xref: /linux-6.15/include/linux/sched.h (revision b6dcdb06)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/netdevice_xmit.h>
40 #include <linux/task_io_accounting.h>
41 #include <linux/posix-timers_types.h>
42 #include <linux/restart_block.h>
43 #include <uapi/linux/rseq.h>
44 #include <linux/seqlock_types.h>
45 #include <linux/kcsan.h>
46 #include <linux/rv.h>
47 #include <linux/livepatch_sched.h>
48 #include <linux/uidgid_types.h>
49 #include <asm/kmap_size.h>
50 
51 /* task_struct member predeclarations (sorted alphabetically): */
52 struct audit_context;
53 struct bio_list;
54 struct blk_plug;
55 struct bpf_local_storage;
56 struct bpf_run_ctx;
57 struct bpf_net_context;
58 struct capture_control;
59 struct cfs_rq;
60 struct fs_struct;
61 struct futex_pi_state;
62 struct io_context;
63 struct io_uring_task;
64 struct mempolicy;
65 struct nameidata;
66 struct nsproxy;
67 struct perf_event_context;
68 struct pid_namespace;
69 struct pipe_inode_info;
70 struct rcu_node;
71 struct reclaim_state;
72 struct robust_list_head;
73 struct root_domain;
74 struct rq;
75 struct sched_attr;
76 struct sched_dl_entity;
77 struct seq_file;
78 struct sighand_struct;
79 struct signal_struct;
80 struct task_delay_info;
81 struct task_group;
82 struct task_struct;
83 struct user_event_mm;
84 
85 #include <linux/sched/ext.h>
86 
87 /*
88  * Task state bitmask. NOTE! These bits are also
89  * encoded in fs/proc/array.c: get_task_state().
90  *
91  * We have two separate sets of flags: task->__state
92  * is about runnability, while task->exit_state are
93  * about the task exiting. Confusing, but this way
94  * modifying one set can't modify the other one by
95  * mistake.
96  */
97 
98 /* Used in tsk->__state: */
99 #define TASK_RUNNING			0x00000000
100 #define TASK_INTERRUPTIBLE		0x00000001
101 #define TASK_UNINTERRUPTIBLE		0x00000002
102 #define __TASK_STOPPED			0x00000004
103 #define __TASK_TRACED			0x00000008
104 /* Used in tsk->exit_state: */
105 #define EXIT_DEAD			0x00000010
106 #define EXIT_ZOMBIE			0x00000020
107 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
108 /* Used in tsk->__state again: */
109 #define TASK_PARKED			0x00000040
110 #define TASK_DEAD			0x00000080
111 #define TASK_WAKEKILL			0x00000100
112 #define TASK_WAKING			0x00000200
113 #define TASK_NOLOAD			0x00000400
114 #define TASK_NEW			0x00000800
115 #define TASK_RTLOCK_WAIT		0x00001000
116 #define TASK_FREEZABLE			0x00002000
117 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
118 #define TASK_FROZEN			0x00008000
119 #define TASK_STATE_MAX			0x00010000
120 
121 #define TASK_ANY			(TASK_STATE_MAX-1)
122 
123 /*
124  * DO NOT ADD ANY NEW USERS !
125  */
126 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
127 
128 /* Convenience macros for the sake of set_current_state: */
129 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
130 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
131 #define TASK_TRACED			__TASK_TRACED
132 
133 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
134 
135 /* Convenience macros for the sake of wake_up(): */
136 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
137 
138 /* get_task_state(): */
139 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
140 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
141 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
142 					 TASK_PARKED)
143 
144 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
145 
146 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
147 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
148 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
149 
150 /*
151  * Special states are those that do not use the normal wait-loop pattern. See
152  * the comment with set_special_state().
153  */
154 #define is_special_task_state(state)					\
155 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |	\
156 		    TASK_DEAD | TASK_FROZEN))
157 
158 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
159 # define debug_normal_state_change(state_value)				\
160 	do {								\
161 		WARN_ON_ONCE(is_special_task_state(state_value));	\
162 		current->task_state_change = _THIS_IP_;			\
163 	} while (0)
164 
165 # define debug_special_state_change(state_value)			\
166 	do {								\
167 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
168 		current->task_state_change = _THIS_IP_;			\
169 	} while (0)
170 
171 # define debug_rtlock_wait_set_state()					\
172 	do {								 \
173 		current->saved_state_change = current->task_state_change;\
174 		current->task_state_change = _THIS_IP_;			 \
175 	} while (0)
176 
177 # define debug_rtlock_wait_restore_state()				\
178 	do {								 \
179 		current->task_state_change = current->saved_state_change;\
180 	} while (0)
181 
182 #else
183 # define debug_normal_state_change(cond)	do { } while (0)
184 # define debug_special_state_change(cond)	do { } while (0)
185 # define debug_rtlock_wait_set_state()		do { } while (0)
186 # define debug_rtlock_wait_restore_state()	do { } while (0)
187 #endif
188 
189 /*
190  * set_current_state() includes a barrier so that the write of current->__state
191  * is correctly serialised wrt the caller's subsequent test of whether to
192  * actually sleep:
193  *
194  *   for (;;) {
195  *	set_current_state(TASK_UNINTERRUPTIBLE);
196  *	if (CONDITION)
197  *	   break;
198  *
199  *	schedule();
200  *   }
201  *   __set_current_state(TASK_RUNNING);
202  *
203  * If the caller does not need such serialisation (because, for instance, the
204  * CONDITION test and condition change and wakeup are under the same lock) then
205  * use __set_current_state().
206  *
207  * The above is typically ordered against the wakeup, which does:
208  *
209  *   CONDITION = 1;
210  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
211  *
212  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
213  * accessing p->__state.
214  *
215  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
216  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
217  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
218  *
219  * However, with slightly different timing the wakeup TASK_RUNNING store can
220  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
221  * a problem either because that will result in one extra go around the loop
222  * and our @cond test will save the day.
223  *
224  * Also see the comments of try_to_wake_up().
225  */
226 #define __set_current_state(state_value)				\
227 	do {								\
228 		debug_normal_state_change((state_value));		\
229 		WRITE_ONCE(current->__state, (state_value));		\
230 	} while (0)
231 
232 #define set_current_state(state_value)					\
233 	do {								\
234 		debug_normal_state_change((state_value));		\
235 		smp_store_mb(current->__state, (state_value));		\
236 	} while (0)
237 
238 /*
239  * set_special_state() should be used for those states when the blocking task
240  * can not use the regular condition based wait-loop. In that case we must
241  * serialize against wakeups such that any possible in-flight TASK_RUNNING
242  * stores will not collide with our state change.
243  */
244 #define set_special_state(state_value)					\
245 	do {								\
246 		unsigned long flags; /* may shadow */			\
247 									\
248 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
249 		debug_special_state_change((state_value));		\
250 		WRITE_ONCE(current->__state, (state_value));		\
251 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
252 	} while (0)
253 
254 /*
255  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
256  *
257  * RT's spin/rwlock substitutions are state preserving. The state of the
258  * task when blocking on the lock is saved in task_struct::saved_state and
259  * restored after the lock has been acquired.  These operations are
260  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
261  * lock related wakeups while the task is blocked on the lock are
262  * redirected to operate on task_struct::saved_state to ensure that these
263  * are not dropped. On restore task_struct::saved_state is set to
264  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
265  *
266  * The lock operation looks like this:
267  *
268  *	current_save_and_set_rtlock_wait_state();
269  *	for (;;) {
270  *		if (try_lock())
271  *			break;
272  *		raw_spin_unlock_irq(&lock->wait_lock);
273  *		schedule_rtlock();
274  *		raw_spin_lock_irq(&lock->wait_lock);
275  *		set_current_state(TASK_RTLOCK_WAIT);
276  *	}
277  *	current_restore_rtlock_saved_state();
278  */
279 #define current_save_and_set_rtlock_wait_state()			\
280 	do {								\
281 		lockdep_assert_irqs_disabled();				\
282 		raw_spin_lock(&current->pi_lock);			\
283 		current->saved_state = current->__state;		\
284 		debug_rtlock_wait_set_state();				\
285 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
286 		raw_spin_unlock(&current->pi_lock);			\
287 	} while (0);
288 
289 #define current_restore_rtlock_saved_state()				\
290 	do {								\
291 		lockdep_assert_irqs_disabled();				\
292 		raw_spin_lock(&current->pi_lock);			\
293 		debug_rtlock_wait_restore_state();			\
294 		WRITE_ONCE(current->__state, current->saved_state);	\
295 		current->saved_state = TASK_RUNNING;			\
296 		raw_spin_unlock(&current->pi_lock);			\
297 	} while (0);
298 
299 #define get_current_state()	READ_ONCE(current->__state)
300 
301 /*
302  * Define the task command name length as enum, then it can be visible to
303  * BPF programs.
304  */
305 enum {
306 	TASK_COMM_LEN = 16,
307 };
308 
309 extern void sched_tick(void);
310 
311 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
312 
313 extern long schedule_timeout(long timeout);
314 extern long schedule_timeout_interruptible(long timeout);
315 extern long schedule_timeout_killable(long timeout);
316 extern long schedule_timeout_uninterruptible(long timeout);
317 extern long schedule_timeout_idle(long timeout);
318 asmlinkage void schedule(void);
319 extern void schedule_preempt_disabled(void);
320 asmlinkage void preempt_schedule_irq(void);
321 #ifdef CONFIG_PREEMPT_RT
322  extern void schedule_rtlock(void);
323 #endif
324 
325 extern int __must_check io_schedule_prepare(void);
326 extern void io_schedule_finish(int token);
327 extern long io_schedule_timeout(long timeout);
328 extern void io_schedule(void);
329 
330 /**
331  * struct prev_cputime - snapshot of system and user cputime
332  * @utime: time spent in user mode
333  * @stime: time spent in system mode
334  * @lock: protects the above two fields
335  *
336  * Stores previous user/system time values such that we can guarantee
337  * monotonicity.
338  */
339 struct prev_cputime {
340 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
341 	u64				utime;
342 	u64				stime;
343 	raw_spinlock_t			lock;
344 #endif
345 };
346 
347 enum vtime_state {
348 	/* Task is sleeping or running in a CPU with VTIME inactive: */
349 	VTIME_INACTIVE = 0,
350 	/* Task is idle */
351 	VTIME_IDLE,
352 	/* Task runs in kernelspace in a CPU with VTIME active: */
353 	VTIME_SYS,
354 	/* Task runs in userspace in a CPU with VTIME active: */
355 	VTIME_USER,
356 	/* Task runs as guests in a CPU with VTIME active: */
357 	VTIME_GUEST,
358 };
359 
360 struct vtime {
361 	seqcount_t		seqcount;
362 	unsigned long long	starttime;
363 	enum vtime_state	state;
364 	unsigned int		cpu;
365 	u64			utime;
366 	u64			stime;
367 	u64			gtime;
368 };
369 
370 /*
371  * Utilization clamp constraints.
372  * @UCLAMP_MIN:	Minimum utilization
373  * @UCLAMP_MAX:	Maximum utilization
374  * @UCLAMP_CNT:	Utilization clamp constraints count
375  */
376 enum uclamp_id {
377 	UCLAMP_MIN = 0,
378 	UCLAMP_MAX,
379 	UCLAMP_CNT
380 };
381 
382 #ifdef CONFIG_SMP
383 extern struct root_domain def_root_domain;
384 extern struct mutex sched_domains_mutex;
385 #endif
386 
387 struct sched_param {
388 	int sched_priority;
389 };
390 
391 struct sched_info {
392 #ifdef CONFIG_SCHED_INFO
393 	/* Cumulative counters: */
394 
395 	/* # of times we have run on this CPU: */
396 	unsigned long			pcount;
397 
398 	/* Time spent waiting on a runqueue: */
399 	unsigned long long		run_delay;
400 
401 	/* Max time spent waiting on a runqueue: */
402 	unsigned long long		max_run_delay;
403 
404 	/* Timestamps: */
405 
406 	/* When did we last run on a CPU? */
407 	unsigned long long		last_arrival;
408 
409 	/* When were we last queued to run? */
410 	unsigned long long		last_queued;
411 
412 #endif /* CONFIG_SCHED_INFO */
413 };
414 
415 /*
416  * Integer metrics need fixed point arithmetic, e.g., sched/fair
417  * has a few: load, load_avg, util_avg, freq, and capacity.
418  *
419  * We define a basic fixed point arithmetic range, and then formalize
420  * all these metrics based on that basic range.
421  */
422 # define SCHED_FIXEDPOINT_SHIFT		10
423 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
424 
425 /* Increase resolution of cpu_capacity calculations */
426 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
427 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
428 
429 struct load_weight {
430 	unsigned long			weight;
431 	u32				inv_weight;
432 };
433 
434 /*
435  * The load/runnable/util_avg accumulates an infinite geometric series
436  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
437  *
438  * [load_avg definition]
439  *
440  *   load_avg = runnable% * scale_load_down(load)
441  *
442  * [runnable_avg definition]
443  *
444  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
445  *
446  * [util_avg definition]
447  *
448  *   util_avg = running% * SCHED_CAPACITY_SCALE
449  *
450  * where runnable% is the time ratio that a sched_entity is runnable and
451  * running% the time ratio that a sched_entity is running.
452  *
453  * For cfs_rq, they are the aggregated values of all runnable and blocked
454  * sched_entities.
455  *
456  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
457  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
458  * for computing those signals (see update_rq_clock_pelt())
459  *
460  * N.B., the above ratios (runnable% and running%) themselves are in the
461  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
462  * to as large a range as necessary. This is for example reflected by
463  * util_avg's SCHED_CAPACITY_SCALE.
464  *
465  * [Overflow issue]
466  *
467  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
468  * with the highest load (=88761), always runnable on a single cfs_rq,
469  * and should not overflow as the number already hits PID_MAX_LIMIT.
470  *
471  * For all other cases (including 32-bit kernels), struct load_weight's
472  * weight will overflow first before we do, because:
473  *
474  *    Max(load_avg) <= Max(load.weight)
475  *
476  * Then it is the load_weight's responsibility to consider overflow
477  * issues.
478  */
479 struct sched_avg {
480 	u64				last_update_time;
481 	u64				load_sum;
482 	u64				runnable_sum;
483 	u32				util_sum;
484 	u32				period_contrib;
485 	unsigned long			load_avg;
486 	unsigned long			runnable_avg;
487 	unsigned long			util_avg;
488 	unsigned int			util_est;
489 } ____cacheline_aligned;
490 
491 /*
492  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
493  * updates. When a task is dequeued, its util_est should not be updated if its
494  * util_avg has not been updated in the meantime.
495  * This information is mapped into the MSB bit of util_est at dequeue time.
496  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
497  * it is safe to use MSB.
498  */
499 #define UTIL_EST_WEIGHT_SHIFT		2
500 #define UTIL_AVG_UNCHANGED		0x80000000
501 
502 struct sched_statistics {
503 #ifdef CONFIG_SCHEDSTATS
504 	u64				wait_start;
505 	u64				wait_max;
506 	u64				wait_count;
507 	u64				wait_sum;
508 	u64				iowait_count;
509 	u64				iowait_sum;
510 
511 	u64				sleep_start;
512 	u64				sleep_max;
513 	s64				sum_sleep_runtime;
514 
515 	u64				block_start;
516 	u64				block_max;
517 	s64				sum_block_runtime;
518 
519 	s64				exec_max;
520 	u64				slice_max;
521 
522 	u64				nr_migrations_cold;
523 	u64				nr_failed_migrations_affine;
524 	u64				nr_failed_migrations_running;
525 	u64				nr_failed_migrations_hot;
526 	u64				nr_forced_migrations;
527 
528 	u64				nr_wakeups;
529 	u64				nr_wakeups_sync;
530 	u64				nr_wakeups_migrate;
531 	u64				nr_wakeups_local;
532 	u64				nr_wakeups_remote;
533 	u64				nr_wakeups_affine;
534 	u64				nr_wakeups_affine_attempts;
535 	u64				nr_wakeups_passive;
536 	u64				nr_wakeups_idle;
537 
538 #ifdef CONFIG_SCHED_CORE
539 	u64				core_forceidle_sum;
540 #endif
541 #endif /* CONFIG_SCHEDSTATS */
542 } ____cacheline_aligned;
543 
544 struct sched_entity {
545 	/* For load-balancing: */
546 	struct load_weight		load;
547 	struct rb_node			run_node;
548 	u64				deadline;
549 	u64				min_vruntime;
550 	u64				min_slice;
551 
552 	struct list_head		group_node;
553 	unsigned char			on_rq;
554 	unsigned char			sched_delayed;
555 	unsigned char			rel_deadline;
556 	unsigned char			custom_slice;
557 					/* hole */
558 
559 	u64				exec_start;
560 	u64				sum_exec_runtime;
561 	u64				prev_sum_exec_runtime;
562 	u64				vruntime;
563 	s64				vlag;
564 	u64				slice;
565 
566 	u64				nr_migrations;
567 
568 #ifdef CONFIG_FAIR_GROUP_SCHED
569 	int				depth;
570 	struct sched_entity		*parent;
571 	/* rq on which this entity is (to be) queued: */
572 	struct cfs_rq			*cfs_rq;
573 	/* rq "owned" by this entity/group: */
574 	struct cfs_rq			*my_q;
575 	/* cached value of my_q->h_nr_running */
576 	unsigned long			runnable_weight;
577 #endif
578 
579 #ifdef CONFIG_SMP
580 	/*
581 	 * Per entity load average tracking.
582 	 *
583 	 * Put into separate cache line so it does not
584 	 * collide with read-mostly values above.
585 	 */
586 	struct sched_avg		avg;
587 #endif
588 };
589 
590 struct sched_rt_entity {
591 	struct list_head		run_list;
592 	unsigned long			timeout;
593 	unsigned long			watchdog_stamp;
594 	unsigned int			time_slice;
595 	unsigned short			on_rq;
596 	unsigned short			on_list;
597 
598 	struct sched_rt_entity		*back;
599 #ifdef CONFIG_RT_GROUP_SCHED
600 	struct sched_rt_entity		*parent;
601 	/* rq on which this entity is (to be) queued: */
602 	struct rt_rq			*rt_rq;
603 	/* rq "owned" by this entity/group: */
604 	struct rt_rq			*my_q;
605 #endif
606 } __randomize_layout;
607 
608 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
609 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
610 
611 struct sched_dl_entity {
612 	struct rb_node			rb_node;
613 
614 	/*
615 	 * Original scheduling parameters. Copied here from sched_attr
616 	 * during sched_setattr(), they will remain the same until
617 	 * the next sched_setattr().
618 	 */
619 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
620 	u64				dl_deadline;	/* Relative deadline of each instance	*/
621 	u64				dl_period;	/* Separation of two instances (period) */
622 	u64				dl_bw;		/* dl_runtime / dl_period		*/
623 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
624 
625 	/*
626 	 * Actual scheduling parameters. Initialized with the values above,
627 	 * they are continuously updated during task execution. Note that
628 	 * the remaining runtime could be < 0 in case we are in overrun.
629 	 */
630 	s64				runtime;	/* Remaining runtime for this instance	*/
631 	u64				deadline;	/* Absolute deadline for this instance	*/
632 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
633 
634 	/*
635 	 * Some bool flags:
636 	 *
637 	 * @dl_throttled tells if we exhausted the runtime. If so, the
638 	 * task has to wait for a replenishment to be performed at the
639 	 * next firing of dl_timer.
640 	 *
641 	 * @dl_yielded tells if task gave up the CPU before consuming
642 	 * all its available runtime during the last job.
643 	 *
644 	 * @dl_non_contending tells if the task is inactive while still
645 	 * contributing to the active utilization. In other words, it
646 	 * indicates if the inactive timer has been armed and its handler
647 	 * has not been executed yet. This flag is useful to avoid race
648 	 * conditions between the inactive timer handler and the wakeup
649 	 * code.
650 	 *
651 	 * @dl_overrun tells if the task asked to be informed about runtime
652 	 * overruns.
653 	 *
654 	 * @dl_server tells if this is a server entity.
655 	 *
656 	 * @dl_defer tells if this is a deferred or regular server. For
657 	 * now only defer server exists.
658 	 *
659 	 * @dl_defer_armed tells if the deferrable server is waiting
660 	 * for the replenishment timer to activate it.
661 	 *
662 	 * @dl_server_active tells if the dlserver is active(started).
663 	 * dlserver is started on first cfs enqueue on an idle runqueue
664 	 * and is stopped when a dequeue results in 0 cfs tasks on the
665 	 * runqueue. In other words, dlserver is active only when cpu's
666 	 * runqueue has atleast one cfs task.
667 	 *
668 	 * @dl_defer_running tells if the deferrable server is actually
669 	 * running, skipping the defer phase.
670 	 */
671 	unsigned int			dl_throttled      : 1;
672 	unsigned int			dl_yielded        : 1;
673 	unsigned int			dl_non_contending : 1;
674 	unsigned int			dl_overrun	  : 1;
675 	unsigned int			dl_server         : 1;
676 	unsigned int			dl_server_active  : 1;
677 	unsigned int			dl_defer	  : 1;
678 	unsigned int			dl_defer_armed	  : 1;
679 	unsigned int			dl_defer_running  : 1;
680 
681 	/*
682 	 * Bandwidth enforcement timer. Each -deadline task has its
683 	 * own bandwidth to be enforced, thus we need one timer per task.
684 	 */
685 	struct hrtimer			dl_timer;
686 
687 	/*
688 	 * Inactive timer, responsible for decreasing the active utilization
689 	 * at the "0-lag time". When a -deadline task blocks, it contributes
690 	 * to GRUB's active utilization until the "0-lag time", hence a
691 	 * timer is needed to decrease the active utilization at the correct
692 	 * time.
693 	 */
694 	struct hrtimer			inactive_timer;
695 
696 	/*
697 	 * Bits for DL-server functionality. Also see the comment near
698 	 * dl_server_update().
699 	 *
700 	 * @rq the runqueue this server is for
701 	 *
702 	 * @server_has_tasks() returns true if @server_pick return a
703 	 * runnable task.
704 	 */
705 	struct rq			*rq;
706 	dl_server_has_tasks_f		server_has_tasks;
707 	dl_server_pick_f		server_pick_task;
708 
709 #ifdef CONFIG_RT_MUTEXES
710 	/*
711 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
712 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
713 	 * to (the original one/itself).
714 	 */
715 	struct sched_dl_entity *pi_se;
716 #endif
717 };
718 
719 #ifdef CONFIG_UCLAMP_TASK
720 /* Number of utilization clamp buckets (shorter alias) */
721 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
722 
723 /*
724  * Utilization clamp for a scheduling entity
725  * @value:		clamp value "assigned" to a se
726  * @bucket_id:		bucket index corresponding to the "assigned" value
727  * @active:		the se is currently refcounted in a rq's bucket
728  * @user_defined:	the requested clamp value comes from user-space
729  *
730  * The bucket_id is the index of the clamp bucket matching the clamp value
731  * which is pre-computed and stored to avoid expensive integer divisions from
732  * the fast path.
733  *
734  * The active bit is set whenever a task has got an "effective" value assigned,
735  * which can be different from the clamp value "requested" from user-space.
736  * This allows to know a task is refcounted in the rq's bucket corresponding
737  * to the "effective" bucket_id.
738  *
739  * The user_defined bit is set whenever a task has got a task-specific clamp
740  * value requested from userspace, i.e. the system defaults apply to this task
741  * just as a restriction. This allows to relax default clamps when a less
742  * restrictive task-specific value has been requested, thus allowing to
743  * implement a "nice" semantic. For example, a task running with a 20%
744  * default boost can still drop its own boosting to 0%.
745  */
746 struct uclamp_se {
747 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
748 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
749 	unsigned int active		: 1;
750 	unsigned int user_defined	: 1;
751 };
752 #endif /* CONFIG_UCLAMP_TASK */
753 
754 union rcu_special {
755 	struct {
756 		u8			blocked;
757 		u8			need_qs;
758 		u8			exp_hint; /* Hint for performance. */
759 		u8			need_mb; /* Readers need smp_mb(). */
760 	} b; /* Bits. */
761 	u32 s; /* Set of bits. */
762 };
763 
764 enum perf_event_task_context {
765 	perf_invalid_context = -1,
766 	perf_hw_context = 0,
767 	perf_sw_context,
768 	perf_nr_task_contexts,
769 };
770 
771 /*
772  * Number of contexts where an event can trigger:
773  *      task, softirq, hardirq, nmi.
774  */
775 #define PERF_NR_CONTEXTS	4
776 
777 struct wake_q_node {
778 	struct wake_q_node *next;
779 };
780 
781 struct kmap_ctrl {
782 #ifdef CONFIG_KMAP_LOCAL
783 	int				idx;
784 	pte_t				pteval[KM_MAX_IDX];
785 #endif
786 };
787 
788 struct task_struct {
789 #ifdef CONFIG_THREAD_INFO_IN_TASK
790 	/*
791 	 * For reasons of header soup (see current_thread_info()), this
792 	 * must be the first element of task_struct.
793 	 */
794 	struct thread_info		thread_info;
795 #endif
796 	unsigned int			__state;
797 
798 	/* saved state for "spinlock sleepers" */
799 	unsigned int			saved_state;
800 
801 	/*
802 	 * This begins the randomizable portion of task_struct. Only
803 	 * scheduling-critical items should be added above here.
804 	 */
805 	randomized_struct_fields_start
806 
807 	void				*stack;
808 	refcount_t			usage;
809 	/* Per task flags (PF_*), defined further below: */
810 	unsigned int			flags;
811 	unsigned int			ptrace;
812 
813 #ifdef CONFIG_MEM_ALLOC_PROFILING
814 	struct alloc_tag		*alloc_tag;
815 #endif
816 
817 #ifdef CONFIG_SMP
818 	int				on_cpu;
819 	struct __call_single_node	wake_entry;
820 	unsigned int			wakee_flips;
821 	unsigned long			wakee_flip_decay_ts;
822 	struct task_struct		*last_wakee;
823 
824 	/*
825 	 * recent_used_cpu is initially set as the last CPU used by a task
826 	 * that wakes affine another task. Waker/wakee relationships can
827 	 * push tasks around a CPU where each wakeup moves to the next one.
828 	 * Tracking a recently used CPU allows a quick search for a recently
829 	 * used CPU that may be idle.
830 	 */
831 	int				recent_used_cpu;
832 	int				wake_cpu;
833 #endif
834 	int				on_rq;
835 
836 	int				prio;
837 	int				static_prio;
838 	int				normal_prio;
839 	unsigned int			rt_priority;
840 
841 	struct sched_entity		se;
842 	struct sched_rt_entity		rt;
843 	struct sched_dl_entity		dl;
844 	struct sched_dl_entity		*dl_server;
845 #ifdef CONFIG_SCHED_CLASS_EXT
846 	struct sched_ext_entity		scx;
847 #endif
848 	const struct sched_class	*sched_class;
849 
850 #ifdef CONFIG_SCHED_CORE
851 	struct rb_node			core_node;
852 	unsigned long			core_cookie;
853 	unsigned int			core_occupation;
854 #endif
855 
856 #ifdef CONFIG_CGROUP_SCHED
857 	struct task_group		*sched_task_group;
858 #endif
859 
860 
861 #ifdef CONFIG_UCLAMP_TASK
862 	/*
863 	 * Clamp values requested for a scheduling entity.
864 	 * Must be updated with task_rq_lock() held.
865 	 */
866 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
867 	/*
868 	 * Effective clamp values used for a scheduling entity.
869 	 * Must be updated with task_rq_lock() held.
870 	 */
871 	struct uclamp_se		uclamp[UCLAMP_CNT];
872 #endif
873 
874 	struct sched_statistics         stats;
875 
876 #ifdef CONFIG_PREEMPT_NOTIFIERS
877 	/* List of struct preempt_notifier: */
878 	struct hlist_head		preempt_notifiers;
879 #endif
880 
881 #ifdef CONFIG_BLK_DEV_IO_TRACE
882 	unsigned int			btrace_seq;
883 #endif
884 
885 	unsigned int			policy;
886 	unsigned long			max_allowed_capacity;
887 	int				nr_cpus_allowed;
888 	const cpumask_t			*cpus_ptr;
889 	cpumask_t			*user_cpus_ptr;
890 	cpumask_t			cpus_mask;
891 	void				*migration_pending;
892 #ifdef CONFIG_SMP
893 	unsigned short			migration_disabled;
894 #endif
895 	unsigned short			migration_flags;
896 
897 #ifdef CONFIG_PREEMPT_RCU
898 	int				rcu_read_lock_nesting;
899 	union rcu_special		rcu_read_unlock_special;
900 	struct list_head		rcu_node_entry;
901 	struct rcu_node			*rcu_blocked_node;
902 #endif /* #ifdef CONFIG_PREEMPT_RCU */
903 
904 #ifdef CONFIG_TASKS_RCU
905 	unsigned long			rcu_tasks_nvcsw;
906 	u8				rcu_tasks_holdout;
907 	u8				rcu_tasks_idx;
908 	int				rcu_tasks_idle_cpu;
909 	struct list_head		rcu_tasks_holdout_list;
910 	int				rcu_tasks_exit_cpu;
911 	struct list_head		rcu_tasks_exit_list;
912 #endif /* #ifdef CONFIG_TASKS_RCU */
913 
914 #ifdef CONFIG_TASKS_TRACE_RCU
915 	int				trc_reader_nesting;
916 	int				trc_ipi_to_cpu;
917 	union rcu_special		trc_reader_special;
918 	struct list_head		trc_holdout_list;
919 	struct list_head		trc_blkd_node;
920 	int				trc_blkd_cpu;
921 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
922 
923 	struct sched_info		sched_info;
924 
925 	struct list_head		tasks;
926 #ifdef CONFIG_SMP
927 	struct plist_node		pushable_tasks;
928 	struct rb_node			pushable_dl_tasks;
929 #endif
930 
931 	struct mm_struct		*mm;
932 	struct mm_struct		*active_mm;
933 	struct address_space		*faults_disabled_mapping;
934 
935 	int				exit_state;
936 	int				exit_code;
937 	int				exit_signal;
938 	/* The signal sent when the parent dies: */
939 	int				pdeath_signal;
940 	/* JOBCTL_*, siglock protected: */
941 	unsigned long			jobctl;
942 
943 	/* Used for emulating ABI behavior of previous Linux versions: */
944 	unsigned int			personality;
945 
946 	/* Scheduler bits, serialized by scheduler locks: */
947 	unsigned			sched_reset_on_fork:1;
948 	unsigned			sched_contributes_to_load:1;
949 	unsigned			sched_migrated:1;
950 
951 	/* Force alignment to the next boundary: */
952 	unsigned			:0;
953 
954 	/* Unserialized, strictly 'current' */
955 
956 	/*
957 	 * This field must not be in the scheduler word above due to wakelist
958 	 * queueing no longer being serialized by p->on_cpu. However:
959 	 *
960 	 * p->XXX = X;			ttwu()
961 	 * schedule()			  if (p->on_rq && ..) // false
962 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
963 	 *   deactivate_task()		      ttwu_queue_wakelist())
964 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
965 	 *
966 	 * guarantees all stores of 'current' are visible before
967 	 * ->sched_remote_wakeup gets used, so it can be in this word.
968 	 */
969 	unsigned			sched_remote_wakeup:1;
970 #ifdef CONFIG_RT_MUTEXES
971 	unsigned			sched_rt_mutex:1;
972 #endif
973 
974 	/* Bit to tell TOMOYO we're in execve(): */
975 	unsigned			in_execve:1;
976 	unsigned			in_iowait:1;
977 #ifndef TIF_RESTORE_SIGMASK
978 	unsigned			restore_sigmask:1;
979 #endif
980 #ifdef CONFIG_MEMCG_V1
981 	unsigned			in_user_fault:1;
982 #endif
983 #ifdef CONFIG_LRU_GEN
984 	/* whether the LRU algorithm may apply to this access */
985 	unsigned			in_lru_fault:1;
986 #endif
987 #ifdef CONFIG_COMPAT_BRK
988 	unsigned			brk_randomized:1;
989 #endif
990 #ifdef CONFIG_CGROUPS
991 	/* disallow userland-initiated cgroup migration */
992 	unsigned			no_cgroup_migration:1;
993 	/* task is frozen/stopped (used by the cgroup freezer) */
994 	unsigned			frozen:1;
995 #endif
996 #ifdef CONFIG_BLK_CGROUP
997 	unsigned			use_memdelay:1;
998 #endif
999 #ifdef CONFIG_PSI
1000 	/* Stalled due to lack of memory */
1001 	unsigned			in_memstall:1;
1002 #endif
1003 #ifdef CONFIG_PAGE_OWNER
1004 	/* Used by page_owner=on to detect recursion in page tracking. */
1005 	unsigned			in_page_owner:1;
1006 #endif
1007 #ifdef CONFIG_EVENTFD
1008 	/* Recursion prevention for eventfd_signal() */
1009 	unsigned			in_eventfd:1;
1010 #endif
1011 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1012 	unsigned			pasid_activated:1;
1013 #endif
1014 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1015 	unsigned			reported_split_lock:1;
1016 #endif
1017 #ifdef CONFIG_TASK_DELAY_ACCT
1018 	/* delay due to memory thrashing */
1019 	unsigned                        in_thrashing:1;
1020 #endif
1021 #ifdef CONFIG_PREEMPT_RT
1022 	struct netdev_xmit		net_xmit;
1023 #endif
1024 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1025 
1026 	struct restart_block		restart_block;
1027 
1028 	pid_t				pid;
1029 	pid_t				tgid;
1030 
1031 #ifdef CONFIG_STACKPROTECTOR
1032 	/* Canary value for the -fstack-protector GCC feature: */
1033 	unsigned long			stack_canary;
1034 #endif
1035 	/*
1036 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1037 	 * older sibling, respectively.  (p->father can be replaced with
1038 	 * p->real_parent->pid)
1039 	 */
1040 
1041 	/* Real parent process: */
1042 	struct task_struct __rcu	*real_parent;
1043 
1044 	/* Recipient of SIGCHLD, wait4() reports: */
1045 	struct task_struct __rcu	*parent;
1046 
1047 	/*
1048 	 * Children/sibling form the list of natural children:
1049 	 */
1050 	struct list_head		children;
1051 	struct list_head		sibling;
1052 	struct task_struct		*group_leader;
1053 
1054 	/*
1055 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1056 	 *
1057 	 * This includes both natural children and PTRACE_ATTACH targets.
1058 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1059 	 */
1060 	struct list_head		ptraced;
1061 	struct list_head		ptrace_entry;
1062 
1063 	/* PID/PID hash table linkage. */
1064 	struct pid			*thread_pid;
1065 	struct hlist_node		pid_links[PIDTYPE_MAX];
1066 	struct list_head		thread_node;
1067 
1068 	struct completion		*vfork_done;
1069 
1070 	/* CLONE_CHILD_SETTID: */
1071 	int __user			*set_child_tid;
1072 
1073 	/* CLONE_CHILD_CLEARTID: */
1074 	int __user			*clear_child_tid;
1075 
1076 	/* PF_KTHREAD | PF_IO_WORKER */
1077 	void				*worker_private;
1078 
1079 	u64				utime;
1080 	u64				stime;
1081 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1082 	u64				utimescaled;
1083 	u64				stimescaled;
1084 #endif
1085 	u64				gtime;
1086 	struct prev_cputime		prev_cputime;
1087 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1088 	struct vtime			vtime;
1089 #endif
1090 
1091 #ifdef CONFIG_NO_HZ_FULL
1092 	atomic_t			tick_dep_mask;
1093 #endif
1094 	/* Context switch counts: */
1095 	unsigned long			nvcsw;
1096 	unsigned long			nivcsw;
1097 
1098 	/* Monotonic time in nsecs: */
1099 	u64				start_time;
1100 
1101 	/* Boot based time in nsecs: */
1102 	u64				start_boottime;
1103 
1104 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1105 	unsigned long			min_flt;
1106 	unsigned long			maj_flt;
1107 
1108 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1109 	struct posix_cputimers		posix_cputimers;
1110 
1111 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1112 	struct posix_cputimers_work	posix_cputimers_work;
1113 #endif
1114 
1115 	/* Process credentials: */
1116 
1117 	/* Tracer's credentials at attach: */
1118 	const struct cred __rcu		*ptracer_cred;
1119 
1120 	/* Objective and real subjective task credentials (COW): */
1121 	const struct cred __rcu		*real_cred;
1122 
1123 	/* Effective (overridable) subjective task credentials (COW): */
1124 	const struct cred __rcu		*cred;
1125 
1126 #ifdef CONFIG_KEYS
1127 	/* Cached requested key. */
1128 	struct key			*cached_requested_key;
1129 #endif
1130 
1131 	/*
1132 	 * executable name, excluding path.
1133 	 *
1134 	 * - normally initialized begin_new_exec()
1135 	 * - set it with set_task_comm()
1136 	 *   - strscpy_pad() to ensure it is always NUL-terminated and
1137 	 *     zero-padded
1138 	 *   - task_lock() to ensure the operation is atomic and the name is
1139 	 *     fully updated.
1140 	 */
1141 	char				comm[TASK_COMM_LEN];
1142 
1143 	struct nameidata		*nameidata;
1144 
1145 #ifdef CONFIG_SYSVIPC
1146 	struct sysv_sem			sysvsem;
1147 	struct sysv_shm			sysvshm;
1148 #endif
1149 #ifdef CONFIG_DETECT_HUNG_TASK
1150 	unsigned long			last_switch_count;
1151 	unsigned long			last_switch_time;
1152 #endif
1153 	/* Filesystem information: */
1154 	struct fs_struct		*fs;
1155 
1156 	/* Open file information: */
1157 	struct files_struct		*files;
1158 
1159 #ifdef CONFIG_IO_URING
1160 	struct io_uring_task		*io_uring;
1161 #endif
1162 
1163 	/* Namespaces: */
1164 	struct nsproxy			*nsproxy;
1165 
1166 	/* Signal handlers: */
1167 	struct signal_struct		*signal;
1168 	struct sighand_struct __rcu		*sighand;
1169 	sigset_t			blocked;
1170 	sigset_t			real_blocked;
1171 	/* Restored if set_restore_sigmask() was used: */
1172 	sigset_t			saved_sigmask;
1173 	struct sigpending		pending;
1174 	unsigned long			sas_ss_sp;
1175 	size_t				sas_ss_size;
1176 	unsigned int			sas_ss_flags;
1177 
1178 	struct callback_head		*task_works;
1179 
1180 #ifdef CONFIG_AUDIT
1181 #ifdef CONFIG_AUDITSYSCALL
1182 	struct audit_context		*audit_context;
1183 #endif
1184 	kuid_t				loginuid;
1185 	unsigned int			sessionid;
1186 #endif
1187 	struct seccomp			seccomp;
1188 	struct syscall_user_dispatch	syscall_dispatch;
1189 
1190 	/* Thread group tracking: */
1191 	u64				parent_exec_id;
1192 	u64				self_exec_id;
1193 
1194 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1195 	spinlock_t			alloc_lock;
1196 
1197 	/* Protection of the PI data structures: */
1198 	raw_spinlock_t			pi_lock;
1199 
1200 	struct wake_q_node		wake_q;
1201 
1202 #ifdef CONFIG_RT_MUTEXES
1203 	/* PI waiters blocked on a rt_mutex held by this task: */
1204 	struct rb_root_cached		pi_waiters;
1205 	/* Updated under owner's pi_lock and rq lock */
1206 	struct task_struct		*pi_top_task;
1207 	/* Deadlock detection and priority inheritance handling: */
1208 	struct rt_mutex_waiter		*pi_blocked_on;
1209 #endif
1210 
1211 #ifdef CONFIG_DEBUG_MUTEXES
1212 	/* Mutex deadlock detection: */
1213 	struct mutex_waiter		*blocked_on;
1214 #endif
1215 
1216 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1217 	int				non_block_count;
1218 #endif
1219 
1220 #ifdef CONFIG_TRACE_IRQFLAGS
1221 	struct irqtrace_events		irqtrace;
1222 	unsigned int			hardirq_threaded;
1223 	u64				hardirq_chain_key;
1224 	int				softirqs_enabled;
1225 	int				softirq_context;
1226 	int				irq_config;
1227 #endif
1228 #ifdef CONFIG_PREEMPT_RT
1229 	int				softirq_disable_cnt;
1230 #endif
1231 
1232 #ifdef CONFIG_LOCKDEP
1233 # define MAX_LOCK_DEPTH			48UL
1234 	u64				curr_chain_key;
1235 	int				lockdep_depth;
1236 	unsigned int			lockdep_recursion;
1237 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1238 #endif
1239 
1240 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1241 	unsigned int			in_ubsan;
1242 #endif
1243 
1244 	/* Journalling filesystem info: */
1245 	void				*journal_info;
1246 
1247 	/* Stacked block device info: */
1248 	struct bio_list			*bio_list;
1249 
1250 	/* Stack plugging: */
1251 	struct blk_plug			*plug;
1252 
1253 	/* VM state: */
1254 	struct reclaim_state		*reclaim_state;
1255 
1256 	struct io_context		*io_context;
1257 
1258 #ifdef CONFIG_COMPACTION
1259 	struct capture_control		*capture_control;
1260 #endif
1261 	/* Ptrace state: */
1262 	unsigned long			ptrace_message;
1263 	kernel_siginfo_t		*last_siginfo;
1264 
1265 	struct task_io_accounting	ioac;
1266 #ifdef CONFIG_PSI
1267 	/* Pressure stall state */
1268 	unsigned int			psi_flags;
1269 #endif
1270 #ifdef CONFIG_TASK_XACCT
1271 	/* Accumulated RSS usage: */
1272 	u64				acct_rss_mem1;
1273 	/* Accumulated virtual memory usage: */
1274 	u64				acct_vm_mem1;
1275 	/* stime + utime since last update: */
1276 	u64				acct_timexpd;
1277 #endif
1278 #ifdef CONFIG_CPUSETS
1279 	/* Protected by ->alloc_lock: */
1280 	nodemask_t			mems_allowed;
1281 	/* Sequence number to catch updates: */
1282 	seqcount_spinlock_t		mems_allowed_seq;
1283 	int				cpuset_mem_spread_rotor;
1284 #endif
1285 #ifdef CONFIG_CGROUPS
1286 	/* Control Group info protected by css_set_lock: */
1287 	struct css_set __rcu		*cgroups;
1288 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1289 	struct list_head		cg_list;
1290 #endif
1291 #ifdef CONFIG_X86_CPU_RESCTRL
1292 	u32				closid;
1293 	u32				rmid;
1294 #endif
1295 #ifdef CONFIG_FUTEX
1296 	struct robust_list_head __user	*robust_list;
1297 #ifdef CONFIG_COMPAT
1298 	struct compat_robust_list_head __user *compat_robust_list;
1299 #endif
1300 	struct list_head		pi_state_list;
1301 	struct futex_pi_state		*pi_state_cache;
1302 	struct mutex			futex_exit_mutex;
1303 	unsigned int			futex_state;
1304 #endif
1305 #ifdef CONFIG_PERF_EVENTS
1306 	u8				perf_recursion[PERF_NR_CONTEXTS];
1307 	struct perf_event_context	*perf_event_ctxp;
1308 	struct mutex			perf_event_mutex;
1309 	struct list_head		perf_event_list;
1310 #endif
1311 #ifdef CONFIG_DEBUG_PREEMPT
1312 	unsigned long			preempt_disable_ip;
1313 #endif
1314 #ifdef CONFIG_NUMA
1315 	/* Protected by alloc_lock: */
1316 	struct mempolicy		*mempolicy;
1317 	short				il_prev;
1318 	u8				il_weight;
1319 	short				pref_node_fork;
1320 #endif
1321 #ifdef CONFIG_NUMA_BALANCING
1322 	int				numa_scan_seq;
1323 	unsigned int			numa_scan_period;
1324 	unsigned int			numa_scan_period_max;
1325 	int				numa_preferred_nid;
1326 	unsigned long			numa_migrate_retry;
1327 	/* Migration stamp: */
1328 	u64				node_stamp;
1329 	u64				last_task_numa_placement;
1330 	u64				last_sum_exec_runtime;
1331 	struct callback_head		numa_work;
1332 
1333 	/*
1334 	 * This pointer is only modified for current in syscall and
1335 	 * pagefault context (and for tasks being destroyed), so it can be read
1336 	 * from any of the following contexts:
1337 	 *  - RCU read-side critical section
1338 	 *  - current->numa_group from everywhere
1339 	 *  - task's runqueue locked, task not running
1340 	 */
1341 	struct numa_group __rcu		*numa_group;
1342 
1343 	/*
1344 	 * numa_faults is an array split into four regions:
1345 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1346 	 * in this precise order.
1347 	 *
1348 	 * faults_memory: Exponential decaying average of faults on a per-node
1349 	 * basis. Scheduling placement decisions are made based on these
1350 	 * counts. The values remain static for the duration of a PTE scan.
1351 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1352 	 * hinting fault was incurred.
1353 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1354 	 * during the current scan window. When the scan completes, the counts
1355 	 * in faults_memory and faults_cpu decay and these values are copied.
1356 	 */
1357 	unsigned long			*numa_faults;
1358 	unsigned long			total_numa_faults;
1359 
1360 	/*
1361 	 * numa_faults_locality tracks if faults recorded during the last
1362 	 * scan window were remote/local or failed to migrate. The task scan
1363 	 * period is adapted based on the locality of the faults with different
1364 	 * weights depending on whether they were shared or private faults
1365 	 */
1366 	unsigned long			numa_faults_locality[3];
1367 
1368 	unsigned long			numa_pages_migrated;
1369 #endif /* CONFIG_NUMA_BALANCING */
1370 
1371 #ifdef CONFIG_RSEQ
1372 	struct rseq __user *rseq;
1373 	u32 rseq_len;
1374 	u32 rseq_sig;
1375 	/*
1376 	 * RmW on rseq_event_mask must be performed atomically
1377 	 * with respect to preemption.
1378 	 */
1379 	unsigned long rseq_event_mask;
1380 #endif
1381 
1382 #ifdef CONFIG_SCHED_MM_CID
1383 	int				mm_cid;		/* Current cid in mm */
1384 	int				last_mm_cid;	/* Most recent cid in mm */
1385 	int				migrate_from_cpu;
1386 	int				mm_cid_active;	/* Whether cid bitmap is active */
1387 	struct callback_head		cid_work;
1388 #endif
1389 
1390 	struct tlbflush_unmap_batch	tlb_ubc;
1391 
1392 	/* Cache last used pipe for splice(): */
1393 	struct pipe_inode_info		*splice_pipe;
1394 
1395 	struct page_frag		task_frag;
1396 
1397 #ifdef CONFIG_TASK_DELAY_ACCT
1398 	struct task_delay_info		*delays;
1399 #endif
1400 
1401 #ifdef CONFIG_FAULT_INJECTION
1402 	int				make_it_fail;
1403 	unsigned int			fail_nth;
1404 #endif
1405 	/*
1406 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1407 	 * balance_dirty_pages() for a dirty throttling pause:
1408 	 */
1409 	int				nr_dirtied;
1410 	int				nr_dirtied_pause;
1411 	/* Start of a write-and-pause period: */
1412 	unsigned long			dirty_paused_when;
1413 
1414 #ifdef CONFIG_LATENCYTOP
1415 	int				latency_record_count;
1416 	struct latency_record		latency_record[LT_SAVECOUNT];
1417 #endif
1418 	/*
1419 	 * Time slack values; these are used to round up poll() and
1420 	 * select() etc timeout values. These are in nanoseconds.
1421 	 */
1422 	u64				timer_slack_ns;
1423 	u64				default_timer_slack_ns;
1424 
1425 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1426 	unsigned int			kasan_depth;
1427 #endif
1428 
1429 #ifdef CONFIG_KCSAN
1430 	struct kcsan_ctx		kcsan_ctx;
1431 #ifdef CONFIG_TRACE_IRQFLAGS
1432 	struct irqtrace_events		kcsan_save_irqtrace;
1433 #endif
1434 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1435 	int				kcsan_stack_depth;
1436 #endif
1437 #endif
1438 
1439 #ifdef CONFIG_KMSAN
1440 	struct kmsan_ctx		kmsan_ctx;
1441 #endif
1442 
1443 #if IS_ENABLED(CONFIG_KUNIT)
1444 	struct kunit			*kunit_test;
1445 #endif
1446 
1447 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1448 	/* Index of current stored address in ret_stack: */
1449 	int				curr_ret_stack;
1450 	int				curr_ret_depth;
1451 
1452 	/* Stack of return addresses for return function tracing: */
1453 	unsigned long			*ret_stack;
1454 
1455 	/* Timestamp for last schedule: */
1456 	unsigned long long		ftrace_timestamp;
1457 	unsigned long long		ftrace_sleeptime;
1458 
1459 	/*
1460 	 * Number of functions that haven't been traced
1461 	 * because of depth overrun:
1462 	 */
1463 	atomic_t			trace_overrun;
1464 
1465 	/* Pause tracing: */
1466 	atomic_t			tracing_graph_pause;
1467 #endif
1468 
1469 #ifdef CONFIG_TRACING
1470 	/* Bitmask and counter of trace recursion: */
1471 	unsigned long			trace_recursion;
1472 #endif /* CONFIG_TRACING */
1473 
1474 #ifdef CONFIG_KCOV
1475 	/* See kernel/kcov.c for more details. */
1476 
1477 	/* Coverage collection mode enabled for this task (0 if disabled): */
1478 	unsigned int			kcov_mode;
1479 
1480 	/* Size of the kcov_area: */
1481 	unsigned int			kcov_size;
1482 
1483 	/* Buffer for coverage collection: */
1484 	void				*kcov_area;
1485 
1486 	/* KCOV descriptor wired with this task or NULL: */
1487 	struct kcov			*kcov;
1488 
1489 	/* KCOV common handle for remote coverage collection: */
1490 	u64				kcov_handle;
1491 
1492 	/* KCOV sequence number: */
1493 	int				kcov_sequence;
1494 
1495 	/* Collect coverage from softirq context: */
1496 	unsigned int			kcov_softirq;
1497 #endif
1498 
1499 #ifdef CONFIG_MEMCG_V1
1500 	struct mem_cgroup		*memcg_in_oom;
1501 #endif
1502 
1503 #ifdef CONFIG_MEMCG
1504 	/* Number of pages to reclaim on returning to userland: */
1505 	unsigned int			memcg_nr_pages_over_high;
1506 
1507 	/* Used by memcontrol for targeted memcg charge: */
1508 	struct mem_cgroup		*active_memcg;
1509 
1510 	/* Cache for current->cgroups->memcg->objcg lookups: */
1511 	struct obj_cgroup		*objcg;
1512 #endif
1513 
1514 #ifdef CONFIG_BLK_CGROUP
1515 	struct gendisk			*throttle_disk;
1516 #endif
1517 
1518 #ifdef CONFIG_UPROBES
1519 	struct uprobe_task		*utask;
1520 #endif
1521 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1522 	unsigned int			sequential_io;
1523 	unsigned int			sequential_io_avg;
1524 #endif
1525 	struct kmap_ctrl		kmap_ctrl;
1526 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1527 	unsigned long			task_state_change;
1528 # ifdef CONFIG_PREEMPT_RT
1529 	unsigned long			saved_state_change;
1530 # endif
1531 #endif
1532 	struct rcu_head			rcu;
1533 	refcount_t			rcu_users;
1534 	int				pagefault_disabled;
1535 #ifdef CONFIG_MMU
1536 	struct task_struct		*oom_reaper_list;
1537 	struct timer_list		oom_reaper_timer;
1538 #endif
1539 #ifdef CONFIG_VMAP_STACK
1540 	struct vm_struct		*stack_vm_area;
1541 #endif
1542 #ifdef CONFIG_THREAD_INFO_IN_TASK
1543 	/* A live task holds one reference: */
1544 	refcount_t			stack_refcount;
1545 #endif
1546 #ifdef CONFIG_LIVEPATCH
1547 	int patch_state;
1548 #endif
1549 #ifdef CONFIG_SECURITY
1550 	/* Used by LSM modules for access restriction: */
1551 	void				*security;
1552 #endif
1553 #ifdef CONFIG_BPF_SYSCALL
1554 	/* Used by BPF task local storage */
1555 	struct bpf_local_storage __rcu	*bpf_storage;
1556 	/* Used for BPF run context */
1557 	struct bpf_run_ctx		*bpf_ctx;
1558 #endif
1559 	/* Used by BPF for per-TASK xdp storage */
1560 	struct bpf_net_context		*bpf_net_context;
1561 
1562 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1563 	unsigned long			lowest_stack;
1564 	unsigned long			prev_lowest_stack;
1565 #endif
1566 
1567 #ifdef CONFIG_X86_MCE
1568 	void __user			*mce_vaddr;
1569 	__u64				mce_kflags;
1570 	u64				mce_addr;
1571 	__u64				mce_ripv : 1,
1572 					mce_whole_page : 1,
1573 					__mce_reserved : 62;
1574 	struct callback_head		mce_kill_me;
1575 	int				mce_count;
1576 #endif
1577 
1578 #ifdef CONFIG_KRETPROBES
1579 	struct llist_head               kretprobe_instances;
1580 #endif
1581 #ifdef CONFIG_RETHOOK
1582 	struct llist_head               rethooks;
1583 #endif
1584 
1585 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1586 	/*
1587 	 * If L1D flush is supported on mm context switch
1588 	 * then we use this callback head to queue kill work
1589 	 * to kill tasks that are not running on SMT disabled
1590 	 * cores
1591 	 */
1592 	struct callback_head		l1d_flush_kill;
1593 #endif
1594 
1595 #ifdef CONFIG_RV
1596 	/*
1597 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1598 	 * If we find justification for more monitors, we can think
1599 	 * about adding more or developing a dynamic method. So far,
1600 	 * none of these are justified.
1601 	 */
1602 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1603 #endif
1604 
1605 #ifdef CONFIG_USER_EVENTS
1606 	struct user_event_mm		*user_event_mm;
1607 #endif
1608 
1609 	/*
1610 	 * New fields for task_struct should be added above here, so that
1611 	 * they are included in the randomized portion of task_struct.
1612 	 */
1613 	randomized_struct_fields_end
1614 
1615 	/* CPU-specific state of this task: */
1616 	struct thread_struct		thread;
1617 
1618 	/*
1619 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1620 	 * structure.  It *MUST* be at the end of 'task_struct'.
1621 	 *
1622 	 * Do not put anything below here!
1623 	 */
1624 };
1625 
1626 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1627 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1628 
1629 static inline unsigned int __task_state_index(unsigned int tsk_state,
1630 					      unsigned int tsk_exit_state)
1631 {
1632 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1633 
1634 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1635 
1636 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1637 		state = TASK_REPORT_IDLE;
1638 
1639 	/*
1640 	 * We're lying here, but rather than expose a completely new task state
1641 	 * to userspace, we can make this appear as if the task has gone through
1642 	 * a regular rt_mutex_lock() call.
1643 	 * Report frozen tasks as uninterruptible.
1644 	 */
1645 	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1646 		state = TASK_UNINTERRUPTIBLE;
1647 
1648 	return fls(state);
1649 }
1650 
1651 static inline unsigned int task_state_index(struct task_struct *tsk)
1652 {
1653 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1654 }
1655 
1656 static inline char task_index_to_char(unsigned int state)
1657 {
1658 	static const char state_char[] = "RSDTtXZPI";
1659 
1660 	BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1661 
1662 	return state_char[state];
1663 }
1664 
1665 static inline char task_state_to_char(struct task_struct *tsk)
1666 {
1667 	return task_index_to_char(task_state_index(tsk));
1668 }
1669 
1670 extern struct pid *cad_pid;
1671 
1672 /*
1673  * Per process flags
1674  */
1675 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1676 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1677 #define PF_EXITING		0x00000004	/* Getting shut down */
1678 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1679 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1680 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1681 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1682 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1683 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1684 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1685 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1686 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1687 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1688 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1689 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1690 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1691 #define PF__HOLE__00010000	0x00010000
1692 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1693 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1694 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1695 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1696 						 * I am cleaning dirty pages from some other bdi. */
1697 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1698 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1699 #define PF__HOLE__00800000	0x00800000
1700 #define PF__HOLE__01000000	0x01000000
1701 #define PF__HOLE__02000000	0x02000000
1702 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1703 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1704 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1705 						 * See memalloc_pin_save() */
1706 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1707 #define PF__HOLE__40000000	0x40000000
1708 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1709 
1710 /*
1711  * Only the _current_ task can read/write to tsk->flags, but other
1712  * tasks can access tsk->flags in readonly mode for example
1713  * with tsk_used_math (like during threaded core dumping).
1714  * There is however an exception to this rule during ptrace
1715  * or during fork: the ptracer task is allowed to write to the
1716  * child->flags of its traced child (same goes for fork, the parent
1717  * can write to the child->flags), because we're guaranteed the
1718  * child is not running and in turn not changing child->flags
1719  * at the same time the parent does it.
1720  */
1721 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1722 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1723 #define clear_used_math()			clear_stopped_child_used_math(current)
1724 #define set_used_math()				set_stopped_child_used_math(current)
1725 
1726 #define conditional_stopped_child_used_math(condition, child) \
1727 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1728 
1729 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1730 
1731 #define copy_to_stopped_child_used_math(child) \
1732 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1733 
1734 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1735 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1736 #define used_math()				tsk_used_math(current)
1737 
1738 static __always_inline bool is_percpu_thread(void)
1739 {
1740 #ifdef CONFIG_SMP
1741 	return (current->flags & PF_NO_SETAFFINITY) &&
1742 		(current->nr_cpus_allowed  == 1);
1743 #else
1744 	return true;
1745 #endif
1746 }
1747 
1748 /* Per-process atomic flags. */
1749 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1750 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1751 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1752 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1753 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1754 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1755 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1756 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1757 
1758 #define TASK_PFA_TEST(name, func)					\
1759 	static inline bool task_##func(struct task_struct *p)		\
1760 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1761 
1762 #define TASK_PFA_SET(name, func)					\
1763 	static inline void task_set_##func(struct task_struct *p)	\
1764 	{ set_bit(PFA_##name, &p->atomic_flags); }
1765 
1766 #define TASK_PFA_CLEAR(name, func)					\
1767 	static inline void task_clear_##func(struct task_struct *p)	\
1768 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1769 
1770 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1771 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1772 
1773 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1774 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1775 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1776 
1777 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1778 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1779 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1780 
1781 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1782 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1783 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1784 
1785 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1786 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1787 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1788 
1789 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1790 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1791 
1792 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1793 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1794 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1795 
1796 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1797 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1798 
1799 static inline void
1800 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1801 {
1802 	current->flags &= ~flags;
1803 	current->flags |= orig_flags & flags;
1804 }
1805 
1806 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1807 extern int task_can_attach(struct task_struct *p);
1808 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1809 extern void dl_bw_free(int cpu, u64 dl_bw);
1810 #ifdef CONFIG_SMP
1811 
1812 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1813 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1814 
1815 /**
1816  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1817  * @p: the task
1818  * @new_mask: CPU affinity mask
1819  *
1820  * Return: zero if successful, or a negative error code
1821  */
1822 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1823 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1824 extern void release_user_cpus_ptr(struct task_struct *p);
1825 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1826 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1827 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1828 #else
1829 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1830 {
1831 }
1832 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1833 {
1834 	/* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
1835 	if ((*cpumask_bits(new_mask) & 1) == 0)
1836 		return -EINVAL;
1837 	return 0;
1838 }
1839 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1840 {
1841 	if (src->user_cpus_ptr)
1842 		return -EINVAL;
1843 	return 0;
1844 }
1845 static inline void release_user_cpus_ptr(struct task_struct *p)
1846 {
1847 	WARN_ON(p->user_cpus_ptr);
1848 }
1849 
1850 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1851 {
1852 	return 0;
1853 }
1854 #endif
1855 
1856 extern int yield_to(struct task_struct *p, bool preempt);
1857 extern void set_user_nice(struct task_struct *p, long nice);
1858 extern int task_prio(const struct task_struct *p);
1859 
1860 /**
1861  * task_nice - return the nice value of a given task.
1862  * @p: the task in question.
1863  *
1864  * Return: The nice value [ -20 ... 0 ... 19 ].
1865  */
1866 static inline int task_nice(const struct task_struct *p)
1867 {
1868 	return PRIO_TO_NICE((p)->static_prio);
1869 }
1870 
1871 extern int can_nice(const struct task_struct *p, const int nice);
1872 extern int task_curr(const struct task_struct *p);
1873 extern int idle_cpu(int cpu);
1874 extern int available_idle_cpu(int cpu);
1875 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1876 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1877 extern void sched_set_fifo(struct task_struct *p);
1878 extern void sched_set_fifo_low(struct task_struct *p);
1879 extern void sched_set_normal(struct task_struct *p, int nice);
1880 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1881 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1882 extern struct task_struct *idle_task(int cpu);
1883 
1884 /**
1885  * is_idle_task - is the specified task an idle task?
1886  * @p: the task in question.
1887  *
1888  * Return: 1 if @p is an idle task. 0 otherwise.
1889  */
1890 static __always_inline bool is_idle_task(const struct task_struct *p)
1891 {
1892 	return !!(p->flags & PF_IDLE);
1893 }
1894 
1895 extern struct task_struct *curr_task(int cpu);
1896 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1897 
1898 void yield(void);
1899 
1900 union thread_union {
1901 	struct task_struct task;
1902 #ifndef CONFIG_THREAD_INFO_IN_TASK
1903 	struct thread_info thread_info;
1904 #endif
1905 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1906 };
1907 
1908 #ifndef CONFIG_THREAD_INFO_IN_TASK
1909 extern struct thread_info init_thread_info;
1910 #endif
1911 
1912 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1913 
1914 #ifdef CONFIG_THREAD_INFO_IN_TASK
1915 # define task_thread_info(task)	(&(task)->thread_info)
1916 #else
1917 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1918 #endif
1919 
1920 /*
1921  * find a task by one of its numerical ids
1922  *
1923  * find_task_by_pid_ns():
1924  *      finds a task by its pid in the specified namespace
1925  * find_task_by_vpid():
1926  *      finds a task by its virtual pid
1927  *
1928  * see also find_vpid() etc in include/linux/pid.h
1929  */
1930 
1931 extern struct task_struct *find_task_by_vpid(pid_t nr);
1932 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1933 
1934 /*
1935  * find a task by its virtual pid and get the task struct
1936  */
1937 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1938 
1939 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1940 extern int wake_up_process(struct task_struct *tsk);
1941 extern void wake_up_new_task(struct task_struct *tsk);
1942 
1943 #ifdef CONFIG_SMP
1944 extern void kick_process(struct task_struct *tsk);
1945 #else
1946 static inline void kick_process(struct task_struct *tsk) { }
1947 #endif
1948 
1949 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1950 
1951 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1952 {
1953 	__set_task_comm(tsk, from, false);
1954 }
1955 
1956 /*
1957  * - Why not use task_lock()?
1958  *   User space can randomly change their names anyway, so locking for readers
1959  *   doesn't make sense. For writers, locking is probably necessary, as a race
1960  *   condition could lead to long-term mixed results.
1961  *   The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1962  *   always NUL-terminated and zero-padded. Therefore the race condition between
1963  *   reader and writer is not an issue.
1964  *
1965  * - BUILD_BUG_ON() can help prevent the buf from being truncated.
1966  *   Since the callers don't perform any return value checks, this safeguard is
1967  *   necessary.
1968  */
1969 #define get_task_comm(buf, tsk) ({			\
1970 	BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN);	\
1971 	strscpy_pad(buf, (tsk)->comm);			\
1972 	buf;						\
1973 })
1974 
1975 #ifdef CONFIG_SMP
1976 static __always_inline void scheduler_ipi(void)
1977 {
1978 	/*
1979 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1980 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1981 	 * this IPI.
1982 	 */
1983 	preempt_fold_need_resched();
1984 }
1985 #else
1986 static inline void scheduler_ipi(void) { }
1987 #endif
1988 
1989 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1990 
1991 /*
1992  * Set thread flags in other task's structures.
1993  * See asm/thread_info.h for TIF_xxxx flags available:
1994  */
1995 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1996 {
1997 	set_ti_thread_flag(task_thread_info(tsk), flag);
1998 }
1999 
2000 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2001 {
2002 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2003 }
2004 
2005 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2006 					  bool value)
2007 {
2008 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2009 }
2010 
2011 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2012 {
2013 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2014 }
2015 
2016 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2017 {
2018 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2019 }
2020 
2021 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2022 {
2023 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2024 }
2025 
2026 static inline void set_tsk_need_resched(struct task_struct *tsk)
2027 {
2028 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2029 }
2030 
2031 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2032 {
2033 	atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2034 			   (atomic_long_t *)&task_thread_info(tsk)->flags);
2035 }
2036 
2037 static inline int test_tsk_need_resched(struct task_struct *tsk)
2038 {
2039 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2040 }
2041 
2042 /*
2043  * cond_resched() and cond_resched_lock(): latency reduction via
2044  * explicit rescheduling in places that are safe. The return
2045  * value indicates whether a reschedule was done in fact.
2046  * cond_resched_lock() will drop the spinlock before scheduling,
2047  */
2048 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2049 extern int __cond_resched(void);
2050 
2051 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2052 
2053 void sched_dynamic_klp_enable(void);
2054 void sched_dynamic_klp_disable(void);
2055 
2056 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2057 
2058 static __always_inline int _cond_resched(void)
2059 {
2060 	return static_call_mod(cond_resched)();
2061 }
2062 
2063 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2064 
2065 extern int dynamic_cond_resched(void);
2066 
2067 static __always_inline int _cond_resched(void)
2068 {
2069 	return dynamic_cond_resched();
2070 }
2071 
2072 #else /* !CONFIG_PREEMPTION */
2073 
2074 static inline int _cond_resched(void)
2075 {
2076 	klp_sched_try_switch();
2077 	return __cond_resched();
2078 }
2079 
2080 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2081 
2082 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2083 
2084 static inline int _cond_resched(void)
2085 {
2086 	klp_sched_try_switch();
2087 	return 0;
2088 }
2089 
2090 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2091 
2092 #define cond_resched() ({			\
2093 	__might_resched(__FILE__, __LINE__, 0);	\
2094 	_cond_resched();			\
2095 })
2096 
2097 extern int __cond_resched_lock(spinlock_t *lock);
2098 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2099 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2100 
2101 #define MIGHT_RESCHED_RCU_SHIFT		8
2102 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2103 
2104 #ifndef CONFIG_PREEMPT_RT
2105 /*
2106  * Non RT kernels have an elevated preempt count due to the held lock,
2107  * but are not allowed to be inside a RCU read side critical section
2108  */
2109 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2110 #else
2111 /*
2112  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2113  * cond_resched*lock() has to take that into account because it checks for
2114  * preempt_count() and rcu_preempt_depth().
2115  */
2116 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2117 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2118 #endif
2119 
2120 #define cond_resched_lock(lock) ({						\
2121 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2122 	__cond_resched_lock(lock);						\
2123 })
2124 
2125 #define cond_resched_rwlock_read(lock) ({					\
2126 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2127 	__cond_resched_rwlock_read(lock);					\
2128 })
2129 
2130 #define cond_resched_rwlock_write(lock) ({					\
2131 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2132 	__cond_resched_rwlock_write(lock);					\
2133 })
2134 
2135 static __always_inline bool need_resched(void)
2136 {
2137 	return unlikely(tif_need_resched());
2138 }
2139 
2140 /*
2141  * Wrappers for p->thread_info->cpu access. No-op on UP.
2142  */
2143 #ifdef CONFIG_SMP
2144 
2145 static inline unsigned int task_cpu(const struct task_struct *p)
2146 {
2147 	return READ_ONCE(task_thread_info(p)->cpu);
2148 }
2149 
2150 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2151 
2152 #else
2153 
2154 static inline unsigned int task_cpu(const struct task_struct *p)
2155 {
2156 	return 0;
2157 }
2158 
2159 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2160 {
2161 }
2162 
2163 #endif /* CONFIG_SMP */
2164 
2165 static inline bool task_is_runnable(struct task_struct *p)
2166 {
2167 	return p->on_rq && !p->se.sched_delayed;
2168 }
2169 
2170 extern bool sched_task_on_rq(struct task_struct *p);
2171 extern unsigned long get_wchan(struct task_struct *p);
2172 extern struct task_struct *cpu_curr_snapshot(int cpu);
2173 
2174 #include <linux/spinlock.h>
2175 
2176 /*
2177  * In order to reduce various lock holder preemption latencies provide an
2178  * interface to see if a vCPU is currently running or not.
2179  *
2180  * This allows us to terminate optimistic spin loops and block, analogous to
2181  * the native optimistic spin heuristic of testing if the lock owner task is
2182  * running or not.
2183  */
2184 #ifndef vcpu_is_preempted
2185 static inline bool vcpu_is_preempted(int cpu)
2186 {
2187 	return false;
2188 }
2189 #endif
2190 
2191 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2192 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2193 
2194 #ifndef TASK_SIZE_OF
2195 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2196 #endif
2197 
2198 #ifdef CONFIG_SMP
2199 static inline bool owner_on_cpu(struct task_struct *owner)
2200 {
2201 	/*
2202 	 * As lock holder preemption issue, we both skip spinning if
2203 	 * task is not on cpu or its cpu is preempted
2204 	 */
2205 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2206 }
2207 
2208 /* Returns effective CPU energy utilization, as seen by the scheduler */
2209 unsigned long sched_cpu_util(int cpu);
2210 #endif /* CONFIG_SMP */
2211 
2212 #ifdef CONFIG_SCHED_CORE
2213 extern void sched_core_free(struct task_struct *tsk);
2214 extern void sched_core_fork(struct task_struct *p);
2215 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2216 				unsigned long uaddr);
2217 extern int sched_core_idle_cpu(int cpu);
2218 #else
2219 static inline void sched_core_free(struct task_struct *tsk) { }
2220 static inline void sched_core_fork(struct task_struct *p) { }
2221 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2222 #endif
2223 
2224 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2225 
2226 #ifdef CONFIG_MEM_ALLOC_PROFILING
2227 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2228 {
2229 	swap(current->alloc_tag, tag);
2230 	return tag;
2231 }
2232 
2233 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2234 {
2235 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2236 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2237 #endif
2238 	current->alloc_tag = old;
2239 }
2240 #else
2241 #define alloc_tag_save(_tag)			NULL
2242 #define alloc_tag_restore(_tag, _old)		do {} while (0)
2243 #endif
2244 
2245 #endif
2246