RCU 1864 p->rcu_blocked_node = NULL; 1865 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1866 #ifdef CONFIG_RCU_BOOST 1867 p->rcu_boost_mutex = NULL; 1868 #endif /* #ifdef CONFIG_RCU_BOOST */ 1869 INIT_LIST_HEAD(&p->rcu_node_entry); 1870 } 1871 1872 #else 1873 1874 static inline void rcu_copy_process(struct task_struct *p) 1875 { 1876 } 1877 1878 #endif 1879 1880 #ifdef CONFIG_SMP 1881 extern void do_set_cpus_allowed(struct task_struct *p, 1882 const struct cpumask *new_mask); 1883 1884 extern int set_cpus_allowed_ptr(struct task_struct *p, 1885 const struct cpumask *new_mask); 1886 #else 1887 static inline void do_set_cpus_allowed(struct task_struct *p, 1888 const struct cpumask *new_mask) 1889 { 1890 } 1891 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1892 const struct cpumask *new_mask) 1893 { 1894 if (!cpumask_test_cpu(0, new_mask)) 1895 return -EINVAL; 1896 return 0; 1897 } 1898 #endif 1899 1900 #ifdef CONFIG_NO_HZ 1901 void calc_load_enter_idle(void); 1902 void calc_load_exit_idle(void); 1903 #else 1904 static inline void calc_load_enter_idle(void) { } 1905 static inline void calc_load_exit_idle(void) { } 1906 #endif /* CONFIG_NO_HZ */ 1907 1908 #ifndef CONFIG_CPUMASK_OFFSTACK 1909 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1910 { 1911 return set_cpus_allowed_ptr(p, &new_mask); 1912 } 1913 #endif 1914 1915 /* 1916 * Do not use outside of architecture code which knows its limitations. 1917 * 1918 * sched_clock() has no promise of monotonicity or bounded drift between 1919 * CPUs, use (which you should not) requires disabling IRQs. 1920 * 1921 * Please use one of the three interfaces below. 1922 */ 1923 extern unsigned long long notrace sched_clock(void); 1924 /* 1925 * See the comment in kernel/sched/clock.c 1926 */ 1927 extern u64 cpu_clock(int cpu); 1928 extern u64 local_clock(void); 1929 extern u64 sched_clock_cpu(int cpu); 1930 1931 1932 extern void sched_clock_init(void); 1933 1934 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1935 static inline void sched_clock_tick(void) 1936 { 1937 } 1938 1939 static inline void sched_clock_idle_sleep_event(void) 1940 { 1941 } 1942 1943 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1944 { 1945 } 1946 #else 1947 /* 1948 * Architectures can set this to 1 if they have specified 1949 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1950 * but then during bootup it turns out that sched_clock() 1951 * is reliable after all: 1952 */ 1953 extern int sched_clock_stable; 1954 1955 extern void sched_clock_tick(void); 1956 extern void sched_clock_idle_sleep_event(void); 1957 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1958 #endif 1959 1960 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1961 /* 1962 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1963 * The reason for this explicit opt-in is not to have perf penalty with 1964 * slow sched_clocks. 1965 */ 1966 extern void enable_sched_clock_irqtime(void); 1967 extern void disable_sched_clock_irqtime(void); 1968 #else 1969 static inline void enable_sched_clock_irqtime(void) {} 1970 static inline void disable_sched_clock_irqtime(void) {} 1971 #endif 1972 1973 extern unsigned long long 1974 task_sched_runtime(struct task_struct *task); 1975 1976 /* sched_exec is called by processes performing an exec */ 1977 #ifdef CONFIG_SMP 1978 extern void sched_exec(void); 1979 #else 1980 #define sched_exec() {} 1981 #endif 1982 1983 extern void sched_clock_idle_sleep_event(void); 1984 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1985 1986 #ifdef CONFIG_HOTPLUG_CPU 1987 extern void idle_task_exit(void); 1988 #else 1989 static inline void idle_task_exit(void) {} 1990 #endif 1991 1992 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1993 extern void wake_up_idle_cpu(int cpu); 1994 #else 1995 static inline void wake_up_idle_cpu(int cpu) { } 1996 #endif 1997 1998 extern unsigned int sysctl_sched_latency; 1999 extern unsigned int sysctl_sched_min_granularity; 2000 extern unsigned int sysctl_sched_wakeup_granularity; 2001 extern unsigned int sysctl_sched_child_runs_first; 2002 2003 enum sched_tunable_scaling { 2004 SCHED_TUNABLESCALING_NONE, 2005 SCHED_TUNABLESCALING_LOG, 2006 SCHED_TUNABLESCALING_LINEAR, 2007 SCHED_TUNABLESCALING_END, 2008 }; 2009 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 2010 2011 #ifdef CONFIG_SCHED_DEBUG 2012 extern unsigned int sysctl_sched_migration_cost; 2013 extern unsigned int sysctl_sched_nr_migrate; 2014 extern unsigned int sysctl_sched_time_avg; 2015 extern unsigned int sysctl_timer_migration; 2016 extern unsigned int sysctl_sched_shares_window; 2017 2018 int sched_proc_update_handler(struct ctl_table *table, int write, 2019 void __user *buffer, size_t *length, 2020 loff_t *ppos); 2021 #endif 2022 #ifdef CONFIG_SCHED_DEBUG 2023 static inline unsigned int get_sysctl_timer_migration(void) 2024 { 2025 return sysctl_timer_migration; 2026 } 2027 #else 2028 static inline unsigned int get_sysctl_timer_migration(void) 2029 { 2030 return 1; 2031 } 2032 #endif 2033 extern unsigned int sysctl_sched_rt_period; 2034 extern int sysctl_sched_rt_runtime; 2035 2036 int sched_rt_handler(struct ctl_table *table, int write, 2037 void __user *buffer, size_t *lenp, 2038 loff_t *ppos); 2039 2040 #ifdef CONFIG_SCHED_AUTOGROUP 2041 extern unsigned int sysctl_sched_autogroup_enabled; 2042 2043 extern void sched_autogroup_create_attach(struct task_struct *p); 2044 extern void sched_autogroup_detach(struct task_struct *p); 2045 extern void sched_autogroup_fork(struct signal_struct *sig); 2046 extern void sched_autogroup_exit(struct signal_struct *sig); 2047 #ifdef CONFIG_PROC_FS 2048 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2049 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2050 #endif 2051 #else 2052 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2053 static inline void sched_autogroup_detach(struct task_struct *p) { } 2054 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2055 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2056 #endif 2057 2058 #ifdef CONFIG_CFS_BANDWIDTH 2059 extern unsigned int sysctl_sched_cfs_bandwidth_slice; 2060 #endif 2061 2062 #ifdef CONFIG_RT_MUTEXES 2063 extern int rt_mutex_getprio(struct task_struct *p); 2064 extern void rt_mutex_setprio(struct task_struct *p, int prio); 2065 extern void rt_mutex_adjust_pi(struct task_struct *p); 2066 static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2067 { 2068 return tsk->pi_blocked_on != NULL; 2069 } 2070 #else 2071 static inline int rt_mutex_getprio(struct task_struct *p) 2072 { 2073 return p->normal_prio; 2074 } 2075 # define rt_mutex_adjust_pi(p) do { } while (0) 2076 static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2077 { 2078 return false; 2079 } 2080 #endif 2081 2082 extern bool yield_to(struct task_struct *p, bool preempt); 2083 extern void set_user_nice(struct task_struct *p, long nice); 2084 extern int task_prio(const struct task_struct *p); 2085 extern int task_nice(const struct task_struct *p); 2086 extern int can_nice(const struct task_struct *p, const int nice); 2087 extern int task_curr(const struct task_struct *p); 2088 extern int idle_cpu(int cpu); 2089 extern int sched_setscheduler(struct task_struct *, int, 2090 const struct sched_param *); 2091 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2092 const struct sched_param *); 2093 extern struct task_struct *idle_task(int cpu); 2094 /** 2095 * is_idle_task - is the specified task an idle task? 2096 * @p: the task in question. 2097 */ 2098 static inline bool is_idle_task(const struct task_struct *p) 2099 { 2100 return p->pid == 0; 2101 } 2102 extern struct task_struct *curr_task(int cpu); 2103 extern void set_curr_task(int cpu, struct task_struct *p); 2104 2105 void yield(void); 2106 2107 /* 2108 * The default (Linux) execution domain. 2109 */ 2110 extern struct exec_domain default_exec_domain; 2111 2112 union thread_union { 2113 struct thread_info thread_info; 2114 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2115 }; 2116 2117 #ifndef __HAVE_ARCH_KSTACK_END 2118 static inline int kstack_end(void *addr) 2119 { 2120 /* Reliable end of stack detection: 2121 * Some APM bios versions misalign the stack 2122 */ 2123 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2124 } 2125 #endif 2126 2127 extern union thread_union init_thread_union; 2128 extern struct task_struct init_task; 2129 2130 extern struct mm_struct init_mm; 2131 2132 extern struct pid_namespace init_pid_ns; 2133 2134 /* 2135 * find a task by one of its numerical ids 2136 * 2137 * find_task_by_pid_ns(): 2138 * finds a task by its pid in the specified namespace 2139 * find_task_by_vpid(): 2140 * finds a task by its virtual pid 2141 * 2142 * see also find_vpid() etc in include/linux/pid.h 2143 */ 2144 2145 extern struct task_struct *find_task_by_vpid(pid_t nr); 2146 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2147 struct pid_namespace *ns); 2148 2149 extern void __set_special_pids(struct pid *pid); 2150 2151 /* per-UID process charging. */ 2152 extern struct user_struct * alloc_uid(kuid_t); 2153 static inline struct user_struct *get_uid(struct user_struct *u) 2154 { 2155 atomic_inc(&u->__count); 2156 return u; 2157 } 2158 extern void free_uid(struct user_struct *); 2159 2160 #include <asm/current.h> 2161 2162 extern void xtime_update(unsigned long ticks); 2163 2164 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2165 extern int wake_up_process(struct task_struct *tsk); 2166 extern void wake_up_new_task(struct task_struct *tsk); 2167 #ifdef CONFIG_SMP 2168 extern void kick_process(struct task_struct *tsk); 2169 #else 2170 static inline void kick_process(struct task_struct *tsk) { } 2171 #endif 2172 extern void sched_fork(struct task_struct *p); 2173 extern void sched_dead(struct task_struct *p); 2174 2175 extern void proc_caches_init(void); 2176 extern void flush_signals(struct task_struct *); 2177 extern void __flush_signals(struct task_struct *); 2178 extern void ignore_signals(struct task_struct *); 2179 extern void flush_signal_handlers(struct task_struct *, int force_default); 2180 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2181 2182 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2183 { 2184 unsigned long flags; 2185 int ret; 2186 2187 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2188 ret = dequeue_signal(tsk, mask, info); 2189 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2190 2191 return ret; 2192 } 2193 2194 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2195 sigset_t *mask); 2196 extern void unblock_all_signals(void); 2197 extern void release_task(struct task_struct * p); 2198 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2199 extern int force_sigsegv(int, struct task_struct *); 2200 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2201 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2202 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2203 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2204 const struct cred *, u32); 2205 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2206 extern int kill_pid(struct pid *pid, int sig, int priv); 2207 extern int kill_proc_info(int, struct siginfo *, pid_t); 2208 extern __must_check bool do_notify_parent(struct task_struct *, int); 2209 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2210 extern void force_sig(int, struct task_struct *); 2211 extern int send_sig(int, struct task_struct *, int); 2212 extern int zap_other_threads(struct task_struct *p); 2213 extern struct sigqueue *sigqueue_alloc(void); 2214 extern void sigqueue_free(struct sigqueue *); 2215 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2216 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2217 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2218 2219 static inline void restore_saved_sigmask(void) 2220 { 2221 if (test_and_clear_restore_sigmask()) 2222 __set_current_blocked(¤t->saved_sigmask); 2223 } 2224 2225 static inline sigset_t *sigmask_to_save(void) 2226 { 2227 sigset_t *res = ¤t->blocked; 2228 if (unlikely(test_restore_sigmask())) 2229 res = ¤t->saved_sigmask; 2230 return res; 2231 } 2232 2233 static inline int kill_cad_pid(int sig, int priv) 2234 { 2235 return kill_pid(cad_pid, sig, priv); 2236 } 2237 2238 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2239 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2240 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2241 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2242 2243 /* 2244 * True if we are on the alternate signal stack. 2245 */ 2246 static inline int on_sig_stack(unsigned long sp) 2247 { 2248 #ifdef CONFIG_STACK_GROWSUP 2249 return sp >= current->sas_ss_sp && 2250 sp - current->sas_ss_sp < current->sas_ss_size; 2251 #else 2252 return sp > current->sas_ss_sp && 2253 sp - current->sas_ss_sp <= current->sas_ss_size; 2254 #endif 2255 } 2256 2257 static inline int sas_ss_flags(unsigned long sp) 2258 { 2259 return (current->sas_ss_size == 0 ? SS_DISABLE 2260 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2261 } 2262 2263 /* 2264 * Routines for handling mm_structs 2265 */ 2266 extern struct mm_struct * mm_alloc(void); 2267 2268 /* mmdrop drops the mm and the page tables */ 2269 extern void __mmdrop(struct mm_struct *); 2270 static inline void mmdrop(struct mm_struct * mm) 2271 { 2272 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2273 __mmdrop(mm); 2274 } 2275 2276 /* mmput gets rid of the mappings and all user-space */ 2277 extern void mmput(struct mm_struct *); 2278 /* Grab a reference to a task's mm, if it is not already going away */ 2279 extern struct mm_struct *get_task_mm(struct task_struct *task); 2280 /* 2281 * Grab a reference to a task's mm, if it is not already going away 2282 * and ptrace_may_access with the mode parameter passed to it 2283 * succeeds. 2284 */ 2285 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2286 /* Remove the current tasks stale references to the old mm_struct */ 2287 extern void mm_release(struct task_struct *, struct mm_struct *); 2288 /* Allocate a new mm structure and copy contents from tsk->mm */ 2289 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2290 2291 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2292 struct task_struct *, struct pt_regs *); 2293 extern void flush_thread(void); 2294 extern void exit_thread(void); 2295 2296 extern void exit_files(struct task_struct *); 2297 extern void __cleanup_sighand(struct sighand_struct *); 2298 2299 extern void exit_itimers(struct signal_struct *); 2300 extern void flush_itimer_signals(void); 2301 2302 extern void do_group_exit(int); 2303 2304 extern void daemonize(const char *, ...); 2305 extern int allow_signal(int); 2306 extern int disallow_signal(int); 2307 2308 extern int do_execve(const char *, 2309 const char __user * const __user *, 2310 const char __user * const __user *, struct pt_regs *); 2311 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2312 struct task_struct *fork_idle(int); 2313 2314 extern void set_task_comm(struct task_struct *tsk, char *from); 2315 extern char *get_task_comm(char *to, struct task_struct *tsk); 2316 2317 #ifdef CONFIG_SMP 2318 void scheduler_ipi(void); 2319 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2320 #else 2321 static inline void scheduler_ipi(void) { } 2322 static inline unsigned long wait_task_inactive(struct task_struct *p, 2323 long match_state) 2324 { 2325 return 1; 2326 } 2327 #endif 2328 2329 #define next_task(p) \ 2330 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2331 2332 #define for_each_process(p) \ 2333 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2334 2335 extern bool current_is_single_threaded(void); 2336 2337 /* 2338 * Careful: do_each_thread/while_each_thread is a double loop so 2339 * 'break' will not work as expected - use goto instead. 2340 */ 2341 #define do_each_thread(g, t) \ 2342 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2343 2344 #define while_each_thread(g, t) \ 2345 while ((t = next_thread(t)) != g) 2346 2347 static inline int get_nr_threads(struct task_struct *tsk) 2348 { 2349 return tsk->signal->nr_threads; 2350 } 2351 2352 static inline bool thread_group_leader(struct task_struct *p) 2353 { 2354 return p->exit_signal >= 0; 2355 } 2356 2357 /* Do to the insanities of de_thread it is possible for a process 2358 * to have the pid of the thread group leader without actually being 2359 * the thread group leader. For iteration through the pids in proc 2360 * all we care about is that we have a task with the appropriate 2361 * pid, we don't actually care if we have the right task. 2362 */ 2363 static inline int has_group_leader_pid(struct task_struct *p) 2364 { 2365 return p->pid == p->tgid; 2366 } 2367 2368 static inline 2369 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2370 { 2371 return p1->tgid == p2->tgid; 2372 } 2373 2374 static inline struct task_struct *next_thread(const struct task_struct *p) 2375 { 2376 return list_entry_rcu(p->thread_group.next, 2377 struct task_struct, thread_group); 2378 } 2379 2380 static inline int thread_group_empty(struct task_struct *p) 2381 { 2382 return list_empty(&p->thread_group); 2383 } 2384 2385 #define delay_group_leader(p) \ 2386 (thread_group_leader(p) && !thread_group_empty(p)) 2387 2388 /* 2389 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2390 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2391 * pins the final release of task.io_context. Also protects ->cpuset and 2392 * ->cgroup.subsys[]. And ->vfork_done. 2393 * 2394 * Nests both inside and outside of read_lock(&tasklist_lock). 2395 * It must not be nested with write_lock_irq(&tasklist_lock), 2396 * neither inside nor outside. 2397 */ 2398 static inline void task_lock(struct task_struct *p) 2399 { 2400 spin_lock(&p->alloc_lock); 2401 } 2402 2403 static inline void task_unlock(struct task_struct *p) 2404 { 2405 spin_unlock(&p->alloc_lock); 2406 } 2407 2408 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2409 unsigned long *flags); 2410 2411 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2412 unsigned long *flags) 2413 { 2414 struct sighand_struct *ret; 2415 2416 ret = __lock_task_sighand(tsk, flags); 2417 (void)__cond_lock(&tsk->sighand->siglock, ret); 2418 return ret; 2419 } 2420 2421 static inline void unlock_task_sighand(struct task_struct *tsk, 2422 unsigned long *flags) 2423 { 2424 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2425 } 2426 2427 #ifdef CONFIG_CGROUPS 2428 static inline void threadgroup_change_begin(struct task_struct *tsk) 2429 { 2430 down_read(&tsk->signal->group_rwsem); 2431 } 2432 static inline void threadgroup_change_end(struct task_struct *tsk) 2433 { 2434 up_read(&tsk->signal->group_rwsem); 2435 } 2436 2437 /** 2438 * threadgroup_lock - lock threadgroup 2439 * @tsk: member task of the threadgroup to lock 2440 * 2441 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2442 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2443 * perform exec. This is useful for cases where the threadgroup needs to 2444 * stay stable across blockable operations. 2445 * 2446 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2447 * synchronization. While held, no new task will be added to threadgroup 2448 * and no existing live task will have its PF_EXITING set. 2449 * 2450 * During exec, a task goes and puts its thread group through unusual 2451 * changes. After de-threading, exclusive access is assumed to resources 2452 * which are usually shared by tasks in the same group - e.g. sighand may 2453 * be replaced with a new one. Also, the exec'ing task takes over group 2454 * leader role including its pid. Exclude these changes while locked by 2455 * grabbing cred_guard_mutex which is used to synchronize exec path. 2456 */ 2457 static inline void threadgroup_lock(struct task_struct *tsk) 2458 { 2459 /* 2460 * exec uses exit for de-threading nesting group_rwsem inside 2461 * cred_guard_mutex. Grab cred_guard_mutex first. 2462 */ 2463 mutex_lock(&tsk->signal->cred_guard_mutex); 2464 down_write(&tsk->signal->group_rwsem); 2465 } 2466 2467 /** 2468 * threadgroup_unlock - unlock threadgroup 2469 * @tsk: member task of the threadgroup to unlock 2470 * 2471 * Reverse threadgroup_lock(). 2472 */ 2473 static inline void threadgroup_unlock(struct task_struct *tsk) 2474 { 2475 up_write(&tsk->signal->group_rwsem); 2476 mutex_unlock(&tsk->signal->cred_guard_mutex); 2477 } 2478 #else 2479 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2480 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2481 static inline void threadgroup_lock(struct task_struct *tsk) {} 2482 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2483 #endif 2484 2485 #ifndef __HAVE_THREAD_FUNCTIONS 2486 2487 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2488 #define task_stack_page(task) ((task)->stack) 2489 2490 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2491 { 2492 *task_thread_info(p) = *task_thread_info(org); 2493 task_thread_info(p)->task = p; 2494 } 2495 2496 static inline unsigned long *end_of_stack(struct task_struct *p) 2497 { 2498 return (unsigned long *)(task_thread_info(p) + 1); 2499 } 2500 2501 #endif 2502 2503 static inline int object_is_on_stack(void *obj) 2504 { 2505 void *stack = task_stack_page(current); 2506 2507 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2508 } 2509 2510 extern void thread_info_cache_init(void); 2511 2512 #ifdef CONFIG_DEBUG_STACK_USAGE 2513 static inline unsigned long stack_not_used(struct task_struct *p) 2514 { 2515 unsigned long *n = end_of_stack(p); 2516 2517 do { /* Skip over canary */ 2518 n++; 2519 } while (!*n); 2520 2521 return (unsigned long)n - (unsigned long)end_of_stack(p); 2522 } 2523 #endif 2524 2525 /* set thread flags in other task's structures 2526 * - see asm/thread_info.h for TIF_xxxx flags available 2527 */ 2528 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2529 { 2530 set_ti_thread_flag(task_thread_info(tsk), flag); 2531 } 2532 2533 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2534 { 2535 clear_ti_thread_flag(task_thread_info(tsk), flag); 2536 } 2537 2538 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2539 { 2540 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2541 } 2542 2543 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2544 { 2545 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2546 } 2547 2548 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2549 { 2550 return test_ti_thread_flag(task_thread_info(tsk), flag); 2551 } 2552 2553 static inline void set_tsk_need_resched(struct task_struct *tsk) 2554 { 2555 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2556 } 2557 2558 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2559 { 2560 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2561 } 2562 2563 static inline int test_tsk_need_resched(struct task_struct *tsk) 2564 { 2565 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2566 } 2567 2568 static inline int restart_syscall(void) 2569 { 2570 set_tsk_thread_flag(current, TIF_SIGPENDING); 2571 return -ERESTARTNOINTR; 2572 } 2573 2574 static inline int signal_pending(struct task_struct *p) 2575 { 2576 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2577 } 2578 2579 static inline int __fatal_signal_pending(struct task_struct *p) 2580 { 2581 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2582 } 2583 2584 static inline int fatal_signal_pending(struct task_struct *p) 2585 { 2586 return signal_pending(p) && __fatal_signal_pending(p); 2587 } 2588 2589 static inline int signal_pending_state(long state, struct task_struct *p) 2590 { 2591 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2592 return 0; 2593 if (!signal_pending(p)) 2594 return 0; 2595 2596 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2597 } 2598 2599 static inline int need_resched(void) 2600 { 2601 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2602 } 2603 2604 /* 2605 * cond_resched() and cond_resched_lock(): latency reduction via 2606 * explicit rescheduling in places that are safe. The return 2607 * value indicates whether a reschedule was done in fact. 2608 * cond_resched_lock() will drop the spinlock before scheduling, 2609 * cond_resched_softirq() will enable bhs before scheduling. 2610 */ 2611 extern int _cond_resched(void); 2612 2613 #define cond_resched() ({ \ 2614 __might_sleep(__FILE__, __LINE__, 0); \ 2615 _cond_resched(); \ 2616 }) 2617 2618 extern int __cond_resched_lock(spinlock_t *lock); 2619 2620 #ifdef CONFIG_PREEMPT_COUNT 2621 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2622 #else 2623 #define PREEMPT_LOCK_OFFSET 0 2624 #endif 2625 2626 #define cond_resched_lock(lock) ({ \ 2627 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2628 __cond_resched_lock(lock); \ 2629 }) 2630 2631 extern int __cond_resched_softirq(void); 2632 2633 #define cond_resched_softirq() ({ \ 2634 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2635 __cond_resched_softirq(); \ 2636 }) 2637 2638 /* 2639 * Does a critical section need to be broken due to another 2640 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2641 * but a general need for low latency) 2642 */ 2643 static inline int spin_needbreak(spinlock_t *lock) 2644 { 2645 #ifdef CONFIG_PREEMPT 2646 return spin_is_contended(lock); 2647 #else 2648 return 0; 2649 #endif 2650 } 2651 2652 /* 2653 * Thread group CPU time accounting. 2654 */ 2655 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2656 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2657 2658 static inline void thread_group_cputime_init(struct signal_struct *sig) 2659 { 2660 raw_spin_lock_init(&sig->cputimer.lock); 2661 } 2662 2663 /* 2664 * Reevaluate whether the task has signals pending delivery. 2665 * Wake the task if so. 2666 * This is required every time the blocked sigset_t changes. 2667 * callers must hold sighand->siglock. 2668 */ 2669 extern void recalc_sigpending_and_wake(struct task_struct *t); 2670 extern void recalc_sigpending(void); 2671 2672 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2673 2674 /* 2675 * Wrappers for p->thread_info->cpu access. No-op on UP. 2676 */ 2677 #ifdef CONFIG_SMP 2678 2679 static inline unsigned int task_cpu(const struct task_struct *p) 2680 { 2681 return task_thread_info(p)->cpu; 2682 } 2683 2684 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2685 2686 #else 2687 2688 static inline unsigned int task_cpu(const struct task_struct *p) 2689 { 2690 return 0; 2691 } 2692 2693 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2694 { 2695 } 2696 2697 #endif /* CONFIG_SMP */ 2698 2699 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2700 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2701 2702 extern void normalize_rt_tasks(void); 2703 2704 #ifdef CONFIG_CGROUP_SCHED 2705 2706 extern struct task_group root_task_group; 2707 2708 extern struct task_group *sched_create_group(struct task_group *parent); 2709 extern void sched_destroy_group(struct task_group *tg); 2710 extern void sched_move_task(struct task_struct *tsk); 2711 #ifdef CONFIG_FAIR_GROUP_SCHED 2712 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2713 extern unsigned long sched_group_shares(struct task_group *tg); 2714 #endif 2715 #ifdef CONFIG_RT_GROUP_SCHED 2716 extern int sched_group_set_rt_runtime(struct task_group *tg, 2717 long rt_runtime_us); 2718 extern long sched_group_rt_runtime(struct task_group *tg); 2719 extern int sched_group_set_rt_period(struct task_group *tg, 2720 long rt_period_us); 2721 extern long sched_group_rt_period(struct task_group *tg); 2722 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2723 #endif 2724 #endif 2725 2726 extern int task_can_switch_user(struct user_struct *up, 2727 struct task_struct *tsk); 2728 2729 #ifdef CONFIG_TASK_XACCT 2730 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2731 { 2732 tsk->ioac.rchar += amt; 2733 } 2734 2735 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2736 { 2737 tsk->ioac.wchar += amt; 2738 } 2739 2740 static inline void inc_syscr(struct task_struct *tsk) 2741 { 2742 tsk->ioac.syscr++; 2743 } 2744 2745 static inline void inc_syscw(struct task_struct *tsk) 2746 { 2747 tsk->ioac.syscw++; 2748 } 2749 #else 2750 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2751 { 2752 } 2753 2754 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2755 { 2756 } 2757 2758 static inline void inc_syscr(struct task_struct *tsk) 2759 { 2760 } 2761 2762 static inline void inc_syscw(struct task_struct *tsk) 2763 { 2764 } 2765 #endif 2766 2767 #ifndef TASK_SIZE_OF 2768 #define TASK_SIZE_OF(tsk) TASK_SIZE 2769 #endif 2770 2771 #ifdef CONFIG_MM_OWNER 2772 extern void mm_update_next_owner(struct mm_struct *mm); 2773 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2774 #else 2775 static inline void mm_update_next_owner(struct mm_struct *mm) 2776 { 2777 } 2778 2779 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2780 { 2781 } 2782 #endif /* CONFIG_MM_OWNER */ 2783 2784 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2785 unsigned int limit) 2786 { 2787 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2788 } 2789 2790 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2791 unsigned int limit) 2792 { 2793 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2794 } 2795 2796 static inline unsigned long rlimit(unsigned int limit) 2797 { 2798 return task_rlimit(current, limit); 2799 } 2800 2801 static inline unsigned long rlimit_max(unsigned int limit) 2802 { 2803 return task_rlimit_max(current, limit); 2804 } 2805 2806 #endif /* __KERNEL__ */ 2807 2808 #endif 2809