1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 30 #define CLONE_IO 0x80000000 /* Clone io context */ 31 32 /* 33 * Scheduling policies 34 */ 35 #define SCHED_NORMAL 0 36 #define SCHED_FIFO 1 37 #define SCHED_RR 2 38 #define SCHED_BATCH 3 39 /* SCHED_ISO: reserved but not implemented yet */ 40 #define SCHED_IDLE 5 41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 42 #define SCHED_RESET_ON_FORK 0x40000000 43 44 #ifdef __KERNEL__ 45 46 struct sched_param { 47 int sched_priority; 48 }; 49 50 #include <asm/param.h> /* for HZ */ 51 52 #include <linux/capability.h> 53 #include <linux/threads.h> 54 #include <linux/kernel.h> 55 #include <linux/types.h> 56 #include <linux/timex.h> 57 #include <linux/jiffies.h> 58 #include <linux/rbtree.h> 59 #include <linux/thread_info.h> 60 #include <linux/cpumask.h> 61 #include <linux/errno.h> 62 #include <linux/nodemask.h> 63 #include <linux/mm_types.h> 64 65 #include <asm/system.h> 66 #include <asm/page.h> 67 #include <asm/ptrace.h> 68 #include <asm/cputime.h> 69 70 #include <linux/smp.h> 71 #include <linux/sem.h> 72 #include <linux/signal.h> 73 #include <linux/path.h> 74 #include <linux/compiler.h> 75 #include <linux/completion.h> 76 #include <linux/pid.h> 77 #include <linux/percpu.h> 78 #include <linux/topology.h> 79 #include <linux/proportions.h> 80 #include <linux/seccomp.h> 81 #include <linux/rcupdate.h> 82 #include <linux/rculist.h> 83 #include <linux/rtmutex.h> 84 85 #include <linux/time.h> 86 #include <linux/param.h> 87 #include <linux/resource.h> 88 #include <linux/timer.h> 89 #include <linux/hrtimer.h> 90 #include <linux/task_io_accounting.h> 91 #include <linux/kobject.h> 92 #include <linux/latencytop.h> 93 #include <linux/cred.h> 94 95 #include <asm/processor.h> 96 97 struct exec_domain; 98 struct futex_pi_state; 99 struct robust_list_head; 100 struct bio_list; 101 struct fs_struct; 102 struct perf_event_context; 103 104 /* 105 * List of flags we want to share for kernel threads, 106 * if only because they are not used by them anyway. 107 */ 108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 109 110 /* 111 * These are the constant used to fake the fixed-point load-average 112 * counting. Some notes: 113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 114 * a load-average precision of 10 bits integer + 11 bits fractional 115 * - if you want to count load-averages more often, you need more 116 * precision, or rounding will get you. With 2-second counting freq, 117 * the EXP_n values would be 1981, 2034 and 2043 if still using only 118 * 11 bit fractions. 119 */ 120 extern unsigned long avenrun[]; /* Load averages */ 121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 122 123 #define FSHIFT 11 /* nr of bits of precision */ 124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 127 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 128 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 129 130 #define CALC_LOAD(load,exp,n) \ 131 load *= exp; \ 132 load += n*(FIXED_1-exp); \ 133 load >>= FSHIFT; 134 135 extern unsigned long total_forks; 136 extern int nr_threads; 137 DECLARE_PER_CPU(unsigned long, process_counts); 138 extern int nr_processes(void); 139 extern unsigned long nr_running(void); 140 extern unsigned long nr_uninterruptible(void); 141 extern unsigned long nr_iowait(void); 142 extern unsigned long nr_iowait_cpu(int cpu); 143 extern unsigned long this_cpu_load(void); 144 145 146 extern void calc_global_load(void); 147 148 extern unsigned long get_parent_ip(unsigned long addr); 149 150 struct seq_file; 151 struct cfs_rq; 152 struct task_group; 153 #ifdef CONFIG_SCHED_DEBUG 154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 155 extern void proc_sched_set_task(struct task_struct *p); 156 extern void 157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 158 #else 159 static inline void 160 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 161 { 162 } 163 static inline void proc_sched_set_task(struct task_struct *p) 164 { 165 } 166 static inline void 167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 168 { 169 } 170 #endif 171 172 /* 173 * Task state bitmask. NOTE! These bits are also 174 * encoded in fs/proc/array.c: get_task_state(). 175 * 176 * We have two separate sets of flags: task->state 177 * is about runnability, while task->exit_state are 178 * about the task exiting. Confusing, but this way 179 * modifying one set can't modify the other one by 180 * mistake. 181 */ 182 #define TASK_RUNNING 0 183 #define TASK_INTERRUPTIBLE 1 184 #define TASK_UNINTERRUPTIBLE 2 185 #define __TASK_STOPPED 4 186 #define __TASK_TRACED 8 187 /* in tsk->exit_state */ 188 #define EXIT_ZOMBIE 16 189 #define EXIT_DEAD 32 190 /* in tsk->state again */ 191 #define TASK_DEAD 64 192 #define TASK_WAKEKILL 128 193 #define TASK_WAKING 256 194 #define TASK_STATE_MAX 512 195 196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 197 198 extern char ___assert_task_state[1 - 2*!!( 199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 200 201 /* Convenience macros for the sake of set_task_state */ 202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 205 206 /* Convenience macros for the sake of wake_up */ 207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 209 210 /* get_task_state() */ 211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 213 __TASK_TRACED) 214 215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 217 #define task_is_dead(task) ((task)->exit_state != 0) 218 #define task_is_stopped_or_traced(task) \ 219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 220 #define task_contributes_to_load(task) \ 221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 222 (task->flags & PF_FREEZING) == 0) 223 224 #define __set_task_state(tsk, state_value) \ 225 do { (tsk)->state = (state_value); } while (0) 226 #define set_task_state(tsk, state_value) \ 227 set_mb((tsk)->state, (state_value)) 228 229 /* 230 * set_current_state() includes a barrier so that the write of current->state 231 * is correctly serialised wrt the caller's subsequent test of whether to 232 * actually sleep: 233 * 234 * set_current_state(TASK_UNINTERRUPTIBLE); 235 * if (do_i_need_to_sleep()) 236 * schedule(); 237 * 238 * If the caller does not need such serialisation then use __set_current_state() 239 */ 240 #define __set_current_state(state_value) \ 241 do { current->state = (state_value); } while (0) 242 #define set_current_state(state_value) \ 243 set_mb(current->state, (state_value)) 244 245 /* Task command name length */ 246 #define TASK_COMM_LEN 16 247 248 #include <linux/spinlock.h> 249 250 /* 251 * This serializes "schedule()" and also protects 252 * the run-queue from deletions/modifications (but 253 * _adding_ to the beginning of the run-queue has 254 * a separate lock). 255 */ 256 extern rwlock_t tasklist_lock; 257 extern spinlock_t mmlist_lock; 258 259 struct task_struct; 260 261 #ifdef CONFIG_PROVE_RCU 262 extern int lockdep_tasklist_lock_is_held(void); 263 #endif /* #ifdef CONFIG_PROVE_RCU */ 264 265 extern void sched_init(void); 266 extern void sched_init_smp(void); 267 extern asmlinkage void schedule_tail(struct task_struct *prev); 268 extern void init_idle(struct task_struct *idle, int cpu); 269 extern void init_idle_bootup_task(struct task_struct *idle); 270 271 extern int runqueue_is_locked(int cpu); 272 273 extern cpumask_var_t nohz_cpu_mask; 274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 275 extern void select_nohz_load_balancer(int stop_tick); 276 extern int get_nohz_timer_target(void); 277 #else 278 static inline void select_nohz_load_balancer(int stop_tick) { } 279 #endif 280 281 /* 282 * Only dump TASK_* tasks. (0 for all tasks) 283 */ 284 extern void show_state_filter(unsigned long state_filter); 285 286 static inline void show_state(void) 287 { 288 show_state_filter(0); 289 } 290 291 extern void show_regs(struct pt_regs *); 292 293 /* 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 295 * task), SP is the stack pointer of the first frame that should be shown in the back 296 * trace (or NULL if the entire call-chain of the task should be shown). 297 */ 298 extern void show_stack(struct task_struct *task, unsigned long *sp); 299 300 void io_schedule(void); 301 long io_schedule_timeout(long timeout); 302 303 extern void cpu_init (void); 304 extern void trap_init(void); 305 extern void update_process_times(int user); 306 extern void scheduler_tick(void); 307 308 extern void sched_show_task(struct task_struct *p); 309 310 #ifdef CONFIG_LOCKUP_DETECTOR 311 extern void touch_softlockup_watchdog(void); 312 extern void touch_softlockup_watchdog_sync(void); 313 extern void touch_all_softlockup_watchdogs(void); 314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 315 void __user *buffer, 316 size_t *lenp, loff_t *ppos); 317 extern unsigned int softlockup_panic; 318 extern int softlockup_thresh; 319 #else 320 static inline void touch_softlockup_watchdog(void) 321 { 322 } 323 static inline void touch_softlockup_watchdog_sync(void) 324 { 325 } 326 static inline void touch_all_softlockup_watchdogs(void) 327 { 328 } 329 #endif 330 331 #ifdef CONFIG_DETECT_HUNG_TASK 332 extern unsigned int sysctl_hung_task_panic; 333 extern unsigned long sysctl_hung_task_check_count; 334 extern unsigned long sysctl_hung_task_timeout_secs; 335 extern unsigned long sysctl_hung_task_warnings; 336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 337 void __user *buffer, 338 size_t *lenp, loff_t *ppos); 339 #else 340 /* Avoid need for ifdefs elsewhere in the code */ 341 enum { sysctl_hung_task_timeout_secs = 0 }; 342 #endif 343 344 /* Attach to any functions which should be ignored in wchan output. */ 345 #define __sched __attribute__((__section__(".sched.text"))) 346 347 /* Linker adds these: start and end of __sched functions */ 348 extern char __sched_text_start[], __sched_text_end[]; 349 350 /* Is this address in the __sched functions? */ 351 extern int in_sched_functions(unsigned long addr); 352 353 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 354 extern signed long schedule_timeout(signed long timeout); 355 extern signed long schedule_timeout_interruptible(signed long timeout); 356 extern signed long schedule_timeout_killable(signed long timeout); 357 extern signed long schedule_timeout_uninterruptible(signed long timeout); 358 asmlinkage void schedule(void); 359 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 360 361 struct nsproxy; 362 struct user_namespace; 363 364 /* 365 * Default maximum number of active map areas, this limits the number of vmas 366 * per mm struct. Users can overwrite this number by sysctl but there is a 367 * problem. 368 * 369 * When a program's coredump is generated as ELF format, a section is created 370 * per a vma. In ELF, the number of sections is represented in unsigned short. 371 * This means the number of sections should be smaller than 65535 at coredump. 372 * Because the kernel adds some informative sections to a image of program at 373 * generating coredump, we need some margin. The number of extra sections is 374 * 1-3 now and depends on arch. We use "5" as safe margin, here. 375 */ 376 #define MAPCOUNT_ELF_CORE_MARGIN (5) 377 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 378 379 extern int sysctl_max_map_count; 380 381 #include <linux/aio.h> 382 383 #ifdef CONFIG_MMU 384 extern void arch_pick_mmap_layout(struct mm_struct *mm); 385 extern unsigned long 386 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 387 unsigned long, unsigned long); 388 extern unsigned long 389 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 390 unsigned long len, unsigned long pgoff, 391 unsigned long flags); 392 extern void arch_unmap_area(struct mm_struct *, unsigned long); 393 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 394 #else 395 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 396 #endif 397 398 399 extern void set_dumpable(struct mm_struct *mm, int value); 400 extern int get_dumpable(struct mm_struct *mm); 401 402 /* mm flags */ 403 /* dumpable bits */ 404 #define MMF_DUMPABLE 0 /* core dump is permitted */ 405 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 406 407 #define MMF_DUMPABLE_BITS 2 408 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 409 410 /* coredump filter bits */ 411 #define MMF_DUMP_ANON_PRIVATE 2 412 #define MMF_DUMP_ANON_SHARED 3 413 #define MMF_DUMP_MAPPED_PRIVATE 4 414 #define MMF_DUMP_MAPPED_SHARED 5 415 #define MMF_DUMP_ELF_HEADERS 6 416 #define MMF_DUMP_HUGETLB_PRIVATE 7 417 #define MMF_DUMP_HUGETLB_SHARED 8 418 419 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 420 #define MMF_DUMP_FILTER_BITS 7 421 #define MMF_DUMP_FILTER_MASK \ 422 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 423 #define MMF_DUMP_FILTER_DEFAULT \ 424 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 425 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 426 427 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 428 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 429 #else 430 # define MMF_DUMP_MASK_DEFAULT_ELF 0 431 #endif 432 /* leave room for more dump flags */ 433 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 434 435 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 436 437 struct sighand_struct { 438 atomic_t count; 439 struct k_sigaction action[_NSIG]; 440 spinlock_t siglock; 441 wait_queue_head_t signalfd_wqh; 442 }; 443 444 struct pacct_struct { 445 int ac_flag; 446 long ac_exitcode; 447 unsigned long ac_mem; 448 cputime_t ac_utime, ac_stime; 449 unsigned long ac_minflt, ac_majflt; 450 }; 451 452 struct cpu_itimer { 453 cputime_t expires; 454 cputime_t incr; 455 u32 error; 456 u32 incr_error; 457 }; 458 459 /** 460 * struct task_cputime - collected CPU time counts 461 * @utime: time spent in user mode, in &cputime_t units 462 * @stime: time spent in kernel mode, in &cputime_t units 463 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 464 * 465 * This structure groups together three kinds of CPU time that are 466 * tracked for threads and thread groups. Most things considering 467 * CPU time want to group these counts together and treat all three 468 * of them in parallel. 469 */ 470 struct task_cputime { 471 cputime_t utime; 472 cputime_t stime; 473 unsigned long long sum_exec_runtime; 474 }; 475 /* Alternate field names when used to cache expirations. */ 476 #define prof_exp stime 477 #define virt_exp utime 478 #define sched_exp sum_exec_runtime 479 480 #define INIT_CPUTIME \ 481 (struct task_cputime) { \ 482 .utime = cputime_zero, \ 483 .stime = cputime_zero, \ 484 .sum_exec_runtime = 0, \ 485 } 486 487 /* 488 * Disable preemption until the scheduler is running. 489 * Reset by start_kernel()->sched_init()->init_idle(). 490 * 491 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 492 * before the scheduler is active -- see should_resched(). 493 */ 494 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 495 496 /** 497 * struct thread_group_cputimer - thread group interval timer counts 498 * @cputime: thread group interval timers. 499 * @running: non-zero when there are timers running and 500 * @cputime receives updates. 501 * @lock: lock for fields in this struct. 502 * 503 * This structure contains the version of task_cputime, above, that is 504 * used for thread group CPU timer calculations. 505 */ 506 struct thread_group_cputimer { 507 struct task_cputime cputime; 508 int running; 509 spinlock_t lock; 510 }; 511 512 /* 513 * NOTE! "signal_struct" does not have it's own 514 * locking, because a shared signal_struct always 515 * implies a shared sighand_struct, so locking 516 * sighand_struct is always a proper superset of 517 * the locking of signal_struct. 518 */ 519 struct signal_struct { 520 atomic_t sigcnt; 521 atomic_t live; 522 int nr_threads; 523 524 wait_queue_head_t wait_chldexit; /* for wait4() */ 525 526 /* current thread group signal load-balancing target: */ 527 struct task_struct *curr_target; 528 529 /* shared signal handling: */ 530 struct sigpending shared_pending; 531 532 /* thread group exit support */ 533 int group_exit_code; 534 /* overloaded: 535 * - notify group_exit_task when ->count is equal to notify_count 536 * - everyone except group_exit_task is stopped during signal delivery 537 * of fatal signals, group_exit_task processes the signal. 538 */ 539 int notify_count; 540 struct task_struct *group_exit_task; 541 542 /* thread group stop support, overloads group_exit_code too */ 543 int group_stop_count; 544 unsigned int flags; /* see SIGNAL_* flags below */ 545 546 /* POSIX.1b Interval Timers */ 547 struct list_head posix_timers; 548 549 /* ITIMER_REAL timer for the process */ 550 struct hrtimer real_timer; 551 struct pid *leader_pid; 552 ktime_t it_real_incr; 553 554 /* 555 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 556 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 557 * values are defined to 0 and 1 respectively 558 */ 559 struct cpu_itimer it[2]; 560 561 /* 562 * Thread group totals for process CPU timers. 563 * See thread_group_cputimer(), et al, for details. 564 */ 565 struct thread_group_cputimer cputimer; 566 567 /* Earliest-expiration cache. */ 568 struct task_cputime cputime_expires; 569 570 struct list_head cpu_timers[3]; 571 572 struct pid *tty_old_pgrp; 573 574 /* boolean value for session group leader */ 575 int leader; 576 577 struct tty_struct *tty; /* NULL if no tty */ 578 579 /* 580 * Cumulative resource counters for dead threads in the group, 581 * and for reaped dead child processes forked by this group. 582 * Live threads maintain their own counters and add to these 583 * in __exit_signal, except for the group leader. 584 */ 585 cputime_t utime, stime, cutime, cstime; 586 cputime_t gtime; 587 cputime_t cgtime; 588 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 589 cputime_t prev_utime, prev_stime; 590 #endif 591 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 592 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 593 unsigned long inblock, oublock, cinblock, coublock; 594 unsigned long maxrss, cmaxrss; 595 struct task_io_accounting ioac; 596 597 /* 598 * Cumulative ns of schedule CPU time fo dead threads in the 599 * group, not including a zombie group leader, (This only differs 600 * from jiffies_to_ns(utime + stime) if sched_clock uses something 601 * other than jiffies.) 602 */ 603 unsigned long long sum_sched_runtime; 604 605 /* 606 * We don't bother to synchronize most readers of this at all, 607 * because there is no reader checking a limit that actually needs 608 * to get both rlim_cur and rlim_max atomically, and either one 609 * alone is a single word that can safely be read normally. 610 * getrlimit/setrlimit use task_lock(current->group_leader) to 611 * protect this instead of the siglock, because they really 612 * have no need to disable irqs. 613 */ 614 struct rlimit rlim[RLIM_NLIMITS]; 615 616 #ifdef CONFIG_BSD_PROCESS_ACCT 617 struct pacct_struct pacct; /* per-process accounting information */ 618 #endif 619 #ifdef CONFIG_TASKSTATS 620 struct taskstats *stats; 621 #endif 622 #ifdef CONFIG_AUDIT 623 unsigned audit_tty; 624 struct tty_audit_buf *tty_audit_buf; 625 #endif 626 627 int oom_adj; /* OOM kill score adjustment (bit shift) */ 628 int oom_score_adj; /* OOM kill score adjustment */ 629 }; 630 631 /* Context switch must be unlocked if interrupts are to be enabled */ 632 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 633 # define __ARCH_WANT_UNLOCKED_CTXSW 634 #endif 635 636 /* 637 * Bits in flags field of signal_struct. 638 */ 639 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 640 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 641 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 642 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 643 /* 644 * Pending notifications to parent. 645 */ 646 #define SIGNAL_CLD_STOPPED 0x00000010 647 #define SIGNAL_CLD_CONTINUED 0x00000020 648 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 649 650 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 651 652 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 653 static inline int signal_group_exit(const struct signal_struct *sig) 654 { 655 return (sig->flags & SIGNAL_GROUP_EXIT) || 656 (sig->group_exit_task != NULL); 657 } 658 659 /* 660 * Some day this will be a full-fledged user tracking system.. 661 */ 662 struct user_struct { 663 atomic_t __count; /* reference count */ 664 atomic_t processes; /* How many processes does this user have? */ 665 atomic_t files; /* How many open files does this user have? */ 666 atomic_t sigpending; /* How many pending signals does this user have? */ 667 #ifdef CONFIG_INOTIFY_USER 668 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 669 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 670 #endif 671 #ifdef CONFIG_EPOLL 672 atomic_t epoll_watches; /* The number of file descriptors currently watched */ 673 #endif 674 #ifdef CONFIG_POSIX_MQUEUE 675 /* protected by mq_lock */ 676 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 677 #endif 678 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 679 680 #ifdef CONFIG_KEYS 681 struct key *uid_keyring; /* UID specific keyring */ 682 struct key *session_keyring; /* UID's default session keyring */ 683 #endif 684 685 /* Hash table maintenance information */ 686 struct hlist_node uidhash_node; 687 uid_t uid; 688 struct user_namespace *user_ns; 689 690 #ifdef CONFIG_PERF_EVENTS 691 atomic_long_t locked_vm; 692 #endif 693 }; 694 695 extern int uids_sysfs_init(void); 696 697 extern struct user_struct *find_user(uid_t); 698 699 extern struct user_struct root_user; 700 #define INIT_USER (&root_user) 701 702 703 struct backing_dev_info; 704 struct reclaim_state; 705 706 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 707 struct sched_info { 708 /* cumulative counters */ 709 unsigned long pcount; /* # of times run on this cpu */ 710 unsigned long long run_delay; /* time spent waiting on a runqueue */ 711 712 /* timestamps */ 713 unsigned long long last_arrival,/* when we last ran on a cpu */ 714 last_queued; /* when we were last queued to run */ 715 #ifdef CONFIG_SCHEDSTATS 716 /* BKL stats */ 717 unsigned int bkl_count; 718 #endif 719 }; 720 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 721 722 #ifdef CONFIG_TASK_DELAY_ACCT 723 struct task_delay_info { 724 spinlock_t lock; 725 unsigned int flags; /* Private per-task flags */ 726 727 /* For each stat XXX, add following, aligned appropriately 728 * 729 * struct timespec XXX_start, XXX_end; 730 * u64 XXX_delay; 731 * u32 XXX_count; 732 * 733 * Atomicity of updates to XXX_delay, XXX_count protected by 734 * single lock above (split into XXX_lock if contention is an issue). 735 */ 736 737 /* 738 * XXX_count is incremented on every XXX operation, the delay 739 * associated with the operation is added to XXX_delay. 740 * XXX_delay contains the accumulated delay time in nanoseconds. 741 */ 742 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 743 u64 blkio_delay; /* wait for sync block io completion */ 744 u64 swapin_delay; /* wait for swapin block io completion */ 745 u32 blkio_count; /* total count of the number of sync block */ 746 /* io operations performed */ 747 u32 swapin_count; /* total count of the number of swapin block */ 748 /* io operations performed */ 749 750 struct timespec freepages_start, freepages_end; 751 u64 freepages_delay; /* wait for memory reclaim */ 752 u32 freepages_count; /* total count of memory reclaim */ 753 }; 754 #endif /* CONFIG_TASK_DELAY_ACCT */ 755 756 static inline int sched_info_on(void) 757 { 758 #ifdef CONFIG_SCHEDSTATS 759 return 1; 760 #elif defined(CONFIG_TASK_DELAY_ACCT) 761 extern int delayacct_on; 762 return delayacct_on; 763 #else 764 return 0; 765 #endif 766 } 767 768 enum cpu_idle_type { 769 CPU_IDLE, 770 CPU_NOT_IDLE, 771 CPU_NEWLY_IDLE, 772 CPU_MAX_IDLE_TYPES 773 }; 774 775 /* 776 * sched-domains (multiprocessor balancing) declarations: 777 */ 778 779 /* 780 * Increase resolution of nice-level calculations: 781 */ 782 #define SCHED_LOAD_SHIFT 10 783 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 784 785 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 786 787 #ifdef CONFIG_SMP 788 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 789 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 790 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 791 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 792 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 793 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 794 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 795 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 796 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 797 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 798 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 799 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 800 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 801 802 enum powersavings_balance_level { 803 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 804 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 805 * first for long running threads 806 */ 807 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 808 * cpu package for power savings 809 */ 810 MAX_POWERSAVINGS_BALANCE_LEVELS 811 }; 812 813 extern int sched_mc_power_savings, sched_smt_power_savings; 814 815 static inline int sd_balance_for_mc_power(void) 816 { 817 if (sched_smt_power_savings) 818 return SD_POWERSAVINGS_BALANCE; 819 820 if (!sched_mc_power_savings) 821 return SD_PREFER_SIBLING; 822 823 return 0; 824 } 825 826 static inline int sd_balance_for_package_power(void) 827 { 828 if (sched_mc_power_savings | sched_smt_power_savings) 829 return SD_POWERSAVINGS_BALANCE; 830 831 return SD_PREFER_SIBLING; 832 } 833 834 extern int __weak arch_sd_sibiling_asym_packing(void); 835 836 /* 837 * Optimise SD flags for power savings: 838 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 839 * Keep default SD flags if sched_{smt,mc}_power_saving=0 840 */ 841 842 static inline int sd_power_saving_flags(void) 843 { 844 if (sched_mc_power_savings | sched_smt_power_savings) 845 return SD_BALANCE_NEWIDLE; 846 847 return 0; 848 } 849 850 struct sched_group { 851 struct sched_group *next; /* Must be a circular list */ 852 853 /* 854 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 855 * single CPU. 856 */ 857 unsigned int cpu_power, cpu_power_orig; 858 859 /* 860 * The CPUs this group covers. 861 * 862 * NOTE: this field is variable length. (Allocated dynamically 863 * by attaching extra space to the end of the structure, 864 * depending on how many CPUs the kernel has booted up with) 865 * 866 * It is also be embedded into static data structures at build 867 * time. (See 'struct static_sched_group' in kernel/sched.c) 868 */ 869 unsigned long cpumask[0]; 870 }; 871 872 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 873 { 874 return to_cpumask(sg->cpumask); 875 } 876 877 enum sched_domain_level { 878 SD_LV_NONE = 0, 879 SD_LV_SIBLING, 880 SD_LV_MC, 881 SD_LV_BOOK, 882 SD_LV_CPU, 883 SD_LV_NODE, 884 SD_LV_ALLNODES, 885 SD_LV_MAX 886 }; 887 888 struct sched_domain_attr { 889 int relax_domain_level; 890 }; 891 892 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 893 .relax_domain_level = -1, \ 894 } 895 896 struct sched_domain { 897 /* These fields must be setup */ 898 struct sched_domain *parent; /* top domain must be null terminated */ 899 struct sched_domain *child; /* bottom domain must be null terminated */ 900 struct sched_group *groups; /* the balancing groups of the domain */ 901 unsigned long min_interval; /* Minimum balance interval ms */ 902 unsigned long max_interval; /* Maximum balance interval ms */ 903 unsigned int busy_factor; /* less balancing by factor if busy */ 904 unsigned int imbalance_pct; /* No balance until over watermark */ 905 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 906 unsigned int busy_idx; 907 unsigned int idle_idx; 908 unsigned int newidle_idx; 909 unsigned int wake_idx; 910 unsigned int forkexec_idx; 911 unsigned int smt_gain; 912 int flags; /* See SD_* */ 913 enum sched_domain_level level; 914 915 /* Runtime fields. */ 916 unsigned long last_balance; /* init to jiffies. units in jiffies */ 917 unsigned int balance_interval; /* initialise to 1. units in ms. */ 918 unsigned int nr_balance_failed; /* initialise to 0 */ 919 920 u64 last_update; 921 922 #ifdef CONFIG_SCHEDSTATS 923 /* load_balance() stats */ 924 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 925 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 926 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 927 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 928 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 929 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 930 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 931 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 932 933 /* Active load balancing */ 934 unsigned int alb_count; 935 unsigned int alb_failed; 936 unsigned int alb_pushed; 937 938 /* SD_BALANCE_EXEC stats */ 939 unsigned int sbe_count; 940 unsigned int sbe_balanced; 941 unsigned int sbe_pushed; 942 943 /* SD_BALANCE_FORK stats */ 944 unsigned int sbf_count; 945 unsigned int sbf_balanced; 946 unsigned int sbf_pushed; 947 948 /* try_to_wake_up() stats */ 949 unsigned int ttwu_wake_remote; 950 unsigned int ttwu_move_affine; 951 unsigned int ttwu_move_balance; 952 #endif 953 #ifdef CONFIG_SCHED_DEBUG 954 char *name; 955 #endif 956 957 unsigned int span_weight; 958 /* 959 * Span of all CPUs in this domain. 960 * 961 * NOTE: this field is variable length. (Allocated dynamically 962 * by attaching extra space to the end of the structure, 963 * depending on how many CPUs the kernel has booted up with) 964 * 965 * It is also be embedded into static data structures at build 966 * time. (See 'struct static_sched_domain' in kernel/sched.c) 967 */ 968 unsigned long span[0]; 969 }; 970 971 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 972 { 973 return to_cpumask(sd->span); 974 } 975 976 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 977 struct sched_domain_attr *dattr_new); 978 979 /* Allocate an array of sched domains, for partition_sched_domains(). */ 980 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 981 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 982 983 /* Test a flag in parent sched domain */ 984 static inline int test_sd_parent(struct sched_domain *sd, int flag) 985 { 986 if (sd->parent && (sd->parent->flags & flag)) 987 return 1; 988 989 return 0; 990 } 991 992 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 993 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 994 995 #else /* CONFIG_SMP */ 996 997 struct sched_domain_attr; 998 999 static inline void 1000 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1001 struct sched_domain_attr *dattr_new) 1002 { 1003 } 1004 #endif /* !CONFIG_SMP */ 1005 1006 1007 struct io_context; /* See blkdev.h */ 1008 1009 1010 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1011 extern void prefetch_stack(struct task_struct *t); 1012 #else 1013 static inline void prefetch_stack(struct task_struct *t) { } 1014 #endif 1015 1016 struct audit_context; /* See audit.c */ 1017 struct mempolicy; 1018 struct pipe_inode_info; 1019 struct uts_namespace; 1020 1021 struct rq; 1022 struct sched_domain; 1023 1024 /* 1025 * wake flags 1026 */ 1027 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1028 #define WF_FORK 0x02 /* child wakeup after fork */ 1029 1030 #define ENQUEUE_WAKEUP 1 1031 #define ENQUEUE_WAKING 2 1032 #define ENQUEUE_HEAD 4 1033 1034 #define DEQUEUE_SLEEP 1 1035 1036 struct sched_class { 1037 const struct sched_class *next; 1038 1039 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1040 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1041 void (*yield_task) (struct rq *rq); 1042 1043 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1044 1045 struct task_struct * (*pick_next_task) (struct rq *rq); 1046 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1047 1048 #ifdef CONFIG_SMP 1049 int (*select_task_rq)(struct rq *rq, struct task_struct *p, 1050 int sd_flag, int flags); 1051 1052 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1053 void (*post_schedule) (struct rq *this_rq); 1054 void (*task_waking) (struct rq *this_rq, struct task_struct *task); 1055 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1056 1057 void (*set_cpus_allowed)(struct task_struct *p, 1058 const struct cpumask *newmask); 1059 1060 void (*rq_online)(struct rq *rq); 1061 void (*rq_offline)(struct rq *rq); 1062 #endif 1063 1064 void (*set_curr_task) (struct rq *rq); 1065 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1066 void (*task_fork) (struct task_struct *p); 1067 1068 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 1069 int running); 1070 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 1071 int running); 1072 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1073 int oldprio, int running); 1074 1075 unsigned int (*get_rr_interval) (struct rq *rq, 1076 struct task_struct *task); 1077 1078 #ifdef CONFIG_FAIR_GROUP_SCHED 1079 void (*moved_group) (struct task_struct *p, int on_rq); 1080 #endif 1081 }; 1082 1083 struct load_weight { 1084 unsigned long weight, inv_weight; 1085 }; 1086 1087 #ifdef CONFIG_SCHEDSTATS 1088 struct sched_statistics { 1089 u64 wait_start; 1090 u64 wait_max; 1091 u64 wait_count; 1092 u64 wait_sum; 1093 u64 iowait_count; 1094 u64 iowait_sum; 1095 1096 u64 sleep_start; 1097 u64 sleep_max; 1098 s64 sum_sleep_runtime; 1099 1100 u64 block_start; 1101 u64 block_max; 1102 u64 exec_max; 1103 u64 slice_max; 1104 1105 u64 nr_migrations_cold; 1106 u64 nr_failed_migrations_affine; 1107 u64 nr_failed_migrations_running; 1108 u64 nr_failed_migrations_hot; 1109 u64 nr_forced_migrations; 1110 1111 u64 nr_wakeups; 1112 u64 nr_wakeups_sync; 1113 u64 nr_wakeups_migrate; 1114 u64 nr_wakeups_local; 1115 u64 nr_wakeups_remote; 1116 u64 nr_wakeups_affine; 1117 u64 nr_wakeups_affine_attempts; 1118 u64 nr_wakeups_passive; 1119 u64 nr_wakeups_idle; 1120 }; 1121 #endif 1122 1123 struct sched_entity { 1124 struct load_weight load; /* for load-balancing */ 1125 struct rb_node run_node; 1126 struct list_head group_node; 1127 unsigned int on_rq; 1128 1129 u64 exec_start; 1130 u64 sum_exec_runtime; 1131 u64 vruntime; 1132 u64 prev_sum_exec_runtime; 1133 1134 u64 nr_migrations; 1135 1136 #ifdef CONFIG_SCHEDSTATS 1137 struct sched_statistics statistics; 1138 #endif 1139 1140 #ifdef CONFIG_FAIR_GROUP_SCHED 1141 struct sched_entity *parent; 1142 /* rq on which this entity is (to be) queued: */ 1143 struct cfs_rq *cfs_rq; 1144 /* rq "owned" by this entity/group: */ 1145 struct cfs_rq *my_q; 1146 #endif 1147 }; 1148 1149 struct sched_rt_entity { 1150 struct list_head run_list; 1151 unsigned long timeout; 1152 unsigned int time_slice; 1153 int nr_cpus_allowed; 1154 1155 struct sched_rt_entity *back; 1156 #ifdef CONFIG_RT_GROUP_SCHED 1157 struct sched_rt_entity *parent; 1158 /* rq on which this entity is (to be) queued: */ 1159 struct rt_rq *rt_rq; 1160 /* rq "owned" by this entity/group: */ 1161 struct rt_rq *my_q; 1162 #endif 1163 }; 1164 1165 struct rcu_node; 1166 1167 enum perf_event_task_context { 1168 perf_invalid_context = -1, 1169 perf_hw_context = 0, 1170 perf_sw_context, 1171 perf_nr_task_contexts, 1172 }; 1173 1174 struct task_struct { 1175 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1176 void *stack; 1177 atomic_t usage; 1178 unsigned int flags; /* per process flags, defined below */ 1179 unsigned int ptrace; 1180 1181 int lock_depth; /* BKL lock depth */ 1182 1183 #ifdef CONFIG_SMP 1184 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1185 int oncpu; 1186 #endif 1187 #endif 1188 1189 int prio, static_prio, normal_prio; 1190 unsigned int rt_priority; 1191 const struct sched_class *sched_class; 1192 struct sched_entity se; 1193 struct sched_rt_entity rt; 1194 1195 #ifdef CONFIG_PREEMPT_NOTIFIERS 1196 /* list of struct preempt_notifier: */ 1197 struct hlist_head preempt_notifiers; 1198 #endif 1199 1200 /* 1201 * fpu_counter contains the number of consecutive context switches 1202 * that the FPU is used. If this is over a threshold, the lazy fpu 1203 * saving becomes unlazy to save the trap. This is an unsigned char 1204 * so that after 256 times the counter wraps and the behavior turns 1205 * lazy again; this to deal with bursty apps that only use FPU for 1206 * a short time 1207 */ 1208 unsigned char fpu_counter; 1209 #ifdef CONFIG_BLK_DEV_IO_TRACE 1210 unsigned int btrace_seq; 1211 #endif 1212 1213 unsigned int policy; 1214 cpumask_t cpus_allowed; 1215 1216 #ifdef CONFIG_PREEMPT_RCU 1217 int rcu_read_lock_nesting; 1218 char rcu_read_unlock_special; 1219 struct list_head rcu_node_entry; 1220 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1221 #ifdef CONFIG_TREE_PREEMPT_RCU 1222 struct rcu_node *rcu_blocked_node; 1223 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1224 1225 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1226 struct sched_info sched_info; 1227 #endif 1228 1229 struct list_head tasks; 1230 struct plist_node pushable_tasks; 1231 1232 struct mm_struct *mm, *active_mm; 1233 #if defined(SPLIT_RSS_COUNTING) 1234 struct task_rss_stat rss_stat; 1235 #endif 1236 /* task state */ 1237 int exit_state; 1238 int exit_code, exit_signal; 1239 int pdeath_signal; /* The signal sent when the parent dies */ 1240 /* ??? */ 1241 unsigned int personality; 1242 unsigned did_exec:1; 1243 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1244 * execve */ 1245 unsigned in_iowait:1; 1246 1247 1248 /* Revert to default priority/policy when forking */ 1249 unsigned sched_reset_on_fork:1; 1250 1251 pid_t pid; 1252 pid_t tgid; 1253 1254 #ifdef CONFIG_CC_STACKPROTECTOR 1255 /* Canary value for the -fstack-protector gcc feature */ 1256 unsigned long stack_canary; 1257 #endif 1258 1259 /* 1260 * pointers to (original) parent process, youngest child, younger sibling, 1261 * older sibling, respectively. (p->father can be replaced with 1262 * p->real_parent->pid) 1263 */ 1264 struct task_struct *real_parent; /* real parent process */ 1265 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1266 /* 1267 * children/sibling forms the list of my natural children 1268 */ 1269 struct list_head children; /* list of my children */ 1270 struct list_head sibling; /* linkage in my parent's children list */ 1271 struct task_struct *group_leader; /* threadgroup leader */ 1272 1273 /* 1274 * ptraced is the list of tasks this task is using ptrace on. 1275 * This includes both natural children and PTRACE_ATTACH targets. 1276 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1277 */ 1278 struct list_head ptraced; 1279 struct list_head ptrace_entry; 1280 1281 /* PID/PID hash table linkage. */ 1282 struct pid_link pids[PIDTYPE_MAX]; 1283 struct list_head thread_group; 1284 1285 struct completion *vfork_done; /* for vfork() */ 1286 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1287 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1288 1289 cputime_t utime, stime, utimescaled, stimescaled; 1290 cputime_t gtime; 1291 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1292 cputime_t prev_utime, prev_stime; 1293 #endif 1294 unsigned long nvcsw, nivcsw; /* context switch counts */ 1295 struct timespec start_time; /* monotonic time */ 1296 struct timespec real_start_time; /* boot based time */ 1297 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1298 unsigned long min_flt, maj_flt; 1299 1300 struct task_cputime cputime_expires; 1301 struct list_head cpu_timers[3]; 1302 1303 /* process credentials */ 1304 const struct cred __rcu *real_cred; /* objective and real subjective task 1305 * credentials (COW) */ 1306 const struct cred __rcu *cred; /* effective (overridable) subjective task 1307 * credentials (COW) */ 1308 struct mutex cred_guard_mutex; /* guard against foreign influences on 1309 * credential calculations 1310 * (notably. ptrace) */ 1311 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1312 1313 char comm[TASK_COMM_LEN]; /* executable name excluding path 1314 - access with [gs]et_task_comm (which lock 1315 it with task_lock()) 1316 - initialized normally by setup_new_exec */ 1317 /* file system info */ 1318 int link_count, total_link_count; 1319 #ifdef CONFIG_SYSVIPC 1320 /* ipc stuff */ 1321 struct sysv_sem sysvsem; 1322 #endif 1323 #ifdef CONFIG_DETECT_HUNG_TASK 1324 /* hung task detection */ 1325 unsigned long last_switch_count; 1326 #endif 1327 /* CPU-specific state of this task */ 1328 struct thread_struct thread; 1329 /* filesystem information */ 1330 struct fs_struct *fs; 1331 /* open file information */ 1332 struct files_struct *files; 1333 /* namespaces */ 1334 struct nsproxy *nsproxy; 1335 /* signal handlers */ 1336 struct signal_struct *signal; 1337 struct sighand_struct *sighand; 1338 1339 sigset_t blocked, real_blocked; 1340 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1341 struct sigpending pending; 1342 1343 unsigned long sas_ss_sp; 1344 size_t sas_ss_size; 1345 int (*notifier)(void *priv); 1346 void *notifier_data; 1347 sigset_t *notifier_mask; 1348 struct audit_context *audit_context; 1349 #ifdef CONFIG_AUDITSYSCALL 1350 uid_t loginuid; 1351 unsigned int sessionid; 1352 #endif 1353 seccomp_t seccomp; 1354 1355 /* Thread group tracking */ 1356 u32 parent_exec_id; 1357 u32 self_exec_id; 1358 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1359 * mempolicy */ 1360 spinlock_t alloc_lock; 1361 1362 #ifdef CONFIG_GENERIC_HARDIRQS 1363 /* IRQ handler threads */ 1364 struct irqaction *irqaction; 1365 #endif 1366 1367 /* Protection of the PI data structures: */ 1368 raw_spinlock_t pi_lock; 1369 1370 #ifdef CONFIG_RT_MUTEXES 1371 /* PI waiters blocked on a rt_mutex held by this task */ 1372 struct plist_head pi_waiters; 1373 /* Deadlock detection and priority inheritance handling */ 1374 struct rt_mutex_waiter *pi_blocked_on; 1375 #endif 1376 1377 #ifdef CONFIG_DEBUG_MUTEXES 1378 /* mutex deadlock detection */ 1379 struct mutex_waiter *blocked_on; 1380 #endif 1381 #ifdef CONFIG_TRACE_IRQFLAGS 1382 unsigned int irq_events; 1383 unsigned long hardirq_enable_ip; 1384 unsigned long hardirq_disable_ip; 1385 unsigned int hardirq_enable_event; 1386 unsigned int hardirq_disable_event; 1387 int hardirqs_enabled; 1388 int hardirq_context; 1389 unsigned long softirq_disable_ip; 1390 unsigned long softirq_enable_ip; 1391 unsigned int softirq_disable_event; 1392 unsigned int softirq_enable_event; 1393 int softirqs_enabled; 1394 int softirq_context; 1395 #endif 1396 #ifdef CONFIG_LOCKDEP 1397 # define MAX_LOCK_DEPTH 48UL 1398 u64 curr_chain_key; 1399 int lockdep_depth; 1400 unsigned int lockdep_recursion; 1401 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1402 gfp_t lockdep_reclaim_gfp; 1403 #endif 1404 1405 /* journalling filesystem info */ 1406 void *journal_info; 1407 1408 /* stacked block device info */ 1409 struct bio_list *bio_list; 1410 1411 /* VM state */ 1412 struct reclaim_state *reclaim_state; 1413 1414 struct backing_dev_info *backing_dev_info; 1415 1416 struct io_context *io_context; 1417 1418 unsigned long ptrace_message; 1419 siginfo_t *last_siginfo; /* For ptrace use. */ 1420 struct task_io_accounting ioac; 1421 #if defined(CONFIG_TASK_XACCT) 1422 u64 acct_rss_mem1; /* accumulated rss usage */ 1423 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1424 cputime_t acct_timexpd; /* stime + utime since last update */ 1425 #endif 1426 #ifdef CONFIG_CPUSETS 1427 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1428 int mems_allowed_change_disable; 1429 int cpuset_mem_spread_rotor; 1430 int cpuset_slab_spread_rotor; 1431 #endif 1432 #ifdef CONFIG_CGROUPS 1433 /* Control Group info protected by css_set_lock */ 1434 struct css_set __rcu *cgroups; 1435 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1436 struct list_head cg_list; 1437 #endif 1438 #ifdef CONFIG_FUTEX 1439 struct robust_list_head __user *robust_list; 1440 #ifdef CONFIG_COMPAT 1441 struct compat_robust_list_head __user *compat_robust_list; 1442 #endif 1443 struct list_head pi_state_list; 1444 struct futex_pi_state *pi_state_cache; 1445 #endif 1446 #ifdef CONFIG_PERF_EVENTS 1447 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1448 struct mutex perf_event_mutex; 1449 struct list_head perf_event_list; 1450 #endif 1451 #ifdef CONFIG_NUMA 1452 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1453 short il_next; 1454 #endif 1455 atomic_t fs_excl; /* holding fs exclusive resources */ 1456 struct rcu_head rcu; 1457 1458 /* 1459 * cache last used pipe for splice 1460 */ 1461 struct pipe_inode_info *splice_pipe; 1462 #ifdef CONFIG_TASK_DELAY_ACCT 1463 struct task_delay_info *delays; 1464 #endif 1465 #ifdef CONFIG_FAULT_INJECTION 1466 int make_it_fail; 1467 #endif 1468 struct prop_local_single dirties; 1469 #ifdef CONFIG_LATENCYTOP 1470 int latency_record_count; 1471 struct latency_record latency_record[LT_SAVECOUNT]; 1472 #endif 1473 /* 1474 * time slack values; these are used to round up poll() and 1475 * select() etc timeout values. These are in nanoseconds. 1476 */ 1477 unsigned long timer_slack_ns; 1478 unsigned long default_timer_slack_ns; 1479 1480 struct list_head *scm_work_list; 1481 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1482 /* Index of current stored address in ret_stack */ 1483 int curr_ret_stack; 1484 /* Stack of return addresses for return function tracing */ 1485 struct ftrace_ret_stack *ret_stack; 1486 /* time stamp for last schedule */ 1487 unsigned long long ftrace_timestamp; 1488 /* 1489 * Number of functions that haven't been traced 1490 * because of depth overrun. 1491 */ 1492 atomic_t trace_overrun; 1493 /* Pause for the tracing */ 1494 atomic_t tracing_graph_pause; 1495 #endif 1496 #ifdef CONFIG_TRACING 1497 /* state flags for use by tracers */ 1498 unsigned long trace; 1499 /* bitmask of trace recursion */ 1500 unsigned long trace_recursion; 1501 #endif /* CONFIG_TRACING */ 1502 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1503 struct memcg_batch_info { 1504 int do_batch; /* incremented when batch uncharge started */ 1505 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1506 unsigned long bytes; /* uncharged usage */ 1507 unsigned long memsw_bytes; /* uncharged mem+swap usage */ 1508 } memcg_batch; 1509 #endif 1510 }; 1511 1512 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1513 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1514 1515 /* 1516 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1517 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1518 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1519 * values are inverted: lower p->prio value means higher priority. 1520 * 1521 * The MAX_USER_RT_PRIO value allows the actual maximum 1522 * RT priority to be separate from the value exported to 1523 * user-space. This allows kernel threads to set their 1524 * priority to a value higher than any user task. Note: 1525 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1526 */ 1527 1528 #define MAX_USER_RT_PRIO 100 1529 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1530 1531 #define MAX_PRIO (MAX_RT_PRIO + 40) 1532 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1533 1534 static inline int rt_prio(int prio) 1535 { 1536 if (unlikely(prio < MAX_RT_PRIO)) 1537 return 1; 1538 return 0; 1539 } 1540 1541 static inline int rt_task(struct task_struct *p) 1542 { 1543 return rt_prio(p->prio); 1544 } 1545 1546 static inline struct pid *task_pid(struct task_struct *task) 1547 { 1548 return task->pids[PIDTYPE_PID].pid; 1549 } 1550 1551 static inline struct pid *task_tgid(struct task_struct *task) 1552 { 1553 return task->group_leader->pids[PIDTYPE_PID].pid; 1554 } 1555 1556 /* 1557 * Without tasklist or rcu lock it is not safe to dereference 1558 * the result of task_pgrp/task_session even if task == current, 1559 * we can race with another thread doing sys_setsid/sys_setpgid. 1560 */ 1561 static inline struct pid *task_pgrp(struct task_struct *task) 1562 { 1563 return task->group_leader->pids[PIDTYPE_PGID].pid; 1564 } 1565 1566 static inline struct pid *task_session(struct task_struct *task) 1567 { 1568 return task->group_leader->pids[PIDTYPE_SID].pid; 1569 } 1570 1571 struct pid_namespace; 1572 1573 /* 1574 * the helpers to get the task's different pids as they are seen 1575 * from various namespaces 1576 * 1577 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1578 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1579 * current. 1580 * task_xid_nr_ns() : id seen from the ns specified; 1581 * 1582 * set_task_vxid() : assigns a virtual id to a task; 1583 * 1584 * see also pid_nr() etc in include/linux/pid.h 1585 */ 1586 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1587 struct pid_namespace *ns); 1588 1589 static inline pid_t task_pid_nr(struct task_struct *tsk) 1590 { 1591 return tsk->pid; 1592 } 1593 1594 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1595 struct pid_namespace *ns) 1596 { 1597 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1598 } 1599 1600 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1601 { 1602 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1603 } 1604 1605 1606 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1607 { 1608 return tsk->tgid; 1609 } 1610 1611 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1612 1613 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1614 { 1615 return pid_vnr(task_tgid(tsk)); 1616 } 1617 1618 1619 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1620 struct pid_namespace *ns) 1621 { 1622 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1623 } 1624 1625 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1626 { 1627 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1628 } 1629 1630 1631 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1632 struct pid_namespace *ns) 1633 { 1634 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1635 } 1636 1637 static inline pid_t task_session_vnr(struct task_struct *tsk) 1638 { 1639 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1640 } 1641 1642 /* obsolete, do not use */ 1643 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1644 { 1645 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1646 } 1647 1648 /** 1649 * pid_alive - check that a task structure is not stale 1650 * @p: Task structure to be checked. 1651 * 1652 * Test if a process is not yet dead (at most zombie state) 1653 * If pid_alive fails, then pointers within the task structure 1654 * can be stale and must not be dereferenced. 1655 */ 1656 static inline int pid_alive(struct task_struct *p) 1657 { 1658 return p->pids[PIDTYPE_PID].pid != NULL; 1659 } 1660 1661 /** 1662 * is_global_init - check if a task structure is init 1663 * @tsk: Task structure to be checked. 1664 * 1665 * Check if a task structure is the first user space task the kernel created. 1666 */ 1667 static inline int is_global_init(struct task_struct *tsk) 1668 { 1669 return tsk->pid == 1; 1670 } 1671 1672 /* 1673 * is_container_init: 1674 * check whether in the task is init in its own pid namespace. 1675 */ 1676 extern int is_container_init(struct task_struct *tsk); 1677 1678 extern struct pid *cad_pid; 1679 1680 extern void free_task(struct task_struct *tsk); 1681 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1682 1683 extern void __put_task_struct(struct task_struct *t); 1684 1685 static inline void put_task_struct(struct task_struct *t) 1686 { 1687 if (atomic_dec_and_test(&t->usage)) 1688 __put_task_struct(t); 1689 } 1690 1691 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1692 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1693 1694 /* 1695 * Per process flags 1696 */ 1697 #define PF_KSOFTIRQD 0x00000001 /* I am ksoftirqd */ 1698 #define PF_STARTING 0x00000002 /* being created */ 1699 #define PF_EXITING 0x00000004 /* getting shut down */ 1700 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1701 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1702 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1703 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1704 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1705 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1706 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1707 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1708 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1709 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1710 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1711 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1712 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1713 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1714 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1715 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1716 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1717 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1718 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1719 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1720 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1721 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1722 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1723 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1724 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1725 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1726 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1727 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1728 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1729 1730 /* 1731 * Only the _current_ task can read/write to tsk->flags, but other 1732 * tasks can access tsk->flags in readonly mode for example 1733 * with tsk_used_math (like during threaded core dumping). 1734 * There is however an exception to this rule during ptrace 1735 * or during fork: the ptracer task is allowed to write to the 1736 * child->flags of its traced child (same goes for fork, the parent 1737 * can write to the child->flags), because we're guaranteed the 1738 * child is not running and in turn not changing child->flags 1739 * at the same time the parent does it. 1740 */ 1741 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1742 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1743 #define clear_used_math() clear_stopped_child_used_math(current) 1744 #define set_used_math() set_stopped_child_used_math(current) 1745 #define conditional_stopped_child_used_math(condition, child) \ 1746 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1747 #define conditional_used_math(condition) \ 1748 conditional_stopped_child_used_math(condition, current) 1749 #define copy_to_stopped_child_used_math(child) \ 1750 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1751 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1752 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1753 #define used_math() tsk_used_math(current) 1754 1755 #ifdef CONFIG_PREEMPT_RCU 1756 1757 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1758 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1759 1760 static inline void rcu_copy_process(struct task_struct *p) 1761 { 1762 p->rcu_read_lock_nesting = 0; 1763 p->rcu_read_unlock_special = 0; 1764 #ifdef CONFIG_TREE_PREEMPT_RCU 1765 p->rcu_blocked_node = NULL; 1766 #endif 1767 INIT_LIST_HEAD(&p->rcu_node_entry); 1768 } 1769 1770 #else 1771 1772 static inline void rcu_copy_process(struct task_struct *p) 1773 { 1774 } 1775 1776 #endif 1777 1778 #ifdef CONFIG_SMP 1779 extern int set_cpus_allowed_ptr(struct task_struct *p, 1780 const struct cpumask *new_mask); 1781 #else 1782 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1783 const struct cpumask *new_mask) 1784 { 1785 if (!cpumask_test_cpu(0, new_mask)) 1786 return -EINVAL; 1787 return 0; 1788 } 1789 #endif 1790 1791 #ifndef CONFIG_CPUMASK_OFFSTACK 1792 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1793 { 1794 return set_cpus_allowed_ptr(p, &new_mask); 1795 } 1796 #endif 1797 1798 /* 1799 * Do not use outside of architecture code which knows its limitations. 1800 * 1801 * sched_clock() has no promise of monotonicity or bounded drift between 1802 * CPUs, use (which you should not) requires disabling IRQs. 1803 * 1804 * Please use one of the three interfaces below. 1805 */ 1806 extern unsigned long long notrace sched_clock(void); 1807 /* 1808 * See the comment in kernel/sched_clock.c 1809 */ 1810 extern u64 cpu_clock(int cpu); 1811 extern u64 local_clock(void); 1812 extern u64 sched_clock_cpu(int cpu); 1813 1814 1815 extern void sched_clock_init(void); 1816 1817 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1818 static inline void sched_clock_tick(void) 1819 { 1820 } 1821 1822 static inline void sched_clock_idle_sleep_event(void) 1823 { 1824 } 1825 1826 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1827 { 1828 } 1829 #else 1830 /* 1831 * Architectures can set this to 1 if they have specified 1832 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1833 * but then during bootup it turns out that sched_clock() 1834 * is reliable after all: 1835 */ 1836 extern int sched_clock_stable; 1837 1838 extern void sched_clock_tick(void); 1839 extern void sched_clock_idle_sleep_event(void); 1840 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1841 #endif 1842 1843 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1844 /* 1845 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1846 * The reason for this explicit opt-in is not to have perf penalty with 1847 * slow sched_clocks. 1848 */ 1849 extern void enable_sched_clock_irqtime(void); 1850 extern void disable_sched_clock_irqtime(void); 1851 #else 1852 static inline void enable_sched_clock_irqtime(void) {} 1853 static inline void disable_sched_clock_irqtime(void) {} 1854 #endif 1855 1856 extern unsigned long long 1857 task_sched_runtime(struct task_struct *task); 1858 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1859 1860 /* sched_exec is called by processes performing an exec */ 1861 #ifdef CONFIG_SMP 1862 extern void sched_exec(void); 1863 #else 1864 #define sched_exec() {} 1865 #endif 1866 1867 extern void sched_clock_idle_sleep_event(void); 1868 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1869 1870 #ifdef CONFIG_HOTPLUG_CPU 1871 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p); 1872 extern void idle_task_exit(void); 1873 #else 1874 static inline void idle_task_exit(void) {} 1875 #endif 1876 1877 extern void sched_idle_next(void); 1878 1879 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1880 extern void wake_up_idle_cpu(int cpu); 1881 #else 1882 static inline void wake_up_idle_cpu(int cpu) { } 1883 #endif 1884 1885 extern unsigned int sysctl_sched_latency; 1886 extern unsigned int sysctl_sched_min_granularity; 1887 extern unsigned int sysctl_sched_wakeup_granularity; 1888 extern unsigned int sysctl_sched_shares_ratelimit; 1889 extern unsigned int sysctl_sched_shares_thresh; 1890 extern unsigned int sysctl_sched_child_runs_first; 1891 1892 enum sched_tunable_scaling { 1893 SCHED_TUNABLESCALING_NONE, 1894 SCHED_TUNABLESCALING_LOG, 1895 SCHED_TUNABLESCALING_LINEAR, 1896 SCHED_TUNABLESCALING_END, 1897 }; 1898 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1899 1900 #ifdef CONFIG_SCHED_DEBUG 1901 extern unsigned int sysctl_sched_migration_cost; 1902 extern unsigned int sysctl_sched_nr_migrate; 1903 extern unsigned int sysctl_sched_time_avg; 1904 extern unsigned int sysctl_timer_migration; 1905 1906 int sched_proc_update_handler(struct ctl_table *table, int write, 1907 void __user *buffer, size_t *length, 1908 loff_t *ppos); 1909 #endif 1910 #ifdef CONFIG_SCHED_DEBUG 1911 static inline unsigned int get_sysctl_timer_migration(void) 1912 { 1913 return sysctl_timer_migration; 1914 } 1915 #else 1916 static inline unsigned int get_sysctl_timer_migration(void) 1917 { 1918 return 1; 1919 } 1920 #endif 1921 extern unsigned int sysctl_sched_rt_period; 1922 extern int sysctl_sched_rt_runtime; 1923 1924 int sched_rt_handler(struct ctl_table *table, int write, 1925 void __user *buffer, size_t *lenp, 1926 loff_t *ppos); 1927 1928 extern unsigned int sysctl_sched_compat_yield; 1929 1930 #ifdef CONFIG_RT_MUTEXES 1931 extern int rt_mutex_getprio(struct task_struct *p); 1932 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1933 extern void rt_mutex_adjust_pi(struct task_struct *p); 1934 #else 1935 static inline int rt_mutex_getprio(struct task_struct *p) 1936 { 1937 return p->normal_prio; 1938 } 1939 # define rt_mutex_adjust_pi(p) do { } while (0) 1940 #endif 1941 1942 extern void set_user_nice(struct task_struct *p, long nice); 1943 extern int task_prio(const struct task_struct *p); 1944 extern int task_nice(const struct task_struct *p); 1945 extern int can_nice(const struct task_struct *p, const int nice); 1946 extern int task_curr(const struct task_struct *p); 1947 extern int idle_cpu(int cpu); 1948 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1949 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1950 struct sched_param *); 1951 extern struct task_struct *idle_task(int cpu); 1952 extern struct task_struct *curr_task(int cpu); 1953 extern void set_curr_task(int cpu, struct task_struct *p); 1954 1955 void yield(void); 1956 1957 /* 1958 * The default (Linux) execution domain. 1959 */ 1960 extern struct exec_domain default_exec_domain; 1961 1962 union thread_union { 1963 struct thread_info thread_info; 1964 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1965 }; 1966 1967 #ifndef __HAVE_ARCH_KSTACK_END 1968 static inline int kstack_end(void *addr) 1969 { 1970 /* Reliable end of stack detection: 1971 * Some APM bios versions misalign the stack 1972 */ 1973 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1974 } 1975 #endif 1976 1977 extern union thread_union init_thread_union; 1978 extern struct task_struct init_task; 1979 1980 extern struct mm_struct init_mm; 1981 1982 extern struct pid_namespace init_pid_ns; 1983 1984 /* 1985 * find a task by one of its numerical ids 1986 * 1987 * find_task_by_pid_ns(): 1988 * finds a task by its pid in the specified namespace 1989 * find_task_by_vpid(): 1990 * finds a task by its virtual pid 1991 * 1992 * see also find_vpid() etc in include/linux/pid.h 1993 */ 1994 1995 extern struct task_struct *find_task_by_vpid(pid_t nr); 1996 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1997 struct pid_namespace *ns); 1998 1999 extern void __set_special_pids(struct pid *pid); 2000 2001 /* per-UID process charging. */ 2002 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2003 static inline struct user_struct *get_uid(struct user_struct *u) 2004 { 2005 atomic_inc(&u->__count); 2006 return u; 2007 } 2008 extern void free_uid(struct user_struct *); 2009 extern void release_uids(struct user_namespace *ns); 2010 2011 #include <asm/current.h> 2012 2013 extern void do_timer(unsigned long ticks); 2014 2015 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2016 extern int wake_up_process(struct task_struct *tsk); 2017 extern void wake_up_new_task(struct task_struct *tsk, 2018 unsigned long clone_flags); 2019 #ifdef CONFIG_SMP 2020 extern void kick_process(struct task_struct *tsk); 2021 #else 2022 static inline void kick_process(struct task_struct *tsk) { } 2023 #endif 2024 extern void sched_fork(struct task_struct *p, int clone_flags); 2025 extern void sched_dead(struct task_struct *p); 2026 2027 extern void proc_caches_init(void); 2028 extern void flush_signals(struct task_struct *); 2029 extern void __flush_signals(struct task_struct *); 2030 extern void ignore_signals(struct task_struct *); 2031 extern void flush_signal_handlers(struct task_struct *, int force_default); 2032 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2033 2034 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2035 { 2036 unsigned long flags; 2037 int ret; 2038 2039 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2040 ret = dequeue_signal(tsk, mask, info); 2041 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2042 2043 return ret; 2044 } 2045 2046 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2047 sigset_t *mask); 2048 extern void unblock_all_signals(void); 2049 extern void release_task(struct task_struct * p); 2050 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2051 extern int force_sigsegv(int, struct task_struct *); 2052 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2053 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2054 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2055 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2056 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2057 extern int kill_pid(struct pid *pid, int sig, int priv); 2058 extern int kill_proc_info(int, struct siginfo *, pid_t); 2059 extern int do_notify_parent(struct task_struct *, int); 2060 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2061 extern void force_sig(int, struct task_struct *); 2062 extern int send_sig(int, struct task_struct *, int); 2063 extern int zap_other_threads(struct task_struct *p); 2064 extern struct sigqueue *sigqueue_alloc(void); 2065 extern void sigqueue_free(struct sigqueue *); 2066 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2067 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2068 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2069 2070 static inline int kill_cad_pid(int sig, int priv) 2071 { 2072 return kill_pid(cad_pid, sig, priv); 2073 } 2074 2075 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2076 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2077 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2078 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2079 2080 /* 2081 * True if we are on the alternate signal stack. 2082 */ 2083 static inline int on_sig_stack(unsigned long sp) 2084 { 2085 #ifdef CONFIG_STACK_GROWSUP 2086 return sp >= current->sas_ss_sp && 2087 sp - current->sas_ss_sp < current->sas_ss_size; 2088 #else 2089 return sp > current->sas_ss_sp && 2090 sp - current->sas_ss_sp <= current->sas_ss_size; 2091 #endif 2092 } 2093 2094 static inline int sas_ss_flags(unsigned long sp) 2095 { 2096 return (current->sas_ss_size == 0 ? SS_DISABLE 2097 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2098 } 2099 2100 /* 2101 * Routines for handling mm_structs 2102 */ 2103 extern struct mm_struct * mm_alloc(void); 2104 2105 /* mmdrop drops the mm and the page tables */ 2106 extern void __mmdrop(struct mm_struct *); 2107 static inline void mmdrop(struct mm_struct * mm) 2108 { 2109 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2110 __mmdrop(mm); 2111 } 2112 2113 /* mmput gets rid of the mappings and all user-space */ 2114 extern void mmput(struct mm_struct *); 2115 /* Grab a reference to a task's mm, if it is not already going away */ 2116 extern struct mm_struct *get_task_mm(struct task_struct *task); 2117 /* Remove the current tasks stale references to the old mm_struct */ 2118 extern void mm_release(struct task_struct *, struct mm_struct *); 2119 /* Allocate a new mm structure and copy contents from tsk->mm */ 2120 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2121 2122 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2123 struct task_struct *, struct pt_regs *); 2124 extern void flush_thread(void); 2125 extern void exit_thread(void); 2126 2127 extern void exit_files(struct task_struct *); 2128 extern void __cleanup_sighand(struct sighand_struct *); 2129 2130 extern void exit_itimers(struct signal_struct *); 2131 extern void flush_itimer_signals(void); 2132 2133 extern NORET_TYPE void do_group_exit(int); 2134 2135 extern void daemonize(const char *, ...); 2136 extern int allow_signal(int); 2137 extern int disallow_signal(int); 2138 2139 extern int do_execve(const char *, 2140 const char __user * const __user *, 2141 const char __user * const __user *, struct pt_regs *); 2142 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2143 struct task_struct *fork_idle(int); 2144 2145 extern void set_task_comm(struct task_struct *tsk, char *from); 2146 extern char *get_task_comm(char *to, struct task_struct *tsk); 2147 2148 #ifdef CONFIG_SMP 2149 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2150 #else 2151 static inline unsigned long wait_task_inactive(struct task_struct *p, 2152 long match_state) 2153 { 2154 return 1; 2155 } 2156 #endif 2157 2158 #define next_task(p) \ 2159 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2160 2161 #define for_each_process(p) \ 2162 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2163 2164 extern bool current_is_single_threaded(void); 2165 2166 /* 2167 * Careful: do_each_thread/while_each_thread is a double loop so 2168 * 'break' will not work as expected - use goto instead. 2169 */ 2170 #define do_each_thread(g, t) \ 2171 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2172 2173 #define while_each_thread(g, t) \ 2174 while ((t = next_thread(t)) != g) 2175 2176 static inline int get_nr_threads(struct task_struct *tsk) 2177 { 2178 return tsk->signal->nr_threads; 2179 } 2180 2181 /* de_thread depends on thread_group_leader not being a pid based check */ 2182 #define thread_group_leader(p) (p == p->group_leader) 2183 2184 /* Do to the insanities of de_thread it is possible for a process 2185 * to have the pid of the thread group leader without actually being 2186 * the thread group leader. For iteration through the pids in proc 2187 * all we care about is that we have a task with the appropriate 2188 * pid, we don't actually care if we have the right task. 2189 */ 2190 static inline int has_group_leader_pid(struct task_struct *p) 2191 { 2192 return p->pid == p->tgid; 2193 } 2194 2195 static inline 2196 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2197 { 2198 return p1->tgid == p2->tgid; 2199 } 2200 2201 static inline struct task_struct *next_thread(const struct task_struct *p) 2202 { 2203 return list_entry_rcu(p->thread_group.next, 2204 struct task_struct, thread_group); 2205 } 2206 2207 static inline int thread_group_empty(struct task_struct *p) 2208 { 2209 return list_empty(&p->thread_group); 2210 } 2211 2212 #define delay_group_leader(p) \ 2213 (thread_group_leader(p) && !thread_group_empty(p)) 2214 2215 static inline int task_detached(struct task_struct *p) 2216 { 2217 return p->exit_signal == -1; 2218 } 2219 2220 /* 2221 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2222 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2223 * pins the final release of task.io_context. Also protects ->cpuset and 2224 * ->cgroup.subsys[]. 2225 * 2226 * Nests both inside and outside of read_lock(&tasklist_lock). 2227 * It must not be nested with write_lock_irq(&tasklist_lock), 2228 * neither inside nor outside. 2229 */ 2230 static inline void task_lock(struct task_struct *p) 2231 { 2232 spin_lock(&p->alloc_lock); 2233 } 2234 2235 static inline void task_unlock(struct task_struct *p) 2236 { 2237 spin_unlock(&p->alloc_lock); 2238 } 2239 2240 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2241 unsigned long *flags); 2242 2243 static inline void unlock_task_sighand(struct task_struct *tsk, 2244 unsigned long *flags) 2245 { 2246 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2247 } 2248 2249 #ifndef __HAVE_THREAD_FUNCTIONS 2250 2251 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2252 #define task_stack_page(task) ((task)->stack) 2253 2254 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2255 { 2256 *task_thread_info(p) = *task_thread_info(org); 2257 task_thread_info(p)->task = p; 2258 } 2259 2260 static inline unsigned long *end_of_stack(struct task_struct *p) 2261 { 2262 return (unsigned long *)(task_thread_info(p) + 1); 2263 } 2264 2265 #endif 2266 2267 static inline int object_is_on_stack(void *obj) 2268 { 2269 void *stack = task_stack_page(current); 2270 2271 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2272 } 2273 2274 extern void thread_info_cache_init(void); 2275 2276 #ifdef CONFIG_DEBUG_STACK_USAGE 2277 static inline unsigned long stack_not_used(struct task_struct *p) 2278 { 2279 unsigned long *n = end_of_stack(p); 2280 2281 do { /* Skip over canary */ 2282 n++; 2283 } while (!*n); 2284 2285 return (unsigned long)n - (unsigned long)end_of_stack(p); 2286 } 2287 #endif 2288 2289 /* set thread flags in other task's structures 2290 * - see asm/thread_info.h for TIF_xxxx flags available 2291 */ 2292 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2293 { 2294 set_ti_thread_flag(task_thread_info(tsk), flag); 2295 } 2296 2297 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2298 { 2299 clear_ti_thread_flag(task_thread_info(tsk), flag); 2300 } 2301 2302 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2303 { 2304 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2305 } 2306 2307 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2308 { 2309 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2310 } 2311 2312 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2313 { 2314 return test_ti_thread_flag(task_thread_info(tsk), flag); 2315 } 2316 2317 static inline void set_tsk_need_resched(struct task_struct *tsk) 2318 { 2319 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2320 } 2321 2322 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2323 { 2324 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2325 } 2326 2327 static inline int test_tsk_need_resched(struct task_struct *tsk) 2328 { 2329 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2330 } 2331 2332 static inline int restart_syscall(void) 2333 { 2334 set_tsk_thread_flag(current, TIF_SIGPENDING); 2335 return -ERESTARTNOINTR; 2336 } 2337 2338 static inline int signal_pending(struct task_struct *p) 2339 { 2340 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2341 } 2342 2343 static inline int __fatal_signal_pending(struct task_struct *p) 2344 { 2345 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2346 } 2347 2348 static inline int fatal_signal_pending(struct task_struct *p) 2349 { 2350 return signal_pending(p) && __fatal_signal_pending(p); 2351 } 2352 2353 static inline int signal_pending_state(long state, struct task_struct *p) 2354 { 2355 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2356 return 0; 2357 if (!signal_pending(p)) 2358 return 0; 2359 2360 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2361 } 2362 2363 static inline int need_resched(void) 2364 { 2365 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2366 } 2367 2368 /* 2369 * cond_resched() and cond_resched_lock(): latency reduction via 2370 * explicit rescheduling in places that are safe. The return 2371 * value indicates whether a reschedule was done in fact. 2372 * cond_resched_lock() will drop the spinlock before scheduling, 2373 * cond_resched_softirq() will enable bhs before scheduling. 2374 */ 2375 extern int _cond_resched(void); 2376 2377 #define cond_resched() ({ \ 2378 __might_sleep(__FILE__, __LINE__, 0); \ 2379 _cond_resched(); \ 2380 }) 2381 2382 extern int __cond_resched_lock(spinlock_t *lock); 2383 2384 #ifdef CONFIG_PREEMPT 2385 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2386 #else 2387 #define PREEMPT_LOCK_OFFSET 0 2388 #endif 2389 2390 #define cond_resched_lock(lock) ({ \ 2391 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2392 __cond_resched_lock(lock); \ 2393 }) 2394 2395 extern int __cond_resched_softirq(void); 2396 2397 #define cond_resched_softirq() ({ \ 2398 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2399 __cond_resched_softirq(); \ 2400 }) 2401 2402 /* 2403 * Does a critical section need to be broken due to another 2404 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2405 * but a general need for low latency) 2406 */ 2407 static inline int spin_needbreak(spinlock_t *lock) 2408 { 2409 #ifdef CONFIG_PREEMPT 2410 return spin_is_contended(lock); 2411 #else 2412 return 0; 2413 #endif 2414 } 2415 2416 /* 2417 * Thread group CPU time accounting. 2418 */ 2419 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2420 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2421 2422 static inline void thread_group_cputime_init(struct signal_struct *sig) 2423 { 2424 spin_lock_init(&sig->cputimer.lock); 2425 } 2426 2427 /* 2428 * Reevaluate whether the task has signals pending delivery. 2429 * Wake the task if so. 2430 * This is required every time the blocked sigset_t changes. 2431 * callers must hold sighand->siglock. 2432 */ 2433 extern void recalc_sigpending_and_wake(struct task_struct *t); 2434 extern void recalc_sigpending(void); 2435 2436 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2437 2438 /* 2439 * Wrappers for p->thread_info->cpu access. No-op on UP. 2440 */ 2441 #ifdef CONFIG_SMP 2442 2443 static inline unsigned int task_cpu(const struct task_struct *p) 2444 { 2445 return task_thread_info(p)->cpu; 2446 } 2447 2448 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2449 2450 #else 2451 2452 static inline unsigned int task_cpu(const struct task_struct *p) 2453 { 2454 return 0; 2455 } 2456 2457 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2458 { 2459 } 2460 2461 #endif /* CONFIG_SMP */ 2462 2463 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2464 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2465 2466 extern void normalize_rt_tasks(void); 2467 2468 #ifdef CONFIG_CGROUP_SCHED 2469 2470 extern struct task_group init_task_group; 2471 2472 extern struct task_group *sched_create_group(struct task_group *parent); 2473 extern void sched_destroy_group(struct task_group *tg); 2474 extern void sched_move_task(struct task_struct *tsk); 2475 #ifdef CONFIG_FAIR_GROUP_SCHED 2476 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2477 extern unsigned long sched_group_shares(struct task_group *tg); 2478 #endif 2479 #ifdef CONFIG_RT_GROUP_SCHED 2480 extern int sched_group_set_rt_runtime(struct task_group *tg, 2481 long rt_runtime_us); 2482 extern long sched_group_rt_runtime(struct task_group *tg); 2483 extern int sched_group_set_rt_period(struct task_group *tg, 2484 long rt_period_us); 2485 extern long sched_group_rt_period(struct task_group *tg); 2486 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2487 #endif 2488 #endif 2489 2490 extern int task_can_switch_user(struct user_struct *up, 2491 struct task_struct *tsk); 2492 2493 #ifdef CONFIG_TASK_XACCT 2494 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2495 { 2496 tsk->ioac.rchar += amt; 2497 } 2498 2499 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2500 { 2501 tsk->ioac.wchar += amt; 2502 } 2503 2504 static inline void inc_syscr(struct task_struct *tsk) 2505 { 2506 tsk->ioac.syscr++; 2507 } 2508 2509 static inline void inc_syscw(struct task_struct *tsk) 2510 { 2511 tsk->ioac.syscw++; 2512 } 2513 #else 2514 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2515 { 2516 } 2517 2518 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2519 { 2520 } 2521 2522 static inline void inc_syscr(struct task_struct *tsk) 2523 { 2524 } 2525 2526 static inline void inc_syscw(struct task_struct *tsk) 2527 { 2528 } 2529 #endif 2530 2531 #ifndef TASK_SIZE_OF 2532 #define TASK_SIZE_OF(tsk) TASK_SIZE 2533 #endif 2534 2535 /* 2536 * Call the function if the target task is executing on a CPU right now: 2537 */ 2538 extern void task_oncpu_function_call(struct task_struct *p, 2539 void (*func) (void *info), void *info); 2540 2541 2542 #ifdef CONFIG_MM_OWNER 2543 extern void mm_update_next_owner(struct mm_struct *mm); 2544 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2545 #else 2546 static inline void mm_update_next_owner(struct mm_struct *mm) 2547 { 2548 } 2549 2550 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2551 { 2552 } 2553 #endif /* CONFIG_MM_OWNER */ 2554 2555 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2556 unsigned int limit) 2557 { 2558 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2559 } 2560 2561 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2562 unsigned int limit) 2563 { 2564 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2565 } 2566 2567 static inline unsigned long rlimit(unsigned int limit) 2568 { 2569 return task_rlimit(current, limit); 2570 } 2571 2572 static inline unsigned long rlimit_max(unsigned int limit) 2573 { 2574 return task_rlimit_max(current, limit); 2575 } 2576 2577 #endif /* __KERNEL__ */ 2578 2579 #endif 2580