xref: /linux-6.15/include/linux/sched.h (revision 93c06cbb)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * cloning flags:
6  */
7 #define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8 #define CLONE_VM	0x00000100	/* set if VM shared between processes */
9 #define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10 #define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11 #define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD	0x00010000	/* Same thread group? */
16 #define CLONE_NEWNS	0x00020000	/* New namespace group? */
17 #define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21 #define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22 #define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24 #define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25 #define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26 #define CLONE_NEWIPC		0x08000000	/* New ipcs */
27 #define CLONE_NEWUSER		0x10000000	/* New user namespace */
28 #define CLONE_NEWPID		0x20000000	/* New pid namespace */
29 #define CLONE_NEWNET		0x40000000	/* New network namespace */
30 #define CLONE_IO		0x80000000	/* Clone io context */
31 
32 /*
33  * Scheduling policies
34  */
35 #define SCHED_NORMAL		0
36 #define SCHED_FIFO		1
37 #define SCHED_RR		2
38 #define SCHED_BATCH		3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE		5
41 
42 #ifdef __KERNEL__
43 
44 struct sched_param {
45 	int sched_priority;
46 };
47 
48 #include <asm/param.h>	/* for HZ */
49 
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62 
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67 
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81 
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 
91 #include <asm/processor.h>
92 
93 struct mem_cgroup;
94 struct exec_domain;
95 struct futex_pi_state;
96 struct robust_list_head;
97 struct bio;
98 
99 /*
100  * List of flags we want to share for kernel threads,
101  * if only because they are not used by them anyway.
102  */
103 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
104 
105 /*
106  * These are the constant used to fake the fixed-point load-average
107  * counting. Some notes:
108  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
109  *    a load-average precision of 10 bits integer + 11 bits fractional
110  *  - if you want to count load-averages more often, you need more
111  *    precision, or rounding will get you. With 2-second counting freq,
112  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
113  *    11 bit fractions.
114  */
115 extern unsigned long avenrun[];		/* Load averages */
116 
117 #define FSHIFT		11		/* nr of bits of precision */
118 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
119 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
120 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
121 #define EXP_5		2014		/* 1/exp(5sec/5min) */
122 #define EXP_15		2037		/* 1/exp(5sec/15min) */
123 
124 #define CALC_LOAD(load,exp,n) \
125 	load *= exp; \
126 	load += n*(FIXED_1-exp); \
127 	load >>= FSHIFT;
128 
129 extern unsigned long total_forks;
130 extern int nr_threads;
131 DECLARE_PER_CPU(unsigned long, process_counts);
132 extern int nr_processes(void);
133 extern unsigned long nr_running(void);
134 extern unsigned long nr_uninterruptible(void);
135 extern unsigned long nr_active(void);
136 extern unsigned long nr_iowait(void);
137 
138 struct seq_file;
139 struct cfs_rq;
140 struct task_group;
141 #ifdef CONFIG_SCHED_DEBUG
142 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
143 extern void proc_sched_set_task(struct task_struct *p);
144 extern void
145 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
146 #else
147 static inline void
148 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
149 {
150 }
151 static inline void proc_sched_set_task(struct task_struct *p)
152 {
153 }
154 static inline void
155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
156 {
157 }
158 #endif
159 
160 extern unsigned long long time_sync_thresh;
161 
162 /*
163  * Task state bitmask. NOTE! These bits are also
164  * encoded in fs/proc/array.c: get_task_state().
165  *
166  * We have two separate sets of flags: task->state
167  * is about runnability, while task->exit_state are
168  * about the task exiting. Confusing, but this way
169  * modifying one set can't modify the other one by
170  * mistake.
171  */
172 #define TASK_RUNNING		0
173 #define TASK_INTERRUPTIBLE	1
174 #define TASK_UNINTERRUPTIBLE	2
175 #define __TASK_STOPPED		4
176 #define __TASK_TRACED		8
177 /* in tsk->exit_state */
178 #define EXIT_ZOMBIE		16
179 #define EXIT_DEAD		32
180 /* in tsk->state again */
181 #define TASK_DEAD		64
182 #define TASK_WAKEKILL		128
183 
184 /* Convenience macros for the sake of set_task_state */
185 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
186 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
187 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
188 
189 /* Convenience macros for the sake of wake_up */
190 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
191 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
192 
193 /* get_task_state() */
194 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
195 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
196 				 __TASK_TRACED)
197 
198 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
199 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
200 #define task_is_stopped_or_traced(task)	\
201 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
202 #define task_contributes_to_load(task)	\
203 				((task->state & TASK_UNINTERRUPTIBLE) != 0)
204 
205 #define __set_task_state(tsk, state_value)		\
206 	do { (tsk)->state = (state_value); } while (0)
207 #define set_task_state(tsk, state_value)		\
208 	set_mb((tsk)->state, (state_value))
209 
210 /*
211  * set_current_state() includes a barrier so that the write of current->state
212  * is correctly serialised wrt the caller's subsequent test of whether to
213  * actually sleep:
214  *
215  *	set_current_state(TASK_UNINTERRUPTIBLE);
216  *	if (do_i_need_to_sleep())
217  *		schedule();
218  *
219  * If the caller does not need such serialisation then use __set_current_state()
220  */
221 #define __set_current_state(state_value)			\
222 	do { current->state = (state_value); } while (0)
223 #define set_current_state(state_value)		\
224 	set_mb(current->state, (state_value))
225 
226 /* Task command name length */
227 #define TASK_COMM_LEN 16
228 
229 #include <linux/spinlock.h>
230 
231 /*
232  * This serializes "schedule()" and also protects
233  * the run-queue from deletions/modifications (but
234  * _adding_ to the beginning of the run-queue has
235  * a separate lock).
236  */
237 extern rwlock_t tasklist_lock;
238 extern spinlock_t mmlist_lock;
239 
240 struct task_struct;
241 
242 extern void sched_init(void);
243 extern void sched_init_smp(void);
244 extern asmlinkage void schedule_tail(struct task_struct *prev);
245 extern void init_idle(struct task_struct *idle, int cpu);
246 extern void init_idle_bootup_task(struct task_struct *idle);
247 
248 extern int runqueue_is_locked(void);
249 
250 extern cpumask_t nohz_cpu_mask;
251 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
252 extern int select_nohz_load_balancer(int cpu);
253 #else
254 static inline int select_nohz_load_balancer(int cpu)
255 {
256 	return 0;
257 }
258 #endif
259 
260 extern unsigned long rt_needs_cpu(int cpu);
261 
262 /*
263  * Only dump TASK_* tasks. (0 for all tasks)
264  */
265 extern void show_state_filter(unsigned long state_filter);
266 
267 static inline void show_state(void)
268 {
269 	show_state_filter(0);
270 }
271 
272 extern void show_regs(struct pt_regs *);
273 
274 /*
275  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
276  * task), SP is the stack pointer of the first frame that should be shown in the back
277  * trace (or NULL if the entire call-chain of the task should be shown).
278  */
279 extern void show_stack(struct task_struct *task, unsigned long *sp);
280 
281 void io_schedule(void);
282 long io_schedule_timeout(long timeout);
283 
284 extern void cpu_init (void);
285 extern void trap_init(void);
286 extern void account_process_tick(struct task_struct *task, int user);
287 extern void update_process_times(int user);
288 extern void scheduler_tick(void);
289 extern void hrtick_resched(void);
290 
291 extern void sched_show_task(struct task_struct *p);
292 
293 #ifdef CONFIG_DETECT_SOFTLOCKUP
294 extern void softlockup_tick(void);
295 extern void touch_softlockup_watchdog(void);
296 extern void touch_all_softlockup_watchdogs(void);
297 extern unsigned int  softlockup_panic;
298 extern unsigned long sysctl_hung_task_check_count;
299 extern unsigned long sysctl_hung_task_timeout_secs;
300 extern unsigned long sysctl_hung_task_warnings;
301 extern int softlockup_thresh;
302 #else
303 static inline void softlockup_tick(void)
304 {
305 }
306 static inline void spawn_softlockup_task(void)
307 {
308 }
309 static inline void touch_softlockup_watchdog(void)
310 {
311 }
312 static inline void touch_all_softlockup_watchdogs(void)
313 {
314 }
315 #endif
316 
317 
318 /* Attach to any functions which should be ignored in wchan output. */
319 #define __sched		__attribute__((__section__(".sched.text")))
320 
321 /* Linker adds these: start and end of __sched functions */
322 extern char __sched_text_start[], __sched_text_end[];
323 
324 /* Is this address in the __sched functions? */
325 extern int in_sched_functions(unsigned long addr);
326 
327 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
328 extern signed long schedule_timeout(signed long timeout);
329 extern signed long schedule_timeout_interruptible(signed long timeout);
330 extern signed long schedule_timeout_killable(signed long timeout);
331 extern signed long schedule_timeout_uninterruptible(signed long timeout);
332 asmlinkage void schedule(void);
333 
334 struct nsproxy;
335 struct user_namespace;
336 
337 /* Maximum number of active map areas.. This is a random (large) number */
338 #define DEFAULT_MAX_MAP_COUNT	65536
339 
340 extern int sysctl_max_map_count;
341 
342 #include <linux/aio.h>
343 
344 extern unsigned long
345 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
346 		       unsigned long, unsigned long);
347 extern unsigned long
348 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
349 			  unsigned long len, unsigned long pgoff,
350 			  unsigned long flags);
351 extern void arch_unmap_area(struct mm_struct *, unsigned long);
352 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
353 
354 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
355 /*
356  * The mm counters are not protected by its page_table_lock,
357  * so must be incremented atomically.
358  */
359 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
360 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
361 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
362 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
363 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
364 
365 #else  /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
366 /*
367  * The mm counters are protected by its page_table_lock,
368  * so can be incremented directly.
369  */
370 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
371 #define get_mm_counter(mm, member) ((mm)->_##member)
372 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
373 #define inc_mm_counter(mm, member) (mm)->_##member++
374 #define dec_mm_counter(mm, member) (mm)->_##member--
375 
376 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
377 
378 #define get_mm_rss(mm)					\
379 	(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
380 #define update_hiwater_rss(mm)	do {			\
381 	unsigned long _rss = get_mm_rss(mm);		\
382 	if ((mm)->hiwater_rss < _rss)			\
383 		(mm)->hiwater_rss = _rss;		\
384 } while (0)
385 #define update_hiwater_vm(mm)	do {			\
386 	if ((mm)->hiwater_vm < (mm)->total_vm)		\
387 		(mm)->hiwater_vm = (mm)->total_vm;	\
388 } while (0)
389 
390 extern void set_dumpable(struct mm_struct *mm, int value);
391 extern int get_dumpable(struct mm_struct *mm);
392 
393 /* mm flags */
394 /* dumpable bits */
395 #define MMF_DUMPABLE      0  /* core dump is permitted */
396 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
397 #define MMF_DUMPABLE_BITS 2
398 
399 /* coredump filter bits */
400 #define MMF_DUMP_ANON_PRIVATE	2
401 #define MMF_DUMP_ANON_SHARED	3
402 #define MMF_DUMP_MAPPED_PRIVATE	4
403 #define MMF_DUMP_MAPPED_SHARED	5
404 #define MMF_DUMP_ELF_HEADERS	6
405 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
406 #define MMF_DUMP_FILTER_BITS	5
407 #define MMF_DUMP_FILTER_MASK \
408 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
409 #define MMF_DUMP_FILTER_DEFAULT \
410 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED))
411 
412 struct sighand_struct {
413 	atomic_t		count;
414 	struct k_sigaction	action[_NSIG];
415 	spinlock_t		siglock;
416 	wait_queue_head_t	signalfd_wqh;
417 };
418 
419 struct pacct_struct {
420 	int			ac_flag;
421 	long			ac_exitcode;
422 	unsigned long		ac_mem;
423 	cputime_t		ac_utime, ac_stime;
424 	unsigned long		ac_minflt, ac_majflt;
425 };
426 
427 /*
428  * NOTE! "signal_struct" does not have it's own
429  * locking, because a shared signal_struct always
430  * implies a shared sighand_struct, so locking
431  * sighand_struct is always a proper superset of
432  * the locking of signal_struct.
433  */
434 struct signal_struct {
435 	atomic_t		count;
436 	atomic_t		live;
437 
438 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
439 
440 	/* current thread group signal load-balancing target: */
441 	struct task_struct	*curr_target;
442 
443 	/* shared signal handling: */
444 	struct sigpending	shared_pending;
445 
446 	/* thread group exit support */
447 	int			group_exit_code;
448 	/* overloaded:
449 	 * - notify group_exit_task when ->count is equal to notify_count
450 	 * - everyone except group_exit_task is stopped during signal delivery
451 	 *   of fatal signals, group_exit_task processes the signal.
452 	 */
453 	struct task_struct	*group_exit_task;
454 	int			notify_count;
455 
456 	/* thread group stop support, overloads group_exit_code too */
457 	int			group_stop_count;
458 	unsigned int		flags; /* see SIGNAL_* flags below */
459 
460 	/* POSIX.1b Interval Timers */
461 	struct list_head posix_timers;
462 
463 	/* ITIMER_REAL timer for the process */
464 	struct hrtimer real_timer;
465 	struct pid *leader_pid;
466 	ktime_t it_real_incr;
467 
468 	/* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
469 	cputime_t it_prof_expires, it_virt_expires;
470 	cputime_t it_prof_incr, it_virt_incr;
471 
472 	/* job control IDs */
473 
474 	/*
475 	 * pgrp and session fields are deprecated.
476 	 * use the task_session_Xnr and task_pgrp_Xnr routines below
477 	 */
478 
479 	union {
480 		pid_t pgrp __deprecated;
481 		pid_t __pgrp;
482 	};
483 
484 	struct pid *tty_old_pgrp;
485 
486 	union {
487 		pid_t session __deprecated;
488 		pid_t __session;
489 	};
490 
491 	/* boolean value for session group leader */
492 	int leader;
493 
494 	struct tty_struct *tty; /* NULL if no tty */
495 
496 	/*
497 	 * Cumulative resource counters for dead threads in the group,
498 	 * and for reaped dead child processes forked by this group.
499 	 * Live threads maintain their own counters and add to these
500 	 * in __exit_signal, except for the group leader.
501 	 */
502 	cputime_t utime, stime, cutime, cstime;
503 	cputime_t gtime;
504 	cputime_t cgtime;
505 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
506 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
507 	unsigned long inblock, oublock, cinblock, coublock;
508 	struct task_io_accounting ioac;
509 
510 	/*
511 	 * Cumulative ns of scheduled CPU time for dead threads in the
512 	 * group, not including a zombie group leader.  (This only differs
513 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
514 	 * other than jiffies.)
515 	 */
516 	unsigned long long sum_sched_runtime;
517 
518 	/*
519 	 * We don't bother to synchronize most readers of this at all,
520 	 * because there is no reader checking a limit that actually needs
521 	 * to get both rlim_cur and rlim_max atomically, and either one
522 	 * alone is a single word that can safely be read normally.
523 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
524 	 * protect this instead of the siglock, because they really
525 	 * have no need to disable irqs.
526 	 */
527 	struct rlimit rlim[RLIM_NLIMITS];
528 
529 	struct list_head cpu_timers[3];
530 
531 	/* keep the process-shared keyrings here so that they do the right
532 	 * thing in threads created with CLONE_THREAD */
533 #ifdef CONFIG_KEYS
534 	struct key *session_keyring;	/* keyring inherited over fork */
535 	struct key *process_keyring;	/* keyring private to this process */
536 #endif
537 #ifdef CONFIG_BSD_PROCESS_ACCT
538 	struct pacct_struct pacct;	/* per-process accounting information */
539 #endif
540 #ifdef CONFIG_TASKSTATS
541 	struct taskstats *stats;
542 #endif
543 #ifdef CONFIG_AUDIT
544 	unsigned audit_tty;
545 	struct tty_audit_buf *tty_audit_buf;
546 #endif
547 };
548 
549 /* Context switch must be unlocked if interrupts are to be enabled */
550 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
551 # define __ARCH_WANT_UNLOCKED_CTXSW
552 #endif
553 
554 /*
555  * Bits in flags field of signal_struct.
556  */
557 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
558 #define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
559 #define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
560 #define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
561 /*
562  * Pending notifications to parent.
563  */
564 #define SIGNAL_CLD_STOPPED	0x00000010
565 #define SIGNAL_CLD_CONTINUED	0x00000020
566 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
567 
568 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
569 
570 /* If true, all threads except ->group_exit_task have pending SIGKILL */
571 static inline int signal_group_exit(const struct signal_struct *sig)
572 {
573 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
574 		(sig->group_exit_task != NULL);
575 }
576 
577 /*
578  * Some day this will be a full-fledged user tracking system..
579  */
580 struct user_struct {
581 	atomic_t __count;	/* reference count */
582 	atomic_t processes;	/* How many processes does this user have? */
583 	atomic_t files;		/* How many open files does this user have? */
584 	atomic_t sigpending;	/* How many pending signals does this user have? */
585 #ifdef CONFIG_INOTIFY_USER
586 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
587 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
588 #endif
589 #ifdef CONFIG_POSIX_MQUEUE
590 	/* protected by mq_lock	*/
591 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
592 #endif
593 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
594 
595 #ifdef CONFIG_KEYS
596 	struct key *uid_keyring;	/* UID specific keyring */
597 	struct key *session_keyring;	/* UID's default session keyring */
598 #endif
599 
600 	/* Hash table maintenance information */
601 	struct hlist_node uidhash_node;
602 	uid_t uid;
603 
604 #ifdef CONFIG_USER_SCHED
605 	struct task_group *tg;
606 #ifdef CONFIG_SYSFS
607 	struct kobject kobj;
608 	struct work_struct work;
609 #endif
610 #endif
611 };
612 
613 extern int uids_sysfs_init(void);
614 
615 extern struct user_struct *find_user(uid_t);
616 
617 extern struct user_struct root_user;
618 #define INIT_USER (&root_user)
619 
620 struct backing_dev_info;
621 struct reclaim_state;
622 
623 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
624 struct sched_info {
625 	/* cumulative counters */
626 	unsigned long pcount;	      /* # of times run on this cpu */
627 	unsigned long long cpu_time,  /* time spent on the cpu */
628 			   run_delay; /* time spent waiting on a runqueue */
629 
630 	/* timestamps */
631 	unsigned long long last_arrival,/* when we last ran on a cpu */
632 			   last_queued;	/* when we were last queued to run */
633 #ifdef CONFIG_SCHEDSTATS
634 	/* BKL stats */
635 	unsigned int bkl_count;
636 #endif
637 };
638 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
639 
640 #ifdef CONFIG_SCHEDSTATS
641 extern const struct file_operations proc_schedstat_operations;
642 #endif /* CONFIG_SCHEDSTATS */
643 
644 #ifdef CONFIG_TASK_DELAY_ACCT
645 struct task_delay_info {
646 	spinlock_t	lock;
647 	unsigned int	flags;	/* Private per-task flags */
648 
649 	/* For each stat XXX, add following, aligned appropriately
650 	 *
651 	 * struct timespec XXX_start, XXX_end;
652 	 * u64 XXX_delay;
653 	 * u32 XXX_count;
654 	 *
655 	 * Atomicity of updates to XXX_delay, XXX_count protected by
656 	 * single lock above (split into XXX_lock if contention is an issue).
657 	 */
658 
659 	/*
660 	 * XXX_count is incremented on every XXX operation, the delay
661 	 * associated with the operation is added to XXX_delay.
662 	 * XXX_delay contains the accumulated delay time in nanoseconds.
663 	 */
664 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
665 	u64 blkio_delay;	/* wait for sync block io completion */
666 	u64 swapin_delay;	/* wait for swapin block io completion */
667 	u32 blkio_count;	/* total count of the number of sync block */
668 				/* io operations performed */
669 	u32 swapin_count;	/* total count of the number of swapin block */
670 				/* io operations performed */
671 
672 	struct timespec freepages_start, freepages_end;
673 	u64 freepages_delay;	/* wait for memory reclaim */
674 	u32 freepages_count;	/* total count of memory reclaim */
675 };
676 #endif	/* CONFIG_TASK_DELAY_ACCT */
677 
678 static inline int sched_info_on(void)
679 {
680 #ifdef CONFIG_SCHEDSTATS
681 	return 1;
682 #elif defined(CONFIG_TASK_DELAY_ACCT)
683 	extern int delayacct_on;
684 	return delayacct_on;
685 #else
686 	return 0;
687 #endif
688 }
689 
690 enum cpu_idle_type {
691 	CPU_IDLE,
692 	CPU_NOT_IDLE,
693 	CPU_NEWLY_IDLE,
694 	CPU_MAX_IDLE_TYPES
695 };
696 
697 /*
698  * sched-domains (multiprocessor balancing) declarations:
699  */
700 
701 /*
702  * Increase resolution of nice-level calculations:
703  */
704 #define SCHED_LOAD_SHIFT	10
705 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
706 
707 #define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
708 
709 #ifdef CONFIG_SMP
710 #define SD_LOAD_BALANCE		1	/* Do load balancing on this domain. */
711 #define SD_BALANCE_NEWIDLE	2	/* Balance when about to become idle */
712 #define SD_BALANCE_EXEC		4	/* Balance on exec */
713 #define SD_BALANCE_FORK		8	/* Balance on fork, clone */
714 #define SD_WAKE_IDLE		16	/* Wake to idle CPU on task wakeup */
715 #define SD_WAKE_AFFINE		32	/* Wake task to waking CPU */
716 #define SD_WAKE_BALANCE		64	/* Perform balancing at task wakeup */
717 #define SD_SHARE_CPUPOWER	128	/* Domain members share cpu power */
718 #define SD_POWERSAVINGS_BALANCE	256	/* Balance for power savings */
719 #define SD_SHARE_PKG_RESOURCES	512	/* Domain members share cpu pkg resources */
720 #define SD_SERIALIZE		1024	/* Only a single load balancing instance */
721 #define SD_WAKE_IDLE_FAR	2048	/* Gain latency sacrificing cache hit */
722 
723 #define BALANCE_FOR_MC_POWER	\
724 	(sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
725 
726 #define BALANCE_FOR_PKG_POWER	\
727 	((sched_mc_power_savings || sched_smt_power_savings) ?	\
728 	 SD_POWERSAVINGS_BALANCE : 0)
729 
730 #define test_sd_parent(sd, flag)	((sd->parent &&		\
731 					 (sd->parent->flags & flag)) ? 1 : 0)
732 
733 
734 struct sched_group {
735 	struct sched_group *next;	/* Must be a circular list */
736 	cpumask_t cpumask;
737 
738 	/*
739 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
740 	 * single CPU. This is read only (except for setup, hotplug CPU).
741 	 * Note : Never change cpu_power without recompute its reciprocal
742 	 */
743 	unsigned int __cpu_power;
744 	/*
745 	 * reciprocal value of cpu_power to avoid expensive divides
746 	 * (see include/linux/reciprocal_div.h)
747 	 */
748 	u32 reciprocal_cpu_power;
749 };
750 
751 enum sched_domain_level {
752 	SD_LV_NONE = 0,
753 	SD_LV_SIBLING,
754 	SD_LV_MC,
755 	SD_LV_CPU,
756 	SD_LV_NODE,
757 	SD_LV_ALLNODES,
758 	SD_LV_MAX
759 };
760 
761 struct sched_domain_attr {
762 	int relax_domain_level;
763 };
764 
765 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
766 	.relax_domain_level = -1,			\
767 }
768 
769 struct sched_domain {
770 	/* These fields must be setup */
771 	struct sched_domain *parent;	/* top domain must be null terminated */
772 	struct sched_domain *child;	/* bottom domain must be null terminated */
773 	struct sched_group *groups;	/* the balancing groups of the domain */
774 	cpumask_t span;			/* span of all CPUs in this domain */
775 	unsigned long min_interval;	/* Minimum balance interval ms */
776 	unsigned long max_interval;	/* Maximum balance interval ms */
777 	unsigned int busy_factor;	/* less balancing by factor if busy */
778 	unsigned int imbalance_pct;	/* No balance until over watermark */
779 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
780 	unsigned int busy_idx;
781 	unsigned int idle_idx;
782 	unsigned int newidle_idx;
783 	unsigned int wake_idx;
784 	unsigned int forkexec_idx;
785 	int flags;			/* See SD_* */
786 	enum sched_domain_level level;
787 
788 	/* Runtime fields. */
789 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
790 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
791 	unsigned int nr_balance_failed; /* initialise to 0 */
792 
793 	u64 last_update;
794 
795 #ifdef CONFIG_SCHEDSTATS
796 	/* load_balance() stats */
797 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
798 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
799 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
800 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
801 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
802 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
803 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
804 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
805 
806 	/* Active load balancing */
807 	unsigned int alb_count;
808 	unsigned int alb_failed;
809 	unsigned int alb_pushed;
810 
811 	/* SD_BALANCE_EXEC stats */
812 	unsigned int sbe_count;
813 	unsigned int sbe_balanced;
814 	unsigned int sbe_pushed;
815 
816 	/* SD_BALANCE_FORK stats */
817 	unsigned int sbf_count;
818 	unsigned int sbf_balanced;
819 	unsigned int sbf_pushed;
820 
821 	/* try_to_wake_up() stats */
822 	unsigned int ttwu_wake_remote;
823 	unsigned int ttwu_move_affine;
824 	unsigned int ttwu_move_balance;
825 #endif
826 };
827 
828 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
829 				    struct sched_domain_attr *dattr_new);
830 extern int arch_reinit_sched_domains(void);
831 
832 #else /* CONFIG_SMP */
833 
834 struct sched_domain_attr;
835 
836 static inline void
837 partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
838 			struct sched_domain_attr *dattr_new)
839 {
840 }
841 #endif	/* !CONFIG_SMP */
842 
843 struct io_context;			/* See blkdev.h */
844 #define NGROUPS_SMALL		32
845 #define NGROUPS_PER_BLOCK	((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
846 struct group_info {
847 	int ngroups;
848 	atomic_t usage;
849 	gid_t small_block[NGROUPS_SMALL];
850 	int nblocks;
851 	gid_t *blocks[0];
852 };
853 
854 /*
855  * get_group_info() must be called with the owning task locked (via task_lock())
856  * when task != current.  The reason being that the vast majority of callers are
857  * looking at current->group_info, which can not be changed except by the
858  * current task.  Changing current->group_info requires the task lock, too.
859  */
860 #define get_group_info(group_info) do { \
861 	atomic_inc(&(group_info)->usage); \
862 } while (0)
863 
864 #define put_group_info(group_info) do { \
865 	if (atomic_dec_and_test(&(group_info)->usage)) \
866 		groups_free(group_info); \
867 } while (0)
868 
869 extern struct group_info *groups_alloc(int gidsetsize);
870 extern void groups_free(struct group_info *group_info);
871 extern int set_current_groups(struct group_info *group_info);
872 extern int groups_search(struct group_info *group_info, gid_t grp);
873 /* access the groups "array" with this macro */
874 #define GROUP_AT(gi, i) \
875     ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
876 
877 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
878 extern void prefetch_stack(struct task_struct *t);
879 #else
880 static inline void prefetch_stack(struct task_struct *t) { }
881 #endif
882 
883 struct audit_context;		/* See audit.c */
884 struct mempolicy;
885 struct pipe_inode_info;
886 struct uts_namespace;
887 
888 struct rq;
889 struct sched_domain;
890 
891 struct sched_class {
892 	const struct sched_class *next;
893 
894 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
895 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
896 	void (*yield_task) (struct rq *rq);
897 	int  (*select_task_rq)(struct task_struct *p, int sync);
898 
899 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
900 
901 	struct task_struct * (*pick_next_task) (struct rq *rq);
902 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
903 
904 #ifdef CONFIG_SMP
905 	unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
906 			struct rq *busiest, unsigned long max_load_move,
907 			struct sched_domain *sd, enum cpu_idle_type idle,
908 			int *all_pinned, int *this_best_prio);
909 
910 	int (*move_one_task) (struct rq *this_rq, int this_cpu,
911 			      struct rq *busiest, struct sched_domain *sd,
912 			      enum cpu_idle_type idle);
913 	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
914 	void (*post_schedule) (struct rq *this_rq);
915 	void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
916 #endif
917 
918 	void (*set_curr_task) (struct rq *rq);
919 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
920 	void (*task_new) (struct rq *rq, struct task_struct *p);
921 	void (*set_cpus_allowed)(struct task_struct *p,
922 				 const cpumask_t *newmask);
923 
924 	void (*rq_online)(struct rq *rq);
925 	void (*rq_offline)(struct rq *rq);
926 
927 	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
928 			       int running);
929 	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
930 			     int running);
931 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
932 			     int oldprio, int running);
933 
934 #ifdef CONFIG_FAIR_GROUP_SCHED
935 	void (*moved_group) (struct task_struct *p);
936 #endif
937 };
938 
939 struct load_weight {
940 	unsigned long weight, inv_weight;
941 };
942 
943 /*
944  * CFS stats for a schedulable entity (task, task-group etc)
945  *
946  * Current field usage histogram:
947  *
948  *     4 se->block_start
949  *     4 se->run_node
950  *     4 se->sleep_start
951  *     6 se->load.weight
952  */
953 struct sched_entity {
954 	struct load_weight	load;		/* for load-balancing */
955 	struct rb_node		run_node;
956 	struct list_head	group_node;
957 	unsigned int		on_rq;
958 
959 	u64			exec_start;
960 	u64			sum_exec_runtime;
961 	u64			vruntime;
962 	u64			prev_sum_exec_runtime;
963 
964 	u64			last_wakeup;
965 	u64			avg_overlap;
966 
967 #ifdef CONFIG_SCHEDSTATS
968 	u64			wait_start;
969 	u64			wait_max;
970 	u64			wait_count;
971 	u64			wait_sum;
972 
973 	u64			sleep_start;
974 	u64			sleep_max;
975 	s64			sum_sleep_runtime;
976 
977 	u64			block_start;
978 	u64			block_max;
979 	u64			exec_max;
980 	u64			slice_max;
981 
982 	u64			nr_migrations;
983 	u64			nr_migrations_cold;
984 	u64			nr_failed_migrations_affine;
985 	u64			nr_failed_migrations_running;
986 	u64			nr_failed_migrations_hot;
987 	u64			nr_forced_migrations;
988 	u64			nr_forced2_migrations;
989 
990 	u64			nr_wakeups;
991 	u64			nr_wakeups_sync;
992 	u64			nr_wakeups_migrate;
993 	u64			nr_wakeups_local;
994 	u64			nr_wakeups_remote;
995 	u64			nr_wakeups_affine;
996 	u64			nr_wakeups_affine_attempts;
997 	u64			nr_wakeups_passive;
998 	u64			nr_wakeups_idle;
999 #endif
1000 
1001 #ifdef CONFIG_FAIR_GROUP_SCHED
1002 	struct sched_entity	*parent;
1003 	/* rq on which this entity is (to be) queued: */
1004 	struct cfs_rq		*cfs_rq;
1005 	/* rq "owned" by this entity/group: */
1006 	struct cfs_rq		*my_q;
1007 #endif
1008 };
1009 
1010 struct sched_rt_entity {
1011 	struct list_head run_list;
1012 	unsigned int time_slice;
1013 	unsigned long timeout;
1014 	int nr_cpus_allowed;
1015 
1016 	struct sched_rt_entity *back;
1017 #ifdef CONFIG_RT_GROUP_SCHED
1018 	struct sched_rt_entity	*parent;
1019 	/* rq on which this entity is (to be) queued: */
1020 	struct rt_rq		*rt_rq;
1021 	/* rq "owned" by this entity/group: */
1022 	struct rt_rq		*my_q;
1023 #endif
1024 };
1025 
1026 struct task_struct {
1027 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1028 	void *stack;
1029 	atomic_t usage;
1030 	unsigned int flags;	/* per process flags, defined below */
1031 	unsigned int ptrace;
1032 
1033 	int lock_depth;		/* BKL lock depth */
1034 
1035 #ifdef CONFIG_SMP
1036 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1037 	int oncpu;
1038 #endif
1039 #endif
1040 
1041 	int prio, static_prio, normal_prio;
1042 	unsigned int rt_priority;
1043 	const struct sched_class *sched_class;
1044 	struct sched_entity se;
1045 	struct sched_rt_entity rt;
1046 
1047 #ifdef CONFIG_PREEMPT_NOTIFIERS
1048 	/* list of struct preempt_notifier: */
1049 	struct hlist_head preempt_notifiers;
1050 #endif
1051 
1052 	/*
1053 	 * fpu_counter contains the number of consecutive context switches
1054 	 * that the FPU is used. If this is over a threshold, the lazy fpu
1055 	 * saving becomes unlazy to save the trap. This is an unsigned char
1056 	 * so that after 256 times the counter wraps and the behavior turns
1057 	 * lazy again; this to deal with bursty apps that only use FPU for
1058 	 * a short time
1059 	 */
1060 	unsigned char fpu_counter;
1061 	s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1062 #ifdef CONFIG_BLK_DEV_IO_TRACE
1063 	unsigned int btrace_seq;
1064 #endif
1065 
1066 	unsigned int policy;
1067 	cpumask_t cpus_allowed;
1068 
1069 #ifdef CONFIG_PREEMPT_RCU
1070 	int rcu_read_lock_nesting;
1071 	int rcu_flipctr_idx;
1072 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1073 
1074 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1075 	struct sched_info sched_info;
1076 #endif
1077 
1078 	struct list_head tasks;
1079 
1080 	struct mm_struct *mm, *active_mm;
1081 
1082 /* task state */
1083 	struct linux_binfmt *binfmt;
1084 	int exit_state;
1085 	int exit_code, exit_signal;
1086 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1087 	/* ??? */
1088 	unsigned int personality;
1089 	unsigned did_exec:1;
1090 	pid_t pid;
1091 	pid_t tgid;
1092 
1093 #ifdef CONFIG_CC_STACKPROTECTOR
1094 	/* Canary value for the -fstack-protector gcc feature */
1095 	unsigned long stack_canary;
1096 #endif
1097 	/*
1098 	 * pointers to (original) parent process, youngest child, younger sibling,
1099 	 * older sibling, respectively.  (p->father can be replaced with
1100 	 * p->real_parent->pid)
1101 	 */
1102 	struct task_struct *real_parent; /* real parent process */
1103 	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1104 	/*
1105 	 * children/sibling forms the list of my natural children
1106 	 */
1107 	struct list_head children;	/* list of my children */
1108 	struct list_head sibling;	/* linkage in my parent's children list */
1109 	struct task_struct *group_leader;	/* threadgroup leader */
1110 
1111 	/*
1112 	 * ptraced is the list of tasks this task is using ptrace on.
1113 	 * This includes both natural children and PTRACE_ATTACH targets.
1114 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1115 	 */
1116 	struct list_head ptraced;
1117 	struct list_head ptrace_entry;
1118 
1119 	/* PID/PID hash table linkage. */
1120 	struct pid_link pids[PIDTYPE_MAX];
1121 	struct list_head thread_group;
1122 
1123 	struct completion *vfork_done;		/* for vfork() */
1124 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1125 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1126 
1127 	cputime_t utime, stime, utimescaled, stimescaled;
1128 	cputime_t gtime;
1129 	cputime_t prev_utime, prev_stime;
1130 	unsigned long nvcsw, nivcsw; /* context switch counts */
1131 	struct timespec start_time; 		/* monotonic time */
1132 	struct timespec real_start_time;	/* boot based time */
1133 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1134 	unsigned long min_flt, maj_flt;
1135 
1136   	cputime_t it_prof_expires, it_virt_expires;
1137 	unsigned long long it_sched_expires;
1138 	struct list_head cpu_timers[3];
1139 
1140 /* process credentials */
1141 	uid_t uid,euid,suid,fsuid;
1142 	gid_t gid,egid,sgid,fsgid;
1143 	struct group_info *group_info;
1144 	kernel_cap_t   cap_effective, cap_inheritable, cap_permitted, cap_bset;
1145 	struct user_struct *user;
1146 	unsigned securebits;
1147 #ifdef CONFIG_KEYS
1148 	unsigned char jit_keyring;	/* default keyring to attach requested keys to */
1149 	struct key *request_key_auth;	/* assumed request_key authority */
1150 	struct key *thread_keyring;	/* keyring private to this thread */
1151 #endif
1152 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1153 				     - access with [gs]et_task_comm (which lock
1154 				       it with task_lock())
1155 				     - initialized normally by flush_old_exec */
1156 /* file system info */
1157 	int link_count, total_link_count;
1158 #ifdef CONFIG_SYSVIPC
1159 /* ipc stuff */
1160 	struct sysv_sem sysvsem;
1161 #endif
1162 #ifdef CONFIG_DETECT_SOFTLOCKUP
1163 /* hung task detection */
1164 	unsigned long last_switch_timestamp;
1165 	unsigned long last_switch_count;
1166 #endif
1167 /* CPU-specific state of this task */
1168 	struct thread_struct thread;
1169 /* filesystem information */
1170 	struct fs_struct *fs;
1171 /* open file information */
1172 	struct files_struct *files;
1173 /* namespaces */
1174 	struct nsproxy *nsproxy;
1175 /* signal handlers */
1176 	struct signal_struct *signal;
1177 	struct sighand_struct *sighand;
1178 
1179 	sigset_t blocked, real_blocked;
1180 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1181 	struct sigpending pending;
1182 
1183 	unsigned long sas_ss_sp;
1184 	size_t sas_ss_size;
1185 	int (*notifier)(void *priv);
1186 	void *notifier_data;
1187 	sigset_t *notifier_mask;
1188 #ifdef CONFIG_SECURITY
1189 	void *security;
1190 #endif
1191 	struct audit_context *audit_context;
1192 #ifdef CONFIG_AUDITSYSCALL
1193 	uid_t loginuid;
1194 	unsigned int sessionid;
1195 #endif
1196 	seccomp_t seccomp;
1197 
1198 /* Thread group tracking */
1199    	u32 parent_exec_id;
1200    	u32 self_exec_id;
1201 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1202 	spinlock_t alloc_lock;
1203 
1204 	/* Protection of the PI data structures: */
1205 	spinlock_t pi_lock;
1206 
1207 #ifdef CONFIG_RT_MUTEXES
1208 	/* PI waiters blocked on a rt_mutex held by this task */
1209 	struct plist_head pi_waiters;
1210 	/* Deadlock detection and priority inheritance handling */
1211 	struct rt_mutex_waiter *pi_blocked_on;
1212 #endif
1213 
1214 #ifdef CONFIG_DEBUG_MUTEXES
1215 	/* mutex deadlock detection */
1216 	struct mutex_waiter *blocked_on;
1217 #endif
1218 #ifdef CONFIG_TRACE_IRQFLAGS
1219 	unsigned int irq_events;
1220 	int hardirqs_enabled;
1221 	unsigned long hardirq_enable_ip;
1222 	unsigned int hardirq_enable_event;
1223 	unsigned long hardirq_disable_ip;
1224 	unsigned int hardirq_disable_event;
1225 	int softirqs_enabled;
1226 	unsigned long softirq_disable_ip;
1227 	unsigned int softirq_disable_event;
1228 	unsigned long softirq_enable_ip;
1229 	unsigned int softirq_enable_event;
1230 	int hardirq_context;
1231 	int softirq_context;
1232 #endif
1233 #ifdef CONFIG_LOCKDEP
1234 # define MAX_LOCK_DEPTH 48UL
1235 	u64 curr_chain_key;
1236 	int lockdep_depth;
1237 	unsigned int lockdep_recursion;
1238 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1239 #endif
1240 
1241 /* journalling filesystem info */
1242 	void *journal_info;
1243 
1244 /* stacked block device info */
1245 	struct bio *bio_list, **bio_tail;
1246 
1247 /* VM state */
1248 	struct reclaim_state *reclaim_state;
1249 
1250 	struct backing_dev_info *backing_dev_info;
1251 
1252 	struct io_context *io_context;
1253 
1254 	unsigned long ptrace_message;
1255 	siginfo_t *last_siginfo; /* For ptrace use.  */
1256 	struct task_io_accounting ioac;
1257 #if defined(CONFIG_TASK_XACCT)
1258 	u64 acct_rss_mem1;	/* accumulated rss usage */
1259 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1260 	cputime_t acct_timexpd;	/* stime + utime since last update */
1261 #endif
1262 #ifdef CONFIG_CPUSETS
1263 	nodemask_t mems_allowed;
1264 	int cpuset_mems_generation;
1265 	int cpuset_mem_spread_rotor;
1266 #endif
1267 #ifdef CONFIG_CGROUPS
1268 	/* Control Group info protected by css_set_lock */
1269 	struct css_set *cgroups;
1270 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1271 	struct list_head cg_list;
1272 #endif
1273 #ifdef CONFIG_FUTEX
1274 	struct robust_list_head __user *robust_list;
1275 #ifdef CONFIG_COMPAT
1276 	struct compat_robust_list_head __user *compat_robust_list;
1277 #endif
1278 	struct list_head pi_state_list;
1279 	struct futex_pi_state *pi_state_cache;
1280 #endif
1281 #ifdef CONFIG_NUMA
1282 	struct mempolicy *mempolicy;
1283 	short il_next;
1284 #endif
1285 	atomic_t fs_excl;	/* holding fs exclusive resources */
1286 	struct rcu_head rcu;
1287 
1288 	/*
1289 	 * cache last used pipe for splice
1290 	 */
1291 	struct pipe_inode_info *splice_pipe;
1292 #ifdef	CONFIG_TASK_DELAY_ACCT
1293 	struct task_delay_info *delays;
1294 #endif
1295 #ifdef CONFIG_FAULT_INJECTION
1296 	int make_it_fail;
1297 #endif
1298 	struct prop_local_single dirties;
1299 #ifdef CONFIG_LATENCYTOP
1300 	int latency_record_count;
1301 	struct latency_record latency_record[LT_SAVECOUNT];
1302 #endif
1303 };
1304 
1305 /*
1306  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1307  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1308  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1309  * values are inverted: lower p->prio value means higher priority.
1310  *
1311  * The MAX_USER_RT_PRIO value allows the actual maximum
1312  * RT priority to be separate from the value exported to
1313  * user-space.  This allows kernel threads to set their
1314  * priority to a value higher than any user task. Note:
1315  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1316  */
1317 
1318 #define MAX_USER_RT_PRIO	100
1319 #define MAX_RT_PRIO		MAX_USER_RT_PRIO
1320 
1321 #define MAX_PRIO		(MAX_RT_PRIO + 40)
1322 #define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1323 
1324 static inline int rt_prio(int prio)
1325 {
1326 	if (unlikely(prio < MAX_RT_PRIO))
1327 		return 1;
1328 	return 0;
1329 }
1330 
1331 static inline int rt_task(struct task_struct *p)
1332 {
1333 	return rt_prio(p->prio);
1334 }
1335 
1336 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1337 {
1338 	tsk->signal->__session = session;
1339 }
1340 
1341 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1342 {
1343 	tsk->signal->__pgrp = pgrp;
1344 }
1345 
1346 static inline struct pid *task_pid(struct task_struct *task)
1347 {
1348 	return task->pids[PIDTYPE_PID].pid;
1349 }
1350 
1351 static inline struct pid *task_tgid(struct task_struct *task)
1352 {
1353 	return task->group_leader->pids[PIDTYPE_PID].pid;
1354 }
1355 
1356 static inline struct pid *task_pgrp(struct task_struct *task)
1357 {
1358 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1359 }
1360 
1361 static inline struct pid *task_session(struct task_struct *task)
1362 {
1363 	return task->group_leader->pids[PIDTYPE_SID].pid;
1364 }
1365 
1366 struct pid_namespace;
1367 
1368 /*
1369  * the helpers to get the task's different pids as they are seen
1370  * from various namespaces
1371  *
1372  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1373  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1374  *                     current.
1375  * task_xid_nr_ns()  : id seen from the ns specified;
1376  *
1377  * set_task_vxid()   : assigns a virtual id to a task;
1378  *
1379  * see also pid_nr() etc in include/linux/pid.h
1380  */
1381 
1382 static inline pid_t task_pid_nr(struct task_struct *tsk)
1383 {
1384 	return tsk->pid;
1385 }
1386 
1387 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1388 
1389 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1390 {
1391 	return pid_vnr(task_pid(tsk));
1392 }
1393 
1394 
1395 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1396 {
1397 	return tsk->tgid;
1398 }
1399 
1400 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1401 
1402 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1403 {
1404 	return pid_vnr(task_tgid(tsk));
1405 }
1406 
1407 
1408 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1409 {
1410 	return tsk->signal->__pgrp;
1411 }
1412 
1413 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1414 
1415 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1416 {
1417 	return pid_vnr(task_pgrp(tsk));
1418 }
1419 
1420 
1421 static inline pid_t task_session_nr(struct task_struct *tsk)
1422 {
1423 	return tsk->signal->__session;
1424 }
1425 
1426 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1427 
1428 static inline pid_t task_session_vnr(struct task_struct *tsk)
1429 {
1430 	return pid_vnr(task_session(tsk));
1431 }
1432 
1433 
1434 /**
1435  * pid_alive - check that a task structure is not stale
1436  * @p: Task structure to be checked.
1437  *
1438  * Test if a process is not yet dead (at most zombie state)
1439  * If pid_alive fails, then pointers within the task structure
1440  * can be stale and must not be dereferenced.
1441  */
1442 static inline int pid_alive(struct task_struct *p)
1443 {
1444 	return p->pids[PIDTYPE_PID].pid != NULL;
1445 }
1446 
1447 /**
1448  * is_global_init - check if a task structure is init
1449  * @tsk: Task structure to be checked.
1450  *
1451  * Check if a task structure is the first user space task the kernel created.
1452  */
1453 static inline int is_global_init(struct task_struct *tsk)
1454 {
1455 	return tsk->pid == 1;
1456 }
1457 
1458 /*
1459  * is_container_init:
1460  * check whether in the task is init in its own pid namespace.
1461  */
1462 extern int is_container_init(struct task_struct *tsk);
1463 
1464 extern struct pid *cad_pid;
1465 
1466 extern void free_task(struct task_struct *tsk);
1467 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1468 
1469 extern void __put_task_struct(struct task_struct *t);
1470 
1471 static inline void put_task_struct(struct task_struct *t)
1472 {
1473 	if (atomic_dec_and_test(&t->usage))
1474 		__put_task_struct(t);
1475 }
1476 
1477 /*
1478  * Per process flags
1479  */
1480 #define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1481 					/* Not implemented yet, only for 486*/
1482 #define PF_STARTING	0x00000002	/* being created */
1483 #define PF_EXITING	0x00000004	/* getting shut down */
1484 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1485 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1486 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1487 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1488 #define PF_DUMPCORE	0x00000200	/* dumped core */
1489 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1490 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1491 #define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1492 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1493 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1494 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1495 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1496 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1497 #define PF_SWAPOFF	0x00080000	/* I am in swapoff */
1498 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1499 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1500 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1501 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1502 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1503 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1504 #define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1505 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1506 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1507 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1508 #define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1509 
1510 /*
1511  * Only the _current_ task can read/write to tsk->flags, but other
1512  * tasks can access tsk->flags in readonly mode for example
1513  * with tsk_used_math (like during threaded core dumping).
1514  * There is however an exception to this rule during ptrace
1515  * or during fork: the ptracer task is allowed to write to the
1516  * child->flags of its traced child (same goes for fork, the parent
1517  * can write to the child->flags), because we're guaranteed the
1518  * child is not running and in turn not changing child->flags
1519  * at the same time the parent does it.
1520  */
1521 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1522 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1523 #define clear_used_math() clear_stopped_child_used_math(current)
1524 #define set_used_math() set_stopped_child_used_math(current)
1525 #define conditional_stopped_child_used_math(condition, child) \
1526 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1527 #define conditional_used_math(condition) \
1528 	conditional_stopped_child_used_math(condition, current)
1529 #define copy_to_stopped_child_used_math(child) \
1530 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1531 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1532 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1533 #define used_math() tsk_used_math(current)
1534 
1535 #ifdef CONFIG_SMP
1536 extern int set_cpus_allowed_ptr(struct task_struct *p,
1537 				const cpumask_t *new_mask);
1538 #else
1539 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1540 				       const cpumask_t *new_mask)
1541 {
1542 	if (!cpu_isset(0, *new_mask))
1543 		return -EINVAL;
1544 	return 0;
1545 }
1546 #endif
1547 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1548 {
1549 	return set_cpus_allowed_ptr(p, &new_mask);
1550 }
1551 
1552 extern unsigned long long sched_clock(void);
1553 
1554 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1555 static inline void sched_clock_init(void)
1556 {
1557 }
1558 
1559 static inline u64 sched_clock_cpu(int cpu)
1560 {
1561 	return sched_clock();
1562 }
1563 
1564 static inline void sched_clock_tick(void)
1565 {
1566 }
1567 
1568 static inline void sched_clock_idle_sleep_event(void)
1569 {
1570 }
1571 
1572 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1573 {
1574 }
1575 
1576 #ifdef CONFIG_NO_HZ
1577 static inline void sched_clock_tick_stop(int cpu)
1578 {
1579 }
1580 
1581 static inline void sched_clock_tick_start(int cpu)
1582 {
1583 }
1584 #endif
1585 
1586 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
1587 extern void sched_clock_init(void);
1588 extern u64 sched_clock_cpu(int cpu);
1589 extern void sched_clock_tick(void);
1590 extern void sched_clock_idle_sleep_event(void);
1591 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1592 #ifdef CONFIG_NO_HZ
1593 extern void sched_clock_tick_stop(int cpu);
1594 extern void sched_clock_tick_start(int cpu);
1595 #endif
1596 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
1597 
1598 /*
1599  * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1600  * clock constructed from sched_clock():
1601  */
1602 extern unsigned long long cpu_clock(int cpu);
1603 
1604 extern unsigned long long
1605 task_sched_runtime(struct task_struct *task);
1606 
1607 /* sched_exec is called by processes performing an exec */
1608 #ifdef CONFIG_SMP
1609 extern void sched_exec(void);
1610 #else
1611 #define sched_exec()   {}
1612 #endif
1613 
1614 extern void sched_clock_idle_sleep_event(void);
1615 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1616 
1617 #ifdef CONFIG_HOTPLUG_CPU
1618 extern void idle_task_exit(void);
1619 #else
1620 static inline void idle_task_exit(void) {}
1621 #endif
1622 
1623 extern void sched_idle_next(void);
1624 
1625 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1626 extern void wake_up_idle_cpu(int cpu);
1627 #else
1628 static inline void wake_up_idle_cpu(int cpu) { }
1629 #endif
1630 
1631 #ifdef CONFIG_SCHED_DEBUG
1632 extern unsigned int sysctl_sched_latency;
1633 extern unsigned int sysctl_sched_min_granularity;
1634 extern unsigned int sysctl_sched_wakeup_granularity;
1635 extern unsigned int sysctl_sched_child_runs_first;
1636 extern unsigned int sysctl_sched_features;
1637 extern unsigned int sysctl_sched_migration_cost;
1638 extern unsigned int sysctl_sched_nr_migrate;
1639 extern unsigned int sysctl_sched_shares_ratelimit;
1640 
1641 int sched_nr_latency_handler(struct ctl_table *table, int write,
1642 		struct file *file, void __user *buffer, size_t *length,
1643 		loff_t *ppos);
1644 #endif
1645 extern unsigned int sysctl_sched_rt_period;
1646 extern int sysctl_sched_rt_runtime;
1647 
1648 int sched_rt_handler(struct ctl_table *table, int write,
1649 		struct file *filp, void __user *buffer, size_t *lenp,
1650 		loff_t *ppos);
1651 
1652 extern unsigned int sysctl_sched_compat_yield;
1653 
1654 #ifdef CONFIG_RT_MUTEXES
1655 extern int rt_mutex_getprio(struct task_struct *p);
1656 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1657 extern void rt_mutex_adjust_pi(struct task_struct *p);
1658 #else
1659 static inline int rt_mutex_getprio(struct task_struct *p)
1660 {
1661 	return p->normal_prio;
1662 }
1663 # define rt_mutex_adjust_pi(p)		do { } while (0)
1664 #endif
1665 
1666 extern void set_user_nice(struct task_struct *p, long nice);
1667 extern int task_prio(const struct task_struct *p);
1668 extern int task_nice(const struct task_struct *p);
1669 extern int can_nice(const struct task_struct *p, const int nice);
1670 extern int task_curr(const struct task_struct *p);
1671 extern int idle_cpu(int cpu);
1672 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1673 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1674 				      struct sched_param *);
1675 extern struct task_struct *idle_task(int cpu);
1676 extern struct task_struct *curr_task(int cpu);
1677 extern void set_curr_task(int cpu, struct task_struct *p);
1678 
1679 void yield(void);
1680 
1681 /*
1682  * The default (Linux) execution domain.
1683  */
1684 extern struct exec_domain	default_exec_domain;
1685 
1686 union thread_union {
1687 	struct thread_info thread_info;
1688 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1689 };
1690 
1691 #ifndef __HAVE_ARCH_KSTACK_END
1692 static inline int kstack_end(void *addr)
1693 {
1694 	/* Reliable end of stack detection:
1695 	 * Some APM bios versions misalign the stack
1696 	 */
1697 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1698 }
1699 #endif
1700 
1701 extern union thread_union init_thread_union;
1702 extern struct task_struct init_task;
1703 
1704 extern struct   mm_struct init_mm;
1705 
1706 extern struct pid_namespace init_pid_ns;
1707 
1708 /*
1709  * find a task by one of its numerical ids
1710  *
1711  * find_task_by_pid_type_ns():
1712  *      it is the most generic call - it finds a task by all id,
1713  *      type and namespace specified
1714  * find_task_by_pid_ns():
1715  *      finds a task by its pid in the specified namespace
1716  * find_task_by_vpid():
1717  *      finds a task by its virtual pid
1718  *
1719  * see also find_vpid() etc in include/linux/pid.h
1720  */
1721 
1722 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1723 		struct pid_namespace *ns);
1724 
1725 extern struct task_struct *find_task_by_vpid(pid_t nr);
1726 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1727 		struct pid_namespace *ns);
1728 
1729 extern void __set_special_pids(struct pid *pid);
1730 
1731 /* per-UID process charging. */
1732 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1733 static inline struct user_struct *get_uid(struct user_struct *u)
1734 {
1735 	atomic_inc(&u->__count);
1736 	return u;
1737 }
1738 extern void free_uid(struct user_struct *);
1739 extern void switch_uid(struct user_struct *);
1740 extern void release_uids(struct user_namespace *ns);
1741 
1742 #include <asm/current.h>
1743 
1744 extern void do_timer(unsigned long ticks);
1745 
1746 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1747 extern int wake_up_process(struct task_struct *tsk);
1748 extern void wake_up_new_task(struct task_struct *tsk,
1749 				unsigned long clone_flags);
1750 #ifdef CONFIG_SMP
1751  extern void kick_process(struct task_struct *tsk);
1752 #else
1753  static inline void kick_process(struct task_struct *tsk) { }
1754 #endif
1755 extern void sched_fork(struct task_struct *p, int clone_flags);
1756 extern void sched_dead(struct task_struct *p);
1757 
1758 extern int in_group_p(gid_t);
1759 extern int in_egroup_p(gid_t);
1760 
1761 extern void proc_caches_init(void);
1762 extern void flush_signals(struct task_struct *);
1763 extern void ignore_signals(struct task_struct *);
1764 extern void flush_signal_handlers(struct task_struct *, int force_default);
1765 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1766 
1767 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1768 {
1769 	unsigned long flags;
1770 	int ret;
1771 
1772 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1773 	ret = dequeue_signal(tsk, mask, info);
1774 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1775 
1776 	return ret;
1777 }
1778 
1779 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1780 			      sigset_t *mask);
1781 extern void unblock_all_signals(void);
1782 extern void release_task(struct task_struct * p);
1783 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1784 extern int force_sigsegv(int, struct task_struct *);
1785 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1786 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1787 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1788 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1789 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1790 extern int kill_pid(struct pid *pid, int sig, int priv);
1791 extern int kill_proc_info(int, struct siginfo *, pid_t);
1792 extern int do_notify_parent(struct task_struct *, int);
1793 extern void force_sig(int, struct task_struct *);
1794 extern void force_sig_specific(int, struct task_struct *);
1795 extern int send_sig(int, struct task_struct *, int);
1796 extern void zap_other_threads(struct task_struct *p);
1797 extern struct sigqueue *sigqueue_alloc(void);
1798 extern void sigqueue_free(struct sigqueue *);
1799 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
1800 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1801 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1802 
1803 static inline int kill_cad_pid(int sig, int priv)
1804 {
1805 	return kill_pid(cad_pid, sig, priv);
1806 }
1807 
1808 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
1809 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1810 #define SEND_SIG_PRIV	((struct siginfo *) 1)
1811 #define SEND_SIG_FORCED	((struct siginfo *) 2)
1812 
1813 static inline int is_si_special(const struct siginfo *info)
1814 {
1815 	return info <= SEND_SIG_FORCED;
1816 }
1817 
1818 /* True if we are on the alternate signal stack.  */
1819 
1820 static inline int on_sig_stack(unsigned long sp)
1821 {
1822 	return (sp - current->sas_ss_sp < current->sas_ss_size);
1823 }
1824 
1825 static inline int sas_ss_flags(unsigned long sp)
1826 {
1827 	return (current->sas_ss_size == 0 ? SS_DISABLE
1828 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
1829 }
1830 
1831 /*
1832  * Routines for handling mm_structs
1833  */
1834 extern struct mm_struct * mm_alloc(void);
1835 
1836 /* mmdrop drops the mm and the page tables */
1837 extern void __mmdrop(struct mm_struct *);
1838 static inline void mmdrop(struct mm_struct * mm)
1839 {
1840 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1841 		__mmdrop(mm);
1842 }
1843 
1844 /* mmput gets rid of the mappings and all user-space */
1845 extern void mmput(struct mm_struct *);
1846 /* Grab a reference to a task's mm, if it is not already going away */
1847 extern struct mm_struct *get_task_mm(struct task_struct *task);
1848 /* Remove the current tasks stale references to the old mm_struct */
1849 extern void mm_release(struct task_struct *, struct mm_struct *);
1850 /* Allocate a new mm structure and copy contents from tsk->mm */
1851 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1852 
1853 extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1854 extern void flush_thread(void);
1855 extern void exit_thread(void);
1856 
1857 extern void exit_files(struct task_struct *);
1858 extern void __cleanup_signal(struct signal_struct *);
1859 extern void __cleanup_sighand(struct sighand_struct *);
1860 
1861 extern void exit_itimers(struct signal_struct *);
1862 extern void flush_itimer_signals(void);
1863 
1864 extern NORET_TYPE void do_group_exit(int);
1865 
1866 extern void daemonize(const char *, ...);
1867 extern int allow_signal(int);
1868 extern int disallow_signal(int);
1869 
1870 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1871 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1872 struct task_struct *fork_idle(int);
1873 
1874 extern void set_task_comm(struct task_struct *tsk, char *from);
1875 extern char *get_task_comm(char *to, struct task_struct *tsk);
1876 
1877 #ifdef CONFIG_SMP
1878 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1879 #else
1880 static inline unsigned long wait_task_inactive(struct task_struct *p,
1881 					       long match_state)
1882 {
1883 	return 1;
1884 }
1885 #endif
1886 
1887 #define next_task(p)	list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1888 
1889 #define for_each_process(p) \
1890 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1891 
1892 /*
1893  * Careful: do_each_thread/while_each_thread is a double loop so
1894  *          'break' will not work as expected - use goto instead.
1895  */
1896 #define do_each_thread(g, t) \
1897 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1898 
1899 #define while_each_thread(g, t) \
1900 	while ((t = next_thread(t)) != g)
1901 
1902 /* de_thread depends on thread_group_leader not being a pid based check */
1903 #define thread_group_leader(p)	(p == p->group_leader)
1904 
1905 /* Do to the insanities of de_thread it is possible for a process
1906  * to have the pid of the thread group leader without actually being
1907  * the thread group leader.  For iteration through the pids in proc
1908  * all we care about is that we have a task with the appropriate
1909  * pid, we don't actually care if we have the right task.
1910  */
1911 static inline int has_group_leader_pid(struct task_struct *p)
1912 {
1913 	return p->pid == p->tgid;
1914 }
1915 
1916 static inline
1917 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1918 {
1919 	return p1->tgid == p2->tgid;
1920 }
1921 
1922 static inline struct task_struct *next_thread(const struct task_struct *p)
1923 {
1924 	return list_entry(rcu_dereference(p->thread_group.next),
1925 			  struct task_struct, thread_group);
1926 }
1927 
1928 static inline int thread_group_empty(struct task_struct *p)
1929 {
1930 	return list_empty(&p->thread_group);
1931 }
1932 
1933 #define delay_group_leader(p) \
1934 		(thread_group_leader(p) && !thread_group_empty(p))
1935 
1936 /*
1937  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1938  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
1939  * pins the final release of task.io_context.  Also protects ->cpuset and
1940  * ->cgroup.subsys[].
1941  *
1942  * Nests both inside and outside of read_lock(&tasklist_lock).
1943  * It must not be nested with write_lock_irq(&tasklist_lock),
1944  * neither inside nor outside.
1945  */
1946 static inline void task_lock(struct task_struct *p)
1947 {
1948 	spin_lock(&p->alloc_lock);
1949 }
1950 
1951 static inline void task_unlock(struct task_struct *p)
1952 {
1953 	spin_unlock(&p->alloc_lock);
1954 }
1955 
1956 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1957 							unsigned long *flags);
1958 
1959 static inline void unlock_task_sighand(struct task_struct *tsk,
1960 						unsigned long *flags)
1961 {
1962 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1963 }
1964 
1965 #ifndef __HAVE_THREAD_FUNCTIONS
1966 
1967 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
1968 #define task_stack_page(task)	((task)->stack)
1969 
1970 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1971 {
1972 	*task_thread_info(p) = *task_thread_info(org);
1973 	task_thread_info(p)->task = p;
1974 }
1975 
1976 static inline unsigned long *end_of_stack(struct task_struct *p)
1977 {
1978 	return (unsigned long *)(task_thread_info(p) + 1);
1979 }
1980 
1981 #endif
1982 
1983 static inline int object_is_on_stack(void *obj)
1984 {
1985 	void *stack = task_stack_page(current);
1986 
1987 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
1988 }
1989 
1990 extern void thread_info_cache_init(void);
1991 
1992 /* set thread flags in other task's structures
1993  * - see asm/thread_info.h for TIF_xxxx flags available
1994  */
1995 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1996 {
1997 	set_ti_thread_flag(task_thread_info(tsk), flag);
1998 }
1999 
2000 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2001 {
2002 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2003 }
2004 
2005 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2006 {
2007 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2008 }
2009 
2010 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2011 {
2012 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2013 }
2014 
2015 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2016 {
2017 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2018 }
2019 
2020 static inline void set_tsk_need_resched(struct task_struct *tsk)
2021 {
2022 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2023 }
2024 
2025 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2026 {
2027 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2028 }
2029 
2030 static inline int test_tsk_need_resched(struct task_struct *tsk)
2031 {
2032 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2033 }
2034 
2035 static inline int signal_pending(struct task_struct *p)
2036 {
2037 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2038 }
2039 
2040 extern int __fatal_signal_pending(struct task_struct *p);
2041 
2042 static inline int fatal_signal_pending(struct task_struct *p)
2043 {
2044 	return signal_pending(p) && __fatal_signal_pending(p);
2045 }
2046 
2047 static inline int signal_pending_state(long state, struct task_struct *p)
2048 {
2049 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2050 		return 0;
2051 	if (!signal_pending(p))
2052 		return 0;
2053 
2054 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2055 }
2056 
2057 static inline int need_resched(void)
2058 {
2059 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2060 }
2061 
2062 /*
2063  * cond_resched() and cond_resched_lock(): latency reduction via
2064  * explicit rescheduling in places that are safe. The return
2065  * value indicates whether a reschedule was done in fact.
2066  * cond_resched_lock() will drop the spinlock before scheduling,
2067  * cond_resched_softirq() will enable bhs before scheduling.
2068  */
2069 extern int _cond_resched(void);
2070 #ifdef CONFIG_PREEMPT_BKL
2071 static inline int cond_resched(void)
2072 {
2073 	return 0;
2074 }
2075 #else
2076 static inline int cond_resched(void)
2077 {
2078 	return _cond_resched();
2079 }
2080 #endif
2081 extern int cond_resched_lock(spinlock_t * lock);
2082 extern int cond_resched_softirq(void);
2083 static inline int cond_resched_bkl(void)
2084 {
2085 	return _cond_resched();
2086 }
2087 
2088 /*
2089  * Does a critical section need to be broken due to another
2090  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2091  * but a general need for low latency)
2092  */
2093 static inline int spin_needbreak(spinlock_t *lock)
2094 {
2095 #ifdef CONFIG_PREEMPT
2096 	return spin_is_contended(lock);
2097 #else
2098 	return 0;
2099 #endif
2100 }
2101 
2102 /*
2103  * Reevaluate whether the task has signals pending delivery.
2104  * Wake the task if so.
2105  * This is required every time the blocked sigset_t changes.
2106  * callers must hold sighand->siglock.
2107  */
2108 extern void recalc_sigpending_and_wake(struct task_struct *t);
2109 extern void recalc_sigpending(void);
2110 
2111 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2112 
2113 /*
2114  * Wrappers for p->thread_info->cpu access. No-op on UP.
2115  */
2116 #ifdef CONFIG_SMP
2117 
2118 static inline unsigned int task_cpu(const struct task_struct *p)
2119 {
2120 	return task_thread_info(p)->cpu;
2121 }
2122 
2123 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2124 
2125 #else
2126 
2127 static inline unsigned int task_cpu(const struct task_struct *p)
2128 {
2129 	return 0;
2130 }
2131 
2132 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2133 {
2134 }
2135 
2136 #endif /* CONFIG_SMP */
2137 
2138 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2139 
2140 #ifdef CONFIG_TRACING
2141 extern void
2142 __trace_special(void *__tr, void *__data,
2143 		unsigned long arg1, unsigned long arg2, unsigned long arg3);
2144 #else
2145 static inline void
2146 __trace_special(void *__tr, void *__data,
2147 		unsigned long arg1, unsigned long arg2, unsigned long arg3)
2148 {
2149 }
2150 #endif
2151 
2152 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2153 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2154 
2155 extern int sched_mc_power_savings, sched_smt_power_savings;
2156 
2157 extern void normalize_rt_tasks(void);
2158 
2159 #ifdef CONFIG_GROUP_SCHED
2160 
2161 extern struct task_group init_task_group;
2162 #ifdef CONFIG_USER_SCHED
2163 extern struct task_group root_task_group;
2164 #endif
2165 
2166 extern struct task_group *sched_create_group(struct task_group *parent);
2167 extern void sched_destroy_group(struct task_group *tg);
2168 extern void sched_move_task(struct task_struct *tsk);
2169 #ifdef CONFIG_FAIR_GROUP_SCHED
2170 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2171 extern unsigned long sched_group_shares(struct task_group *tg);
2172 #endif
2173 #ifdef CONFIG_RT_GROUP_SCHED
2174 extern int sched_group_set_rt_runtime(struct task_group *tg,
2175 				      long rt_runtime_us);
2176 extern long sched_group_rt_runtime(struct task_group *tg);
2177 extern int sched_group_set_rt_period(struct task_group *tg,
2178 				      long rt_period_us);
2179 extern long sched_group_rt_period(struct task_group *tg);
2180 #endif
2181 #endif
2182 
2183 #ifdef CONFIG_TASK_XACCT
2184 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2185 {
2186 	tsk->ioac.rchar += amt;
2187 }
2188 
2189 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2190 {
2191 	tsk->ioac.wchar += amt;
2192 }
2193 
2194 static inline void inc_syscr(struct task_struct *tsk)
2195 {
2196 	tsk->ioac.syscr++;
2197 }
2198 
2199 static inline void inc_syscw(struct task_struct *tsk)
2200 {
2201 	tsk->ioac.syscw++;
2202 }
2203 #else
2204 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2205 {
2206 }
2207 
2208 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2209 {
2210 }
2211 
2212 static inline void inc_syscr(struct task_struct *tsk)
2213 {
2214 }
2215 
2216 static inline void inc_syscw(struct task_struct *tsk)
2217 {
2218 }
2219 #endif
2220 
2221 #ifndef TASK_SIZE_OF
2222 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2223 #endif
2224 
2225 #ifdef CONFIG_MM_OWNER
2226 extern void mm_update_next_owner(struct mm_struct *mm);
2227 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2228 #else
2229 static inline void mm_update_next_owner(struct mm_struct *mm)
2230 {
2231 }
2232 
2233 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2234 {
2235 }
2236 #endif /* CONFIG_MM_OWNER */
2237 
2238 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2239 
2240 #endif /* __KERNEL__ */
2241 
2242 #endif
2243